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Abstract

Throughout a software development historic-lifecycle, a large amount of
software and libraries can be generated. Those outputs are collected or
categorized to form a “program collection”. This dissertation dealt with
two types of program collections. “Program collection with time series”
is a set of the programs that have the same origin, but now containing
multiple versions through branching and updating. “Snapshot of program
collection” is a set of programs that is provided as ready to (re)use in
deveoping another program. This category contains applications for specific
devices and library set.

Well-managed program collections are useful for further development,
as a target of software reuse. Maintaining program collections and keeping
their value as an asset is an important thing, to prevent them from obso-
lescence. Thus, analysis technique for understanding their characteristics
and revealing hidden relations may be helpful.

This dissertation describes four researches on analysis of program col-
lections for classifying and understanding their relations. Each research
analysis uses very limited inputs, mostly the program code, and reveals im-
portant characteristics of program collections. We believe that these results
support developers to understanding existing program collections.

In the first research, we present a method to approximate evolution his-
tory of product family using only the source code of them. Since the history
of product family would be lost in typical cases, it is hard for developers
to understand these product family. A proposed method only requires the
source code of target product family and clarify the branching and latest
versions of the software products. The study showed that about 80% of the
edge in the approximated evolution history is consistent with the actual
evolution history of the products.

In the second research, we present a semi-automatic method to extract
features from Android applications. Many Android applications with sim-
ilar purpose are available, however, those applications are developed by
independent developer so it is difficult to compare. The method extracts
sequences of API calls from source code of Android applications and con-
sider those sequences as features of applications. A case study showed
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important differences among applications.
Thirdly, this research examined the quality of Java library set Maven2,

the popular Java library repository. Maintaining library set is important,
but Java library files can contain another library file and it is invisible for
the library users. We meajured the nubmer of nested library files and count
duplication of them. Analysis revealed that there are many copies of Java
library files among the nested library files.

Finally, this research compared the characteristics of C and Java library
set. Especially this research spotting identifier names, because identifier
names are important source for program analysis and comprehension. The
analysis of identifier definitions in C and Java library APIs reveals that
they have different tendency of definition.
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Chapter 1

Introduction

Computer software is now an important element in every part of the world,
small devices such as smartphones and other consumer electronics to large-
scale systems such as government systems and financial trading.

Throughout software development history, a large amount of software
and libraries were developed. It is important to understand existing soft-
ware to further development.

1.1 Program Collection

Along with the increased amount of the programs, they are collected or
categorized to a set. “Program collection” is defined as a set of programs
that are selected for some specific use.

Well-managed program collections are useful for further development
and as a target of software reuse. Software reuse is an activity based on
creating software systems from existing software, rather than building it
from scratch [34]. Reusing proven software makes a product reliable and
prevents developers from reinventing the wheel. Software reuse is also ex-
pected to reduce the cost and speeds up the development.

Understanding a program collection might lead developers to finding
out a value of the program collection as an assets. However, maintenance
of the program collection and keeping its quality is not easy problem. This
dissertation spots and examines two types of program collections and pro-
poses program code analysis methods for them.

1.1.1 A Program Collection with Time Series

During software evolution, a single program has been updated to the new
version or sometimes branched into multiple variants which have differ-
ent features. The set of the programs that have the same origin can be
considered as a program collection with time series.
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Figure 1.1: A product family derived from a single product [46].

Developers often create a new program by copying and modifying an
existing one or importing libraries. Furthermore, they often reuse the devel-
oped program to create yet another new program. This method of iteration
is called a “clone-and-own” approach. Once a software product has been
released, a large number of software products may be derived from the
original program.

Figure 1.1 shows a part of the industrial product family analyzed by
Nonaka et al. [46]. The horizontal axis represents the number of months
from the first release of the original product series (P01). The vertical axis
represents product series ID in a company, respectively. In Figure 1.1, a
circle corresponds to a product. Each dashed edge indicates that the new
product series is derived from the original product. A solid edge connecting
products indicates that the products are released as different versions of
the same product series. This figure shows only 8 major product series and
their variations, while the company had 25 series of products. Each series
of products has from 2 to 42 versions.

1.1.2 Snapshot of a Program Collection

A snapshot is a set of program that is provided as ready to (re)use. For
example, Google Play, previously named Android Market, provides a large
number of applications for Android. iTunes App Store also contains huge
number of applications for iPhones. As of June 2015, both Google Play
and App Store provide more than 1.5 million applications.

Linux distribution such as Debian also contains a set of programs as
a package. Those official packages are maintained and their dependencies
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are managed so users can install the package without considering complex
dependencies.

Libraries for sharing common functionality among programs also form
a program collection. The collection of libraries for specific environment
provides comfortable development environment. In Debian packages for
example, we can see many libraries for software developing in the “Devel”
section. In the case of Java development, there are tools for managing
libraries and resolving dependencies for them. Apache Maven [41] is a
project management tool for Java. Maven has a central repository that
contains massive Java libraries. Ruby also has a package management
system, RubyGems [53]. Some languages have an archive network and
users can easily find out libraries they need, for instance, CPAN [7] for Perl
and CRAN [8] for R.

1.2 Maintenance of a Program Collection

Maintaining program collections and keeping their value as an asset is an
important activity. Since the evolution of programs is rapid, it is necessary
to keep a program collection up-to-date and import new programs into the
collection.

1.2.1 Software Product Line

Software Product Line Engineering (SPLE) is a well-known approach for
efficient maintenance of a software product family [49]. Following Software
Engineering Institute in CMU [55], SPL is defined as:

a set of software-intensive systems that share a common, man-
aged set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a com-
mon set of core assets in a prescribed way.

Since the “clone-and-own” approach is very popular, the industry al-
ready maintains a large number of derived software products. Management
and maintenance of product variants are important, but those tend to be
disregarded because developers do not put enough effort for the further
maintainability in the initial phase of software development [12]. Construc-
tion of a software product line from existing products is a very important
problem and many re-engineering methods have been proposed [14, 33, 64].

The construction of a software product line from existing products re-
quires developers to understand the commonalities and variabilities of them
[4]. Krueger suggested that developers should start their analysis from a
small number of software products, instead of all products at once [35].
Koschke et al. proposed an extension of reflexion method to construct a
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product line by incrementally analyzing products [33]. To follow these rea-
sonable approaches, developers must choose representative software prod-
ucts as a starting point. However, history of products would be lost in
typical cases and developers have only an access to source code of products
in the worst case [36]. Thus, clarifying the difference of products and show
the representative ones without relying the history is needed.

1.2.2 Library Updating Problem

If bugs or vulnerabilities are found in the library, possible new version of
the library might be released, then it is advisable that library users update.
However, through the evolution of a library, the API also changes and
sometimes the compatibility is lost [15]. Darcy noted that there are three
main kinds of compatibility; source, binary, and behavioral [32]. In a recent
study, Dietrich et al. [11] pointed out that the recent trend is partially
upgrading systems by replacing new library versions, not rebuilding an
entire system. In this build style, library incompatibility is still problematic
and this causes new category of binary incompatibility.

One solution for users is that using the same set of library versions as
existing software. Yano et al. visualized a popular combination sets of
libraries [62]. Users can avoid problematic combination by using their tool,
but maintaining library set itself is still a difficult problem.

1.3 Contribution of the Dissertation

To understand program collections, spotting and revealing hidden relations
would be helpful. For each type of program collections, this dissertation
describes the analysis methods and those results. Each research analysis
very limited inputs, mostly the program code, and reveals important char-
acteristics of program collections. We believe that those results support
developers to understanding existing program collections.

1.3.1 A Program Collection with Time Series

Software Product Family
One important step to understand product family is selection of initial
analysis target from large number of products. The evolution history
of the product family helps this step, but it is not always available.

To deal with this problem, we proposed a method to approximate
evolution history of product family using only their source code. The
study of 9 datasets, including C and Java projects, showed that about
80% of the edge in the approximated evolution history is consistent
with the actual evolution history of the products.
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1.3.2 Snapshot of a Program Collection

Application Collection for Specific Target
We proposed a method to extract features from an Android applica-
tion collection. This method enables users to compare features among
similar but different applications.

The basic idea is that applications targeting a specific device use
similar set of APIs provided as SDK. The study of 11 Android appli-
cations showed that a sequence of API calls can be useful to compare
applications released by independent developer.

Libraries from a Large Software Set
Libraries are the component that ready to reuse. Understanding
their characteristics would be helpful for analyzing and understanding
client applications that are using those libraries.

A quality of library collection is particularly important because li-
braries work in cooperation. In other words, they have a complex
dependency. We examined Java libraries from Maven repository, and
found copies of Java library file inside.

From a viewpoint of client application source code, API names are the
main linkage to the libraries they use. We analyzed two large library
set, C libraries from Debian packages and Java libraries from Maven
repository. The analysis clarifies that they have different tendency
of definition The analysis also showed that most of C identifiers are
unique to a single library. This fact would be useful for light-weight
analysis.

1.4 Outline

The rest of the dissertation is structured as follows:

Chapter 2 reports the method to extract “Product Evolution Tree”
that approximates evolution history of software products. The extraction
depends on only the source code, so that it can be applied to the products
that have lost their evolution history.

Chapter 3 describes a semi-automatic approach to extract feature names
from Android applications. This approach extracts API calls from the
source code of Android applications.

Chapter 4 analyzes the quality of Maven2, the famous Java library
repository. Analysis reveals that there are many copies of Java library files
inside the library file, and it is invisible for the library users.

Chapter 5 studies the uniqueness and tendency of defining library iden-
tifier names. This analysis of identifier definitions in C and Java library
APIs reveals that they have different tendency of definition.

5



Finally, Chapter 6 concludes the dissertation and shows the directions
for future work.
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Chapter 2

Approximating the
Evolution History of
Software from Source Code

2.1 Introduction

When developing a software product, clone-and-own approach is one of the
major and easy ways to realize software reuse [52]. Developers copy existing
code or the whole of the product and then add features, fix bugs, and so
on. A software product contains source files, images, documents, and the
other resources. We define “a source file” as a source code in the single file
and “a software product” as a set of source files.

The new version of the first product is released with slightly different
features, so it will have very similar files with the first one. Management
of such similar software products is a very important task. They might
have the same problems or bugs, or developers can apply same improve-
ment in them. However, developers often copy and modify the software
product without using version control systems (VCS) or other management
techniques [12] since no one knows whether the product would be success-
ful enough to apply many extensions and derive many variants. Using
#IFDEF macro in C language to describe product specific features is one
of the solutions, but it is believed to decrease code readability. Clone-and-
own approach also gives developers freedom of making changes, without
considering making an impact to existing projects.

Many re-engineering methods for existing software products have been
proposed [14, 33, 64]. Since analyzing a large number of software products
is a difficult task, Krueger et al. suggested that developers should start
their analysis from a small number of software products [35]. Koschke
et al. proposed an extension of reflexion method to construct a product
line by incrementally analyzing products [33]. To follow these reasonable
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approaches, developers must choose representative software products as a
starting point. If the history of software evolution is available, developers
could recognize the relationships among the products and choose represen-
tatives for their analysis. For example, compare products between branches
to extract common features and product specific features. In the point of
view of re-engineering, understanding the evolution history of software is
also an important thing.

However, the history of software products is often not available [36].
Software products are not always managed under the VCS. If the software
has branched and managed independently, relationships between branches
are not recorded. Some of experts know the whole of the software products,
but their knowledge is often incomplete [48]. In the worst case, developers
only have access to source code of each product, they cannot get version
numbers nor release date for some of the products.

To deal with the situation that evolution history of software products
is lost, we propose a method to approximate the evolution history of soft-
ware products using source code of them. We assume that two successive
products are the most similar pair in the products. Similar software prod-
ucts must have similar source files so we analyze the source files and count
the number of similar source files between products. We connect the most
similar products and construct a tree. This tree is an approximation of
the evolution history of software products and two successive products will
be connected. Our approach depends only on source files, so we can ana-
lyze products whose evolution history is lost; no version numbers, names
or release dates.

The contributions of this chapter are follows:

• We have proposed a visualization technique of relationships among
software products from their source code.

• We have introduced a weighted function between two software prod-
ucts to reflect the effect of small changes.

• We did an experiment with programs written in C and Java.

• We did a case study with two variants of Linux kernel and found out
their origin.

2.2 Related Work

2.2.1 File Similarity

When comparing software products, similarity between source files is a very
important metric. To find out the same or similar source code fragments,
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many code clone detection tools have been proposed [29, 38]. Using large-
scale code clone detection techniques, Hemel and Koschke compared Linux
kernel and its vendor variants [21]. They found vendor variants included
various patches, but the patches are rarely submitted to the upstream.
Another application of code clone detection is detecting file moves occurred
between released versions of a software system [36].

Yoshimura et al. visualized cloned files in industrial products [63]. They
have used an edit distance function as a source file similarity to find out
cloned files whose contents are almost the same. Inoue et al. [24] proposed
a tool named Ichi Tracker to investigate a history of a code fragment with
source code search engines. It visualizes how related files are similar to
the original code fragment and when they are released. With the visual-
ization, developers can identify the origin of the source code fragment or a
more improved version. Our approach enables similar analysis on software
products instead of source files.

We have assumed that two successive products are very similar to each
other. This observation is shown by Godfrey et al. [16]. They detected
merging and splitting of functions between two versions of a software sys-
tem. Their analysis shows that a small number of software entities such
as functions, classes or files are changed between two successive versions.
Lucia et al. reported that most of bug fixes are implemented in a small
number of lines of code [40]. Since these studies reported that two suc-
cessive versions are very similar, we infer that the most similar pairs of
products are likely two successive versions.

2.2.2 Software Evolution

Yamamoto et al. proposed SMAT tool that calculates similarity of soft-
ware systems by counting similar lines of source code [61]. They identify
corresponding source files between two software systems using CCFinder
[29], and then compute differences between file pairs. They applied their
tool to a case study of software clustering, and extracted a dendrogram
of BSD family. The dendrogram reported which OSs are similar to each
other. Tenev et al. introduced bioinformatics concepts into software vari-
ants analysis [57]. One of them is phylogenetic trees, which visualizes the
similarity relations. They constructed dendrogram and cladogram from six
of BSD family for example of phylogenetic trees.

They can show the relationship that which product is most similar to
another and which products were forked from the release. Although their
approaches and goals are similar to our idea, our approach visualizes more
concrete relationships among products which are not shown in those related
works; which product was first released, their evolution direction, and so
on.
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A1 A215

A316

B1
10

A420

Figure 2.1: An example of a product evolution tree.

2.2.3 Software Categorization

Several tools have been proposed to automatically categorize a large number
of software based on their domains such as compiler, database, and so on.
MUDABlue [30] classifies software based on similarity of identifiers in source
code. MUDABlue employed latent semantic analysis which extracts the
contextual-usage meaning of words by statistical computations. LACT [58]
uses latent dirichlet allocation in which software can be viewed as a mixture
of topics. LACT used identifiers and code comments, but excluded literals
and programming language keywords, to improve categorization. CLAN
[42] focused on API calls. Its basic idea is that similar software uses the
same API set.

While all of these tools are able to detect similar or related applications
from a large set of software products, our approach focuses on very similar
products derived from the same product, that are likely categorized into
the same category by these tools.

2.3 Approach

We define the “Product Evolution Tree” as a spanning tree of complete
graph which includes all input products and connects most similar prod-
uct pairs first. If many files are similar between two products, it means
that those products are similar. A simple example of the tree is shown in
Figure 2.1. Each node represents a software product. Each edge indicates
that a product is likely derived from another product and the direction of
derivation: which product is an ancestor and which product is a successor.
A label of an edge explains the number of similar files between products. In
Figure 2.1, the product branched and there are more similar files between
A2 and A3 than A2 and B1.

We construct a Product Evolution Tree from source code of products
through four steps as follows.

1. We calculate file-to-file similarity for all pairs of source files of all
products.
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2. We count the number of similar files between two products.

3. We construct a tree of products by connecting most similar product
pairs.

4. We calculate evolution direction based on the number of modified
lines between two products.

2.3.1 File Similarity

We calculate similarity for all pairs of files across different products. We
do not consider file names because a file may be renamed. To calculate the
similarity of two source files, we first normalize each of source files into a
sequence of tokens. In a normalized file fn, which is a sequence of tokens of
file f , each line has only a single token. We remove blanks and comments
since they do not affect the behavior of products. All other tokens including
keywords, macros and identifiers are kept as is. Given a pair of files (a, b),
their file similarity sim(a, b) is calculated as follows:

sim(a, b) =
|LCS(an, bn)|

|an|+ |bn| − |LCS(an, bn)|

where |LCS(an, bn)| is the number of tokens in the Longest Common Sub-
sequence between an and bn.

We have used a file similarity based on LCS, since we could optimize the
calculation as described in Section 2.3.6. Another reason is that LCS-based
technique like UNIX diff is one of the most popular choices in comparing
source code. There are famous metrics for measuring similarity of doc-
uments such as TF-IDF, jaccard similarity, and so on. Of course, those
metrics can be applied to the source files (we are using jaccard similarity
in optimization), but they are based on the term frequency and do not
consider the order of elements. The following computation steps did not
depend on the definition of file similarity function; hence, other methods
such as code clone detection are also applicable to compute file similarity.

2.3.2 Count the Number of Similar File Pairs

When the file pair has a higher similarity than a threshold, it is a similar
file pair. The set of all possible similar file pairs S is defined as:

S(PA, PB, th) = {(a, b) | a ∈ PA, b ∈ PB, sim(a, b) ≥ th}.

and the number of similar file pairs N between software products PA and
PB are defined as:

N(PA, PB, th) = |S(PA, PB, th)|.
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2.3.3 Construction of the Tree

In this step, we construct a spanning tree of products. We first construct
a complete undirected graph G = (P,E), P denotes that software product
and E denotes set of edges that connects all those products. From this
graph, we pick edges with maximum number of similar files and add to the
tree, without making a loop, until all nodes are connected. This is the same
operation of the well-known algorithm of the minimum spanning tree. As
a result, we get a spanning tree S = (P,E′) of the graph G. E′ ⊆ E is a
set of edges which have the largest number of similar file pairs as follows:∑

(Pi,Pj)∈E′

N(Pi, Pj , th).

If two or more edges have the same weight values, one of them can be
arbitrary selected. In our implementation, it depends on the input order.

2.3.4 Evolution Direction

After a spanning tree is constructed, we set the direction on each edge
which explains the direction of evolution. Our hypothesis is that source
code is likely added, so we count the amount of added code in two software
products as follows:

ADD(PA, PB) =
∑

(a,b)∈S(PA,PB ,th)

|bn| − |LCS(an, bn)|

where an and bn are the normalized source files. Evolution direction is
defined as follows:

ADD(PA, PB) > ADD(PB, PA)⇒ PA → PB

ADD(PA, PB) = ADD(PB, PA)⇒ PA − PB

ADD(PA, PB) < ADD(PB, PA)⇒ PA ← PB.

Direction “–” means no direction detected.

We put directions and labels which denote the number of similar files
on each edge of the tree. The Product Evolution Tree is completed through
these four steps.

2.3.5 Weighted Function

The function N explains the number of similar source files. When the soft-
ware product series goes to maintenance phase, there would be no drastic
changes so that changes will not decrease file similarity below the threshold.
This means that N cannot explain how much the source code is changed.
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To reflect the amount of changes to the function, we define another function
Nw that weighting the function N with sim:

Nw(PA, PB, th) =
∑

(a,b)∈S(PA,PB ,th)

sim(a, b).

sim is already computed in the Step 1 so that we can get Nw without
vast amounts of calculating cost. We compare these two functions in the
experiment.

2.3.6 Optimization

To reduce the computation time, we introduced an implementation tech-
nique that calculates sim value only if it seems greater than the similarity
threshold. The technique is based on the jaccard similarity of two doc-
uments. We introduce the term frequency tf (f, t) which represents how
many times term t appears in file f . For example, suppose two tokenized
files an=AAABB and bn=ABBBB, where A and B are terms in the files.
The term frequencies are tf (an, A) = 3, tf (an, B) = 2, tf (bn, A) = 1, and
tf (bn, B) = 4. Since LCS(an, bn) can include at most one A and two Bs
shared by the sequences, the maximum length of LCS(an, bn) is 3.

The maximum length of LCS(an, bn) is calculated as:∑
t∈T

min(tf (an, t), tf (bn, t))

and we can get maximum similarity

msim(a, b) =

∑
t∈T min(tf (an, t), tf (bn, t))∑
t∈T max(tf (an, t), tf (bn, t))

of each file pair (a, b) using term frequency. T represents the set of terms
appeared in all source files. The value of sim(a, b) equals to msim(a, b)
if all the common tokens appear in the same order in two sequences. If
the order of tokens is different from another sequence, then sim(a, b) is
smaller than msim(a, b). A fomula msim(a, b) ≥ sim(a, b) is always true,
hence we compute sim(a, b) only if msim(a, b) is greater than the similarity
threshold.

2.3.7 Simple Example

Here is a simple example of the algorithm. In this section, we use two
products shown in Figure 2.2. We shorten “Product 1” to P1 and “File A
of Product 1” to P1-A.

File Similarity
We calculate all file pairs among P1 and P2. Table 2.1 shows the
similarity value among those producs.
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Product 1
Product 2

run
jump

red
green

apple
orange

File A File B File C
fly
step

blue
green

apple
orange
lemon

File A File B File C

Figure 2.2: An example input.

Table 2.1: Similarity value among example input

P1-A P1-B P1-C

P2-A 0 0 0

P2-B 0 0.33 0

P2-C 0 0 0.66

Count the Number of Similar File Pairs
When we set the similarity threshold th = 0.5, only (P1-C, P2-C) is
the similar file pair. The cost is N(P1, P2, 0.5) = 1 and Nw(P1, P2, 0.5) =
0.66.

Construction of the Tree
In this example, we have only two products so we just connect them.

Evolution Direction
In the similar file pair (P1-C, P2-C), P2-C has one more token “lemon”
than P1-C and no unique token in P1-C. Please note that P1-B and P2-
B shares some code but those files are “not similar” so the algorithm
does not consider the changes between them.

As a result, ADD(P1, P2) = 1, ADD(P2, P1) = 0 so the evolution
direction is “P1 → P2”.

2.4 Experiment

We have implemented our approach as a tool and conducted an experiment.
The goal of the experiment is to evaluate how accurately the Product Evo-
lution Tree recovers the actual evolution history. We have used similarity
threshold th = 0.9 in this experiment, which is experimentally determined.

14



2.4.1 Datasets

We have prepared nine datasets using open source projects, six of them are
implemented in C and the other three of them are implemented in Java.

PostgreSQL [50]. It is a database management system. In the evo-
lution history of PostgreSQL, each major version was released from the
master branch after developing beta and RC releases. After a major ver-
sion had been released, a STABLE branch was created for minor releases
and the master branch was used for developing the next beta version. While
each release archive contains a large amount of files, we used only source
files under “src” directory in this experiment.

The evolution history of PostgreSQL is simple and well-formed so we
select four datasets from PostgreSQL to evaluate some kind of situation.

Dataset 1: Pgsql-major is a dataset whose evolution history is straight,
i.e., it has no project forks. Dataset 2: Pgsql8-all is a dataset whose
evolution history is a tree of a single project with a large number of variants.
Dataset 3: Pgsql8-latest is a dataset that includes only recent products. If a
product family has a long history, older products may be no longer available
for developers. Dataset 4: Pgsql8-annually is another dataset that a full
collection of products is not available. Dataset 4 contains releases which
have been released around September from 2005 to 2012.

FFmpeg and Libav. They are libraries and related programs for
processing multimedia data. Libav is forked from FFmpeg and is developed
by a group of FFmpeg developers. They are independently developed, but
similar changes have been applied to both products.

Dataset 5: FFmpeg is a dataset whose project has been forked to two
projects. This dataset is created to evaluate whether our approach can
recover the evolution history of forked projects or not.

4.4BSD, FreeBSD, NetBSD and OpenBSD. These operating sys-
tems are derived from BSD, but they are now independent projects. Figure
2.4a shows a part of the family-tree for the versions selected for our dataset.
According to the tree, NetBSD-1.0 is not only derived from NetBSD-0.9
but also from 4.4BSD Lite. FreeBSD-2.0 is also based on 4.4BSD Lite.
OpenBSD is the forked project of NetBSD. 4.4BSD Lite2 affects other BSD
operating systems. For each version, we used source files under “src/sys”
directory.

Dataset 6: BSD is a dataset whose project has been forked to more than
three projects. The evolution history is the most complex in our datasets
and there are releases created by merging source code from more than one
product. Since our approach extracts only a tree, our approach must miss
such merged edges.

Groovy [19]. This is an agile and dynamic language for Java Virtual
Machine. In the evolution history of Groovy, each release has own branch.
Since they all branched just before the release and there are no changes in
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source files comparing with original branch, we can say that the evolution
history of Groovy is very similar to that of PostgreSQL. We used only
source files under “src” directory.

Dataset 7: Groovy is a small dataset of Java application. In the VCS,
each release has branched from the main branch, but it has completely
same source code so we did not consider such small branches.

Hibernate [22]. This is an object relationship mapping library for
Java. This evolution history is also similar to PostgreSQL and Groovy.
Each major version is developed on their own branches. We used only
source files under “hibernate-core” directory.

Dataset 8: hibernate is a large dataset of Java application. This dataset
contains 3 branches and 61 versions. Some of them has special version
names like “4.2.7SP” and they makes the evolution history bit complex.

OpenJDK [47]. This is an open-source implementation of Java. The
OpenJDK project firstly released OpenJDK7, and implement OpenJDK6
from it. We analyze files under “src/share/classes” directory.

Dataset 9: OpenJDK6 is a dataset which represents unusual evolution
history. This dataset contains initial OpenJDK6 (the copy of OpenJDK7)
and its children. The product starts with OpenJDK7 and modified to im-
plement “old” Java6 standard. So this dataset considered not to follow the
standard evolution; implementing new and rich features into later version.

2.4.2 Results Overview

The correctness of the edges and labels is shown in Table 2.2 and Table 2.3.
Column “#” denotes the dataset number. Column “H. (History)” denotes
the number of edges in the evolution history and “O. (Output)” denotes
number of edges in the Product Evolution Tree. Column “Matched Edges”
shows how many edges are matched with the actual history without con-
sidering direction. In other words, we only checked the shape of the tree.
Column “Matched Labels” shows how many correct edges have correct di-
rection. Column “Recall” indicates the proportion of correctly identified
edges to edges in an actual evolution history.

We did not calculate precision in this experiment, since the precision
is higher than or the same as the recall. This is because the number of
edges in the Product Evolution Tree is the same as or less than the number
of edges in the actual evolution history. If the dataset which consist of N
products does not contain the loop, the number of edges in the dataset is
N − 1 and the number of edges in our tree is also N − 1. So the number of
false positive edges is always the same number of false negative edges and
the precision is the same value as the recall. Only the Dataset 6 contains
the loop so the number of false positive edges is smaller than the number
of false negative edges and the precision is smaller than the recall.
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Table 2.2: Result with N

# H. O. Matched Edges / Labels Recall

1 13 13 13 (100%) 13 (100%) 100%
2 143 143 106 (74.1%) 104 (98.1%) 72.7%
3 37 37 24 (64.9%) 24 (100%) 64.9%
4 24 24 20 (83.3%) 20 (100%) 83.3%
5 15 15 1 (6.7%) 1 (100%) 6.7%
6 17 15 11 (64.7%) 11 (100%) 64.7%
7 36 36 28 (77.8%) 22 (78.6%) 61.1%
8 61 61 51 (83.6%) 44 (86.2%) 72.1%
9 15 15 8 (53.3%) 5 (62.5%) 33.3%

Table 2.3: Result with Nw

# H. O. Matched Edges / Labels Recall

1 13 13 13 (100%) 13 (100%) 100%
2 143 143 137 (95.8%) 132 (96.4%) 92.3%
3 37 37 30 (81.1%) 30 (100%) 81.1%
4 24 24 20 (83.3%) 20 (100%) 83.3%
5 15 15 14 (93.3%) 14 (100%) 93.3%
6 17 15 11 (64.7%) 11 (100%) 64.7%
7 36 36 30 (83.3%) 24 (80.0%) 66.7%
8 61 61 53 (86.9%) 46 (86.8%) 75.4%
9 15 15 13 (86.7%) 7 (53.8%) 46.7%

Comparing the result with N and Nw , Nw performed better and
Dataset 5 is a case that weighted function has worked most effectively.
When the project forks, it has already been in the maintenance phase and
few changes are adopted to the forked releases. As a result, all file pairs
exceeds the similarity threshold 0.9 and the number of similar files between
any two of the dataset are the same value (N = 618) so almost all edges
showed wrong evolution. Using weighted function Nw , we can reflect the
effect of small changes and the tree well approximates the evolution history
so we discuss the result with Nw below.

2.4.3 Patterns of Incorrect Edges

Even though our approach connects most likely similar products, some
edges are mismatched with the actual evolution history. To analyze mis-
matches, we have categorized incorrect edges in Product Evolution Trees
into 5 patterns as follows. In Figure 2.3, each left graph shows an actual
evolution history and each right graph shows an extracted Product Evolu-
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               or          

(c) P4: Missing Branch/Merge

Figure 2.3: Patterns of incorrect edges

tion Tree. Thin edges are the connections that exist in the actual history.
Thick, dashed edges are extracted by our approach, but they do not exist
in the actual history.

P1: Version Skip. This pattern is found in three successive versions;
two edges v1 to v3 and v2 to v3 are detected instead of a path from v1 to v3
via v2. Figure 2.3a shows an example. This pattern happens when v2 and
v3 have the same Nw value from v1 or the Nw between v1 and v3 is large.
In addition, we classify edges into this category only when the edge skips
one version. If the edge skips two or more versions, it classified into P5:
Out of Place.

In Dataset 9 for example, tags “b13” and “b15” are connected in the
tree and “b14” is skipped. One developer said in his blog that “b15” is
tagged just for mark as switching VCS to mercurial. There are no differ-
ence in any files between “b14” and “b15” so that Nw(b13, b14, 0.9) and
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Nw(b13, b15, 0.9) are the same value.

P2: Misalignment of Branch. An edge connects two branches but
does not connect actually branched products. In Figure 2.3b, there are
two branches A and B. While B1 was actually forked from A1, the origin
of branch B was recognized as A2. In this pattern, A2 actually has more
similar files, comparing with B1 than A1.

In Dataset 2, almost all edges connecting branches are not matched.
We found that this is because branched products share the same changes.
For example, 8.2BETA1 is developed on the master branch as the next
version of 8.1.0, but extracted tree says this is the next version of 8.1.5.
We examined git repository and found that version 8.1.5 is released right
after 8.2BETA1. The master branch developing 8.2BETA1 and STABLE
branch for 8.1 received 225 commits that are submitted on the same date
with the same log message, but there are only 28 commits unique to the
master branch. This fact also means that the actual evolution history does
not always show functional differences of products.

P3: Misdirection. An edge connects accurate products, but its label
shows the reverse direction. It happens when the size of source code or the
number of source files decreased by several activities such as refactoring
and deletion of dead code. In the other case, if two versions have the same
source files, our approach cannot define the evolution direction.

Many of this pattern show reversed direction, but other edges around
thems show accurate direction, so it is easy to recognize that those edges
connects exact products but the direction is reversed. In the case of
Dataset 8, two of misdirection patterns, 4.1.2–4.1.2.Final and 4.3.3Final–
4.3.4Final, have no direction. A comment in VCS says that there are no
changes but the developer tagged them again.

P4: Missing Branch/Merge. Our Product Evolution Tree cannot
detect a branch or a merge of two products derived from a single product.
In Figure 2.3c, we can see that the Product Evolution Tree misses branching
from version A1 to version A2 and B1 or merging from version B2 to A4.
In this pattern, one edge is missing but no wrong edges are output. If an
actual evolution history includes a merge (e.g. Dataset 6), 100% recall is
not achievable.

This pattern appears in Dataset 6. Figure 2.4a shows the family-tree
and Figure 2.4b output of our approach. The Product Evolution Tree
included a merge relationship for NetBSD-1.0. It is the next release of
NetBSD-0.9 and includs many source files from 4.4-BSD Lite. On the
other hand, an edge from 4.4BSD Lite2 to FreeBSD-3.0 is not detected be-
cause the Product Evolution Tree does not allow closed paths. In addition,
Nw(4.4BSD Lite 2, FreeBSD-3.0, 0.9) = 40 indicated that all except for
40 files are different between two versions. The relationship from 4.4BSD
Lite2 to FreeBSD-3.0 in the family tree may not be captured by the source
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(a) A family-tree of Dataset 6.
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OpenBSD-2.0
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(b) A Product Evolution Tree of Dataset 6.

Figure 2.4: BSD Family Tree

Table 2.4: Release date of BSD family.

BSD date

NetBSD 1.2 1996-10-04
OpenBSD 2.0 1996-10-18
OpenBSD 2.1 1997-06-01
NetBSD 1.3 1998-01-04

code difference.

P5: Out of Place. This pattern is a falsely detected edge which is
not classified into previous patterns. There are no relationship between the
wrong edge and the actual history.

2.4.4 Discussion

The result shows that 65% to 100% of edges without labels and 47% to
100% of edges with labels are consistent with the actual evolution history.

From the shape of the Product Evolution Tree, developers can learn
where the starting point of the evolution is and where they branched. Al-
most all of the latest products of each branch are represented as leaf nodes,
except Dataset 6. Value of the function Nw also provides hints to under-
stand an evolution history. If a vertex has three edges and one of them has
a small number of similar files, it may indicate branching and others may
indicate the mainline.

Take a look at Figure 2.4b, FreeBSD-2.0, NetBSD-1.0, and NetBSD-
1.2 will get attention because they have more than two edges. Leaf nodes
4.4BSD Lite, 4.4BSDLite2, FreeBSD-3.0, NetBSD-0.8, NetBSD-1.3, and
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Table 2.5: Incorrect edge patterns with Nw

Dataset P1 P2 P3 P4 P5 Total

1 0

2 4 5 2 11

3 5 2 7

4 4 4

5 1 1

6 2 4 2 8

7 1 5 6 12

8 4 3 7 1 15

9 2 6 8

NetBSD-1.2.1 also seem important. The tree suggests that OpenBSD-2.1
is not a characteristic release. It is hard to find out that they are important
releases in this dataset.

If the time had passed from previous releases, they would apply the
same changes. In Dateset 6 for example, OpenBSD Project is forked from
NetBSD 1.1 but its first official release is in October 1996. NetBSD 1.2
is released just before OpenBSD 2.0 was released so we can imagine that
there are same changes in NetBSD and OpenBSD. The same things can be
said in OpenBSD 2.1 and NetBSD 1.3, showed in Table 2.4.

Major error P3 is a counterexample for our hypothesis that “source code
is likely added”. One reason is that refactoring such as class splitting and
merging have been applied. Techniques for detecting refactoring [59] may
be helpful to remove incorrect labels caused by this reason. Another reason
is non-essential changes [31] such as deleting dead code affect a large number
of lines of code, while they are less important than other modification tasks
such as feature enhancement. We can conjecture some cases that source
code is decreased, but P3 was at most 17% (6 of 36 in Dataset 7) of extracted
edges in our experiment. Hence, our method for determining the direction
still worked effectively. We did not use release dates since they are not
always available, but if release dates are available, all evolution direction
would be correctly extracted if edges connect successive products.

Releases with no changes invoke error pattern P1 and P3. Developers
easily notice this is an error, since it is hard to think that some files are
fixed but total amount of deleted and added code are the same amount.

The optimization reduces the execution time greatly. Dataset 1 for
example, we need 10 minutes for analysis using optimization. On the other
hand, without optimization, our tool runs over an hour for analyzing first
four products.
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(c) Detail of the tree around “latest.”

Figure 2.5: A case study with Linux kernel and two variants.

2.5 Case Study

The result of experiment shows that our method well approximates an
evolution history of software product from their source code with high
precision. In the case study, we simulate the situation that finding out the
origin of the variants. We continued using similarity threshold th = 0.9.

The target is the Linux kernel [39] and two of their variants. One
variant is in the kernel repository, labeled “latest”, and another variant is
kernel files from F-05D Android smartphone [13]. We analyze those two
variants with releases of the Linux kernel and check the result with the
version number denoted in the Makefile.

Figure 2.5a shows the overview of the Product Evolution Tree and Fig-
ure 2.5b and Figure 2.5c shows the detail of the tree around target variants.
Those figures show that the F-05D kernel was branched from 2.6.35.7 and
latest tag is attached just before 2.6.39 is released. We can see that those
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two variants have different history. F-05D kernel was branched and they
have had some changes. “latest” tag is assigned for development of 2.6.39
but there are still some changes before 2.6.39 is released.

This result matches the version number denoted in the Makefile and its
product history. Makefile of F-05D says that this is 2.6.25.7, and “latest”
is tagged between 2.6.39-RC7 and 2.6.39 in the repository. The result of
the case study shows that our approach is useful for detecting origin of the
variants. With the Product Evolution Tree, we can see that which product
is the origin and whether the product is branched or not.

2.6 Threats to Validity

Targets of our experiment are restricted in the OSS with version control
system and they have reliable their evolution history. In other words, those
projects are considered well maintained. However, our Product Evolution
Tree well reflects the development history compared with actual history in
some cases. For example, branched timing in the tree follows functional
changes in Dataset 2, and we could find completely same versions with
different tags in Dataset 7, 8, and 9.

We have used a single threshold 0.9 in the case study, which is deter-
mined by a small preliminary experiment. While it works for 9 datasets, a
different threshold may be better for a different dataset.

2.7 Conclusions

To help developers understand the evolution history of products, we pro-
posed a method to extract an approximation of the evolution history from
source code. It is defined as a tree that connects most similar file pairs.
Specifically, we count the number of similar files with Longest Common
Subsequence based source similarity and we construct a spanning tree of
complete graph which connects all input products.

As a result, 47% to 100% of edges are correctly recovered. We can
identify branches and the latest versions of products using our approach,
even if the result included incorrect edges. Our methodology and techniques
used are simple, but shows promising result in experiments.
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Chapter 3

Semi-automatically
Extracting Features from
Source Code of Android
Applications

3.1 Introduction

Android is one of the most popular platforms for mobile phones and tablets.
A user can search and choose from more than 600,000 Android applications
in Google Play [2]. Because there are so many choices, however, selecting
an appropriate application is not a trivial task. For example, in November
2012, at least 1,000 applications could be found when searching with the
keyword “calculator” on Google Play.

A simple but important criterion for selection of an application is the set
of features it provides. Investigating the features by trying each application,
however, is time consuming. Although documentation is an important
source of information, many applications are less than adequate in this
area.

MUDABlue [30] and LACT [58] are the solutions that enable users
to focus on a set of similar applications. These approaches automatically
categorize applications with similar features based on characteristics of the
source code. While they can extract a set of similar applications, they
cannot show a list of the features provided by the applications in a specific
category.

Software developers construct an application by combining several fea-
tures. Developers often make software for a specific platform. When the
target platform provides a high level API, developers implement features
by combining several API calls. In such a platform, API calls explain the
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feature of the application. While a single API call sometimes directly cor-
respond to a single feature, a sequence of API calls corresponds to a single
feature in most cases.

In this chapter, we propose a semi-automatic approach to extracting
features from Android applications. The premise of our proposed solution
is that a feature can be associated with a particular sequence of API calls.
API calls are used to control GUI components, network connections, and
hardware devices such as a camera, GPS, or touch screen. Although soft-
ware developers can use arbitrary sequences of API calls, we hypothesize
that a popular feature of an application is likely to be implemented by the
same sequence of API calls, since similar applications use the same set of
APIs [43, 42]. In our proposed solution, therefore, we automatically extract
common sequences of API calls in two or more applications, and manually
associate each of these with a feature name. We use the associations as
a knowledge-base. We then automatically extract API calls from other
target applications and, using our knowledge-base, output feature names
that are associated with the API calls. As a case study, we have built a
knowledge-base from 6 applications and extracted features from other 5
applications. The result shows that our approach is promising to extract
features of applications and show important differences among applications.

3.2 Associating API Calls with Feature Names

The objective of our study is to extract a list of features from multiple
applications and build a knowledge-base. A user can then more easily
compare the features of two or more applications. Our approach has two
phases: build a knowledge-base from a set of applications, and, using the
knowledge-base, extract and list the features from another set of applica-
tions.

Our knowledge-base is defined as a set of associations 〈S, f〉, where S is
a sequence of API calls and f is a feature name. We build a knowledge-base
using the following three steps. Figure 3.1 shows an overview.

Step 1: Extraction of sequences of API calls
We translate each application into a set of sequences of API calls. As
Android applications are written in Java, we extract a sequence of
Android API calls from each method of the application. A method
call is identified by its name and the receiver type declared in the
source code. We recognize an Android API as any method call whose
fully qualified class names start with “android.” or “com.google.
android.”. Figure 3.2 shows an example of a sequence of API calls
extracted from a method in an application. API calls in a sequence
are sorted by line number. If two or more API calls are involved in
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Figure 3.1: Building a knowledge-base

a single line, they are sorted in alphabetical order. As a result, N
applications are translated into sets Apps = {A1, · · · , AN}, where Ai

is a set of sequences of API calls extracted from the i-th application.

Step 2: Picking up common sequences
We extract common sequences of API calls involved in at least two
applications as candidates for features. We compute a set of common
sequences as follows:

C =
⋃

Ai,Aj∈Apps,i 6=j

{LCS(s, t)|s ∈ Ai, t ∈ Aj}

where LCS(s, t) is the longest common subsequence of two sequences
s and t. We exclude sequences that consist of only a single API call
from C. We denote the resultant set by CommonAPI.

Step 3: Construction of a knowledge-base
We manually associate each sequence S in CommonAPI with a fea-
ture name, f , and store the association 〈S, f〉 in a knowledge-base. A
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public void onClick(View v) {

String s = str.substring(2);

Intent intent=new Intent(this,com.example.edit.class);

startActivity(intent);

｝

android.content.Intent.<init>

android.app.Activity.startActivity

Source Code

API Calling 

Sequence

1

1

2

2

Figure 3.2: Extracting sequences of API calls

feature name can be associated with a sequence if the sequence con-
trols a particular device or system component, because application
features are often characterized by devices and components used by
the application.

We use the knowledge-base to translate API calls in a target application
into feature names. If an application involves a sequence S′, including a
subsequence S, matching an association 〈S, f〉 in the knowledge base, we
output f as a feature of the application.

3.3 Case Study

We conducted a case study to evaluate whether our approach could extract
the features of applications. We collected 11 applications labeled “Map”
in Google Code as shown in Table 3.1. We built a knowledge-base from
six applications (KB1-KB6) and then used it to extract features from the
remaining applications (T1-T5).

We extracted 156 common API calling sequences from the six applica-
tions. I manually checked them and could associate names with 23 out of
the 156 sequences. Table 3.2 shows an example of the sequences and their
feature names. The feature names simply describe what components are
controlled by the API sequences. In this example, “Alert dialog,” “Sub-
menu,” and “Show Toast (pop-up message)” are related to the user inter-
face, while “Get Location” and “Set Location” are related to map features.
Using the knowledge-base, we then extracted a list of features for each
application (T1-T5). Table 3.3 shows the features found in the target ap-
plications. From these results, without using the applications, we could
observe that T1 and T5 can specify a location on a map and that T2 is
probably not a map viewer.

It should be noted, as we hypothesized, that 18 of the 23 identified API
calling sequences are involved in at least one target application. This result
is promising because it indicates that a small knowledge-base could cover
the popular features of many applications in the same category.
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Features found by the tool are considered that the application actually
has, but features which are not reported are not always considered that the
application doesn’t have. API calls which are not registered in a knowledge-
base are not found by the tool, so existing features may not be detected if
the knowledge-base contains not enough data.

3.4 Related Works

While the proposed method focused on extraction of the features of soft-
ware, some researches and tools trying to compare the target software.

If source code of the applications is available, comparing them is a one
of the solution to compare the features of the applications. UNIX diff[45] is
a simple way to compare source code. Unix diff shows only lines which have
been changed, and Semantic Diff[26] shows changed lines and its effects on
dependence relation between variables. Users can know differences between
two versions of software, but these text-based comparisons might extract
the whole source code as diff if their design is different even though they
use the same programming language.

Grechanik et al. proposed a tool Exampler [18], for finding highly rele-
vant software projects from large archives of applications. Exampler create
API dictionary from help pages and provide a search engine for finding rel-
evant applications. While my approach did not used the documents even
building a knowledge-base, using a well-written documents would be useful
instead of naming API calls.

Another use of API calls is application porting from source platform to
a target platform. Gokhale et al. proposed a method to map APIs between
different platforms [17]. They also use an idea that features are related to
API calls. Their tool Rosetta get traces of similar applications for different
platforms, then the tool identifies API calls with a similar feature. Since
their comparison target is applications on different platforms, they consider
the call position, call context, edit distance of the method names and so
on, while our approach use a simple call sequence only since we compared
applications using similar API set.

3.5 Conclusion

We proposed an approach to extracting features from an Android applica-
tion using a knowledge-base built from source code of applications. The
results of a case study showed that our approach could extract features
from an application and list them in terms of devices and components used
by the applications. Although our approach is promising, we were unable
to represent the usage or purpose of the components. We also could not
recognize features implemented by general-purpose GUI components. To
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resolve this problem, we intend to enhance our approach using information
about data names and types used in applications. In addition, we would
like to use our approach to understand the variability of software product
lines in our future work.
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Table 3.1: Applications used in the case study

ID Application name LOC #API calls

KB1 OpenGPSTracker 8122 1099

KB2 mapsforge 37326 1407

KB3 OSMandroid 3150 175

KB4 TripComputer 14487 825

KB5 shareyourdrive 2761 346

KB6 savage-router 1041 66

T1 MapDroid 6387 1160

T2 cycroid 1278 761

T3 yozi 5348 159

T4 maps-minus 1785 218

T5 BigPlanetTw 4139 432

Table 3.2: Example of sequence of API calls

Feature name Sequence of API calls

Alert dialog
android.app.AlertDialog.Builder.<init>
android.app.AlertDialog.Builder.setTitle

Get Location
android.location.Location.getLatitude
android.location.Location.getLongitude

Show toast
(pop-up message)

android.widget.Toast.makeText
android.widget.Toast.show

Set Location
android.location.Location.setLatitude
android.location.Location.setLongitude

Submenu
android.view.Menu.addSubMenu
android.view.SubMenu.setIcon

Table 3.3: Features identified in five applications

ID T1 T2 T3 T4 T5

Alert Dialog 3 3 3 3 3

Get Location 3 3 3 3

Show Toast (pop-up message) 3 3 3 3

Set Location 3 3

Submenu 3
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Chapter 4

Measuring Copying of Java
Archives

4.1 Introduction

Reusing software components reduces time and cost when constructing new
software, and copying the whole of a library into the software development
project is one of the major types of reuse. Heinmann et al. showed that
software reuse is common among open source Java projects and the black-
box is the predominant form of reuse [20].

In the case of Java, library archive files often contain their dependent
libraries. One reason is that developers want to use specific versions of
libraries that might be considered reliable.

Once black-box reuse method has been done, it might not be known
which version of which library is included in the library archive file. Davis
et al. pointed out that the provenance of included components is not clearly
stated and they proposed a method to determine the provenance of source
code contained within Java archives [10].

However, there is a possibility that developers are also copying dupli-
cated libraries in the reused libraries without knowing that. When devel-
opers copy some libraries into their project, they may also unconsciously
copy the same version of the library they already have or copy different
versions of the library.

Developers might not be aware of inside of the library. If some libraries
have a vulnerability then developers will update it to the latest versions,
but developers hardly take care of the nested libraries and old versions of
libraries might be left inside. If duplicated libraries are different versions,
they will contain the classes with the same package name and one of them
will be loaded on the runtime but it is not clear that which versions of
libraries or classes are loaded.

Although library duplication is potentially problematic, there are less
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researches for inside of Java libraries. The mainstream of the software clone
research is for the source code [51] and few researches focuses clones of other
software artifacts. There are some researches for Java archives [5, 54]. They
dealt with a problem that how to compress class files to reduce file size, but
they paid no attention to the duplication of class files or whole of archives.

In this chapter, we performed an experiment to measure copying of jar
archives in the Maven Central Repository, a collection of open source Java
libraries. We set these research questions as a first step of the study of this
type of duplication.

RQ1: How many jar files in a large software repository contain jar files
inside and how many jar files are reused?

RQ2: Does duplication of reused jar files in other jar files really exist? If so,
are those duplicated jar files the same version or different versions?

4.2 Background

Apache Maven [41] is a software project management and comprehension
tool. It automatically downloads dependent Java libraries from Maven
repositories at build time. Maven Central Repository (Maven2) is the
default repository of Apache Maven. Maven2 repository contains many
popular libraries and projects.

Java archive file is the typical format used to distribute Java applica-
tions and libraries. A Jar file contains Java class files and metadata and
resources, and even another jar archive inside.

We define the term “top-level jar file” and “inner jar file” in this paper.
A “top-level jar file” is a jar file found in the Maven2, and therefore, it
corresponds to a component ready to be reused. An “inner jar file” is a
jar file that is included in another jar file, either a “top-level jar file” or an
“inner jar file”.

Figure 4.1 shows an example of a library with nested jar files. A node
corresponds to a jar file. The jar file at the start of the arrow contains the
jar file at the end of the arrow. In this case, the top-level jar file A.jar is
found in the target repository and contains four inner jar files in it; B.jar,
C.jar, E.jar. C.jar contains B.jar which is exactly same file as B.jar under
A.jar. D.jar contains C.jar so B.jar appeared again inside of C.jar. E.jar
contains B-2.jar which is the newer version of B.jar. In Figure 4.1, all jar
files in the right side of A.jar are inner jar file of A.jar. B.jar and C.jar
are duplicated, and there are two versions of B.jar (B.jar and B-2.jar).
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Figure 4.1: Example of nested jar files

4.3 The Experiment

We conducted an experiment to find how many archive files contained du-
plicate archive files inside. We detected two types of duplication of jar files:
the same version of the same library and the different versions of the same
library.

Setup We used a framework for Software Bertillonage proposed by Davis
et al. [10]. The framework extracts metrics of source and archive
files. We use two metrics, the filename and SHA1 hash of the file
contents, to find jar files with exactly the same contents. If the file
is contained in the archive file, SHA1 hash of the parent file is also
extracted so that we can find out the contents of jar file.

Inner Jar Files There are 607,319 top-level jar files in the Maven2 repos-
itory. Removing exactly the same files, with the same file name and
the same hash, we get 599,498 top-level jar files. Checking the con-
tents inside each top-level jar files, we found that 4,747 top-level jar
files contain at least one jar file inside. 1,833 of them contains only
one jar file and the largest one has 282 jar files in it, 13.1 on average
and median was 2. We also found that 118,361 different inner jar files
are contained in other jar files and 89,054 of them are found in the
Maven2 repository as a top-level jar file. This means that most inner
jar files are reused directly from the Maven2 repository.

Detecting Duplication To find the two types of duplication inside jar
files, we checked inner jar files using the following method:

First, we identify duplication of the same version of the libraries. If
two jar files have the same file name and the same file hash, this means
that they have exactly the same contents so they are considered as
duplicated and they are the same version. We did not care about the
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Path: /maven/org/geoserver/web/1.4.0-RC3/

web-1.4.0-RC3.jar web

Path: /maven/org/apache/archiva/archiva/1.1/

archiva-1.1-src.jar archiva-src

Detected
Library
Name

Figure 4.2: Example of how the jar filename was use to identify the name
of the library

Table 4.1: Analysis result for A.jar in Figure 4.1

Step File list

Unique inner jar file B, C, D, E, B-2

Unique inner jar file without version names B, C, D, E

nest level of jar file. In Figure 4.1, three B.jar are all different nest
level counting from A.jar, but it does not affect the analysis.

Second, we identify duplication of different versions of the libraries.
To detect different versions of the same library, we remove the ver-
sion information from the jar file name. Version names are not only
restricted in the number but also some strings such as “RC” and
“SNAPSHOT”. We found that many libraries are also found in the
Maven2 repository so we use the jar path name in Maven2 to identify
its version. In the Maven2, most projects have their own directory,
and a subdirectory for each version. We regard the directory name
as the version name of the library and remove it from file name of
the library. We also remove a leading hyphen or underscore with the
version name. Figure 4.2 shows two examples. This step is skipped
if the library is not found in the Maven2 repository since we cannot
get the version name from the directory name.

Table 4.1 shows the example result of analysis for Figure 4.1. In
the example Figure 4.1, B.jar appears three times and C.jar appears
twice. In this case B.jar and B-2.jar have the same library name so
they are determined as different versions of the library B.

Table 4.2 shows the results of the experiment. We count the number of
libraries in two ways; counting number of jar files and counting number of
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Table 4.2: Duplication of inner jar files

Contains Duplication Type Total
inner jar Same Different Both duplication

#files 4,747 105 394 30 469

#projects 886 39 49 14 73

Table 4.3: List of inner jar files of nexus-app-1.7.1-tests.jar

antlr-2.7.6 (7) nexus-3148-1.0.20100111.064938-1
antlr-2.7.7 (5) nexus-3148-1.0.20100111.065026-2
log4j-1.2.12 (5) nexus-indexer-1.0-beta-3-20010711.162119-2
log4j-1.2.13 (5) nexus-indexer-1.0-beta-3-SNAPSHOT
log4j-1.2.13-sources (5) nexus-indexer-1.0-beta-4
log4j-1.2.14 (5) nexus-indexer-1.0-beta-4-SNAPSHOT
log4j-1.2.14-sources (5) nexus-indexer-1.0-beta-4-SNAPSHOT-cli
log4j-1.2.15 (3) nexus-indexer-1.0-beta-4-SNAPSHOT-jdk14
log4j-1.2.8 (7) nexus-indexer-1.0-beta-4-SNAPSHOT-sources
log4j-1.2.9 (7) nexus-indexer-1.0-beta-5-20080711.162119-2

nexus-indexer-1.0-beta-5-20080718.231118-50
nexus-indexer-1.0-beta-5-20080730.002543-149
nexus-indexer-1.0-beta-5-20080731.150252-163
nonuniquesnap-1.1-SNAPSHOT
plexus-plugin-manager-1.0-20081125.071530-1
sonatype-test-evict 1.4 mail-1.0-SNAPSHOT
very.very.long.project.id-1.0.0-20070807.081844-1
very.very.long.project.id-1.1-20070807.081844-1

(n) represents the number of files

projects used disregarding their version as described as Step 3.

In total, 469 jar files contain duplicate libraries inside, about 10% of
the top-level jar files that contains inner jar files. Counting the number of
projects, the result also shows that about 8% of maven projects contain
inner jar files that have duplicated libraries in them.

We found both types of duplication in the Maven2 repository: 394 jar
files contain the same version of the same library and 105 jar files contain
the different versions of the same library. We also found that 30 files have
both types of duplication.

Some jar files which have duplication of different versions of the archive
files have “test” in their file name. The inner jar files of nexus-app-1.7.1-
tests.jar, listed in Table 4.3, it contains 28 different inner jar files, including
six different versions of log4j library. In total there are 32 inner jar files
named log4j inside nexus-app-1.7.1-tests.jar and each versions of log4j ap-
peared 3 to 7 times.
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4.3.1 Revisiting Research Questions

RQ1 How many jar files in a large software repository contain jar files
inside and how many jar files are reused?

In the Maven2 repository, there are 4,747 of 599,498 jar files that
contain inner jar files. The number of inner jar files is at least one
and at most 282 files, 13.1 on average and median was 2. From the
point of view of reuse, 89,054 of top-level jar files in the Maven2
repository also appeared as inner jar files.

RQ2 Does duplication of reused jar files in other jar files really exist? If so,
are those duplicated jar files the same version or different versions?

Yes, 10% of jar files which have inner jar files contains duplicated
jar files. We can say that the duplication in libraries are not an
unusual problem. Both type of duplication are found in the Maven2
repository.

4.4 Conclusion and Future Work

Developers reuse existing libraries by copying them into the software devel-
opment project and this style reuse reduces time and cost on constructing
new software. On the other hand, there is a possibility that developers are
also copying duplicated libraries in the reused libraries without knowing
that.

The result of our experiment indicates that the duplication of archive
files in a single archive file is not frequent, but it exists. And furthermore,
we must remember that many archive files are copied into others so that
further duplication can occur. Concretely, we found that about 5,000 jar
files in the Maven2 repository contain other jar files in them and about
470 of them contains duplicate libraries, some of them are the same version
and some of them are different versions. We also found that about 14% of
top-level jar files in the Maven2 repository are copied into other top-level
jar files.

Based on this result, we are planning to perform further studies. We
found duplication of jar files but did not check all contents of them, and
finding out which duplicated archive is most frequently reused is our future
work. In addition, we should also analyze other types of archive files. We
only used jar archives but the Maven2 repository has .zip, .tar.gz, .war, .ear
formats of archives and these are not limited in binary archives but also
source archives.

Another interesting fact is that there are some inner jar files and some
duplications even though Apache Maven has a system to download needed
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jar files at built time. We want to investigate whether it is possible to
remove the duplication.
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Chapter 5

Comparing Frequency of
Identifier Definition in C
and Java APIs

5.1 Introduction

Identifiers in the source code are one of the important elements for source
code analysis. Identifiers have been used for different purposes. For in-
stance, work by Subramanian et al. [56] showed that developers can rec-
ognize which library a code snippet is using, and can locate where is the
official API document. Their iterative approach determines the fully qual-
ified names of code elements from a code snippet, using identifier names,
return types, arguments and so on from the partial code.

Java implements the object-oriented programming style where methods
and fields have different namespace containments. Identical identifiers are
distinguished by their fully qualified names, usually as a concatenation of
the higher package and class name (i.e., java.io.BufferedReader.close
and java.io.BufferedWriter.close

with the same close method name). For this reason, existing work de-
scribes that they need syntax-tree based analysis to determine identifiers
in the code snippet rather than token-based analysis. On the other hand,
the C programming language has only one public namespace that includes
both global function names and global variable names.

In this chapter, we conducted a large analysis of C and Java libraries and
investigated the frequency of public identifier definitions. We found that
they have different tendency on definition, C identifier names are rarely
duplicate comparing to Java ones.
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5.2 Background

This section describes the well-known behavior of public identifiers and
show related works on usage of identifiers in software engineering.

5.2.1 Public Identifiers

Identifiers are code element references (i.e., variables, methods, classes and
packages) which are defined at different containment levels. A public identi-
fier is visible from outside the scope of its containment (i.e., public methods,
classes or global variables). Visibility enables the outside to access specific
classes, variables or methods. We define a public identifier to be unique
if it is defined only in a single software package. A software package is a
component, library or application that can be independently downloaded
and (re)used.

Public Identifiers in C
The C programming language has only one public namespace that
includes both global function names and global variable names. This
is one of the reasons that identifiers that start with ‘ ’ (underscore) are
considered reserved and not to be used by programmers (see Section
7.1.3 of the 1999 C ISO Standard [6]). A good programming practice
in C is to designate non-public identifiers as static (which makes it
file scope only—not to be confused with Java’s static keyword). Any
other global function or variable is considered to be public. In some
operating systems, most notably Windows, the public identifiers of a
library (DLL) should be documented explicitly using a .def file [44].

This flat space has prompted some projects to issue guidelines to in-
crease readability of their code. For example, the WXwidgets project
states that “The prefix wx must be used for all public classes, func-
tions, constants and macros, no exceptions” [60].

Public Identifiers in Java
According to the ISO Standard 3166 and Code Conventions for the
Java TM Programming Language (April 20, 1999) [27], Java stresses
the use of easy-to-understand names to provide hints on the function-
ality. According to the conventions, strict rules regarding the prefix
and case-sensitivity exist. An example is that the prefix of a unique
package name is always written in lower case, while interface names
should be capitalized. Also, the use of white space or reserved words
is not recommended. Using verbs in camel case are common conven-
tions for a method name (i.e., closeFile). Constants are encouraged
to be named in uppercase with underscores. Most organizations re-
flect their internal conventions or structure in the package naming
(i.e., com.apple.quicktime.v2 or edu.cmu.cs.bovik.cheese).
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Java implements the object-oriented programming style. Methods
and fields have different namespace containments. Identical identi-
fiers are distinguished by their fully qualified names, usually as a
concatenation of the higher package and class name (i.e., java.io
.BufferedReader.close and java.io.BufferedWriter.close with
the same close method name).

5.2.2 Identifiers Used in Software Engineering

Identifier names are widely used in software engineering. Lawrie et al.
studied the role of identifiers in program comprehension [37], which shows
that better comprehension is achieved with full word identifiers rather than
single letters or abbreviations. Abebe et al. defined lexicon bad smells, such
as inconsistent identifier use or odd grammatical structure [1]. Arnaoudova
et al. defined anti-patterns for identifier naming, inconsistencies between
method or attribute naming conventions, documentation, and signatures
[3]. Both Abebe and Arnaoudova implemented a detector for bad naming.

Subramanian et al. [56] proposed a method of linking source code snip-
pets to the API documentation. They analyzed code snippets on Stack
Overflow written in Java and JavaScript and showed that their method can
link API elements in the snippet to the documentation with high precision.
They used an oracle, the Maven repository for Java and seven libraries in-
cluding the core JavaScript API for JavaScript. A platform proposed by
Inozemtseva et al. uses links between code elements and resources such
as documentation and show the link via a web browser or an IDE [25].
They dealt with small code snippets or identifiers in natural text. While
such small code has limited description, their method can detect APIs code
elements using.

On the other hand, a study by Dagenais and Robillard describe con-
trasting results when linking code elements with corresponding learning
resources such as API documentation. They reported that simple mechan-
ical matching between the relevant code methods without context of the
learning resource would fail. The study found that 89% of all unqualified
Java methods were declared on an average in 13.5 different types [9], mak-
ing it difficult to understand code. The study looked at four Java open
source systems. A study on the naturalness of software by Hindle et al.
[23] suggests that the token frequencies in the source code are very skewed.

5.3 Experiment Design

The purpose of this experiment is to reveal difference of identifier definition
in C and Java libraries. We extract identifier definitions from large software
sets and compare them.
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For the target of the experiment, we used two large software sets. We
selected C libraries from Debian 7.5.0 packages. For Java we analyzed
libraries from the Maven central repository, the default repository for soft-
ware project management and comprehension tool Maven.

For Java we analyzed libraries from the Maven repository. Apache
Maven [41] is a software project management and comprehension tool that
automatically downloads dependent Java libraries from repositories at build
time. Maven repository is the default repository of Apache Maven and it
contains many popular libraries and projects. The set of library files are
provided by the existing research [10]. We consider each binary jar file as
a different library.

Our method consists of the following four generic steps.

Step 1) Collect library files from repository
For Debian, library files were distinguished as 1.) files that resided
in the following folders /lib, /usr/lib, and /usr/lib64. 2.) files
with extensions of.o, .so or .a. In the case of Maven, we consider
that any package is a library; therefore we use all the class files in
every jar file.

Step 2) Extract identifier definitions
We extract identifier definitions from the library files. During extrac-
tion, we also record the types of identifiers such as function declara-
tion or method definition.

For library files from Debian, we ran the readelf Linux command
for each library files to extract identifier definitions. We extracted
the identifier type and identifier name from the output of readelf

command. We analyzed Java libraries using the javap and extract
identifier definitions for each library. In this step, we removed package
name from definitions. From the analysis result of previous chapter,
we understood that there exists much duplication of Java libraries
(i.e, different versions of a library being used in one system) in the
repository. We identified and ignored these instances.

Step 3) Filter out irrelevant identifiers
We filter out unrelated identifiers from the extracted identifier def-
initions. In the case of Debian libraries, some library files are not
written in C (e.g., C++). We search for source package of library
and extract identifiers defined in source files whose extension is .c,
then we took the intersection of identifiers from the library files and
from source files. In the Maven repository, there exist libraries writ-
ten in languages other than Java such as Scala, Clojure, and so on.
So we sited source file name recoded in the library file and removed
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Table 5.1: C function names

#Defined
Library #Identifier Names #Identifier Definitions

1 886,134 91.80% 886,134 82.29%
2 60,574 6.28% 121,148 11.25%
3 13,483 1.40% 40,449 3.76%
4 2,571 0.27% 10,284 0.96%

5≤ 2,477 0.26% 18,824 1.75%

Total 965,239 1,076,839

Table 5.2: C variable names

#Defined
Library #Identifier Names #Identifier Definitions

1 206,111 92.62% 206,111 82.14%
2 10,646 4.78% 21,292 8.49%
3 3,974 1.79% 11,922 4.75%
4 926 0.42% 3,704 1.48%

5≤ 875 0.39% 7,904 3.14%

Total 222,532 250,933

identifiers that did not belong to a Java file (i.e., has extension of
.java).

Step 4) Calculation
We counted the number of definitions for each identifier name and
check how many libraries defined that identifier. For Debian libraries,
we counted that how many source packages defines the specific identi-
fier name. For Maven repositories, we counted that how many Jar files
defines the specific identifier name. Maven repository contains some
libraries that have same name but different versions, so we summed
up Jar files with different versions as a single library.

5.4 Analysis Result

Tables 5.1 and 5.2 show the investigation result for C function names and
variable names, and Tables 5.3, 5.4, and 5.5 show the result for Java class
names, method names, and function names respectively. Column “#Iden-
tifier names” shows the aggregate result for counting identifier names and
“#Identifier Definitions” shows the result for counting identifier definitions.
Table 5.1 for example, the row whose “#Defined Library” is 2 shows that
60,574 of identifier names are defined in 2 libraries, and totally they are
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defined 121,148 times.
Most of identifier names are defined in single library in both C and

Java, about 90% in C and about 70% in Java in concrete terms.
There are less identifier names that are defined in multiple libraries.
On the other hand, counting identifier definitions, While about 80% of C

identifiers are defined once, it was less than 20% for Java method names. We
can see that some specific identifier names are defined in multiple libraries
in case of Java method names.

The major reason of duplication of identifier names are follows; auto-
generated code, including an external library file, using a same framework.
In C function names and variable names, names start with “yy” are auto-
matically generated by Yacc parser generator. Those identifiers are defined
in the packages related to programming languages; php, ruby, golang, post-
gresql, and so on. C functions strlcpy and strlcat are defined in BSD libc
to provide less error prone replacements for strncpy and strncat provided
by C standard library. However, they are not included in glibc, commonly
used C standard library on Linux, so some libraries provides or includes
those functions instead.

5.5 Conclusion

Learning the trend of identifier names in the library helps program com-
prehension, and unique identifier names allow fast and clear understanding
of software. We analyzed two library sets, from Debian for C and from
Maven repository for Java, to evaluate how unique public identifiers are
within there. The result of our experiment indicates that more than 80%
of C identifier names and approximately 70% of Java identifier names are
unique to single library. However, the specific method names are defined in
multiple Java libraries and it is one big difference between C and Java iden-
tifiers. We believe that this result provides useful hints on context through
providence. We also argued for overlapping identifier names and find some
reasons of duplication.
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Table 5.3: Java class names

#Defined
Library #Identifier Names #Identifier Definitions

1 445,353 75.85% 564,463 43.44%
2 87,538 14.75% 228,600 17.59%
3 27,217 4.59% 107,338 8.26%
4 11,240 1.89% 59,901 4.61%

5≤ 22,067 3.72% 338,991 26.09%

Total 593,415 1,299,293

Table 5.4: Java method names

#Defined
Library #Identifier Names #Identifier Definitions

1 1,010,135 66.03% 2,240,606 15.75%
2 260,930 17.06% 1,269,538 8.93%
3 92,622 6.05% 978,365 6.88%
4 48,160 3.15% 536,944 3.78%

5≤ 117,860 7.70% 9,196,312 64.66%

Total 1,529,707 14,221,765

Table 5.5: Java field names

#Defined
Library #Identifier Names #Identifier Definitions

1 387,149 70.28% 565,455 29.21%
2 83,367 15.13% 272,301 14.07%
3 33,335 6.05% 179,962 9.30%
4 16,059 2.92% 118,384 6.11%

5≤ 30,951 5.62% 799,915 41.32%

Total 550,861 1,936,017
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation proposed approaches to analyze program collections and
reveal hidden relations in them. Each approach challenged to analyze not
only a single program but also a set of program code and offer new insight
of the program collection. Program code analysis is the base of further
analysis and the improvement of analysis technique will be applicable for
another area such as Mining Software Repository. We believe that these
results support developers to understanding existing program collections,
and useful for maintaining and keep its quality.

In this dissertation, four approaches were proposed.

For software product family, this dissertation proposed the method to
extract the approximation of evolution history of them. The result of the
experiment showed that the proposed method achieved high recall. In ad-
dition, the case study with linux kernel variants showed that the proposed
method can detect the origin of unknown versions of the product and also
can detect whether those products are branched or not from mainstream.
The methodology and the technique we used are simple, but shows promis-
ing result in experiments.

For Android applications, this dissertation proposed a semi-automatic
method to extract features from source code of them. The result of a
case study showed that our approach could extract features from Android
application and list them in terms of devices and components used by the
applications.

For Java libraries in Maven repository, this dissertation reveals that
there are many copies of Java library files among nested library files. The
result of our experiment indicates that the duplication of archive files in a
single archive file is not frequent, but it exists. And furthermore, we must
remember that many archive files are copied into others so that further
duplication can occur.
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For C and Java libraries, this dissertation found that they have different
tendency of definition of identifier names and most of C identifiers are
unique to single library. The result of our experiment indicates that specific
method names are defined in multiple Java libraries and this fact is one big
difference between C and Java identifiers.

6.2 Future Work

Based on the studies and results, some future work is needed for further use
of program collections. For future work of the study on software product
family is dealt with software merge. Moreover, future work includes adap-
tion of product evolution tree to real problem, such as applying patches for
vulnerability to each branches or not.

Future work for the study on Android applications includes automation
and accuracy improvement. To expand the proposed approach using code
analysis, future work includes using documents such as API documents or
introduction text of application.

Future work for the study on library analysis includes a library dupli-
cation problem. Very recent study shows that copy of Java library files
inside the library file have a risk of incompatibility [28], so future work
includes the solution for preventing incompatibility in Maven repository.
Another direction includes the lightweight origin analysis for C programs
using uniqueness of identifier definitions.
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