
Title Structural and Semantic Code Analysis for
Program Comprehension

Author(s) 楊, 嘉晨

Citation 大阪大学, 2016, 博士論文

Version Type VoR

URL https://doi.org/10.18910/55845

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Structural and Semantic Code Analysis for Program
Comprehension

January 2016

Jiachen Yang

Structural and Semantic Code Analysis for Program
Comprehension

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2016

Jiachen Yang

Abstract

It is important to understand the software during its development and maintenance.
Understanding the internal mechanics of a system implies studying its documen-
tation and source code during a given maintenance task. It is well-known that
understanding a software is very time-consuming, as reported in the literatures that
up to 60% of the software engineering effort is spent on understanding the software
system.

Programming comprehension generally utilizes the information about the sys-
tem from two analyses sources, which are the static information (also recognized as
compile time information) and dynamic information (also recognized as run-time
information).

Static analyses gather the information from the available source code. While
dynamic analyses record the execution trace by viewing the system as a black box,
giving no insights in internal aspects, like conditions under which function are
called.

There are two dimensions of information that can be obtained from static anal-
yses to aid program comprehension, namely structural information and semantic
information. Structural information refers to issues such as the actual syntactic
structure of the program along with the control and data flow that it represents, The
other dimension, semantic information, refers to the domain specific issues (both
problem and development domains) of a software system.

This dissertation addresses these two dimensions of program comprehension
with two studies. The first one is a study on a classification model of source code
clones, which helps understanding the source code from structural similarity. The
latter one focuses on an important aspect of semantic information, which is the
purity of the code modules.

The first study focuses on code clones, which can represent the structural simi-
larity of programs. A code clone, or simply a clone, is defined as ‘a code fragment
that has identical or similar code fragments to one another’. The presence of code
clones is pointed out as a bad smell for software maintenance. The reason is that:
if we need to make a change in one place, we will probably need to change the

others as well, but we sometimes might miss it.
According to a survey we conducted, users of code detectors tend to classify

clones differently based on each user’s individual uses, purposes or experiences
about code clones. A true code clone for one user may be a false code clone for
another user. From this observation, we propose an idea of studying the judgments
of each user regarding clones. The proposed technique is a new clone classification
method, entitled Filter for Individual user on code Clone Analysis (Fica).

Code clones are classified by Fica according to a comparison of their token
type sequences through their similarity, based on the “term frequency – inverse
document frequency” (TF-IDF) vector. Fica learns user opinions concerning these
code clones from the classification results. In a production environment, adapting
the method described in this research will decrease the time that a user spends on
analyzing code clones.

The second study focuses on understanding the purity and side effects of a
given program. It is difficult for programmers to reuse software components with-
out fully understanding their behavior. The documentation and naming of these
components usually focus on intent, i.e., what these functions are required to do,
but fails to illustrate their side effects, i.e., how these functions accomplish their
tasks. For instance, it is rare for API function signatures or documentation to in-
clude information about what global and object states will be modified during an
invocation.

It is hard to understand and reuse modularized components, because of the pos-
sible side effects in API libraries. For instance, it is usually unclear for program-
mers whether it is safe to call the APIs across multiple threads. In addition, undoc-
umented API side effects may be changed during software maintenance, making
debugging even more challenging in the future.

By understanding side effects in the software libraries, programmers can per-
form high level refactoring on the source code that is using the functional part of
the libraries. For instance, the return value of math functions such as “sin” will be
the same results if the same parameter is passed, therefore the results can be cached
if the same calculations are performed more than once. Moreover, the calculation
without side effects are good candidates for parallelization. However, the purity
information is usually missing in external libraries, therefore programmers would
risk introducing bugs with such refactorings, for example, caching the results of a
function which depends on mutable internal states.

In this study, we we present an approach to infer a function’s purity from byte
code for later use. Programmers can use effect information to understand a func-
tion’s side effects in order to reuse it. Furthermore, we conducted a case study on
purity guided refactoring based on gathered purity information. We focus on refac-
toring these pure functions and propose a new category of high-level automatic

refactoring patterns, called purity-guided refactoring. As a case study, we applied
a kind of the purity-guided refactoring, namely Memoization refactoring on several
open-source libraries in Java. We observed improvements of their performance and
preservation of their semantics by profiling the bundled test cases of these libraries.

This dissertation is organized as follows.
Chapter 1 gives the background of this work and an overview of this disserta-

tion. It describes the need for program comprehension and two aspects for aiding
program comprehension by static analysis, namely the structural aspect and the
semantic aspect.

Chapter 2 introduces the related research around these two aspects.
Chapter 3 proposes a classification model based on applying machine learning

on code clones. It builds the described system Fica, which is a web-based system,
as a proof of its concept. The system consists of a generalized suffix-tree-based
clone detector and a web-based user interface that allows a user to mark detected
code clones and shows the ranked result.

Chapter 4 presents a study on the purity and side effects of the functions in
Java, helping programmers to reuse the software libraries. It proposes a technique
to automatically infer the purity and side effect informations from Java bytecode.
This chapter also gives a case study on purity-guided refactoring that utilizes the
purity information of functions during the automated refactoring on object-oriented
languages such as Java.

Finally, Chapter 5 concludes this dissertation with a summary and directions
for future work.

List of Publications

Major Publications

1-1 Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto,
“Filtering Clones for Individual User Based on Machine Learning Analysis,”
In Proc. of the 6th International Workshop on Software Clones (IWSC2012),
pages 76-77, Zurich, Switzerland, June 2012.

1-2 Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto,
“A Method for Identifying Useful Code Clones with Machine Learning Tech-
niques Based on Similarity between Clones,” IPSJ Journal, volume 54, num-
ber 2, pages 807-819 February 2013. (in Japanese)

1-3 Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto, “Revealing
Purity and Side Effects on Functions for Reusing Java Libraries,” In 14th In-
ternational Conference on Software Reuse, volume LNCS 8919, pages 314-
329, Miami (Florida), US, January 2015.

1-4 Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto,
“Classification Model for Code Clones Based on Machine Learning,” In Em-
pirical Software Engineering, volume 20, issue 4, pages 1095-1125 August
2015.

1-5 Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto, “Towards
Purity-Guided Refactoring in Java,” In 31st International Conference on Soft-
ware Maintenance and Evolution, pages 521-525, Bremen, Germany, Octo-
ber 2015.

Related Publications

2-1 Keisuke Hotta, Jiachen Yang, Yoshiki Higo, and Shinji Kusumoto, “How Ac-
curate Is Coarse-Grained Clone Detection?: Comparison with Fine-Grained

i

Detectors,” In Proc. of the 8th International Workshop on Software Clones
(IWSC 2014), pages 1-18, Antwerp, Belgium, February 2014.

2-2 Keisuke Hotta, Jiachen Yang, Yoshiki Higo, and Shinji Kusumoto, “An Em-
pirical Study on Accuracy of Coarse-Grained Clone Detection,” IPSJ SIG
Technical Report, volume 2014-SE-183, number 6, pages 1-8 March 2014.
(in Japanese)

2-3 Kenji Yamauchi, Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto,
“Clustering Commits for Understanding the Intents of Implementation,” In
Proceedings of the 30th International Conference on Software Maintenance
and Evolution (ICSME 2014), pages 406-410, Victoria, Canada, October
2014.

2-4 Keisuke Hotta, Jiachen Yang, Yoshiki Higo, and Shinji Kusumoto, “An Empir-
ical Study on Accuracy of Coarse-Grained Clone Detection,” In IPSJ Jour-
nal, volume 56, number 2, pages 580-592 Feburary 2015. (in Japanese)

2-5 Naoto Ogura, Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto,
“A Study on Relationship between Changing Purity of Java Methods and In-
ducing/Fixing” In Forum on Information Technology 2015, volume 1, pages
187-188 September 2015. (in Japanese)

ii

Acknowledgements

In this opportunity, I am fortunate to have received advises and helps from many
people.

First, I would like to express my sincere gratitude to my supervisor, Professor
Shinji Kusumoto, for the continuous support of my Ph.D study and related re-
search, for his patience, motivation, and immense knowledge. He has spent much
time and effort for this work. I could not have imagined having a better advisor
and mentor for my Ph.D study.

I would like to thank Dean and Professor Katsuro Inoue for his helpful com-
ments, valuable questions, and kind advice for this work. His broad view of knowl-
edge leads this work to complete.

I also would like to express my sincere appreciation to Professor Toshimitsu
Masuzawa for his valuable comments and helpful suggestions on this dissertation.
His careful annotations and corrections helps this work in various perspectives.

I would like to express my heartfelt appreciation to Associate Professor Yoshiki
Higo for his great contributions throughout this work. His zealous coaching have
strongly encouraged me, and his helpful comments and suggestions made it possi-
ble to complete this work. His guidance helped me in all the time of research and
writing of this thesis. His brilliant ideas corrected me for several times when I met
difficulties. I do not believe this work would have been possible without his help.

I would like to thank Assistant Professor Hiroshi Igaki in Osaka Institute of
Technology, for his valuable advise for this work. I also would like to thank re-
searchers on software engineering who have given me helpful comments and en-
couragement.

I would like to express my appreciation to Dr.Keisuke Hotta in Fujitsu, for
his great contributions to my studies. He participated in all my researches as a
coworker and advisor even after he graduated from our laboratory. He discussed
details of my study throughout days and nights and help me with my thesis. This
work would be impossible without his advices.

In especially I would like to thank all participants in the survey of this work,
including the members of our laboratory and all the friends of researchers in the

iii

software engineering field. They spent valuable efforts on my study and gave feed-
backs to my research.

My heartfelt thanks go to Mr.Hiroaki Murakami as a friend as well as a con-
temporary. He kindly provided advices and suggestions both in my study and in
my life in Japan.

I would like to express my appreciation to all my contemporaries during my
study in Osaka University, including but not limited in Mr.Tomoya Ishihara, Mr.Shuhei
Kimura, Mr.Yukihiro Sasaki, and Mr.Hiroaki Shimba. I learned many things from
them, including how to work on research problems and how to enjoy the work.

I would like to express my sincere appreciations to the clerks of our laboratory,
including Ms.Tomoko Kamiya, Ms.Kaori Fujino, Ms.Rieko Matsui and Ms.Yumi
Nakano. Their kind support has been quite helpful for me to prepare this disserta-
tion.

I feel deep appreciations for all the other labmates and graduates of our labo-
ratory, for the sleepless nights we were working together before deadlines, and for
all the fun we have had. I think I am very fortunate because I could work with such
great colleagues.

I would like to thank my fiends in Arch Linux open source community. Their
volunteer contributions provided me a rock solid operating system and an advanced
programming environment. They gave me advices on both my study and my life.

Finally but most importantly, I would like to thank my beloved wife, Hong Liu.
She married to me at a time when I was in school and had nothing to provide her.
She takes care my daily life with her own savings and encourages my research with
her excellent English skill. I would like to thank my parents for raising me and their
supporting of my study aboard. I inherit their intelligent and hard working.

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Overview of the Research . 3

1.2.1 Comprehension with Structural Information 3
1.2.2 Comprehension with Semantic Information 5

1.3 Overview of the Dissertation . 7

2 Related Works 9
2.1 Structural Code Analysis . 9
2.2 Semantic Code Analysis . 11

3 Classification Model for Code Clones Based on Machine Learning 13
3.1 Introduction . 13
3.2 Motivating Example . 16
3.3 FICA System . 17

3.3.1 Overall Workflow of FICA System 17
3.3.2 Classification Based on Token Sequence of Clones 19
3.3.3 Marking Clones Manually 19
3.3.4 Machine Learning . 20
3.3.5 Cycle of Supervised Learning 20
3.3.6 Comparing to Metrics-based Clone Filtering 20

3.4 Machine Learning Method . 21
3.4.1 Input Format of FICA . 22
3.4.2 Calculating Similarity between Clone Sets 23
3.4.3 User Profile and Marks on Clone Sets 26

3.5 Experiments . 28
3.5.1 Implementation Details 28
3.5.2 Experimental Setup . 30
3.5.3 Code Clone Similarity of Classification Labels by Users . 32

v

3.5.4 Similarity among Users’ Selection 36
3.5.5 Ranking Clone Sets . 37
3.5.6 Predictions for Each Project 38
3.5.7 Cross Project Evaluation 40
3.5.8 Recall and Precision of FICA 40
3.5.9 Reason for Converging Results 42
3.5.10 Threats to Validity . 45

4 Revealing Purity and Side Effects on Functions for Reusing Java Li-
braries 49
4.1 Introduction . 49
4.2 Purity and Side Effect . 51

4.2.1 Stateless & Stateful Purity of Functions 51
4.2.2 Formal Syntax of a Core Language 52
4.2.3 Lexical State Accessors and Side Effects 53
4.2.4 Effect Annotations . 56
4.2.5 Reverse Inheritance Rule 59

4.3 Automatic Inference of Purity and Side Effects 59
4.3.1 Call Graph and Data Analysis 59
4.3.2 Effects from Function Invocations 63
4.3.3 Iteration to a Fix-point of Class Diagram 64
4.3.4 Applications in Reusing Software Components 65

4.4 Purity Analyzer Implementation Details 65
4.4.1 Dynamic Building Class Diagram 66
4.4.2 Details of Bytecode Processing 66
4.4.3 Details of Interpretation 67
4.4.4 Manually Provided White-list Functions 67
4.4.5 Detection of Cache Semantics 68

4.5 Purity-Guided Refactoring . 70
4.5.1 Inference of Purity Information 71
4.5.2 Purity Queries During Refactoring 72

4.6 Case Study: Memoization Refactoring 72
4.6.1 Pre-conditions . 73
4.6.2 Refactoring Steps . 73
4.6.3 Optimizations . 74
4.6.4 Preservation of the Purity on Functions 74

4.7 Experiments . 75
4.7.1 R1: Distribution of Effects 75
4.7.2 R2: Comparison with an Existing Approach 77
4.7.3 RQ3 A Case Study: Purity of equals and hashCode . 78

vi

4.7.4 Experiment on Memoization Refactoring 80

5 Conclusion 85
5.1 Conclusions on Comprehension based on Structural Information . 85
5.2 Conclusions on Comprehension based on Semantic Information . 86
5.3 General Conclusions of This Dissertation 87

vii

List of Figures

3.1 execute cmd.c in bash-4.2 . 16
3.2 subst.c in bash-4.2 . 17
3.3 Overall workflow of FICA with a CDT 18
3.4 Classification process in FICA. Parallelograms represent input data

or output data, and rectangles represent the procedures of FICA. . 21
3.5 Structure of input to FICA . 22
3.6 Example of input format for FICA 24
3.7 Force-directed graph of clone sets of bash 4.2. Blue circles mean

true code clones and red means false code clones. 26
3.8 Upload Achieve of Source Code to FICA 29
3.9 FICA showing clone sets . 29
3.10 # of true and false clones from the selected data of users 31
3.11 Code Clone Similarity with classification by users 33
3.12 Homogeneity and completeness between users’ marks and clusters

by KMeans . 35
3.13 Similarity and Homogeneity of Users’ Selection with Their Expe-

rience . 36
3.14 Average True Positives Found and Average False Negatives Found

for different users on git project 38
3.15 Accuracy of machine learning model by FICA 39
3.16 Merged result of all projects . 41
3.17 Accuracy of predictions with training/evaluation projects 41
3.18 Recall and precision of FICA in each project 43
3.19 Example of source code in xz . 44
3.20 Examples of source code in e2fsprogs 46

4.1 The formal syntax of our core language, where C and D are class
names, τ is a type name, x is a parameter name, y is a local variable
name, c is a literal constant, f is a field name, m is a method name,
and α represents method annotations defined in Figure 4.3. 53

ix

4.2 Effects in Huffman Algorithm 55
4.3 Syntax for proposed annotations. τ is a type name. s is a string value. 56
4.4 Annotated Huffman Algorithm 57
4.5 Class Diagram with Call Graph 60
4.6 Example of Data and Control Analysis 62
4.7 Example of Cache Semantic in java.lang.String 68
4.8 An example of @Depend effect annotations by purano 71
4.9 A Special Design in DefaultCaret 79
4.10 A Potential Problem in FilePermission 79
4.11 HTMLPARSER top-20 changed functions 82
4.12 JODA-TIME top-20 changed functions 83
4.13 PCOLLECTIONS top-20 changed functions 83

x

List of Tables

1.1 Tasks associated with software maintenance and evolution 2

3.1 Survey of clones in bash-4.2 (O: true code clone, X: false code clone) 16
3.2 Open source projects used in experiments 30
3.3 Parameters for force-directed graph 34
3.4 Average normalized distance of clusters by KMeans 34
3.5 User Experience of Code Clone Categories 37

4.1 Transfer Functions for Values and Instructions 61
4.2 Experiment Target and Analysis Performance 75
4.3 Percentage of Effects . 76
4.4 Breakdown of Side Effects . 76
4.5 Comparison on JOlden Benchmark. Function numbers are differ-

ent because our approach analyzes all functions while Sălcianu’s
approach analyzes only the functions invoked transitively from the
main entry point. 77

4.6 Purity of equals and hashCode 80
4.7 Experiment Targets . 81
4.8 Profiling Results . 81

xi

Chapter 1

Introduction

1.1 Background

Program comprehension is an important activity in software engineering with
many approaches for understanding different aspects of the software products [1].
It is a major factor in providing effective software maintenance and enabling suc-
cessful evolution of computer systems [2].

There are five types of tasks are commonly associated with software mainte-
nance and evolution [2], and their types are: adaptive, perfective, and corrective
maintenance; reuse; and code leverage. Each task type typically involves certain
activities, as described in Table 1.1.

Some activities, such as understanding the system or problem, are common
to several task types. To analyze the cognitive processes behind these tasks, re-
searchers have developed several models. These models cover different aspects of
the software system to aid the programmer during maintenance process.

One of the most important aspects of software maintenance is to understand
the software at hand. Understanding a system’s inner workings implies studying
such artifacts as source code and documentation in order to gain a sufficient level
of understanding for a given maintenance task. This program comprehension pro-
cess is known to be very time-consuming, and it is reported that up to 60% of the
software engineering effort is spent on understanding the software system at hand
[3].

Programming comprehension generally utilizes the information about the sys-
tem from two analyses sources, which are the static information (also recognized
as compile time information) and dynamic information (also recognized as run-
time information) [4].

Static analysis gathers the information from the available source code. While
dynamic analysis records the execution trace by viewing the system as a black

1

box, giving no insights in internal aspects, like conditions under which function
are called [5].

This dissertation focuses on the static aspect of the information. This aspect
can be divided further into two dimensions, which are the structural information
and semantic information. The final goal of this study is to aid programming
comprehension with the statical information in these two dimensions.

Table 1.1: Tasks associated with software maintenance and evolution
Task Types Activities During Software Maintenance

Adaptive Understand system
Define adaptation requirements
Develop preliminary and detailed adaptation
design
Code changes
Debug
Regression tests

Perfective Understand system
Diagnosis and requirements definition for improvements
Develop preliminary and detailed perfective design
Code changes/additions
Debug
Regression tests

Corrective Understand system
Generate/evaluate hypotheses concerning problem
Repair code
Regression tests

Reuse Understand problem, find solution based on close
fit with reusable components
Locate components
Integrate components

Code leverage Understand problem, find solution based on predefined components
Reconfigure solution to increase likelihood of reusing components
Obtain and modify predefined components
Integrate modified components

2

1.2 Overview of the Research

There are two dimensions of information that can be obtained from a static
analysis to aid program comprehension, namely structural information and se-
mantic information [6]. Structural information refers to issues such as the actual
syntactic structure of the program along with the control and data flow that it rep-
resents. The other dimension, semantic information, refers to the domain specific
issues (both problem and development domains) of a software system.

This dissertation addresses these two dimensions of program comprehension
with two studies. The first one is a study on a classification model of source code
clones, which helps understanding the source code from structural similarity. The
latter one focuses on one important aspect of semantic information, which is the
purity of the code fragments.

1.2.1 Comprehension with Structural Information

This study focuses on code clones, which can represent the structural similarity
of programs. A code clone, or simply a clone, is defined as ‘a code fragment that
has identical or similar code fragments to one another’ in [7] and [8]. The presence
of code clones is pointed out as a bad smell for software maintenance [9]. The
reason is that: if we need to make a change in one place, we will probably need to
change the others as well, but we sometimes might miss it [10].

Great efforts have been made to detect identical or similar code fragments from
the source code of software. During development, code clones are introduced into
software systems by various operations, namely, copy-and-paste or machine gen-
erated source code. Because code cloning is easy and inexpensive, it can make
software development faster, especially for “experimental” development. There-
fore, various techniques and tools to detect code clones automatically have been
proposed by many researchers, such as [11], [12] and [10]. Furthermore, these
code clone detectors were studied by [13].

Classification Model for Code Clones Based on Machine Learning

By applying code clone detectors to the source code, users such as program-
mers can obtain a list of all code clones for a given code fragment. Such a list is
useful during modifications to the source code. However, results from code clone
detectors may contain plentiful useless code clones, and judging whether each code
clone is useful varies from user to user based on the user’s purpose for the clone.
Therefore, it is difficult to adjust the parameters of code clone detectors to match
the individual purposes of the users. It is also a tedious task to analyze the entire

3

list generated by the code clone detector. Clone detection tools (CDTs) usually
generate a long list of clones from source code. A small portion of these clones are
regarded as true code clones by a programmer, while the others are considered as
false positives that occasionally share an identical program structure.

A previous study [14] suggested that cloned code fragments are less modified
than non-cloned code fragments. The results indicate that more clones in existing
source code are stable instead of volatile. These stable clones should be filtered
from the results of CDTs before applying simultaneous modifications to the volatile
ones. Meanwhile, [13] manually created a set of baseline code clones to evaluate
several CDTs. While such a set of baseline code clones demanding huge amount of
manpower, the accuracy of these baseline code clones depends on the person who
makes the judgment, as our research will verified. Manual baseline clones have the
following issues.

• They demand a huge amount of manpower.

• Their accuracy depends on the person who made the judgments.

According to a survey we conducted, users of CDTs tended to classify clones
differently based on each user’s individual uses, purposes or experience about code
clones. A true code clone for a user may be a false code clone for another user.
From this observation, we propose an idea of studying the judgments of each user
regarding clones. The proposed technique is a new clone classification approach,
entitled Filter for Individual user on code Clone Analysis (FICA).

Code clones are classified by FICA according to a comparison of their token
type sequences through their similarity, based on the “term frequency – inverse
document frequency” (TF-IDF) vector. FICA learns the user opinions concern-
ing these code clones from the classification results. In a production environment,
adapting the proposed technique will decrease the time that a user spends on ana-
lyzing code clones.

From the experimental results, we made several observations:

1. Users agree that false positive code clones are likely to fall into several cat-
egories, such as a list of assignment statements or a list of function declara-
tions.

2. Users agree that true positive code clones are more diverse than false posi-
tives, which means that “real” code clones are less similar than those “appear-
to-be” code clones detected by clone detectors.

3. Users with more experience on code clones are more likely to agree with
each other compared to users with less experience.

4

4. Generally, the minimum required size of the training set grows linearly with
the number of categories that clone sets fall into. This is the main reason that
the proposed technique will decrease the analyzing time.

1.2.2 Comprehension with Semantic Information

It is difficult for programmers to reuse software components without fully un-
derstanding their behavior. The documentation and naming of these components
usually focus on intent, i.e., what these functions are required to do, but fails to il-
lustrate their side effects, i.e., how these functions accomplish their tasks [15]. For
instance, it is rare for API function signatures or documentation to include infor-
mation about what global and object states will be changed during an invocation.

It is difficult in some scenarios to understand and reuse modularized compo-
nents, because of the possible side effects in API libraries. For instance, it is usually
unclear for programmers whether it is safe to call the APIs across multiple threads.
In addition, undocumented API side effects may be changed during software main-
tenance, making debugging even more challenging in the future [16].

By understanding of side effects in the software libraries, programmers can per-
form high level refactoring on the source code that is using the functional part of
the libraries. For instance, return values of math functions such as sin will be the
same results if the same parameter is passed, therefore the results can be cached
if the same calculations are performed more than once. Moreover, the calcula-
tions without side effects are good candidates for parallelization [17]. However,
the purity information is usually missing in external libraries, therefore program-
mers would risk introducing bugs with such refactorings, for example, caching the
results of a function which depends on the mutable internal state.

There are two studies that focused on the purity aspect as the semantic infor-
mation in the programs. The first study infers the purity information from the
existing program. The second study utilizes the purity information by applying a
refactoring called memoriation on the program.

Revealing Purity and Side Effects on Functions for Reusing Java Libraries

This study presents an approach to infer a function’s purity from byte code for
later use. Programmers can use effect information to understand a function’s side
effects in order to reuse it. For example, the approach can help to decide whether
it is safe to cache or parallel a time-consuming calculation.

The contributions of this research include:

• An extended definition of purity as stateless or stateful in object-oriented
languages such as Java.

5

• An approach to automatically infer purity and side effects,

• A concrete implementation for Java bytecode,

• A set of method annotations that document the details of effects such as
return value dependencies or changing of variable state, for programmers to
understand the effects.

• Experiments on well-known open source software libraries with different
scale and characteristic.

In our experiments, we found that 24–44% of the methods in the evaluated open
source Java libraries were pure. Also, we observed methods that should be pure in
theory but not in the implementation, and revealed tricks or potential bugs in the
implementation during the experiment of our approach.

We achieved the same percentage of pure functions with the existing study
without a manually created white-list, and we revealed which side effects these
functions were generating which would not found in the existing studies. We fo-
cused on revealing these side effect information on real world software libraries to
be used by the programmers and tools.

Furthermore, in this study we conducted a case study on purity guided refactor-
ing based on the gathered purity information. Source code refactoring is generally
defined as a disciplined technique for restructuring an existing body of code, alter-
ing its internal structure without changing its external behavior [18]. Refactoring
is one of many important tasks in software development and maintenance. Inte-
grated Development Environments (shortened as IDEs) generally provide supports
for common refactoring operations, which improve maintainability, performance
or both, during the software development process. Machine-aid refactoring is so
important that it is promoted as one of the best practices in both the Extreme pro-
gramming [19] and Agile Software development [20], so that both of them heavily
depend on automatic tools to perform refactoring during the development process.

It is emphasized to preserve the external behavior while performing refactor-
ing so that they can be safely conducted without being evaluated about the breaking
changes. However, it is hard to reason about the semantic behavior of a code frag-
ment automatically by refactoring tools, due to the lack of semantic information
from the traditional static analysis. Therefore, refactoring tools provided by IDEs
generally take more conservative approaches by checking the syntactic structure of
a given code fragment only in the pre-conditions of the refactoring operations.

Determining the possible semantic behavior from only the syntactic structure
of a given code fragment puts heavy limitations on the possible refactoring pat-
terns. Therefore, the refactoring tools provided by IDEs are limited to low-level

6

structural restructuring on the code fragment, such as Rename Method or Extract
Method. Although there are more high-level refactoring patterns widely recog-
nized and adopted by programmers, such as Replace Loop with Collection Closure
Method [21], currently they are not provided automatically by tools or IDEs and
are applied manually by programmers.

In the other hand, preservation of semantic behavior can be statically checked
for a certain part of the source code, namely the code that use pure functions.
Pure functions are the functions that do not have observable side effects during the
execution. With the property to be side effect free, whether refactoring changed
the semantic behavior of the code fragments that use pure functions can be easily
checked by tools. Therefore, more refactoring patterns become available when the
purity information is inferred from the source code. For instance, return values
of math functions such as sin will be the same results if the same parameters are
passed, therefore the result can be cached if the same calculation is performed more
than once. Moreover, the calculation without side effects are good candidates for
parallelization [17].

In this research, we focus on refactoring these pure functions and propose a new
category of high-level automatic refactoring patterns, called purity-guided refac-
toring. As a case study, we applied a kind of the purity-guided refactoring, namely
Memoization refactoring on several open-source libraries in Java. We observed the
improvements of the performance and the preservation of semantics by profiling
the bundled test cases of these libraries.

1.3 Overview of the Dissertation

The rest of this dissertation is organized as follows.
Chapter 2 describes some of the related works that also focus on program com-

prehension based on static analyses.
Chapter 3 proposes a classification model based on applying machine learning

on code clones. It builds the described system FICA, which is a web-based system,
as a proof of concept. The system consists of a generalized suffix-tree-based CDT
and a web-based user interface that allows the user to mark detected code clones
and shows the ranked results.

Chapter 4 presents a study on the purity and side effects of the functions in
Java, helping programmers to reuse the software libraries. It proposes a technique
to automatically infer the purity and side effect informations from Java bytecode.
Further, this chapter focus on purity-guided refactoring that utilize the purity infor-
mation of functions during the automated refactoring on object-oriented languages
such as Java. It conducts an experiment on a refactoring pattern called Memoiza-

7

tion that caches calculation results for pure functions.
Finally, Chapter 5 concludes this dissertation with a summary and directions

for future work.

8

Chapter 2

Related Works

As described in the introduction, this dissertation aims to help statical program
comprehension from two major aspects, which are the structural code analysis and
semantic code analysis. In this chapter, I will describe the related works corre-
sponding to these two aspects.

2.1 Structural Code Analysis

Some related works have reported on combining machine learning or text min-
ing techniques with code detection to classify or clustering code clones. As a
complement to existing code clone detection methods, [22] proposed a method to
identify high-level concept clones, such as different implementations of the algo-
rithm of linked lists, directly from identifiers and comments from source code as a
new method of clone detection. A similar approach by [23] found semantic topics
instead of clones from comments and identities from source code.

Another method proposed by [24] shares some common ideas with the above
two methods. They compare code clones by using information retrieved from iden-
tifiers; such an approach focuses more on the semantic information or behavior of
source code rather than the syntactic or structural information of source code. In
contrast, the method described in this paper compares the tokenized source code of
code clones, which focuses on the syntactic similarity between code clones. The
works by [25] share many general ideas with our work, although their focus is
finding clones with bugs. They compare the structure of code clones and thus re-
quire an AST-based CDT to extract structure information. Furthermore, although
not mentioned in their paper, we contacted the first author and confirmed that the
judgment of whether a clone is buggy depends on the opinion of the authors, and
thus relies on more subjective judgments.

9

Besides comparing text similarity, other methods have been proposed to fil-
ter unneeded code clones from the detection result. [26, 27] proposed a metric-
based approach to identify code clones with higher refactoring opportunities. Their
method calculates six different metrics for each code clone and then represents the
plotted graph of these metrics as a user-friendly interface to allow users to filter
out the unneeded code clones. This user-defined metric-based filtering method
was further automated by [28]. Koschke is targeting a different objective, which is
identification of license violations, but has also used metrics and machine learning
algorithms on those metrics to form a decision tree. The result of the decision tree
limits the types of metrics to only two, which are PS (Parameter Similarity) and
NR (Not Repeat). These metric-based methods all have a limited identification
target and thus result in higher accuracy than the method proposed in this paper.
More recent research [29] uses a search-based solution to repeatedly change the
configurations of several well-known code clone detectors in order to improve the
result. They experimented on the true clone dataset of [13]. They tried to improve
the general agreement as well as individual agreement results for each software
project. We have a different target, which is filtering out false code clones for an
individual user’s purpose. Therefore, we took a different approach.

Other works on the classification or taxonomy of code clones focus on propos-
ing fixed schemes of common clone categories. [30] proposed a classification
scheme for clone methods with 18 different categories. The categories detail what
kind of syntax elements have been changed and also how much of the method
has been duplicated. [13] defined three different clone types (exact clones, pa-
rameterized clones, and clones that have had more extensive edits) for the sake of
comparison between different detection tools. Their aim was to test the detection
and categorization capabilities of different tools.

Several visualization methods have also been proposed to aid the understanding
of code clones. A popular approach that has been implemented in most CDTs is
the scatter plot [31, 32]. A scatter plot is useful for selecting and viewing clones on
a project scale, but it is difficult to illustrate the relations among clones. Johnson
proposed a method in [11] that uses Hasse Diagrams to illustrate clusters of files
that contain code clones. Johnson also proposed navigating files containing clone
classes by using hyper-linked web pages [33]. The force-directed graph used in the
FICA system described in this paper is highly interactive and has all the benefits of
a modern web system. Thus, FICA should be useful in the analysis of code clones.

[34] proposed a framework for understanding clone information in large soft-
ware systems by using a data mining technique framework that mines clone infor-
mation from the clone candidates produced by CCFinder. First, a lightweight text
similarity is applied to filter out false positive clones. Second, various levels of sys-
tem abstraction are used to further scale down the filtered clone candidates. Finally,

10

an interactive visualization is provided to present, explore and query the clone can-
didates, as with the directory structure of a software system. Their method shares
some common features with FICA. Compared to their method, FICA depends more
on the marks of code clones by users, and thus is more customized for the individ-
ual user but also requires more operations by users.

[35] proposed a machine learning based method for predicting the harmfulness
of code clones. Their predictor employs a Bayesian Network algorithm and learns
three categories of metrics from code clone fragments, namely, the history, code
and destination metrics. Their work defines the harmfulness of a clone set based
on inconsistent changes among the clones, which is an objective standard. As
in the idea of our APPF and APNF, they also define conservative and aggressive
scenarios and evaluate their effectiveness accordingly. Although they noted in their
paper that each category of metric contributes to the overall effectiveness, they do
not illustrate the contribution of the literal similarity of source code. Compared
to their work, our FICA system shows that the literal similarity alone is enough to
classify the clones for varied purposes.

2.2 Semantic Code Analysis

This research focuses on targeting one paradigm of programming, which is
called statically typed type-safe object-oriented programming languages. This
means that each variable in the program is associated with a statically defined
type and that operations on these variables can be checked in compiler-time. Wild
pointers are not allowed in these languages, which gives us the ability to consider
the reference alias safely. Many industrial programming languages fall into this
category, including C#, Java, and Scala. Dynamic-typed languages such as PHP,
Python, and Ruby are not covered, where variable types are determined at runtime.
Note that although Scala eliminates most of the necessity of defining the variable
types, the variable types are statically inferred by the compiler, rather than deter-
mined at runtime.

Note also that there are infrastructures that may break type safety in the above
languages, such as the unsafe keyword in C# or the “dynamic invoke” feature in
Java 7.

There are studies of automatic purity analyzers on unmodified syntax. Sălcianu,
et al. present a purity analyzer for Java in [36], which uses an inter-procedural
pointer analysis [37] and escape analysis to infer reference immutability. Simi-
lar to our approach, they verify the purity of functions, but their pointer and es-
cape analysis relies on a whole program analysis starting from a main entry point,
which is not always available for software libraries. We have compared the purity

11

result of our approach with their study using the same benchmark in Section 4.7.2.
JPure [38] eliminated the need for reference immutability inference by introducing
pure, fresh and local annotations, which lead to a more restrictive definition
of purity, and loses the exact information for effects.

Both studies focus on analyzing of purity only, and does not expose effects
informations outside their toolchain. Compared with these studies, our approach
uses lexical state accessor analysis, which will hopefully combine the modularity
of JPure by illuminating the need for inter-procedure analysis, and the flexibility
of reference immutability with the availability of effect informations. Also neither
of these two studies further classify the pure functions into Stateless and Stateful
as we do. Further, we provide a heuristic approach to detect cache semantics in
member fields, thus eliminating the need of a manually provided white-list.

Mettler, et al. [39] take a different approach. Instead of extending the syntax of
an existing language, they created a subset of Java called Joe-E. As one application
of Joe-E, they proposed [40] to verify the purity of functions by only permitting im-
mutable objects in the function signature. Kjolstad, et al. [17] proposed a technique
to transform a mutable class into an immutable one. They utilized an escaping and
entering analysis similar to [36]. These two studies are similar to each other as they
completely eliminate the mutable states from target source codes, which is not al-
ways acceptable in general programming scenarios, thus limits their application.
Comparing to these two studies, our technique can be performed on the real world
software libraries, even without the source code. Therefore we are more suitable
for comprehension the legacy code bases.

Xu et al. [41] have been studied dynamic purity analysis and developed a mem-
oization technique during online purity analysis inside JVM. Rito et al. [42] pro-
posed a memoization technique by using software transactional memory to find
altered values during execution. These two studies shared a large part of the back-
ground with our study. However, we focused on static analysis and aim to source
code level refactoring.

There are studies to convert a procedure style program to a more pure func-
tional style program. Mettler, et al. created a subset of Java called Joe-E [39]. As
one application of Joe-E, they proposed a method to verify the purity of functions
by only permitting immutable objects in the function signatures [40]. Kjolstad, et
al. proposed a technique to transform a mutable class into an immutable one [17].
Applying the approaches of these studies will result in more pure functions in the
source code, thus they can increase the refactoring candidates of this research.

12

Chapter 3

Classification Model for Code
Clones Based on Machine
Learning

3.1 Introduction

Great efforts have been made to detect identical or similar code fragments from
the source code of software. These code fragments are called “code clones” or
simply “clones”, as defined in [7] and [8]. During development, code clones are
introduced into software systems by various operations, namely, copy-and-paste or
machine generated source code. Because code cloning is easy and inexpensive, it
can make software development faster, especially for “experimental” development.
However, despite their common occurrence in software development, code clones
are generally considered harmful, as they make software maintenance more diffi-
cult and indicate poor quality of the source code. If we modify a code fragment,
it is necessary to check whether each of the corresponding code clones needs si-
multaneous modifications. Therefore, various techniques and tools to detect code
clones automatically have been proposed by many researchers, such as [11], [12]
and [10]. Furthermore, these code clone detectors were studied by [13], who de-
fined the widely used categories of clones based on the following similarities:

Type-1 An exact copy of a code fragment except for white spaces and comments
in the source code.

Type-2 A syntactically identical copy where only user-defined identifiers such as
variable names are changed.

Type-3 A modified copy of a type-2 clone where statements are added, removed

13

or modified. Also, a type-3 clone can be viewed as a type-2 clone with gaps
in-between.

By applying code clone detectors to the source code, users such as program-
mers can obtain a list of all code clones for a given code fragment. Such a list is
useful during modifications to the source code. However, results from code clone
detectors may contain plentiful useless code clones, and judging whether each code
clone is useful varies from user to user based on the user’s purpose for the clone.
Therefore, it is difficult to adjust the parameters of code clone detectors to match
the individual purposes of the users. It is also a tedious task to analyze the entire
list generated by the code clone detector. Clone detection tools (CDTs) usually
generate a long list of clones from source code. A small portion of these clones are
regarded as true code clones by a programmer, while the others are considered as
false positives that occasionally share an identical program structure.

A previous study [14] suggested that cloned code fragments are less modified
than non-cloned code fragments. This result indicates that more clones in existing
source code are stable instead of volatile. These stable clones should be filtered
from the result of CDTs before applying simultaneous modifications to the volatile
ones. Meanwhile, [13] manually created a set of baseline code clones to evaluate
several CDTs. Manual baseline clones have the following issues.

• They demand a huge amount of manpower.

• Their accuracy depends on the person who made the judgments.

Several methods have been proposed to filter out unneeded clones, including
the metric-based method described in [27]. While these methods can summarize
a general standard of true code clones, the users must have professional knowl-
edge, such as what all the metrics mean. Furthermore, it is hard to fit the extraction
method of refactoring to individual use cases, such as filtering only the code clones.
Tairas and Gray proposed a classification method in [24], which classifies the code
clones by identifier names rather than the text similarity of identical clone frag-
ments. The purpose of our study is the same as those of filtering or classification
methods: to find true positives from the result of CDTs during software mainte-
nance. However, we take a different approach to find the true positives.

Finding clones that are suitable for refactoring has also been studied. Previous
studies such as [43] and [44] suggested that the clone detection process should be
augmented with semantic information in order to be useful for refactoring. [45, 46]
investigated several code characteristics from different clone detection tools for
type-3 clones. Their studies pointed out that clone detection tools may improve the
results with feedback from the users, and that the best metrics for different datasets

14

include source code similarity, token value similarity and identifier similarity, all
of which are measured by the edit distance. Our research is based on their observa-
tions, though we compare the similarity of the token sequences by a more efficient
approach and target the removal of unwanted type-2 code clones.

According to a survey we conducted, users of CDTs tend to classify clones
differently based on each user’s individual uses, purposes or experience about code
clones. A true code clone for one user may be a false code clone for another user.
From this observation, we propose the idea of studying the judgments of each user
regarding clones. The result is a new clone classification method, entitled Filter for
Individual user on code Clone Analysis (FICA).

The code clones are classified by FICA according to a comparison of their to-
ken type sequences through their similarity, based on the “term frequency – inverse
document frequency” (TF-IDF) vector. FICA learns the user opinions concern-
ing these code clones from the classification result. In a production environment,
adapting the method described in this research will decrease the time that a user
spends on analyzing code clones.

From the experimental results, we made several observations:

1. Users agree that false positive code clones are likely to fall into several cat-
egories, such as a list of assignment statements or a list of function declara-
tions.

2. Users agree that true positive code clones are more diverse than false posi-
tives.

3. Generally, the minimum required size of the training set grows linearly with
the number of categories that clone sets fall into, which is less than the total
number of detected clone sets.

The contributions of this work include:

• A machine learning model based on clone similarity.

• An approach to consider each individual user in code clone analysis.

• An experiment with 32 participants.

• Several important observations from the experiment.

In the paper, Section 3.2 introduces a motivating example that led to this re-
search. Section 3.3 introduces the working process for the proposed method, FICA,
and describes how it could help the user to classify code clones. Then, Section 3.4
discusses in detail the proposed method and algorithms that FICA uses. Finally,

15

2717 w c s t r = 0 ;
2718 s l e n = mbstowcs (wcs t r , s , 0) ;
2719 i f (s l e n == −1)
2720 s l e n = 0 ;
2721 w c s t r = (w c h a r t ∗) xma l loc (s i z e o f (w c h a r t) ∗ (s l e n + 1)) ;
2722 mbstowcs (wcs t r , s , s l e n + 1) ;
2723 wclen = wcswidth (wcs t r , s l e n) ;
2724 f r e e (w c s t r) ;
2725 re turn ((i n t) wclen) ;

Figure 3.1: execute cmd.c in bash-4.2

Section 3.5 shows the result of an online survey that we conducted to evaluate our
proposed method.

3.2 Motivating Example

We conducted a survey with several students1. We provided the students with
105 clone sets detected from bash-4.2 from the result of CDTs on source code in
the C language, then asked them whether these code clones were true code clones,
based on their own experience and motivation. Table 3.1 shows a part of the result.
In this table, a code clone set is marked as O if a student thought this clone is a true
code clone or as X if not. We can see from this table that the attitudes toward these
clones varied from person to person.

As an example, the source of a clone with ID 5 is shown in Figures 3.1 and

Table 3.1: Survey of clones in bash-4.2 (O: true code clone, X: false code clone)

Clone ID
Participant

Y S M U
1 X O O O
2 X X O O
3 O X X O
4 X O X O
5 X O X O

.
O count 5 24 23 25
X count 100 81 82 80

1All students are from the Graduate School of Information Science and Technology, Osaka Uni-
versity

16

1100 i f (w c h a r l i s t == 0)
1101 {
1102 s i z e t l e n ;
1103 l e n = mbstowcs (w c h a r l i s t , c h a r l i s t , 0) ;
1104 i f (l e n == −1)
1105 l e n = 0 ;
1106 w c h a r l i s t = (w c h a r t ∗) xma l loc (s i z e o f (w c h a r t) ∗ (l e n + 1)) ;
1107 mbstowcs (w c h a r l i s t , c h a r l i s t , l e n + 1) ;
1108 }

Figure 3.2: subst.c in bash-4.2

3.2. These blocks of code convert a multi-byte string to a wide-char string in C
code. Because their functions are identical, S and U are considered able to be
merged, so these clones are true code clones. Meanwhile, Y and M considered the
fact that Figure 3.2 is a code fragment in a larger function having more than 100
LOCs. Because it may be difficult to apply refactoring, these clones should be false
positives of the CDT.

Moreover, from Table 3.1 we can see that Y was more strict than the three
other students. In the comment to this survey, Y mentioned that only clones that
contain an entire body of a C function are candidates. This unique standard was
also reflected in all five true clones he chose.

Based on the above motivating survey, we feel that a classifier based on the
content of source code is necessary during a clone analysis to meet the individual
usage of each user. Therefore, we developed the classification method described in
the following sections.

3.3 FICA System

In this section, we introduce the general working process of the FICA system,
which ranks detected clones based on the historical behavior of a particular user.
As a complement to existing CDTs that filter unexpected clones, FICA is designed
as an online supervised machine learning system, which means that the user should
first classify a small portion of the input manually, and then FICA gradually adjusts
its prediction while more input is given by the user. By adapting this process into
a traditional code clone analyzing environment, the desired code clones could be
presented to the user more quickly.

3.3.1 Overall Workflow of FICA System

The overall workflow of FICA is described in Figure 3.3 and listed as follows.

17

Figure 3.3: Overall workflow of FICA with a CDT

1. A user submits source code to a CDT.

2. The CDT detects a set of clones in the source code.

3. The user marks some of these clones as true or false clones according to
her/his own judgment, and then submits these marked clones to FICA as a
profile.

4. FICA records the marked clones in its own database.

5. Meanwhile, FICA studies the characteristics of all these marked clones by
using machine learning algorithms.

6. FICA ranks other unmarked clones based on the result of machine learning,
which predicts the probability that each clone is relevant to the user.

7. The user can further adjust the marks on code clones and resubmit them to
FICA to obtain a better prediction. FICA will also record these patterns that
it has learned in a database associated with the particular user profile so that
further predictions can be made based on earlier decisions.

The main purpose of the FICA system is to find the true code clones from the
result of a CDT, or in reverse, to filter out the false code clones, by using a clas-
sification method. As we have shown in the motivating example, whether a code
clone is true or false largely depends on the user’s subjective purpose. Our FICA

classifier is designed to consider this subjective factor and to be helpful regardless
of different users.

18

3.3.2 Classification Based on Token Sequence of Clones

FICA utilizes a CDT to obtain a list of code clones from source code. The
resulting output from the CDT should contain the following information for each
code clone:

1. Positions of the code clone fragment in the original source code.

2. A sequence of tokens included in the code clone fragment.

Most existing token-based CDTs meet this requirement. Text-based CDTs usu-
ally output only the positional information of code clones; in this case, code clone
fragments need to be parsed through a lexical analyzer to obtain the required lexical
token sequences.

FICA compares the exact matched token sequence of reported clone sets from
CDTs. These clones are known as type-2 clones in other literature. Type-2 clone
instances from a clone set should have the same token sequence. FICA compares
the similarity of the token sequences for the following reasons:

• The similarity of the token sequences was pointed out by [45] as one of the
best characteristics for filtering out unneeded clones, which are referred to
as rejected candidates in that study.

• The types of each token in the token sequence are identical among all in-
stances of a type-2 clone set.

• The required token sequence is obtainable as a side-product of a token-based
CDT.

By using the token sequence from CDT, FICA can save the time of reparsing the
source code, which should have been done by the CDT. Therefore, FICA can be
integrated with the CDT as a complementary system.

3.3.3 Marking Clones Manually

To be used by FICA as an initial training set, only a small set of clones found
by CDT is required to be marked manually by the user of FICA. The considered
types of marks on clones can be Boolean, numerical, or tags:

• Boolean clones are marked based on whether they are true code clones.

• Range clones are marked with a numerical likelihood to be true code clones.

• Tagged clones are marked by one of several tags or categories by the users
based on their use, such as refactoring, issue tracking ID, etc.

19

As the most simple case, users need to tell FICA what kind of clones should
be treated as true code clones. Numerical type marks are an extension of Boolean
type marks used in the situation that the user wants to say finding clone A is more
useful than finding clone B but less useful than finding clone C. Tag type marks can
be considered as a possible extension of Boolean type ones that involve multiple
choices. For example, clones marked with the tag refactoring are suitable
candidates for refactoring, or clones marked with the tag buggy are clones that
tend to have bugs.

Also, a FICA user is allowed to have multiple profiles in the system, with each
profile representing a use case of code clones. Profiles should be trained separately
and FICA will treat them as individual users.

3.3.4 Machine Learning

Receiving the clones from the CDT and the marks from the user, FICA studies
the characteristic of the marked clones by calculating the similarity of the lexical
token sequence of these clones. This step employs a machine learning algorithm
that is widely used in natural language processing or text mining. The algorithm
used is similar to that used in GMail for detecting spam emails or the CJK Input
Methods used in suggesting available input candidates. By comparing the similar-
ity of marked and unmarked clones, FICA can thus predict the probability of an
unmarked clone set being a true positive. Details on the machine learning model
and algorithm are described in Section 3.4.

3.3.5 Cycle of Supervised Learning

FICA returns the predicted marks for all remaining clones by ranking or cal-
culating the probability of the user considering them as true clones. The user is
allowed to correct some of these predictions and resubmit them to FICA to obtain
a better prediction. This is known as the cycle of supervised learning. Eventually,
FICA is trained to filter all clones according to the interest or purpose of the user.
Furthermore, the patterns learned by FICA are also recorded in a database associ-
ated with the particular user. As a result, further predictions on clones can be made
based on earlier decisions of the same user.

3.3.6 Comparing to Metrics-based Clone Filtering

Before this research, many methods have been proposed to filter unneeded code
clones from the detection result using a metric-based approach. [26, 27] proposed
a metric-based approach to identify code clones with higher refactoring opportu-
nities. Their method calculates six different metrics for each code clone and then

20

1. clone sets as input

2. Calculating similarity

4. Rebalancing

5. Ranking based on probability

6. Reordered input

3. Marks by user

Figure 3.4: Classification process in FICA. Parallelograms represent input data or
output data, and rectangles represent the procedures of FICA.

represents the plotted graph of these metrics as a user-friendly interface to allow
users to filter out the unneeded code clones. One of the best metrics called Ratio
of Non-Repeated code sequence (shortened as RNR) is reported to be useful in
filtering unneeded code clones.

This user-defined metric-based filtering method was further automated by [28].
Koschke is targeting a different objective, which is identification of license viola-
tions, but has also used metrics and machine learning algorithms on those metrics
to form a decision tree. The result of the decision tree limits the types of metrics to
only two, which are PS (Parameter Similarity) and NR (Not Repeat).

These metric-based methods all have a limited identification target, thus while
they result in higher reported accuracy comparing the method proposed in this
paper, the users of these methods are required to have a basic understanding of the
meaning of these metrics. For example, filtering clones using RNR is useful only
when the users wanted to filtering those code clones with repeated code sequence.

Comparing to these metric-based methods, our proposed method do not require
the clone related knowledge from user, and can be used on different targets.

3.4 Machine Learning Method

The classification process in FICA is described in Figure 3.4. FICA can be
viewed as a supervised machine learning process with these steps:

1. Retrieving a list of clone sets by a predefined order from a CDT.

2. Calculating the text similarity among those clone sets by their cosine simi-

21

Figure 3.5: Structure of input to FICA

larity in TF-IDF vector space.

3. Receiving the true or false clone marks from the user as training sets of
machine learning.

4. Rebalancing the input set in order to get identical data points in each set of
the training sets.

5. Calculating the probability for each clone set of the different classifications
in the marked groups.

6. Ranking and reordering the clone sets based on their probabilities.

The user can adjust the marks that FICA has predicted and submit the marks
again to FICA, as in step 3, which then forms the supervised machine learning
cycle.

3.4.1 Input Format of FICA

As a support tool for CDTs, FICA needs to extract code clone information
from the output of the CDTs. The structure of all the information needed by FICA

is represented as the UML diagram in Figure 3.5.

22

A project consists of the original source code and the detected code clones
represented as clone sets. The source code fragments are tokenized by the
CDT. As FICA needs both tokenized source code for calculating the similarity and
the original source code for presenting back to the user, these two forms are passed
together to FICA. A clone set is a set of identical code fragments. By identical,
we mean the tokenized code fragments are literally equal to each other in a clone
set. We are targeting type-2 code clones; therefore, all the token types in a clone
set are identical.

A clone in a clone set is the tokenized code clone fragment in the orig-
inal source file in the project, The list of token types in the clone set should be
equivalent to the types of tokens in every clone in the clone set. A token has a type
and a position in the original source code. An example of how the input of FICA

looks like is in Figure 3.6.

3.4.2 Calculating Similarity between Clone Sets

FICA calculates the TF-IDF vector [47] of clone sets, which is widely used
in machine learning techniques in natural language processing. In FICA we de-
fine term t as an n-gram of a token sequence, document d as a clone set,
and all documents D as a set of clone sets that can be gathered from a single
project or several projects.

A previous study by [46] suggested that the similarity of token sequences is
one of the best characteristics for identifying false candidates from type-3 clones.
Similar to their study, we also need to calculate the similarity among clones. There-
fore, we use a metric from the token sequence to capture syntactic information. In
contrast to their study, we compare similar type-2 clones. Therefore, we need a
metric that can tolerate structural reordering of source code, such as reordering of
statements. Based on these two objectives, we use n-grams of the token sequences.

First, we divide all token sequences in clone sets into n-gram terms. Let us
assume we have a clone with the following token types:

STRUCT ID TIMES ID LPAREN CONST ID ID TIMES ID RPAREN . . .

If we assume that N for n-gram equals 3, then we can divide this clone into
n-grams as:

STRUCT ID TIMES
ID TIMES ID

TIMES ID LPAREN
ID LPAREN CONST

LPAREN CONST ID
CONST ID ID

ID ID TIMES

23

P r o j e c t : g i t −v1 . 7 . 9
f i l e s :

b l o c . c
c o n s t char ∗ b l o b t y p e = ” b l ob ” ;
s t r u c t b l ob ∗ l o o k u p b l o b (c o n s t . . .
. . .

t r e e . c
c o n s t char ∗ t r e e t y p e = ” t r e e ” ;
s t a t i c i n t r e a d o n e e n t r y o p t (. . .
. . .

b u i l t i n / f e t c h −pack . c
b u i l t i n / r e c e i v e −pack . c
b u i l t i n / r e p l a c e . c
b u i l t i n / t a g . c
. . .

c l o n e s e t s :
1 : t o k e n t y p e s : STRUCT ID TIMES ID LPAREN CONST . . .

c l o n e s :
b l ob . c (6 : 1) − (2 3 , 2)
t r e e . c (1 81 , 1) − (19 8 , 2)

2 : t o k e n t y p e s : ID RPAREN SEMI RETURN INT CONST . . .
c l o n e s :

b u i l t i n / r e p l a c e . c (3 9 , 4 8) − (5 7 , 1 0)
b u i l t i n / t a g . c (154 ,45) − (172 ,10)

. . .

Figure 3.6: Example of input format for FICA

24

. . .

Then we calculate all the term frequency values of n-grams within this
document of clone set by Equation 3.1.

TF(t, d) =
|t : t ∈ d|

|d|
(3.1)

Equation 3.1 states that term frequency of term t in document d is the
normalized frequency, where term t appears in document d. The result of TF
of the above clone set is as follows:

RETURN ID SEMI :0 .00943396226415
ID RPAREN LBRACE :0 .0283018867925
SEMI RETURN ID :0 .00943396226415
ID SEMI IF :0 .00943396226415
ID LPAREN CONST :0 .00943396226415
TIMES ID RPAREN :0 .00943396226415
IF LPAREN LNOT :0 .0188679245283
RPAREN LBRACE ID :0 .00943396226415
LPAREN RPAREN RPAREN :0 .00943396226415
SEMI RBRACE RETURN :0 .00943396226415
RETURN ID LPAREN :0 .00943396226415
ID ID RPAREN :0 .00943396226415
TIMES ID COMMA :0 .0188679245283
. . .

Analogously, the inverse document frequency IDF and TF-IDF are
calculated by Equations 3.2 and 3.3.

IDFD(t) = log
|D|

1 + |d ∈ D : t ∈ d|
(3.2)

TF-IDFD(t, d) = TF(t, d)× IDFD(t) (3.3)
−−−−−−−→
TF-IDFDd = [TF-IDFD(t, d) : ∀t ∈ d] (3.4)

Equation 3.2 states that the inverse document frequency idf for term
t in all documents D is the logarithm of the total number of documents divided
by the number of documents containing term t. In Equation 3.2, we add 1 to the
denominator to avoid division by zero. By combining tf and idf as Equation 3.3,
we can then calculate the vector space

−−−−−−−−−→
TF-IDF(d,D) as in Equation 3.4 for each

clone set in the overall documents.
By using TF-IDF, we define the cosine similarity CosSimD(a, b) of two clone

sets, a and b, with regard to a set of documents D, as in Equation 3.5 and 3.6.

25

(a) clone sets grouped by similarity (b) Colored force-directed graph

Figure 3.7: Force-directed graph of clone sets of bash 4.2. Blue circles mean true
code clones and red means false code clones.

SimD(a, b) =
−−−−−−−→
TF-IDFDa ·

−−−−−−→
TF-IDFDb (3.5)

CosSimD(a, b) =

 0, SimD(a, b) = 0
SimD(a,b)∣∣∣−−−−−−→TF-IDFDa

∣∣∣·∣∣∣−−−−−−→TF-IDFDb
∣∣∣ , otherwise (3.6)

After calculating the similarity among all clone sets within a project, we can
then plot them based on the force-directed algorithm described in [48] to show the
similarity among code clones. As an example, Figure 3.7(a) illustrates the clone
sets grouped by their similarity. The details of the force-directed graph (FDG) are
discussed in Subsection 3.5.3.

3.4.3 User Profile and Marks on Clone Sets

A profile represents a user’s preferences with regard to the classification of
clones stored in FICA. A user is allowed to keep multiple profiles for different use
cases of FICA. The implementation of FICA does not distinguish a user from the
profiles, so for simplicity, the remainder of this paper assumes that every user has a
single profile, and FICA needs an initial training set to provide further predictions.

26

A mark is made on each clone set by the user. Marks, which indicate this clone
set has certain properties, are recorded in the user profile. We considered three
kinds of marks that users can make on these clone sets. Boolean marks flag a clone
set that the user thought to be true or false clones. Numerical marks represent
a weight, or importance, assigned by each user, saying that clone set A is more
important than clone set B. Tag marks are not exclusive, which is useful in multi-
purpose code clone analysis for classifying the clones into multiple overlapping
categories.

A training set is a set of clone sets that have been marked by the user. For
Boolean marks, the training set M is divided into two sets of clone sets, Mt and
Mf , each of which donates a true set and a false set, where Mt ∩Mf = ∅,Mt ∪
Mf = M . For range marks, there is only one group of training sets, M , and each
clone set m in M is associated with a weight w(m). For the tag marks, several
groups of clone sets are in the form of Mx, with each set donating a different tag.
The probability calculation is the same. These groups can overlap each other, and
doing so does not affect the result of the calculation.

For each clone set t that has not been marked, FICA calculates the probability
that this clone set t should also be marked in the same way as those in clone set
group Mx by using Equation 3.7.

ProbMx(t) =

1,
∑

∀m∈Mx

w(m) = 0∑
∀m∈Mx

CosSimMx(t,m) · w(m)∑
∀m∈Mx

w(m)
, otherwise

(3.7)

Here, w(m),m ∈ Mx is a weighting function for marked clone set m in
clone set group Mx. For Boolean or tag marks, we defined w(m) = 1; thus,∑

∀m∈Mx
w(m) = |Mx|, which is the size of clone set group Mx. For numerical

range marks, the weighting function w(m) is defined as a normalized weight in
[0, 1].

As expressed in Equation 3.7, the probability that a clone set t should also be
marked as Mx is calculated by the average normalized similarity of t and every
clone set in the clone set group Mx. For predicting Boolean marks, FICA can
compare the calculated probability of the clone being a true or false clone, and
choose the higher one as the prediction. For range marks, the average normalized
similarity is multiplied by w(m) from the user’s input. For tagged marks, FICA

needs to set a threshold for making predictions.

27

FICA makes predictions based on the probability and ranks all the code clones
by the value calculated from ProbMx(t). For Boolean marks, the ratio of the prob-

ability for the true clone set and the false clone set,
ProbMT

(t)

ProbMF
(t) , is used as a ranking

score. For tagged marks, the probabilities for each individual tag are ranked sep-
arately, and the tag with the highest probability is chosen as the prediction result.
Range marks have only one group of marks. Therefore, the probability ProbM (t)
is used directly for ranking.

A special case occurs when the sum of the weighting functions is equal to zero;
in this case, we define the probability to be 1. This special case occurs when no
such data is chosen in clone set group Mx. An arbitrary value is possible in this
case as we have no learning data, but we chose 1 to prevent division by zero in
calculating the ratio between probabilities.

After the prediction, all clone sets are marked either by the prediction of FICA

or by the user’s input. An example of all Boolean marked clone sets in the above
force-directed graph is shown in Figure 3.7(b). The result of the FICA prediction is
presented to the user, so that the user can check its correctness, approve some or all
of FICA’s prediction or correct other predictions as needed. After correcting part
of the result, the user can resubmit the marks to FICA to get a better prediction.

3.5 Experiments

3.5.1 Implementation Details

FICA was implemented as a proof-of-concept system. We implemented the
described algorithms for computations of the similarity of code clones, as well as
a customized token-based CDT that outputs exactly what FICA requires. Also,
we wrapped the CDT part and FICA together by using a web-based user interface,
which is referred to as the FICA system from now on2.

The FICA system manages the profiles of users as normal login sessions, like
those in most websites. One of the users uploads an archive of source code to the
FICA system. Then FICA unzips the source code into a database and then passes
the code to the CDT part of the FICA system as in Figure 3.8.

The CDT part of the FICA system implements the algorithm for constructing
a generalized suffix tree described by [49] and the algorithm of the detection of
clones among multiple files in the generalized suffix tree. Code clones and types of
token sequences are recorded in a database.

Then the FICA system shows a comparison view of detected clone sets to the
2FICA with experimental data can be accessed here: http://valkyrie.ics.es.

osaka-u.ac.jp

28

Archive file

Project Name

Token Length

Groupping

Upload a c source file archive

No file selectedChoose File

Supported archive filetypes:
WinZip archive(*.zip),

Tarball archive(*.tar),

gzipped tarball(*.tar.gz, *.tgz),

bz2 tarball(*.tar.bz2, *.tbz2).
Extension filename is used to determine filetype.

48

Only detecting clones in different files.

Also detecting clones in the same file.

Figure 3.8: Upload Achieve of Source Code to FICA

Figure 3.9: FICA showing clone sets

29

user, as shown in Figure 3.9. The user can mark Boolean tags on these clone sets,
and the FICA system stores these marks immediately in the database associated
with the user profile. While the user is marking those clone sets, the FICA system
calculates the similarity among those clone sets and trains its prediction model by
including the user input into its training set on the server side in the background.
As a result, the feedback of user inputs in the FICA system can be gained in nearly
real time.

3.5.2 Experimental Setup

To test the validity and user experience of the proposed method, the following
experiment was conducted. We uploaded the source code of four open source
projects as experimental targets, as shown in Table 3.2. For all the projects in
Table 3.2, we only included .c files and ignored all other files as unnecessary
because all four projects were developed in C language. As the parameters passed
to the CDT part of the FICA system, we only detected clone sets that contained
more than 48 tokens, and only reported those clone sets from different files. These
two parameters were chosen based on experience. Namely, the length limitation
less than 48 for C projects is more likely to result in small false positives, as well
as for clones from the same source code file. Although too many clone sets are
an obstacle to conducting this experiment, those small false positives should be
detectable in FICA as well. The CCFinder, one of the well-known CDTs proposed
in [50], uses a length of 30 tokens as a default parameter. This length is widely
accepted in both industrial and academic studies, while its definition of tokens is
compacted. For example, CCFinder treats an IF followed with a LEFT BRACE as
one compressed token, whereas our CDT considers them as two tokens. Based on
our experience, a length limit of 48 tokens generates almost the same amount of
code clones as CCFinder.

Altogether, 32 users participated in this experiment. Each user had different
experiences about code clone detection techniques. They were required to mark

Table 3.2: Open source projects used in experiments
Project & Version # of clone sets LOC Tokens Files # of Participants
git v1.7.9-rc1 78 153,388 829,930 315 32
xz 5.0.3 36 25,873 113,894 113 27
bash 4.2 105 133,547 494,248 248 25
e2fsprogs 1.41.14 62 99,129 442,978 274 25
Total 281 411,937 1,881,050 950 32

30

git xz bash e2fsprogs
0

20

40

60

80

100

(a) # of True Clones

git xz bash e2fsprogs
0

20

40

60

80

100

(b) # of False Clones

Figure 3.10: # of true and false clones from the selected data of users

those clone sets found by the CDT built in the FICA system when using Boolean
marks as true or false clones. The users were told the steps of the experiments but
not the internal techniques used in the FICA system. Consequently, they were not
aware that the FICA system compares clone sets by the text similarity of lexical
token types. Also, we informed the participants that the experiment would take
approximately 2 hours to complete, with approximately 30 seconds per clone set.

As the order of the clone sets affects the prediction result of the system, we
disabled the reordering feature of the FICA system. The users were presented with
the list of clone sets in a fixed order from the original results of the CDT. This fixed
order is determined by the suffix tree algorithm used in the CDT and appears to be
random from the user’s perspective. The number of true code clones and false code
clones selected by the users are shown as box-plots in Figure 3.10.

The experiment was conducted on the Internet through the FICA web interface.
Among the 32 participants, 13 were graduate students or professors in our school,
7 were from clone-related research groups in other universities, while the others
were in industry and interested in clone related research. All of these participants
are or were majors in computer science or software engineering. Regarding their
programming language preferences, almost all of the participants used Java as one
of their main languages, while 11 also mainly used C. Furthermore, we ensured
that none of the participants ever contributed to the development of the four target
software projects.

We used 5-grams throughout the experiments. The size of the n-gram was
selected based on our experience. It is certain that increasing the N value improves
the theoretical accuracy of the algorithm. Theoretically, the upper bound size of

31

the possible types of n-grams grows exponentially with the N value, although in
practice this size is also limited by the size of input. Therefore, increasing the
value of N increases the calculation time accordingly. From our experience of the
implementation, any N value greater than 3 generates a similar ranking result, while
any N value less than 6 enables the prediction of one pass to end in a time limit of
1 second, which is reasonable for interactive usage. Furthermore, we intended to
capture the syntactic context of the token sequence and tolerate the reordering of
statements. Since 5 is the median length per statement of a C program, we adapted
the N value of 5 in our experiments.

3.5.3 Code Clone Similarity of Classification Labels by Users

We showed in Figure 3.7 that the clone sets from a given project have a ten-
dency to group into clusters. To further illustrate this phenomenon, we use a semi-
supervised learning approach that compares the result of a clustering algorithm
with the selection of the users. Note that this semi-supervised clustering approach
is used only to show the underneath relations among our dataset of code clones,
but it is not part of the FICA machine learning process.

We applied the KMeans clustering algorithm [51] on the TF-IDF vector of our
datasets with K = 8 as the target cluster number for each software project. As a
result, the KMeans algorithm labeled each clone set with a cluster id from 0 to 7,
and all four software projects converged in at most four iterations. The K value of
KMeans is determined by trial, and we experimented with values from 5 to 10. In
practice, the K value grows with the scale of the targeted software project.

Then we overlaid the labels from the KMeans algorithm onto the FDG, as in
Figure 3.11. For each project in FDG, a clone set is represented as a circle drawn in
a mixture of red and blue. Blue circles mean true code clones and red means false
code clones. Partially red and blue circles indicate clone sets for which people
had different opinions, and the relative area occupied by the two colors reflects
the relative number of opinions. The central color always represents the majority
opinion. The numerical text in each circle is the label of the clustering result by the
KMeans algorithm.

For each pair of clone sets, a link exists between the circles if the similarity
between the clone sets is greater than a threshold, which is adjustable from the web
interface in real time.The values of similarity were assigned as the force strength on
the links between the circles of clone sets. We used the d3.js javascript library
by [52] to generate this FDG. Some other technical details about this graph are
listed in Table 3.3.

To show the distance among the clones in each cluster by KMeans, we cal-
culated the average normalized cluster distance, as in Table 3.4. The distances in

32

4 7

7

6

6

6

0

5

6

7

6

3

6

37

4

7

4

6

7

0

6

5

7

5

6

6

6

5

6

0

0

1

0

7

7

5

5

6

6

6

2

3

6

6

5

3

7

6

0

1

6

4

2

0

0

7

6

4

6

7
7

0

3

2

3

0

7

2 2

5

2

2

2

2

2

2
2

(a) Code clone similarity of git

3

2

3

4

2

5
2

0

4

2

0

2

5

2

4

4

0

2

4

1

5

6

5

3

6

2

1

5

63

3

7

7

3

2

5

(b) Code clone similarity of xz

3

5

6

2

5

6

3

2

7
7

3

2

0

3

1 1

7

6

6

6

1

2

22

1

1
1

6

2

3

1

7

2

2

1

2

0

1 1

6

3

2

1

7 3

0

0

6

3

1

1

6

1

6

3

1

6

3

1

3

1
1

6

6

0

1

1

6

1

2

3

3

4

2

2

2

4

0

4

5

4

4

5

5

5

6

4

5

3

3

2

5

3

4
6

5

6

7

2

5

5

6

6

0

4

(c) Code clone similarity of bash

7

6

6

7

1

0

0

1

6

2

1

7

4

5

6

6

4

2

2 2

6

22

2

6

7

7

0

5

6

6
1

3

0

0

7

6

5

3

5

7

4

4

6

7

5

3

0

1

7

5

5

4

6

7

1

7

7

0

7

2

4

(d) Code clone similarity of e2fsprogs

Figure 3.11: Code Clone Similarity with classification by users

33

this table were normalized from 0 to 1, where the larger number indicates a larger
distance among the clone sets and the most distance clone sets have a score of 1.

Figure 3.11 shows that groups of false positives are more similar than groups
of true positives. Thus, these false positives are closer to each other in the figure
and are clustered with the same label by KMeans. For example, in the git project,
the cluster with ID 2 has an average normalized distance of 0.21; this means that
the false clone sets appear to be closer than the cluster with ID 6, whose average
normalized distance is 0.9. This result indicates that the probability of false clone
sets calculated by Equation 3.7 is more accurate than the probability of true clone
sets, because false clones are grouped into categories more tightly.

We calculated the homogeneity and completeness scores defined by [53]. These
two scores compare the labels of the clustering result with the label of ground truth,
which comprises the selected marks by the users in our dataset. These two scores
reveal the different characteristics of clustering:

Table 3.3: Parameters for force-directed graph

Parameter Value
force.size 800
force.charge 100
link.linkDistance 1/link.value
link.linkStrength link.value/16 + 0.2

link.stroke-width 10 ·
√
link.value

node.r 13 ·major/(minor/1.5 +major) 3.8
node.stroke-width 8 ·minor/(minor/1.5 +major) 3.9

major = max {|true|, |false|} (3.8)

minor = min {|true|, |false|} (3.9)

Table 3.4: Average normalized distance of clusters by KMeans
0 1 2 3 4 5 6 7

git 0.78 0.46 0.21 0.36 0.73 0.78 0.9 0.55
xz 0.64 0.46 0.37 0.66 0.58 0.77 0.45 0.0
bash 0.79 0.18 0.19 0.87 0.25 0.06 0.9 0.14
e2fsprogs 0.76 0.74 0.42 0.33 0.71 0.76 0.79 0.79

34

git-v1.7.9-rc1
xz-5.0.3

bash-4.2

e2fsprogs-1.41.14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Homogeneity

git-v1.7.9-rc1
xz-5.0.3

bash-4.2

e2fsprogs-1.41.14
0.00

0.05

0.10

0.15

0.20

0.25

(b) Completeness

Figure 3.12: Homogeneity and completeness between users’ marks and clusters by
KMeans

homogeneity scores high when each cluster contains only members of a single
class.

completeness scores high when all members of a given class are assigned to the
same cluster.

As we have eight clusters by the KMeans algorithm and two classes from the marks
of users, the homogeneity is expected to be high and the completeness is expected
to be low. For each software project, we compared the marks of each user with
the KMeans labels and used a boxplot to show these two scores in Figure 3.12.
We can see the co-relationship of users’ marks with the clusters from the KMeans
algorithm.

The internal reason for this result is the fact that almost all false clone sets fall
into categories of meta-clones with certain obvious characteristics of their token
types, such as a group of switch-case statements, or a group of assignments.
Meanwhile, the true clones are harder to classify into similar categories. In gen-
eral, true code clones usually contain rare sequences of tokens. Thus, we have
observations 1 and 2, regardless of the subjective judgment of participants,

Observation 1 (Categories of False Clones). False code clones are more likely to
fall into several categories of meta-clones by comparing the literal similarity of
their token types.

35

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O P

Q

R

S

T

U

V

W

X

Y

Z

AA

AB

AC

AD

AE

AF

AG

Author Study Use Lecture Never

(a) Similarity

never lecture use study author
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Homogeneity

Figure 3.13: Similarity and Homogeneity of Users’ Selection with Their Experi-
ence

Observation 2 (Diversity of True Clones). True code clones composed of se-
quences of tokens are more diverse than false clones by comparing the literal sim-
ilarity.

3.5.4 Similarity among Users’ Selection

We also draw a FDG of users to illustrate the similarity among their selection
and homogeneity of them for each experience category, as in Figure 3.13. Different
colors in the FDG represent the user’s experience with code clone detection tech-
nology, which is manually selected by these participants during the on-line survey,
with options given as in Table 3.5 in that order. The levels with higher experiences
are supposed to cover the levels with lower experiences. For example, the author
of a clone detection tool is expected to also be studying on the topic of code clones.
Therefore the user can only select one category from these options.

As we can see from Figure 3.13, selections from participants with more knowl-
edge with code clone techniques (those who selected author or study) are more
similar to each other, while selections by participants with less experience with
code clone tends to vary differently.

36

3.5.5 Ranking Clone Sets

To measure the quality of supervised machine learning of FICA, we adapted
a measure called Average true Positive Found (referred to as ATPF) proposed by
[25]. Their study is similar to ours in that they also reordered the clone list accord-
ing to the structure similarity. Here, the word positive refers to the clones predicted
by FICA that have a high likelihood of being true clones, rather than the result from
the CDTs.

The measure of ATPF is visualized as a graph capturing the cumulative pro-
portion of true positives found as more clones are inspected by the users. In the
cumulative true positives curve, a larger area under the curve indicates that more
true positives were found by the users early; this means the refinement process
effectively re-sorts the clone list.

An example of an ATPF graph is shown in Figure 3.14(a). In the ATPF graph,
both the X-axis and the Y-axis are the number of clone sets, where the value of
the X-axis is the number of clone sets presented to the user while the value of the
Y-axis is the number of clone sets that the user considers as true clones. The graph
has two cumulative curves. The “result” curve in blue is the result after reordering
by our tool, while the “compare” curve in red is the original order presented by the
CDTs. For our embedded CDT, the output order of clones is in alphabetical order
of the token sequence because of the suffix tree algorithm.

In Figure 3.14(a), 78 clone sets are found by the CDT, but only 3 of them are
regarded as true clones by the user. As we can see from the “compare” curve,
these 3 true clone sets are distributed in the very beginning, the middle, and near
the tail of the clone set list. In the result curve, our method successfully rearranged
the order of the clone list, so that all three true clone sets appeared at the front part
of the clone set list. In a real working environment, this will significantly increase
the efficiency of the user.

As the user can also change the sorting order to filter out the false clone sets,

Table 3.5: User Experience of Code Clone Categories

Experience Category Means
Author “I Implemented a Clone Detection Tool”
Study “Code clone is one of my research topics”

Use “Using code clone detectors in works”
Lecture “Heard a lecture of code clone”

Never “Never heard of code clone”

37

Clonesets

Tr
u
e
 P

o
si

ti
v
e
s

(a) Average True Positives Found

Clonesets

Fa
ls

e
 N

a
g

e
ti

v
e
s

(b) Average False Negatives Found

Figure 3.14: Average True Positives Found and Average False Negatives Found for
different users on git project

we defined Average False Negative Found (referred to as AFNF), which is similar
to the definition of ATPF shown in Figure 3.14(b). Analogously, the word negative
refers to the clones that have a high likelihood to be false clones by FICA. As
we can see in the AFNF graph, the algorithm generates more false negatives in
the beginning, and then after approximately 64% of the clone list is processed, the
result fails to be better than the compared result. This behavior of the algorithm is
expected. By reordering the list of clones, moving the desired clone to the end of
the list is a small probability if the clone is similar to those previously marked as
not desired by the user.

3.5.6 Predictions for Each Project

To measure the accuracy of predictions made by FICA with the marked labels
from the user, we define a metric called “accuracy” as the percentage of how many
predictions by FICA are equal to the selections of the user, that is, the percentage
of both true positives and true negatives in all clone sets.

We trained the FICA system by using the marked data of eight users on all clone
sets for each project. The accuracy of our prediction model is shown in Figure 3.15.
The horizontal axis of the figure is the percentage of training sets and the vertical
axis is the previously defined “accuracy” of prediction. Three steps were required
to perform a prediction:

1. The FICA system randomly selected a part of all clone sets from a project as
the training set and the remaining were used as the comparison set.

38

(a) FICA Prediction on git (b) FICA Prediction on xz

(c) FICA Prediction on bash (d) FICA Prediction on e2fsprogs

Figure 3.15: Accuracy of machine learning model by FICA

2. For the division of training and comparison sets, FICA trained its machine
learning model with the training set and calculated a prediction for each
clone set in the comparison set.

3. FICA compared the predicted result with the mark made by a user, and cal-
culated the accuracy.

We repeated these three steps 256 times for each training set size, and the
plotted values of accuracy in the Figure 3.15 are the averaged results of the 256
times prediction.

We can see from Figure 3.15 that the prediction results change with the users
and the target projects. For all four projects and nearly all users, we can see that the
accuracy of the prediction model grows with the portion of the training set. As the
training set grows, in the beginning the accuracy of the prediction increases quickly
until it reaches a point, between 10% to 30%, where it increases more slowly.

Among all four projects, the bash project shows the most desirable result,
namely, most of the prediction accuracies are over 80% when the training set is
larger than 16%, which is approximately 17 of all 105 clone sets. The results of the
git project and the e2fsprogs project largely depend on the user, for example,

39

the result of user H always achieves more than 90%. Meanwhile, the results of user
A and C converge to approximately 60% and even decrease when the training set
is growing. The reason why the result did not converge to 100% and the accuracy
dropped is discussed in Section 3.5.9.

By combining the Observation 1 with the details from the result of Figure 3.15,
we got our Observation 3.

Observation 3 (Minimum Size of Training Set). The minimum required size for
the training set grows roughly linearly with the number of categories that the clone
sets fall into, which is less than the total number of detected clone sets.

We can also observe from Figure 3.15 and 3.16 that the different prediction re-
sults of users are separated into different levels. The predictions for some particular
users, namely user R and user V, are always low, which means less literal similarity
is found among the clone sets they marked as true clones. Also, the prediction for
user H is high for all projects. This result shows the consistency of user behaviors.

Note that experience of the user is not necessary affecting the accuracy of pre-
diction. This is just suggesting that the results from experienced users tend to be
more similar. Some of the participants, such as user Q, share little in common with
other users, while still conducted a reasonable prediction accuracy.

3.5.7 Cross Project Evaluation

To illustrate that the training data of selections by the users can be applied
across different projects, we merged all clone sets from the four projects into a
single project and repeated the above experiment again. The result is shown in
Figure 3.16. The result is actually better than the result for a single project, except
for the bash project.

To simulate a real cross-project analysis, we also did a cross-project evaluation.
For each user and each pair of the four projects, we trained the model with the
data gathered from one project and evaluated our method on the other. We used
the same accuracy definition and drew the boxplot of the users in Figure 3.17.
The result varies with the project: e2fsprogs/bash is a desirable result and
xz/git is an undesirable result. We expect this kind of variation in the results,
because each project has its own characteristics for code clones. In practice, the
user of the FICA system is expected to cross-analyze similar projects when finding
similar code clone categories in both projects.

3.5.8 Recall and Precision of FICA

We also measured the recall and precision for separated true positives and false
negatives of FICA as support for our definition of accuracy. Firstly we defines the

40

Figure 3.16: Merged result of all projects

bash/e2fsp
rogs

bash/git

bash/xz

e2fsp
rogs/b

ash

e2fsp
rogs/g

it

e2fsp
rogs/x

z

git/b
ash

git/e
2fsp

rogs
git/x

z

xz/b
ash

xz/e
2fsp

rogs
xz/g

it
0

20

40

60

80

100

Figure 3.17: Accuracy of predictions with training/evaluation projects

41

true clones as the clones that are considered interesting by the user, and the false
clones as the clones that are considered un-interesting. Then we defines the positive
clones as the clones that are predicted as interesting by FICA and negative clones
as otherwise.

Based on these definitions, we referred to true positive as tp, true negative as
tn, false positive as fp, false negative as fn. We then defined the recall and precision
for tp and fn as in Equations 3.10 to 3.13.

recalltp =
tp

tp+ fn
(3.10)

precisiontp =
tp

tp+ fp
(3.11)

recallfn =
tn

tn+ fp
(3.12)

precisionfn =
fn

fn+ tn
(3.13)

We took 20% of all the clone sets as the training set, the remaining as the
evaluation set, and then repeated the experiment 100 times. The result is shown
as the boxplot in Figure 3.18. From the boxplot we can see a similar result to that
of Figure 3.15, as the git and bash projects show good results while the results
for xz and e2fsprogs are not so comparable. These recall and precision charts
show a trend similar to the accuracy graph in Figure 3.15; that is, when the project
has clustered clone categories, the result is more appropriate.

3.5.9 Reason for Converging Results

For all projects in Figure 3.15 and 3.16, the accuracy of predictions made by
FICA converges to approximately 70% to 90% and it is difficult to achieve 100%.
In this section, we discuss some code fragments to show the reason.

The first example comes from the xz project in Figure 3.19. These three code
fragments have two code clone pairs. The code from Figure 3.19(a) in lines 130
to 142 and the code from Figure 3.19(b) are the code fragments of the first clone
pair, referred to as clone α. The code from Figure 3.19(a) in lines 136 to 145
and the code from Figure 3.19(c) are the code fragments of the second clone pair,
referred to as clone β. As we can see from the source code, each instance of clone
α consists of a complete function body. Clone β consists of only two half parts
of functions. Thus, from the viewpoint of the ease of refactoring, clone α is much
easier than is clone β. On the other hand, the calculated similarity between clone α
and β is greater than 43% by Equation 3.5. This is a very high percentage among

42

(a) git (b) xz

(c) bash (d) e2fsprogs

Figure 3.18: Recall and precision of FICA in each project

43

130 }
131 re turn LZMA PROG ERROR ;
132 }
133 s t a t i c vo id
134 b l o c k e n c o d e r e n d (l z m a c o d e r ∗ coder , l z m a a l l o c a t o r ∗ a l l o c a t o r)
135 {
136 l z m a n e x t e n d (& coder−>next , a l l o c a t o r) ;
137 l z m a f r e e (coder , a l l o c a t o r) ;
138 re turn ;
139 }
140 s t a t i c l z m a r e t
141 b l o c k e n c o d e r u p d a t e (l z m a c o d e r ∗ coder , l z m a a l l o c a t o r ∗ a l l o c a t o r ,
142 c o n s t l z m a f i l t e r ∗ f i l t e r s l z m a a t t r i b u t e ((u n u s e d)) ,
143 c o n s t l z m a f i l t e r ∗ r e v e r s e d f i l t e r s)
144 {
145 i f (coder−>s e q u e n c e != SEQ CODE)

(a) src/liblzma/common/block encoder.c

61 }
62 re turn LZMA OK;
63 }
64 s t a t i c vo id
65 a l o n e e n c o d e r e n d (l z m a c o d e r ∗ coder , l z m a a l l o c a t o r ∗ a l l o c a t o r)
66 {
67 l z m a n e x t e n d (& coder−>next , a l l o c a t o r) ;
68 l z m a f r e e (coder , a l l o c a t o r) ;
69 re turn ;
70 }
71 s t a t i c l z m a r e t
72 a l o n e e n c o d e r i n i t (l z m a n e x t c o d e r ∗next , l z m a a l l o c a t o r ∗ a l l o c a t o r ,
73 c o n s t l z m a o p t i o n s l z m a ∗ o p t i o n s)

(b) src/liblzma/common/alone encoder.c

474 e l s e
475 l z m a f r e e (coder−>l z . coder , a l l o c a t o r) ;
476 l z m a f r e e (coder , a l l o c a t o r) ;
477 re turn ;
478 }
479 s t a t i c l z m a r e t
480 l z e n c o d e r u p d a t e (l z m a c o d e r ∗ coder , l z m a a l l o c a t o r ∗ a l l o c a t o r ,
481 c o n s t l z m a f i l t e r ∗ f i l t e r s n u l l l z m a a t t r i b u t e ((u n u s e d)) ,
482 c o n s t l z m a f i l t e r ∗ r e v e r s e d f i l t e r s)
483 {
484 i f (coder−>l z . o p t i o n s u p d a t e == NULL)

(c) src/liblzma/lz/lz encoder.c

Figure 3.19: Example of source code in xz

44

all the other similarities between clone sets, because these two clones share a large
amount of identical code fragments. As the result, 7 out of 8 users thought that
clone pair α were true clones and 6 out of 8 users thought that clone pair β were
false clones, while FICA always thought they belonged to the same group.

Another example comes from the e2progs project shown in Figure 3.20. It
is clear that two code clone pairs are found in Figure 3.20. The code from Fig-
ure 3.20(a) and that from Figure 3.20(b) form the first code clone pair, referred to
as clone γ, and the code from Figure 3.20(c) and Figure 3.20(d) forms the second,
referred to as clone δ. Users can tell these two clone pairs are different because
clone γ consists of two function bodies and can be merged into one function, while
clone δ consists of two lists of function declarations. However, the calculated sim-
ilarity between clone γ and δ is greater than 6.4%, which is large enough to affect
the overall result. The reason why FICA regarded them as similar is that they share
many common N-grams, such as STATIC ID ID LPAREN CONST or CONST
ID TIMES ID COMMA, which results in the high value of similarity.

Based on the above discussion, we learned from the examples that comparing
code clones by only their literal similarity has some limitations. We will continue
to learn how much this limits the result and whether we can improve the accuracy
by combining other methods, such as the hybrid token-metric based approach.

3.5.10 Threats to Validity

The internal and external validity of our methodology faces several threats.
First, we focused on whether a code clone is a true clone, which depends on

the subjective judgment of the particular user. Therefore, the subjective nature of
the experiment leads to a major threat to the internal validity of our work. We sent
out invitations to participate in the experiment through mailing lists and twitter;
therefore, most of the authors participated in the experiment and most of them
shared an academic background. We tried to reach software developers in industry,
but failed to collect enough amount of data to be useful in this study.

Second, while conducting the experiment, we could not enforce a general rule
for the participants, so we depended on the participants to maintain consistency
during the experiment, which is not a trivial task.

Third, the accuracy and precision of our work were evaluated against the set of
true clones, which can be affected by the subjective emotions of the participants.
We also recorded the time spent by each participant during the selections, and
found that the participant with the worst prediction accuracy spent the longest time.
However, we could not find a similar correlation among other participants.

Moreover, the implementation of FICA and the way we conducted the experi-
ment may also be a threat to internal validity. Although FICA did not enforce the

45

48 re turn 0 ;
49 }
50 s t a t i c i n t p a r s e b l o c k (
51 c o n s t char ∗ r e q u e s t ,
52 c o n s t char ∗desc ,
53 c o n s t char ∗ s t r ,
54 b l k t ∗ b l k)
55 {
56 char ∗ tmp ;
57 ∗ b l k = s t r t o u l (s t r , &tmp , 0) ;
58 i f (∗ tmp) {
59 c o m er r (r e q u e s t , 0 ,
60 ”Bad %s − %s ” ,
61 desc , s t r) ;
62 re turn 1 ;
63 }
64 re turn 0 ;
65 }
66 s t a t i c i n t
67 c h e c k b r e l (char ∗ r e q u e s t)

(a) tests/progs/test rel.c

44 re turn 1 ;
45 }
46 s t a t i c i n t p a r s e i n o d e (
47 c o n s t char ∗ r e q u e s t ,
48 c o n s t char ∗desc ,
49 c o n s t char ∗ s t r ,
50 e x t 2 i n o t ∗ i n o)
51 {
52 char ∗ tmp ;
53 ∗ i n o = s t r t o u l (s t r , &tmp , 0) ;
54 i f (∗ tmp) {
55 co m er r (r e q u e s t , 0 ,
56 ”Bad %s − %s ” ,
57 desc , s t r) ;
58 re turn 1 ;
59 }
60 re turn 0 ;
61 }
62 void
63 d o c r e a t e i c o u n t (i n t argc ,
64 char ∗∗ a rgv)

(b) tests/progs/test icount.c

68 s t a t i c e r r c o d e t t e s t w r i t e b l k 6 4 (i o c h a n n e l channe l ,
69 unsigned long long block , i n t count , c o n s t vo id ∗ d a t a) ;
70 s t a t i c e r r c o d e t t e s t f l u s h (i o c h a n n e l c h a n n e l) ;
71 s t a t i c e r r c o d e t t e s t w r i t e b y t e (i o c h a n n e l channe l ,
72 unsigned long o f f s e t , i n t count , c o n s t vo id ∗ buf) ;
73 s t a t i c e r r c o d e t t e s t s e t o p t i o n (i o c h a n n e l channe l ,
74 c o n s t char ∗ o p t i o n , c o n s t char ∗ a r g) ;
75 s t a t i c e r r c o d e t t e s t g e t s t a t s (i o c h a n n e l channe l , i o s t a t s ∗ s t a t s) ;
76 s t a t i c s t r u c t s t r u c t i o m a n a g e r s t r u c t t e s t m a n a g e r = {

(c) lib/ext2fs/test io.c

102 s t a t i c e r r c o d e t u n i x w r i t e b l k (i o c h a n n e l channe l ,
103 unsigned long block , i n t count , c o n s t vo id ∗ d a t a) ;
104 s t a t i c e r r c o d e t u n i x f l u s h (i o c h a n n e l c h a n n e l) ;
105 s t a t i c e r r c o d e t u n i x w r i t e b y t e (i o c h a n n e l channe l ,
106 unsigned long o f f s e t , i n t s i z e , c o n s t vo id ∗ d a t a) ;
107 s t a t i c e r r c o d e t u n i x s e t o p t i o n (i o c h a n n e l channe l ,
108 c o n s t char ∗ o p t i o n , c o n s t char ∗ a r g) ;
109 s t a t i c e r r c o d e t u n i x g e t s t a t s (i o c h a n n e l channe l , i o s t a t s ∗ s t a t s)
110 ;
111 s t a t i c vo id r e u s e c a c h e (i o c h a n n e l channe l , . . .

(d) lib/ext2fs/unix io.c

Figure 3.20: Examples of source code in e2fsprogs

46

exact order in which the participants viewed the code clones, it is quite possible
that these participants were affected by the order in which FICA listed the clones.
They could gain experience during the former part of the experiment and apply the
experience during the latter part.

Our experiment with participants assumed that these participants were inde-
pendent. We sent out invitations to participate in the online experiment through
email and twitter. It is quite possible that many of these anonymous participants
were from the same clone-related research group in our university. Therefore, they
may share some common knowledge that was not common for all participants. We
tried to reach more participants outside our research group, for example, experts
with an industrial background. However, it was very hard to collect data from
programmers who had no interest in code clone research.

With regard to external validity, our current implementation and experiments
only covered a small part of our overall methodology. We combined FICA with
a token-based CDT without proving that it can work with other CDTs, although
the method should be CDT neutral. Also, FICA only experimented with Boolean
marks of the code clones. Whether other kinds of marks such as range marks or
tag marks will affect the result is uncertain.

47

Chapter 4

Revealing Purity and Side Effects
on Functions for Reusing Java
Libraries

4.1 Introduction

It is difficult for programmers to reuse software components without fully un-
derstanding their behavior. The documentation and naming of these components
usually focuses on intent, i.e., what these functions are required to do, but fails to
illustrate their side effects, i.e., how these functions accomplish their task [15]. For
instance, it is rare for API function1 signatures or documentation to include infor-
mation about what global and object states will be modified during an invocation.

It is hard to reuse the modularized components, because of the possible side
effects in API libraries. For instance, it is usually unclear for programmers whether
it is safe to call the APIs across multiple threads. In addition, undocumented API
side effects may be changed during software maintenance, making debugging even
more challenging in the future [16].

By understanding of side effects in the software libraries, programmers can
perform high level refactoring on the source code that is using the functional part
of the libraries. For instance, the return value of math functions such as sinwill be
the same result if the same parameter is passed, therefore the result can be cached if
the same calculation is performed more than once. Moreover, the calculation with-
out side effects are good candidates for parallelization[17]. However, the purity

1We interchange the term function with the term method throughout this paper referring to the
same thing. We use function to refer the ideas that originate from the functional paradigm, and
method to refer the ideas that originate from object-oriented paradigm such as Java.

49

information is usually missing in external libraries, therefore programmers would
risk introducing bugs with such refactorings, for example, caching the result of a
function which depends on the mutable internal state.

In this paper, we present an approach to infer a function’s purity from byte code
for later use. Programmers can use effect information to understand a function’s
side effects in order to reuse it. For example, the approach can help to decide
whether it is safe to cache or parallel a time-consuming calculation.

The contributions of this research include:

• An extended definition of purity as stateless or stateful in object-oriented
languages such as Java.

• An approach to automatically infer purity and side effects,

• A concrete implementation for Java bytecode,

• A set of method annotations that document the details of effects such as
return value dependencies or variable state modifications, for programmers
to understand the effects.

• Experiments on well-known open source software libraries with different
scale and characteristic.

In our experiments,we found that 24–44% of the methods in the evaluated open
source Java libraries are pure. Also, we observed methods that should be pure in
theory but not in the implementation, and revealed tricks or potential bugs in the
implementation by a case study of our approach.

We achieved the same percentage of pure functions with the existing study
without a manually created white-list, and we revealed which side effects these
functions were generating which would not found in the existing studies. We fo-
cused on revealing these side effect information on real world software libraries to
be used by the programmers and tools.

Furthermore, we focus on refactoring these pure functions and propose a new
category of high-level automatic refactoring patterns, called purity-guided refac-
toring. In the following part of this paper, we will discuss the purity-guided refac-
toring. As a case study, we applied a kind of the purity-guided refactoring, namely
Memoization refactoring on several open-source libraries in Java. We observed the
improvements of the performance and the preservation of semantics by profiling
the bundled test cases of these libraries.

The following sections cover the details of these contribution in separate sec-
tions.

50

4.2 Purity and Side Effect

In this section, we firstly discuss how to adopt the ideas of pure functions into
a traditional object-oriented(OO) language. Secondly we define a formal syntax of
targeted language as the basis of our discussion. Thirdly we discuss our definition
of the purity and side effects based on the targeted language, with a set of annota-
tions to document these informations. Lastly we discuss the rules that should be
followed by these annotations.

4.2.1 Stateless & Stateful Purity of Functions

The notion of purity on functions does not match well with other OO paradigm
concepts. In OO languages, program states are usually encapsulated within ob-
jects, which use well-defined boundary functions called methods to interact with
each other. This is the opposite of a pure functional paradigm where states of the
program are passing through function arguments.

Moreover, we noticed that most objects have a life span pattern of creation,
use and destroy. Many objects will not change their states after properly created,
and the methods called on them simply query these internal states. We would
like to distinguish these state-querying methods from those methods that modify
the states. Through our research we have observed that OO libraries can contain
around 24-44% of functional code that does not modify the program’s state.

Revealing the functional part of a program enables to perform refactoring by
programmers and tools, such as parallelizing the computation, which is difficult
without the knowledge of these side effects.

Based on the above observation, we defined a function as pure if it does not
generate side effects such as modifying the state outside the object. Note that this
definition is slightly different from the traditional definition of pure functions by
return value dependencies [54]. Meanwhile, many existing studies such as [36, 38,
55] share the same purity definition with us. To illustrate the difference of two
definitions, we divide our definition of a pure function into stateless and stateful
functions:

Definition 4.2.1 (Stateless). If the return value of a pure function is only deter-
mined by the state of its arguments.

Definition 4.2.2 (Stateful). If the return value of a pure function is also determined
by the states of member fields.

All other non-pure functions generate side effects. Although the notion of a
stateful pure function may seem like a contradiction, we can view the state of field

51

members as extra arguments, so that they can be converted into the mathematical
form of a pure function. An example of a stateful pure function is equals method
in Java, which compares the value equality of two objects. Although they depend
on an object’s state, well-formed equals methods do not change the state.

4.2.2 Formal Syntax of a Core Language

Firstly we need to clarify what kind of languages we are targeting. We for-
malize the syntax of our targeted language as the core language in our discussion.
This research focuses on Java-like programming languages. More formally, we are
targeting statically-typed type-safe OO languages. This means that each variable
in a program is associated with a statically defined type, and operations on these
variables can be checked during compiling time. Wild pointers are not allowed
in these languages, which gives us the ability to reason about the reference alias
safely. Many industrial programming languages fall into this category, including
C#, Java and Scala. Dynamic-typed languages such as PHP, Python and Ruby are
not covered, where types of variables are determined at runtime. Note that although
Scala eliminates most of the necessity on defining the type of variables, those types
are statically inferred by the compiler, rather than determined at runtime.

Note that there are infrastructures that may break type-safety in the targeted
languages, such as the unsafe keyword in C#. Studies suggest that unexpectedly
breaking type-safety may be a consequence of implementation limitations [56].
Besides, there are studies that suggesting unexpected breakage of type-safety be-
cause of limitations on the implementations such as literature [56]. Our research
does not address these problems and will generate false results if the target source
code utilizes some of these infrastructures. For example, the program may modify
some state through unsafe pointers, which is not possible to check statically.

Our approach differentiates the types of variables in the programs between
reference types and value types. Variables with the reference types behave like the
pointers in C++, i.e. they may point to the same object thus share the same state,
meanwhile variables with the value types can not share the same state. We use the
same definition with C# and Java. Value types in Java is limited to primitive types,
while in C# programmers can introduce new value types with struct keyword
in addition to primitive types. For the brevity, we also ignore the use of special
reference facilities provided by libraries in these languages such as unsafe pointers,
as they may break the type safety of these languages.

For brevity, we follow a style similar to prior work [57], restricting our formal
definitions to core calculus in an A-Normal Form with the syntax in Figure 4.1.
This core language abstractly models the syntax of a Java-like language. Our im-
plementation extends this model and handles the general case of a normal Java

52

cd ::= class C extends D {fdmd} class
fd ::= τ f ; field
md ::= α τ m(τ x){τ y b} method
b ::= s block
s ::= return v ; | v=v ; | statement

if(v){b} | for(s; v; s){b}
v ::= vn|vp|vl|vt|vs|vf | value

vu|vb|va|vc|vm
vn ::= new τ (τ x) new object
vp ::= x parameter
vl ::= y | c local variable
vt ::= this.f this field
vs ::= C.f static field
vf ::= v.f member field
vu ::= unary v unary operator
vb ::= v binary v binary operator
va ::= v[v] array access
vc ::= (τ)v cast
vm ::= v.m(v) function call

Figure 4.1: The formal syntax of our core language, where C and D are class
names, τ is a type name, x is a parameter name, y is a local variable name, c is a
literal constant, f is a field name, m is a method name, and α represents method
annotations defined in Figure 4.3.

program.

4.2.3 Lexical State Accessors and Side Effects

The main purpose of this research is to reveal the side effects of functions.
Therefore we need to define what is an effect and what is a side effect of a function.

Definition 4.2.3 (Effect). We define the effects of a function as the modifications to
the states of the program, including the return value.

Definition 4.2.4 (Side Effect). We define the side effects of a function as the modi-
fications to the states of the objects or performing I/O operations.

The effects of a functions are all the side effects plus the return value. Ac-
cording to the single response principle in [58], a function should have exactly one

53

effect, either calculating a value and return it, or doing one kind of modification
to the state of the program. Disobeying this practice usually leads to problematic,
unmaintainable coding style.

Definition 4.2.5 (Lexical State Accessor). We define a lexical state accessor to be
any variable that is directly accessible within a function’s lexical scope before the
execution.

In statically-typed OO languages such as Java, lexical state accessors of a func-
tion include the possible this pointer, the arguments, the member fields within
the same class, and the static fields in any arbitrary classes. Note that local vari-
ables defined inside a function are excluded in the definition of lexical accessors,
because they do not exist outside the function’s body. We focus on lexical variables
because they can be easily identified and understood from the function definition
by programmers.

All possible modifications to the state of a program are achieved by accessing
the aforementioned lexical state accessors. There are two forms of modification:
changing the values of these accessors directly, or modifying indirectly though
the use of lexical state accessors. These modifications are considered to be the
side effects of executing the function. Additional side effects include directly or
transitively calling system routines to perform I/O operations.

For example, in the Huffman algorithm source code in Figure 4.2, there are
four classes with several member functions that may call each other.

The constructors of class Leaf and Node demonstrate side effects, as they
changed the member fields. The methods freq in three classes demonstrate the
data dependency on lexical state accessors, because they return the state from their
internal member fields. These freq methods do not modifies the object states,
therefore they are stateful pure functions by our definition. The overridden method
freq in class Tree will be covered in the Section 4.2.5.

A.changeArg modifies the state of its argument through a copy of reference,
which should be recognized as a side effect. A.getM exposes the state of a mem-
ber field m, which makes it possible to modify the member outside the function.
A.modifyM calls both A.getM and A.changeArg, transitively applying the
side effect of A.changeArg to the exposed state from A.getM by modifying a
member field. In contrast to these functions, A.create creates a new array and
returns its reference, then A.modifyTemp modifies the temporary array created
from it by calling A.changeArg, which does not change any existing object state
in the lexical scope. Despite the fact that A.changeArg can have side effects,
neither A.modifyTemp nor A.create modify the state of any existing objects.

The last function in class A, change, overrides the function in its super class
Base, which will be covered in the Section 4.2.5.

54

class Tree extends Comparable{
int freq() { return 0; }
int compareTo(Tree t) {
return freq() - t.freq();

}
}
class Leaf extends Tree {

char v; int f;
Leaf(int fr, char va) { f = fr; v = va; }
int freq() { return f; }

}
class Node extends Tree {

Tree l, r;
Node(Tree le, Tree ri) { l = le; r = ri; }
int freq() { return l.freq() + r.freq(); }

}
class Main{

Tree build(int[] chrs) {
PriQueue q = new PriQueue();
for(int i = 0;i < chrs.length; i = i + 1)

if (chrs[i] > 0)
q.offer(new Leaf(chrs[i], (char)i));

for (;q.size() > 1;)
q.offer(new Node(q.poll(),q.poll()));

return q.poll();
}
void main(String[] args) {
String test = "this is an example";
int[] chrs = new int[256];
for(int i = 0;i < test.length(); i = i + 1)

chrs[test.getChar(i)]=chrs[test.getChar(i)]+1;
Tree tree = build(chrs);

}
}

Figure 4.2: Effects in Huffman Algorithm

55

α ::= αr(dp)αm(dp, from, target)
αr ::= @Depend |@Expose
αm ::= @Field |@Static |@Argument
dp ::= [dependFields = {s[, s]∗},]

[dependStatic = {s[, s]∗},]
[dependThis = true,]
[dependArguments = {s[, s]∗}]

from ::= [from = {s[, s]∗}]
target ::= name = s,type = t,owner = t

t ::= τ.class

Figure 4.3: Syntax for proposed annotations. τ is a type name. s is a string value.

Functions B.thisAdd and B.staticAdd demonstrate the data dependency
of return value, where the return value of B.thisAdd depends on an argument
and a member field, and the return value of B.staticAdd depends on a member
field and a static field. These return value dependencies are effects but not side
effects of the corresponding functions. The function B.setS changed the value
of the static field. The function B.changeArg calls a function on a Base ob-
ject, which is possible to modify the state of this object. And finally, the function
B.change calls several modifier functions.

4.2.4 Effect Annotations

We introduce a set of method annotations to indicate the effects that can arise
during invocation. For each method, several annotations can be prepended, each
representing a side effect that for example modifies one member field. We de-
fine the syntax of these annotations in Figure 4.3. The proposed annotations ex-
press the effects such as direct or transitive modifications to lexical state acces-
sors, with the possible data dependency between these effects and other lexical
state accessors from the function. The data dependencies are captured in annota-
tion records such as dependThis, dependArguments, dependFields and
dependStatic, with detailed informations such as types and owner classes of
the fields. Although the this pointer is not a mutable variable in the context of
a target function, it is possible to compare the identity by using this pointer to
other pointers or expose this pointer as return value of the function, hence the
this pointer is included in data dependency.

• αr: return value annotations. These two annotations capture the dependency

56

class Tree extends Comparable {
@Depend(dependThis=true,
dependFields= {"Tree Node.r", "int Leaf.f", "Tree Node.l"}
from = {"int Leaf.freq()","int Node.freq()"})

int freq() { return 0; }
@Depend(dependThis=true,
dependArguments= {"Tree tree"},
dependFields= {"Tree Node.r", "int Leaf.f", "Tree Node.l"})

int compareTo(Tree t) { return freq() - t.freq(); }
}
class Leaf extends Tree {

char v; int f;
@Field(type=int.class, owner=Leaf.class,
name="f", dependArguments= {"int fr"})

@Field(type=char.class, owner=Leaf.class,
name="v", dependArguments= {"char va"})

Leaf(int fr, char va) { f = fr; v = va; }
@Depend(dependThis=true, dependFields= {"int Leaf.f"})
int freq() { return f; }

}
class Node extends Tree {

Tree l, r;
@Field(type=Tree.class, owner=Node.class,
name="l", dependArguments= {"Tree le"})

@Field(type=Tree.class, owner=Node.class,
name="r", dependArguments= {"Tree ri"})

Node(Tree le, Tree ri) {
l = le; r = ri;

}
@Depend(dependThis=true,
dependFields= {"Tree Node.r", "Tree Node.l"})

int freq() { return l.freq() + r.freq(); }
}

class Main{
@Depend(dependArguments= {"int[] chrs"})
Tree build(int[] chrs) {
PriQueue q = new PriQueue();
for(int i = 0;i < chrs.length; i = i + 1)

if (chrs[i] > 0)
q.offer(new Leaf(chrs[i], (char)i));

for (;q.size() > 1;)
q.offer(new Node(q.poll(),q.poll()));

return q.poll();
}
void main(String[] args) {
String test = "this is an example";
int[] chrs = new int[256];
for(int i = 0;i < test.length(); i = i + 1)

chrs[test.getChar(i)]=chrs[test.getChar(i)]+1;
Tree tree = build(chrs);

}
}

Figure 4.4: Annotated Huffman Algorithm

57

of a return value:
@Depend specifies the dependency of a function’s return value of the func-
tion.
@Expose specifies the exposed state of lexical variables returned from a
function.

• αm: modification annotations. These three annotations capture the modifi-
cations to lexical state accessors. Multiple annotations of the same kind are
possible when there are multiple modifications within the function.
@Field represents the modification to member fields.
@Static represents the modification to static fields.
@Argument represents the modification to arguments, which should be a
reference type so that pass-by-value semantics can affect the state of real ar-
guments.
The members of these modification annotations are:
name represents the name of the field.
owner is the name of the class that defined the field.
type is the type name of the field.

Two return value annotations αr capture the dependency of return value, whether
it depends on other state accessors or exposes the state of other state accessors.
Three modification annotations αm capture the modifications on the lexical state
accessors. Multiple annotations of the same kind are possible if there are multiple
modifications in the function.

Taking the source code from Figure 4.2, the annotated version of the same
source code is represented in Figure 4.4. We can see how the function effects
discussed in the previous subsection directly map to the example annotations. The
schema of Java annotations allows us to directly use meta-class objects such as
Tree.class, rather than using a string representation.

Although @Argument annotations may be more suitable on the correspond-
ing arguments, the syntax would become ugly. In this simple example, the an-
notation occupies more lines than the source code on the constructors, but in ac-
tual code they are less distracting. As the single response principle suggests, the
side effects of a function should be as little as possible. For example, the func-
tion Main.build in Figure 4.4 is annotated with only one @Depend annotation,
which is fewer lines than its function body.

The effect annotations are intended to be used by both programmers and tools
that process the program, as a contract describing the given function. This con-
tract can be viewed as a complimentary to the function signature and exception
specification that imposes restrictions on the implementation of the function.

58

An example application of these annotations is for a programmer to annotate a
function to restrict a function’s possible side effects, and then use a static checker
to ensure this restriction. For example, programmers can ensure that the build
function in Figure 4.4 is a pure functions and its return value only depends on
the argument. If there were any other side effects occur in the build function,
a static checker can notify them. Another kind of application would be to use
the static checker to infer these annotations automatically from the given program,
thus helping programmers to understand the function’s side effects. We will discuss
about the process of such kind of static checker in Section 4.3.

4.2.5 Reverse Inheritance Rule

Effect annotations are viewed as part of the method signature to indicate its
behavior. However, it is impossible to know in general exactly which method will
be statically called due to dynamic dispatch in OO languages. Like the inheritance
rules for checked exceptions in Java expressed in a throws clause, purity annota-
tions on subclass methods must be more restrictive than the methods they override.
Therefore we merge the annotations from methods in the subclasses and annotate
the merged result on the overridden methods in the super classes. We defined this
rule as the reverse inheritance rule. Reverse inherited annotations in a super class
are specially marked as “from” to distinguish them from annotations directly on
the method.

As an example, in Figure 4.4, both Node.freq and Leaf.freq override
the method in class Tree, so the method Tree.freq should inherit all the ef-
fects from these methods. Note that the name of arguments could be changed in
overriding methods, so the positions of arguments are used to convert these names.

4.3 Automatic Inference of Purity and Side Effects

In this section, we present our approach to automatically infer the purity and
side effects. And then, we will describe how to utilize our approach during the
reusing of software components.

4.3.1 Call Graph and Data Analysis

The analyzer identifies method targets by using a class diagram and call graph.
The class diagram records the inheritance relationship of classes (including inter-
faces) and the overriding relationship between methods in a class hierarchy. The
call graph records the invocation instructions inside the method body, which points

59

Figure 4.5: Class Diagram with Call Graph

to another method defined in the class diagram. An example class diagram is shown
in Figure 4.5.

Our analyzer traverses all of the methods in the class diagram, inferring possi-
ble effects including side effects. We capture only the dependencies of lexical state
accessors, during these three analysis stages:
data flow analysis estimates the return value dependency.
reference alias analysis identifies possible modifications to lexical state accessors
that are side effects.
control flow analysis supports data dependence calculations on conditional branches.

There are three kinds of lexical state accessors as defined in Section 4.2.3,
which are the static fields (shortened as S) of a class, the member fields (shortened
as F) of an object, and the arguments (shortened as A) passed to the function.

Definition 4.3.1 (Data Dependency Set). We define a data dependency as the value
of a lexical state accessor before a function executes, and a dependency set (DS)
as the set of data dependencies such that DS ⊂ {x|x ∈ S ∪ F ∪A}.

The above definition of dependency set is used in both our data flow analysis
and reference alias analysis. The difference between the dependency sets used in
these two analyses is that we only consider reference type dependencies in refer-
ence alias analysis, and value type dependencies in data flow analysis. All depen-

60

dencies suitable in reference alias analysis are also suitable in data flow analysis,
but not vice versa. We define two dependency sets used in these two stages of anal-
ysis as:
reference dependency (rd) is a DS of the possible reference aliases.
value dependency (vd) is a DS that affects the value.

Our analyzer interpret the code, follow the instructions in the given function,
and apply the aforementioned three analysis. The analyzer begins its interpretation
by breaking the code of a given function into statement blocks using control flow
analysis, where we define a block to be a sequence of statements. The block can
be associated with a value of its condition if it is nested in a if or while statement.
Next, the analyzer interprets each block’s instructions to evaluate the value depen-
dencies and obtain a list of effects. During the interpretation stage, each value is
represented as a triplet of its static type, a reference-dependency set, and a value
dependency set (V = (type, rd, vd)).

At the beginning of the interpretation of the given function, the argument val-
ues are assigned with value and reference dependencies of themselves. Next we
interpret each instructions of the function by following the transfer functions in Ta-
ble 4.1. The input of a transfer function is V before the execution of the instruction,
and the output is the new V after the execution. Besides the reference and value
dependency sets in this table, the static types of these values should also be calcu-

Table 4.1: Transfer Functions for Values and Instructions
Instuctionsa Code Pattern Reference Dependency b Value Dependency
new object new τ ∅ ∅
parameter x {x} {x}
local variable y ∅ ∅
member field this.field {field} {field}
static field Class.field {field} {field}
object field V .field Vrd Vvd

unary operation op V ∅ V
binary operation V1 op V2 ∅ V1vd ∪ V2vd

array access V1[V2] V1rd V1vd ∪ V2vd

type cast (τ)V Vrd Vvd

assignment V1 = V2 V1rd V2vd

return value return V ∅ ∅
merge V1rd ∪ V2rd V1vd ∪ V2vd

aDefined in the core language syntax in Figure 4.1.
bIf the corresponding type is a reference type, otherwise ∅

61

boolean f(int[] a, int b) {
if(a.length > 0){ // condition depends on arg a

1: int [] local = a; // copy reference
2: a = new int[1]; // overwrite reference
3: a[0] = local[0]; // not modification
4: local[0] = b; // modify arg a
5: b = a[0]; // not modification
6: return true;
}else{
return false; // depend on arg a

}
}

Figure 4.6: Example of Data and Control Analysis

lated as defined in the language specifications. Note that the “merge” instruction
in this table merges the branches of statements during the interpretation. Besides
the instructions listed in the table, there is another important kind of instructions,
the function invocations, described in Section 4.3.2.

During interpretation, possible function effects are collected when processing
assignment instructions. We initially mark two kinds of dependencies: modifica-
tion behavior for reference dependencies and return statement for value dependen-
cies. Both dependencies are merged with the value dependency set for the current
block.

An example of the interpretation stage is represented in Figure 4.6. At the be-
ginning of interpretation, the reference dependency of a is assigned as argument
a, and the value dependency of a and b are assigned as corresponding argument
names. There are two blocks in this code which are associated with the branch
condition a.length > 0. Since the value dependency of this condition is argu-
ment a, both two blocks depend on the state of a. Then, during the interpretation
of the first block:

1. The reference of a is copied into local, which implies that the reference
dependency of local is {a}

2. The reference dependency of a is now ∅

3. A modification behavior is performed on the reference dependency of a,
which is ∅, and thus has no side effects.

4. A modification behavior is performed on the reference dependency of local,
with a value dependency of {b}. An @Argument effect on a is generated
with a data dependency on b and a control flow dependency on a.

5. A modification behavior is performed on ∅.

62

6. A return statement generates a Depend effect with a value dependency of ∅
and an value dependency of the constant true, which is then merged with
the control dependency on a.

The analysis on the else block generates the same Depend effect, and these two
Depend effect are then merged.

4.3.2 Effects from Function Invocations

There is one kind of important instruction that is not covered in Table 4.1,
which will be discussed in this subsection. We refer to the function containing an
invocation as a caller, and the function being called as a callee. When the analyzer
sees a function invocation instruction during interpretation, it generates possible
effects by examining the data flow across the invocation boundaries. Fortunately,
this cross-function analysis is possible with the generated effect information on the
callee, so that we do not need to examine the codes of the caller and callee at the
same time.

When the effect annotations on the callee are not available during analysis of
a caller, the analyzer simply ignores the invocation, pretends callee has no effects,
and then refreshes the result when the annotations on the callee become available.

There are two kinds of invocation instructions in Java: static and dynamic dis-
patch. Dynamic dispatch is used to call virtual methods, and static dispatch is used
to call non-virtual methods and special cases such as calling overridden methods
defined in a super class.

During cross-function analysis, we use a different set of effect annotations ac-
cording to the type of invocation, based on whether it includes the reverse-inherited
annotations or not.

All of the invocation instructions share the same form as Vobj.function(Varg).
All side effects on static fields are transferred from callee to caller. If there are argu-
ment effects generated on the callee method, i.e., when the callee is modifying the
state of a passed argument, then the analyzer will generate a modification behav-
ior on the reference dependencies of corresponding position, as if the modification
occurred inside the caller method.

The Vobj is the object that owns the method, which could be this, ClassName
or a certain dynamically calculated value during the interpretation. Static member
methods on ClassNames are guaranteed not to generate modification side effects
on member fields. If a reference dependency of Vobj is this, all the modification
side effect information on member fields will be copied, otherwise a single mod-
ification effect on the reference dependency of the current Vobj will be recorded.
This behavior of analyzer follows the definition of lexical state accessors described

63

in Section 4.2.3 to distinguish between directly and transitively accesses of these
accessors.

Finally, if the interpreted invocation expression returns a value, we need to de-
termine the reference and value dependency of its return value. The reference de-
pendency of the invocation expression is the reference dependency of return value
from callee, and the value-dependency of this expression is the merged value de-
pendencies of all Varg.

With the effect information on the functions, we can simply determine whether
a function is a pure function, and further, whether it is stateful or stateless. A func-
tion that has no modifications is considered to be a pure function. A pure function
whose return value depends only on arguments is considered to be a stateless pure
function.

4.3.3 Iteration to a Fix-point of Class Diagram

A function’s effects depend on the effects of its callees as well its overriding
functions, potentially causing a function to be analyzed several times. In addition,
recursive functions may also be analyzed multiple times. We continue analyzing
until the effects are inferred. We set a flag in each function on the class diagram to
indicate whether the effects for this function need to be inferred or updated.

We also differentiate two sets of effects: static effects and dynamic effects,
because we differentiate between static and dynamic dispatch invocations.

In the syntax of annotation defined in Section 4.2.4, the dynamic effects are
recorded with a from clause, whereas the static effects have no from clause.

Firstly, we initialize all methods in the class diagram with both static effects
and dynamic effects as ∅. Next we mark the flags for all of these methods as “need
to be analyzed”. Then, for each method whose flag is marked, the analyzer:

1. Merges the static effects with the result of the data analysis on this method.

2. Sets the dynamic effects to be the merge of static effects and all dynamic
effects of the overridden methods.

3. Clears the flag on this method.

4. If the effects have changed since last analysis, marks the flags of all methods
that depend on this method.

We continue iterating until none of the methods in the class diagram are marked,
which means a fix-point of the analysis is reached. Note that during the execution
of this algorithm, the size of both static effects and dynamic effects only increases
and never decreases. There is an upper limit on the size, which is the sum of

64

numbers of all possible modifications to the fields and arguments in the program.
With the monotone increasing property and the upper bound of the algorithm, we
can guarantee that it will halt.

4.3.4 Applications in Reusing Software Components

We have described how our analyzer infer the effect information. Next, we will
briefly introduce how to use our analyzer from a programmer’s point of view.

Suppose a programmer is facing a reusable software component, either in dis-
tributed binary form or in source code form, and the programmer would like to
know whether it is safe to reuse this component in his new code. The programmer
can apply our analyzer on the candidate component, together with all its dependent
libraries, to obtain a list of side effects on each functions from the component. The
programmer can then decide whether it is safe to reuse the component based on the
side effects.

For example, if the programmer is writing a multi-threaded program, and the
candidate component is accessing some global states, then the programmer may
need to introduce a thread lock to synchronize the accesses to these global states.
As another example, if the candidate function is a pure function reported by our
analyzer, then it is usually safe to reuse this function in the new source code without
introducing hidden data dependency.

Moreover, the output of our analyzer can help the debugging and understanding
of the behavior of software components. It is reported [59] that some bug will
appear only if the programmer execute the unit test separately. Understanding the
side effects could reveal these bugs even before executing the test cases.

4.4 Purity Analyzer Implementation Details

We discuss some of the implementation details of our analyzer in this section.
We chose Java bytecode defined by the Java Runtime Environment (shortened as
JRE) version 6 as our target language, and implemented the described analyzer
based on the widely used ASM library [60]. There are several advantages in target-
ing an intermediate language rather than source code. First, the analyzer is syntax
neutral, so we can automatically analyze all languages targeting the Java Virtual
Machine. Second, the analyzer can be applied on binary libraries without source
code. Finally, the type safety is assured by the JRE’s compiler and bytecode veri-
fier.

65

4.4.1 Dynamic Building Class Diagram

Our analyzer locates the bytecode of classes by utilizing classloaders in the
JRE. Therefore, the target class files to be analyzed are found in CLASSPATH
directories, and the jar archive file can be handled automatically by the class-
loader. Our analyzer builds the whole class diagram in several passes, and classes
are loaded into the class diagram dynamically as needed.

The analyzer first takes a list of prefixes on the fully qualified class name
matching against the manifests defined in CLASSPATH. These matched classes
form the initial class diagram. Representations of their super classes are also
loaded. These target classes together with their super classes are analyzed in the
first pass.

Each class and function in the class diagram is visited exactly once, if its flag
is marked, during one pass of analysis. The classes that contain called functions,
together with their super classes, are loaded and analyzed in the next pass. Class
diagram building iterates until no more classes are needed, and the whole analyzer
stops when the effect annotations on every function have converged.

4.4.2 Details of Bytecode Processing

There are certain cases when the class file of a given non-abstract methods
mentioned by some loaded methods can not be found in the CLASSPATH directo-
ries. For example, there are usually several types of logging facilities supported,
while only one of them will be dynamically enabled during runtime, and the pro-
gram is guaranteed to function normally when none of them are found. When this
occurs, a special @Call effect annotation is introduced to indicate this unsolved
calling.

It is possible for the compiler to generate functions that do not exist in the
corresponding source code. These generated functions are called bridge functions
by the Java compiler, and are usually marked as synthetic in Java bytecode.
Some of them have a normal name if the compiler can generate one, others have
unusual names like access$100, which does not typically occur naturally in
Java source code. These bridge functions are analyzed normally by our analyzer,
but the annotations on them will not appear in the output as they do not exist in the
corresponding source code.

Another notable detail is the possible inconsistencies between function signa-
ture definitions between the Java language and the Java Virtual Machine. We need a
definition of function signatures to determine the overriding relationship between
the functions in super and derived classes. In the Java Virtual Machine (JVM),
a function signature includes the specific return value type, whereas the Java lan-

66

guage excludes the return type from the definition of a function signature to support
the covariant return type language feature (see Section 8.4.2 of [61]). For exam-
ple, a class that contains both int foo() and void foo() definitions are not
allowed in the Java language, because they have the same signature foo(). But
they are allowed and recognized as a function overloading by the JVM, because
JVM considers different return value in the function signature. Our analyzer fol-
lows the Java language definition. This choice eliminated the possibility to apply
our tool on some bytecode files that are not generated by a Java compiler, usually
from a different language. But this case is quite rare in practical.

4.4.3 Details of Interpretation

Our analyzer directly maps the instructions from bytecode directly to the oper-
ations defined in Figure 4.1. We need to differentiate between the access to member
field of this pointer as state accessor and other kind of access through variables
in lexical scope. Therefore we reasoned about whether the reference-dependency
is this pointer. However, we can only identify those access of this pointer if
it is expressed explicitly in the bytecode. It is possible to store this pointer in
member field or static field, which will generate a side effect, then access it from
these fields, which will be treat as accessing a variable other than this pointer. We
consider this result as appropriate, as effects are still generated to indicate the mod-
ification on one of the lexical state accessors of the method. The same mechanism
is used in judging whether a method is invoked on this object or object through
variables from the lexical scope, which have been discussed in Section 4.3.2.

4.4.4 Manually Provided White-list Functions

When implementing our analyzer, we found that our purity analysis had a
higher true-negative rate than expected. More precisely, we found that over 60%
of the equals functions were annotated as having side effects by our analyzer.
Recall that equals functions should be stateful pure functions as described in
Section 4.2.1. Upon further study, we found that caching the calculation result
inside a member field of an object leads to this high true-negative rate.

We found that the implementation of HashMap.equalsmodifies its member
field HashMap.entrySet, and the implementation of String.hashCode
caches the result in its member field String.hash. By our definition, these
functions change the state of internal member fields, and thus are no longer pure
functions. As a result of these two functions not being pure, callers of these func-
tions were also marked as generating side effects.

Whether this caching behavior could still be count as pure or not depends on

67

class String{
/** Cache the hash code for the string */
private int hash; // Default to 0
...
public int hashCode() {

int h = hash;
if (h == 0 && value.length > 0) {
char val[] = value;
for (int i = 0; i < value.length; i++) {

h = 31 * h + val[i];
}
hash = h;

}
return h;

}
}

Figure 4.7: Example of Cache Semantic in java.lang.String

how programmers would use our analysis tool. For example, the programmer may
want to serialize all the internal states of these objects and preserve the serialized
state during comparison by the equals function. As our result suggested, the
internal states may have been changed during the invocation, therefore the serial-
ized representation is not guaranteed to be identical. For this kind of usage, the
functions should not be treated as pure. On the other hand, the programmer may
only interested in the observable states by invoking well-defined public member
functions, and for these programmers, the functions with caching ability should be
treated as pure functions. We leave the options to the users of our tool to decide
their purity.

To allow the user to override this setting so that the output annotations match
their expectations, we enable our analyzer to take a white-list of pure functions
from the user (regardless of whether our analysis identifies them as pure). For
the white-list, we only calculate data dependencies on the return value. Users
can select whether the functions in the white-list are inheritable, i.e. whether the
functions override them should also be in the white-list.

4.4.5 Detection of Cache Semantics

Although the described analysis works well for identifying modification behav-
iors in theory, we find a difficulty to apply it in practice when member fields are
used solely to cache the calculation results. We refer to the member fields that are
used to cache the calculation results as having cache semantics. We found that the
implementation of HashMap.equalsmodifies its member field HashMap.entrySet,
and the implementation of String.hashCode caches the result in its member

68

field String.hash, as shown in Figure 4.7. By our definition, these methods
change the state of internal member fields, and thus are no longer pure functions.
As a result of these two methods not being pure, callers of these methods were also
marked as generating side effects.

One example of the caching semantic can be found in the String class in the
implementation of the standard JRE, as shown in Figure 4.7. As we can see from
the source code, hashCode caches its calculation result in a member field hash
at the first time of calling, and return the cached result afterwards. The hashCode
function will generate a modification to member field behavior during the previous
data analysis, although changing the caching field hash do not modify the calcu-
lation result.

This caching semantic is not only found by us, but also described in previous
literatures such as [36]. A widely accepted solution to this problem was to accept
a white-list of functions from the user (called special methods in [36]), indicat-
ing that they are proven to be pure by the user manually. For the reason that the
selection of the white-list will impose great impact on the precision of the analyz-
ing result, and they involve human judgments, we do not consider this as an ideal
solution.

To preciously and automatically analyze this kind of methods that have caching
semantics, we extend our analyzer to detect the cache semantics using a heuristic
approach. More precisely, we consider a member field of a class having the cache
semantic if all the following preconditions are true:

P1 The field is assigned either by a constant value, or in only one member func-
tion.

P2 The non-constant assignment on the field occurs within a branch block.

P3 The right-hand value of the non-constant assignment is only depended on
other fields.

P4 The branch condition of the block checks that the value of the modified mem-
ber field is a constant value.

We consider the following values as constant values: constant literals, null pointers
and values of static final member fields that have a primitive type. The
assignment with a constant value is considered as re-initializing the state of the
cache field. The checking with a constant value is considered as checking the
initialized state. In either cases, the value of the field is determined by other fields,
therefore, it cannot be used to store a mutable state of the object.

In the example of String, the member field hash is assigned by hashCode
with a calculation result and by its constructor with a constant value, therefore P1

69

is true. The assignment to hash occurs in a if condition block, therefore P2 is
true. The value of the assignment is depend on the member field value, therefore
P3 is true. Lastly in the condition block, the value of hash is assured to be zero by
the condition check h==0, therefore P4 are true. The member field hash meets all
the preconditions, therefore it is considered to be a caching field by our analyzer.

The modification behavior on the detected caching fields are suppressed from
the effects, and the return value dependencies on these caching fields are ignored.

4.5 Purity-Guided Refactoring

Source code refactoring is generally defined as a disciplined technique for re-
structuring an existing body of code, altering its internal structure without changing
its external behavior [18]. Refactoring is one of many important tasks in software
development and maintenance. Integrated Development Environments (shortened
as IDEs) generally provide supports for common refactoring operations, which
improve maintainability, performance or both, during the software development
process. Machine-aid refactoring is so important that it is promoted as one of the
best practices in both the Extreme programming [19] and Agile Software devel-
opment [20], so that both of them heavily depend on automatic tools to perform
refactoring during the development process.

It is emphasized to preserve the external behavior while performing refactor-
ing so that they can be safely conducted without being evaluated about the breaking
changes. However, it is hard to reason about the semantic behavior of a code frag-
ment automatically by refactoring tools, due to the lack of semantic information
from the traditional static analysis. Therefore, refactoring tools provided by IDEs
generally take more conservative approaches by checking the syntactic structure of
a given code fragment only in the pre-conditions of the refactoring operations.

Determining the possible semantic behavior from only the syntactic structure
of a given code fragment puts heavy limitations on the possible refactoring pat-
terns. Therefore, the refactoring tools provided by IDEs are limited to low-level
structural restructuring on the code fragment, such as Rename Method or Extract
Method. Although there are more high-level refactoring patterns widely recog-
nized and adopted by programmers, such as Replace Loop with Collection Closure
Method [21], currently they are not provided automatically by tools or IDEs and
are applied manually by programmers.

In the other hand, preservation of semantic behavior can be statically checked
for a certain part of the source code, namely the code that use pure functions.
Pure functions are the functions that do not have observable side effects during the
execution. With the property to be side effect free, whether refactoring changed

70

public class PreciseDateTimeField ... {
@Depend(dependFields="long PreciseDateTimeField.iUnitMillis")
public long getUnitMillis(){

return iUnitMillis;
}
@Depend(dependArguments={"long instant"},

dependFields={"int PreciseDateTimeField.iRange",
"long PreciseDateTimeField.iUnitMillis"})

public int get(long instant) {
if (instant >= 0) {
return (int)(instant/getUnitMillis())%iRange;

} else {
return iRange-1+(int)(((instant+1)/getUnitMillis())%iRange);

}
}

}

Figure 4.8: An example of @Depend effect annotations by purano

the semantic behavior of the code fragments that use pure functions can be easily
checked by tools. Therefore, more refactoring patterns become available when
the purity information is inferred from the source code. For instance, the return
value of math functions such as sin will be the same result if the same parameter
is passed, therefore the result can be cached if the same calculation is performed
more than once. Moreover, the calculation without side effects are good candidates
for parallelization [17].

4.5.1 Inference of Purity Information

We use the purano analyzer described in the previous section to infer the pre-
viously described effect annotations. Purano analyzes the provided bytecode of
given Java software, together with all the binary dependency libraries. The output
of purano is a set of annotations that record the purity and side effect information
of all the methods in the given Java software.

An example of the output result from purano can be found in Figure 4.8.
From the figure, we can see that purano is capable of identifying the get method
in PreciseDateTimeField as a pure function, because its return value depends on
both the value of its argument and the state of two member fields iRange and
iUnitMillis.

More importantly, purano collects the data dependencies transitively across
the function invocation boundaries. As shown in the example, the dependency on
member field iUnitMillis is passed from the member method getUnitMillis.
Besides the demonstrated @Depend annotation in the example, purano will also
generate side effect annotations described in the previous subsection if the function
may generate observable side effects during the execution.

71

4.5.2 Purity Queries During Refactoring

With the purity information at hand, refactoring tools can query several seman-
tic properties on a given code fragment that is not available in its syntactic structure.
These semantic properties are useful during both pre-condition checking and code
restructuring. To name a few, refactoring tools can ask the following queries:

Q1 Is this function pure? The tools can query whether the function has modifi-
cation annotations. Whether the given function is stateless or stateful can be
further checked by querying whether the return @Depend on the member
fields.

Q2 Are the objects of this class immutable? The tools can query whether
the class includes a member function except for constructors that generate
@Field side effects or returns an @Exposed member field.

Q3 Which methods modify the value of this field? The tools can query on all
member methods whether the method generate a side effect of type @Field
on the field or @Expose the reference to the field.

This list of queries is rather ad-hoc and far from complete. We only listed the
queries that we use during the case study that will be described in the following
section.

4.6 Case Study: Memoization Refactoring

Memoization refactoring (also referred as memorization) is a refactoring pat-
tern that caches the result of a given function and returns the same result when the
function gets called afterward with the same set of arguments. The implementation
will store the result of the given function into a key-value storage with the set of
the arguments as the key. The purpose of this refactoring is to reduce duplicated
calculations and trade the CPU time with the memory.

The idea of the Memoization refactoring is simple and widely recognized. But
it is often error-prone to apply the refactoring in practice, as the return value of
the function may depend on internal states that may change between the function
calls. Traditionally it requires the programmers to manually check these internal
states and identify the locations that change them, which largely prevents the pro-
grammers from adopting this refactoring. Therefore, automatically tracking these
internal states is essential for this refactoring.

By understanding the purity and side effects of functions in given code frag-
ments, memoization can be safely applied. Tracking the internal states is no longer
required for pure functions as they have been ensured to be side-effect-free.

72

In this research, we apply the Memoization refactoring on Java member meth-
ods, although we believe the same approach could be easily extended to other
object-oriented languages. The target of the Memoization refactoring is always a
member function in Java. We will describe the pre-conditions need to be checked,
the general restructuring pattern, and some optional optimizations in detail. Fur-
ther, we will discuss our considerations on the preservation of the purity.

4.6.1 Pre-conditions

The following pre-conditions should be hold for the target:

P1 The function is pure. This can be checked by Q1. Also, this implies that
the return type can not be void.

P2 The types of the arguments are immutable. This can be checked by Q2
for object types and ensured for primitive types in Java. Immutability for
arguments is required to store them as keys in a key-value storage. Further,
we rely on the correct implementation of hashCode in the classes of the
arguments, but currently we do not check the correctness in our refactoring
implementation.

P3 The return value depends on no static fields, no public member fields nor
publicly @Exposed member fields. The refactoring tools can check this by
retrieving the data dependencies from a @Depend annotation and querying
Q3 on the dependFields. This ensures that only member methods in the
same class can affect the return value of the target function.

4.6.2 Refactoring Steps

Our refactoring tool applies the following steps on the target functions that
meet all the pre-conditions:

1. Creates a private member field that served as the key-value storage in the
class of the function. The key type of the field is a tuple of all the types of
the arguments. The value type of the field is the type of the return value of the
function. In the implementation, we use HashMap as the concrete key-value
type and use the tuple types from a third-party library called javatuples.

2. At the entry point of the function:

(a) Defines a tuple variable that captures all arguments.

73

(b) Checks whether the tuple is already stored in the key-value storage. If
it contains the tuple, return the corresponding value stored in it.

3. At every exit point of the function:

(a) Puts the calculated value into the key-value storage, with the captured
tuple as the key.

(b) Returns the value.

4. For each member function that modifies one of the dependFields in
@Depend:

(a) Empties the key-value storage right after the modification happens, so
that the result will be re-calculated next time.

4.6.3 Optimizations

Depending on the target functions, optimizations can be applied to avoid un-
necessary overheads and improve the maintainability of the generated source code.

O1 If there are no arguments, the key-value storage can be replaced with a simple
member field whose type is the type of the return value. We use a null
pointer to represent the empty state of the key-value storage.

O2 If there is only one argument, the Unit tuple used as the key can be replaced
as the argument directly.

4.6.4 Preservation of the Purity on Functions

After refactoring, the target functions inevitably modify the key-value storage
as a side effect. Therefore, the purity of the target function changed from pure to
impure, by the definition of a pure function in related studies [36, 40]. However, the
observable purity of the function is actually preserved, as still the return value of the
function is determined by the state of its arguments and member fields excluding
the newly introduced key-value storage.

One advantage of our purity analyzer purano is that it adopts a heuristic ap-
proach to automatically identify this kind of the cache semantics, and automatically
exclude the fields that are used in caching from the purity analysis. As a result, the
purity of the target function is still reported as pure by our analyzer. Therefore, we
can say the purity of the target function is preserved during the refactoring. The
preservation of purity is also held for other functions involving in the refactoring

74

because the modification on the key-value storage is introduced if and only if there
are modifications on other member fields.

We value the preservation of purity throughout our study because we view the
purity as not only the output result of our analyzer but also an inherently designed
property of the function. It can serve as a metric to indicate the “functional” aspect
of the software implementation.

4.7 Experiments

We implemented our analyzer with name purano2, and evaluated it on real
world software components in terms of accuracy, performance, and the distribu-
tion of different kinds of effects in different scale of software components. During
the experimentation, we expected to answer the following research questions:
RQ1 What is the distribution of pure and side effect methods in the software li-
braries?
RQ2 How is the accuracy of our analysis comparing with an existing study? How
is the heuristic approach in the detection of cache semantic compared to the white-
list approach?
RQ3 How to utilize the revealed information during reusing the software compo-
nents?

Firstly, we will answer the 2 research questions by experiments. Then we will
demonstrate how would our study help programmers in RQ3 as a case study.

Lastly, we conducted an experiment on the proposed Memoization refactoring
to evaluate our approach and to demonstrate the possibility of the purity-guided
refactoring in general.

4.7.1 R1: Distribution of Effects

To show the distribution of purity and side effects of the methods in real world
software libraries, we experimented on 4 target software projects, listed in Ta-

Table 4.2: Experiment Target and Analysis Performance
Software Analyzed Classes Target Classes Target Func. Time #Pass
purano 2,942 253 2,372 148s 16

htmlparser 5,795 156 1,645 112s 17
tomcat 7,673 772 8,824 186s 18

argouml 11,608 2,545 20,167 233s 22

2We have published purano at https://github.com/farseerfc/purano.

75

ble 4.2. These experiments were executed on an octo-core Xeon E5520 with a
2GB heap size limitation. purano is the implementation of the analyzer of this
paper, which includes a modified version of the ASM library. Both htmlparser,
tomcat and argouml are well-known open source Java projects, and we used their
latest stable binary distributions. Note that all of these software projects were ana-
lyzed together with the JRE standard libraries, because the analyzer need the purity
and side effect information for all functions being called including the ones in the
libraries. This lead to the much greater number of analyzed classes than the num-
ber of the target classes. According to the Javadoc for JRE 7, there are 3,793
public classes altogether, and more private ones in the JRE library. The analysis
time of argouml was around 4 minutes, which is reasonable for large scale soft-
ware. The number of analysis passes ranged from 16 to 22, which was depended
on the longest invocation and overriding chain in all analyzed methods. Based on
the analysis times in Table 4.2, we can conclude that the performance of our ana-
lyzer is reasonable within a daily programming environment, although it could be
further optimized by caching the result of the standard libraries.

The purity of functions of the experimental result is listed in Table 4.3. The
number of functions with side effects are listed in Table 4.4.

From the output, we find that around 24%–44% of the methods in these soft-
ware projects were marked as stateless or stateful pure functions. We manually
confirmed the generated result for purano to make sure it matched our expectation.
The argouml project contains many non-pure graphical code percentage and the

Table 4.3: Percentage of Effects

Software
Pure Functions

Side Effects
Stateless Stateful

purano 382 (16.1%) 192 (8.0%) 1,798 (75.9%)
htmlparser 363 (22.1%) 358 (21.8%) 924 (56.2%)

tomcat 1,260 (14.3%) 1,861 (21.1%) 5,703 (64.6%)
argouml 5,019 (24.9%) 1,744 (8.6%) 13,404 (66.5%)

Table 4.4: Breakdown of Side Effects

Software
Modifying

Member Fields Static Fields Arguments
purano 1,548 1,087 485

htmlparser 679 462 143
tomcat 4,346 3,990 1,288

argouml 7,057 11,849 3,255

76

htmlparser project have more pure functional code percentage.

4.7.2 R2: Comparison with an Existing Approach

While there are none of existing studies to identify the side effect informations
within our knowledge, there are studies that only infer the purity of the functions
based on different approaches. Therefore, we compare our purity result with one of
the existing studies to examine the accuracy of our analysis. We ran our tool against
the JOlden benchmark used in [36]. The result from the benchmark is shown in
Table 4.5, comparing with the result from their study. Also we run our analyzer
in two different configurations. One configuration is using a white-list which is
similar to the configuration of [36], with the detection of cache semantic disabled.
Another configuration is using the detection of cache semantics.

Their approach relies on a whole program analysis starting from a main entry
point, and thus they covered fewer functions than our tool. They chose a set of
functions for the white-list by viewing all the source code manually in advance, a
time-consuming task in practice, while our approach automatically identifying the
cache semantics. We were unable to compare precision and recall due to challenges

Table 4.5: Comparison on JOlden Benchmark. Function numbers are different
because our approach analyzes all functions while Sălcianu’s approach analyzes
only the functions invoked transitively from the main entry point.

Application
Our (White-list) Our (Cache Semantic) Sălcianu’s

To
ta

l

St
at

el
es

s

St
at

ef
ul

Pu
re

St
at

el
es

s

St
at

ef
ul

Pu
re

To
ta

l

Pu
re

BH 73 14 17 31 13 13 26 59 28
BiSort 15 6 0 6 5 0 5 13 5
Em3d 23 7 3 10 5 2 7 20 8
Health 29 8 1 9 8 0 8 27 13
MST 36 8 11 19 5 9 14 31 17
Perimeter 50 28 11 39 28 9 37 37 33
Power 32 2 4 6 2 4 6 29 9
TSP 16 5 1 6 4 1 5 14 5
TreeAdd 12 3 1 4 2 1 3 5 2
Voronoi 73 11 31 42 12 33 45 70 50

77

in executing their tool in our environment. Therefore we compared with their result
from the published literature [36]. As we can see from the result table, we achieved
a similar result on the number of pure functions. In addition to the number of pure
functions shown in the result, we identified all the side effects and the type of
purity, which is the main purpose of our study and cannot be found in their result.

Moreover, the compared existing study only experimented on the artificial
benchmarks, while we applied our analysis on real world open source projects
in the previous experiment. The answer to RQ2 will be that we identified a similar
number of pure functions with the existing study while we generate more precious
information about what kind of the side effect are generated from the libraries.

Comparing our result with different configurations, we can see that the detec-
tion of cache semantics result to a slightly lower pure percentage than the white-list
approach. This is excepted, as the heuristic detection approach cannot find all the
fields that are used for caching purpose without increasing the false positive rate.
For example, we cannot detect the cached result within an entry of a hashmap
instead of a single field. We consider the heuristic detection approach is more ap-
plicable for the existing software libraries because the programmers usually do not
have a clue of which API functions are the libraries using and whether they are pure
functions. Revealing this information is the main purpose of the purity analysis in
the first place. An automatic technique like our approach will break the chicken or
the egg dilemma and enable the purity analysis to be adopt in practice.

4.7.3 RQ3 A Case Study: Purity of equals and hashCode

Different programmers may use our tool for their own usages. Therefore, we
conducted a case study to illustrate one possible usage of our tool. We examined
the inferred effects on two methods, namely equals and hashCode. These two
methods are related with the value equality of objects in Java, and they are used by
collection classes such as HashMap. The programmer must ensure that the return
values of these methods reflect their value equalities, and hence these return values
should depend on the state of the objects. Therefore, we expect these methods to
be stateful pure functions if they contain member fields. The purity types of these
two methods are listed in Table 4.6.

To further understand the result, firstly we focused on the existence of stateless
pure functions in Table 4.6 by manually examining their source code. Most of these
methods are defined in interfaces or abstract classes. There were also 2 equals
and 6 hashCode methods defined in the classes that do not have member fields.
There were 9 equals that compares referential identities defined in classes, while
these classes have member fields that are not accessed in the equals. These were
used in unusual cases when comparing by referential identity rather than value

78

package javax.swing.text;
public class DefaultCaret extends Rectangle ... {

/* Compares this object to the specified object.

* The superclass behavior of comparing

* rectangles is not desired, so this is changed

* to the Object behavior.

*/
public boolean equals(Object obj) {
return (this == obj);

}
}

Figure 4.9: A Special Design in DefaultCaret

package java.io;
public final class FilePermission ... {

public boolean equals(Object obj) {
...
return (this.mask == that.mask) &&
this.cpath.equals(that.cpath) &&
(this.directory == that.directory) &&
(this.recursive == that.recursive);

}
public int hashCode() { return 0; }

}

Figure 4.10: A Potential Problem in FilePermission

identity is desired. An example of this kind of special design can be found in
DefaultCaret.equals, shown in Figure 4.9, where the author explicitly doc-
umented in the Javadoc as “The superclass behavior of comparing rectangles is
not desired, so this is changed to the Object behavior”. In addition, most of these
classes are inner classes in Java with their names containing a “$” character. These
inner classes are supposed to be used internally, where programmers control the
creation of all objects. We found 3 hashCode that return a constant, whereas
their corresponding equals compared the states of member fields. An example
is shown in Figure 4.10, that FilePermission.hashCode will always return
0. The user of these classes must be aware of their respective behaviors, in or-
der to avoid putting them in a HashSet or HashMap, or comparing them using
equals. With the introduction of effect annotations as documentation, the user of
these classes is able to notice the special behavior.

Next we examined the functions in Table 4.6 that generate side effects. Some
classes such as Date and Calendar normalized their internal representation be-
fore comparing equality or calculating the hash code. Classes used in reflection at
runtime, such as java.lang.reflect.Class, used a lazy loading technique
to optimize general performance, which is similiar to the caching technique but

79

will change the observable state of the object. Due to the limitation of our heuristic
approach in the detection of caching semantics, there are still some member fields
used as the cache field that can not be automatically detected by our analyzer.

All of these implementation details revealed by our analyzer require special
care in both development and maintenance of the software. We hope our research
can aid the development in the situations like we have studied in this case study.

4.7.4 Experiment on Memoization Refactoring

We applied Memoization refactoring on 3 open-source software projects. These
projects are collected from the maven repository and we use their latest available
source code release. All these 3 projects can be directly built with mvn install
command and tested with mvn test command by their bundled test cases. The
version and statistic metrics of these 3 projects are listed in Table 4.7, where the
code coverage is measured by block unit. HTMLPARSER 3 is a library to parse
HTML. JODA-TIME 4 is a replacement for the Java date and time classes. PCOL-
LECTIONS 5 is a persistent and immutable analogue of the Java Collections Frame-
work. We chose these projects for their relatively high coverage by the test cases,
as shown in Table 4.7. The code coverage are measured by block unit.

In a real-world development process, refactoring is generally initiated by the
programmer. The programmer may select the target functions by his knowledge
and execute desired refactoring operations on them. Then refactoring tools will
check the pre-conditions and perform the refactoring on the selected functions.

Table 4.6: Purity of equals and hashCode

Software All
Pure Functions

Side Effects
Stateless Stateful

purano
equals 518 19 (3.7%) 165 (31.9%) 334 (64.5%)
hashCode 499 14 (2.8%) 176 (35.3%) 306 (61.9%)

htmlparser
equals 359 14 (3.9%) 141 (39.3%) 204 (56.8%)
hashCode 355 10 (2.8%) 147 (41.4%) 198 (55.8%)

tomcat
equals 477 65 (13.6%) 282 (59.1%) 132 (27.7%)
hashCode 473 52 (11.0%) 245 (51.8%) 176 (37.2%)

argouml
equals 426 55 (12.9%) 219 (51.4%) 152 (35.7%)
hashCode 416 55 (12.2%) 214 (51.4%) 162 (28.9%)

3http://htmlparser.sourceforge.net/
4http://www.joda.org/joda-time/
5http://pcollections.org/

80

However, we do not have the deep knowledge on the target software as their de-
velopers in this experiment. Instead, we use a profiler to provide the knowledge
about the performance of the source code. We use the hprof java-agent library
provided with the standard JDK as the profiler.

In addition, we assumed that the programmer is provided with a purity ana-
lyzer like our purano by the IDE so that the purity information is available for the
programmer. With these conditions, we conducted the experiment in the following
steps for each software target:

1. Run the test cases by the profiler with the original code.

2. Get the top-20 hot methods from the profiling result that take most accumu-
lated execution time.

3. Check the pre-conditions on all hot methods to get a list of candidates.

4. Apply the Memoization refactoring on all the candidates.

5. Run the test cases by the profiler with refactored code.

We checked the pre-conditions only on the top-20 hot methods because they
have the most influence on the performance. We applied refactoring on 2 candi-
dates in HTMLPARSER, 2 candidates in JODA-TIME and 1 candidate in PCOL-
LECTIONS.

The total execution time and heap usage before and after the refactoring pro-
vided by the profiler is shown in Table 4.8. We can see from the table that the
performance improvements vary from 3.1% to 31.3% in these 3 projects. We mea-
sured JVM peak heap usage of test cases for these projects. The memory usage

Table 4.7: Experiment Targets
Software & Version Class Function Pure Test Coverage
HTMLPARSER 2.2 157 1,643 707 472 67%
JODA-TIME 2.8.1 247 4,411 1,334 4,157 90%

PCOLLECTIONS 2.1.3 31 282 77 22 74%

Table 4.8: Profiling Results
Performance Heap Usage (MB)

Software Before After Improve Before After
HTMLPARSER 1m44s 1m31s 12.5% 13 16

JODA-TIME 60m10s 58m17s 3.1% 10 10
PCOLLECTIONS 16s 11s 31.3% 15 15

81

−8,103 java.net.SocketInputStream. socketRead ()

4,994 sun.net.www.http.KeepAliveCache. r u n()

1,700 java.net.InetAddress$2. lookupAllHostAddr ()

−836 java.lang.Character. toUpperCaseEx ()

−640 java.lang.CharacterDataLatin1. toUpperCaseEx ()

−583 java.lang.String. toUpperCase ()

−435 org.htmlparser.nodes.TagNode. getRawTagName ()

−402 org.htmlparser.nodes.TagNode. g e t T a g N a m e ()

−333 java.lang.String. star tsWith ()

−317 java.lang.CharacterDataLatin1. getPropert ies ()

−269 java.lang.CharacterData. o f()

−182 org.htmlparser.lexer.PageAttribute. g e t N a m e ()

171 java.net.AbstractPlainSocketImpl. doConnect ()

−149 java.lang.String. endsWith ()

−144 java.util.Arrays.copyOfRange ()

−139 org.htmlparser.lexer.Cursor. getPosit ion ()

−133 java.util.Locale.getLanguage ()

−122 java.io.InputStream. r e a d ()

−120 org.htmlparser.nodes.TagNode. isEndTag ()

−116 org.htmlparser.lexer.InputStreamSource. of fset ()

Figure 4.11: HTMLPARSER top-20 changed functions

increased 23% for HTMLPARSER, but not changed much for JODA-TIME and
PCOLLECTION, because the objects doing caching are short-lived during the test
cases. Meanwhile, we observed more objects are created during the test cases. For
example, there are 27,991 more String objects created for HTMLPARSER and
13,893,640 more Long objects created for JODA-TIME.

We also compare the profiling results before and after the refactorings using
hpjmeter and draw bar graphs on top-20 most changed functions in Figure 4.11 to
4.13. In these bar graphs, each bar represents a function. The length of the bar
represents the changed accumulated time between two executions. The text titles
of the bars are the differences of the accumulated execution time in milliseconds
and the fully-qualified names. For example, we can see from the bar graph of
JODA-TIME that the execution time of IslamicChronology.isLeapYear
is reduced by 282s and the execution time of Long.hashCode is increased by
59s.

The execution time of each function in these test cases is generally short.
Therefore, as we can observed from the bar graphs, the overhead of introduc-
ing Memoization is relatively large. In fact, the refactoring patterns applied on
HTMLPARSER are optimized with O1 while the refactoring patterns applied on
JODA-TIME and PCOLLECTIONS are optimized with O2. As we can see, the main
overhead in JODA-TIME and PCOLLECTIONS are introduced with HashMap op-
erations.

Nevertheless, we observed the improvements in performance for all 3 targets.
As all these projects are well-tested and focused on speed, we considered these

82

−281,915org.joda.time.chrono.IslamicChronology. isLeapYear ()

−117,207org.joda.time.chrono.IslamicChronology$LeapYearPatternType. isLeapYear ()

−102,971org.joda.time.chrono.IslamicChronology. ge tYear ()

59,447 java.lang.Long.hashCode ()

41,962 java.lang.Long.< i n i t >()

41,960 java.lang.Long.valueOf()

40,907 java.util.HashMap.hash ()

38,111 java.util.HashMap.g e t N o d e ()

36,718 java.lang.Long.equals ()

33,568 java.util.HashMap.containsKey ()

29,022 java.util.HashMap.g e t ()

18,259 java.lang.Number.< i n i t >()

15,736 java.lang.Long. longValue ()

7,391 java.lang.Integer. in tVa lue ()

4,196 java.util.HashMap.putVa l()

4,196 java.util.HashMap.p u t()

3,330 java.lang.Integer. < i n i t >()

2,797 java.util.HashMap.n e w N o d e ()

2,447 java.lang.Integer. valueOf()

2,402 junit.framework.Assert. assertEquals ()

Figure 4.12: JODA-TIME top-20 changed functions

−1,405org.pcollections.HashPMap. g e t ()

−1,160 java.util.AbstractMap. hashCode ()

886 java.util.HashMap.putVa l()

−831 org.pcollections.IntTree$EntryIterator. gotoMinOf ()

−794 org.pcollections.HashPMap$SequenceIterator. n e x t()

726 org.pcollections.TreePVector. g e t ()

608 org.pcollections.IntTreePMap. g e t ()

−577 org.pcollections.IntTree$EntryIterator. n e x t()

−342 org.pcollections.IntTree. g e t ()

235 java.util.HashMap. res ize ()

199 org.pcollections.tests.OrderedPSetTest. testBehavesLikePSet ()

192 org.pcollections.tests.ConsPStackTest. testRandomlyAgainstJavaList ()

125 org.pcollections.tests.IntTreePMapTest. testRandomlyAgainstJavaMap ()

−119 java.util.AbstractSequentialList. < i n i t >()

119 java.util.HashMap.g e t N o d e ()

85 org.pcollections.IntTree. rebalanced ()

−84 java.util.AbstractMap. equals ()

81 org.pcollections.TreePVector. minus()

−38 org.pcollections.tests.TreePVectorTest. testRandomlyAgainstJavaList ()

Figure 4.13: PCOLLECTIONS top-20 changed functions

results still remarkable.
As for the preservation of semantics, the results for test cases are not changed

before and after the refactoring. In fact, only a single test case for HTMLPARSER

failed, both before and after the refactoring, because the test case retrieved a URL
on the Internet and the content have been changed since the test case was written.
All other test cases passed without errors.

The experiment depends largely on the correctness of our purity analyzer pu-
rano, which is only used and tested in our research group currently. There may

83

exist bugs in the implementation of purano, and there are known limitations due
to the decisions we made and the heuristic approaches we adopted, which are dis-
cussed in our previous paper [62]. However, we believed those decisions directly
result from the goal of this research, which is to guide refactoring by the purity of
the methods found in object-oriented languages.

We only experimented one kind of the purity-guided refactoring, namely Mem-
oization refactoring, on 3 open-source Java libraries, and only tested them using
test cases rather than real workloads. We are aware that the refactorings happen in
real-world developments may differ from the experimental environments we have
made. Meanwhile, as we tested on well-tested speed-oriented open-source projects
and still observed improvements on performance, we believe that the refactorings
in the real development process would have more opportunities to apply the pro-
posed refactoring.

84

Chapter 5

Conclusion

This dissertation focus on using the static techniques to help program comprehen-
sion. It divide this the techniques into two dimensions, which are the structural
information and semantic information. The final goal of this study is to aid pro-
gramming comprehension with the statical information at hand in these two dimen-
sions.

5.1 Conclusions on Comprehension based on Structural Information

We have shown that users of CDTs have different opinions on whether a code
clone is indeed a true clone, which means “useful” or “interesting” according
to their particular purpose. This observation suggested that filtering code clones
should take user judgments into consideration to generate more useful list of code
clones.

With this observation, we proposed a classification model based on applying
machine learning on code clones. We built the described system FICA, which is
a web-based system, as a proof of concept. The system consists of a generalized
suffix-tree-based CDT and a web-based user interface that allows the user to mark
detected code clones and shows the ranked result.

We conducted an experiment on the FICA system with 32 participants. Our
classification model showed more than 70% accuracy on average and more than
90% accuracy for particular users and source code projects.

We analyzed the experiment in detail, and obtained several observations from
the experiments about true code clones:

1. Users agree that false positive code clones are likely to fall into several cat-
egories, such as a list of assignment statements or a list of function declara-
tions.

85

2. Users agree that true positive code clones are more diverse than false posi-
tives.

3. The minimum required size for the training set generally grows linearly with
the number of categories that the clone sets fall into, which is less than the
total number of detected clone sets.

The contributions of this work include:

• A machine learning model based on clone similarity.

• An approach to consider each individual user in code clone analysis.

• An experiment with 32 participants.

• Several important observations from the experiment.

5.2 Conclusions on Comprehension based on Semantic Information

The current implementation of our analyzer works on Java bytecode rather
than source code. Besides all the advantages described, this decision is also made
to ease the development, because it is easy to generate bytecode from source code
by a compiler but not vice versa. However, targeting source code format is still
important for integrating as an IDE plugin. We plan to add a source code analyzer
in the future.

Moreover, we plan to further evaluate the usability of the generated effect in-
formation, by programmers as well as by analysis tools. Currently we output the
effect information as annotations. The format of these annotations needs to be
more readable and understandable to be used by programmers. We will also fur-
ther investigate the applications of these effect annotations other than identification
of pure functions. We will apply this approach to more software projects for further
evaluation.

To conclude, in this paper we presented a study on the purity and side effects
of the functions in Java, helping programmers to reuse the software libraries. We
proposed a technique to automatically infer the purity and side effect informations
from Java bytecode. We implemented and experimented the proposed analyzer
on real world Java software libraries, and found that around 24%–44% of all the
methods of a Java libraries are made of pure functions. We compared the accuracy
of distribution of pure functions with an existing study. Also, we demonstrated how
programmers will use our technique to understand the behavior of library APIs by
a case study.

86

Further, to demonstrate the possible use-case of the gathered purity informa-
tion, we discussed a case study on the topic of purity-guided refactoring. We con-
ducted an experiment on a refactoring pattern called Memoization that caches the
calculation result for pure functions. We tested the refactoring pattern on 3 open-
source Java libraries and observed improvements in performance and preservation
of semantics by running a profiler on the bundled test cases on these libraries.

We are still in an early stage of this research, continually evaluating new refac-
toring techniques that require purity information at hand. In the future, we will
develop more refactoring approaches, for example, one converts a single-threaded
sequential program to a thread-pool based multithreading program or an event-
driven asynchronized program. We are planning to testify our methodology on
larger programs or apply the refactorings during the development process.

5.3 General Conclusions of This Dissertation

This dissertation focuses on the static analysis to aide program comprehen-
sion. Static analysis can be divided further into two dimensions, namely the struc-
tural information and the semantic information. The final goal of this study is to
aid programming comprehension with the static information in these two dimen-
sions.

In this dissertation, I looked into these two aspects with two studies. The first
one is a study on a classification model of source code clones, which helps un-
derstanding the source code from structural similarity. The latter one focuses on
one important aspect of semantic information, which is the purity of the code frag-
ments. I developed tools to help programmer in understanding their software.

In the future, our integrated development environments can be further improved
to adopt the methodology that I described in this dissertation.

I firmly believe that our IDEs should understand our code more precious than
us human beings, so that common development tasks can be automated by simple
directions rather than repeatedly micro-operations from human.

87

Bibliography

[1] Ruven Brooks. Towards a theory of the comprehension of computer pro-
grams. International journal of man-machine studies, 18(6):543–554, 1983.

[2] Anneliese Von Mayrhauser et al. Program comprehension during software
maintenance and evolution. Computer, 28(8):44–55, 1995.

[3] Thomas A Corbi. Program understanding: Challenge for the 1990s. IBM
Systems Journal, 28(2):294–306, 1989.

[4] Margaret-Anne Storey. Theories, methods and tools in program comprehen-
sion: Past, present and future. In Program Comprehension, 2005. IWPC
2005. Proceedings. 13th International Workshop on, pages 181–191. IEEE,
2005.

[5] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding program
comprehension by static and dynamic feature analysis. In Software Main-
tenance, 2001. Proceedings. IEEE International Conference on, pages 602–
611. IEEE, 2001.

[6] Jonathan I Maletic and Andrian Marcus. Supporting program comprehension
using semantic and structural information. In Proceedings of the 23rd Inter-
national Conference on Software Engineering, pages 103–112. IEEE Com-
puter Society, 2001.

[7] Y. Higo, S. Kusumoto, and K. Inoue. A survey of code clone detection and
its related techniques. IEICE Transactions on Information and Systems, 91-
D(6):1465–1481, June 2008. (in Japanese).

[8] C.K. Roy, J.R. Cordy, and R. Koschke. Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Science of Com-
puter Programming, 74(7):470–495, 2009.

89

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional, 1999.

[10] Z. Li, S. Myagmar, S. Lu, and Y.Zhou. Cp-miner : Finding copy-paste and
related bugs in large-scale software code. IEEE Transcations on Software
Engineering, 32(3):176–192, Mar. 2006.

[11] J.H. Johnson. Visualizing textual redundancy in legacy source. In Proceed-
ings of the 1994 conference of the Centre for Advanced Studies on Collabo-
rative research, page 32. IBM Press, 1994.

[12] I. Baxter, A. Yahin, M. Anna L. Moura, and L. Bier. Clone detection us-
ing abstract syntax trees. In Proc. of the 14th International Conference on
Software Maintenance, pages 368–377, Mar. 1998.

[13] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison
and evaluation of clone detection tools. IEEE Transactions on Software En-
gineering, 33(9):577–591, 2007.

[14] J. Krinke. Is cloned code more stable than non-cloned code? In Proc. of the
8th International Working Conference on Source Code Analysis and Manip-
ulation, pages 57–66, Sep. 2008.

[15] Brian Goetz. Java theory and practice: I have to document
that? http://www.ibm.com/developerworks/java/library/
j-jtp0821/index.html, 2002.

[16] Chen Raymond. The importance of error code backwards compat-
ibility. http://blogs.msdn.com/b/oldnewthing/archive/
2005/01/18/355177.aspx, 2005.

[17] Fredrik Kjolstad, Danny Dig, Gabriel Acevedo, and Marc Snir. Transforma-
tion for class immutability. In Proceedings of the 33rd International Confer-
ence on Software Engineering, ICSE ’11, pages 61–70, New York, NY, USA,
2011. ACM.

[18] Martin Fowler. Refactoring: improving the design of existing code. Addison-
Wesley, 1999.

[19] Kent Beck. Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[20] Robert Cecil Martin. Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

90

[21] Jay Fields, Shane Harvie, Martin Fowler, and Kent Beck. Refactoring: Ruby
Edition. Pearson Education, 2009.

[22] A. Marcus and J.I. Maletic. Identification of high-level concept clones in
source code. In 16th Annual International Conference on Automated Software
Engineering, pages 107–114. IEEE, 2001.

[23] A. Kuhn, S. Ducasse, and T. Gı́rba. Semantic clustering: Identifying topics
in source code. Information and Software Technology, 49(3):230–243, 2007.

[24] Robert Tairas and Jeff Gray. An information retrieval process to aid in the
analysis of code clones. Empirical Software Engineering, 14:33–56, 2009.
10.1007/s10664-008-9089-1.

[25] Lucia, D. Lo, L. Jiang, A. Budi, et al. Active refinement of clone anomaly
reports. In 34th International Conference on Software Engineering, pages
397–407. IEEE, 2012.

[26] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Method and implementation for investigating code clones in a software sys-
tem. Information and Software Technology, 49(9):985–998, 2007.

[27] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based approach to identify-
ing refactoring opportunities for merging code clones in a java software sys-
tem. Journal of Software Maintenance and Evolution: Research and Practice,
20(6):435–461, 2008.

[28] R. Koschke. Large-scale inter-system clone detection using suffix trees. In
2012 16th European Conference on Software Maintenance and Reengineer-
ing, pages 309–318. IEEE, 2012.

[29] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. Searching for
better configurations: A rigorous approach to clone evaluation. Compare,
31(58.5):81–1, 2013.

[30] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Mea-
suring clone based reengineering opportunities. In Sixth International Soft-
ware Metrics Symposium, pages 292–303. IEEE, 1999.

[31] K.W. Church and J.I. Helfman. Dotplot: A program for exploring self-
similarity in millions of lines of text and code. Journal of Computational
and Graphical Statistics, pages 153–174, 1993.

91

[32] Y. Higo. Code clone analysis methods for efficient software maintenance.
PhD thesis, Osaka University, 2006.

[33] J. Howard Johnson. Navigating the textual redundancy web in legacy source.
In Proceedings of the 1996 conference of the Centre for Advanced Studies on
Collaborative research, CASCON ’96, pages 16–. IBM Press, 1996.

[34] Z.M. Jiang and A.E. Hassan. A framework for studying clones in large soft-
ware systems. In Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 203–212. IEEE, 2007.

[35] Xiaoyin Wang, Yingnong Dang, Lu Zhang, Dongmei Zhang, Erica Lan, and
Hong Mei. Can i clone this piece of code here? In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering,
pages 170–179. ACM, 2012.

[36] Alexandru Sălcianu and Martin Rinard. Purity and side effect analysis for
java programs. In Verification, Model Checking, and Abstract Interpretation,
pages 199–215. Springer, 2005.

[37] Alexandru Sălcianu. Pointer analysis and its applications for Java programs.
PhD thesis, Citeseer, 2001.

[38] David J Pearce. Jpure: a modular purity system for java. In Compiler Con-
struction, pages 104–123. Springer, 2011.

[39] Adrian Mettler, David Wagner, and Tyler Close. Joe-e: A security-oriented
subset of java. In Network and Distributed Systems Symposium, Internet So-
ciety, volume 10, pages 357–374, 2010.

[40] Matthew Finifter, Adrian Mettler, Naveen Sastry, and David Wagner. Ver-
ifiable functional purity in java. In Proc. of the 15th ACM conference on
Computer and communications security, pages 161–174. ACM, 2008.

[41] Haiying Xu, Christopher JF Pickett, and Clark Verbrugge. Dynamic pu-
rity analysis for java programs. In Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering,
pages 75–82. ACM, 2007.

[42] Hugo Rito and João Cachopo. Memoization of methods using software trans-
actional memory to track internal state dependencies. In Proceedings of the
8th International Conference on the Principles and Practice of Programming
in Java, pages 89–98. ACM, 2010.

92

[43] Yoshiki Higo, Yasushi Ueda, Toshihro Kamiya, Shinji Kusumoto, and Kat-
suro Inoue. On software maintenance process improvement based on code
clone analysis. In Markku Oivo and Seija Komi-Sirvi, editors, Product Fo-
cused Software Process Improvement, volume 2559 of Lecture Notes in Com-
puter Science, pages 185–197. Springer Berlin Heidelberg, 2002.

[44] Filip Van Rysselberghe and Serge Demeyer. Evaluating clone detection tech-
niques from a refactoring perspective. In Proceedings of the 19th IEEE in-
ternational conference on Automated software engineering, pages 336–339.
IEEE Computer Society, 2004.

[45] Rebecca Tiarks, Rainer Koschke, and Raimar Falke. An assessment of type-3
clones as detected by state-of-the-art tools. In Source Code Analysis and Ma-
nipulation, 2009. SCAM’09. Ninth IEEE International Working Conference
on, pages 67–76. IEEE, 2009.

[46] Rebecca Tiarks, Rainer Koschke, and Raimar Falke. An extended assess-
ment of type-3 clones as detected by state-of-the-art tools. Software Quality
Journal, 19(2):295–331, 2011.

[47] K.S. Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 28(1):11–21, 1972.

[48] S.G. Kobourov. Spring embedders and force directed graph drawing algo-
rithms. arXiv preprint arXiv:1201.3011, 2012.

[49] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–
260, 1995.

[50] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE Trans-
actions on Software Engineering, 28(7):654–670, 2002.

[51] Jonathan Drake and Greg Hamerly. Accelerated k-means with adaptive dis-
tance bounds. In 5th NIPS workshop on optimization for machine learning,
2012.

[52] Michael Bostock. D3.js, Data-Driven Documents. http://d3js.org/,
2012. [Online; accessed 1-May-2012].

[53] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-
based external cluster evaluation measure. In EMNLP-CoNLL, volume 7,
pages 410–420, 2007.

93

[54] Simon L Peyton Jones and Philip Wadler. Imperative functional program-
ming. In Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 71–84. ACM, 1993.

[55] Gary T Leavens, Albert L Baker, and Clyde Ruby. Preliminary design of jml.
Technical report, Technical Report 96-06p, Iowa State University, 2001.

[56] Vijay Saraswat. Java is not type-safe. http://www.cis.upenn.edu/
˜bcpierce/courses/629/papers/Saraswat-javabug.html,
1997.

[57] Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and Jan Vitek. Loci:
Simple thread-locality for java. In ECOOP 2009–Object-Oriented Program-
ming, pages 445–469. Springer, 2009.

[58] Robert C Martin. Clean code: a handbook of agile software craftsmanship.
Prentice Hall, 2008.

[59] Jonathan S Bell and Gail E Kaiser. Unit test virtualization with vmvm. 2013.

[60] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: a code ma-
nipulation tool to implement adaptable systems. Adaptable and extensible
component systems, 30, 2002.

[61] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Sun Microsysterns, Inc, 1996.

[62] Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Reveal-
ing purity and side effects on functions for reusing java libraries. In Soft-
ware Reuse for Dynamic Systems in the Cloud and Beyond, pages 314–329.
Springer, 2014.

94

