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1. Introduction

The purpose of the present paper is to develop a theory of multi-fans which is
an outgrowth of our study initiated in the work [27] on the topology of torus mani-
folds (the precise definition will be given later). A multi-fan is a combinatorial object
generalizing the notion of a fan in algebraic geometry. Our theory is combinatorial by
nature but it is built so as to keep a close connection with thetopology of torus man-
ifolds.

It is known that there is a one-to-one correspondence between toric varieties and
fans. A toric variety is a normal complex algebraic variety of dimension with a
(C∗) -action having a dense orbit. The dense orbit is unique and isomorphic to (C∗) ,
and other orbits have smaller dimensions. The fan associated with the toric variety is
a collection of cones inR with apex at the origin. To each orbit there corresponds a
cone of dimension equal to the codimension of the orbit. Thusthe origin is the cone
corresponding to the dense orbit, one-dimensional cones correspond to maximal singu-
lar orbits and so on. The important point is the fact that the original toric variety can
be reconstructed from the associated fan, and algebro-geometric properties of the toric
variety can be described in terms of combinatorial data of the associated fan.

If one restricts the action of (C∗) to the usual torus = (1) , one can still find
the fan, because the orbit types of the action of the total group (C∗) can be detected
by the isotropy types of the action of the subgroup . Take a circle subgroup of

which appears as an isotropy subgroup of the action. Then each connected compo-
nent of the closure of the set of those points whose isotropy subgroup equals is a

-invariant submanifold of real codimension 2, and containsa unique (C∗) orbit of
complex codimension 1. We shall call such a submanifold a characteristic submani-
fold. If 1 . . . are characteristic submanifolds such that1 ∩ · · · ∩ is non-
empty, then the submanifold 1 ∩ · · · ∩ contains a unique (C∗) -orbit of complex
codimension . This suggests the following definition of torus manifolds and associ-
ated multi-fans.

Let be an oriented closed manifold of dimension 2 with an effective action
of an dimensional torus with non-empty fixed point set . A closed, connected,
codimension two submanifold of will be called characteristic if it is a connected
component of the fixed point set of a certain circle subgroup of , and if it con-
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tains at least one -fixed point. The manifold together with a prefered orientation
of each characteristic submanifold will be called a torus manifold. The multi-fan asso-
ciated with the torus manifold involves cones in the Lie algebra ( ) of , with
apex at the origin. If is a characteristic submanifold and isthe circle subgroup
of which pointwise fixes , then together with the orientationof deter-
mines an element of Hom(1 ), and hence a one dimensional cone in the vector
space Hom(1 )⊗R canonically identified with ( ). If 1 . . . are character-
istic submanifolds such that their intersection contains at least one -fixed point, and
if 1 . . . are the corresponding elements in Hom(1 ), then the -dimensional
cone spanned by 1 . . . lies in the multi-fan associated with . It should be
noted that the intersection of characteristic submanifolds may not be connected in con-
trast with the case of toric manifolds where the intersection is always connected. For
example, the intersection of a family of characteristic submanifolds is a finite set
consisting of -fixed points. These data are also incorporated in the definition of the
associated multi-fan in Section 2.

One of the differences between a fan and a multi-fan is that, while cones in a fan
intersect only at their faces and their union covers the space ( ) just once without
overlap for complete toric varieties, it happens that the union of cones in a multi-fan
covers ( ) with overlap for torus manifolds. Also the same multi-fan corresponds to
different torus manifolds. Nevertheless it turns out that important topological invariants
of a torus manifold can be described in terms of the associated multi-fan. In fact it is
furthermore possible to develop an abstract theory of multi-fans and to define various
“topological” invariants of a multi-fan in such a way that, when the multi-fan is asso-
ciated with a torus manifold, they coincide with the ordinary topological invariants of
the manifold. For example, the “multiplicity of overlap”, which we call the degree of
the multi-fan, equals the Todd genus for a unitary torus manifold (unitary toric mani-
fold in the terminology in [27]; the precise definition will be given in Section 9).

Another feature of the theory of toric varieties is the correspondence between am-
ple line bundles over a complete toric variety and convex polytopes. From a topolog-
ical point of view this can be explained in the following way.Let ( ω) be a com-
pact symplectic manifold with a Hamiltonian -action, and let : → ( )∗ be an
associated moment map. Then it is well-known ([1], [16]) that the image of is
a convex polytope. Moreover, if the de Rham cohomology classof ω is an integral
class, then the polytope is a lattice polytope up to translations in ( )∗ identified
with R . Delzant [9] showed that the original symplectic manifold (ω) is equiv-
ariantly symplectomorphic to a complete non-singular toric variety and the formω is
transformed into the first Chern form of an ample line bundle over the toric vari-
ety. It is known that the number of lattice points in is equal to the Riemann-Roch
number

∫

1( )T ( )
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whereT is the Todd class of , see e.g. [11]. This sort of phenomenon was gener-
alized to “presymplectic” toric manifolds by Karshon and Tolman [22], then to Spin
toric manifolds by Grossberg and Karshon [12] and also to unitary toric manifolds by
the second-named author [27] in the form which relates the equivariant index of the
line bundle regarded as an element of ( ) to the Duistermaat-Heckman measure
of the moment map associated with . In these extended cases the form ω may be
degenerate or the line bundle may not be ample, and consequently the image of the
moment map may not be convex any longer. This leads us to consider more general
figures which we call multi-polytopes. A multi-polytope is apair of a multi-fan and
an arrangement of affine hyperplanes in ( )∗. A similar notion was introduced by
Karshon and Tolman [22] and also by Khovanskii and Pukhlikov[25] for ordinary fans
under the name twisted polytope and virtual polytope respectively. We shall develop a
combinatorial theory of multi-polytopes as well; we define the Duistermaat-Heckman
measure and the equivariant index in a purely combinatorialfashion for multi-fans and
multi-polytopes, and generalize the above results in the combinatorial context. Also we
shall introduce a combinatorial counterpart of a moment mapwhich can be used to in-
terpret the combinatorial Duistermaat-Heckman measure.

In carrying out the above program, the use of equivariant homology and cohomol-
ogy plays an important role. First note that the group Hom(1 ) can be canonically
identified with the equivariant integral homology group2( ), and hence the vector
space ( ) with 2( R). In this way we regard vectors in a multi-fan as lying
in 2( R). On the other hand a characteristic submanifold with a fixedorienta-
tion determines a cohomology classξ in 2( ), the equivariant Poincaré dual of .
These cohomology classes are fundamental for describing the first Chern class of an
equivariant line bundle over . This fact enables us to associate a multi-polytope and
a generalization of the Duistermaat-Heckman measure with an equivariant line bundle.
To a -line bundle whose equivariant first Chern class has the form 1 ( ) =

∑
ξ ,

we associate an arrangement of affine hyperplanes in2( ; R) = ( )∗ defined
by

= { ∈ 2( ; R) | 〈 〉 = }

This arrangement defines the multi-polytope associated with the line bundle . More-
over it is possible to define the equivariant cohomology of a complete simplicial multi-
fan and extend the results to such abstract multi-fans and multi-polytopes.

If 1 . . . are primitive vectors generating an -dimensional cone in the multi-
fan associated with a torus manifold, then they form a basis of Hom( 1 ). However,
in the definition of abstract multi-fans, this condition is not postulated. From this point
of view, it is natural to deal with torus orbifolds besides torus manifolds. This can be
achieved without much change technically. More importantly every complete simplicial
multi-fan (the precise definition will be given later) can berealized as a multi-fan as-
sociated with a torus orbifold in dimensions greater than 2.In dimensions 1 and 2,
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realizable multi-fans are characterized.
Concerning the realization problem we are not sure at this moment whether every

non-singular complete simplicial multi-fan is realized asthe multi-fan associated with
a torus manifold. In any case it should be noticed that a multi-fan may correspond to
more than one torus manifolds unlike the case of toric varieties.

We now explain the contents of each section. In Section 2 we give a definition
of a multi-fan and introduce certain related notions. The completeness of multi-fans
is most important. It is a generalization of the notion of completeness of fans. But the
definition takes a somewhat sophisticated form. Section 3 isdevoted to the -genus of
a complete multi-fan. It is defined in such a way that, when themulti-fan is associated
with a unitary torus manifold , it coincides with the -genus of . In Lemma 3.1
we exhibit an equality which is an analogue of the relation between -vectors and -
vectors in combinatorics (see e.g. [32]), and which, we hope, sheds more insight on
that relation.

In Sections 4 and 5 the notion of a multi-polytope and the associated Duistermaat-
Heckman function are defined. As explained above, a multi-polytope is a pairP =
( F) of an -dimensional complete multi-fan and an arrangement of hyperplanes
F = { } in 2( ; R) with the same index set as the set of 1-dimensional cones
in . It is called simple if the multi-fan is simplicial. The Duistermaat-Heckman
function DHP associated with a simple multi-polytopeP is a locally constant integer-
valued function with bounded support defined on the complement of the hyperplanes
{ }. The wall crossing formula (Lemma 5.3) which describes the difference of the
values of the function on adjacent components is important for later use. In Section 6
another locally constant function on the complement of the hyperplanes{ } in a
multi-polytopeP , called the winding number, is introduced. It satisfies a wall crossing
formula entirely similar to the Duistermaat-Heckman function. When the multi-fan
is associated with a torus manifold or a torus orbifold and ifthere is an equivariant
complex line bundle over , then there is a simple multi-polytopeP naturally as-
sociated with , and the winding number WNP is closely related to the moment map
of . In fact it can be regarded as the density function of the Duistermaat-Heckman
measure associated with the moment map. Theorem 6.6, the main theorem in Section
6, states that the Duistermaat-Heckman function and the winding number coincide for
any simple multi-polytope.

Section 7 is devoted to a generalization of the Ehrhart polynomial to multi-
polytopes. If is a convex lattice polytope and ifν denotes the multiplied polytope
by a positive integerν, then the number of lattice points♯(ν ) contained inν is
developed as a polynomial inν . It is called the Ehrhart polynomial of . The gener-
alization to multi-polytopes is straightforward and properties similar to that of the or-
dinary Ehrhart polynomial hold (Theorem 7.2). IfP is a simple lattice multi-polytope,
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then the associated Ehrhart polynomial♯(νP) is defined by

♯(νP) =
∑

∈ 2( ;Z)

DHνP+( )

where P+ denotes a multi-polytope obtained fromP by a small enlargement.
Lemma 7.3 is crucial for the proof of Theorem 7.2 and for the later development of
the theory. Its corollary, Corollary 7.4, gives a localization formula for the Laurent
polynomial

∑

∈ 2( ;Z) DHP+( ) regarded as a character of . It can be considered
as a combinatorial generalization of Theorem 11.1. It reduces to♯P when evaluated at
the identity. Using this fact, in Section 8, a cohomologicalformula expressing♯P in
terms of the “Todd class” of the multi-fan and the first “Chernclass” of the multi-
polytope is given in Theorem 8.5. The formula can be thought of as a generaliza-
tion of the formula expressing the number of lattice points in a convex lattice poly-
tope by the Riemann-Roch number of the corresponding ample line bundle. The argu-
ment is completely combinatorial. We define the equivariantcohomology ∗( ) of a
multi-fan which is a module over ∗( ), the index map (Gysin homomorphism)
π! : ∗( )→ ∗−2 ( ), the cohomology ∗( ) of and finally the evaluation on
the “fundamental class”. As a corollary a generalization ofKhovanskii-Pukhlikov for-
mula ([25]) for simple lattice multi-polytopes is given in Theorem 8.7.

In Section 9 it is shown how to associate a multi-fan with a torus manifold. It is
also shown that the associated multi-fan is complete. Then,in Section 10, the -genus
of a general torus manifold is defined and is proved to coincide with the -genus of
the associated multi-fan in Theorem 10.1. As a corollary a formula for the signature
of a torus manifold is given. In the same spirit the definitionof the equivariant index
of a line bundle over a general torus manifold is given in Section 11 using a localiza-
tion formula which holds in the case of unitary torus manifolds. The main theorem of
this section, Theorem 11.1, gives a formula describing thatequivariant index using the
winding number. It generalizes the results of [22], [12] and[27] as indicated before.
Results of Section 5 and 6 are crucially used here.

In Section 12 necessary changes to deal with torus orbifoldsare explained briefly.
One of the remarkable points is that the torus action and the orbifold structure are
closely related to each other for a torus orbifold as is explained in Lemma 12.3. In
the last section the realization problem is dealt with. Mainresults of the section are
Theorems 13.1, 13.2 and 13.3.

2. Multi-fans

In [27], we introduced the notion of a unitary toric manifold, which contains a
compact non-singular toric variety as an example, and associated with it a combina-
torial object called a multi-fan, which is a more general notion than a complete non-
singular fan. In this section, we define a multi-fan in a combinatorial way and in full
generality. The reader will find that our notion of a multi-fan is a complete general-
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ization of a fan. We also define the completeness and non-singularity of a multi-fan,
which generalize the corresponding notion of a fan. To do this, we begin with review-
ing the definition of a fan.

Let be a lattice of rank , which is isomorphic toZ . We denote the real vector
space ⊗R by R. A subsetσ of R is called astrongly convex rational polyhedral
cone (with apex at the origin) if there exits a finite number of vectors 1 . . . in

such that

σ = { 1 1 + · · · + | ∈ R and ≥ 0 for all }

andσ∩ (−σ) = {0}. Here “rational” means that it is generated by vectors in thelattice
, and “strong” convexity means that it contains no line through the origin. We will

often call a strongly convex rational polyhedral cone inR simply a cone in . The
dimension dimσ of a coneσ is the dimension of the linear space spanned by vectors
in σ. A subsetτ of σ is called aface of σ if there is a linear function : R → R
such that takes nonnegative values onσ and τ = −1(0)∩ σ. A cone is regarded as a
face of itself, while others are calledproper faces.

DEFINITION. A fan in is a set of a finite number of strongly convex rational
polyhedral cones in R such that
(1) Each face of a cone in is also a cone in ;
(2) The intersection of two cones in is a face of each.

DEFINITION. A fan is said to becompleteif the union of cones in covers
the entire space R.

A cone is calledsimplicial if it is generated by linearly independent vectors. If
the generating vectors can be taken as a part of a basis of , then the cone is called
non-singular.

DEFINITION. A fan is said to besimplicial (resp.non-singular) if every cone in
is simplicial (resp. non-singular).

The basic theory of toric varieties tells us that a fan is complete (resp. simplicial
or non-singular) if and only if the corresponding toric variety is compact (resp. an orb-
ifold or non-singular).

For eachτ ∈ , we define τ to be the quotient lattice of by the sublattice
generated (as a group) byτ ∩ ; so the rank of τ is −dimτ . We consider cones in

that containτ as a face, and project them on (τ )R. These projected cones form a
fan in τ , which we denote by τ and call theprojected fanwith respect toτ . The
dimensions of the projected cones decrease by dimτ . The completeness, simpliciality
and non-singularity of are inherited toτ for any τ .
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We now generalize these notions of a fan. Let be as before. Denote by
Cone( ) the set of all cones in . An ordinary fan is a subset of Cone( ). The set
Cone( ) has a (strict) partial ordering≺ defined by:τ ≺ σ if and only if τ is a
proper face ofσ. The cone{0} consisting of the origin is the unique minimum el-
ement in Cone( ). On the other hand, let be a partially orderedfinite set with a
unique minimum element. We denote the (strict) partial ordering by < and the mini-
mum element by∗. An example of used later is an abstract simplicial set with an
empty set added as a member, which we call anaugmented simplicial set. In this case
the partial ordering is defined by the inclusion relation andthe empty set is the unique
minimum element which may be considered as a (−1)-simplex. Suppose that there is
a map

: → Cone( )

such that
(1) (∗) = {0};
(2) If < for ∈ , then ( )≺ ( );
(3) For any ∈ the map restricted on{ ∈ | ≤ } is an isomorphism of
ordered sets onto{κ ∈ Cone( )| κ � ( )}.
For an integer such that 0≤ ≤ , we set

( ) := { ∈ | dim ( ) = }

One can easily check that( ) does not depend on . When is an augmented sim-
plicial set, ∈ belongs to ( ) if and only if the cardinality| | of is , namely

is an ( − 1)-simplex. Therefore, even if is not an augmented simplicial set, we
use the notation| | for when ∈ ( ).

The image ( ) is a finite set of cones in . We may think of a pair ( ) as
a set of cones in labeled by the ordered set . Cones in an ordinary fan intersect
only at their faces, but cones in ( ) may overlap, even the samecone may appear
repeatedly with different labels. The pair ( ) is almost whatwe call a multi-fan,
but we incorporate a pair of weight functions on cones in ( ) ofthe highest dimen-
sion = rank . More precisely, we consider two functions

± : ( ) → Z≥0

We assume that +( ) > 0 or −( ) > 0 for every ∈ ( ). These two functions
have its origin from geometry. In fact if is a torus manifold of dimension 2 and
if 1 . . . are characteristic submanifolds such that their intersection contains at
least one -fixed point, then the intersection =

⋂

ν ν
consists of a finite number

of -fixed points. At each fixed point ∈ the tangent spaceτ has two orienta-
tions; one is endowed by the orientation of and the other comes from the intersec-
tion of the oriented submanifolds

ν
. Denoting the ratio of the above two orientations
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by ǫ we define the number +( ) to be the number of points ∈ with ǫ = +1
and similarly for −( ). More detailed explanation will be given in Section 9.

DEFINITION. We call a triple := ( ±) a multi-fan in . We define the
dimension of to be the rank of (or the dimension ofR).

Since an ordinary fan in is a subset of Cone( ), one can view it as a multi-
fan by taking = , = the inclusion map, + = 1, and − = 0. In a similar way
as in the case of ordinary fans, we say that a multi-fan = ( ±) is simpli-
cial (resp.non-singular) if every cone in ( ) is simplicial (resp. non-singular). The
following lemma is easy.

Lemma 2.1. A multi-fan = ( ±) is simplicial if and only if is iso-
morphic to an augmented simplicial set as partially orderedsets.

The definition of completeness of a multi-fan is rather complicated. A naive
definition of the completeness would be that the union of cones in ( ) covers the
entire space R. But it turns out that this is not a right definition if we look at multi-
fans associated with unitary torus manifolds, see Section 9. Although the two weighted
functions ± are incorporated in the definition of a multi-fan, only the difference

:= + − −

matters in this paper except Section 13. We shall introduce the following intermediate
notion of pre-completeness at first. A vector∈ R will be called generic if does
not lie on any linear subspace spanned by a cone in ( ) of dimesnsion less than .
For a generic vector we set =

∑

∈ ( ) ( ), where the sum is understood to be
zero if there is no such .

DEFINITION. We call a multi-fan = ( ±) of dimension pre-completeif
( ) 6= ∅ and the integer is independent of the choice of generic vectors . We call

this integer thedegreeof and denote it by deg( ).

REMARK. For an ordinary fan, pre-completeness is the same as completeness.

To define the completeness for a multi-fan , we need to define a projected multi-
fan with respect to an element in . We do it as follows. For each∈ , we set

:= { ∈ | ≤ }

It inherits the partial ordering from , and is the unique minimum element in .
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1

42

5 3

Fig. 1.

A map

: → Cone( ( ))

sending ∈ to the cone ( ) projected on ( ( ))R satisfies the three properties
above required for . We define two functions

± : ( −| |) ⊂ ( ) → Z≥0

to be the restrictions of ± to ( −| |). The triple := ( ±) is a multi-
fan in ( ), and this is the desiredprojected multi-fanwith respect to ∈ . When

is an ordinary fan, this definition agrees with the previous one.

DEFINITION. A pre-complete multi-fan = ( ±) is said to becompleteif
the projected multi-fan is pre-complete for any∈ .

REMARK. A multi-fan is complete if and only if the projected multi-fan is
pre-complete for any ∈ ( −1). The argument is as follows. The pre-completeness
of for ∈ ( −1) implies that =

∑

∈ ( ) ( ) remains unchanged when gets
across the codimension one cone ( ), which means the pre-completeness of . Since

( −| |−1) is contained in ( −1) for any ∈ , the pre-completeness of for any
∈ ( −1) also implies the pre-completeness of for any∈ .

EXAMPLE 2.2. Here is an example of a complete non-singular multi-fanof degree
two. Let 1 . . . 5 be integral vectors shown in Fig. 1, where the dots denote lattice
points.

The vectors are rotating around the origin twice in counterclockwise. We take

= {φ {1} . . . {5} {1 2} {2 3} {3 4} {4 5} {5 1}}
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2

14

3 5

Fig. 2.

define : → Cone( ) by

({ }) = the cone spanned by ,

({ + 1}) = the cone spanned by and+1,

where = 1 . . . 5 and 6 is understood to be 1, and take± such that = 1 on
every two dimensional cone. Then = ( ±) is a complete non-singular two-
dimensional multi-fan with deg( ) = 2.

EXAMPLE 2.3. Here is an example of a complete multi-fan “with folds”.Let

1 . . . 5 be vectors shown in Fig. 2.
We take the same and as in Example 2.2 and take± such that

({3 4}) = −1 and ({ + 1}) = 1 for 6= 3.

Then = ( ±) is a complete two-dimensional multi-fan with deg( ) = 1.
A similar example can be constructed for a number of vectors1 . . . ( ≥ 3)

by defining

({ + 1}) = 1 if and +1 are rotating in counterclockwise,

({ + 1}) = −1 if and +1 are rotating in clockwise,

where + 1 is understood to be 1. The degree deg( ) is the rotation number of the
vectors 1 . . . around the origin in counterclockwise and may not be one.

EXAMPLE 2.4. Here is an example of a multi-fan which is pre-complete but not
complete. Let 1 . . . 5 be vectors shown in Fig. 3.

We take

= {φ {1} . . . {5} {1 2} {2 3} {3 1} {4 5}}
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3

1 = 4

2 = 5

Fig. 3.

define : → Cone( ) as in Example 2.2, and take± such that

({1 2}) = 2 ({2 3}) = 1 ({3 1}) = 1 ({4 5}) = −1

Then = ( ±) is a two-dimensional multi-fan which is pre-complete (in fact,
deg( ) = 1) but not complete because the projected multi-fan{ } for 6= 3 is not
pre-complete.

So far, we treatedrational cones that are generated by vectors in the lattice .
But, most of the notions introduced above make sense even if we allow cones gener-
ated by vectors in R which may not be in . In fact, the notion of non-singularity
requires the lattice , but others do not. Therefore, one can define a multi-fan and its
completeness and simpliciality in this extended category as well. The reader will find
that the arguments developed in Sections 3 through 6 work in this extended category.

3. Ty-genus of a multi-fan

A unitary torus manifold determines a complete non-singular multi-fan. (This
will be discussed and extended to torus manifolds in Section9.) On the other hand,
the -genus (also calledχ -genus) for unitary manifolds introduced by Hirzebruch
in his famous book [20] is defined for . Its characteristic power series is given by

(1 + −(1+ ) )/(1− −(1+ ) ). It is a polynomial in one variable of degree (at most)
(1/2) dim . The Kosniowski formula about the -genus for unitary1-manifolds
(see [18], [23]) and the results in [27] imply that the -genusof should be de-
scribed in terms of the multi-fan associated with . In this section (and in Section 10)
we give the explicit description. In fact, our argument is rather more general. We think
of the -genus of as a polynomial invariant of the associated multi-fan which is
complete and non-singular. It turns out that the polynomialinvariant can be defined not
only for the multi-fans associated with unitary torus manifolds but also for all com-
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plete simplicial multi-fans.
Since the lattice is unnecessary from now until the end of Section 6, we shall

denote the vector space, in which cones sit, by instead ofR. Let = ( ±)
be a complete simplicial multi-fan defined on . By Lemma 2.1 wemay assume that

is an augmented simplicial set, say, consisting of subsets of {1 . . . } and (1) =
{{1} . . . { }} where is the number of elements in(1). For each = 1. . . , let

denote a nonzero vector in the one-dimensional cone ({ }). Choose a generic vec-
tor ∈ . Let ∈ ( ). Since ’s ( ∈ ) are linearly independent, has a unique
expression

∑

∈ with real numbers ’s. The coefficients ’s are all nonzero be-
cause is generic. We set

µ( ) := ♯{ ∈ | > 0}

This depends on although is not recorded in the notationµ( ).

DEFINITION. For an integer with 0≤ ≤ , we define

( ) :=
∑

µ( )=

( ) and ( ) :=
∑

∈ ( )

deg( )

Note that ( ) = deg( ) = 0( ), and ( )’s are independent of . If is a com-
plete simplicial multi-fan such that deg( ) = 1 and ( ) = 1 for all ∈ ( ) (e.g.
this is the case if is a complete simplicial ordinary fan), then deg( ) equals 1 for
all ∈ and hence ( ) agrees with the number of cones of dimension in the
multi-fan.

The following lemma reminds us of the relation between the -vectors and the
-vectors for simplicial sets studied in combinatorics (see[32]).

Lemma 3.1.
∑

=0

( )( + 1) =
∑

=0

− ( ) where is an indeterminate.

Proof. The lemma is equivalent to the following equality:

(3.1)
∑

=

( )

( )

= − ( )

It follows from the definition of ( ) that

(3.2) l.h.s. of (3.1) =
∑

=

( )
∑

µ( )=

( )

On the other hand, we shall rewrite − ( ). It follows from the definition of
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deg( ) that

deg( ) =
∑

∈ ( −| |) ∈ ( )

( )

where denotes the projection image of on the quotient vectorspace of by the
subspace spanned by the cone ( ). Note that lies in ( ) if and only if
lies in ( ∪ ) modulo , and that ( ) = ( ∪ ) by definition. Therefore,
writing ∪ as , the equality above turns into

deg( ) =
∑

( )

where runs over elements in( ) such that ⊂ and ∈ ( ) modulo . Putting
this in the defining equation of − ( ), we have

(3.3) − ( ) =
∑

( )

where the sum is taken over elements∈ ( − ) and ∈ ( ) such that ⊂ and
∈ ( ) modulo . Fix ∈ ( ) with µ( ) = , and observe how many times

appears in the above sum. It is equal to the number of∈ ( − ) such that ⊂
and ∈ ( ) modulo . But the number of such is

( )
. To see this, we note that

µ( ) = means that♯{ ∈ | > 0} = by definition, where =
∑

∈ , and
that the condition that ∈ ( ) modulo is equivalent to saying that contains
the complement of the set{ ∈ | > 0} in . Therefore, any such is obtained as
the complement of a subset of{ ∈ | > 0} with cardinality , so that the number
of such is

( )
. This together with (3.2) and (3.3) proves the equality (3.1).

Corollary 3.2.
(1) ( )’s are independent of the choice of the generic vector .
(2) ( ) = − ( ) for any .

Proof. (1) This immediately follows from Lemma 3.1 because ()’s are inde-
pendent of .

(2) If we take− instead of , thenµ( ) turns into −µ( ), so that ( ) turns
into − ( ). Since ( )’s are independent of as shown in (1) above, this proves

( ) = − ( ).

When is associated with a unitary torus manifold , the -genusof turns
out to be given by

∑

=0 ( )(− ) . (This will be discussed in Section 10 later.) Mo-
tivated by this observation,
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DEFINITION. For a complete simplicial multi-fan , we define

[ ] :=
∑

=0

( )(− )

and call it the -genusof . Note that 0[ ] = 0( ) = ( ) = deg( ).

Lemma 3.1 can be restated as

Corollary 3.3. Let be a complete simplicial multi-fan. Then

[ ] =
∑

=0

− ( )(−1− )

4. Multi-polytopes

A convex polytope in ∗ = Hom( R) is the convex hull of a finite set of
points in ∗. It is the intersection of a finite number of half spaces in∗ separated
by affine hyperplanes, so there are a finite number of nonzero vectors 1 . . . in
and real numbers1 . . . such that

= { ∈ ∗ | 〈 〉 ≤ for all }

where 〈 〉 denotes the natural pairing between∗ and . (Warning: In this paper,
we take to be “outward normal” to the corresponding face of contrary to the
usual convention in algebraic geometry, cf. e.g. [29].) Theconvex polytope can be
recovered from the data{( ) | = 1 . . . }. But, a more general figure like
shaded in Fig. 4 cannot be determined by the data{( ) | = 1 . . . }. We need
to prescribe the vertices of , in other words, which pairs of lines ’s are presumed
to intersect. For instance, if four points1 ∩ 2, 2 ∩ 3, 3 ∩ 4 and 4 ∩ 1 are presumed
to be vertices (and the others such as2 ∩ 4 are not), then we can find the figure
in Fig. 4. But, if different four points1∩ 4, 4∩ 2, 2∩ 3 and 3∩ 1 are presumed to
be vertices, then we obtain a figure′ shaded in Fig. 4.

The data of whether two lines and are presumed to intersect isequivalent to
the data of whether the corresponding vectors and span a cone. In the former
(resp. latter) example above, resulting cones are four two-dimensional ones shown in
Fig. 5 (1) (resp. (2)). Needless to say, is ‘perpendicular’ to the half line spanned by

.
A polytope gives rise to a multi-fan in this way. One notes that a convex polytope

gives rise to a complete fan. Taking this observation into account, we reverse a gear.
We start with a complete multi-fan = ( ±). Let HP( ∗) be the set of all
affine hyperplanes in ∗.
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Fig. 5.

DEFINITION. Let = ( ±) be a complete multi-fan and letF : (1) →
HP( ∗) be a map such that the affine hyperplaneF( ) is ‘perpendicular’ to the half
line ( ) for each ∈ (1), i.e., an element in ( ) takes a constant onF( ). We call
a pair ( F) a multi-polytopeand denote it byP . The dimension of a multi-polytope
P is defined to be the dimension of the multi-fan . We say that a multi-polytope P
is simple if is simplicial.

REMARK. The completeness assumption for is not needed for the definition of
multi-polytopes. We incorporated it because most of our results depend on that as-
sumption. Similar notions were introduced by Karshon-Tolman [22] and Khovanskii-
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Pukhlikov [25] when is an ordinary fan. They use the terminology twisted polytope
and virtual polytoperespectively. The notion of multi-polytopes is a direct generaliza-
tion of that of twisted polytopes. The relation between virtual polytopes and multi-
polytopes is clarified by [28].

EXAMPLE 4.1. A convex polytope determines a complete fan together with an ar-
rangement of affine hyperplanes containing the facets of thepolytope (as explained
above), so it uniquely determines a multi-polytope.

EXAMPLE 4.2. Associated with the multi-fan in Example 2.2, one obtains the ar-
rangement of lines drawn in Fig. 6 with a suitable choice of the mapF . The pentagon
shown up in Fig. 6 produces the same arrangement of lines and can be viewed as a
multi-polytope as explained in Example 4.1 above, but thesetwo multi-polytopes are
different because the underlying multi-fans are different; one is a multi-fan of degree
two while the other is an ordinary fan. The reader will find a star-shaped figure in the
former multi-polytope.

F({1})

F({2})

F({3})

F({4})

F({5})
Fig. 6.

5. Duistermaat-Heckman functions

A multi-polytopeP = ( F) defines an arrangement of affine hyperplanes in∗.
In this section, we associate withP a function on ∗ minus the affine hyperplanes
when P is simple. This function is locally constant and Guillemin-Lerman-Sternberg
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formula ([14], [15]) tells us that it agrees with the densityfunction of a Duistermaat-
Heckman measure whenP arises from a moment map.

Hereafter our multi-polytopeP is assumed to be simple, so that the multi-fan
= ( ±) is complete and simplicial unless otherwise stated. As before, we may

assume that consists of subsets of{1 . . . } and (1) = {{1} . . . { }}, and de-
note by a nonzero vector in the one-dimensional cone ({ }). To simplify notation,
we denoteF({ }) by and set

:=
⋂

∈
for ∈

is an affine space of dimension−| |. In particular, if | | = (i.e., ∈ ( )), then
is a point, denoted by .
Suppose ∈ ( ). Then the set{ | ∈ } forms a basis of . Denote its dual

basis of ∗ by { | ∈ }, i.e., 〈 〉 = δ whereδ denotes the Kronecker delta.
Take a generic vector ∈ . Then 〈 〉 6= 0 for all ∈ ( ) and ∈ . Set

(−1) := (−1)♯{ ∈ |〈 〉>0} and ( )+ :=

{

if 〈 〉 > 0

− if 〈 〉 < 0.

We denote by ∗( )+ the cone in ∗ spanned by ( )+’s ( ∈ ) with apex at , and
by φ its characteristic function.

DEFINITION. We define a function DHP on ∗\⋃ =1 by

DHP :=
∑

∈ ( )

(−1) ( )φ

and call it theDuistermaat-Heckman functionassociated withP .

REMARK. Apparently, the function DHP is defined on the whole space∗ and
depends on the choice of the generic vector∈ , but we will see in Lemma 5.4
below that it is independent of on ∗\⋃ . This is the reason why we restricted
the domain of the function to ∗\⋃ .

For the moment, we shall see the independence of when dimP = 1.

EXAMPLE 5.1. Suppose dimP = 1. We identify with R, so that ∗ is also
identified with R. Let be the subset of{1 . . . } such that ∈ if and only if

({ }) is the half line consisting of nonnegative real numbers. Then the completeness
of means that

(5.1)
∑

∈
({ }) =

∑

/∈
({ }) = deg( )



18 A. HATTORI AND M. MASUDA

Take a nonzero vector . Since∗ is identified with R, each affine hyperplane is
nothing but a real number. Suppose that is toward the positive direction. Then

(5.2) (−1){ } =

{

−1 if ∈
1 if /∈

and the support of the characteristic functionφ{ } is the half line given by

{ ∈ R | ≤ }

Therefore

(5.3) DHP ( ) =
∑

∈ <

(− ({ })) +
∑

/∈ <

({ })

for ∈ R\⋃ . If is sufficiently small, then the sum above is empty; so it iszero.
If is sufficiently large, then the sum is also zero by (5.1). Hence the support of the
function DHP is bounded.

Now, suppose that is toward the negative direction. Then (−1){ } above is mul-
tiplied by −1 and the inequality≤ above turns into≥. Therefore

(5.4) DHP ( ) =
∑

∈ <

({ }) +
∑

/∈ <

(− ({ }))

It follows that

r.h.s. of (5.3)− r.h.s. of (5.4) =−
∑

∈
({ }) +

∑

/∈
({ })

which is zero by (5.1). This shows that the function DHP is independent of when
dimP = 1.

EXAMPLE 5.2. For the star-shaped multi-polytope in Example 4.2, DHP takes 2
on the pentagon, 1 on the five triangles adjacent to the pentagon and 0 on other (un-
bounded) regions. The check is left to the reader.

Assume = dim > 1. For each{ } ∈ (1), the projected multi-fan { } =
( { } { }

±
{ }), which we abbreviate as = ( ±), is defined on the quo-

tient vector space / of by the one-dimensional subspace spanned by .
Since is complete and simplicial, so is . We identify the dualspace ( / )∗ with

( ∗) := { ∈ ∗ | 〈 〉 = 0}

in a natural way. We choose an element∈ arbitrarily and translate onto (∗)
by − . If { } ∈ (2), then intersects and their intersection will be translated
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µ

α

β

’s

Fig. 7.

into ( ∗) by − . This observation leads us to consider the map

F : → HP(( ∗) )

sending{ } ∈ (1) to ∩ translated by− . The pairP = ( F ) is a multi-
polytope in ( / )∗ ∼= ( ∗) .

Let ∈ ( ) such that ∈ . Since 〈 〉 = δ , for 6= is an element
of ( ∗) , which we also regard as an element of (/ )∗ through the isomorphism
( / )∗ ∼= ( ∗) . We denote the projection image of the generic element∈ on
/ by ¯. Then we have〈¯ 〉 = 〈 〉 for 6= , where at the left-hand side

is viewed as an element of (/ )∗ while the one at the right-hand side is viewed as
an element of ( ∗) . Since〈¯ 〉 = 〈 〉 6= 0 for 6= , we use ¯ to define DHP .

Lemma 5.3 (Wall crossing formula.). Let be one of ’s. Let α and β be
elements in ∗\⋃ =1 such that the segment fromα to β intersects the wall
transversely atµ, and does not intersect any other 6= . Then

DHP ( α)−DHP ( β) =
∑

: =

sign〈 β − α 〉DHP (µ− )

Proof. For simplicity we assume that there is only one such that = . We
may assume that〈 β − α 〉 is positive without loss of generality. The situation is
as in Fig. 7.

It follows from the definition of DHP that the difference between DHP ( α) and
DHP ( β) arises from the cones ∗( )+’s for ∈ ( ) such that ∈ and 〈 〉 <
〈µ 〉. In fact, one sees that

DHP ( α) +
∑

sign〈 〉(−1) ( )φ (µ) = DHP ( β)
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where runs over the elements as above. Since sign〈 〉(−1) = −(−1) \{ } and
( ) = ( \{ }), the equality above turns into

DHP ( α)−DHP ( β) =
∑

(−1) \{ } ( \{ })φ (µ)

Hereφ (µ) may be viewed as the value atµ of the characteristic function of the cones
in with apex spanned by ( )+’s ( ∈ 6= ). This shows that the right-hand
side at the equality above agrees with DHP (µ− ), proving the lemma.

Lemma 5.4. The support of the functionDHP is bounded, and the function is
independent of the choice of the generic element∈ .

Proof. Induction on the dimension of simple multi-polytopes P . We have ob-
served the lemma in Example 5.1 when dimP = 1. Suppose dimP = > 1
and suppose that the lemma is true for simple multi-polytopes of dimension − 1.
Then the support of DHP is bounded by the induction assumption. This together
with Lemma 5.3 implies that DHP takes the same constant on unbounded regions in

∗\⋃ . On the other hand, it follows from the definition of DHP that DHP van-
ishes on a half space :={ ∈ ∗ | 〈 〉 < } for a sufficiently small real number
, because for each ∈ ( ) the cone ∗( )+ is contained in the complement of

if is sufficiently small. Therefore the constant which DHP takes on the unbounded
regions in ∗\⋃ is zero, proving the former assertion in the lemma.

As for the latter assertion in the lemma, it follows from the induction assumption
that the right-hand side of the wall crossing formula in Lemma 5.3 is independent of
, and we have seen above that DHP vanishes on unbounded regions regardless of the

choice of . Thus, it follows from Lemma 5.3 that DHP is independent of on any
regions of ∗\⋃ .

6. Winding numbers

We continue to assume that our multi-polytopeP = ( F) is simple and that
is an augmented simplicial set consisting of subsets of{1 . . . }. In this section,

we associate another locally constant function on∗\⋃ with P from a topological
viewpoint, and show that it agrees with the Duistermaat-Heckman function defined in
Section 5.

Choose an orientation on and fix it. We define an orientation on=
{ 1 . . . } ∈ ( ) as follows. If an ordered basis (1 . . . ) gives the chosen ori-
entation on , then we say that the oriented simplex〈 1 . . . 〉 has a positive orien-
tation, and otherwise a negative orientation. We define

〈 〉 :=

{

〈 1 . . . 〉 if 〈 1 . . . 〉 has a positive orientation,

−〈 1 . . . 〉 if 〈 1 . . . 〉 has a negative orientation.
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The completeness of (equivalently, the pre-completeness of the projected multi-fan
for any ∈ ( −1)) implies that

∑

∈ ( )

( )〈 〉

is a cycle in the chain complex of the simplicial set . In fact,the converse also
holds, i.e., the completeness of is equivalent to

∑

∈ ( ) ( )〈 〉 being a cycle. We
denote by [ ] the homology class that the cycle defines in−1( ). Actually [ ] lies
in the reduced homologỹ −1( ), see Example 6.3 discussed later.

Let be the realization of the first barycentric subdivision of . For each ∈
{1 . . . }, we denote by the union of simplicies in which contain the vertex { },
and by the intersection

⋂

∈ for ∈ . Note that∂ can be identified with
the realization of the first barycentric subdivision of , where is the augmented
simplicial set of the projected multi-fan = ( ±).

The projected multi-fan is defined on/ where is the one-dimensional
subspace spanned by . We orient/ as follows: if an ordered basis ( 1 . . .

−1) defines the given orientation on , then we give/ the orientation deter-
mined by ( 1 . . . −1), and otherwise give the opposite orientaiton. Then [ ] is
defined in ˜ −2( ) = ˜ −2(∂ ).

Lemma 6.1. [ ] maps to[ ] through the composition of maps

˜ −1( ) = ˜ −1( )
ι∗−→ −1( \ Int )

excision←−−−−∼= −1( ∂ )
∂−→∼=

˜ −2(∂ )

where ι is the inclusion.

Proof. Through ι∗ and the inverse of the excision isomorphism, the cycle
∑

∈ ( ) ( )〈 〉 maps to
∑

∈ ∈ ( ) ( )〈 〉. We express〈 〉 as ǫ〈 1 . . . −1〉
where ǫ = +1 or −1 and define an oriented (− 2)-simplex 〈 \{ }〉 in ( −1) by
ǫ〈 1 . . . −1〉. It follows that

∂

(
∑

∈ ∈ ( )

( )〈 〉
)

=
∑

∈ ∈ ( )

( )〈 \{ }〉

Here ( ) = ( \{ }) by the definition of , and ∈ ∈ ( ) if and only of
\{ } ∈ ( −1). Therefore, the right-hand side above reduces to

∑

∈ ( −1) ( )〈 〉,
that is [ ] in ˜ −2(∂ ).

The following lemma will be used later several times.

Lemma 6.2. Let and be topological spaces with subspaces⊂ and
⊂ for each ∈ (1). For ∈ , we set :=

⋂

∈ and :=
⋂

∈ . If
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(1) =
⋃

=1 ,
(2) ’s for ∈ ( ) are disjoint, and
(3) is nonempty and contractible for any non-empty set∈ ,
then there is a continuous mapψ : → sending the stratum to for each
∈ , and such a map is unique up to homotopy preserving the stratifications.

Proof. Existence. We will constructψ inductively using decending induction on
| |. If | | = , then we map to any point in . Thusψ is defined on

⋃

| |=
with the image in

⋃

| |= . Let be a nonnegative integer less than and| | = .
Suppose thatψ is defined on

⋃

| |≥ +1 with the image in
⋃

| |≥ +1 . Then

ψ : ∩
(
⋃

| |≥ +1

)

→ ∩
(
⋃

| |≥ +1

)

⊂

extends to a continuous map from to because is contractible.Thusψ is de-
fined on

⋃

| |≥ with the image in
⋃

| |≥ . This completes the induction step, so
that we obtain the desired mapψ defined on .

Uniqueness. We construct a homotopy : × [0 1]→ of given two mapsψ0

andψ1 in the lemma. The argument is almost same as above. Since is contractible,
can be defined on

⋃

| |= × [0 1] with
⋃

| |= as the image. Let be as above
and | | = . Suppose that is defined on (

⋃

| |≥ +1 ) × [0 1] with the image in
⋃

| |≥ +1 and that agrees withψ on (
⋃

| |≥ +1 ) × { } for = 0 1. Then a
map

∪ ψ0 ∪ ψ1 : ( ∩ (
⋃

| |≥ +1 ))× [0 1] ∪ × {0} ∪ × {1}
→ ( ∩ (

⋃

| |≥ +1 )) ∪ ∪ =

extends to a continuous map from × [0 1] to because is contractible. Thus
is defined on (

⋃

| |≥ ) × [0 1] with the image in
⋃

| |≥ . This completes the
induction step, so that we obtain the desired homotopy defined on ×[0 1].

Lemma 6.2 can be applied with = , = , =∗ and = . It follows
that the multi-polytopeP associates a continuous map

: →
⋃

=1

⊂ ∗

sending to for each ∈ by Lemma 6.2, and induces a homomorphism

∗ : ˜ −1( ) = ˜ −1( )→ ˜ −1( ∗\{ })

for each ∈ ∗\⋃ . Such was first introduced in [17] and plays the role of
a moment map. The orientation on chosen at the beginning of this section in-
duces an orientation on ∗ in a natural way. This determines a fundamental class
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in ( ∗ ∗\{ }) and hence in ˜ −1( ∗\{ }) through ∂ : ( ∗ ∗\{ }) ∼=
˜ −1( ∗\{ }). We denote the fundamental class in˜ −1( ∗\{ }) by [ ∗\{ }].

DEFINITION. For each ∈ ∗\⋃ , we define an integer WNP ( ) by

∗([ ]) = WNP ( )[ ∗\{ }]

and call it thewinding numberof the multi-polytopeP = ( F) around .

REMARK. The function WNP is independent of the choice of an orientation on
because if the orientation on is reversed, then [ ] and [∗\{ }] are multiplied by
−1 simultaneously. Moreover, it is locally constant and vanishes on unbounded regions
separated by ’s, which immediately follows from the definition of WNP .

We will see in Theorem 6.6 below that WNP = DHP . For the moment, we shall
check this coincidence when dimP = 1.

EXAMPLE 6.3. We use the notation in Example 5.1. We identify withR, so
that ∗ is also identified withR. Then and ∗ have standard orientations, and since

gives the orientation on if and only if ∈ , the cycle which defines [ ] is
given by

∑

∈
({ })〈 〉 +

∑

/∈
({ })(−〈 〉) = −

∑

=1

(−1){ } ({ })〈 〉

where (−1){ } is the same as in (5.2). Since is complete,
∑

=1(−1){ } ({ }) = 0;
so [ ] actually lies in ˜ 0( ) = ˜ 0( ) and one can rewrite the cycle above as

∑

=1

(−1){ } ({ })(〈 〉 − 〈 〉)

for any ∈ {1 . . . }. Since ={ } and ({ }) = , WNP ( ) = 0 unless is
between the minimum value and the maximum value of{ 1 . . . }. Suppose is
between them and take such that is the maximum. Then one easily sees that

WNP ( ) =
∑

<

(−1){ } ({ })

This together with (5.3) shows that WNP = DHP when dimP = 1.

We will show that WN satisfies the same wall crossing formula as in Lemma 5.3.
For that, we first state a lemma which expresses the winding number as a sum of lo-
cal winding numbers so to speak. Assume dimP > 1. We orient in such a way
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that the juxtaposition of a normal vector to , whose evaluation on is positive, and
the orientation on agrees with the prescribed orientation on ∗. By Lemma 6.2,
maps a pair ( ∂ ) into a pair ( \{µ}) for any µ ∈ \( ∩ (

⋃

∈ (1) ). If
we identify with ( ∗) through the translation by− as before, then the map
restricted to∂ agrees with the map (up to homotopy) constructed from the multi-
polytopeP = ( F ). It follows that

(6.1) ∗([ ]) = WNP (µ− )[ \{µ}]

Let ∈ ∗\⋃ . We choose a generic ray starting from with directionγ ∈
∗, so that the intersection ∩ is one point for each if it is nonempty. We denote

the point ∩ by .

Lemma 6.4. WNP ( ) =
∑

: ∩ 6=φ
sign〈γ 〉WNP ( − )

Proof. Consider the following commutative diagram:

˜
−1( ) → −1( \

S
Int )

excision
←−−−−

∼=

L
−1( ∂ )

∂
−→
∼=

L ˜
−2(∂ )

∗

??y ∗

??y ∗

??y ∗

??y
˜

−1( ∗\{ })−→
∼=

−1( ∗\{ } ∗\ ) ←
L

−1( \{ })
∂
−→
∼=

L ˜
−2( \{ })

where runs over the indices of ’s which intersect . The element [ ] ∈
˜ −1( ) maps to

⊕
[ ] ∈ ⊕ ˜ −2(∂ ) through the upper horizontal sequence by

Lemma 6.1 and down to
⊕

WNP ( − )[ \{ }] by (6.1).
Now we trace the lower horizontal sequence from the right to the left. Through

the inverse of∂, [ \{ }] maps to the fundamental class [ \{ }], and further
maps to sign〈γ 〉[ ∗\{ }] ∈ ˜ −1( ∗\{ }), where the sign arises from the choice
of the orientation on . These together with the commutativity of the diagram above
show that

∗([ ]) =
∑

: ∩ 6=φ
sign〈γ 〉WNP ( − )[ ∗\{ }]

On the other hand, ∗([ ]) = WNP ( )[ ∗\{ }] by definition. The lemma follows by
comparing these two equalities.

Lemma 6.5. The wall crossing formula as inLemma 5.3holds for WN instead
of DH.

Proof. Subtract the equality in Lemma 6.4 for =β from that for = α.
Since one can takeγ to be β − α, the lemma follows.
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Theorem 6.6. DHP = WNP for any simple multi-polytopeP .

Proof. The equality is established in Example 6.3 when dimP = 1. Suppose
dimP = > 1 and suppose that the equality holds for simple multi-polytopes of di-
mension −1. Both DHP and WNP are locally constant, satisfy the same wall cross-
ing formula (Lemma 5.3, Lemma 6.5) and DHP = WNP by induction assumption.
Therefore, it suffices to see that DHP and WNP agree on one region. But we know
that they vanish on unbounded regions (Lemma 5.4 and the remark after the definition
of WNP ), hence they agree on the whole domain. This completes the induction step,
proving the theorem.

7. Ehrhart polynomials

Let be a convex lattice polytope of dimension in∗, where “lattice polytope”
means that each vertex of lies in the lattice∗ = Hom( Z) of ∗ = Hom( R).
For a positive integerν, let ν := {ν | ∈ }. It is again a convex lattice polytope
in ∗. We denote by♯(ν ) (resp.♯(ν ◦)) the number of lattice points inν (resp. in
the interior ofν ). The lattice ∗ determines a volume element on∗ by requiring
that the volume of the unit cube determined by a basis of∗ is 1. Thus the volume
of , denoted by vol( ), is defined. The following theorem is well known.

Theorem 7.1 (see [11], [29] for example.). Let be an -dimensional convex
lattice polytope.
(1) ♯(ν ) and ♯(ν ◦) are polynomials inν of degree .
(2) ♯(ν ◦) = (−1) ♯(−ν ), where ♯(−ν ) denotes the polynomial♯(ν ) with ν re-
placed by−ν.
(3) The coefficient ofν in ♯(ν ) is vol( ) and the constant term in♯(ν ) is 1.

The fan associated with may not be simplicial, but if we subdivide , then
we can always take a simplicial fan that is compatible with . In this section, we
show that the theorem above holds for asimple lattice multi-polytopeP = ( F). For
that, we need to define♯(P) and ♯(P◦). This is done as follows. Let ( = 1. . . )
be a primitive integral vector in the half line ({ }). In our convention, is cho-
sen “outward “normal” to the faceF({ }) whenP arises from a convex polytope. We
slightly moveF({ }) in the direction of (resp.− ) for each , so that we obtain
a mapF+ (resp.F−) : (1) → HP( ∗). We denote the multi-polytopes (F+) and
( F−) by P+ andP− respectively. Since the affine hyperplanesF±({ })’s miss the
lattice ∗, the functions DHP± and WNP± are defined on ∗.
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DEFINITION. We define

♯(P) :=
∑

∈ ∗

DHP+( ) =
∑

∈ ∗

WNP+( )

♯(P◦) :=
∑

∈ ∗

DHP−( ) =
∑

∈ ∗

WNP−( )

WhenP arises from a convex polytope , DHP+ = WNP+ (resp. DHP− = WNP−)
takes 1 on in (resp. in the interior of ) and 0 otherwise. Therefore, ♯(P) (resp.
♯(P◦)) agrees with the number of lattice points in (resp. in the interior of ) in this
case.

Denote the volume element on∗ by ∗, and define the volume vol(P) of P
by

vol(P) :=
∫

∗

DHP
∗ =
∫

∗

WNP
∗

WhenP arises from a (convex) polytope , vol(P) agrees with the actual volume of
, but otherwise it can be zero or negative.

For a (not necessarily positive) integerν, we denote ( νF) by νP , where

(νF)({ }) := { ∈ ∗ | 〈 〉 = ν }

whenF({ }) = { ∈ ∗ | 〈 〉 = } for a constant .

Theorem 7.2. Let P = ( F) be a simple lattice multi-polytope of dimension .
(1) ♯(νP) and ♯(νP◦) are polynomials inν of degree(at most) .
(2) ♯(νP◦) = (−1) ♯(−νP) for any integerν.
(3) The coefficient ofν in ♯(νP) is vol(P) and the constant term in♯(νP) is deg( ).
(see Section 2for deg( ).)

In order to prove this theorem, we need some notations and a lemma. Basic ideas
in the following arguments are in [4] and [5]. Let ∈ ( ). Although the integral
vectors { | ∈ } are not necessarily a basis of the lattice , they are linearly
independent. Therefore, the sublattice of generated by ’s (∈ ) is of the
same rank as , hence/ is a finite group. Needless to say,/ is trivial for
any ∈ ( ) if is non-singular. For ∈ ∗ = Hom( Z) ⊃ ∗ and ∈ / ,
we define

(7.1) χ ( ) := exp(2π
√
−1〈 〉)

where ∈ is a representative of . The right-hand side does not depend on the
choice of the representative , andχ ( ) (resp.χ( )) is a homomorphism from
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/ (resp. ∗) to C∗. Note thatχ ( ) : / → C∗ is trivial if and only if ∈
∗. It follows that

(7.2)
∑

∈ /

χ ( ) =

{

| / | if ∈ ∗,

0 otherwise.

Lemma 7.3. For each ∈ ( ) let be the corresponding vertex ofP and let
{ | ∈ } be the dual basis of{ | ∈ } as in Section 5. Then, for ∈ such
that 〈 〉 is a nonzero integer for any ∈ ( ) and ∈ , we have

∑

∈ ( )

( ) 〈 〉

| / |
∑

∈ /

1
∏

∈ (1− χ ( ) −〈 〉)
=
∑

∈ ∗

DHP+( ) 〈 〉

as functions of ∈ C.

Proof. The Maclaurin expansion of 1/(1− − ) ( ∈ C∗ ∈ Z) is given by

{

− −1 − −2 2 − · · · if > 0

1 + − + 2 −2 + · · · if < 0.

Taking this into account, we expand the sum

:=
∑

∈ /

1
∏

∈ (1− χ ( ) −〈 〉)

into Maclaurin series and get

=
∑

∈ /

(−1)
∏

∈

∑

{ }
(χ ( )− 〈 〉)

=
∑

∈ /

(−1)
∑

{ }
χ (−

∑

∈
) 〈P ∈ 〉

where the summation
∑

{ } runs over the collection of such{ | ∈ ∈ Z} that

(7.3) ≥ 1 for with 〈 〉 > 0 and ≤ 0 for with 〈 〉 < 0

(see Section 5 for (−1) ). Since

∑

∈ /

χ

(

−
∑

∈

)

=

{

| / | if
∑

∈ ∈ ∗,

0 otherwise,

by (7.2), the Maclaurin expansion of the left-hand side of the equality in Lemma 7.3
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has the form

∑

∈ ∗

(
∑

∈ ( )

(−1) ( )φ′ ( )

)

〈 〉

where

φ′ ( ) =

{

1 if = +
∑

∈ , ’s are as in (7.3) and
∑

∈ ∈ ∗,

0 otherwise.

One easily checks that
∑

∈ ( )(−1) ( )φ′ ( ) agrees with DHP+( ), proving the
lemma.

Proof of Theorem 7.2. We shall prove (2) first. It suffices to prove ♯(P◦) =
(−1) ♯(−P). Since♯(P◦) =

∑

∈ ∗ WNP−( ) by definition, it suffices to prove that

(7.4) WNP−( ) = (−1) WN(−P)+( ) for any ∈ ∗.

Let P− and (−P)+ be the maps introduced in Section 6 which are associated with
multi-polytopesP− and (−P)+ respectively. We note that P− and− (−P)+ consid-
ered as maps from to ∗\{ } for ∈ ∗ are homotopic. Since the multiplication
by −1 on ∗ sends the fundamental class [∗\{− }] to (−1) [ ∗\{ }], we obtain
(7.4).

We shall prove (1). Because of (2), it suffices to prove (1) for♯(νP). We apply
Lemma 7.3 toνP in place ofP (so that is replaced byν ), and approach to
1 in the equality. Since the right-hand side approaches♯(νP), it suffices to show that
the left-hand side approaches a polynomial inν of degree at most . When∈ /

is the identity element,χ ( ) = 1. Therefore, the term in the summand
∑

∈ /

in the left-hand side has a pole at = 1 of degree exactly when isthe identity
element, and of degree at most otherwise. Thus the left-handside of the equality in
Lemma 7.3 applied toνP can be written as

∑

∈ ( )
ν〈 〉 ( )

(1− ) ( )

where ( ) and ( ) are polynomials in and (1)6= 0. Then the repeated use of
L’Hospital’s Theorem implies that when approaches 1, the limit of the above rational
function is a polynomial inν of degree at most .

Finally we prove (3). Since

♯(νP) =
∑

∈ 2( )

DH(νP)+( ) =
∑

∈ 2( )/ν

DHP+( )
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it follows from the definition of definite integral that

lim
ν→∞

1
ν
♯(νP) = lim

→∞
1
ν

∑

∈ 2( )/ν

DHP+( ) =
∫

∗

DHP
∗ = vol(P)

proving that the coefficient ofν in ♯(νP) is vol(P).
We apply Lemma 7.3 to 0P , that is νP with ν = 0. Then the in the lemma

is zero, and DH(0P)+ ( ) = WN(0P)+ ( ) = 0 unless = 0 because the origin is the only
vertex of 0P so that the vertices of (0P)+ are very close to the origin. Thus the right-
hand side of the equality in the lemma applied to 0P is a constant, say , which is
nothing but the constant term in♯(νP). Now we approach to∞. Then the equality
reduces to

∑

∈ ( )

( ) =

because〈 〉 > 0 for all ∈ if and only if =
∑

∈ with > 0 for all
∈ , and the latter is equivalent to saying that belongs to the cone ( ) spanned

by ’s ( ∈ ). Since
∑

∈ ( ) ( ) = deg( ) by definition, the constant term in♯(νP),
that is , agrees with deg( ).

Let ∗ be the lattice of ∗
R generated by all ’s for ∈ ( ) and ∈ . If is

non-singular, then ∗ = ∗. The group ringC[ ∗ ] is an integral domain, and it has
a basis ( ∈ ∗ ) as a complex vector space with multiplication determined by the
addition in ∗ :

· ′

:= + ′

The quotient field ofC[ ∗ ] will be denoted byC( ∗). It containsC[ ∗ ]. Each ∈
such that〈 〉 is an integer for any ∈ ( ) and ∈ determines a map from

C[ ∗ ] to a Laurent polynomial ringC[ −1] sending to 〈 〉. This map extends
to a map fromC( ∗) to C( ), the field of rational functions in . Since Lemma 7.3
holds for any such that〈 〉 6= 0, we obtain

Corollary 7.4. Let the notation be the same as inLemma 7.3.Then

∑

∈ ( )

( )
| / |

∑

∈ /

1
∏

∈ (1− χ ( ) − )
=
∑

∈ ∗

DHP+( ) ∈ C[ ∗]

as elements inC( ∗). In particular, if the multi-fan is non-singular, then ∗ = ∗

and

∑

∈ ( )

( )
∏

∈ (1− − )
=
∑

∈ ∗

DHP+( )
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For a later use, we shall rewriteχ ( ). Consider a homomorphismη : R →
R mappinga = ( 1 . . . ) ∈ R to

∑

=1 ∈ R. For ∈ ( ), we define

′ := {a ∈ R | η(a) ∈ and = 0 for /∈ }

and define to be the projection image of′ on R /Z . Since ’s ( ∈ ) are lin-
early independent and belong to , is a finite subgroup ofR /Z and η restricted
to ′ induces an isomorphism

η : ∼= /

Note thatη ([a]) = [
∑

∈ ] where [ ] denotes the equivalence class.
On the other hand, for = 1. . . , let

ρ : R /Z → C∗

be a homomorphism defined byρ ([a]) = exp(2π
√
−1 ).

Lemma 7.5. For [a] ∈ ⊂ R /Z and ∈ , we haveρ ([a]) = χ ( η ([a])).

Proof. Sinceη ([a]) = [
∑

∈ ] and 〈 ∑

∈ 〉 = , it follows from the
definition (7.1) ofχ that χ ( η ([a])) = exp(2π

√
−1 ), which is equal toρ ([a])

by definition.

Since is isomorphic to / , Corollary 7.4 can be restated as follows.

Corollary 7.6. Let the notation be as above. Then

∑

∈ ( )

( )
| |

∑

∈

1
∏

∈ (1− ρ ( ) − )
=
∑

∈ ∗

DHP+( ) ∈ C[ ∗]

as elements inC( ∗).

8. Cohomological formula for (P)

Motivated by the geometrical observation which will be explained in subsequent
sections 9 and 11, we define the “(equivariant) cohomology” of a complete simplicial
multi-fan and the “(equivariant) first Chern class” of a multi-polytope. We then define
an index map “in cohomology” and establish a “cohomologicalformula” describing
♯(P) for a lattice multi-polytope. This cohomological formulais a counterpart in com-
binatorics to the Hirzebruch-Riemann-Roch formula applied to a complex -line bun-
dle over a torus manifold. As an application of the cohomological formula, we show
that the Khovanskii-Pukhlikov formula for a simple latticeconvex polytope ([21], [25],
[6], [7], [13], [4], [5]) can be generalized to a simple lattice multi-polytope.
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Let be a compact torus of dimension = rankZ and let be the classifying
space of . Then 2( ) is canonically isomorphic to Hom(1 ), the group consist-
ing of homomorphisms from 1 to . In fact, a homomorphism :1 → induces
a continuous map : 1 → and once we fix a generatorα of 2( 1) ∼= Z,
( )∗α defines an element of 2( ). The correspondence 7→ ( )∗α is known
to be an isomorphism from Hom(1 ) to 2( ). In the following we assume

= 2( ) and identify it with Hom( 1 ). Then ∗ = 2( ) is identified with
Hom( 1) and the group ringC[ ∗] can be identified with the representation ring

( ) of .
Let = ( ±) be a complete simplicial multi-fan in . Let ∈ 2( )

be a unique primitive vector in ({ }) for each = 1. . . as before. Motivated by
the description of the equivariant cohomology of a compact non-singular toric variety
(see Proposition 9.2 in the next section), we define∗( ) to be the face ring of the
augmented simplicial set , i.e.,

∗( ) := Z[ 1 . . . ]/( | /∈ )

where =
∏

∈ and the degree of is two, and call∗( ) the equivariant co-
homologyof . We also define a homomorphismπ∗ : 2( )→ 2( ) by

(8.1) π∗( ) =
∑

=1

〈 〉

where〈 〉 denotes the natural pairing between cohomology and homology. It extends
to an algebra homomorphism ∗( ) → ∗( ), which we also denote byπ∗. One
can think of ∗( ) as a module (or more generally an algebra) over∗( ) through
π∗.

In the following we will mainly work with Q coefficients but the argument will
work with Z coefficients when the multi-fan is non-singular. Any homomorphism

: → between additive groups induces a homomorphism :⊗ Q → ⊗ Q (or
⊗R→ ⊗ R), which we also denote by .

Lemma 8.1. Any element in ∗( )⊗Q can be written in the form
∑

∈ π∗( )
with ∈ ∗( ; Q) (not necessarily uniquely), in other words, ∗( ) ⊗ Q is gen-
erated by ’s( ∈ ) as an ∗( ; Q)-module.

Proof. Let I denote a finite set which consists of elements in{1 . . . } taken
with multiplicity, i.e., elements in{1 . . . } may appear inI repeatedly. Set I :=
∏

∈I and denote bȳI the subset of{1 . . . } consisting of elements appearing in
I. It follows from the definition that ∗( ) is additively generated byI ’s such that
Ī ∈ , so it suffices to prove the lemma for suchI . We shall prove it by induction
on [I] := |I| − |Ī|.
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If [ I] = 0, thenI = Ī ∈ ; so I is obviously of the form in the lemma in this
case. Suppose [I] ≥ 1. Then there is an ∈ I which appears inI at least twice. Set
J := I\{ }. Then J̄ = Ī ∈ and [J ] = [I] − 1. Multiplying the both sides at (8.1)
by J , we obtain

π∗( ) J = 〈 〉 I +
∑

6=
〈 〉 J∪{ }

for any ∈ 2( ; Q). We choose such that〈 〉 = 1 and 〈 〉 = 0 for all
∈ J different from . (Such exists because{ | ∈ J̄ } is a subset of a basis of

Q.) Then the equality above reduces to

I = π∗( ) J −
∑

6= /∈J
〈 〉 J∪{ }

Here [J ∪ { }] = [J ](= [I] − 1) for /∈ J , so the right-hand side above are of the
form in the lemma by the induction assumption, showing that so is I . This completes
the induction step and proves the lemma.

For ∈ ( ), let { | ∈ } be the dual basis of{ | ∈ } as before. We
define a ring homomorphismι∗ : ∗( )⊗Q→ ∗( ; Q) by

ι∗( ) =

{

if ∈ ,

0 otherwise.

This map is well-defined because for /∈ , which is zero in ∗( ) ⊗ Q, maps
to zero throughι∗.

Lemma 8.2. The compositionι∗ ◦ π∗ is the identity map. In particularι∗ is an
∗( ; Q)-module map.

Proof. Both π∗ and ι∗ are ring homomorphisms and ∗( ) is a polynomial
ring generated by elements in2( ), so it suffices to check the lemma on2( ).
Let ∈ 2( ). It follows from the definitions ofπ∗ and ι∗ that

(ι∗ ◦ π∗)( ) = ι∗
(
∑

=1

〈 〉
)

=
∑

=1

〈 〉

which agrees with because{ | ∈ } is the dual basis of{ | ∈ }. Since is
arbitrary, this proves thatι∗ ◦ π∗ is the identity on 2( ).

A multi-polytopeP = ( F) is associated with real numbers ’s by

F({ }) = { ∈ 2( ; R) | 〈 〉 = }
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and these numbers determine an element1 (P) :=
∑

=1 of 2( )⊗R, which we
call the equivariant first Chern classof P . This gives a bijective correspondence be-
tween the set of multi-polytopes defined on and2( ) ⊗ R. Note thatι∗( 1 (P))
agrees with the vertex =

⋂

∈ F({ }), see Section 5. When is non-singular,P
is a lattice multi-polytope if and only if the ’s are all integers, but otherwise the
“if” part does not hold, in other words, an element of2( ) is not necessarily re-
alized as the equivariant first Chern class of a lattice multi-polytope. However, there is
a nonzero integer such that for any∈ 2( ) is realized as the equivariant
first Chern class of a lattice multi-polytope because| / |ι∗( )’s lie in 2( ).

We set ∗∗( ; Q) =
∏∞

=0 ( ; Q). It is a formal power series ring.

Lemma 8.3. For any ∈ , the element

∑

∈ ( )

( )ι∗(
∏

∈ ( − 1))

| |
∑

∈

1
∏

∈ (1− ρ ( ) − )

in the quotient field of ∗∗( ; Q) actually belongs to ∗∗( ; Q).

Proof. Since
∏

∈ ( − 1) is a linear combination of
∏

∈ =
P

∈

for ∈ , it suffices to show that

(8.2)
∑

∈ ( )

( )ι∗(
P

∈ )
| |

∑

∈

1
∏

∈ (1− ρ ( ) − )
∈ ∗∗( ; Q)

As remarked above,
∑

∈ is realized as the equivariant first Chern class of a
lattice multi-polytope, so it follows from Corollary 7.6 that

∑

∈ ( )

( ) ι
∗(
P

)

| |
∑

∈

1
∏

∈ (1− ρ ( ) − )
∈ C[ ∗] = ( )

The Chern characterC[ ∗] = ( ) → ∗∗( ; Q) mapping to extends to a
map fromC[ ∗ ] and it further extends to a map between the quotient fields. Sending
the element above by this extended Chern character, we obtain (8.2).

Let be the multiplicative set consisting of nonzero homogeneous elements of
positive degree in ∗( ; Q). Since ∗( ; Q) is a polynomial ring, it can be
thought of as a subring of the localized ring−1 ∗( ; Q). We define the index map

π! : ∗( )⊗Q→ −1 ∗( ; Q)

“in cohomology” by

π!( ) :=
∑

∈ ( )

( )ι∗( )
| |∏ ∈



34 A. HATTORI AND M. MASUDA

(cf. [2, (3.8)]). This map decreases degrees by 2 , and is an∗( ; Q)-module map
by Lemma 8.2.

Lemma 8.4. The image ofπ! lies in ∗( ; Q).

Proof. Sinceπ! is an ∗( ; Q)-module map, it suffices to check the lemma for
elements ’s ( ∈ ) by Lemma 8.1. We distinguish two cases.

CASE 1. The case where| | = , i.e., ∈ ( ). In this case

ι∗( ) =

{∏

∈ if = ,

0 otherwise.

Therefore

π!( ) =
∑

∈ ( )

( )ι∗( )
| |∏ ∈

=
( )
| | ∈

0( ; Q)

CASE 2. The case where| | < . In this case we will show thatπ!( ) = 0.
Sinceρ ( ) = 1 for any ∈ if and only if is the identity, and

∏

∈

(

1− −
)

=

(
∏

∈

)

(1 + higher degree term)

∏

∈

(
− 1
)

= | | (1 + higher degree term)

the term of lowest degree in Lemma 8.3 (up to a nonzero constant multiple) is

∑

∈ ( )

( )ι∗( )
| |∏ ∈

that is,π!( ), and Lemma 8.3 tells us that it is an element of∗( ; Q). This means
that π!( ) = 0 because the degree ofπ!( ) is equal to 2| | − 2 < 0.

Now, motivated by the description of the cohomology ring of acompact non-
singular toric variety (see p. 106 in [11]), we define∗( ) to be the quotient ring
of ∗( ) by the ideal generated byπ∗( 2( )), in other words,

∗( ) := Z[ 1 . . . ]/A

whereA is the ideal generated by all
(1) for /∈ ,
(2)

∑

=1〈 〉 for ∈ .
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Sinceπ! is an ∗( ; Q)-module map and ∗( ; Q)/( 2( ; Q)) is isomorphic to
0( ; Q) = Q, π! induces a homomorphism

∫

: ∗( )⊗Q→ Q

where only elements of degree 2 in∗( )⊗Q survive through the map
∫

.
Remember that is a finite subgroup ofR /Z . We denote by the union of
over all ∈ ( ). Sinceρ is defined onR /Z , ρ ( ) makes sense for ∈ .

It follows from the definition of andρ that if ∈ , thenρ ( ) = 1 for /∈ .
We define theequivariant Todd classT ( ) of the complete simplicial multi-fan

by

T ( ) :=
∑

∈

∏

=1
1− ρ ( ) − ∈ ∗∗( )⊗Q

and theTodd classT ( ) of by

T ( ) :=
∑

∈

∏

=1

¯
1− ρ ( ) −¯

∈ ∗∗( )⊗Q

where ¯ denotes the image of∈ ∗( ) in ∗( ) (cf. [5]). We also define thefirst
Chern class 1(P) of a multi-polytopeP defined on to be the image of1 (P) ∈

2( )⊗R in 2( )⊗ R.

Theorem 8.5. If P is a simple lattice multi-polytope, then
∫

1(P)T ( ) = ♯(P)

Proof. We shall computeπ!( 1 (P)T ( )). For that, we need to seeι∗(T ( )).
Let ∈ . If /∈ , then there is an /∈ such thatρ ( ) 6= 1; so

ι∗
(

1− ρ ( ) −

)

= 0

for such because the Maclaurin expansion of/(1−ρ ( ) − ) has no constant term
and ι∗( ) = 0. Therefore, only elements in contribute toι∗(T ( )). Now sup-
pose ∈ . Thenρ ( ) = 1 for /∈ , so

ι∗
(

1− ρ ( ) −

)

= 1

for such because the Maclaurin expansion of/(1−ρ ( ) − ) has the constant term
1 and ι∗( ) = 0. Finally, sinceι∗( ) = for ∈ , we thus have

ι∗(T ( )) =
∑

∈

∏

∈ 1− ρ ( ) −
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This together with the definition ofπ! and Corollary 7.6 shows that

π!( 1 (P)T ( )) =π!

(

1 (P)
∑

∈

∏

=1
1− ρ ( ) −

)

=
∑

∈ ( )

( ) ι∗( 1 (P))

| |
∑

∈

1
∏

∈ (1− ρ ( ) − )

=
∑

∈ 2( )

DHP+( )

This implies that
∫

1(P)T ( ) =
∑

∈ 2( )

DHP+( ) = ♯(P)

REMARK. The argument developed above in this section is purely combinatorial,
but it is possible to take a topological approach. Namely, associated with a com-
plete simplicial multi-fan , one can construct a torus space with ∗( ; Q) =

∗( ) ⊗ Q (see [8]). It is not necessarily a manifold but has a fundamental class
so that the equivariant Gysin homomorphismπ! : ∗( ; Q) = ∗( ) ⊗ Q →

∗−2 ( ; Q) = ∗−2 ( ; Q), that is, the index map, can be defined.

As an application of the theorem above, we shall show that Khovanskii-Pukhlikov
formula, which relates a certain variation of the volume of asimple convex lattice
polytope to the number of lattice points in it, can be generalized to simple multi-
polytopes. We begin with

Lemma 8.6.

vol(P) =
1
!

∫

1(P) =
∫

1(P)

for a simple multi-polytopeP .

Proof. The latter equality is obvious because only elementsof degree 2 in
∗( )⊗ R survive through the map

∫
. We shall prove the former equality.

STEP 1. If P is a lattice multi-polytope, then Theorem 8.5 applied toνP for
any integerν implies

∫

1(νP)T ( ) = ♯(νP)

We compare the coefficients ofν at the both sides above. Since1(νP) = ν 1(P), the
coefficient of ν at the left-hand side is (1/ !)

∫

1(P) , while the one at the right-
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hand side is vol(P) by Theorem 7.2 (3). Therefore the lemma is proven for a lattice
multi-polytopeP .

STEP 2. If P is rational, by which we mean that there is a nonzero integer
such that P is a lattice multi-polytope, then vol(P) = (1/ !)

∫

1( P) by Step 1.
Since vol( P) = vol(P) and 1( P) = 1(P), the lemma is proven for a rational
multi-polytopeP .

STEP 3. The functions vol(·) and
∫

1(·) are defined on the vector space
2( ) ⊗ R through the equivariant first Chern class, and they are obviously contin-

uous. By Step 2 they agree on all rational multi-polytopes which form a dense subset
of the vector space, so they must agree on the entire vector space by continuity. This
completes the proof of the lemma.

Multi-polytopes defined on form a vector space isomorphic to2( ) ⊗ R
through the equivariant first Chern class, and Lemma 8.6 implies that the volume
function is a homogeneous polynomial function of degree . Infact, if one writes

1 (P) =
∑

=1 , then vol(P) is a homogeneous polynomial in1 . . . of degree
.

For = ( 1 . . . ) ∈ R , we denote byP a multi-polytope with 1 (P ) =
∑

=1( + ) . Since 1(P ) =
∑

=1( + )¯ , Lemma 8.6 applied toP implies that
vol(P ) is a polynomial in 1 . . . (of total degree ). We define theTodd operator
as follows:

T
(
∂

∂

)

:=
∑

∈

∏

=1

∂/∂

1− ρ ( ) −∂/∂

Although the Todd operator is of infinite order, its operation on vol(P ) converges
because vol(P ) is a polynomial in 1 . . . . The following theorem extends the
Khovanskii-Pukhlikov formula to simple lattice multi-polytopes.

Theorem 8.7. If P is a simple lattice multi-polytope, then

T
(
∂

∂

)

vol(P )| =0 = ♯(P)

Proof. An elementary computation shows that

∂/∂

1− ρ ( ) −∂/∂
( + )¯ | =0 = ¯ ¯

1− ρ ( ) −¯

Therefore, it follows from Lemma 8.6 and Theorem 8.5 that

T
(
∂

∂

)

vol(P )| =0 = T
(
∂

∂

)∫

1(P )| =0 =
∫

T
(
∂

∂

)

1(P )| =0
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=
∫

∑

∈

∏

=1

∂/∂

1− ρ ( ) −∂/∂
( + )¯ | =0

=
∫

∑

∈

∏

=1

¯ ¯
1− ρ ( ) −¯

=
∫

1(P)T ( ) = ♯(P)

proving the theorem.

REMARK. One can reformulate the Khovanskii-Pukhlikov formula as follows. As
remarked above, the volume function vol is a polynomial in1 . . . , so one can
apply the Todd operatorT (∂/∂ ) (with the variables = (1 . . . ) instead of =
( 1 . . . )) to the volume function vol and evaluate at a simple latticemulti-polytope
P . The same argument as in the proof of Theorem 8.7 shows that the evaluated value
agrees with♯(P).

9. Multi-fan of a torus manifold

In this section we introduce the notion of a torus manifold and associate a com-
plete non-singular multi-fan with it. A compact non-singular toric variety provides an
example of a torus manifold, but the class of torus manifoldsis much wider than that
of compact non-singular toric varieties, (apparently, even wider than that of unitary
toric manifolds introduced in [27]). The basic theory of toric varieties says that there
is a one-to-one correspondence between compact non-singular toric varieties and com-
plete non-singular fans. This correspondence is extended in one direction, namely from
torus manifolds to complete non-singular multi-fans. But the usual way to associate a
fan with a toric variety (see [11, Section 2.3]) does not workin our extended cate-
gory. However, when a toric variety is compact and non-singular, the corresponding
(complete and non-singular) fan can be reproduced using equivariant cohomology and
this argument works even for torus manifolds. The idea is essentially same as in [27].

We begin with the definition of a torus manifold. An elementary representation
theory of a torus group tells us that if an -dimensional torus( 1) acts effectively
and smoothly on a connected smooth manifold of dimension 2 with non-empty fixed
point set, then ≤ and the dimension of the fixed point set is at most 2(− ).
We are interested in an extreme case = . Let be a closed, connected, smooth
manifold of dimension 2 with an effective smooth action of an-dimensional torus
group = ( 1) such that the fixed point set is non-empty. Then is necessar-
ily isolated. A closed, connected, codimension two submanifold of is calledchar-
acteristic if it is a connected component of the set fixed pointwise by a certain circle
subgroup of and contains at least one -fixed point. Since is compact, there are
only finitely many characteristic submanifolds. We denote them by ( = 1 . . . ).
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They are orientable if is orientable.

DEFINITION. Let be a closed, connected, oriented, smooth manifold of di-
mension 2 with an effective smooth action of an -dimensionaltorus group with
non-empty fixed point set . will be called atorus manifoldif a prefered orien-
tation is given for each characteristic submanifold .

A toric variety (of dimension ) is a normal complex algebraicvariety of com-
plex dimension with an effective algebraic action of (C∗) having a dense orbit. If

is compact and non-singular, then with the restricted action of (⊂ (C∗) ) pro-
vides an example of a torus manifold of dimension 2 . In this case, characteristic sub-
manifolds are (C∗) -invariant divisors. They have canonical orientations since they are
complex manifolds. Similarly, when a torus manifold is equipped with a -invariant
unitary structure, characteristic submanifolds have canonical orientations. With these
orientations of characteristic submanifolds, the torus manifold will be called aunitary
torus manifold(also called a unitary toric manifold in [27]).

EXAMPLE 9.1. A complex projective spaceC with an action of (C∗) given by

[ 0 1 . . . ] → [ 0 1 1 . . . ]

where [ 0 1 . . . ] ∈ C and ( 1 . . . ) ∈ (C∗) , is a compact non-singular toric
variety. This with the restricted -action is a torus manifold and there are + 1 char-
acteristic submanifolds, that are respectively defined by =0 for = 0, 1 . . . .

There are many torus manifolds which do not arise from compact non-singular
toric varieties, see [8], [27], [30].

Henceforth will denote a torus manifold of dimension 2 . Let ∈ .
Since is isolated, the tangential -representationτ of at has no triv-
ial factor, so it decomposes into the direct sum of irreducible real two-dimensional

-representations. This implies that there are exactly characteristic submanifolds
which contain . In fact, an irreducible factor inτ corresponds to the normal di-
rection to a characteristic submanifold at . We set

( ) :=






⊂ {1 . . . }

∣
∣
∣
∣

(
⋂

∈

)

6= φ







We add an empty set to ( ) as a member, so that ( ) becomes an augmented
simplicial set. The observation above implies that the cardinality of an element in

( ) is at most and there is an element in ( ) with cardinality .
The augmented simplicial set ( ) is closely related to the ring structure of the

equivariant cohomology ∗( ) of with integer coefficients. Let us explain this
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briefly. Since and are oriented closed -manifolds and the codimension of
is two, the inclusion map from to induces a Gysin homomorphism ∗( ) →

∗+2( ) in equivariant cohomology which raises dgrees by two (see[23] for exam-
ple). Denote byξ ∈ 2( ) the image of the identity element in 0( ). We may
think of ξ as the Poincaré dual of (considered as a cycle in ) in equivariant
cohomology. If the orientation on or is reversed, thenξ turns into−ξ .

We take a polynomial ringZ[ 1 . . . ] in -variables and consider a map

ϕ : Z[ 1 . . . ] → ∗( )

which sends toξ . This map is often surjective. Here is a case.

Proposition 9.2 ([27], Proposition 3.4.). Suppose that ∗( ) is generated by el-
ements in 2( ) as a ring (this is the case when is a compact non-singular toric
variety). Then the mapϕ is surjective and the kernel is the ideal generated by mono-
mials

∏

∈ for all subsets ⊂ {1 . . . } such that /∈ ( ). In other words,
∗( ) is isomorphic to the face ring(or Stanley-Reisner ring) of ( ).

The equivariant cohomology ∗( ) has a finer structure than the ring struc-
ture. The mapπ collapsing to a point induces a homomorphismπ∗ : ∗( ) =

∗( ) → ∗( ), so that ∗( ) can be viewed as an algebra over∗( )
throughπ∗. This algebra structure over ∗( ) cannot be determined by ( ) and
contains more information on the torus manifold . To see the algebra structure, it
is enough to see the image of2( ) by π∗ because ∗( ) is a polynomial ring
generated by elements in 2( ).

Lemma 9.3 ([27], Lemma 1.5.). For each ∈ {1 . . . } there exists a unique
element ∈ 2( ) such that

π∗( ) =
∑

=1

〈 〉ξ modulo ∗( )-torsions

for any ∈ 2( ), where 〈 〉 denotes the usual pairing between cohomology and
homology.

Proof. The proof is given in [27], but we shall give a simple proof for the
reader’s convenience when is as in Proposition 9.2. Since2( ) is additively gen-
erated byξ ’s, one can express

π∗( ) =
∑

=1

( )ξ

with a unique integer ( ) depending on for each . We view ( ) as a function of
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∈ 2( ). Since it is linear, it defines an element of Hom(2( ) Z) = 2( )
such that ( ) =〈 〉.

Note. A geometrical interpretation of the vectors will be given inSection 12.

In order to introduce a multi-fan, we adopt2( ) as the lattice and identify

2( ; R) with the vector space R = ⊗ R. Then we define a map

( ) : ( )→ Cone( )

by sending ∈ ( ) to the cone in 2( ; R) spanned by ’s ( ∈ ) (and the
empty set to{0}).

Finally we shall define a pair of weight functions on maximal cones of dimen-
sion . Remember that a characteristic submanifold is a connected component of
the set fixed pointwise by a certain circle subgroup, say , of .It turns out that
agrees with the circle subgroup determined by∈ 2( ) through the natural identi-
fication 2( ) ∼= Hom( 1 ) ([27], Lemma 1.10). Therefore :=

⋂

∈ is fixed
pointwise by a subtorus generated by ’s for∈ .

Lemma 9.4 ([27], Lemma 1.7.). Suppose ∈ ( )( ). Then the set{ | ∈ }
forms a basis of 2( ), so that is a subset of and the cone( )( ) is of
dimension .

A fixed point ∈ belongs to for some ∈ ( ), and the tangent space
τ at ∈ naturally decomposes into

τ ∼=
⊕

∈
(τ /τ )

The orientations on and determine an orientation onτ /τ for each , and
then an orientation onτ through the above isomorphism. On the other hand,τ

has a given orientation since is oriented. These two orientations on τ may dis-
agree. We define the signǫ at to be +1 or−1 according as the two orientations
agree or disagree, and set

( )+( ) := the number of{ ∈ | ǫ = +1}
( )−( ) := the number of{ ∈ | ǫ = −1}

Note that ( )+( ) = 1 and ( )−( ) = 0 for all ∈ ( ) if is a compact non-
singular toric variety.

DEFINITION. We call the triple ( ) := ( ( ) ( ) ( )±) the multi-fan of
.
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A characteristic submanifold of is a connected component of∩ for some
containing a -fixed point. We give it the orientation inducedfrom those on and
. With these orientations equipped, , on which/ acts effectively, is consid-

ered as a torus manifold. If ∩ is connected for any ∈ ( )(1) (this is the
case when is a compact non-singular toric variety), then themulti-fan ( ) of

agrees with the projected multi-fan ( ) with respect to{ } ∈ ( )(1). They
are different otherwise but there is a natural surjective map from ( ) to ( ) .

Similarly, a connected component of for ∈ ( ) containing a -fixed
point is considered as a torus manifold, and ( ) agrees with ( )if and
∩ are connected for all ∈ ( )(1), but otherwise they are different although

there is a natural surjective map from ( ) to ( ) , where ( ) is an aug-
mented simplicial set obtained from the union of the simplicial sets associated with
the connected components of .

The multi-fan ( ) is non-singular by Lemma 9.4. We shall show that it is com-
plete.

Lemma 9.5. ( ) is complete.

Proof. As we remarked in Section 2 after the definition of the completeness of a
multi-fan, it suffices to prove the pre-completeness of ( ) for any ∈ ( )( −1).
Choose a generic vector from =2( ). The sign (−1){ } for ∈ ( )(1) is
defined as in Section 5 with respect to the projection image ofon the quotient lattice
of by the sublattice generated by ( )( )∩ . The pre-completeness of ( ) is
equivalent to the equality:

∑

{ }∈ ( )(1)

(−1){ } ( ) ({ }) = 0

which we will verify in the following. Since| | = − 1, a connected component of
containing a -fixed point is a 2-dimensional sphere on which := / acts

effectively. We denote those connected components by2
α’s. They are torus manifolds

equipped with the orientations discussed before this lemma. Since 2
α has two -fixed

points, ( 2
α)(1) consists of two elements, denoted byα±, corresponding to the -

fixed points. One easily checks that the multi-fan (2
α) of 2

α is complete, which is
equivalent to the equality:

(9.1) (−1)α+ ( 2
α)(α+) + (−1)α− ( 2

α)(α−) = 0

As discussed before this lemma, we have a natural mapπ : ( ) → ( ) .
Note that if π (αǫ) = { } where ǫ stands for + or−, then (−1)αǫ = (−1){ }. On the
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other hand, we have

( ) ({ }) =
∑

π (αǫ)={ }
( 2
α)(αǫ)

Therefore
∑

{ }∈ ( )(1)

(−1){ } ( ) ({ }) =
∑

αǫ

(−1)αǫ ( 2
α)(αǫ)

which vanishes by (9.1), proving the lemma.

We make a remark on orientations at this point. Choose an orientation on and
fix it. It induces an orientation on 2( ; R), so that [ ( )]∈ −1( ( )) is de-
fined. If the orientation on or is reversed, then [ ( )] turns into −[ ( )]. But
we have

Lemma 9.6. [ ( )] does not depend on the orientations on ’s.

Proof. Recall that the cycle which defines [ ( )] is
∑

∈ ( )( ) ( )( )〈 〉. We
reverse the orientation on . Obviously, ( )( ) and〈 〉 remain unchanged unless
∈ . Suppose ∈ . Then, since the orientation onτ /τ is reversed, ( )+( )

and ( )−( ) will be interchanged, so that ( )( ) turns into− ( )( ). As for
〈 〉, ξ turns into−ξ as remarked before and hence so does by Lemma 9.3. Thus,
〈 〉 turns into−〈 〉 if ∈ . After all, ( )( )〈 〉 does not depend on the orientations
on ’s for any ∈ ( )( ).

Remember that there is a canonical isomorphism Hom(1) ∼= 2( ). We de-
note by the element in Hom( 1) corresponding to ∈ 2( ). Elements of
Hom( 1) are complex one-dimensional representations of and they generate the
representation ring ( ) of which is identified with the group ring of 2( ).
Since ξ is the image of 1∈ 0( ) by the equivariant Gysin map from to ,
its restriction to a -fixed point in , denoted byξ | , gives the equivariant Euler
class of the -representationτ /τ ; so τ /τ = ξ | . On the other hand, the
equality in Lemma 9.3 restricted to shows that{ξ | | ∈ } is the dual basis of
{ | ∈ }, so ξ | is independent of the choice of ∈ and ξ | = in the
notation of Section 7. Therefore we have

τ =
⊕

∈

as a -representation whenever∈ .
The elementsξ ’s ( = 1 . . . ) generate 2( ) additively modulo ∗( )-

torsions ([27, Lemma 3.2]) and the torsion elements vanish when restricted to the fixed
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point set because ∗( ) is a free ∗( )-module. Since the restrictionξ |
( ∈ ) depends on only , we shall denote the restriction of an element ξ ∈ 2( )
to a point in byξ| . Note that

(9.2) ξ | =

{

if ∈ ,

0 otherwise.

Lemma 9.7. For any ξ ∈ 2( ),

∑

∈ ( )( )

( )( ) ξ|
∏

∈ (1− − )

is an element of ( ) when is a torus manifold.

Proof. Since ξ ’s generate 2( ) additively modulo ∗( )-torsions, ξ =
∑

=1 ξ modulo ∗( )-torsions with some integers ’s. We define a mapFξ :
( )(1)→ HP( 2( ; R)) by

Fξ({ }) := { ∈ 2( ; R) | 〈 〉 = }

The pair ( ( ) Fξ) is a lattice multi-polytope, and
⋂

∈ Fξ({ }) = ξ| for ∈
( )( ) which follows from (9.2). Since ( ) is non-singular by Lemma 9.4 and

complete by Lemma 9.5, the lemma follows from Corollary 7.4 applied to the multi-
polytope ( ( ) Fξ).

10. Ty-genus of a torus manifold

When is a unitary torus manifold, the localization formula of the -genus
[ ] of tells us that

(10.1) [ ] =
∑

∈ ( )

( )( )

∏

∈ (1 + − )
∏

∈ (1− − )

and this is actually a polynomial in with constant coefficients. As is well known,

0[ ] agrees with the Todd genus of and1[ ] agrees with the signature of ,
see [20]. The -genus is a genus for unitary manifolds and it isnot defined for gen-
eral torus manifolds. But the right-hand side of (10.1) makes sense even for a torus
manifold, and we take it as the definition of the -genus [ ] of and define the
Todd genus of to be 0[ ]. Note that the signature of is already defined for a
torus manifold because is an oriented closed manifold, and that it agrees with

1[ ] which follows from the Atiyah-Singer -signature theorem.
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Theorem 10.1. Let be a torus manifold of dimension2 . Then

[ ] = [ ( )] =
∑

=0

− ( ( ))(−1− )

(see Section 3 for ( ( )).) In particular, the Todd genus 0[ ] of equals
deg( ).

Proof. Look at the expansion of the right-hand side of (10.1)with respect to .
It follows from (9.2) and Lemma 9.7 that all coefficients of powers of in (10.1) are
elements of ( ). Take a generic vector∈ 2( ) and evaluate the right-hand side
of (10.1) on . Then we get the following polynomial in whose coefficients are Lau-
rent polynomials in :

(10.2)
∑

∈ ( )

( )( )

∏

∈ (1 + −〈 〉)
∏

∈ (1− −〈 〉)

It is easily seen that (10.2) approaches to a polynomial in with constant coefficents
if tends either to 0 or to∞. This means that (10.2) itself is a polynomial with con-
stant coefficients. Since is generic, this implies that (10.1), that is [ ], is actually
a polynomial with constant coefficients equal to (10.2). Then, by letting tend to 0,
we obtain

[ ] =
∑

∈ ( )

( )( )(− )µ( )

where µ( ) = ♯{ ∈ | 〈 〉 > 0}. This µ( ) agrees with theµ( ) in Section 3
because{ | ∈ } is the dual basis of{ | ∈ }. Hence [ ] = [ ( )],
proving the former equality in the theorem. The latter follows from Corollary 3.3.

As noted in the definition of [ ] in Section 3,0[ ( )] = deg( ( )). Since

0[ ] = 0[ ( )], the last statement in the theorem follows.

Corollary 10.2. The signatureSign( ) of a torus manifold is given by

Sign( ) =
∑

=0

(−2) − ( ( ))

If [ ] = 1 and ( )( ) = 1 for all ∈ ( )( ), then ( ( )) agrees with the
number of cones of dimension in( ).

Proof. Since Sign( ) equals1[ ], the former statement follows from Theo-
rem 10.1. The latter statement is noted in the definition of ( )in Section 3.
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REMARK. If is a compact non-singular toric variety, then [ ] = 1 and
( )( ) = 1 for all ∈ ( )( ), and the formula above is already known in that

case ([29, Theorem 3.12 (3)]).

11. Equivariant index of a torus manifold

If is a unitary torus manifold, then the mapπ collapsing to a point induces,
in equivariant K-theory, the equivariant Gysin homomorphism

π! : ( )→ ( ) = ( )

If is a complex -vector bundle over , thenπ!( ) equals the index of a Dirac
operator twisted by . It is sometimes called the equivariantRiemann-Roch number.
The Todd genus of is equal toπ!(1).

Let be a complex -line bundle over a unitary torus manifold . Since π!( )
is an element of ( ), one can express

(11.1) π!( ) =
∑

∈ 2( )

( )

with integers ( ) which are zero for all but finitely many elements . In this section
we describe the multiplicity ( ) of in terms of the (shifted) moment map associ-
ated with when is a torus manifold. For that, we need to defineπ!( ) when
is a torus manifold. This is done as follows. When is a unitarytorus manifold, the
localization formula applied toπ!( ) tells us that

(11.2) π!( ) =
∑

∈ ( )( )

( )( ) 1 ( )|
∏

∈ (1− − )

where 1 ( ) ∈ 2( ) denotes the equivariant first Chern class of . (Note that1 ( )|

is nothing but the complex one-dimensional -representation obtained by restricting
to a point in .) The right-hand side of (11.2) is an element of () by Lemma 9.7
whenever is a torus manifold althoughπ! may not be defined. Thus we defineπ!( )
as the right-hand side of (11.2) when is a torus manifold, andthen define ( ) as
before using (11.1).

In the following, we will make the following assumption on a torus manifold ,
which is satisfied for compact non-singular toric varietieswith restricted -actions:all
isotropy subgroups of are subtori of and each connected component fixed point-
wise by a subtorus contains at least one -fixed point. Then the union

⋃

=1 is the
set of points with nontrivial isotropy subgroups, and it follows from the slice theorem
that the orbit space / is a compact connected smooth manifold of dimension
with

⋃

=1 / as boundary (after the corners are rounded).
We make a further remark on orientations. The orbit space/ is orientable (see
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[27], Lemma 6.7) and we orient it in such a way that the orientation on followed by
that of / agrees with that of times (−1) ( −1)/2. This determines a fundamen-
tal class in ( / ∂( / )) and hence in −1(∂( / )), denoted by [∂( / )],
through the boundary homomorphism from (/ ∂( / )) to −1(∂( / )).

Since 2( ) is additively generated byξ ’s ( = 1 . . . ) modulo ∗( )-
torsions, 1 ( ) =

∑
ξ modulo ∗( )-torsions with some integers ’s. Associated

with , there is defined the moment map : → 2( ; R) = ( )∗. It maps
into an affine hyperplane{ ∈ 2( ; R) | 〈 〉 = } for each (see [27],

Lemma 6.5). We slightly shift so that the shifted map′ maps into

F ′ ({ }) :=

{

∈ 2( ; R) | 〈 〉 = +
1
2

}

for each . In fact, ′ is defined as follows. Let be a complex -line bundle over
with 1 ( ) = −∑ =1 ξ . Such exists ([19]). When is a compact non-singular

toric variety, is the canonical line bundle of . Using the moment map : →
2( ; R) associated with , we define

′ := − 1
2

The moment maps and are equivariant, the -action on the target 2( ; R)
being trivial; so ′ induces a map

¯′ : / → 2( ; R)

The shifted affine hyperplanesF ′ ({ })’s miss the lattice 2( ). Since ∂( / ) =
⋃

( / ) and ¯′ maps / to F ′ ({ }) for each , ¯′ induces a homomorphism

( ¯′ )∗ : −1(∂( / ))→ −1( 2( ; R)\{ })

for each lattice point ∈ 2( ). We define

′ ( ) := the mapping degree of (̄′ )∗

where the orientation on 2( ; R) is determined by that on . Our main theorem in
this section is the following.

Theorem 11.1. Let be a torus manifold. Then = ′ on 2( ).

REMARK. This theorem was first established by Karshon-Tolman [22] when
is a compact non-singular toric variety, and then extended to Spin manifolds with
torus actions by Grossberg-Karshon [12] and to a unitary torus manifold by the sec-
ond named author [27]. The family of torus manifolds contains these manifolds.
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Let ( ) be the realization of the first barycentric subdivision of ( ) and let
( ) be the union of simplicies in ( ) which contain the vertex{ } as in Sec-

tion 6. Since ( ) =
⋂

∈ ( ) is contractible for any non-empty set ∈ ( )

and ∂( / ) =
⋃

=1( / ), it follows from Lemma 6.2 that there is a continuous
map

ρ : ∂( / )→ ( )

sending
⋂

∈ ( / ) to ( ) for each ∈ ( ), and that such a map is unique
up to homotopy preserving the stratifications, where the stratifications on∂( / ) and

( ) mean subspaces
⋂

∈ ∂( / ) and ( ) indexed by elements ’s in ( ).
If the orientation on or is reversed, then [∂( / )] and [ ( )] will be mul-

tiplied by −1 simultaneously; so the following lemma makes sense.

Lemma 11.2. ρ ∗([∂( / )]) = [ ( )] .

Proof. We prove the lemma by induction on the dimension = dim(/ ).
When = 1, is 2 with a nontrivial smooth 1-action. In this case, it is not difficult
to check the lemma, which we leave to the reader.

Assume that > 1. Since a characteristic submanifold of is a connected com-
ponent of ∩ for some and such is uniquely determined by the characteristic
submanifold of , there is a natural mapπ : ( ) → ( ) . This map is an iso-
morphism if ∩ is connected for any , but otherwise it is only surjective. As
we did in Lemma 6.1, we identify the realization of ( ) with∂( ( ) ). One sees
that

(11.3) π ∗([ ( )]) =
∑

∈ ∈ ( )( )

( )( )〈 \{ }〉 ∈ −2(∂( ( ) )) = −2( ( ) )

Since is itself a torus manifold, the spaces∂( / ) and ( ) have stratifi-
cations like for , and hence we have a mapρ : ∂( / ) → ( ) preserving the
stratifications. By the induction assumption

(11.4) ρ ∗([∂( / )]) = [ ( )] ∈ −1( ( )) = −1( ( ))

On the other hand,∂( ( ) ) has a stratification induced from ( ) and each
stratum is contractible. Sinceρ restricted to∂( / ) is a map from∂( / ) to
∂( ( ) ) preserving the stratifications and so isπ ◦ ρ as well, they are homotopic
preserving the stratifications by Lemma 6.2. Therefore, we have the following commu-
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tative diagram:

−1(∂( / ))
injective−−−−→ ⊕

−1( / ∂( / ))
∼=−−−−→ ⊕

−2(∂( / ))

ρ ∗



y



y ⊕π ∗ρ ∗



y

−1( ( ))
injective−−−−→ ⊕

−1( ( ) ∂( ( ) ))
∼=−−−−→ ⊕

−2(∂( ( ) ))

where the left horizontal maps are natural ones. Tracing theupper horizontal sequence
from the left to the right, [∂( / )] ∈ −1(∂( / )) maps to

⊕
[∂( / )], and

down to
∑

∈ ∈ ( )( ) ( )( )〈 \{ }〉 ∈ ⊕

−2(∂( ( ) )) by (11.3) and (11.4),
while [ ( )] ∈ −1( ( )) maps through the lower horizontal sequence to the same
element as observed in Lemma 6.1. Since the horizontal sequences above are injective,
the lemma follows.

Proof of Theorem 11.1. By Lemma 6.2 we have a map ( )→ 2( ; R)
associated with the multi-polytopeP ′ := ( ( ) F ′ ). We denote the map by ′ . The
composition ′ ◦ ρ is a map from∂( / ) to 2( ; R) sending∩ ∈ ( / ) to
⋂

∈ F ′ ({ }) for any ∈ ( ), and so is¯′ as well. Therefore, ′ ◦ρ and ¯′ are
homotopic preserving the stratifications by Lemma 6.2. It follows from Lemma 11.2
that

′ ( ) = the mapping degree of (̄′ )∗ : −1(∂( / ))→ −1( 2( ; R)\{ })
= the mapping degree of (′ ◦ ρ )∗ : −1(∂( / ))→ −1( 2( ; R)\{ })
= the mapping degree of (′ )∗ : −1( ( ))→ −1( 2( ; R)\{ })
=WNP′ ( ) = DHP′ ( ) = DH(P )+( )

This together with Corollary 7.4 and the definition of (i.e.,(11.1) and (11.2))
proves the theorem.

12. Torus orbifolds

The aim of this section is to give the definition of a torus orbifold and provide its
basic properties for generalizing the results of Sections 10 and 11. We first recall basic
definitions concerning orbifolds. We refer to [31], [24] or [10] for details. The refer-
ence [26] will be also useful; it deals with torus actions on symplectic orbifolds. If
is an orbifold of dimension , then there is a family{( α α α α)} of orbifold
charts, where{ α} is an open covering of , α is an -dimensional manifold, α
is a finite group acting on α and α : α → α is a map which induces a home-
omorphism from α/ α onto α. If α and β intersect each other, then the charts
( α α α α) and ( β β β β) satisfy suitable compatibility conditions. Such
a family {( α α α α)} is called an orbifold atlas. For any point in , there
exists a special type of orbifold chart ( ) with the property that −1( )
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is a single point ˜∈ . The isomorphism class of the group is uniquely deter-
mined by and is called the isotropy group of . The order of , denoted by , is
called the multiplicity of the point . Such an orbifold chartwill be called a reduced
orbifold chart. When is connected, the minimum of the multiplicities is called the
multiplicity of the orbifold and is denoted by ( ). The set{ ∈ | = ( )}
is open and dense in . It is a manifold. This set is called the principal stratum of
the orbifold . We have ( ) = 1 if and only if the actions of all theisotropy groups
are effective.

A map : → ′ from an orbifold into another orbifold ′ is called
smooth if, near every point in , there is a homomorphismρα : α → ′

α

and a ρα-equivariant smooth map α : α → ′
α for suitable orbifold charts

( α α α α) for around and ( ′
α

′
α

′
α

′
α) for ′ around ( ) satisfy-

ing the commutativity relation ′
α◦ α = ◦ α. A subset of an orbifold ′ is called

a suborbifold if, for each orbifold chart (′α
′
α

′
α

′
α) of ′, α = ′

α
−1( ∩ ′

α)
is an ′

α-invariant submanifold of ′
α. If this is the case, becomes an orbifold with

orbifold charts ( α α
′
α

′
α) where α = ∩ ′

α, and the inclusion → ′

becomes a smooth map. It may happen that ( )> ( ′) ( and ′ are assumed
connected). The integer ( | ′) = ( )/ ( ′) will be called the relative multiplic-
ity of the pair ( ′).

Orbifold vector bundles are also defined. Typical examples are the tangent bundle
of an orbifold and the normal bundle of a suborbifold. An orbifold is orientable if its
tangent bundle is orientable. If → is an orbifold vector bundle over a connected
orbifold, then the relative multiplicity of the orbifold vector bundle is defined to be

( | ) where is identified with the zero-section and is consideredas a suborb-
ifold of . If is a suborbifold of ′ and ν is the normal bundle of in ′, then

( | ν) equals ( | ′).
Let be a Lie group. An action of on an orbifold is a smooth map

ψ : × → satisfying the usual rule of group action. Suppose that is con-
nected. If ∈ is a fixed point of the action, and ( ) is a reduced
orbifold chart around such that is invariant under the action of , then there is
a finite covering group˜ of and an action of˜ on which covers the action
of on . If is compact, the fixed point set of the action is a suborbifold.

Now let be an oriented, closed orbifold of dimension 2 with aneffective ac-
tion of an -dimensional torus . A connected component of the fixed point set by
a circle subgroup is a suborbifold. A suborbifold of this type which has codimension
two and contains at least one fixed point of the -action will becalled acharacteristic
suborbifold. Let be a characteristic suborbifold and∈ . We take, as we may, a
reduced orbifold chart ( ) around such that is an open disk inR2

and the action of on is linear. We denote by the same symbol thetangent
space to at the point ˜ =−1( ). Then the vector space decomposes into a di-
rect sum ⊕ ⊥ where ⊥ is tangent to −1( ∩ ), and the vector space
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represents the fiber direction of the normal bundle of in . Theisotropy group
acts on .

Lemma 12.1. Let be an oriented closed orbifold as above and a char-
acteristic suborbifold. Let denote the circle subgroup which fixes the points of .
Then there exists a finite covering group˜ of and a lifting of the action of to
the action of ˜ on for any point ∈ . The lifted action of˜ preserves .

Proof. To ∈ we correspond the degree of the minimal finite covering˜

of such that there is a lifting of the action tõ . The lifted action necessarily pre-
serves . It is not difficult to see that the correspondence is locally constant. Since

is connected the correspondence must be constant.

Hereafter we denote byρ : ˜ → the minimal finite covering of with the
above property.̃ acts effectively on .

An oriented, closed orbifold of dimension 2 with an effective action of a
torus of dimension with non-empty fixed point set equipped with a preferred
orientation of the normal bundle of each characteristic suborbifold will be called a
torus orbifold if, for each and at each point ∈ , the action of preserves
the orientation of each . Note that choosing an orientation of a characteristic sub-
manifold is equivalent to choosing an orientation of its normal bundle. Thus a torus
manifold is a torus orbifold in the above sense. Another example is a unitary torus
orbifold. A unitary torus orbifold is a torus orbifold such that α is a unitary man-
ifold, the action of α preserves the unitary structure ofα for each orbifold chart
( α α α α) and the action of on also preserves the unitary structure of

′
αs.

Let be a torus orbifold. The preferred orientation of the normal bundleν of
makes it a complex orbifold line bundle. Then there is a unique isomorphism

ϕ : 1 → ˜ such thatϕ( ) acts by the complex multiplication of on each .
We identify ˜ with 1 via ϕ . The homomorphismρ : 1 = ˜ → defines an
element ∈ Hom( 1 ) = 2( ; Z). We are now ready to define the multi-fan

( ) = ( ( ) ( ) ( )±) associated with a torus orbifold in an entirely sim-
ilar way to the case of torus manifolds. Specifically

( ) =







∣
∣
∣
∣

(
⋂

∈

)

6= ∅







and ( )( ) is the cone in 2( ; R) with apex at 0 and spanned by{ | ∈ }.
Furthermore ( )±( ) = #{ ∈ | ǫ = ±1} for ∈ ( )( ), whereǫ is defined
to be the ratio of two orientations at , one which is given by the orientation of
and the other by that of the oriented vector space =

⊕

∈ .
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We set ˜ =
∏

∈ ˜ for ∈ ( )( ) and ρ =
∏

∈ ρ : ˜ → . The image of
ρ is denoted by .ρ : ˜ → is a finite covering. fixes the points of =
⋂

∈ . If ∈ ( )( ), then = . Let be a fixed point of the action of on
. Then there is a unique ∈ ( )( ) such that belongs to . The inclusion1 =

˜ → ˜ defines an element ∈̃ Hom( 1 ˜ ) = 2( ˜ ; Z), and we haveρ ∗( ˜ ) = .
and ∈ are complex ˜ -modules, and the decomposition =

⊕

∈
is compatible with the action of̃ . The effectiveness of the -action on implies
that ˜ effectively acts on ; equivalently, it implies that{˜ | ∈ } is a basis
of 2( ˜ ; Z). Since ρ ∗ : 2( ˜ ; Z) → 2( ; Z) is injective, the ∈ are
linearly independent in 2( ; R).

Lemma 12.2. ( ) is a complete multi-fan.

Proof. The argument is almost similar to the case of torus manifolds. One has
only to observe that the characteristic suborbifolds and their intersections are torus orb-
ifolds and a 2-dimensional torus orbifold is topologicallya 2-sphere acted on by a cir-
cle group with exactly two fixed points.

Lemma 12.3. Suppose ( ) = 1. Let ∈ ( )( ), and let be a point in the
principal stratum(as an orbifold) of . Then the isotropy group of is isomor-
phic to the kernel ofρ : ˜ → .

Proof. Let ( ) be an orbifold chart around . We may regard as
an dimensional˜ -module as before. As such, is decomposed as a direct sum of
˜ -modules

=

(
⊕

∈

)

⊕ ′

where ′ is projected into by .˜ =
∏

∈ ˜ can be regarded as embedded in
the general linear group of

⊕

∈ . Since acts on each preserving its orienta-
tion, there is a homomorphism → ˜ . The action of on ′ is trivial. Moreover
the action of on is effective because ( ) = 1. It follows that the homomor-
phism above embeds intõ . Since the kernel ofρ is equal to the intersection of
˜ with the image of , it is isomorphic to .

It is known that a closed oriented orbifold of dimension has the funda-
mental class [ ]∈ ( ; Z), and that the Poincaré duality holds, i.e., the opera-
tion ϑ = [ ]∩ : ( ; Q) → − ( ; Q) is an isomorphism. If : → ′

is a smooth map from an oriented close orbifold to another such ′, then the
Gysin homomorphism ! : ( ; Q) → + − ′

( ′; Q) is defined to be the com-
postion ϑ−1 ◦ ∗ ◦ ϑ, where ′ is the dimension of ′. If a compact Lie group
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acts on and ′, and is equivariant, then the equivariant Gysin homomorphism

! : ( ; Q)→ + − ′

( ′; Q) is also defined.
Henceforth will be a torus orbifold. For each∈ ( )(1), we set

ξ = ( )!(1) ∈ 2( ; Q)

where : → is the inclusion.

Lemma 12.4. Let 1 (ν ) be the equivariant first Chern class of the normal bun-
dle ν . Then we have

1 (ν ) = ∗(ξ )

Proof. We may assume that ( ) = 1. Take an equivariant Thom formφ for
the equivariant orbifold bundleν (we refer to [3] for Thom form and Chern form,
cf. also [10]). Let be a point in the principal stratum of , and( ) a
reduced orbifold chart around . The restriction ofφ to is invariant under the ac-
tion of and its support is contained in a tubular neighborhood of = −1( ),
where = ∩ . Moreover, with respect to the fibering ˜π : → , we have
| |−1(π̃ )∗(φ) = 1, where ( ˜π )∗ is the integration along the fiber of ˜π . Note that the
fiber is , and that the action of preserves the orientation of .The equivariant
Chern class 1 (ν ) is the restriction to of the cohomology class [φ] of φ. Here [φ]
is considered as a relative class in2( \ ; R) where is a tubular neighbor-
hood of .

On the other hand,ξ is the restriction of a cohomology classψ ∈ 2( \
; R) such that

π∗(ψ) = 1∈ 0( ; R) = 0( ; R)

whereπ : → denotes the projection of the fibration. Note that the fiber ofπ is
= / , where acts effectively on . We have

π∗([φ]) = | |−1(π̃ )∗([φ]) = 1 = π∗(ψ)

But π∗ is an isomorphism (Thom isomorphism). Hence we have [φ] = ψ, and conse-
quently

1 (ν ) = [φ] | = ψ | = ∗(ξ )

We noticed that, for ∈ ( )( ), { | ∈ } was a basis of 2( ; R). Let
{ } be the dual basis in 2( ; R). This can be interpreted in the following way.
Let { ˜ | ∈ } be the basis of 2( ˜ ; Z) dual to {˜ | ∈ }. We haveρ∗( ) = ˜ ,
since ρ ∗( ˜ ) = . We identify 2( ˜ ; R) with 2( ; R) by the isomorphismρ∗.
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Then 2( ˜ ; Z) can be considered as embedded in2( ; R). With this convention
we have = ˜ .

Let ∈ be a fixed point of the -action. In the sequel we identify2( ; R)
with 2( ; R).

Lemma 12.5. Let ∈ ( )( ) and ∈ . Thenξ | = ∈ 2( ; R) for
∈ . If /∈ , then ξ | = 0.

Proof. By Lemma 12.4 we have

ξ | = 1 (ν | )

But ν | viewed as ˜ -module is . It follows that
˜
1 (ν | ) = ˜ . Hence

1 (ν | ) =

If /∈ , then /∈ . Thereforeξ | = 0.

If we consider = ˜ as an element of Hom(˜ 1) = 2( ˜ ; Z), then
Lemmas 12.5 and 12.6 imply that is nothing but the˜ -module . The fol-
lowing Lemma describes the algebra structure of∗( ; R) over ∗( ; R) modulo

∗( ; R)-torsion as in the case of torus manifolds (Lemma 9.3).

Lemma 12.6. The following equality holds for any ∈ 2( ; R):

π∗( ) =
∑

∈ ( )(1)

〈 〉ξ modulo ∗( ; R)-torsion

Proof. Let ∈ ⊂ be a fixed point of the -action. We restrict both sides
of the equality in Lemma 12.6 to . On the left hand side we get . On the right hand
side the result is

∑

∈
〈 〉

by virtue of Lemma 12.5. But this is equal to by the definition of the . Thus
both sides coincide after the restriction to each∈ . Since the restriction homo-
morphismπ∗ : ∗( ; R) → ∗( ; R) is injective modulo ∗( ; R)-torsion, the
equality is confirmed.

REMARK. The equality in Lemma 12.6 characterizes the vectors in terms of the
ξ as in Lemma 9.3.

We set = 2( ; Z) and define for ∈ ( )( ) to be the lattice generated
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by the ∈ .

Lemma 12.7. Assume that ( ) = 1. Let ∈ with ∈ ( )( ). Then is
isomorphic toKerρ . MoreoverKerρ is isomorphic to / .

Proof. We have already shown that is isomorphic to the kernelof ρ in
Lemma 12.3. For the second part it suffices to note that and canbe identified
with the fundamental group of and̃ . Therefore the kernel ofρ is isomorphic to
/ .

REMARK. Hereafter we identify and / with Kerρ ⊂ ˜ through the
isomorphisms given in Lemma 12.7. We putχ ( ) = exp(2π

√
−1〈 〉) for ∈

2( ˜ ; Z) and ∈ 2( ; R). If is fixed, then the valueχ ( ) depends only
on the equivalence class of modulo . Hence, if we identify˜ with 1 via ϕ as
before and˜ with

∏

∈
1 via

∏

∈ ϕ , then the map exp: 2( ; R)→ ˜ defined
by exp( ) =

∏

∈ exp(2π
√
−1〈 〉) is a universal covering map and its kernel is .

It induces an isomorphism from = / onto Kerρ . We shall writeχ ( ) in-
stead ofχ ( ) for = exp( ) ∈ ˜ as in Section 7. Let be a one dimensional
˜ -module. It defines an element∈ Hom(˜ 1) = 2( ˜ ; Z). Then the action of
∈ ˜ on is given by the complex multiplication byχ ( ).

Suppose that is a unitary torus orbifold such that ( ) = 1. Let be a
-invariant complex line bundle over . By using a hermitian connection of and

a hermitian connection of , a Dirac operator twisted by is defined as in the case
of torus manifolds. Its index is a -module. It is called the equivariant Riemann-Roch
number with coefficient in , and is denoted by ( )∈ ( ). It can be ex-
pressed by the fixed point formula due to Vergne [33]; cf. also[10]. The formula
is particularly simple when all the fixed points are isolated. It is convenient to write
down the image of ( ) by ch: ( )→ ∗∗( ; R); the result is

Lemma 12.8. Let ξ = 1 ( ) be the equivariant Chern class of . Then

ch
(

( )
)

=
∑

∈

ǫ ξ|

| |
∑

∈

χ (ξ | )
∏

∈ (1− χ ( )−1 − )

where ∈ ( )( ) is such that ∈ .

It can be shown that, if and both lie in the same , thenξ | = ξ |
for ξ = 1 ( ). The proof is same as in the case of torus manifolds as was given in
[27]. We shall write = 1 ( ) | for ∈ . Taking Remark below Lemma 12.7 in
account, we get
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Proposition 12.9.

ch
(

( )
)

=
∑

∈ ( )( )

( )( )
| / |

∑

∈ /

χ ( )
∏

∈ (1− χ ( )−1 − )

Since ch: ( )→ ∗∗( ; R) is injective, the formula in Proposition 12.9 char-
acterizes ( ). Using the notation in Section 7, we obtain

Corollary 12.10.

( ) =
∑

∈ ( )( )

( )( )
| / |

∑

∈ /

χ ( )
∏

∈ (1− χ ( )−1 − )

When = 1 ( ) | ∈ lies in ∗ = 2( ; Z), thenχ ( ) = 1 for all
∈ / . Therefore, if ∈ ∗ for all ∈ ( )( ), then

( ) =
∑

∈ ( )( )

( )( )
| / |

∑

∈ /

1
∏

∈ (1− χ ( )−1 − )

By observing that 7→ χ ( ) is a character of / for any ∈ 2( ˜ Z) =
Hom(˜ 1), the formula above can be rewritten in the following form:

(12.1) ( ) =
∑

∈ ( )( )

( )( )
| / |

∑

∈ /

1
∏

∈ (1− χ ( ) − )

The right hand side of this formula (12.1) appeared in Corollary 7.4. There, it was re-
lated to a lattice multi-polytopeP , in which is contained in ∗ for all ∈ ( ),
and the Duistermaat-Heckman function P+ . Suppose that 1 ( ) is of the form

1 ( ) =
∑

∈ ( )(1) ξ ∈ 2( ; R). Then the above multi-polytopeP is nothing but
the one whose first Chern class is1(P) =

∑
as in Section 8. Note thatP is not

always a lattice multi-polytope in this case.

REMARK. Corollary 7.4 shows that the right hand side of the formula (12.1) de-
pends only on ( ) andP ; namely, it does not depend on the choice of generating
vectors ∈ 2( ; R) in so far as they lie in = 2( ; Z) and { | ∈ } is
interpreted as the dual basis of{ | ∈ }.

When is a torus manifold, the Duistermaat-Heckman functionhas a geometric
meaning coming from the moment map of the line bundle as was explained in Sec-
tion 11. There the role of the winding number was also explained. These notions are
generalized to the case of torus orbifolds and similar results hold in this case too. The
details can be worked out without much alteration and are left to the reader.
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The -genus of a torus orbifold is also defined by using the fixedpoint formula
due to Vergne in a similar way as in Section 10, and the analogue of Theorem 10.1
holds. the details are left to the reader.

13. Realizing multi-fans by torus orbifolds

In the previous section, we associated a complete simplicial multi-fan of dimen-
sion with a torus orbifold of dimension 2 . In this section, weconsider the converse
problem. If a multi-fan is associated with a torus orbifold ,then we say that
is (geometrically) realized by , or realizes .

We recall how the multi-fan of changes when the orientationson or
are reversed. If the orientation of is unchanged but that of is reversed, then
the orientation of the normal bundle of is reversed and, hence, 1-dimensional
cone ( ) tunrs into the cone− ( ), and the pair ( ( )+( ) ( )−( )) turns into
( ( )−( ) ( )+( )) for ∈ ( )( ) containing while others remain unchanged.
If the orientations of and of all the ’s are reversed, then allthe cones ( )’s re-
main unchanged but ( ( )+( ) ( )−( )) turns into ( ( )−( ) ( )+( )) for any
∈ ( )( ) so that ( )( ) turns into− ( )( ) for any ∈ ( )( ). The torus

orbifold with the reversed orientations of and all the ’s will be denoted by
− .

The underlying space of a torus orbifold of dimension 2 is2 with the standard
1-action. In this case, there are two characteristic submanifolds. They are 1-fixed

points. Taking orientations on2 and its characteristic submanifolds into account, we
easily have the following theorem.

Theorem 13.1. A complete simplicial multi-fan = ( ±) of dimension1
is geometrically realized if and only if is isomorphic to theargumented simplicial
set obtained from the boundary of a1-simplex and{ +( ) −( )} = {1 0} as a set
for ∈ (1).

The analysis of a torus orbifold of dimension 4 is more complicated. In this case,
each characteristic suborbifold is homeomorphic to2 and has two fixed points. There-
fore, if two of the characteristic suborbifolds intersect,then they intersect at one point
or two points, and if they intersect at two points, then they do not intersect at any
other characteristic suborbifolds. We also note that a -fixed point is an intersection
of two characteristic suborbifolds. These facts imply the “only if” part in the follow-
ing theorem. We will prove the “if” part later.

Theorem 13.2. A complete simplicial multi-fan = ( ±) of dimension2
is geometrically realized if and only if the following two conditions are satisfied for
each ∈ (2):
(1) { +( ) −( )} = {1 0} or {1 1},
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(2) when { +( ) −( )} = {1 0}, there are exactly two elements, say ′ and ′′,
in (2) such that ∩ ′ and ∩ ′′ are in (1) and ∩ ′ ∩ ′′ = ∅, and when
{ +( ) −( )} = {1 1}, there is no element ′ ∈ (2) such that ∩ ′ ∈ (1).

In contrast to the low dimensional cases above, we have

Theorem 13.3. Any complete simplicial multi-fan of dimension≥ 3 is geometri-
cally realized.

In the following = ( ±) will be a complete simplicial multi-fan of dimen-
sion ≥ 2 unless otherwise stated. Here is an outline of how to realize by a torus
orbifold. We choose and fix a generic (rational) 1-dimensional cone in R, and decom-
pose using it into a number of what we callminimal multi-fans. Minimal multi-fans
can essentially be realized by weighted projective spaces.We paste them together by
performing equivariant connected sum along characteristic suborbifolds and at -fixed
points to obtain a desired torus orbifold realizing the given .

Equivariant connected sum is performed through two isomorphic orbifold charts.
In this way attention should be paid to orbifold structures.So we make a remark on
orbifold structures at this point. There are many choices ofan orbifold structure on
(e.g. 2 with the standard 1-action admits infinitely many orbifold structures), but the
associated multi-fan does not depend on the choice of an orbifold structure. In fact,
the circle subgroup determined by the vector in the previoussection is the one
which fixes points in the characteristic suborbifold , so theline generated by is
independent of the orbifold structure. Moreover the direction of is determined by
the choice of orientations on and , so the cone spanned by is independent of
the orbifold structure. What depends on the orbifold structure is the length of which
is equal to the degree of the covering map˜ → . In this way the vectors reflect
the orbifold structure related to the torus action. We shallcall the vector the edge
vector of the 1-dimensional cone ( ).

We shall use two types of equivariant connected sum; one is at-fixed points
and the other is along characteristic suborbifolds. Let us explain the former first. Sup-
pose that torus orbifolds and ′ with ( ) = ( ′) have -fixed points and ′

respectively such that the -dimensional cones and the edge vectors corresponding to
them are the same and the signsǫ and ǫ ′ at and ′ are opposites. Then there are
a finite covering ˜ of , a finite subgroup of˜ and orbifold charts ( )
and ( ′ ′) around and ′ respectively such that is an invariant open disk
centered at the origin in ã -module. In particular a diffeomorphism (in the sense of
orbifold) from the closure of onto that of ′ is induced. Moreover sends char-
acteristic suborbifolds that contain onto characteristicsuborbifolds that contain ′.
It should be noticed that is orientation reversing on and on all the characteristic
suborbifolds. We remove and ′ from and ′ respectively and glue their bound-
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aries through the diffeomorphism restricted to the boundaries. The resulting space is
a torus orbifold with the orientations compatible with the torus orbifolds and ′.

Let us explain the equivariant connected sum along characteristic suborbifolds. For
the sake of simplicity we assume that ( ) = 1. Let be a characteristic suborb-
ifold, a point in the principal stratum of the orbifold . We may assume that the
isotropy subgroup at of the -action is the circle group . Let˜ be the covering
group of corresponding to the edge vector as introduced in the previous section.
Denote by the standard complex 1-dimensional˜ -module and by ( ) the unit
disk of . Then it follows from the Slice Theorem and Lemma 12.3that the -orbit
of has a closed invariant tubular neighborhood¯ in equivariantly diffeomorphic
to

(13.1) ( × ˜ ( ))× −1

where × ˜ ( ) denotes the orbit space of × ( ) by the ˜ -action defined by
( ) = ( ρ ( )−1 ) for ∈ ˜ , ∈ and ∈ ( ).

Suppose that there are characteristic suborbifolds and′′ of torus orbifolds
and ′ with ( ) = ( ′) = 1 respectively such that the corresponding edge vec-

tors coincide. Then the corresponding circle subgroups˜ and ˜ ′
′ agree and there is an

equivariant diffeomorpism between̄ and ¯′
′ reversing the orientations induced from

, , ′ and ′
′ because both¯ and ¯′

′ are equivariantly diffeomorphic to the
space in (13.1) and −1 ( ≥ 2) has an orientation reversing self-diffeomorphism.
We remove the interior of̄ and ¯′

′ from and ′ and paste them together along
the boundaries of¯ and ¯′

′ through the orientation reversing equivariant diffeomor-
phism restricted to the boundaries, producing a new torus orbifold, say ′′. We call
this procedure the equivariant connected sum of and′ along and ′

′ . The
codimension of the principal orbits in and ′

′ is − 1, so when ≥ 3, and
′
′ are pasted together to become one characteristic suborbifold in ′′ and ( ′′)

is obtained from ( ) and ( ′) by identifying with ′. However, when = 2,
the characteristic suborbifolds and′

′ are 2 and the principal orbits in them are
circles; so the orbits separate and′′ into two connected components respectively
and hence two characteristic suborbifolds of′′ are produced.

Let ∈ ( )( ) and ′ ∈ ( ′)( ) be such that ( )( ) = ( )(′). Suppose
that the corresponding edge vectors are the same for and′. Then one can make
equivariant connected sum of and′ along each pair of characteristic suborbifolds

and ′
′ such that ( )( ) = ( ′)( ′) for ∈ and ′ ∈ ′, and then elements in

and ′ will be identified in pairs in the multi-fan of the resulting torus orbifold and
the weights ± on the identified -dimensional cone is the sum of those at and′.

We say that isconnectedif is connected. According to the decomposition of
into connected components, the multi-fan decomposes into connected multi-fans

which are again complete simplicial and of dimension .
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Lemma 13.4. Suppose ≥ 2. Then the multi-fan is geometrically realized if
all connected components of are geometrically realized.

Proof. Let be a torus orbifold of dimension 2 and let be a pointin the
principal stratum of . We may suppose that ( ) = 1. A closed tubular neighbor-
hood ¯ of the orbit of is equivariantly diffeomorphic to× and the complement
of ¯ is connected because is connected and the orbit has codimension ≥ 2.

Let ′ be another torus orbifold of dimension 2 with (′) = 1, and let ¯′

be a closed subset in ′ corresponding to¯ in . Since both ¯ and ¯′ are equiv-
ariantly diffeomorphic to × and has an orientation reversing diffeomorphim,
there is an orientation reversing equivariant diffeomorphism between ¯ and ¯′. We
remove the interior of¯ and ¯′ from and ′ respectively and glue their bound-
aries through the diffeomorphism restricted to the boundaries and obtain a new torus
orbifold ′′. The multi-fan ( ′′) is the disjoint union of ( ) and ( ′). (Pre-
cisely speaking, ( ′′) is the disjoint union of ( ) and ( ′) with the empty sets
in them identified.)

If all connected components of are geometrically realized,then we connect
torus orbifolds that realize the connected components of bythe above method. Then
the resulting torus orbifold realizes .

As is shown in the proof of Lemma 13.4, whenever we have more than two torus
orbifolds of dimension ≥ 2, we can connect them and the multi-fan of the resulting
torus orbifold is the disjoint union of the multi-fans of thetorus orbifolds we had.

DEFINITION. We say that a complete simplicial multi-fan = ( ±) of di-
mension isminimal if
(1) is isomorphic to the argumented simplicial set obtainedfrom the boundary of
an -simplex, and
(2) the set{ +( ) −( )} is independent of ∈ ( ).

Although the set{ +( ) −( )} is independent of for a minimal multi-fan ,
the pair ( +( ) −( )) may not be independent of ∈ ( ). But one can convert
into another minimal multi-fan¯ = ( ¯ ¯±) such that the pair (+̄( ) ¯−( )) is
independent of . The definition of̄ is as follows. Since is of dimension and
the cardinality of (1) is + 1, there is a relation

∑

∈ (1) = 0 among the edge
vectors with non-zero real numbers . We then define

¯( ) :=

{

( ) if > 0,

− ( ) if < 0,

and define ¯( ) for ∈ ( ) with ≥ 2 to be the cone spanned bȳ( )’s for
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∈ . We also define

( ¯+( ) ¯−( )) :=

{

( +( ) −( )) if ♯{ ∈ | < 0} is even,

( −( ) +( )) if ♯{ ∈ | < 0} is odd,

for ∈ ( ).

Lemma 13.5. ¯ is minimal and satisfies the following two conditions:
(1) the -dimensional cones̄ ( ) ( ∈ ( )) do not overlap and their union covers
the entire space R, and
(2) the pair ( ¯+( ) ¯−( )) is independent of ∈ ( ).
Moreover is geometrically realized if and only if so is̄.

Proof. Let ¯ be a non-zero vector in the cone¯( ). One may choose it to be
if > 0 and− if < 0. Then one has a relation

∑

∈ (1)
¯ ¯ = 0 with positive

numbers¯ . This implies the statement (1) in the lemma.
We shall prove the statement (2) in the lemma. Let∈ ( −1). Since the cardi-

nality of (1) is + 1, there are exactly two elements ,′ ∈ (1) not contained in ,
and ∪{ } and ∪{ ′} are in ( ), in other words, the (−1)-dimensional cone ( )
is a facet of only two -dimensional cones (∪{ }) and ( ∪{ ′}). We project them
on ( )

R (the quotient space of R by the subspace generated by ( )). Then the
vectors projected from and ′ are toward opposite directions if and only if ′ >

0. It follows from the completeness of that (∪ { }) = sign( ′ ) ( ∪ { ′}).
This together with the definition of ±̄ shows that ¯ ( ∪ { }) = ¯ ( ∪ { ′}). Since
∈ ( −1) is arbitrary, this proves the statement (2). It also proves the completeness

of ¯, so that ¯ is minimal.
The procedure from tō corresponds to reversing orientations on characteristic

suborbifolds with < 0, so the latter statement in the lemma is obvious.

Lemma 13.6. Let be a minimal multi-fan of dimension≥ 2. If ≥ 3, then
is geometrically realized. If = 2, then is geometrically realized if(and only

if) { +( ) −( )} = {1 0} for any ∈ (2). In any case we can take an orbifold
structure on the realizing torus orbifold such that the corresponding edge vectors{ }
are all primitive; that is, if = ′ for some ′ ∈ and ∈ Z, then = ±1.

Proof. By Lemma 13.5, we may assume that the union of cones ( ) over ∈
( ) covers the entire spaceR and the pair ( +( ) −( )), which we denote by

( ), is independent of . When ( ) = (1 0), can be realized by a weighted
projective space, say . There is an orbifold structure on a weighted projective space
such that the edge vectors are all primitive. We admit these facts for a moment; the
proof will be give in the appendix at the end of this section. Then− realizes the
case when ( ) = (0 1). This completes the proof when = 2.
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Suppose ≥ 3. For a general value of ( ), we prepare copies of and
copies of− and do equivariant connected sum along all ’s and− ’s for each ∈

( ). Then the resulting torus orbifold realizes . The edge vectors are all primitive
in this construction since it is so for .

Now let be an arbitrary complete simplicial multi-fan of dimension ≥ 2.
We decompose into a number of minimal multi-fans as follows.We choose and
fix a generic (rational) 1-dimensional cone inR, say , which is not contained in
any subspaces spanned by cones of dimension≤ − 1 in . We label as⋆. To
each -dimensional cone ( ) for ∈ ( ), we form cones which are respectively
spanned by and facets of ( ). These cones together with ( ) determine a sim-
plicial multi-fan [ ] = ( [ ] [ ] [ ] ±), where [ ] consists of all proper subsets
of ∪ {⋆}. The weight functions [ ]± are defined as follows. Let be a non-zero
vector in ( ) for each ∈ and ⋆ a non-zero vector in . Then there is a relation

(13.2) ⋆ +
∑

∈
= 0

with non-zero real numbers ’s. LetI ∈ [ ] ( ). Then I = or ( \{ }) ∪ {⋆} for
∈ . We define

(13.3)

( [ ]+(I) [ ]−(I)) :=







( +( ) −( )) if I = or

I = ( \{ }) ∪ {⋆} and > 0,

( −( ) +( )) if I = ( \{ }) ∪ {⋆} and < 0.

Lemma 13.7. [ ] is complete and hence minimal.

Proof. The proof is essentially the same as that of lemma 13.5. As remarked in
Section 2, it suffices to show that, when a generic vector getsacross an ( − 1)-
dimensional cone, the integer in Section 2 remains unchanged. LetJ be an element
of [ ] ( −1) and let and ′ be the two elements in (∪ {⋆})\J . ThenI := J ∪ { }
and I ′ := J ∪ { ′} are the elements in [ ]( ) which containJ . We project cones

[ ](I) and [ ](I ′) on [ ](J )
R . Then it follows from (13.2) that the vectors pro-

jected from and ′ are toward opposite directions if and only if ′ > 0, where

⋆ is understood to be 1. This together with the definition (13.3) of [ ]± implies that
remains unchanged regardless of the sign of′ when gets across the (− 1)-

dimensional cone [ ](J ).

Let ∈ ( −1) and let 1 . . . be the elements in ( ) containing . The
-dimensional cone spanned by ( ) and appears in [ ] for = 1, 2. . . with

the form [ ]( ∪ {⋆}).
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Lemma 13.8.
∑

=1 [ ]( ∪ {⋆}) = 0

Proof. Consider the projection of the cones ( )’s on( )
R . We define sign( ) =

1 or −1 according as the projection image of ( ) disagrees or agreeswith that of .
Applying (13.3) with = and \{ } = , one sees that

[ ]( ∪ {⋆}) = sign( ) ( )

On the other hand, it follows from the completeness of that
∑

sign( )=1

( ) =
∑

sign( )=−1

( )

These two equalities imply the lemma.

Proof of Theorem 13.3. By lemma 13.4 we may assume that is connected.
We choose a generic (rational) 1-dimensional cone and decompose using into
minimal multi-fans [ ]’s ( ∈ ( )). By Lemma 13.6 [ ] is realized by a torus
orbifold, say [ ], such that all its edge vectors are primitive. We consider the dis-
joint union of [ ] over ∈ ( ) and piece them together using equivariant con-
nected sum in the following way. For each∈ (1) we do equivariant connected sum
of { [ ] | ∈ } successively along [ ] ’s, and similarly do equivariant connected
sum of all [ ]’s along [ ]⋆ as well. The resulting space is connected because
is connected, and becomes a torus orbifold. Its multi-fan isclose to but contains
extra cones which are the cones spanned by and ( ) for∈ ( ) with ≤ −1.
For a fixed ∈ ( −1), it follows from Lemma 13.8 that there are the same num-
ber of -fixed points withǫ = 1 and with ǫ = −1 contained in the union of

[ ] with ⊂ and corresponding to the cone spanned by and ( ). Hence one
can do equivariant connected sum at pairs of -fixed points andso that those

-fixed points will be eliminated. Doing this for each∈ ( −1), we obtain a torus
orbifold, say , realizing . In fact, the characteristic suborbifolds [ ]⋆ turn into a
codimension two suborbifold of , which is fixed by the circle subgroup determined
by but has no -fixed point, so it is not a characteristic suborbifold of by defini-
tion. This means that all the cones in [ ]’s containing as an edge do not show up
in the mulit-fan of .

Proof of Theorem 13.2. We already observed the “only if” part, so we prove
the “if” part. By Lemma 13.4 we may assume that our , which satisfies the condi-
tions (1) and (2) in Theorem 13.2, is connected. Then (the realization of) is either

CASE 1. a 1-simplex, or

CASE 2. the boundary of a -gon where≥ 3,
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and that

{ +( ) −( )} =

{

{1 1} in Case 1,

{1 0} in Case 2.

Using the latter statement in Lemma 13.6, the same argument as in the proof of Theo-
rem 13.3 shows that in Case 2 is geometrically realized. As for Case 1, let ∈ (2)

be the unique simplex. There exist a finite covering˜ → whose kernel is iso-
morphic to / where is the sublattice generated by the primitive vectors ’s
for ∈ , and a 2-dimensional̃ -module corresponding to the cone ( ), as was
explained in Section 12. Then the one point compactificationof / , i.e., the orbit
space of 4 by an action of / , realizes our in Case 1.

Appendix. Realization of minimal multi-fans by weighted projective spaces

We identify the ( + 1)-dimensional torus +1 = 1 × · · · × 1 with the standard
maximal torus of ( + 1C) consisting of diagonal matrices. We set˜ = +1/

where denotes the subgroup of diagonal elements (. . . ). It is a maximal torus
in ( + 1 C) and acts effectively on the projective spaceP . Let ˜ denote the -
th factor of +1. It is mapped injectively into˜ . We shall denote by the same letter
˜ its image in ˜ . We set ˜ = {[ 0 . . . ] | = 0}, for = 0 . . . . They are the
characteristic submanifolds ofP regarded as a torus manifold with the orientations
induced from the complex structure. If is a finite subgroup of˜ , then the quotient

= P / is a torus orbifold acted on by =̃ / for which ( P ) is
an orbifold chart, where :P → is the projection. It is called a weighted pro-
jective space. Its characteristic suborbifolds are = (˜ ) = 0 . . . , and the
corresponding circle subgroups are =π( ˜ ), whereπ : ˜ → is the projection. The
symmetric groupS +1 of degree +1 acts on +1 and also induces an action oñ. It
also acts onP . If σ denotes the transform of by an elementσ ∈ S +1, then the
transformationσ : P → P induces an isomorphism of torus manifolds → σ .
We set

WP = { | finite subgroup of˜ }/S +1

Every element inWP represents an isomorphism class of weighted projective spaces.
In order to describe the multi-fan associated with the torusorbifold we

introduce the following notations:

˜ = Z +1/diagonal submodule ˜ = image of iñ = Z

where is the -th fundamental unit vector inZ +1. ˜ is canonically identified with
Hom( 1 ˜ ). If one chooses an identification of Hom(1 ) = 2( ; Z) with , then
the finite covering mapπ : ˜ → induces an injective homomorphismϕ : ˜ → .



THEORY OF MULTI-FANS 65

The vectors =ϕ( ˜ ) are the edge vectors of the 1-dimensional cones of . Note
that they satisfy the equality

(13.4)
∑

= 0

since the ˜ ’s satisfy a similar equality. This implies that is a minimal multi-fan
satisfying the conditon (1) in Lemma 13.5. It is also clear that ( +( ) −( )) = (1 0).
We shall denote byMF the set of minimal multi-fans satisfying the above two con-
ditions. If one chooses another identification of Hom(1 ) with , thenϕ is trans-
formed toψ◦ϕ whereψ ∈ ( Z). ( Z) acts onMF from left by transforming
the cones simultaneously by its elements. Let∈ Z be the maximal common divisor
of the edge vectors of . We get a correspondence

α : WP/S +1→ ( Z)\MF × Z>0

which sends to ( ).

Lemma 13.9. The correspondenceα is a bijection. In particular, every minimal
multi-fan inMF is realizable.

Proof. We shall define a correspondenceβ : ( Z)\MF × Z>0 → WP/S +1

which is to be the inverse ofα. Take a multi-fan inMF and ∈ Z>0. It is
easy to see there is a unique set{ } of edge vectors of such that

∑
= 0

and the maximal common divisor of{ } is . Define a homomorphismϕ : ˜ →
by requiring ϕ( ˜ ) = . Then there is a unique finite covering mapπ : ˜ →
which inducesϕ : ˜ = Hom( 1 ˜ ) → = Hom( 1 ). Let be the kernel of
π. The homomorphismϕ, hence either, does not depend on the choice of iden-
tification = Hom( 1 ), but it depends on the numbering of ’s. So if we put
β( ) = the class of inWP/S +1, it induces a correspondenceβ as above. It is
clear thatβ is in fact the inverse ofα.

REMARK. Let be a positive integer. The correspondence+1 ∋ ( 0 1 . . . )
7→ ( 0 1 . . . ) ∈ +1 induces a homomorphismρ : ˜ → ˜ . For a finite group
of ˜ define ′ = ρ−1( ). The edge vectors{ ′} corresponding to the torus manifold

′ are of the form ′ = , where{ } correspond to . Hence = ′ and
′ = . Let : P → P be the map defined by [0 1 . . . ] = [ 0 1 . . . ].

Then it induces a homeomorphism ′ → which is equivariant with respect to
the isomorphism of tori betweeñ/ ′ and ˜ / induced byρ. If and ′ are
considered as algebraic varieties then the homeomorphism becomes an equivalence. It
is a fundamental fact in the theory of toric varieties that toeach fan corresponds a
toric variety. The above equivalence gives an interpretation of this fact within this spe-
cial case in our context. Related results are found in [26]. Related to the above remark,
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for a later use, we point out the following fact. Let . . . be positive integers, and
let Z/ ⊂ 1 be the subgroup of -th roots of unity. Set =

∏
Z/ . Then the map

C ∋ ( 1 . . . ) 7→ ( 1
1 . . . ) ∈ C induces an equivalence of affine algebraic

varietiesC / → C .

Let ∈ WP and let { } be the edge vectors corresponding to the orbifold
structure as given above. Even if = 1, it may happen that some of ’s are not
primitive. We will show that there always exists a torus orbifold structure on such
that the corresponding edge vectors are all primitive. Moregenerally we have

Lemma 13.10. Let be a weighted projective space and{ } the correspond-
ing edge vectors satisfying

∑
= 0 as given above. Suppose that{ ′} are vectors in

such that = ′ with ∈ Z>0. Then there is an orbifold structure on which
admits{ ′} as the corresponding edge vectors.

Proof. For each ∈ let ˜ ⊂ ˜ be the isotropy subgroup at ˜ of thẽ-
action onP where ˜ ∈ −1( ). ˜ does not depend on the choice of ˜ in−1( ).
If lies in Int = \ ⋃ % for ∈ ( )( ), then ˜ = ˜ =

∏

∈ ˜ . We

put = ∩ ˜ . We take a family{ µ | µ ∈ Z>0} of small ˜ -invariant open
neighborhoods of ˜ such that µ converges to ˜ whenµ tends to infinity. We may
assume that µ is equivariantly diffeomorphic to añ -invariant open disk inC . It
is possible to make µ’s so small that they satisfy the following condition:

(13.5) ={ ∈ | · µ ∩ µ 6= ∅}

Then µ = µ/ is an open neighborhood of in , and (µ µ |
µ) is an orbifold chart of compatible with ( P ).

On the other hand the fact that = ′ implies that the kernel of :̃ →
containsZ/ ,which we denote by . Since is the kernel of :˜ → , is
contained in . We put =

∏

∈ for ∈ ( )( ) and define

′
µ = µ/

′ = / for ∈ Int

′
µ can be considered as an open disk inC as pointed out in Remark above. The

projection | : → induces a map ′
µ : ′

µ → which induces a homeo-
morphism ′

µ/
′ → .

We shall prove that the family{( ′
µ

′
µ

′ ′
µ) | ∈ µ ∈ Z>0} forms

a set of orbifold charts of an orbifold structure on . For thatpurpose it suffices to
show that, if ′

µ ⊂ ′
ν , then there are an injective homomorphismρ : ′ → ′ and

a ρ-equivariant open embeddingφ : ′
µ → ′

ν such that

(13.6) ρ( ′) = { ∈ ′ | · φ( ′
µ) ∩ φ( ′

µ) 6= ∅}
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The condition (13.5) implies that, if ∈ Int and ∈ Int with and ∈
( ), and if ′

µ ⊂ ′
ν , then ⊃ . Therefore

⊂ and ∩ =

It follows that the inclusion → induces an injective homomorphismρ : ′ =
/ → / = ′. If ˜ is taken in ν , then µ is contained in ν . The

inclusion induces an embeddingφ : ′
µ → ′

ν . φ is clearly ρ-equivariant. The con-
dition (13.6) follows from (13.5).

If lies in , then the action of lifts to the action of̃′ = ˜ / on ′
µ and

the lifting is minimal. Hence the edge vector of ( ) corresponding to the orbifold
structure defined above must be′.

References

[1] M. Atiyah: Convexity and commuting Hamiltonians, Bull. London Math. Soc.14 (1981), 1–15.
[2] M. Atiyah and R. Bott:The moment map and equivariant cohomology, Topology 23 (1984),

1–28.
[3] R. Bott and L.W. Tu: Differential Forms in Algebraic Topology, GTM 82, Springer-Verlag,

1982.
[4] M. Brion and M. Vergne:Lattice points in simple polytopes, J. Amer. Math. Soc.10 (1997),

371–392.
[5] M. Brion and M. Vergne:An equivariant Riemann-Roch theorem for complete, simplicial toric

varieties, J. reine angew. Math.482 (1997), 67–92.
[6] S.E. Cappell and J.L. Shaneson:Genera of algebraic varieties and counting lattice points, Bull.

Amer. Math. Soc.,30 (1994), 62–69.
[7] S.E. Cappell and J.L. Shaneson:Euler-Maclaurin expansions for lattices above dimension one,

C. R. Acad. Sci. Paris Sr. I Math.321 (1995), 885–890.
[8] M. Davis and T. Januszkiewicz:Convex polytopes, Coxeter orbifolds and torus actions, Duke

Math. J.61 (1991), 417–451.
[9] T. Delzant: Hamiltoniens périodiques et image convexe de l’application moment, Bull. Soc.

math. France116 (1988), 315–339.
[10] J.J. Duistermaat:The Heat Kernel Lefschetz Fixed Point formula for Spin-c Dirac Operator,

Progress in Nonlinear Differential Equations and Their Applications,8, Birkhäuser, 1996.
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