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Abstract

We study a connection problem on a q-difference equation satisfied by the
Ramanujan entire function. Since one local solution contains a divergent
series, we apply the q-Borel-Laplace resummation method to study the con-
nection problem. We show two connection formulae. One is a connection
formula between the Ramanujan entire function and the q-Airy function,
another is a connection formula for a resummation of a divergent basic hy-
pergeometric series 2ϕ0(0, 0;−; q, x). This thesis is based on author’s work
[8].
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Chapter 1

Introduction

In this paper, we study a connection problem on a linear q-difference equa-
tion satisfied by the Ramanujan entire function. The Ramanujan entire
function is originally found by S. Ramanujan in Ramanujan’s Lost Notebook
[9]. Throughout the paper, we assume that 0 < |q| < 1. The Ramanujan
entire function with the base q is given by

Aq(x) :=
∑
n≥0

qn2

(q; q)n
(−x)n

where (a; q)n is the q-shifted factorial

(a; q)n :=

{
1, n = 0,

(1 − a)(1 − aq) . . . (1 − aqn−1), n ≥ 1.

M. E. H. Ismail has pointed out that the Ramanujan entire function can be
considered as a q-analogue of the Airy function [5]. It is known that there
exist two different q-analogues of the Airy function. One is the Ramanu-
jan entire function and the other is the q-Airy function found by K. Ka-
jiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada in the study of
hypergeometric-type solutions to the q-Painlevé equation of type (A1+A′

1)
(1)

[7]. The q-Airy function with the base q is given by

Aiq(x) :=
∑
n≥0

q
n(n−1)

2

(−q, q; q)n
xn,

where (a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n . . . (am; q)n.
No relations between two different q-analogues of Airy functions have

been known, but we show that the Ramanujan entire function and the q-
Airy function are related by our connection formula.
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1.1 Linear q-difference equations and connection
problems

At first, we review the classical results by C. R. Adams [1] in a second
order case. Adams studied a local behavior of solutions of linear q-difference
equations. We consider the q-difference equations of the form

a2(x)u(q2x) + a1(x)u(qx) + a0(x)u(x) = 0 (1.1)

where a0(x), a1(x) and a2(x) are holomorphic functions around x = 0. He
called the following equation

a2(0)λ2 + a1(0)λ + a0(0) = 0 (1.2)

a characteristic equation at x = 0 of (1.1). The roots of the characteristic
equation are called characteristic exponents. He pointed out that there exist
two essentially different cases:

1. a2(0)a0(0) 6= 0,

2. a2(0)a0(0) = 0.

In the first case, we can find two solutions of the form

um(x) =
θq(x)

θq(λmx)

∑
k≥0

um,kx
k, m = 1, 2 (1.3)

where λ1 and λ2 (provided that λ1/λ2 6∈ qZ) are non-zero exponents. Here,
θq(x) :=

∑
n∈Z q

n(n−1)
2 xn is the theta function of Jacobi. Adams gave a proof

of convergence of power series contained in these solutions.

In the second case, either the characteristic equation is a linear equation
or an exponent is zero. Therefore, some solutions of (1.1) are not in the
form (1.3). After changing the variables and the base, Adams gave a formal
solution of the form

u(x) =
θq(x)µ+1

θq(λx)

∑
k≥0

ukx
k (1.4)

where λ is a suitable non-zero constant and µ is an integer. We remark
that formal solutions of the form (1.4) may contain divergent series. The
existence of formal solutions of the form (1.4) around x = ∞ is similar to
the case of x = 0.
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We consider a connection problem on a second order linear q-difference
equation of the form{

(a0 + b0x)σ2
q + (a1 + b1x)σq + (a2 + b2x)

}
u(x) = 0 (1.5)

where σq is the q-shift operator σqf(x) = f(qx). Connection problems on
linear q-difference equations are studied by G. D. Birkhoff [2]. He studied
connection problems when the first case occurs for both x = 0 and x = ∞,
namely, in the case a0b0a2b2 6= 0.

Let u1(x), u2(x) be independent solutions of (1.1) around x = 0 and let
v1(x), v2(x) be those around x = ∞. We take suitable analytic continuation
of u1(x) and u2(x). Then the connection formula in the matrix form is given
by (

u1(x)
u2(x)

)
=

(
C11(x) C12(x)
C21(x) C22(x)

)(
v1(x)
v2(x)

)
.

Here, Cjk(x) are q-constant, namely, Cjk(qx) = Cjk(x).

In the case a0a2b0b2 = 0, some power series which appear in formal so-
lutions may be divergent. In order to study connection problems, we should
take a suitable resummation of a divergent series. J.-P. Ramis and C. Zhang
introduced a discrete resummation method, called the q-Borel-Laplace trans-
formation of the first kind. The q-Borel-Laplace transformation of the first
kind is given as follows.

1. We assume that f(x) =
∑

n≥0 anxn is a formal power series. The
q-Borel transformation of the first kind B+

q is given by(
B+

q f
)
(ξ) :=

∑
n≥0

anq
n(n−1)

2 ξn.

We denote ϕf (ξ) =
(
B+

q f
)
(ξ). If f(x) is a convergent series, then

ϕf (ξ) is an entire function.

2. We fix λ ∈ C∗ \ qZ. For any entire function ϕ(ξ), the q-Laplace trans-
formation of the first kind L+

q,λ [3, 16] is given by(
L+

q,λϕ
)

(x) :=
1

1 − q

∫ λ∞

0

ϕ(ξ)

θq

(
ξ
x

) dqξ

ξ
=

∑
n∈Z

ϕ(λqn)

θq

(
λqn

x

)
where ∫ λ∞

0
f(t)dqt := (1 − q)λ

∑
n∈Z

f(λqn)qn

is Jackson’s q-integral on (0, λ∞) [4].
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The q-Borel transformation of the first kind may be used for a resummation
of a divergent series. We set Dr := {x ∈ C|0 < |x| < r}, where r is a
positive number. Let f(x) be a holomorphic function on Dr \ [λ; q], where
[−λ; q] := −λqZ. The set [λ; q] is called a q-spiral. We assume that f̂(x) =∑

m≥0 amxm is a divergent series. We call f̂(x) is an asymptotic series of
f(x) for x → 0 on Dr \ [λ; q] when f(x) satisfies the condition as follows:

Definition 1. For any ε > 0, any c > 0 and any n ∈ Z≥0, there exists a
constant r0 > 0 such that, if x ∈ Dr0 \ ∪k∈Z{x; |x − λqk| < ε|q|k}, we have∣∣∣∣∣f(x) −

n∑
m=0

amxm

∣∣∣∣∣ < c|x|n.

Zhang [13] shows that the q-Borel-Laplace transform of a divergent series
with a suitable condition is holomorphic on an open dense domain C∗ \
[−λ; q], and the original divergent series gives its asymptotic series for x → 0.

Zhang [15] also introduced the following q-Borel-Laplace transformation
of the second kind. We use the q-Borel-Laplace transformation of the second
kind to obtain an integral representation of a convergent series around x = 0.

1. We assume that f(x) =
∑

n≥0 anxn is a power series such that |an|
decrease rapidly enough. The q-Borel transformation of the second
kind B−

q is given by

(B−
q f)(ξ) :=

∑
n≥0

anq−
n(n−1)

2 ξn.

2. For any function g(ξ) which is holomorphic around ξ = 0, the q-
Laplace transformation of the second kind L−

q is given by

(
L−

q g
)
(x) :=

1
2πi

∫
|ξ|=r

g(ξ)θq

(
x

ξ

)
dξ

ξ
,

where r is a suitable positive number.

Zhang shows that the q-Borel transformation B−
q is a formal inverse of the

q-Laplace transformation L−
q [15]. More precisely, we can show the following

lemma.

Lemma 1. Let f(x) =
∑

n≥0 anxn be a function such that (B−
q f)(ξ) is

convergent. Then
(
L−

q ◦ B−
q f

)
(x) coincides with f(x) near x = 0.
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We assume that one solution u1(x) around x = 0 is an entire function
and the other formal solution u2(x) around x = 0 contains a divergent series.
We also assume that both of the solutions v1(x), v2(x) around x = ∞ ex-
tend to meromorphic functions on C∗. Under these assumptions, connection
formulae of (1.5) are given in the following matrix form:(

u1(x)
ũ2(x, λ)

)
=

(
C11(x) C12(x)

C̃21(x, λ) C̃22(x, λ)

)(
v1(x)
v2(x)

)
.

Here, ũ2(x, λ) contains the resummation of the divergent series obtained
by the q-Borel-Laplace transformation. The functions C11(x), C12(x) are
q-constants and C̃21(x, λ), C̃22(x, λ) are also q-constants with poles at x ∈
[−λ; q]. The connection coefficients are analytic function of the parameter
λ. The domain C∗ \ [−λ; q] can be considered as a q-analogue of the Stokes
region. The dependance on the parameter λ of connection coefficients is
called the q-Stokes phenomenon [10].

1.2 Connection problem on q-difference equation
satisfied by the Ramanujan entire function

In Chapter 2, we study a connection problem on a q-difference equation
satisfied by the Ramanujan entire function. The Ramanujan entire function
with the base q satisfies the following q-difference equation(

qxσ2
q − σq + 1

)
u(x) = 0. (1.6)

We introduce a transformation of variables

x → −q3t2, q → q2 (1.7)

and set f(t) = u(x). Then we give a connection formula between the Ra-
manujan entire function with the base q2 and the q-Airy function with the
base q. By the transformation (1.7), the equation (1.6) reduces to

(−q5t2σ2
q − σq + 1)f(t) = 0. (1.8)

The aim of Chapter 2 is to solve a connection problem of (1.8). Equation
(1.8) has formal solutions

f1(t) = Aq2(−q3t2) = 0ϕ1(−; 0; q2, q5t2), (1.9)

f2(t) = θq(qt)θq(−q2t)2ϕ0(0, 0;−; q2, qt2) (1.10)
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around t = 0. Here, the function rϕs(a1, . . . , ar; b1, . . . , bs; q, t) is the basic
hypergeometric series with the base q:

rϕs(a1, . . . , ar; b1, . . . , bs; q, t)

:=
∑
n≥0

(a1, . . . , ar; q)n

(b1, . . . , bs; q)n(q; q)n

{
(−1)nq

n(n−1)
2

}1+s−r
tn.

The radius of convergence is ∞, 1 or 0 according to whether r−s < 1, r−s =
1 or r − s > 1.

The function f1(t) is the Ramanujan entire function with base q2 and
the solution f2(t) has a divergent series 2ϕ0(0, 0;−; q2, qt2). Around t = ∞,
equation (1.8) has solutions

v1(t) = θq(q2t)1ϕ1

(
0;−q; q,

1
t

)
= θq(q2t)Aiq

(
−1

t

)
, (1.11)

v2(t) = θq(−q2t)1ϕ1

(
0;−q; q,−1

t

)
= θq(−q2t)Aiq

(
1
t

)
. (1.12)

Both v1(t) and v2(t) are represented by the q-Airy function, which is an
entire function. In subsection 2.2, we apply the q-Borel-Laplace transfor-
mation of the second kind to the power series (1.9). Then we obtain the
following connection formula for f1(t) and deduce a relationship between
the Ramanujan entire function and the q-Airy function.

Theorem. For any t ∈ C∗, we have

f1(t) =
1

(q,−1; q)∞
v1(t) +

1
(q,−1; q)∞

v2(t)

where (a; q)∞ := limn→∞(a; q)n.

In subsection 2.3, we give a connection formula of a resummation of the
formal solution f2(t). Namely, since the solution f2(t) contains a divergent
series 2ϕ0(0, 0;−; q2, qt2), we construct a true solution by applying the q-
Borel-Laplace transformation of the first kind to the divergent series. Then
we obtain a true solution which is defined on C∗ \ [−λ; q]. We denote

2f0 (0, 0;−; q, λ,−x/q) := L+
q,λ ◦ B+

q 2ϕ0(0, 0;−; q,−x/q).

We remark that the q-Borel-Laplace transform (of the first kind) of a di-
vergent series 2ϕ0(0, 0;−; q,−x/q) is defined on the set C∗ \ [−λ; q] and the
original divergent series 2ϕ0(0, 0;−; q,−x/q) gives its asymptotic series for
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x → 0. We set f̃2(t; λ) = θq(qt)θq(−q2t)2f0(0, 0;−; q2, λ, qt2), then we have
the following connection formula between f̃2(t; λ) and v1(t), v2(t).

Theorem. For any t ∈ C∗ such that t2 ∈ C∗ \ [λ/q; q2], we have

θq(qt)θq(−q2t)2f0(0, 0;−; q2, λ, qt2) =
(q2; q2)∞θq(qt)θq(−q2t)

θq2

(
− λ

q2

)
θq2

(
−λ
q3t2

) θq

(
λ

q3t

)
2θq(q2t)

v1(t)

+
(q2; q2)∞θq(qt)θq(−q2t)

θq2

(
− λ

q2

)
θq2

(
−λ
q3t2

) θq

(
− λ

q3t

)
2θq(−q2t)

v2(t).

Zhang and Ismail [6] studied an asymptotic behavior of the Ramanujan
entire function and obtained an asymptotic formula as follows:

Aq(x) =
θq2

(
− q

x

)
(q2, q; q2)∞

1ϕ1

(
0; q; q2,

q2

x

)
+

θq2

(
− 1

x

)
(q2, q; q2)∞

q

q − 11ϕ1

(
0; q3; q2,

q3

x

)
. (1.13)

We can derive an asymptotic expansion which is essentially equivalent to
(1.13) in Proposition 4 as a corollary to our connection formula.
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1.3 The theta function and the q-exponential func-
tions

The theta function of Jacobi with the base q

θq(x) =
∑
n∈Z

q
n(n−1)

2 xn, ∀x ∈ C∗

is holomorphic on C∗. Our theta function is not a standard one but we
follow the notation in [10]. The theta function has the following properties:

1. Jacobi’s triple product identity

θq(x) = (q,−x,−q/x; q)∞ . (1.14)

2. The q-difference equation

θq(qkx) = q−
k(k−1)

2 x−kθq(x), ∀k ∈ Z.

3. The inversion formula

θq (1/x) = θq(x)/x.

For any λ ∈ C∗, the function θ(−λx)/θ(λx) satisfies a q-difference equa-

tion u(qx) = −u(x), which is also satisfied by the function u(x) = e
πi

“

log x
log q

”

.
Two different q-exponential functions are given by

eq(x) := 1ϕ0(0;−; q, x) =
∑
n≥0

xn

(q; q)n
=

1
(x; q)∞

,

Eq(x) := 0ϕ0(−;−; q,−x) =
∑
n≥0

q
n(n−1)

2

(q; q)n
xn = (−x; q)∞.

These two q-exponential functions are related to each other as follows:

eq(x)Eq(−x) = 1, eq−1(x) = Eq(−qx).
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Chapter 2

Connection formulae of the
Ramanujan entire function
and the resummation of the
divergent series

2ϕ0(0, 0;−; q, x)

In this chapter, we study a relation between the aforementioned two q-
analogues of the Airy function from the viewpoint of connection problems
on q-difference equations.

2.1 Relation between the Ramanujan entire func-
tion and the q-Airy function

To find a relation between the Ramanujan entire function and the q-Airy
function, we compare q-difference equations satisfied by each of the func-
tions. The Ramanujan entire function satisfies the following q-difference
equation (

qxσ2
q − σq + 1

)
u(x) = 0. (2.1)

The q-Airy function satisfies the second order linear q-difference equation(
σ2

q + xσq − 1
)
u(x) = 0. (2.2)
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We can transform the q-difference equation satisfied by the Ramanujan en-
tire function with base q2(

q2xσ2
q2 − σq2 + 1

)
u(x) = 0 (2.3)

into a q-difference equation(
−q5t2σ2

q − σq + 1
)
f(t) = 0 (2.4)

by changing the independent variable x to t by −q3t2 = x. We can also
transform (2.4) into (2.2) by changing the independent variable t → 1/t and
a suitable change of a depending variable as we will show in the proof of the
next proposition. In this way, we will find a relation between the Ramanujan
entire function and the q-Airy function.

The first task is to give local formal solutions of (2.4) around the origin
and the infinity.

Proposition 1. The equation (2.4) has solutions

f1(t) = 0ϕ1(−; 0; q2, q5t2) = Aq2(−q3t2), (2.5)

f2(t) = θq(qt)θq(−q2t)2ϕ0(0, 0;−; q2, qt2). (2.6)

around the origin. The first solution f1(t) is a convergent series and rep-
resented by the Ramanujan entire function with the base q2. The second
solution f2(t) contains a divergent series.

The equation (2.4) has solutions

v1(t) = θq(q2t)1ϕ1

(
0;−q; q,

1
t

)
= θq(q2t) Aiq

(
−1

t

)
(2.7)

v2(t) = θq(−q2t)1ϕ1

(
0;−q; q,−1

t

)
= θq(−q2t)Aiq

(
1
t

)
(2.8)

around the infinity. Both solutions contain convergent series and represented
by the q-Airy function with the base q.

Proof. Equation (2.4) has a unique holomorphic solution at t = 0:

f1(t) = Aq2(−q3t2).

We define f̃(t) by f(t) = θq(qt)θq(−q2t)f̃(t). Since the theta function satis-
fies the relation

σq

{
θq(qt)θq(−q2t)

}
= − 1

q3t2
θq(qt)θq(−q2t),
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the function f̃(t) satisfies the equation(
σ2

q − σq − q3t2
)
f̃(t) = 0. (2.9)

The equation (2.9) has a unique power series solution of the form f̃(t) =∑
n≥0 bntn where b0 = 1, which is

f̃(t) = 2ϕ0(0, 0;−; q2, qt2) =
∑
n≥0

1
(q2; q2)n

{
(q2)

n(n−1)
2

}−1
(qt2)n.

Therefore, the equation (2.4) has another (formal) solution as follows:

f2(t) = θq(qt)θq(−q2t)2ϕ0(0, 0;−; q2, qt2).

We consider local solutions of (2.4) around t = ∞. We set

z(t) =
1

θq(−q2t)
f(t).

Then z(t) satisfies (
−σ2

q +
1

q2t
σq + 1

)
z(t) = 0.

We set x = 1/t and u(x) = z(1/t). Then u(x) satisfies the q-Airy equation(
σ2

q + xσq − 1
)
u(x) = 0.

We take local solutions of the q-Airy equation around x = 0 as follows:

u1(x) = − θq(x/q2)
θq(−x/q2)

Aiq(−x), u2(x) = Aiq(x).

Therefore (2.4) has solutions around x = ∞ as follows:

v1(t) = θq(q2t)Aiq

(
−1

t

)
= θq(q2t)1ϕ1

(
0;−q; q,

1
t

)
, (2.10)

v2(t) = θq(−q2t)Aiq

(
1
t

)
= θq(−q2t)1ϕ1

(
0;−q; q,−1

t

)
. (2.11)

The Ramanujan entire function is a convergent solution of the equation
(2.4) around t = 0. The solution f1(t) is a unique holomorphic solution at
t = 0 with the condition f1(0) = 1.

The q-Airy functions are solutions of (2.4) around t = ∞. We show a
connection formula between the Ramanujan entire function (2.5) and the
q-Airy functions (2.7), (2.8) in the next subsection 2.2.
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2.2 Connection formula of the Ramanujan entire
function

In the following, we give a formula which relates the Ramanujan entire
function (with the base q2) with the q-Airy function as a corollary to our
connection formula between f1(t) and v1(t), v2(t).

We set g(τ) = (B−
q f1)(τ). We see that g(τ) =

∑
n≥0 gnτn, g0 = 1 is

a convergent series in our case. To begin with, we note that the q-Borel
transformation has the following operational relation:

Lemma 2. For any l,m ∈ Z≥0, we have

B−
q (tmσl

q) = q−
m(m−1)

2 τmσl−m
q B−

q .

The operational relation for the q-Borel transformation is given by Zhang
[15]. We apply the q-Borel transformation B−

q to the function f1(t).

1. The q-difference equation satisfied by (B−
q f1)(τ).

By the operational relation in Lemma 2, the function g(τ) satisfies a
first order q-difference equation

g(qτ) = (1 + q2τ)(1 − q2τ)g(τ). (2.12)

The q-difference equation (2.12) has a solution

h(τ) =
1

(−q2τ ; q)∞(q2τ ; q)∞
.

We consider the Maclaurin series of the function h(τ), which is a formal
power series solution of (2.12). Since there exists a unique power series
solution g(τ) with a condition g(0) = 1, the Maclaurin series of h(τ)
coincides with the solution g(τ). Then we obtain the following infinite
product representation of g(τ):

g(τ) =
1

(−q2τ ; q)∞(q2τ ; q)∞
.

The function g(τ) has simple poles at{
τ ; τ = ±q−2−k, ∀k ∈ Z≥0

}
.

In particular, the radius of convergence of g(τ) is |q|−2.
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2. Residue calculus for (L−
q ◦ B−

q f1)(t).

We fix a number r > 0 such that |q|−1 < r < |q|−2 and define a set
Cl = {τ ∈ C | |τ | = r|q|−l}, for l ∈ Z≥0. Applying the q-Laplace
transformation L−

q to g(τ), we obtain an integral representation of
f1(t) by Lemma 1.

f1(t) =
1

2πi

∮
C0

g(τ)θq

(
t

τ

)
dτ

τ

=
1

2πi

∫
|τ |=r|q|−l

g(τ)θq

(
t

τ

)
dτ

τ
(2.13)

−
l−1∑
k≥0

Res
{

g(τ)θq

(
t

τ

)
1
τ
; τ = −q−2−k

}

−
l−1∑
k≥0

Res
{

g(τ)θq

(
t

τ

)
1
τ
; τ = q−2−k

}
.

At first, we show the integral on |τ | = r|q|−l goes to zero when l → ∞.

Proposition 2. For any t ∈ C∗, we have

lim
l→∞

∣∣∣∣∣ 1
2πi

∫
|τ |=r|q|−l

g(τ)θq

(
t

τ

)
dτ

τ

∣∣∣∣∣ = 0.

For the proof, we prepare two lemmas on the q-shifted factorials.

Lemma 3. For any l ∈ Z>0, we have

(τq2−l; q)l = τ l(−1)lq
l(l−3)

2

(
1
τq

; q
)

l

.

The lemma above can be proved directly.

Lemma 4. For any τ ∈ C0, we have

1∣∣∣( 1
τq ; q

)
l

∣∣∣ ≤ 1(
1

r|q| ; |q|
)

l

<
1(

1
r|q| ; |q|

)
∞

.
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Proof. Since |q|−1 < r < |q|−2, we have |τqj | > 1 (j = 1, 0,−1, · · · ),
where τ ∈ C0. We remark that∣∣∣∣1 − 1

τqj

∣∣∣∣ ≥ 1 − 1
r|q|j

, j = 1, 0,−1, · · · .

Therefore we have an estimation∣∣∣∣( 1
τq

; q
)

l

∣∣∣∣ ≥ (
1

r|q|
; |q|

)
l

>

(
1

r|q|
; |q|

)
∞

.

Thus we obtain

1∣∣∣( 1
τq ; q

)
l

∣∣∣ ≤ 1(
1

r|q| ; |q|
)

l

<
1(

1
r|q| ; |q|

)
∞

.

We are ready to prove Proposition 2.

Proof. We put M := 1/
(

1
r|q| ; |q|

)
∞

and N := maxτ∈C0 |g(τ)θq(t/τ)|.

1
2πi

∫
|τ |=r|q|−l

g(τ)θq

(
t

τ

)
dτ

τ

=
1

2πi

∮
C0

g(τq−l)θq

(
tql

τ

)
dτ

τ

=
1

2πi

∮
C0

g(τ)
(τq2−l,−τq2−l; q)l

q−
l(l−1)

2

(
t

τ

)−l

θq

(
t

τ

)
dτ

τ

=
1

2πi

∮
C0

τ−2lql(l−3)g(τ)
(1/τq,−1/τq; q)l

q−
l(l−1)

2

(
t

τ

)−l

θq

(
t

τ

)
dτ

τ

=
1

2πi
q

l(l−5)
2 t−l

∮
C0

g(τ)θq

(
t
τ

)
τ−l

(1/τq,−1/τq; q)l

dτ

τ
.

Therefore we have∣∣∣∣∣ 1
2πi

∫
|τ |=r|q|−l

g(τ)θq

(
t

τ

)
dτ

τ

∣∣∣∣∣ ≤ 1
2π

|q|
l(l−5)

2 |t|−l

∮
C0

1(
1

r|q| ; |q|
)2

∞

r−lN

∣∣∣∣dτ

τ

∣∣∣∣
= M2N |q|

l(l−5)
2 |t|−lr−l → 0 (l → ∞)

as desired.
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Hence f1(t) has the expression

f1(t) = −
∞∑

k≥0

Res
{

g(τ)θq

(
t

τ

)
1
τ
; τ = −q−2−k

}

−
∞∑

k≥0

Res
{

g(τ)θq

(
t

τ

)
1
τ
; τ = q−2−k

}
.

We calculate the residues by the following lemma.

Lemma 5. For any k ∈ Z>0, λ ∈ C∗, we have:

(a) Res
{

1
(τ/λ; q)∞

1
τ

: τ = λq−k

}
=

(−1)k+1q
k(k+1)

2

(q; q)k(q; q)∞
,

(b)
1

(λq−k; q)∞
=

(−λ)−kq
k(k+1)

2

(λ; q)∞ (q/λ; q)k

, λ 6∈ qZ.

By Lemma 5, we have

Resτ=q−2−k g(τ)θq

(
t

τ

)
1
τ

=
θq(q2+kt)

(−q−k; q)∞
(−1)k+1q

k(k+1)
2

(q; q)k(q; q)∞

=
q

k(k+1)
2

(−1; q)∞(−q; q)k
(q2t)−kq−

k(k−1)
2 θq(q2t)

(−1)k+1q
k(k+1)

2

(q; q)k(q; q)∞

= − θq(q2t)
(q,−1; q)∞

1
(−q; q)k(q; q)k

(−1)kq
k(k−1)

2

(
1
t

)k

.

In the same way, we calculate other residues.

By taking the sum of all the residues, we obtain

f1(t) =
θq(q2t)

(q,−1; q)∞
1ϕ1

(
0,−q; q,

1
t

)
+

θq(−q2t)
(q,−1; q)∞

1ϕ1

(
0,−q; q,−1

t

)
.

Therefore, we have reached the following connection formula.

Theorem 2. For any x ∈ C∗, we have a connection formula

f1(t) =
1

(q,−1; q)∞
v1(t) +

1
(q,−1; q)∞

v2(t).

17



This connection formula derives a relation between the Ramanujan entire
function with base q2 and the q-Airy functions with base q, namely,

Aq2(−q3t2) =
1

(q,−1; q)∞
θq(q2t)Aiq

(
−1

t

)
+

1
(q,−1; q)∞

θq(−q2t)Aiq

(
1
t

)
.

2.3 Resummation of 2ϕ0(0, 0;−; q,−x/q)

We recall that the formal solution f2(t) contains a divergent basic hypergeo-
metric series. We construct a solution f̃2(t, λ) by the q-Borel-Laplace trans-
formation of the first kind, which is holomorphic on C∗ \ [−λ; q]. Then we
can consider a connection formula between the solution f̃2(t, λ) and v1(t),
v2(t), which contains a continuous parameter λ. In subsection 2.3.1, we
show a relation between the q-exponential function eq(x) and convergent
series 0ϕ1 with the base q2. We also show a connection formula for a resum-
mation of the divergent series 2ϕ0(0, 0;−; q,−x/q) by applying Proposition
3 in subsection 2.3.2. Then we obtain a connection formula between the
resummation f̃2(t, λ) and v1(t), v2(t) in Theorem 4.

2.3.1 Alternative representation of q-exponential functions

We show an alternative representation of q-exponential functions, which
plays an important role later on.

By the triple product identity, we have the following relation between
two q-exponential functions

eq(x) =
(q; q)∞
θq(−x)

Eq

(
− q

x

)
(2.14)

on C∗ \ [1; q]. The aim of this subsection is to show a behavior of eq(x/q)
around x = ∞ given in the following proposition.

Proposition 3. For any x ∈ C∗ \ [1; q], the function eq(x/q) has the follow-
ing representation

eq

(
x

q

)
=

(q; q)∞

θq

(
−x

q

)0ϕ1

(
−; q; q2,

q5

x2

)
− (q; q)∞

θq

(
−x

q

) q2

(1 − q)x0ϕ1

(
−; q3; q2,

q7

x2

)
.
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We obtain Proposition 3 from the following lemma.

Lemma 6. We have

Eq(−x) = 0ϕ1

(
−; q; q2, qx2

)
− q2

(1 − q)x0ϕ1

(
−; q3; q2, q3x2

)
. (2.15)

Proof. We separate the function 0ϕ0 (−;−; q, x) by even terms and odd
terms.

0ϕ0 (−;−; q, x) =
∑
k≥0

1
(q; q)k

(−1)kq
k(k−1)

2 xk

=
∑
k≥0

(−1)2kq
2k(2k−1)

2

(q; q)2k
x2k +

∑
k≥0

(−1)2k+1q
(2k+1)2k

2

(q; q)2k+1
x2k+1

=
∑
k≥0

(−1)2kq
2k(2k−1)

2

(q; q)2k
x2k − x

(1 − q)

∑
k≥0

(−1)2kq
(2k+1)2k

2

(q2; q)2k
x2k

=
∑
k≥0

{
(−1)k(q2)

k(k−1)
2

}2
qk

(q, q2; q2)k
x2k − x

(1 − q)

∑
k≥0

{
(−1)k(q2)

k(k−1)
2

}2
q3k

(q2, q3; q2)k
x2k

= 0ϕ1

(
−; q; q2, qx2

)
− q2

(1 − q)x0ϕ1

(
−; q3; q2, q3x2

)
.

Since
Eq (x) = 0ϕ0 (−;−; q,−x) , |x| < 1,

we have the result.

Then Lemma 6 implies

Eq

(
−q2

x

)
= 0ϕ1

(
−; q; q2,

q5

x2

)
− q2

(1 − q)x0ϕ1

(
−; q3; q2,

q7

x2

)
.

Thus we have shown Proposition 3.

2.3.2 Connection formula for the resummation of 2ϕ0

Since f2(t) contains a divergent series 2ϕ0(0, 0;−; q,−x/q), we need to give
a resummation of the divergent series by the q-Borel-Laplace transformation
of the first kind. We set

2f0 (0, 0;−; q, λ,−x/q) := L+
q,λ ◦ B+

q 2ϕ0(0, 0;−; q,−x/q).
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Theorem 3. For any x ∈ C∗ \ [−λ; q], we have

2f0

(
0, 0;−; q, λ,−x

q

)
=(q; q)∞

θq2

(
−λ2

qx

)
θq

(
−λ

q

)
θq

(
λ
x

)1ϕ1

(
0; q; q2,

q2

x

)

+
(q; q)∞
1 − q

θq2

(
−λ2

x

)
θq

(
−λ

q

)
θq

(
λ
x

) λ

x
1ϕ1

(
0; q3; q2,

q3

x

)
.

Proof. We apply the q-Borel transformation B+
q to the divergent series v(x) =

2ϕ0(0, 0;−; q,−x/q). Let ϕ(ξ) = eq(ξ/q). Then (B+
q v)(ξ) is the Maclaurin

expansion of ϕ(ξ). The function ϕ(ξ) is holomorphic around ξ = 0. By
Proposition 3,

ϕ(ξ) =
(q; q)∞

θq

(
− ξ

q

)0ϕ1

(
−; q; q2,

q5

ξ2

)
− (q; q)∞

θq

(
− ξ

q

) q2

(1 − q)ξ 0ϕ1

(
−; q3; q2,

q7

ξ2

)
.

We set

ϕ1(ξ) =
1

θq

(
− ξ

q

)0ϕ1

(
−; q; q2,

q5

ξ2

)
,

ϕ2(ξ) =
1

θq

(
− ξ

q

) 1
ξ

0ϕ1

(
−; q3; q2,

q7

ξ2

)
.

Both ϕ1(ξ) and ϕ2(ξ) are meromorphic functions on C∗, which leads to the
convergence of L+

q,λϕ as we shall show now.
We apply the q-Laplace transformation L+

q,λ to the functions ϕ1(ξ) and
ϕ2(ξ).
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(
L+

q,λϕ1

)
(x) =

∑
n∈Z

ϕ1(λqn)

θq

(
λqn

x

) =
∑
n∈Z

1

θq

(
λqn

x

) 1

θq

(
−λqn

q

)0ϕ1

(
−; q; q2,

q5

λ2q2n

)

=
1

θq

(
−λ

q

)
θq

(
λ
x

) ∑
n∈Z

qn(n−1)

(
−λ2

qx

)n ∑
m≥0

(q2)m(m−1)

(q; q2; q2)m

(
q5−2n

λ2

)m

=
1

θq

(
−λ

q

)
θq

(
λ
x

) ∑
n−m∈Z

(q2)
(n−m)(n−m−1)

2

(
−λ2

qx

)n−m

×
∑
m≥0

(−1)m(q2)
m(m−1)

2

(q; q2; q2)m

(
q2

x

)m

=
θq2

(
−λ2

qx

)
θq

(
−λ

q

)
θq

(
λ
x

)1ϕ1

(
0; q; q2,

q2

x

)
.

In the same way, we obtain

(
L+

q,λϕ2

)
(x) = −

θq2

(
−λ2

x

)
θq

(
−λ

q

)
θq

(
λ
x

) λ

xq2 1ϕ1

(
0; q3; q2,

q3

x

)
.

Therefore we obtain

2f0

(
0, 0;−; q, λ,−x

q

)
= L+

q,λ ◦ B+
q 2ϕ0

(
0, 0;−; q,−x

q

)

= (q; q)∞
θq2

(
−λ2

qx

)
θq

(
−λ

q

)
θq

(
λ
x

)1ϕ1

(
0; q; q2,

q2

x

)

+
(q; q)∞
1 − q

θq2

(
−λ2

x

)
θq

(
−λ

q

)
θq

(
λ
x

) λ

x
1ϕ1

(
0; q3; q2,

q3

x

)
.

A resummation of the formal solution f2(t) in (2.6) is given by f̃2(t, λ) =
θq(qt)θq(−q2t)2f0(0, 0;−; q2, λ, qt2). We obtain the connection formula be-
tween f̃2(t, λ) and v1(t), v2(t) from Theorem 3.
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Theorem 4. For any t ∈ C∗ such that t2 ∈ C∗ \ [λ/q; q2], we have

θq(qt)θq(−q2t)2f0(0, 0;−; q2, λ, qt2) =
(q2; q2)∞θq(qt)θq(−q2t)

θq2

(
− λ

q2

)
θq2

(
−λ
q3t2

) θq

(
λ

q3t

)
2θq(q2t)

v1(t)

+
(q2; q2)∞θq(qt)θq(−q2t)

θq2

(
− λ

q2

)
θq2

(
−λ
q3t2

) θq

(
− λ

q3t

)
2θq(−q2t)

v2(t)

where v1(t), v2(t) are the local solutions at the infinity:

v1(t) = θq(q2t)1ϕ1

(
0;−q; q,

1
t

)
= θq(q2t)Aiq

(
−1

t

)
,

v2(t) = θq(−q2t)1ϕ1

(
0;−q; q,−1

t

)
= θq(−q2t) Aiq

(
1
t

)
.

We prepare some relations between some functions with different bases
before proving Theorem 4. It is easily checked that

(a; q)2m = (a; q2)m(aq; q2)m, (a; q)2m+1 = (1 − a)(aq; q2)m(aq2; q2)m.
(2.16)

In (2.16), we set a 7→ q2 and q 7→ q2. Then we have

(q2; q2)2m = (q2; q4)m(q4; q4)m, (2.17)

(q2; q2)2m+1 = (1 − q2)(q4; q4)m(q6; q4)m. (2.18)

For any m ∈ Z≥0, we have

q
2m(2m−1)

2 = (q4)
m(m−1)

2 × qm, q
(2m+1)2m

2 = (q4)
m(m−1)

2 × q3m. (2.19)

By the formulae (2.16), (2.17), (2.18) and (2.19), we obtain the following
lemma.

Lemma 7. We have the following relations between functions 1ϕ1 with dif-
ferent bases q and q4:

1ϕ1(0;−q; q, x) = 1ϕ1(0; q2; q4,−qx2) − x

1 − q2 1ϕ1(0; q6; q4;−q3x2),

1ϕ1(0;−q; q,−x) = 1ϕ1(0; q2; q4,−qx2) +
x

1 − q2 1ϕ1(0; q6; q4;−q3x2).
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The theta functions with the different bases have the following relations.

Lemma 8. For any x ∈ C∗, we have

θq

(
x

q

)
+ θq

(
−x

q

)
= 2θq4

(
x2

q

)
,

θq

(
x

q

)
− θq

(
−x

q

)
= 2

x

q
θq4

(
qx2

)
.

Corollary 1. If we put x 7→ λ/(q2t), we have

θq

(
λ

q3t

)
+ θq

(
− λ

q3t

)
= 2θq4

(
λ2

q5t2

)
,

θq

(
λ

q3t

)
− θq

(
− λ

q3t

)
= 2

λ

q3t2
θq4

(
λ2

q3t2

)
.

We give a proof of Theorem 4.

Proof. In Theorem 3, we put q 7→ q2 and x 7→ −q3t2. Then,

2f0(0, 0;−; q2, λ, qt2) =
(q2; q2)∞

θq2

(
− λ

q2

)
θq2

(
−λ
q3t2

) {
θq4

(
λ2

q5t2

)
1ϕ1

(
0; q2; q4,− q

t2

)

+ θq4

(
λ2

q3t2

)
−λ

(1 − q2)q3t2
1ϕ1

(
0; q6; q4,−q3

t2

)}
.

We rewrite the part {· · · } in the right hand side by using Lemma 7 and
Corollary 1.
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θq4

(
λ2

q5t2

)
1ϕ1

(
0; q2; q4,− q

t2

)
+ θq4

(
λ2

q3t2

)
−λ

(1 − q2)q3t2
1ϕ1

(
0; q6; q4,−q3

t2

)

=

θq

(
λ

q3t

)
+ θq

(
− λ

q3t

)
2

 1ϕ1

(
0; q2; q4,− q

t2

)

+

θq

(
λ

q3t

)
− θq

(
− λ

q3t

)
2

 −1
(1 − q2)t1ϕ1

(
0; q6; q4,−q3

t2

)

=
θq

(
λ

q3t

)
2

{
1ϕ1

(
0; q2; q4,− q

t2

)
+

−1
(1 − q2)t1ϕ1

(
0; q6; q4,−q3

t2

)}

+
θq

(
− λ

q3t

)
2

{
1ϕ1

(
0; q2; q4,− q

t2

)
+

1
(1 − q2)t1ϕ1

(
0; q6; q4,−q3

t2

)}

=
θq

(
λ

q3t

)
2 1ϕ1

(
0;−q; q,

1
t

)
+

θq

(
− λ

q3t

)
2 1ϕ1

(
0;−q; q,−1

t

)
.

Hence we have

2f0(0, 0;−; q2, λ, qt2) =
(q2; q2)∞

θq2

(
− λ

q2

)
θq2

(
−λ
q3t2

)
θq

(
λ

q3t

)
2θq(q2t)

v1(t) +
θq

(
− λ

q3t

)
2θq(−q2t)

v2(t)

 ,

completing the proof of Theorem 4.

By the theta relations in Lemma 8, we obtain another representation of
our connection formula as follows:

Proposition 4. For any x ∈ C∗, we have

Aq2

(
− q3

x2

)
=

2
(q,−1; q)∞

θq4

(
x2

q

)
1ϕ1(0; q2; q4,−qx2)

+
2

(q,−1; q)∞
q2

q2 − 1
θq4

(
x2

q3

)
1ϕ1(0; q6; q4,−q3x2).

2.4 Summary

We have solved the connection problem for the second order linear q-difference
equation (

−q5t2σ2
q − σq + 1

)
f(t) = 0. (2.20)
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This equation has solutions

f1(t) = 0ϕ1(−; 0; q2, q5t2) = Aq2(−q3t2),

f2(t) = θq(qt)θq(−q2t)2ϕ0(0, 0;−; q2, qt2)

around t = 0. The solution f1(t) is the Ramanujan entire function with the
base q2. The solution f2(t) contains a divergent series 2ϕ0(0, 0;−; q2, qt2).
Thus, we consider 2f0(0, 0;−; q, λ,−x/q) := L+

q,λ ◦ B+
q 2ϕ0(0, 0;−; q,−x/q),

which is a resummation of a divergent series 2ϕ0(0, 0;−; q,−x/q). We re-
mark that the function 2f0(0, 0;−; q, λ,−x/q) is analytic on C∗ \ [−λ; q]. We
set f̃2(t, λ) := θq(qt)θq(−q2t)2f0(0, 0;−; q2, λ, qt2). The equation (2.20) also
has solutions

v1(t) = θq(q2t)1ϕ1

(
0;−q; q,

1
t

)
= θq(q2t) Aiq

(
−1

t

)
,

v2(t) = θq(−q2t)1ϕ1

(
0;−q; q,−1

t

)
= θq(−q2t)Aiq

(
1
t

)
around t = ∞. Both solutions v1(t) and v2(t) are represented by the q-Airy
function, so that they are convergent at infinity.

We gave the connection formulae for the equation (2.20) as follows:(
f1(t)

f̃2(t, λ)

)
=

(
C11 C12

C21(t, λ) C22(t, λ)

)(
v1(t)
v2(t)

)
.

The connection formula between f̃2(t, λ) and v1(t), v2(t) holds for any t ∈ C∗

except poles of C21(t, λ) and C22(t, λ). Connection coefficients are

C11 = C12 =
1

(q,−1; q)∞
,

C21(t, λ) =
(q2; q2)∞θq(qt)θq(−q2t)

θq2

(
− λ

q2

)
θq2

(
−λ
q3t2

) θq

(
λ

q3t

)
2θq(q2t)

and

C22(t, λ) =
(q2; q2)∞θq(qt)θq(−q2t)

θq2

(
− λ

q2

)
θq2

(
−λ
q3t2

) θq

(
− λ

q3t

)
2θq(−q2t)

.
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We remark that the first connection formula gives a relation between the
Ramanujan entire function Aq2 and the q-Airy function Aiq:

Aq2(−q3t2) =
1

(q,−1; q)∞
θq(q2t)Aiq

(
−1

t

)
+

1
(q,−1; q)∞

θq(−q2t)Aiq

(
1
t

)
.
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