Osaka University Knowledg

: Structural and Semantic Code Analysis for
Title ;
Program Comprehension

Author(s) |#5, =&

Citation |KFRKZ, 2016, HEHwX

Version Type|VoR

URL https://doi.org/10.18910/55845

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University

‘Form 3
Abstract of Thesis

Name (% =B)

Structural and Semantic Code Analysis for Program Comprehension

Title (SN ENERNUEA S0 70 5 ABRYE

Abstract of Thesis

It is important to understand the software during its development and maintenance. Understanding the
internal mechanics of a system implies studying its documentation and source code during a given maintenance
task. There are two dimensions of information that can be obtained from static analyses to aid progranm
comprehension, namely structural information and semantic information. Structural information refers to issues
such as the actual syntactic structure of the program along with the control and data flow that it represents,
The other dimension, semantic information, refers to the domain specific issues of a software systenm

This dissertation addresses these iwo dimensions of program comprehension with two studies. The first
one is a study on a classification model of source code clones, which helps understanding the source code
from structural similarity. The latier one focuses on an important aspect of semantic information, which is
the purity of the code modules.

The first study focuses on code clones, which can represent the structiural similarity of programs. A code
clone, or simply a clone, is defined as “a code fragment that has identical or similar code fragments to
one another’ . The presence of code clomes is pointed out as a bad smell for sofiware maintenance. The reason
is that: if we need {o make a change in ome place, we will probably need to change the others as well, but
we sometimes might miss it. According to a survey we conducted, users of code detectors tend to classify clones
differently based on each user’ s individual uses, purposes or experiences about code clenes. A true code
clone for one user may be a false code clone for another user. From this observation, we propose an idea of
studving the judements ol each user regarding clomes. The proposed technique is a new ¢lone classification
method, entitled Filter for Individual user on code Clone Analysis (Fica). Code clones are classilied by Fica
according to a comparison of their token type sequences through their similarity, based on the “term {requency
- inverse document frequency” (TF-IDF) vector. Fica learns user opinions concerning these code clones from
the classification results. In a production environment, adapting the method described in this research will
decrease the time that a user spends on analyzing code clones.

The second study focuses on understanding the purity and side effects of a given program It is difficult
for programmers to reuse software components without fuliy understanding their behavior. The documentation
and naming of these components usually focus on intent, i.e., what these functions are required to do, but
fails to illustrate their side effects, i.e., how these functions accomplish their tasks. It is hard to
understand and reuse modularized components, because of the possible side effects in API libraries. Inaddition,
undocumented API side effects may be changed during software maintenance, making debugging even more
challenging in the future. By understanding side effects in the software libraries, programmers can perform
high level refactoring on the source code that is using the functional part of the libraries. Moreover, the
calculation without side effects are good candidates for parallelizaiion. However, the purity information
is usuaily missing in external libraries, therefore programmers would risk introducing bugs with such
refactorings. In this study, we present am approach to infer a function’s purity from byte code for later
use. Programmers can use effect information to understand a function’s side effects in order to reuse it.
Furthermore, we conducted a case study on purity guided refactoring based on gathered purity information.
As a case study, we applied a kind of the puriiy-guided refactoring, namely Memoization refactoring on several
open-source libraries in Java. We observed improvements of their performance and preservation of their
semantics by profiling the bundled test cases of these libraries.

e 7

MXBEEOMROESE RUOHESEE
£

® (B BB)
() 33 %
E # s WAE—
hkaELE | B & iz # FHER
IS iz YRR
2 % B FEA
BNEREOERODES

A, V7 b VHERPRTICBLWTEER, RAREEDEELTEST. BOIiThhs/usyssm
MOBEHEZBRTHIEEENELTEY, HICRNAY —Z20— RN AEIIN T H R BREFo TN,
By —A3— BAHER, 705 I AEEFETIEL REEEREA, BRFICERAERERTIA LT,
TOY S NEROWELEXET AN THD. FHX T, B8V —ZA2— RHFICHERE > T BENH
LERMRSHO 2007 TR —FE Lo T3, —Di, BENLRI— R/ 0—28RFETHD. I —FHKIE
EORE T — RS FIETH 2,

BT — R 0—UAHFHEE LT, ERETEAVEI— R70—CAWEEREREL, TOFEEY—
NELTHRREL TS, I—Ry7O—2 i3y -2~ RbkFETIR—. $50E, BT 51— REOTE
EEKRL, FEICI—RRFOIE—F7 Y RR—AMCEDERENS, B, I—-FZ2O0—2 V7 Y27 T8
iz, VI Y T REOMEA T TR E2ED TVARETF— I THD. T/, I— RyO—2REEE
OKRBMUZKEEY 7 Mo 7RE/ OO FOBALRESRTEY. EEARCBWTHEERT—T &R
2TW5, —RICALC—RZ70-2TH-oTH, EREFOIFFAP I TEROSHZI—-Fr0—2Th
BNEINIRLD T LAEHINTVS., BEFETR. BRECFIHELE - RO~ ORMEEEICETS
WTHRSEEEEETAIET. JOa— Ry O0—-2RE0BRBICE S TEENSEINE I NEEN TS, BE
FHROMEIZH7=>T, BRELEY—LEA I —S3y FETAML, 3 2 AOKRBRENSMLAREELZI—F
FO—HHERET TS, BROBE, BRFEIEENRICERTI-RI7O—ORNBENE <, &=
BOERHBICBTLEAELEN T ENHEREINTVS,

Kiz, A7V y MEASETH D Java TR I NAEY — AT — BRIz LT, EokiA 01— REEME ST EEE
BEL., I— RhSHRBEESEER 2 OBREABRET 2 Y-V ERREL TWS, MBEE3EmERD
RS OBRKIZHL . MORBIEERTRESELE ARV EERETEHOTH D, MRaEEIERLD
T, WIHE B BBICTED WS HENS S, MEERAREEESHE IR L TEEINTVWAESTH B,
FRLTEA TS s MEREBICH L TEATERLIEEL TVS., ZNICL 0, SEEORAFIPRUIEL
T, BHEOBRTOY ZA%2BFET 2 EICL2HEEAOEZICLABIIHETES, REFRICLZHED
SRR S FIE O 2 R OA— T 2V —Z - VT NI TICHEA LR, SR, Ko
SIEREFOEKREEBMICOETE, MRECHERTIRER 2SR IRIETETVS, B, BAMELT.
AEMV T FIIN T EF—T V=R - VTR TDIATSVIEAL. HEER EAERSNTVNS,
NEOMER. #RFROT DS ABRFEDL OS5 AGBNFHLICH T2 ERLIBETEZ bOTHS.

BEDEDI, FRXOERR. 70/ 5LBBEZETARERLLT. HNE. Bz, EEAERBLTEL
BRAHHEZASN, Bt (EHREY) OREHRIELTHEDH2 50 EBD 5,

