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Abstract

In this research, we aim to advance in machine learning techniques that can help us
gain a better understanding of human mobility. Human mobility has been studied
broadly in the past few decades. Ranging from a higher level perspective, such as travel
patterns, visitation patterns and predictive modeling, to a lower level, e.g. path finding
mechanism, tasks prioritization and routing. A study conducted in this research has
shown samples of tasks dependent mobility patterns inside an office environment and its
potential predictability. The predictive models for both short-term prediction and long
term prediction have also been developed and successfully tested on a real dataset. The
results have given us more understanding of dynamicity and how the participants would
utilize the space. Therefore there are potentials for spatially-related applications, such
as users-based power management system and notifications of suspicious behaviors, to
be built based on the proposed methods.

Even though, the proposed probabilistic model for long term human mobility pre-
diction was initially designed for discrete representation of positions (e.g. locations
associated with sensor IDs), the approach can also be extended to support continu-
ous representation (e.g. xy coordinates). The probability density and the likelihood
of future visitations at any given point (z,y) of interest can be estimated using a non-
parametric method called kernel density estimation or KDE. However, standard KDE
is a costly operation and cannot scale well with the unbounded size of data streaming
from sensors or mobility tracking system. Besides, existing online KDEs cannot handle
multi-dimensional data streams very efficiently. Therefore, we proposed a kernel density
compression algorithm that was designed for multivariate (and univariate) data streams
for efficient density evaluation that can scale well to streaming sensor data. Since con-
tinuous tracking system was not implemented yet, we tested the proposed method with
the problem of real time decoding of neural encoding/decoding. The developed online
kernel density compression algorithms not only enables real-time encoding and decoding
of neural activities but can also be generalized to estimate probability density function
of any multivariates data streams without any modification. More specifically, the pro-
posed online KDE technique can be applied to implement an online probabilistic model
for long-term human mobility prediction and can be used to visualize dynamicity of

space utilization in real-time to help us understand how the participants utilize different



areas of the facility during the day.
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Chapter 1

Introduction and Problem

Statement

In the past decade, machine learning tools designed for understanding and predicting
human mobility have been developed and included in many real-world applications since
a variety of options for mobility tracking systems have been introduced and publicly
adopted. To name a few, commercial applications such as taxi services are actively
relying on the understanding of trajectory patterns and reliable predictions to offer
quality service to the customersﬂ In another context, PUCK architecture [16] was
introduced to provide a smart reminder in the smart environment that automatically
recognizes habitual activities, and reminds the habitants when they forgot something
important. This could be helpful for some participants who have dementia, or mind
cognitive impairment. Google NOWE] uses user’s mobility information on a smartphone
to provide better, and more specific search results. It can automatically understand and
predict where the user is likely to be in future, and then provide some useful information
about the trip, such as traffic condition, estimated arrival time, and weather information
at the predicted destination. Moreover, the ability to predict future locations of people
is also an important element in transportation planning [43, [39], bandwidth provisioning
in wireless local area network [7(], and targeted advertisement dissemination [25].

In our application, we utilized an actual office environment with various built-in
sensors and actuators to enable ubiquitous computing technology to control different

settings in the environment. Our prototype smart office environment was initially de-

!Taxi Service Tajectory Prediction Challenge @ ECML PKDD 15 https://www.kaggle.com/c/pkdd-
15-predict-taxi-service-trajectory-i
*http://www.google.com/landing/now/



signed to create a working environment that can learn multi-users’ behavioral activities
and intelligently react to these activities smartly. Our objective in developing this smart
environment is to simplify mundane repetitive tasks and to improve people’s lives. For
example, a smart office that could predict future occupancy of a meeting room and
automatically prepare the electronic facilities in the room prepared before the meeting.
A smart office could also be programmed to predict needs from daily activities; for ex-
ample, to ensure that hot coffee was ready to be served at a particular time. These
applications require the ability to foresee individual’s future whereabouts and mobility.
This is referred to the open problem of long-term human mobility prediction. In con-
trary, predicting next steps of a moving subject is another class of problem known as
short-term human mobility prediction. In this research, we addressed both problems in
multi-users environment using low-profile, ambient simple sensors, such as IR proximity
sensors and magnetic sensors.

Many researches in the past had been relying on accurate sources of mobility traces,
such as GPS [59] [43], human tracking cameras [78], RFID tagging [2, [31] and mobile
phone data [22] [69]. But not many attentions had been given to tracking methods that
are less accurate but are less intrusive to the subjects privacy, such as human mobility
tracking by detecting changes in WiF1i signal strength [7), 36, 45], simple infrared proxim-
ity sensors and other kinds of simple motion detection sensors. Although, using mobility
data from accurate sources enables researchers to focus more on the development of new
modeling and prediction technique without much concern about reliability and noise in
the training and test data. On the other hand, human mobility traces from low accu-
racy sensing techniques are much less reliable and full of noisy samples. Preprocessing
and feature extraction techniques, such as patterns mining, must be applied to extract
necessary information and remove non-patterns samples from the dataset.

Especially in this work, we installed IR proximity sensors and magnetic sensors in
different area of the experimental space to detect motions and interaction from the users
with environment. By specification, the IR senors trigger when there is object presented
in front of the sensor within 20-150cm range and the magnetic sensors trigger when
there are changes in the sensed magnetic force. Since different sensors associate with
different locations that they were installed, trajectories of the users can be represented
by sequences of sensor firing events. Thus, prediction of future position of a traveling

subject can be formulated as a classification problem, where target classes are different



locations associated with different sensor IDs.

False detection of motions were very common in this setting due to electrical interfer-
ence from the power source. IR sensors, in particular, can also fail to detect movements
when the users were too far or too close from the sensors. Other than technical is-
sues, difficulties when analyzing this dataset also came from the test environment where
there were multiple users. Because these sensors cannot identify and distinguish differ-
ent users, we could not separate any two movement sequences from two different users
by simply looking at the raw stream of sensor triggers.

In previous research [15], we have shown that these problems can be solved efficiently
using frequent sequential patterns mining algorithms. Overlapping trajectories can be
separated accurately if both trajectory patterns occurred separately frequently enough.
In addition to spatial frequency, we added the temporal aspect to the frequent sequential
patterns mining algorithm called PrefixSpan [50] to create a trajectory mining algorithm
that can search for both spatially and temporally frequent patterns. Although, we could
not assess quality of the algorithms from the mined patterns directly, we trained a
machine leaning algorithm to predict future location of a moving subject based on given
trajectory patterns and used their prediction accuracy as a proxy measure to evaluate
quality of the mined trajectory patterns. The results showed that the proposed temporal
sequential patterns mining (TgP)j) algorithm was able to achieved higher accuracy in
the prediction task compared to PrefixSpan. That is, trajectory patterns mined with
temporal features resulted in more informative patterns and more suitable for prediction
task than the standard sequential pattern mining techniques, such as PrefixSpan.

A question yet unanswered was how other factors, such as pattern length, support,
and confidence settings of the patterns, could affect prediction accuracy. Therefore,
in Chapter [3| we present an adaptation of the theoretical analysis of maximum pre-
dictability [70] to discover how we could increase predictability from the preprocessing
step.

As mentioned earlier, the problem of human mobility can be divided into two sub-
classes: short-term and long-term prediction. Short-term prediction problems mainly
focus on predicting next moves or destination of a moving subject, given prefix trajec-
tory. In this work we proposed a novel design for short-term prediction in Section [4.2
The proposed technique is able to accept varying trajectory length and is able to out-

perform our initial design that was based on a decision tree classifier [68]. Without



a doubt, recent movements along the prefix trajectory are highly predictive to where
the user was heading toward. In contrast, recent movements hardly involve in subject’s
whereabout in further future (e.g. next day or next week). For this reason, prediction
techniques that work well predicting short-term mobility would perform poorly when
used to solve long-term prediction problem [59].

Therefore, in Section we addressed the problem of long-term mobility prediction
differently from existing techniques that were designed for short-term prediction [59, [43].
Instead of predicting based on trajectory patterns, we proposed a model that models
repetitive patterns in human movements. The proposed aperiodic/periodic model for
long-term human mobility prediction is not only limited to discrete representation of
locations (i.e. location name, sensor ID), but also capable of modeling repetitive vis-
itation patterns where each visitation is represented with continuous values (i.e. xy-
coordinates). The probability density and the likelihood of repeating visitation at any
(z,y) position of interest can be estimated using a kernel density estimation technique.

However, kernel density estimation is a costly operation and cannot be implemented
to execute efficiently for online learning, where the model needs continuous updates
from stream of sensor data. Furthermore, existing techniques that optimized KDE for
streaming data are not efficient when handling multivariate stream (e.g. 2D streams
of zy-coordinates). Therefore, in Chapter |5, we propose a kernel density compression
algorithm for online KDE that can handle multi-dimensional data streams efficiently
with accuracy. To demonstrate the speed and accuracy of the proposed kernel density
compression algorithm in a real-time applications, the algorithm was tested with the
simulation of neural decoding, in which the density model needs to update to new
sample of multi-dimensional neural signal every lms.

The developed online kernel density compression algorithms not only enables real-
time decoding of neural activities but can also be generalized to estimate probability
density function of any multivariates data streams without any modification. More
specifically, the proposed online KDE technique can be applied to implement an online
probabilistic model for long-term human mobility prediction and can be used to visualize
dynamicity of space utilization in real-time to help us understand how participants utilize
different areas of the facility during the day.

In summary, we proposed an improvement of short-term human mobility predictor

(discrete classes of location IDs) and a novel probabilistic model for long-term human



Table 1.1: Outline of the thesis

Discrete representation Continuous representation

Short-term prediction | addressed in Section 4.2 not addressed
can be implemented efficiently

Long-term prediction | addressed in Section [4.1| | with the technique described
in Chapter

mobility prediction that works with both discrete and continuous representation of po-

sitions. The contributions of this thesis can be summarized as shown in Table [l



Chapter 2

Literature Review

In this chapter, we discuss some interesting researches that are related to our work.
That includes human mobility tracking techniques, human mobility modeling, predictive

techniques and existing technologies for density estimation for streaming data.

2.1 Human Mobility Tracking

Regarding various choices of tracking technologies, it seems logical to select ones that
provide most accurate results. However, there is an apparent trade-off between accuracy
and conspicuousness of the tracking technique. Even though, high accuracy methods
such as camera-based localization, GPS and similar tracking systems are capable of
providing precise tracking of each individual subjects, they can cause uneasiness to the
subjects. For example, by using colored pictures from cameras with object detection
technologies and semi-supervised classification algorithm, Yu et al. [78] were able to
create a system that recognizes people and their positions. Moreover, they were directly
able to map each individual’s movement to a floor map. From this example, it is evident
that there needs to be a balance between rich mobility information and discomfort
caused by the cameras. Apart from the camera techniques [53, B] discussed earlier,
mobile phone data [22] 69], GPS [59] [43], and RFID tagging [2, 31] requires people to
carry (or put on) a tracking device while in the environment, which is not feasible in
real-world implementations.

On the other hand, simple sensors, such as infrared proximity sensors and magnetic
sensors, are small enough to blend-in to the environment and keep their small profiles
while seamlessly observing human mobility. However, this tracking method has not been

used in many human mobility researches in the past because the data collected by such



simple sensors is less informative and more prone to noise than high precision sensing
technologies. Besides, the amount of useful information after removing all the noisy
signals is yet questionable. That being said, the capability of the mobility predictive

model built using simple sensors’ data might be limited.

2.2 Limits of the predictability in Human Mobility

To quantify quality of collected datasets, Song et al. introduced an analysis of the pre-
dictability of human mobility [69]. The analysis explored the limitation in predictability
of an individual’s movements. Note that they did not take the quality of the prediction
techniques into consideration.

By employing Fano’s inequality [17, 46], the analysis by Snog et al. assessed whether
the upper limit of the probability of a moving person’s destination could be correctly
predicted given the most recent trajectory and the past collective mobility data.

Despite variations in individual’s daily behavior, Song’s [70] analysis over a large
population monitored by mobile phone data shows 93% potential predictability in an
individual’s mobility. In other words, predicting individual’s movements can be effec-
tively achieved when historical trajectory data is available. However, the analysis neither
discuss which features of trajectory pattens contributed most to the prediction, nor how
the predictability would change if the patterns were from multiple users. In this study,
we extend the analysis of human predictability to cover (1) trajectory patterns’ features
importances and (2) the predictability analysis of collective human mobility data, both

short-term and long-term predictions.

2.3 Human Mobility Modeling and Prediction

Human mobility has been modeled in different ways depending on the prediction tech-
nique used in the model. Each approach has different merits and inferiorities. In the
past, a considerable number of literatures, especially in traffic prediction [43] [69] and
smart environment researches [2], mainly focused on spatial characteristics of move-
ments wherein individual’s trajectories are tracked and frequent trajectory patterns are
extracted and analyzed for prediction. The trajectories-based predictive models usually
work well in the short-term human mobility prediction problem in which only instant

future locations of a moving person (or vehicle) are interested. As an example, in [43],



the WhereNext framework implemented a short-term location prediction using the tem-
poral annotated sequences that provide movement patterns with rich spatio-temporal
contexts to the predictive model. Hence, it was able to predict the next movement of a
moving user more accurately than using movement traces alone. The predictive model
in WhereNext was implemented by creating a tree data structure that contains all fre-
quent trajectory patterns. Next, a matching function must be defined to match these
patterns with a newly observed movement; then, what comes after the similar move-
ment pattern founded on the predictive tree will become the predicted next location. In
contrast, temporal patterns-based models [66, 55l [60] are more promising for long-term
prediction in which future whereabouts of a user even for several hours or days ahead

are predicted.

2.4 Online Kernel Density Estimation

Density estimation are fundamental in a wide range of scientific applications including
machine learning. Probabilistic machine learning models oftentimes require a knowledge
of underlying samples distribution in order to work. Besides, it is a common tool for
data analytic tasks in which the probability density can be visualized with heat-maps
or contour plots for visual presentation and analytic purposes.

Density estimation is a costly operation. The time complexity for a traditional kernel
density estimation (KDE) is the order of O(MN), where M is the number of evalua-
tion points and N is the number of samples (also equals to the number of kernels when
implemented without any tweaks). That is, density estimation becomes slower as the
size of the dataset increases. For this reason, traditional KDE cannot be efficiently used
with streaming data, where new samples are continuously observed. Although state-of-
the-art dual-tree based KDE [24], which is known to be the fastest and most accurate
algorithm, can scale the computation to O(N), it requires O(N log N) time for con-
struction (building tree structures). However, the dual-tree approach was not designed
as an incremental algorithm. Namely, it is inefficient in an online setting, where the
tree-based data structure requires reconstruction every time a new observation becomes
available. So are the recently proposed distributed and parallel KDE [81] that was de-
signed specially for very large datasets. The distributed KDE employed sub-sampling
techniques to reduce size of KDE model and speedup the density estimation. However,

the algorithm proposed in [81] was not designed to be incremental, namely a new data



point cannot be directly inserted to the built model without rebuilding the entire model.
Because each update takes O(N), the sub-sampling KDE was obviously more suitable
for batch processing than online processing, where N could grow unboundedly.

Reducing the number of computations required to compute a point estimate of the
density has been a main interest in optimizing KDE. A number of improvements have
been considered to reduce the number of kernel components. For example, a straight-
forward binning method has been introduced in [61 [30], where the density is estimated
from a sum of densities estimated from each bin weighted by the number of samples
placed in each bin. In [64], a method that estimates the density with the convolution
theorem using Fourier transformation, in which binning of data is also required, has
been proposed. However, this requires the bin size for each dimension to be specified;
therefore, such approaches quickly become inefficient for high-dimensional multivariate
data streams.

As an alternative to binning, in [I}, 32} B8, 37, [79, [77], samples were clustered and
reduced by replacing them with cluster centroids. The main problem with the cluster-
based approaches is the computational burden of the optimization required for data
partitioning and the solution’s dependency on the initial condition. In addition, cluster-
based methods, including a self organizing map-based KDE [12], often update their
models with a small batch of buffered data (often a few hundreds). Hence, the models
are not truly up-to-dated to each new sample, because they have to wait until the
buffers get filled so that the models can call clustering procedure to update their density
estimators with the new samples.

Some methods have been adapted to handle streaming data by reducing the data
condensation overhead so that the model can keep pace with the input stream. The M-
kernel merging technique [82] is an online density estimator that can handle a univariate
data stream by limiting the number of kernel components and substituting redundant
components with a representative component (kernel merging). The model invokes a
merging routine whenever its buffer is full. Then, downhill simplex optimization is em-
ployed to find the best way to replace two components with a representative component
that would minimize the merging cost, which is the absolute error (L;i-norm) between
the estimation and the underlying density. Since its kernel merging strategy is based on
numerical optimization, the time that the algorithm requires to update the model to a

new sample can be high. As a solution, Heinz [28] has introduced an M-kernel based



online KDE with a constant time pairwise merging technique to solve the problem of
high update cost of the M-kernel algorithm. However, the M-kernel and other M-kernel-
based approaches [28, 29, [6] cannot be generalized to support multivariate data streams
without losing speed because the algorithms rely on sortedness which is more compli-
cated to achieved for multivariate data. The lack of total ordering in multidimensional
data forces the algorithms to use nearest neighbors search, which would incur additional
computational complexity [29]. Therefore, in Chapter |5, we propose a fast kernel com-
pression technique for multivariates kernel density estimation that can be efficiently for

data streams.
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Chapter 3

Human Mobility Modeling

In this chapter, we discuss how human mobility can be modeled from noisy sensors data.
Additionally, we investigate the limits of predictability for a mobility dataset derived

from data collected by the sensors.

3.1 Collective Human Mobility Data

Our experimental smart environment was a functioning working space that included in-
dividual cubicle work stations, recreational space, and meeting areas. Twenty graduate
students and faculty regularly work in this space. The floor plan is depicted in Fig-
ure Individuals may have different duties, different class schedules, and different
daily routines, which results in different directional and temporal mobility patterns. We
installed two types of sensors in the environment to monitor activities and movements.
Infrared distance sensors were primarily used to detect movement at each specific loca-
tion. Magnetic sensors were attached to the hinge of the refrigerator and the oven to
detect their use (Figure . All sensors were connected through our laboratory’s
network, and they continuously fed live streams of mobility data to a database. By em-
ploying these ambient sensors, participants did not need to be equipped with an intrusive
tracking device during the experimental period and could move normally without being
overtly aware that they were being monitored. We observed visitations and mobility in
the experimental environment 24 hours a day for 3 months (precisely 92 days) during
the autumn semester. The experimental space was divided into 30 locations of interest
(N = 30); sensors were concealed at each located to record movements. We modeled

human mobility with two representations for different purposes as follows.
Temporal sequences of repeated visitations. Collective mobility at each location

11



(a) Floor plan (b) Infrared and magnetic sensors
used to observe mobility in the ex-
perimental space

Figure 3.1: (a) Infrared and magnetic sensors used in the experiment (b) Placement of
the sensors

is represented by the temporal sequence of repetitive visitations visited by un-
known people during the observation. The state of visitation at a particular time
is denoted by a binary value: 1 for wvisited, 0 for not visited. For instance, a se-
quence v, represents mobility at location x from 00:00 to 23:59, with the sample

rate p of one sample per hour.

ve = ({£,0), (t1,1), (t5,0), ..., {th3, 1)),

where t] represents the observed time frame from to + iy to to + (i + 1)p, and ¢

is the start time, i.e., tp = 00:00 and t;, = [00 : 00, 01 : 00).

Trajectories. By increasing the sensors’ sample rate u to one sample per 200 ms, we
were able to record every visitation. Then, from a temporal sequence of visita-
tions, ({xo,to), (x1,t1), .-, (Tw—1,tw—1)), we linearly searched for each transition
point in the sequence where the transition time ¢;11 — ¢; > 30 s to create smaller

sequences that represent trajectories.

Despite the unobtrusiveness and simplicity of the ambient sensing method, a con-
siderable amount of the obtained data was noisy. To handle noises (such as false
triggered events, sensors blocked by obstacles, and simultaneous trajectories from

different people) and extract movement trajectories from the collective mobility

12



dataset efficiently, we applied the sequential pattern mining algorithm PrefixS-
pan [50] to extract only sub-trajectories of length n that appeared in a set of
all observed trajectories, 7, more frequently than a certain minimum number of

occurrences, supportmin, during the observation.

3.2 Limits of Predictability

We evaluated the predictability over the collective mobility dataset using the methodolo-
gies introduced by Song et al. [69]. By employing Fano’s inequality [17], 46], we assessed
whether the upper limit of the probability of a moving person’s destination could be
correctly predicted given the most recent trajectory and the past collective mobility
data.

Let T/ denote a movement trajectory, and D; be a destination of 7] from the obser-
vations, T = ((I3, Do), (11, D1),...,{(T),, Dy,)). Given a predictor: f : T} — D, that
works well to predict a future location D; of a moving individual based on recent length
n movement trajectory 7/ and a set of length n trajectories 7, in which 7, C T, let e
denote the event of failed prediction, i.e., f(T}) # D;, and let P(e) be its probability.
According to Fano’s inequality, the lower bound on the error probability P(e) can be

found in the following inequality.
H(D|T") < H(e) + P(e)log(N —1). (3.2.1)
Thus, the probability of predicting correctly, denoted by II, is 1 — P(e). Namely,
H(D|T") < H(e) + (1 — ) log(N — 1), (3.2.2)

where the destination D can take up to N possible locations and H (e) is the correspond-

ing binary entropy as follows:

H(e) = —P(e) log(P(e)) — (1 — P(¢)) log(1 — P(¢))

= —(1—1I)log(1 — IT) — I log(II). (3.2.3)

The conditional entropy H(D|T") appeared in Eq. (3.2.2) quantifies the amount of in-
formation needed to predict the destination D, given recent trajectory 7. Given the

probability P(T”) of the set of past trajectories 7, containing 7" and the joint probability
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Figure 3.2: Predictability of collective human mobility in smart environment: II74*
is the upper bound of the probability that a particular predictive algorithm is able to
predict a person’s location correctly using only the collective dataset.

P(T’,d), the conditional entropy H(D|T") is defined by

HDIT) = Y P(T.d)log L) (3.2.4)
’ P(T",d)’ o
deD,T'eT

Then, we calculated the entropy H(D|T") separately for each length n trajectories,
i.e., T, € T, and analyzed the maximum potential predictability (denoted by II"*) or
the probability of predicting the destination of a person correctly given the collective
mobility dataset by solving for the I1"%*  where IT < II"* in Eq. (3.2.5)), according to
Egs. (3.2.2), (3.2.3) and (3.2.4)

H(D|T') = —(1—TI"7) log (1 — [I™) —TI™% Jog (I[™97) 4 (1 — 1™ log(N —1). (3.2.5)

Figure [3.2(a)| shows II"*" as functions of n, where n denotes length of the consid-
ered trajectories. It is not surprising that n increases predictability; a longer trajectory
provides the predictor with more evidence, which helps narrow the search space. The
supportm,in also shows potential to eliminate unusual trajectories in the dataset, and
gives significantly higher potential predictability. However, there is a trade-off between
the degree of predictability and the number of predictable locations, as shown in Fig-
ure . A high threshold of minimum support (support,,,) results in fewer numbers
of locations N available to the predictive algorithm.

To summarize, despite the fact that the collective human mobility cumulative move-
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ments and behaviors from different people and seems diverge to the experimenter in
the first place, accurate prediction of the location of a person is achievable with accept-
ably high probability. However, the analysis does not provide any clue about potential
predictability for a long-term prediction configuration when the inference of a person’s
mobility cannot rely on recent movement patterns and frequent historical trajectories.
Moreover, predictive techniques that work well for short-term human mobility predic-
tions cannot be extended to long-term predictions effectively [59] 55]. Therefore, in the
next section, we studied the possibility to employ the periodicity in human behavior to

foresee their mobility in far future instead of directly modeling trajectories.

3.3 Periodicity in Collective Human Mobility

Even without the use of data mining tools, it is evident that most of human activities are
periodic to some extent. If a certain action or movement pattern is repeated regularly
with a particular interval 7, and if this behavior is consistent over time, it is certainly
predictable with the time period 7. In addition, the probability of predicting the cor-
rect location of an individual in the future depends on the tendency of such mobility
patterns recurring at intervals. Therefore, we define periodicity probability to quantify

this property formally.

Definition 3.3.0.1. Let P.(7) denotes the periodicity, which is the probability of a
particular event x reoccurring regularly with the constant time interval 7, where T is a
positive integer. Given the temporal sequence, as described in Section[3.1], of events from

ty to tl, in which the location x was visited, the periodicity probability Py(T) is defined
by

Py(1) = P(va(tip,) = Uva(t5) = 1), t; € {to, th, ... th_1}, (3.3.1)

where vy (t}) indicates the state of the visitation at x during the time frame t;.

At the location x1, apparent daily periodic behavior is revealed in the density plot
presented in Figure where dense areas are concentrated and aligned on a certain
time of the day. In contrast, the density plot of x5 in presented Figure |3.3(b)| shows
slightly weaker daily periodicity. The loosely dense areas that are distributed broadly
over time suggest a low degree of certainty of the repetition. However, weekly periodic

behavior is evident in z, as distinct shades appeared on each the day of the week row
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Figure 3.3: In (a) and (b), the density of visitations at location z; and x2 related to
time of the day and day of the week are depicted, respectively. Busy times and days, in
which a high number of visitations occurred within the same period of time, are shown
in dark red. Dark blue indicates the opposite. The periodicity Py, (7) and Py, (7) of the
corresponding locations z1 and zo are shown as a function of time period 7, in (¢) and
(d), respectively.

indicating unique behavioral patterns on each day.

To find significant periodicity in the collective human mobility, we searched for 7
that maximizes the periodicity probability at each location separately. Figures [3.3(c)|
and show two sample locations where periodic behavior can be observed. The
small peaks in these plots reveal relatively high probability that these particular loca-
tions were visited regularly with the time period 7, when 7 is in multiples of 24 hours.
Moreover, the maximum predictability probabilities are found at multiples of 168 hours.
Without doubt, this clearly indicates that daily and weekly behaviors exist in the col-
lective mobility data. Using a more algorithmic method to find significant period 7, the
Fourier analysis also suggested that 7 = 24 hours and 168 hours correspond to two of the
most significant frequencies of ~ 4.167 x 1072 Hz and =~ 5.925 x 1072 Hz, respectively.

In the next section, we analyze the possibility of the collective human mobility being

predictable with periodic behavioral patterns.
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3.4 Predictability of the Periodic Model

Intuitively, the periodicity P,(7) can be assumed to have estimated the precision of a
periodic-based predictive model, which is based on a strong assumption of periodically
repeated visitations. Hence, the periodicity P,(7) can be considered as a measurement
for the predictability of the periodic model. In addition, we want to provide another
predictability analysis applying an academic concept from information theory to the
periodic model.

First, we assign periodic entropy to the history data of repetitive visitations at each
location to determine the amount of information needed to foresee future visits given
historical records of repetitive visitations. At each location x, the periodic entropy is

computed as follows.

Definition 3.4.0.1. Given the collective mobility data, the entropy ST that quantifies
the degree of uncertainty of the periodicity Py(7) in the dataset is as follows:

Sjn— = Z P(Ux)H(Ux(t;+T|Ux(t2) = V))? t; € {t/ yre 7t;n71}7 (34‘1)
ve{0,1}

where P(v,) is the probability of a location x being visited, and the conditional entropy

H(Ux(t;-i-r)wz(t;) =v) is

H(unlthe et =) = 3 Pl tos (505 ) (3.4.2)

pe{0,1}

where P(p|v) stands for P(vy(ti, ) = plux(t;) = v).

In addition, let S;f be the entropy of future visitations; i.e.,
== > Plultl,) = @) log(P(vs(tiy,) = 9), 1 € {to,. -t 1} (3.4.3)
pe{0,1}
Next, we determine the predictability for each location x of the periodic model with

the probability II, - defined as follows.

Definition 3.4.0.2. Let IL, . be the probability that the periodic model predicts times of
future visitations at x correctly by always predict visits at all times that are kT apart from

the last visit for k = 1,2,.... Thus the associated entropy H(IL, ;) of the predictability
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Figure 3.4: Predictability II”*** and corresponding periodic entropy

I, ; is as follows:

H(IL, ;) = —11,  1ogy(IL,. ;) — (1 — I, ;) logy(1 — I, ;). (3.4.4)

)

The maximum predictability II7'** can be determined using Fano’s inequality in

accordance with Eq. (3.2.2)).
S;:r < H(Hx,‘r) + (1 - Hw,‘r) 10g2(N - 1)' (3'4'5)

Because 11, ; < II}'?* and N = 2 prevents this boundary to the binary classification,

the following correction is required.

Sy <H(g.)+ (1 -1 ) logy(N — 1) < H(IL, ;) + (1 — I, +) logy(N)

— 17 log, (I1727) — (1 — TI7%7) logy (1 — I79%) + (1 — IL,,,) logy(N).  (3.4.6)

After solving for II}"?* in Eq. , the predictability II}'?" determines the upper
limit of the probability of predicting future visits of people at location x in the far future
given an appropriate periodic model (with the time period 7). We evaluated S™ and
[I** separately for each location, and the associated distribution of II”*** is shown
in Figure Both distributions of the predictability II”*** indicate the average
predictability over all locations is approximately greater than 80%, in both daily and
weekly models. The average predictability of the weekly model is slightly higher and
has lower variance than the daily model. It is reasonable to conclude that the weekly

model fits the collective mobility data better than the daily periodic model.
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Figure [3.4(b)| shows differences between the periodic entropy, S7

T

and the entropy
of future visitations, S;f, at each location z when 7 = 24 hours. Note that as S is
closer to zero and farther from S;f, future visitations are more likely to periodically
depend on previous visitations. For instance, locations x5, zg, z17, 18, and xggﬂ were
not periodic, while the locations x1, x2, xs, T9, Tog and x3g appeared to be more periodic
than others. Therefore, the periodicity-based predictive model alone would not work in
all locations; hence, we have developed the integrated aperiodic and periodic model for

long-term human mobility prediction.

3.5 Conclusion

Human mobility and activities monitoring technologies have been improved notably in
the past decade. Many advance non-intrusive techniques, such as WiFi signal strength-
based techniques [18] 19, [5I] and laser-based tracking [14], have been developed and
made available for human behavior researches. Similarly, we aim at unobtrusiveness
and simplicity and opt for the ambient sensors, in which tracking sensitivity is rela-
tively higher than the other methods. In addition, the hierarchical probabilistic model
and statistical method proposed in [47] are also capable of applying to non-intrusive
sensing data and, yet, are able to recognize multi persons’ behaviors. The limitation
that these techniques are facing, however, is that they cannot distinguish individual
identities. Consequently it is impossible to create an individual predictive model for
each individual’s mobility pattern. That is, despite advance acquisition techniques, the
obtained data are still mixed up and inseparable among multi users.

In conclusion, the answer to the question about limitations of the predictability of
collective human mobility from simple ambient sensor data collected in a smart envi-
ronment has been found. The dataset collected from such ambient systems appeared to
be noisy and did not contain much useful information for prediction tasks at first. After
sufficient preprocessing with sequential patterns mining, our analyses have shown the
potential predictability of the dataset in both short-term prediction setting and long-
term prediction setting. Moreover, we have also discovered the key factors that greatly
affect the accuracy, which give us some insight on how and where to be careful with
when preprocessing the dataset.

For short-term prediction, the length and the support of the trajectory pattens are

'Placement of each point of interest z; can be found in Figure [3.1(a)
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the key factors that most influence the predictability of the dataset. In other words,
trajectory patterns with more evidences to support are less likely to be observed from
actual moving subject rather than from noise or false alarm sensor triggers. And longer
patterns contain more more information about past mobility patterns (i.e., paths and
speeds) compared to shorter patterns.

For long-term prediction, it is straightforward that the likelihood of repetitive pat-
terns, either periodic or aperiodic, is the most important feature that determines the

limit of its predictability.
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Chapter 4

Human Mobility Prediction

4.1 Long-term Human Mobility Prediction

The proposed Aperiodic and Periodic model (APP) for long-term human mobility pre-
diction [65] combines two paradigms. The first approach (periodic approach) employs
the periodic property in human mobility to foresee future visits. The second approach
(aperiodic approach) does not rely on the periodicity; rather, it presumes that mobility
patterns are similar to a day in the past that has similar features. APP model uses
one of the two approaches to predict human mobility at a certain location x depending
on the periodicity probability P,(7) at that specific location. If P,(7) is more than

the user-specific threshold PT . . then APP uses the periodic approach. Otherwise, it

in’

switches to the aperiodic approach.

4.1.1 The Periodic Approach

APP model’s periodic predictive approach was designed to foresee times of future visita-
tions at each location in the smart space. To predict future locations of multiple people,
the predictions are computed independently for each location. Then all the results are
combined to provide a set of locations that are likely to be visited at the specific time
in the far future.

The fundamental idea behind the prediction is based on the assumption of period-
icity. If the visitations at x recur regularly and repeatedly with constant time interval
7 and if this periodic behavior appears consistently over time, then the probability

P7(t}) that the future visitation will occur within the time frame t/;, when the last visit
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happened at ¢/, _; can be computed as

Pa;r(t/) = P(vx(t:n—l—(k)r—&—é) = 1|v$(t;n—1—(k+1)7'+6) = 1)7 k= 17 27 ceey L’I’)’L/TJ (411)

where 6 =7 — (f —m + 1) mod 7.

This simple, yet accurate, predictive approach works well only at locations, where
individuals’ mobility has apparent periodicity. Otherwise, the periodic approach obtains
poor predictions because mobility in those particular locations is not governed by peri-
odic behavior. To address this problem, we proposed the optional aperiodic approach,

which is independent of the periodic behavior.

4.1.2 The Aperiodic Approach

In the second predictive technique implemented in APP method, we extract significant
patterns of repetitive visitations that occurred on different days at each location. Next
the days that have a similar visiting behavior pattern are clustered, resulting in groups
of similar days. Then, we extract contextual features from each group of similar days.
Due to the limited dataset available, in this project only two features of interest were
considered: (1) day of the week, (2) whether or not it was a holiday. Note that un-
limited additional features, such as temperature, traffic, weather conditions, or meeting
schedule, that might relate to the mobility pattern can be used to more comprehensively
characterize the day.

The intuition that supports this predictive approach is derived from the weekly
model presented in Section [4.1.1] i.e., human mobility patterns on the same day of the
week are likely similar. In addition, human activities on national holidays are apparently
different from normal workdays; therefore, we need an additional bit to explicitly specify
this property. Hence, the mobility pattern of a day can be individually modeled by the
visitations at each location. Recall the temporal sequence v, described in Section (3.1

mobility at a certain location z can be represented by a vector:

dz :[Uxa dayweek’ holzday]

:[v%, oy, Sun, Mon, . ..., Sat, Hol]. (4.1.2)

The day vector d, consists of 32 bits. The first 24 bits model visitations at location

x during a specific time frame of a day, which is divided into hours. The next 7 bits
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Figure 4.1: Three cluster centroids that represent three mobility patterns.

indicate day of week, and the last bit indicates a holiday.

Similarity between two day vectors is generally measured by the Hamming distance
[26]. Then, the k-means clustering algorithm [42] is applied to a set of day vectors to
find clusters of similar days. Note that the clustering considers only the first 24 bits,
the visitation part of day vectors. The parameter k of the algorithm directly implies the
number of different mobility patterns that occurred on different days. The centroid of
each cluster now represents a common mobility pattern that provides predictions (prob-
ability) of visitations on particular future days that have similar features. A concrete
example of similar day clusters from the real dataset is shown in Figure The cluster
centroids in Figure clearly show three different visiting patterns at that particular
location. Cluster (1) contains a set of days in the past history when visitations rarely
happened, and the majority of this set are Saturdays, Sundays, and days specified as
holidays. On the other hand, clusters (2) and (3) contain more active days. The days in
cluster (2), primarily Mondays and Wednesdays, have very low visitations records from
11.00-12.00 and 21.00-22.00; moreover, the visitations seem to occur earlier than on
the days in cluster (3). Interestingly, this follows from the fact that we have scheduled
meetings in the experimental space every Monday and Wednesday, which causes the
mobility pattern on these days to be different from other days.

sectionEvaluating Prediction Performance In this section, we report on an evaluation
of the prediction performance of the proposed long-term human mobility predictor on
a physical collective human mobility dataset accumulated inside the working environ-
ment. As described in Section the dataset contains 92 days of mutual movements
of all participants. Data were collected consecutively 24 hours a day, 7 days a week
from approximately 20 participants using infrared sensors and magnetic sensors. These
sensors were installed at 30 locations over the experimental space to detect activities
and mobility at each area (Figure . Movements and activities were not scripted

beforehand; all actions occurred spontaneously or deliberately in relation to each indi-
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Table 4.1: Human Mobility Dataset

Dataset Training Test
Sample rate hourly
Number of participants <20
Observed locations 30
Size of data 62 days 30 days
(1,488 (720 hours)
hours)

vidual’s routine, work schedule, and needs at that instant.

First, we evaluated the periodic approach for long-term human mobility prediction.
Two months of collective mobility data was used to build the predictive model and the
remaining 30 days of mobility data were used to test the model. Details of the dataset

are summarized in Table (.11

4.1.3 Periodicity and Prediction Performance

We determined relations between the periodicity probability (P,(7 = 24) and P,(1 =
168)) and the prediction accuracy precision and recall rate at each location separately.
Dashed lines drawn in Figure estimated predictive performance as a linear function
of the periodicity at each location of interest. Figures and exhibit a de-
creasing trend of prediction accuracy with increasing periodicity probability; however,
the periodic predictor returns higher precision and recall rates as the dataset has higher
probability of such movements being periodically repeated. Nevertheless, the measure-
ment of prediction accuracy is meaningless to us because the datasets, which contain
historical visitations records for each location, have negative skew. In other words, a
naive predictor could achieve at least a 60% chance of correctly predicting visitations (ei-

ther “visited” or “not visited”) at a specific time frame in the future by always guessing

“not visited”. Figures|4.2(b)land |4.2(e)|show a direct relationship between the precision

rate and periodicity probability. Likewise, the recall rates in Figures [4.2(c)| and [4.2(f)|

show that the datasets with higher periodicity are more predictable than others. More-
over, when the periodicity probabilities are lower than 0.4, the daily periodic approach
(Figure clearly returns poor results, i.e., those visitations were not daily peri-
odic and were hardly covered by the weekly periodic model. These results confirm our
hypothesis that the periodic approach alone is not effective for predictions with low

periodicity probability.
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Figure 4.2: Periodicity and prediction performance

4.1.4 Prediction Performance of the Aperiodic Approach

The aperiodic part of APP is implemented with the similar-day predictive approach
described in In previous experiments, the periodic approach underperformed on

the datasets where mobility was not really periodic. This was particularly the case for

the daily periodic model (see Figures 4.2(a), 4.2(b), and [4.2(c)) when most locations

in the experimental space had periodicity probability lower than 0.4. Hence, in this
experiment, the aperiodic part of APP is activated when periodicity is lower than the

minimum threshold of P7. = 0.4.

min

Figure reveals the benefit of including the aperiodic component in the APP pre-
dictive model. In Figure the precision rates of the APP model after the imple-
mentation of the similar-day approach for low-periodicity data are noticeably improved
compared to the periodic approach alone. The precision plots of the periodic approach
on the left (periodicity < 0.4) were mostly omitted from analysis because the periodic
predictor never predicted “visited” for those locations, resulting in undefined precision

rates.

APP also improves the recall rates, as shown in Figure 4.3(b)l It is interesting
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Figure 4.4: Area under the ROC curve

that the recall rates used to achieve close to 0.0 with the periodic approach increase to
0.6 when the APP predictive technique is employed. Samples of prediction evaluations
of the two most accurate and the two least accurate predicted locations are shown in
Figure [£.4 In the most accurate case, APP was able to obtain the area under the
receiver operating characteristic (ROC) of 0.79, where the sensitivity of the decision
threshold was varied (Figure . Nonetheless, the worst predictor scores occurred
for a ROC of 0.48 (Figure [1.4(c)).

In this final evaluation, we measured how close the predicted visitations are to the
actual visits. The prediction error is simply the distance between the predicted times-
tamp of an expected future visit and the timestamp of the closest actual future visit.
The results are summarized in Figure Impressively, 60% of the estimation errors
are less than 2.5 hours (with mean = 7.5 hours, and median = 1.5 hours), considering

that the prediction was made a month in advance.
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Figure 4.5: Distribution of prediction error

In summary, the aperiodic part in our proposed long-term human mobility pre-
dictive technique improves prediction performance, particularly when the periodicity
probability is too low to infer future visitations. However, the similar-day approach in
the aperiodic part is not sufficiently effective to improve the predictive technique that
employs the weekly periodic approach (7 = 168). The reason for this is that the day
of week feature resulted from cluster analysis in the similar-day approach corresponded
to the weekly periodic model, and holiday is not a significant feature since there were
few holidays during the three months when the dataset was collected. Implementa-
tion of the similar-day approach (aperiodic part) and the weekly periodic approach did
not achieve noticeable improvement compared with implementation of only the weekly

periodic predictive approach.

4.1.5 Long-term Prediction Performance

In this section, we report the results of testing the robustness of APP over a long-term.
(Details of the dataset are summarized in Table ) Prediction performance for each
day was summarized and plotted across a prediction range of 30 days. The results pre-
sented in Figure [4.6] show steady prediction performances even when predicting for 30
days in the future. The F} score, which is the harmonic mean of the precision and the
recall rate (Figure , summarizes the prediction performance of the three proposed
predictive techniques as follows. First, the collective mobility dataset that initially ap-

pears to be random contains sufficient information to enable accurate predictions even
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Figure 4.6: Long-term prediction performance

in the far future. Activities and corresponding mobility in the dataset are likely to be
periodic on a weekly basis; hence, the weekly periodic predictive approach alone can
achieve an average F score of 0.55. On the other hand, the daily model performs rela-
tively poorly (average F) score of 0.37) with this dataset because of the low periodicity
probability on a daily basis. However, after implementing the similar-day approach to-
gether with the daily predictive model, the integrated model can achieve an average I}

score of 0.52.

4.2 Short-term Mobility Prediction

In our earlier attempts in modeling and predicting human mobility using the dataset
from the same set of sensors used in this project [68], we have succeeded in predicting
future whereabouts of a moving participant with the average precision of 90% using a
decision tree-based classifier trained on sequential patterns of users’ trajectories. How-
ever, the result from our recent analysis [66] (details were summarized in Chapter [3)) on
the theoretical limit of the predictability of human mobility given the dataset from the
same selection of sensors has revealed the potential of achieving a near perfect predic-
tion. That being said, despite the possibility of missing and other failures that could
happened and affect the quality of sensor reading, we have shown that, with essential
preprocessing step, the sensor data contains sufficient information to train a machine
learning model and get highly accurate predictive model.

Our previous predictive technique [68] relied on the decision tree learning, which has
a few advantages over other classification approaches for exploratory analysis. Model

of a decision tree has a structure that is easy to understand, even to people with little
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background in machine learning, and features importance can be analyzed directly from
the model for broader understanding of mobility patterns.

However, decision tree learning has a couple of downsides which can greatly affect
the accuracy of the prediction. Firstly, decision tree-based learnings are related to
the problem in which two (or more) variates explain the same thing. A decision tree
will extend its branch on the best variable, whereas other approach will consider them
both. Secondly, in a decision tree, all variates are assumed to interact. That is all
variates are forced to interact with every variables further up in the tree. The assumed
interactions that two variates behave dependently can greatly degrade the predictive
accuracy. Thirdly, poor resolution with continuous variables.

The proposed method is trajectory pattern-based with the information of transition
times incorporated into the model to take into account moving speed which has the

potential to identify users’ identity and intentions.

4.2.1 Extracting Trajectories from Sensor Readings

Representation of a trajectory used by this algorithm is similar to the sequential rep-
resentation described in Section [3.1] Regardless of different types of sensors, we want
each sensor to report a binary state of its vicinity being visited by a user (or users).
Then these states of visitations triggered from different sensors are sorted by their time
of visits resulting in a sequence of visited location IDs (sensor IDs) and time stamps
that represent movements. We cut the continuous sequence of sensor readings at the
intervals with longer duration than 30 seconds resulting in shorter sequences in which
each sequence represent individual trajectory. Specifically, a trajectory is represented
with a sequence of visitation tuples. Each visitation tuple contains 1) visited location
ID s; and 2) visited time ¢;. For instance, the movement demonstrated from area A to

area D in Fig. [4.7] can be represented with the following sequence of length-4.

trapcp = <(:13a, tl)a (mb7 t2)7 (wc’ t3)’ (wdv t4)> (4'2'1)

While movement speed can be determined simply by transition times between each hop

along the path.

tiapcp = (tiab, tipe, tica) (4.2.2)
As stated earlier in the introduction, we have to handle the problem of inaccu-

29



Figure 4.7: Placement of each sensor is indicated with read circle. The trace shows an
example trajectory of a person traveling inside the environment from area A to area D.
Each transition time #i;; implies moving speed.

rately generated trajectories from noises and collateral movements. Similar to previous
works [68], 65], we applied the temporal sequential pattern mining algorithm to extract
spatial-temporally frequent movement patterns from the original dataset, i.e. frequent
in term of both speed and direction. The resulting trajectory patterns are expected to

be far less noisy and more predictable, according to the analysis in [66].

4.2.2 Trajectory Patterns-based Human Mobilility Predictive Model

Future location of a moving user is dependent on the most recent visits history, with
respect to moving speed and chosen route. Trajectory patterns-based models have been
studied in a number of ways, such as Markovian model [70] and Spatio-temporal sequen-
tial pattens-based model [59]. In this work, we opted for the trajectory patterns-based
method, which is a standard sequential patterns-based predictive model which is for-

mally defined as the following steps:

1. Given a set of trajectories I' = {tr1,...,try | V|tr]) > 2}, let T be the mined
set of frequent sub-trajectories that occur at least suppmmﬂ times in I" with the
minimal transition probability of con fmmﬂ Specifically, we used the PrefixSpan

algorithm [27] for frequent trajectories mining.

2. Let the transition probability P,.(n | m) be the probability of finding that the

next visitation is at n given that m is the most recent trajectory of the user as

!The minimum support threshold
2The minimum confidence threshold
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follows
supp(m — n)

supp(m) (4.2.3)

ptT(n | m) =conf(m —n) =

where supp(m — n) denotes the number of occurrence that the trajectory m were
followed by a visitation at n and supp(m) is the number of occurrence of m in T.

Note that supp(tr;) > suppmin > 0 and conf(tr;) > confmin > 0, Vir; € I.
. For each length-l frequent trajectory tr; € I, define tNTEO]
[-1]

7

as the first tuple of

the trajectory tr; and let tr be the first tuple from the end of the trajectory

tr;. #r73 is the second element from the end, and so forth. Assign a notation

t}ga:b] to denote the sub-trajectory of ¢r; from the ath tuple to the (b — 1)th tuple
[0:1]

. equals to tr; itself. Further, to make the
notation less cluttered, we would like to abbreviate t~1"[0:b] to just t}gb]; likewise,

tjr'ga:l] Z[a:] .

(inclusive), where a < b. Apparently, tr

For instance, if tr; = ((za,t1). (x4, t2), (2c, t3), (24, ta))
(-1 [=1]

then the destination is tr = (x4,t4) and its corresponding prefix is tr;

(Za,t1), (T, t2), (e, t3)), while £ = ((2p, t), (e, t3), (2a, ta)).

is equal to tr

Given a length-l test trajectory tr’, the prediction step works as follows:

(a) Create a candidate set C' containing all the frequent trajectories in which
their prefixes are identical to t’, i.e. C' = {tr; | Vir; € T A t}g:_” =tr'}. The
equality in this sense concerns only the spatial context of the trajectories.
Two trajectories are considered equal if every visitations at each step are

similar, regardless of the difference of the visited times or the time spent at

each visit.

(b) If the set C is empty and |tr/| > 1, repeat step [3a] with a shorter ¢r/, that is
the new tr’ < t'J, which results in a shorter test trajectory that disregards
the fist visit of the trajectory.

(c) In the case that step [3al and [3b| are repeated until the test trajectory cannot

be trimmed anymore i.e. |[tr'| = 1, the model returns an empty set, which
indicates that the model cannot recognize the query trajectory and cannot
provide a proper prediction. In other words, the probabilities of all possible

outcomes are, evenly, zeros.

(d) Otherwise, in the case that C' is not empty, the model returns a distinct set,

which contains the predicted locations and the confidence of each prediction.
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Algorithm 4.2.2.1 Trajectory Patterns-based Prediction
(transition time concerned)

1: procedure PREDICT_PROBA_NNB(tr, ti,T)
2 C+ o

3 while C'is @ A [tr'| > 1 do

4 C « {tr; | Vir; e DAt = 0}
5: tr' « tr'lt]

6 end while

7 if C # @ then

8
9

PNNB L5, pNNB(5; | ti)) | Vij € Possible outcomes} > equation ((4.2.5))

return argmax PNNEB
10: else

11: return g

12: end if

13: end procedure

gEPossible outcomes

Although the introduced trajectory patterns-based model is able to provide the pre-
diction probability properly, the temporal context of a trajectory has not been utilized
in the prediction process yet. Thus we introduce a transition time concerned version
of trajectory patterns-based model wherein the prediction probability of each potential
location is computed based on the expected transition time between the last visit and
the destination. That is rather than only asking: “Where is the user expected to be

7 we would add “Where is the user

next, given his most recent movement trajectory tr
expected to be ti after?”.

We keep the modification simple. In step when C' is not empty, final transition
times

tig, = i e — a7y (4.2.4)

7

of each candidate trajectory tr; € C' are computed, where ™ ¢ accesses the timestamp

> []

property of a tuple tr*~. Then the prediction probability of each possible outcome 7 is

estimated based on soft nearest neighbor classification [60]. That is

ZtheC/\t}E*”:g exp(—(ti — tig,)?)

NNB/~ .
pr (g | ) = ——
Zt}iEC/\tjrg_l]#@] eXp(_<tl - tzt}j)Q) ’

(4.2.5)

where t7’ is the most recent trajectory of a moving user and ti is the given time
interval between tr’ and the next visitation. The prediction is then selected from the

most likely position as follows:

Predicted location = argmax; pMNB(g | ti) (4.2.6)
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The complete procedure of the transition time concerned trajectory patterns-based

model is elaborated in Algorithm [4.2.2.1]

4.2.3 Performance Evaluation using Real-world
Mobility dataset from Smart Environment

In this section, we compared the proposed trajectory patterns-based transition time
concerned model with our prior attamps at predicting human mobility [I5] (denoted
as DT). The predictive technique used in [I5] was based on a decision tree classifier.
The decision tree-based human mobility predictor takes n — 1 previous visited steps,
n — 2 transition times between each step and the expected time until the last step and
the predicting location as features for length-n trajectories. To train the model, we
divide training data by length and train the decision tree separately for each length-:
trajectory, where i« = 2,...,4. Both decision tree-based approach and the proposed
method rely on the training trajectories to be provided in good quality. To extract
real trajectories from noises and other sensor events other than human mobility, we
employed the temporal sequential patterns mining algorithm [I5] with the minimum
support of 2 and the minimum confidence of 10% to the raw sensor data to connect
sensor events, remove spurious sequences and extract only a set of trajectories that
meet the requirement stated above.

We tested two competing human mobility predictive techniques and evaluated their
predictive performance using 10-fold cross validation. Referred to the dataset of mobility
tracked from 30 interested locations mentioned in Section [3.1} sequence of sensor firing
events were split into set of sequences with the 30 seconds threshold, i.e. events that
are over 30 seconds apart are considers unconnected events). Then the set of events
sequences equally divided into 10 partitions, where 9 of them will be used to train
the predictive model and the remaining partition is kept for testing. The processes is
repeated 10 times, with different testing partitions. Note that the test set can also
contain noises, such as false positive triggering and interleaving sequences due to two
or more users walked at the same time, because we partitioned raw data into train
and test sets without any preprocessing. Therefore, to cleanup testing datasets, we
applied temporal sequential patterns mining algorithm [67] to extract frequent temporal
sequential patterns that appeared at least five times with the minimum confidence of

35% within the test set; namely, suppmin = 5 and con fimimm = 0.35. The test dataset
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Figure 4.8: Effects of minimum support and confidence parameter settings on prediction
accuracy

contained 3,771 trajectories of varying lengths and only 19 locations from 30 locations
of interest appeared as destinations of the testing trajectories.

Both decision tree-based predictor and the trajectory patterns-based transition time
concerned predictor rely heavily on the quality of the input trajectory patterns. That
is the higher the confidence, the more precision score the predictors could obtain. In
contrary, the lower the confidence and the lower the support, the more recall score the
predictors could obtain. Therefore, the right balance between precision and sensitivity
must be fine tuned to suit each applications. For instance, in applications where false
positive are not as severe as false negatives, we would want to lower the minimum
confidence and support parameters to have our predictors trained on more generalized
patterns. Whereas, if false positives cost more than false negatives, we would want out
predictors only learn from highly confident patterns. As shown in Figure prediction
accuracy of an interested location x was measured with the precision, recall and Fj
scores. From Figure the precision increased as we incremented the minimum
support and confidence parameters, until the predictor failed since the minimum support
and/or the minimum confidence were too high such that the mined patterns did not
contain any trajectory patterns towards x. In contrary, Figure shows that as the
minimum support and confidence parameters were decreasing, recall rate also decreased
because of the mined patterns contained less and less patterns that can be used to
predict x.

Since we do not have specific preference of whether to emphasis on the precision

or sensitivity, we chose to maximize the harmonic mean of both, namely the F} score.
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From Figure we picked the minimum support parameter of 16 and the minimum
confidence parameter of 0.1 to extract trajectory patterns that will be used to train our
predictors.

Other than the support and confidence parameters, the proposed trajectory patterns-
based transition time concerned model has an additional parameter k which is used to
control the number of nearest patterns that will be considered to make a prediction.
Smaller k£ limits the model to consider only a few nearest patterns, whereas Larger
k allows the model to consider more candidate patterns. In general, it is important
to find the right k& so that the model would not be too general (underfitting) or too
specific to the training patterns (overfitting). This is true for our method only when
the input patterns are mined with low minimum support and confidence settings, where
infrequent patterns that possibly contain noise signals might still be included in the
training patterns. We can see from Figure in which the training patterns were
mined from the TgPyjalgorithm with the minimum support setting of 2 and no minimum
confidence limit, that the accuracy of the model (as measured by the F) score) was
heavily relied on the k parameter. Since the training patterns contained more infrequent
patterns, it needed more number of candidates to make good prediction. In contrast,
when the minimum support and confidence parameters were set properly, the parameter
k didn’t affect the accuracy of the model as much.

Next, we set the minimum support to 16 and the minimum confidence to 0.1. Pre-

diction performance of the proposed method and a competition were evaluated using the
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Loc IDs | 4 of visits Precisions Recalls F} scores

DT TBTT DT TBTT DT TBTT

1 5 1.0000 | 1.0000 | 0.6000 | 1.0000 | 0.7500 | 1.0000
2 5 0.5556 | 1.0000 | 1.0000 | 1.0000 | 0.7143 | 1.0000
3 6 1.0000 | 1.0000 | 0.5000 | 0.8333 | 0.6667 | 0.9091
4 11 0.6429 | 1.0000 | 0.8182 | 0.8182 | 0.7200 | 0.9000
5 11 0.8182 | 1.0000 | 0.8182 | 1.0000 | 0.8182 | 1.0000
6 12 0.7778 | 0.6667 | 0.5833 | 0.5000 | 0.6667 | 0.5714
7 21 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
8 46 0.6486 | 0.8571 | 0.5217 | 0.5217 | 0.5783 | 0.6486
9 54 0.9074 | 0.9818 | 0.9074 | 1.0000 | 0.9074 | 0.9908
10 55 0.9216 | 0.9643 | 0.8545 | 0.9818 | 0.8868 | 0.9730
11 90 0.8161 | 1.0000 | 0.7889 | 0.9667 | 0.8023 | 0.9831
12 110 0.6619 | 0.9259 | 0.8364 | 0.9091 | 0.7390 | 0.9174
13 116 0.8560 | 0.9431 | 0.9224 | 1.0000 | 0.8880 | 0.9707
14 117 0.9806 | 1.0000 | 0.8632 | 0.9658 | 0.9182 | 0.9826
15 239 0.8315 | 0.9713 | 0.9289 | 0.9916 | 0.8775 | 0.9814
16 289 0.9560 | 0.9601 | 0.9031 | 1.0000 | 0.9288 | 0.9797
17 312 0.7855 | 0.9614 | 0.8333 | 0.9583 | 0.8087 | 0.9599
18 1130 0.9982 | 1.0000 | 0.9867 | 1.0000 | 0.9924 | 1.0000
19 1142 0.9722 | 0.9922 | 0.9510 | 0.9991 | 0.9615 | 0.9956
Avg 0.8489 | 0.9592 | 0.8220 | 0.9182 | 0.8223 | 0.9349
Weighted Avg 0.9304 | 0.9821 | 0.9260 | 0.9828 | 0.9269 | 0.9818

Table 4.2: predictive accuracy per class (locations)

precision, recall and F; scores. The results in details displayed in Table clearly indi-
cate that the proposed trajectory patterns-based model has outperformed the decision
tree-based model at every classes (locations). The proposed method even obtained per-
fect prediction of the location ID 1, 2, 5 and 18, whereas the decision tree approach only
achieved a moderate 75%-99% of Fy score. The proposed method not only performed
well on large classes, such as Loc IDs 15-23, with over a hundred visitations during the
experiment, but also performed well on locations where the occupants rarely visited, e.g.
Loc IDs 1-3. Whereas, the decision tree approach experienced more prediction errors at
these locations, especially Loc IDs 2, 4 and 8.

The errors from misclassification from both methods can be seen more clearly in
confusion matrices in Figure The confusion matrix from the results of the decision
tree-based predictor (Figure clearly shows more erroneous predictions compared
to the results to the proposed method in Figure which, from the results, seems
more promising in delivering location-based services to the occupants than its competing

predictive technique.
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Figure 4.10: Accuracy of (a) tree-based human mobility model and (b) trajectory
patterns-based transition time concerned human mobility model visualized with con-
fusion matrices

4.2.4 Conclusion

We have proposed a promising framework for human mobility predicting that works
well even when presented with noisy data from simple motion detection sensors. Other
than the essential preprocessing step of trajectory patterns mining that we have used
in the past researches [I5], [67] (see [66] for the analysis), in this work we presented a
novel trajectory predictive technique that can model trajectory patterns from multiple
occupants and predict future position of a moving subject with very high accuracy.
The proposed transition time concerned trajectory pattern-based model has achieved
over 98.21% of precision and the F; score of 98.18% prediction on a real world human
mobility data. The proposed predictive model outperforms our previously proposed
predictive model which has achieved only 95.92% of precision and 93.39% of F; scores
on the same performance evaluation test. In addition, this result has closed the gap
between the empirical performance and the theoretical limit of the predictability of that
we have estimated in the previous research [66]. The proposed predictive technique has
introduces a great opportunities to smart environment researchers to develop successful
location-based applications with less complicated sensor system that leads to lower cost

of production and development.
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Chapter 5

Kernel Density Compression for
online KDE

5.1 Kernel Density Estimation

KDE is a nonparametric method for approximating an unknown probability density
function p(x) from observations. The term kernel refers to any probability density
function that is placed over each observation to quantify the likelihood of a small region
around each observation containing @. Thus, the estimated density is the weighted

summation of contributions that each observation makes to the distribution.

5.1.1 Traditional Kernel Density Estimation

By definition, any kernel function K(u) : R — R>¢ must be symmetric, i.e. VyeRr :

K(—u) = K(u), and satisfy the following condition:
/ K(u)du = 1. (5.1.1)

Given a set of observations { X1, ..., Xy}, VX; € R?, the estimated probability density

function p(zx), ¢ € R? is as follows:

N o
p(x) = ﬁZK (th ) (5.1.2)
=1

where h is a parameter used to define the width of each kernel. This parameter is
often referred to as bandwidth. For instance, a commonly used Gaussian kernel has the

following density function:
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1Y 1 1(X; —2)T(X; — 2)
plx) = N;hdmﬂ_)dexp <2 3 ) (5.1.3)

In general cases, the bandwidth parameter can be represented by a vector h = [hy, ha, ..., hg]
of d dimensions, in which each element individually represents the bandwidth parameter
of each dimension. Thus, the density estimation function in Eq{(5.1.3)|can be generalized

as follows:

p(x) = jlvi:; e hjl\/W exp <—; <Xh_ m>T <Xh_ m)) L (5.14)

5.1.2 Problem of KDE with online data

Kernel density estimation is a costly operation. The computation in Eq involves
N iterations over all observations. Thus, a simple looping density estimation of M query
points has a time complexity of O(MN) or O(N?), where M ~ N. Although state-of-
the-art dual-tree based KDE [24], which is known to be the fastest and most accurate
algorithm, can scale the computation to O(N), it requires O(N log N) time for con-
struction (building tree structures). However, the dual-tree approach was not designed
as an incremental algorithm. Namely, it is inefficient in an online setting, where the
tree-based data structure requires reconstruction every time a new observation becomes
available. So are the recently proposed distributed and parallel KDE [81] that was de-
signed specially for very large datasets. The distributed KDE employed sub-sampling
techniques to reduce size of KDE model and speedup the density estimation. However,
the algorithm proposed in [81] was not designed to be incremental, namely a new data
point cannot be directly inserted to the built model without rebuilding the entire model.
Because each update takes O(N), the sub-sampling KDE was obviously more suitable
for batch processing than online processing, where N could grow unboundedly.
Reducing the number of computations required to compute a point estimate of the
density has been a main interest in optimizing KDE. A number of improvements have
been considered to reduce the number of kernel components. For example, a straight-
forward binning method has been introduced in [61} [30], where the density is estimated
from a sum of densities estimated from each bin weighted by the number of samples
placed in each bin. In [64], a method that estimates the density with the convolution
theorem using Fourier transformation, in which binning of data is also required, has

been proposed. However, this requires the bin size for each dimension to be specified;
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therefore, such approaches quickly become inefficient for high-dimensional multivariate
data streams.

As an alternative to binning, in [I}, 32 B8, B7, [79, [77], samples were clustered and
reduced by replacing them with cluster centroids. The main problem with the cluster-
based approaches is the computational burden of the optimization required for data
partitioning and the solution’s dependency on the initial condition. In addition, cluster-
based methods, including a self organizing map-based KDE [12], often update their
models with a small batch of buffered data (often a few hundreds). Hence, the models
are not truly up-to-dated to each new sample, because they have to wait until the
buffers get filled so that the models can call clustering procedure to update their density
estimators with the new samples.

Some methods have been adapted to handle streaming data by reducing the data
condensation overhead so that the model can keep pace with the input stream. The M-
kernel merging technique [82] is an online density estimator that can handle a univariate
data stream by limiting the number of kernel components and substituting redundant
components with a representative component (kernel merging). The model invokes a
merging routine whenever its buffer is full. Then, downhill simplex optimization is em-
ployed to find the best way to replace two components with a representative component
that would minimize the merging cost, which is the absolute error (L;-norm) between
the estimation and the underlying density. Since its kernel merging strategy is based on
numerical optimization, the time that the algorithm requires to update the model to a
new sample can be high. As a solution, Heinz [2§] has introduced an M-kernel based
online KDE with a constant time pairwise merging technique to solve the problem of
high update cost of the M-kernel algorithm. However, the M-kernel and other M-kernel-
based approaches [28] 29, [6] cannot be generalized to support multivariate data streams
without losing speed because the algorithms rely on sortedness which is more compli-
cated to achieved for multivariate data. The lack of total ordering in multidimensional
data forces the algorithms to use nearest neighbors search, which would incur additional

computational complexity [29].

5.1.3 Idea of the proposed method

In this work, we addressed the problem of finding an optimal merging pair from a

different perspective. Rather than optimizing for the optimal merging components pair
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Figure 5.1: Relationship between distance and merging cost

that is expected to minimize the overall merging cost, we skip such optimization and
search for the best merging pair by their distance to reduce the time required to process
each new sample. In particular, a newly arriving component will be merged with the
nearest kernel component only if the nearest kernel exists within a specified distance
threshold 7. Otherwise, the new component will be inserted into the model without
merging. The parameter 7 is used to limit the scope for neighbor search and can be
used to control the compression ratio. Additionally, validity of the M-kernel based
approaches is limited to one-dimensional data only. Generalization of the M-kernel to
higher dimensional data would impact the compression overhead. In other words, the
time required for the query of the optimal merging pair would be quadratic in stead of
linear to the buffer size. On the contrary, the time required by our approach to search
for the nearest component is always linear.

A simulation wherein 1,000 pairs of 2D multivariate Gaussian components in which
different weights, widths and centres were randomly assigned shows a result that sup-
ports our approach. The result shown in Figure [5.1(a)| indicates a clear relationship
between the resulting merging cost and the distance between the two merging compo-
nents; smaller distances, to some extent, tend to give smaller errors. Note that when
the distances are greater than 10, this presumption is less likely to be true. Thus, we
introduce a distance threshold parameter 7 that limits the greatest distance allowed for

merging to avoid the high probability of merging non-cost-optimized pairs at greater
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distances. Furthermore, the necessity of 7 is made clear in Figure Given two ar-
bitrary pairs of Gaussians ¢ and j, the probability of finding a pair of Gaussians ¢ having
smaller distance than j’s distance, given that merging pair i costs less than pair j and
the merging only happens when the distance is less than the threshold 7, is a function
of the distance threshold 7. The plot shows that the probabilities are high when the
limits of the distance between two components allowed for merging are small. Namely,
employing a smaller distance threshold 7 yields a higher chance of finding optimal pairs
on the basis of the shortest distance. However, note that it is difficult to find nearby
neighbour kernels to merge with when the search radius (distance threshold 7) is small,
which results in a less compressed model. Thus, the trade-off between the additional
error caused by merging non-optimal pairs and the compactness of the resulting model

can be managed by the 7 parameter.

5.2 Proposed online kernel density estimation
5.2.1 Kernel compression algorithm

In an online setting, where observations are made sequentially and data samples arrive in
order, the compression algorithm is required to process and compress new samples faster
than the rate of the input stream so that the model is always updated and ready for
the density estimation at any time. The process for handling new observation (training)
stream is illustrated by a flowchart in Figure Start off with an empty model G,
as a new data sample x; arrives, a Gaussian kernel is assigned with x; as the centre
with a predefined diagonal covariance matrix . Note that 3 = diag(h?), where h? =
[R2, h3,.. .,h?l]. Each new component is weighted uniformly with a weight coefficient
w of 1. The algorithm then looks for an opportunity to merge this new component
with an existing component in the mixture model in order to maintain the number
of components. The algorithm performs a search for the most proper component to
merge the new sample with in order to minimize compression error. Search for the
proper component is done by a nearest neighbour search that considers the Mahalanobis
distance between two components. In other words, it attempts to find a Gaussian
component § in a set of Gaussian mixture models G that minimizes the Mahalanobis
distance Dg(x;) as follows:

g = argmin Dy (x;), (5.2.1)
g;€G
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: function ADDSAMPLE(x;)
gl < /\/(1, ZT;, 2)
if G is empty then
G.insert(g/)
else
g < argming ¢ Dy, (2;)
if Dy(x;) < distance_threshold

. : then
End
8: G.remove(g)

Start,

Initialize G = &

Is stream open?

9: gl «Merge(g!, g)
10: G.insert(g/)
Get new sample: x;
11: else
12: G.insert(g/)
13: end if

. . 15: end function
Figure 5.2: Training data stream handler

Algorithm 5.1: Adding new sample

where

g; = N(wj, pj, ) (5.2.2)

and

Dy, (x;) = \/(a%' — 1) TS5 (@ — ). (5.2.3)

The Mahalanobis distance D is then used to determine whether the newly arrived
data sample should be merged to the nearest component. Only the nearest component
with a specified distance threshold is merged. Otherwise, a new Gaussian kernel is
assigned where the new data sample is with a predefined covariance matrix 3, thereby
resulting in a new component. The outline of the algorithm for adding a new sample is
given in Algorithm We further discuss how the kernel merging routine (line 9) is

handled in the next subsection.

5.2.2 Gaussian kernel merging

Goal of kernel merging is to substitute a mixture of two Gaussian components with a
single Gaussian component that approximates the mixture best. The M-kernel merg-
ing [82], an alternative solution for Gaussian kernel merging that we have introduced in
Section [5.1] approximated mean and bandwidth of the merged component using down-
hill simplex optimization method on the function of accuracy lost in the kernel merging.
However, the optimization becomes less efficient when applying the M-kernel technique

to higher dimensional data. Therefore, rather than optimizing for the mean vector and
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the covariance matrix that would minimize the accuracy lost from kernel merging, we
opt for the moment-preserving merge, which the approximation can be done in almost

constant time (O(1)) given that the number of dimensions are small.

Full covariance match

A mixture of two Gaussian components N (w1, p1,X1) and N (wa, pa, o) can be ap-
proximated by a single representative Gaussian component by matching the zeroth, first,
and second moments to the mixture. Namely, weight w, mean vector g and covariance
matrix 3 of the resulting component N (w, i, ¥) can be approximated by the moment

matching method as follow.

w = wy + ws. (5.2.4)
p=w Hwipr + wopy). (5.2.5)

S =w ! (w14 (= ) (1 — )" +wa(Ba + (w2 — p)(p2 — w)"))

= w ™ (w1 B+ w22 + wipp] + wopops ) — pp
2
=w Y wi(Bi + pip]) — pu’ (5.2.6)
i=1

Although the moment-preserving merge described above was proven to give a merged
component that has a minimal Kullback-Leiber discrimination from the mixture (see
Theorem 3.2 in [54]), the resulting covariance matrix is not always diagonal in which
many computational optimizations can take advantage of its mathematical properties
(see Section for further details). Therefore, we propose another kernel merging
method for Gaussian components called the Bandwidth match, wherein the merge hap-
pens on the bandwidth vector of a Gaussian kernel and the merged covariance matrix is
reconstructed from the merged bandwidth. To put it differently, the merge only consid-
ers diagonal elements of the covariance matrices. Hence, the resulting covariance matrix

is guaranteed to be a diagonal matrix.

Bandwidth match

Suppose we are given a d-dimensional Gaussian kernel with the bandwidth h = [hq, ha, ..

By definition, the corresponding d x d covariance matrix 3 of the Gaussian kernel can
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be constructed as follows.

R? 0 ... 0
0 A3 ... 0
s=| " . (5.2.7)
0 0 h2
In other words,
¥ = diag([h?, h3,. .., h3))
= diag(h?). (5.2.8)

Referring to the moment-preserving merge, we modified Eq{(5.2.6) to only match diag-

onal elements of the covariance matrix, ignoring all other elements as follow.

h? = w™t (wi(h] + (1 — p)?) + w2(h3 + (p2 — p)?))

=w ™! (wihi + wah3 + wipi + wop3) — p?

2
=w? sz‘(h% + p?) — p?. (5.2.9)
i=1

If needed, the resulting bandwidth h? can also always be used to reconstruct a
diagonal covariance matrix 3 using Eq

It is worth noting that, in contrast to the full covariance match, the proposed band-
width match method does not require matrix multiplication, which takes ©(d?) to com-
pute for each merge. Instead, h? only requires ©(d) time complexity to compute. Hence
, kernel merging of high-dimensional data could perform significantly faster with the
bandwidth match method. Kernel merging can be done even faster without the second-
moment matching. In the next merging method, we proposed an experimental idea of
keeping the bandwidth parameter constant through out the entire stream.

Differences among the two merging methods for one-dimensional (1D) and two-

dimensional (2D) kernels are visualized in Figure
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(a) before (b) full covariance (c¢) bandwidth

*

(d) before (e) full covariance (f) bandwidth

Figure 5.3: Kernel merging methods

5.2.3 Efficient Density Evaluation

Suppose we are given a mixture of Gaussian components, probability density function

of the mixture containing C' components can be expressed as follows:

C
plx) = wigi(w), (5.2.10)
=1
where
RS S S PR o Ss P
o) = o (<@ w) B e m)) G210

An interesting characteristic of the bandwidth match merging method is the covariance

matrices of all components remain diagonal after compression. Therefore, we can rewrite

Eq[(5.2.11)| to

1 1 F— ig)?
di(z) = exp | =5 ) M , (5.2.12)
Vemd T, 2 25
=11 =1 ”

where we can set a cut-off threshold to skip the density evaluation of certain components
; when they are too distant, which assumes that the evaluating point « is less likely to
be drawn from such distributions. Thus, the very low density contributions from distant

components are omitted to obtain a computational speedup. The cut-off optimization
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is implemented while looping the sum through d dimensions in the exponent part of
Eq That is, if the normalized sum of the squared distance at any point reaches
the threshold, then the evaluation of ¢;(x) is stopped, the result of ¢;(z) is dismissed
and the procedure moves on to the next component ¢;;1(x). Note that the cut-off can
occur earlier if the dimensions are sorted such that dimensions with higher variance are
considered first. This optimization significantly reduces evaluation time, particularly for

high-dimensional data.

5.3 Simulations and applications to experimental data

To gain a better understanding of how neural ensembles communicate and process in-
formation, neural decoding algorithms are used to extract information encoded in their
spiking activity. Bayesian decoding is one of the most used neural population decoding
approaches to extract information from the ensemble spiking activity of rat hippocam-
pal neurons. Recently it has been shown how Bayesian decoding can be implemented
without the intermediate step of sorting spike waveforms into groups of single units.
Here we extend the approach in order to make it suitable for online encoding/decoding
scenarios that require real-time decoding such as brain-machine interfaces. We propose
an online algorithm for fast Bayesian decoding that reduces the time required for de-
coding neural populations, resulting in a real-time capable decoding framework. More
specifically, we improve the speed of the probability density estimation step, which is the
most essential and the most expensive computation of the spike-sorting-less decoding
process, by developing a kernel compression algorithm. In contrary to existing online
kernel compression techniques, rather than optimizing for the minimum estimation error
caused by kernels compression, the proposed method compresses kernels on the basis of
the distance between the merging component and its most similar neighbor. Thus, with-
out costly optimization, the proposed method has very low compression latency with a
small and manageable estimation error. In addition, the proposed bandwidth matching
method for Gaussian kernels merging has an interesting mathematical property whereby
optimization in the estimation of the probability density function can be performed effi-
ciently, resulting in a faster decoding speed. We successfully applied the proposed kernel
compression algorithm to the Bayesian decoding framework to reconstruct positions of
a freely moving rat from hippocampal unsorted spikes, with significant improvements in

the decoding speed and acceptable decoding error.
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Neural encoders and decoders are commonly used by neuroscientists to study the
relation between behavioural stimulus and neural responses. Statistical inferences have
played an important role in many encoding/decoding frameworks, e.g. [10] 80, 49, 71}
73, 52]. Generally, the encoding model captures necessary properties from the recorded
neural activities and construct a model that maps to the observed behaviours or stimuli.
The decoding model then employs the constructed relation to infer behaviours or stimuli
based on the observed neural activity. For example, neural signals recorded from the
action potentials (spikes) of pyramidal neurons in the CA1 region of the hippocampus
contain information that is correlated to spatial behaviours of an animal [48]. These
cells are also known as place cells because spiking activities of certain place cells become
more active when an animal is in a certain location [I1]. In other words, the temporal
patterns of spikes from different place cells are spatially tuned to different locations.

Most of existing neural encoders/decoders require sorted spikes to operate [4, [9] 10,
211, 20, 1441, 57, 58, 62, [72], [76), [80] (see [8] for a review). That is spiking activity of each
single neuron has to be isolated from others and separated from background electrical
noise before being handed over to the encoding/decoding model. This prerequisite step
is called “spike sorting”. Many works have been contributed to the developing of fast
and reliable spike sorting algorithms [41]. However, a study has shown that classification
errors of assigning spikes to incorrect unit have various impact to information capacity
of the resulting sorted spikes [23]. In addition, objective of spike sorting to isolate and
identify the cell that originated each spike is rather different from the goal of neural
decoding which is to minimize the decoding error. Unclassified spikes during the sorting
in attempt to minimize sorting errors could still convey information that is necessary to
the encoder/decoder.

To avoid the possibility of information loss and accumulation of errors from spike
sorting, Bayesian encoding/decoding framework proposed in [35] has introduced a method
to create a direct mapping between spike waveform features and the covariates of in-
terest without a prerequisite step of spike sorting. The name “Bayesian” comes from
the adoption of a statistical inference that utilizes Bayes’ theorem. More specifically,
the decoding is obtained by the maximum posterior probability in Eq where the

covariates are spatial behaviors of the animal, e.g. positions or head directions.
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Figure 5.4: Bayesian decoding using unsorted spikes in the rat hippocampus

p(slz)p(x)
p(s)
o p(s|z)p(z) (5.3.1)

p(covariates|spikes) = p(x|s) =

Outline of the Bayesian encoding/decoding framework [35] is illustrated in Figure|5.4]
The first stage (A) detects and extracts spike waveforms from extracellularly recorded
multiunit activity from CA1 region of a free moving rat. Next (B), waveform features,
such as amplitudes, are extracted. At the same time (C), positions of the animal is
tracked using a video camera and forwarded together with the waveform features to the
next stage (D), where the probability models p(s,z) and 7(z) are modeled.

During the decoding phase (e), a sequence of spikes is partitioned into bins. For
each decoding bin, the posterior probability is computed and the behaviour is decoded.
The likelihood p(s|x) of the stimulus x given a set of spike features s models the re-

lation between spiking patterns (modulation of spike amplitudes and firing rates) and
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behaviours by assuming spatiotemporal Poisson statistics as follows:

n

[T, a:)] e M), (5.3.2)

i=1

p(s|z) = A"

where the decoding bin containing n spikes has a size of At time interval. Rate parameter
A(si, z) which is the fraction of the occurrences of certain spike features s; coinciding
with certain stimulus x divided by the total time stimulus z (occupancy(z)) is presented

as follows:

spikecount(s;,x) — Np(si,x)  p(six)

Alsis z) = occupancy(z) T w(x) K ()

: (5.3.3)

where N is the total number of spikes and T is the total time from all the decoding
bins. p(s;, x) is the joint probability distribution of finding spike features s; that occur
simultaneously when the animal experiences stimulus . The probability distribution

m(x) is the probability of finding the animal experiencing stimulus z. Similarly,

spikecount(x) — N p(z) p(z)

Az) = = (5.3.4)

occupancy(x) T w(x) Mﬂ(x)’

with the exception that spikecount(x) counts all the spikes that occur during the expe-
rience of stimulus x regardless of the spike features.

The most time consuming step is the computation of the probability densities p(s;, x),
p(z) and 7(x), which can be estimated using kernel density estimation (KDE). However,
time complexity of KDE is approximately quadratic, which is extremely expensive, often
requires excessive time and impractical for applications such as our goal of developing
real-time Bayesian decoding framework. Moreover, tradition KDE does not scale well
to the unbounded streams of data, which is the nature of all real-time applications.

Thus we implemented the proposed kernel compression algorithm into the encoder/decoder
to speedup the density estimation task in order to achieve real-time decoding. The
proposed method achieves faster density estimation by replacing redundant kernel com-
ponents with mixtures of merged components, resulting in a reduced number of kernel
components; thus, the density evaluation time is reduced.

We have separated the experiments into three parts to cover (1) the trade-off between
speed and accuracy, (2) performance evaluation on high-dimensional data streams and

(3) performance evaluation on the real-time decoding of the rat hippocampus.
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Figure 5.5: Performance of the kernel compression algorithm on the data stream of spike
features from rat hippocampus

5.3.1 Trade-off between speed and accuracy

We tested the proposed kernel compression algorithm using data stream of neural and
behavioral recoding of a free moving rat in the experiment environment described in
the introduction. Each sample of the spike features stream contains 4 values (from 4
separated electrode in a tetrode), and the data stream of the animal positions contains
2 values (zy-coordinates). To give an overview image of how the distance threshold
7 has an effect to the compression, we streamed the first 10,000 samples from the 4-
dimensional data stream of spike features to the proposed compression algorithm. As
displayed in Figure the larger the distance threshold 7, the more the number
of KDE components were reduced. As a result, the time required to handle each new
sample was also reduced greatly, as shown in Figure After the compression, we

compared the estimation accuracy and the estimation speed of the compressed model
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with tradition KDE model which was built from the same set of dataset. The densities
estimated from the traditional KDE (without compression) were used as a ground truth.
The accuracy of the compressed model was evaluated by the average of relative errors
which is defined as follows:

compressed KDE compressed
d —d! e

relative error; = —* JKDT =~ KDE -1, (5.3.5)
(2 (3

d;om? ressed 15 the density at the evaluation point i estimated from the compressed

where
KDE and dZKDE is the true density at ¢ estimated from the uncompressed KDE. The
averaged errors were computed from the density estimations of other 10,000 data points
drawn from the spike features stream. Accuracy and speed of the density estimation
of the proposed method with two different kernel merging methods are shown in Fig-
ure From the result, as we increased the distance threshold parameter 7, the
times required to estimate all 10,000 evaluation points were reduced quickly. At the
same time, the accuracy loss from kernels merging started to increase as we raised 7
higher until the errors were almost stable when 7 were high enough to merge every new
sample, resulting in a compressed KDE with only one component. In addition, from
the result we can observe that it was a very good trade-off between speed and accuracy.
From the experiment, traditional KDE took 2.5 seconds to finish density estimations
of 10,000 evaluation points. At 7 = 2, the proposed methods only took 0.15 second to
finish the same task. That is we speeded up the density estimation by almost 17 folds,

whereas the average estimation errors were raised only by 15% from the full covariance

match and bandwidth match methods.

5.3.2 Performance evaluation on high-dimensional data streams

To emphasize on the advantages of the proposed bandwidth match method over other
kernel compression techniques on high dimensional data streams, we compared com-
pression speeds of the proposed methods and the cluster-based Online Discriminative
Kernel Density Estimator with Gaussian kernels [37] on a synthesized dataset of high
dimensional data streams of 1,000 uniformly random numbers. In this simulation, all
compression algorithms were set to compress 1,000 original samples to about 500 sam-
ples (50% compression ratio). For the cluster-based online KDE, an existing cluster

is updated every time 100 new sample is added (buffer size = 100). Visualization in

Figure |5.6(a) and Figure [5.6(b)| clearly shows that our kernel merging approaches out-
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Figure 5.6: Performance comparison on high dimensional data streams

performed the cluster-based online KDE in both speed and accuracy tests. From the
result, it is apparent that the number of dimensions has significant impact on the per-
formance of the cluster-based approach, while our choices of kernel merging techniques
suffered less from high dimensionality, especially for the proposed bandwidth matching

method.

5.3.3 Performance evaluation on the real-time decoding of the rat hip-

pocampus

In this final experiment, we integrated the proposed kernel compression algorithm into
the Bayesian decoding framework [35]. The dataset that will be used in this experi-
ment was prerecorded from the experiment similar to the setup illustrated in Figure
Spiking activity from the hippocampus was recorded using 9 tetrodesﬂ Positions of the
animal in xy-coordinates were tracked using a video camera. To simulate real-time en-
coding/decoding environment, we set a non-overlapping sliding window to read in small
batches from data streams of both spike features and the animal’s positions at a time.
Size of the sliding window was set to 250 milliseconds, which is the recommended bin
size of for decoding unsorted spikes of rat hippocampus [35]. Real-time decoding frame-
work implemented in this experiment was designed to alternate between the decoding

and encoding steps. Referring to a block diagram presented in Figure when the

ITetrode is a bundle of 4 electrodes
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(a) Read spike features s; from current sliding window ¢

|

(b) Decode

Estimate p(s;, '), p(a’), and w(z’); V&' € set of candidate positions

Maximum a posteriori estimation

|

(c) Read positions x; from current sliding window ¢

(d) Update encoding model

Add new samples and compress p(s;, z;) and 7(x;)

(e) Move current window 250 ms forward; ++i

Figure 5.7: Block diagram of the experimental real-time encoding/decoding framework

sliding window moves on to the next batch of the streams (a), the decoding step (b)
is invoked first to decode information from the newly observed neural signals then the
encoding step (d) joins to update the encoding model with the newly observed data.
The the sliding window is proceeded (e) to process next batch of data from the streams.

Accuracy of the decoding is evaluated by the euclidean distance between the observed
position and the position estimated from neural data. To find the right amount of
compression that would speed up the encoding/decoding to real-time and would not
incur much accuracy loss, we varied the merging distance threshold (7) to find the right
parameters for each kernel merging methods. Because the number of spikes in the sliding
window may vary from time to time, the amount of time required to process each window
can also vary. We measured the max amount of time required to decode and encode each
window and visualized the longest time needed by each algorithm as a function of 7. The
results are shown in Figure For the encoding/decoding framework to be able to
process data streams in real-time, the time required to process each batch of neural and
behavioral data in a sliding window has to be shorter than the streaming rate, which
is 250 millisecond per batch. According to the results displayed in Figure the
encoding/decoding model that implements full covariance matrix match would need to
set the distance threshold above 2.8, whereas the proposed bandwidth match can afford
to have lower distance threshold 7, which resulted in lower decoding errors as shown
in Figure [5.8(b)l Despite the fact that the bandwidth matching method only matches

diagonal elements of the covariance matrix and discard the rest, we can expected the
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Figure 5.8: Performance comparison between the full covariance match and the proposed
bandwidth match kernel merging approaches

bandwidth matching method to produce more error. Interestingly, it was as accurate as
its competition until 7 = 2.0, yet always faster.

ext, we set the distance threshold 7 = 3.0 for both of the kernel merging methods.
Results in Figure show progressions of the time required to process each window
as the encoding models processed more data points over time. It can be seen that the
performance in terms of speed was steady. Namely, the model can scale to large data
stream efficiently. Decoding accuracy from both kernel compression methods visualized
by the moving median of the decoding errors (cm) are shown in Figure[5.9(b)l From the
result, it can be seen that the decoding errors decreased quickly and became stable when
both decoders had sufficient training data for the decoding at about the 500" bin. The
decoding model that was equipped with the full covariance matrix matching methods
obtained the median decoding error of 11.03 cm, compared to a slightly larger median
error of 11.21 cm from the bandwidth matching method. However, the bandwidth
matching method was much faster and truly capable of real-time decoding. In contrast
to the full covariance match, the decoding model could not process all bins within the
time limit of 250 milliseconds per encoding/decoding bin.

In summary, we were able to speedup the Bayesian encoding/decoding framework

by at least 300 times, which is fast enough to run the encoder/decoder on real-time
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Figure 5.9: Performance comparison between the full covariance match and the proposed
bandwidth match kernel merging approaches on the decoding of rat positions from
unsorted spikes

data. The decoding accuracy loss from kernel compressions were relatively small and

still manageable.

Notes on the developing and testing environment

All the core algorithms that were used for the experiments in this paper were imple-
mented in C programming language. The codes for all experiments and performance
evaluations were written in Python. The computing server used in all experiments runs

on Intel Xeon 12-Core 2.7 GHz x 2 CPUs.

5.4 Conclusions

In this work, we have improved the decoding speed of the Bayesian framework for
encoding and decoding of unsorted spikes from the rat hippocampus. Real challenges
of this work were to design a kernel compression algorithm that could enable KDE to
handle high-dimensional data streamed at high speed efficiently. Thus we proposed a

fast kernel compression technique that not only can reduce size of a density estimator
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with very low accuracy loss, but also works well with high-dimensional data. More
specifically, the proposed bandwidth match for kernel compression has been shown by
the experiments presented in this paper to be very efficient especially when compressing
high-dimensional data. Results from the real-time neural decoding experiment also

confirmed the potentials of the bandwidth matching method.
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Chapter 6

Conclusions

6.1 Summary of Contributions

In this research, we advanced the techniques in human mobility modeling and prediction
that are practical to implemented in real-world applications without privacy issues and
provide highly accurate result.

Starting with a careful choice of human mobility sensing and tracking method that
less obtrudes the users compared to other methods, such human tracking using cameras
and GPS tracking devices. In this research, we used ambient simple sensors, such as IR
proximity sensors, light sensors, and magnetic sensors, that can be installed easily and
can blend-in very well to the environment. Although, it can be expected that the data
that these simple sensors collect are very noisy and seem inappropriate to use them to
train a machine learning model directly without any careful preprocessing.

In Chapter [3] not only we discussed how human mobility can be model efficiently for
different prediction tasks (short-term and long-term prediction), but we also analyzed to
find theoretical limits of the predictability of the collected human mobility data and the
factors that affected most to the predictability of the data. The results have confirmed
that even though the simple sensors’ human mobility data were very noisy, sufficient
information can be extracted and can be used to train a classification model to give
acceptably high accuracy for both short-term and long-term predictions

Next, we proposed the Aperiodic and Periodic models for long-term human mobility
prediction that can accurately predict visitations of the uses at any locations of interest
for days ahead of time with acceptably high accuracy compared to an exiting model
that is based on nonlinear component analysis [60]. The proposed predictor aims at

modeling repetitive patterns of users’ visitations using both periodic model (constant
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time interval) and aperiodic model (days with similar visitations patten are discovered
using a clustering technique). With the proposed method, we could achieved stable F}
score of 556% from predicting future visitations at 30 locations of interest for 30 days
ahead.

In addition, we also proposed a new design for short-term human mobility predictor
that can improve the prediction accuracy from about 96% of Fj score from a tree-based
model to 98% of Fy score with the proposed technique that implements nearest neighbors
classification to incorporate transition times between each step into the model.

Finally, the study was focused on the improvement of the kernel density estimation
technique, which is useful in many probabilistic machine learning model and statistical
applications. One specific application that we are addressing in this work is to have a
KDE technique that can handle multi-dimensional data stream efficiently and accurately
enough to encode/decode neural signals from a moving rat. Therefore, we designed
and proposed a fast kernel compression technique that can efficiently compress and
remove redundancy in the samples and results in a more compact representation of
the distribution than tradition KDE, which cannot be scaled to efficiently to streaming
data. The proposed techniques successfully enable real-time encoding/decoding of rat
hippocampal spikes with moderately (and controllable) accuracy trade-off.

In summary, we addressed a variety of technical problems that are related to mobility
study, from human mobility tracking, modeling and prediction to a tool for neuroscien-
tists to study how the brain performs navigational tasks. Not only location-based smart
home applications and real-time brain machine interface will benefit from the analyses
and predictive techniques proposed in this work, but also more general applications,
such as human social study and link prediction [74] and real-time population density

visualization, also can be built based on the techniques presented in this research.

6.2 Recommendation for Future Works

Although, we have shown that a collection of simple motion detection sensors can be
used to track mobilities from multiple participants in an indoor environment effectively.
The collected mobility data contain sufficient information to train a machine learning
model to predict next steps of a traveling user (short-term) or future visitations at any
location of interest at any point in time in the future (long-term). Another question yet

to be studied further afterwards is the predictability analysis and predictive accuracy
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evaluation that factor in size of the environment, number of sensors, placements and
distribution of the sensors, and the number of participants.

Additionally, there are recent studies that have been trying to investigate the cor-
relations between social relationships and human dynamics. The studies [13], [74] have
discovered that there are correlations between individuals’ movements and social inter-
actions (e.g. phone calls, messages). Moreover, Cho et al. [I3] have also succeeded in
improving prediction performance by integrating social contexts with mobility model.
Whereas Wang et al. [74] have utilized the similarity between two individuals’ move-
ments to foresee their future interactions.

From here, we have seen that more aspects of human dynamics have helped re-
searchers constructed human mobility models that employ broader understanding of
human mobility. Ensemble methods, such as stacked generalization [75], can be imple-
mented combine predictions from different machine learning models that are trained to
predict human mobility from different aspects. Stacked generalization technique has
been successfully used to improve prediction accuracy in many classification tasks [63]
3, 33]. The intuition behind stacked generalization is straightforward. Base models that
are trained from different aspects of human mobility can be seen as different feature
extractors, thus stacking is basically having another layer of classification model learn
from these features to improve their accuracy.

In addition to the proposed fast kernel compression for online KDE, even thought the
proposed kernel compression algorithm has an advantage over the some existing online
KDE algorithms, such as the M-kernel merging algorithm [82], and most of cluster-
based approaches [1I, 32, 38| 37, [79] when dealing with multi-dimensional data streams,
the proposed methods has not taken into account the situation where data stream is
not stationary. Evolving density is a common problem that can impact performance of
our kernel compression algorithms in many ways. Firstly, kernel merging would be less
likely to occur, size of the model could expand uncontrollably if the distribution keeps
drifting away its over time with out repeating the same spot. Secondly, the fixed distance
threshold parameter (7) might get outdated when the underlying distribution expanded
or condensed as the distribution evolved. The first problem can be handled easily using
decaying weights similarly to [28, 29], in which old components would weighted less
and can be removed after certain period of time. The more challenging problem is the

second problem. Detecting changes [34) [40] 56] and adapting KDE model to changes in
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streaming data are another challenging topics that could significantly improve accuracy
of the density estimation of non-stationary data streams, which will be our next main

focus in future works.
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