

Title	Prolonged mouse cardiac graft cold storage via attenuating ischemia-reperfusion injury using a new antioxidant-based preservation solution
Author(s)	蔡, 松潔
Citation	大阪大学, 2016, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/55818
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

論文内容の要旨

Synopsis of Thesis

氏名 Name	蔡 松潔
論文題名 Title	Prolonged mouse cardiac graft cold storage via attenuating ischemia-reperfusion injury using a new antioxidant-based preservation solution (新規臓器保存液によるマウス心臓移植片の保存効果)
論文内容の要旨	
〔目的(Purpose)〕	
<p>One of the major events in ischemia/reperfusion (I/R)-induced heart injury in cardiac transplantation is the generation of reactive oxygen species (ROS). We hypothesized that a novel preservation solution called SBI-SEIIKU II (SS-II) contains three antioxidant reagents: L-cysteine, glycine, ascorbic acid/ascorbic acid-2-phosphate magnesium, which can block the generation of ROS to result in a prolongation of the cold storage time via attenuating ischemia-reperfusion injury.</p>	
〔方法ならびに成績(Methods/Results)〕	
<p><i>Methods</i> C57BL/6CrSlc (B6) mice underwent syngeneic mice heterotopic heart transplantation and the animals were derived into 3 groups: recipients with non-preserved grafts (control group), recipients with grafts preserved in histidine-tryptophan-ketoglutarate (HTK) for 24 and 48 hours (HTK group), and recipients with grafts preserved in SS-II for 24 and 48 hours (SS-II group).</p> <p><i>Results</i> After 48 hours of preservation, there were no grafts that survived in the HTK group; however, the SS-II group had a high survival rate. After 24 hours of preservation, SS-II decreased the oxidative damage, myocardial apoptosis and the infiltration of macrophages and neutrophils in the cardiac grafts in the early phase and suppressed the development of myocardial fibrosis in long-term grafts compared with HTK.</p>	
〔総括(Conclusion)〕	
<p>SS-II prolongs the acceptable cold storage time and protects the myocardium from I/R injury via inhibiting oxidative stress-associated damage. We believe that this novel preservation solution may be simple and safe for use in the clinical transplantation field.</p>	

論文審査の結果の要旨及び担当者

(申請者氏名) 蔡 松潔		
論文審査担当者	主 査	(職) 大阪大学教授 氏名 高原 史郎
	副 査	大阪大学教授 氏名 澤 芳村
	副 査	大阪大学教授 氏名 奥村 はるひ雄

論文審査の結果の要旨

グラフトの冷虚血時間と臓器保存液は移植される臓器のviabilityに直接影響を与えます。本研究はEC液をベースにして、カリウムをナトリウムに置き換え、ビタミンC、Lシスチン、グリシンなど三つの抗酸化成分を添加し、新規保存液SS-IIを開発しました。同系マウス腹部異所心移植モデルを用いて、HTKを対象保存液とし、SS-IIの保護効果を検討しました。心臓グラフトは摘出後保存液に24時間/48時間を冷保存した後移植しました。

SS-II群の移植片生着率、移植後グラフト機能、心筋再構築、心筋纖維化はHTK群に比べ改善しました。メカニズム解析による、SS-II群のグラフトATP濃度は高く、酸化損傷の8-OHdGとMDAが低く、ミトコンドリアがSS-IIの抗酸化成分による保護されたことが証明されました。

SS-IIの組成はシンプルで、効果が顕著であり、臨床応用に結びつくことが期待され、博士（医学）の学位授与に値する。