
Title Human Mobility Modeling and Predictive Analysis

Author(s) Sodkomkham, Danaipat

Citation 大阪大学, 2016, 博士論文

Version Type VoR

URL https://doi.org/10.18910/55850

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Human Mobility Modeling and Predictive Analysis

Submitted to

Graduate School of Information Science and Technology
Osaka University

January 2016

Danaipat Sodkomkham

1

Abstract

In this research, we aim to advance in machine learning techniques that can help us

gain a better understanding of human mobility. Human mobility has been studied

broadly in the past few decades. Ranging from a higher level perspective, such as travel

patterns, visitation patterns and predictive modeling, to a lower level, e.g. path finding

mechanism, tasks prioritization and routing. A study conducted in this research has

shown samples of tasks dependent mobility patterns inside an office environment and its

potential predictability. The predictive models for both short-term prediction and long

term prediction have also been developed and successfully tested on a real dataset. The

results have given us more understanding of dynamicity and how the participants would

utilize the space. Therefore there are potentials for spatially-related applications, such

as users-based power management system and notifications of suspicious behaviors, to

be built based on the proposed methods.

Even though, the proposed probabilistic model for long term human mobility pre-

diction was initially designed for discrete representation of positions (e.g. locations

associated with sensor IDs), the approach can also be extended to support continu-

ous representation (e.g. xy coordinates). The probability density and the likelihood

of future visitations at any given point (x, y) of interest can be estimated using a non-

parametric method called kernel density estimation or KDE. However, standard KDE

is a costly operation and cannot scale well with the unbounded size of data streaming

from sensors or mobility tracking system. Besides, existing online KDEs cannot handle

multi-dimensional data streams very efficiently. Therefore, we proposed a kernel density

compression algorithm that was designed for multivariate (and univariate) data streams

for efficient density evaluation that can scale well to streaming sensor data. Since con-

tinuous tracking system was not implemented yet, we tested the proposed method with

the problem of real time decoding of neural encoding/decoding. The developed online

kernel density compression algorithms not only enables real-time encoding and decoding

of neural activities but can also be generalized to estimate probability density function

of any multivariates data streams without any modification. More specifically, the pro-

posed online KDE technique can be applied to implement an online probabilistic model

for long-term human mobility prediction and can be used to visualize dynamicity of

space utilization in real-time to help us understand how the participants utilize different

areas of the facility during the day.

3

Acknowledgement

I would like to express my very great appreciation to Professor Masayuki Numao for

his valuable and constructive suggestions throughout this research work. This thesis

would have not been possible without his guidance and support in various topics. I

would also like to express my very great appreciation to Professor Satoshi Kurihara,

Koichi Moriyama, Ken-ichi Fukui and Roberto Legaspi for their help in offering me the

resources in running the research.

I would also like to express my sincere gratitude to Dr. Fabian Kloosterman for his

patient guidance, enthusiastic encouragement and useful critiques of this research work.

I would also like to thank all Master’s and Ph.D. students under Professor Numao’s

supervision, for their helps during the project.

More importantly, this work was partly supported by JSPS Strategic Young Re-

searcher Overseas Visits Program for Accelerating Brain Circulation, National Institute

of Mental Health Grant MH-061976 and Office of Naval Research MURI N00014-10-1-

0936 Grant to M. A. Wilson.

Finally, I wish to thank my parents and friends for their support and encouragement

throughout my study.

Contents

List of Figures iii

List of Tables v

1 Introduction and Problem Statement 1

2 Literature Review 6

2.1 Human Mobility Tracking . 6

2.2 Limits of the predictability in Human Mobility 7

2.3 Human Mobility Modeling and Prediction 7

2.4 Online Kernel Density Estimation . 8

3 Human Mobility Modeling 11

3.1 Collective Human Mobility Data . 11

3.2 Limits of Predictability . 13

3.3 Periodicity in Collective Human Mobility 15

3.4 Predictability of the Periodic Model . 17

3.5 Conclusion . 19

4 Human Mobility Prediction 21

4.1 Long-term Human Mobility Prediction 21

4.1.1 The Periodic Approach . 21

4.1.2 The Aperiodic Approach . 22

4.1.3 Periodicity and Prediction Performance 24

4.1.4 Prediction Performance of the Aperiodic Approach 25

4.1.5 Long-term Prediction Performance 27

4.2 Short-term Mobility Prediction . 28

4.2.1 Extracting Trajectories from Sensor Readings 29

4.2.2 Trajectory Patterns-based Human Mobilility Predictive Model . 30

4.2.3 Performance Evaluation using Real-world

Mobility dataset from Smart Environment 33

4.2.4 Conclusion . 37

i

5 Kernel Density Compression for online KDE 38

5.1 Kernel Density Estimation . 38

5.1.1 Traditional Kernel Density Estimation 38

5.1.2 Problem of KDE with online data 39

5.1.3 Idea of the proposed method . 40

5.2 Proposed online kernel density estimation 42

5.2.1 Kernel compression algorithm . 42

5.2.2 Gaussian kernel merging . 43

5.2.3 Efficient Density Evaluation . 46

5.3 Simulations and applications to experimental data 47

5.3.1 Trade-off between speed and accuracy 51

5.3.2 Performance evaluation on high-dimensional data streams 52

5.3.3 Performance evaluation on the real-time decoding of the rat hip-

pocampus . 53

5.4 Conclusions . 56

6 Conclusions 58

6.1 Summary of Contributions . 58

6.2 Recommendation for Future Works . 59

ii

List of Figures

3.1 (a) Infrared and magnetic sensors used in the experiment (b) Placement

of the sensors . 12

3.2 Predictability of collective human mobility in smart environment: Πmax is

the upper bound of the probability that a particular predictive algorithm

is able to predict a person’s location correctly using only the collective

dataset. 14

3.3 In (a) and (b), the density of visitations at location x1 and x2 related to

time of the day and day of the week are depicted, respectively. Busy times

and days, in which a high number of visitations occurred within the same

period of time, are shown in dark red. Dark blue indicates the opposite.

The periodicity Px1(τ) and Px2(τ) of the corresponding locations x1 and

x2 are shown as a function of time period τ , in (c) and (d), respectively. 16

3.4 Predictability Πmax
τ and corresponding periodic entropy 18

4.1 Three cluster centroids that represent three mobility patterns. 23

4.2 Periodicity and prediction performance 25

4.3 Prediction performance of the similar-day approach 26

4.4 Area under the ROC curve . 26

4.5 Distribution of prediction error . 27

4.6 Long-term prediction performance . 28

4.7 Placement of each sensor is indicated with read circle. The trace shows

an example trajectory of a person traveling inside the environment from

area A to area D. Each transition time tiij implies moving speed. 30

4.8 Effects of minimum support and confidence parameter settings on predic-

tion accuracy . 34

4.9 Number of nearest neighbors k and prediction accuracy 35

4.10 Accuracy of (a) tree-based human mobility model and (b) trajectory

patterns-based transition time concerned human mobility model visual-

ized with confusion matrices . 37

5.1 Relationship between distance and merging cost 41

5.2 Training data stream handler . 43

iii

5.1 Adding new sample . 43

5.3 Kernel merging methods . 46

5.4 Bayesian decoding using unsorted spikes in the rat hippocampus 49

5.5 Performance of the kernel compression algorithm on the data stream of

spike features from rat hippocampus . 51

5.6 Performance comparison on high dimensional data streams 53

5.7 Block diagram of the experimental real-time encoding/decoding framework 54

5.8 Performance comparison between the full covariance match and the pro-

posed bandwidth match kernel merging approaches 55

5.9 Performance comparison between the full covariance match and the pro-

posed bandwidth match kernel merging approaches on the decoding of

rat positions from unsorted spikes . 56

iv

List of Tables

1.1 Outline of the thesis . 5

4.1 Human Mobility Dataset . 24

4.2 predictive accuracy per class (locations) 36

v

Chapter 1

Introduction and Problem

Statement

In the past decade, machine learning tools designed for understanding and predicting

human mobility have been developed and included in many real-world applications since

a variety of options for mobility tracking systems have been introduced and publicly

adopted. To name a few, commercial applications such as taxi services are actively

relying on the understanding of trajectory patterns and reliable predictions to offer

quality service to the customers1. In another context, PUCK architecture [16] was

introduced to provide a smart reminder in the smart environment that automatically

recognizes habitual activities, and reminds the habitants when they forgot something

important. This could be helpful for some participants who have dementia, or mind

cognitive impairment. Google Now2 uses user’s mobility information on a smartphone

to provide better, and more specific search results. It can automatically understand and

predict where the user is likely to be in future, and then provide some useful information

about the trip, such as traffic condition, estimated arrival time, and weather information

at the predicted destination. Moreover, the ability to predict future locations of people

is also an important element in transportation planning [43, 39], bandwidth provisioning

in wireless local area network [70], and targeted advertisement dissemination [25].

In our application, we utilized an actual office environment with various built-in

sensors and actuators to enable ubiquitous computing technology to control different

settings in the environment. Our prototype smart office environment was initially de-

1Taxi Service Tajectory Prediction Challenge @ ECML PKDD 15 https://www.kaggle.com/c/pkdd-
15-predict-taxi-service-trajectory-i

2http://www.google.com/landing/now/

1

signed to create a working environment that can learn multi-users’ behavioral activities

and intelligently react to these activities smartly. Our objective in developing this smart

environment is to simplify mundane repetitive tasks and to improve people’s lives. For

example, a smart office that could predict future occupancy of a meeting room and

automatically prepare the electronic facilities in the room prepared before the meeting.

A smart office could also be programmed to predict needs from daily activities; for ex-

ample, to ensure that hot coffee was ready to be served at a particular time. These

applications require the ability to foresee individual’s future whereabouts and mobility.

This is referred to the open problem of long-term human mobility prediction. In con-

trary, predicting next steps of a moving subject is another class of problem known as

short-term human mobility prediction. In this research, we addressed both problems in

multi-users environment using low-profile, ambient simple sensors, such as IR proximity

sensors and magnetic sensors.

Many researches in the past had been relying on accurate sources of mobility traces,

such as GPS [59, 43], human tracking cameras [78], RFID tagging [2, 31] and mobile

phone data [22, 69]. But not many attentions had been given to tracking methods that

are less accurate but are less intrusive to the subjects privacy, such as human mobility

tracking by detecting changes in WiFi signal strength [7, 36, 45], simple infrared proxim-

ity sensors and other kinds of simple motion detection sensors. Although, using mobility

data from accurate sources enables researchers to focus more on the development of new

modeling and prediction technique without much concern about reliability and noise in

the training and test data. On the other hand, human mobility traces from low accu-

racy sensing techniques are much less reliable and full of noisy samples. Preprocessing

and feature extraction techniques, such as patterns mining, must be applied to extract

necessary information and remove non-patterns samples from the dataset.

Especially in this work, we installed IR proximity sensors and magnetic sensors in

different area of the experimental space to detect motions and interaction from the users

with environment. By specification, the IR senors trigger when there is object presented

in front of the sensor within 20-150cm range and the magnetic sensors trigger when

there are changes in the sensed magnetic force. Since different sensors associate with

different locations that they were installed, trajectories of the users can be represented

by sequences of sensor firing events. Thus, prediction of future position of a traveling

subject can be formulated as a classification problem, where target classes are different

2

locations associated with different sensor IDs.

False detection of motions were very common in this setting due to electrical interfer-

ence from the power source. IR sensors, in particular, can also fail to detect movements

when the users were too far or too close from the sensors. Other than technical is-

sues, difficulties when analyzing this dataset also came from the test environment where

there were multiple users. Because these sensors cannot identify and distinguish differ-

ent users, we could not separate any two movement sequences from two different users

by simply looking at the raw stream of sensor triggers.

In previous research [15], we have shown that these problems can be solved efficiently

using frequent sequential patterns mining algorithms. Overlapping trajectories can be

separated accurately if both trajectory patterns occurred separately frequently enough.

In addition to spatial frequency, we added the temporal aspect to the frequent sequential

patterns mining algorithm called PrefixSpan [50] to create a trajectory mining algorithm

that can search for both spatially and temporally frequent patterns. Although, we could

not assess quality of the algorithms from the mined patterns directly, we trained a

machine leaning algorithm to predict future location of a moving subject based on given

trajectory patterns and used their prediction accuracy as a proxy measure to evaluate

quality of the mined trajectory patterns. The results showed that the proposed temporal

sequential patterns mining (TSPM) algorithm was able to achieved higher accuracy in

the prediction task compared to PrefixSpan. That is, trajectory patterns mined with

temporal features resulted in more informative patterns and more suitable for prediction

task than the standard sequential pattern mining techniques, such as PrefixSpan.

A question yet unanswered was how other factors, such as pattern length, support,

and confidence settings of the patterns, could affect prediction accuracy. Therefore,

in Chapter 3, we present an adaptation of the theoretical analysis of maximum pre-

dictability [70] to discover how we could increase predictability from the preprocessing

step.

As mentioned earlier, the problem of human mobility can be divided into two sub-

classes: short-term and long-term prediction. Short-term prediction problems mainly

focus on predicting next moves or destination of a moving subject, given prefix trajec-

tory. In this work we proposed a novel design for short-term prediction in Section 4.2.

The proposed technique is able to accept varying trajectory length and is able to out-

perform our initial design that was based on a decision tree classifier [68]. Without

3

a doubt, recent movements along the prefix trajectory are highly predictive to where

the user was heading toward. In contrast, recent movements hardly involve in subject’s

whereabout in further future (e.g. next day or next week). For this reason, prediction

techniques that work well predicting short-term mobility would perform poorly when

used to solve long-term prediction problem [59].

Therefore, in Section 4.1, we addressed the problem of long-term mobility prediction

differently from existing techniques that were designed for short-term prediction [59, 43].

Instead of predicting based on trajectory patterns, we proposed a model that models

repetitive patterns in human movements. The proposed aperiodic/periodic model for

long-term human mobility prediction is not only limited to discrete representation of

locations (i.e. location name, sensor ID), but also capable of modeling repetitive vis-

itation patterns where each visitation is represented with continuous values (i.e. xy-

coordinates). The probability density and the likelihood of repeating visitation at any

(x, y) position of interest can be estimated using a kernel density estimation technique.

However, kernel density estimation is a costly operation and cannot be implemented

to execute efficiently for online learning, where the model needs continuous updates

from stream of sensor data. Furthermore, existing techniques that optimized KDE for

streaming data are not efficient when handling multivariate stream (e.g. 2D streams

of xy-coordinates). Therefore, in Chapter 5, we propose a kernel density compression

algorithm for online KDE that can handle multi-dimensional data streams efficiently

with accuracy. To demonstrate the speed and accuracy of the proposed kernel density

compression algorithm in a real-time applications, the algorithm was tested with the

simulation of neural decoding, in which the density model needs to update to new

sample of multi-dimensional neural signal every 1ms.

The developed online kernel density compression algorithms not only enables real-

time decoding of neural activities but can also be generalized to estimate probability

density function of any multivariates data streams without any modification. More

specifically, the proposed online KDE technique can be applied to implement an online

probabilistic model for long-term human mobility prediction and can be used to visualize

dynamicity of space utilization in real-time to help us understand how participants utilize

different areas of the facility during the day.

In summary, we proposed an improvement of short-term human mobility predictor

(discrete classes of location IDs) and a novel probabilistic model for long-term human

4

Table 1.1: Outline of the thesis

Discrete representation Continuous representation

Short-term prediction addressed in Section 4.2 not addressed

Long-term prediction addressed in Section 4.1
can be implemented efficiently
with the technique described
in Chapter 5

mobility prediction that works with both discrete and continuous representation of po-

sitions. The contributions of this thesis can be summarized as shown in Table 1.1.

5

Chapter 2

Literature Review

In this chapter, we discuss some interesting researches that are related to our work.

That includes human mobility tracking techniques, human mobility modeling, predictive

techniques and existing technologies for density estimation for streaming data.

2.1 Human Mobility Tracking

Regarding various choices of tracking technologies, it seems logical to select ones that

provide most accurate results. However, there is an apparent trade-off between accuracy

and conspicuousness of the tracking technique. Even though, high accuracy methods

such as camera-based localization, GPS and similar tracking systems are capable of

providing precise tracking of each individual subjects, they can cause uneasiness to the

subjects. For example, by using colored pictures from cameras with object detection

technologies and semi-supervised classification algorithm, Yu et al. [78] were able to

create a system that recognizes people and their positions. Moreover, they were directly

able to map each individual’s movement to a floor map. From this example, it is evident

that there needs to be a balance between rich mobility information and discomfort

caused by the cameras. Apart from the camera techniques [53, 5] discussed earlier,

mobile phone data [22, 69], GPS [59, 43], and RFID tagging [2, 31] requires people to

carry (or put on) a tracking device while in the environment, which is not feasible in

real-world implementations.

On the other hand, simple sensors, such as infrared proximity sensors and magnetic

sensors, are small enough to blend-in to the environment and keep their small profiles

while seamlessly observing human mobility. However, this tracking method has not been

used in many human mobility researches in the past because the data collected by such

6

simple sensors is less informative and more prone to noise than high precision sensing

technologies. Besides, the amount of useful information after removing all the noisy

signals is yet questionable. That being said, the capability of the mobility predictive

model built using simple sensors’ data might be limited.

2.2 Limits of the predictability in Human Mobility

To quantify quality of collected datasets, Song et al. introduced an analysis of the pre-

dictability of human mobility [69]. The analysis explored the limitation in predictability

of an individual’s movements. Note that they did not take the quality of the prediction

techniques into consideration.

By employing Fano’s inequality [17, 46], the analysis by Snog et al. assessed whether

the upper limit of the probability of a moving person’s destination could be correctly

predicted given the most recent trajectory and the past collective mobility data.

Despite variations in individual’s daily behavior, Song’s [70] analysis over a large

population monitored by mobile phone data shows 93% potential predictability in an

individual’s mobility. In other words, predicting individual’s movements can be effec-

tively achieved when historical trajectory data is available. However, the analysis neither

discuss which features of trajectory pattens contributed most to the prediction, nor how

the predictability would change if the patterns were from multiple users. In this study,

we extend the analysis of human predictability to cover (1) trajectory patterns’ features

importances and (2) the predictability analysis of collective human mobility data, both

short-term and long-term predictions.

2.3 Human Mobility Modeling and Prediction

Human mobility has been modeled in different ways depending on the prediction tech-

nique used in the model. Each approach has different merits and inferiorities. In the

past, a considerable number of literatures, especially in traffic prediction [43, 69] and

smart environment researches [2], mainly focused on spatial characteristics of move-

ments wherein individual’s trajectories are tracked and frequent trajectory patterns are

extracted and analyzed for prediction. The trajectories-based predictive models usually

work well in the short-term human mobility prediction problem in which only instant

future locations of a moving person (or vehicle) are interested. As an example, in [43],

7

the WhereNext framework implemented a short-term location prediction using the tem-

poral annotated sequences that provide movement patterns with rich spatio-temporal

contexts to the predictive model. Hence, it was able to predict the next movement of a

moving user more accurately than using movement traces alone. The predictive model

in WhereNext was implemented by creating a tree data structure that contains all fre-

quent trajectory patterns. Next, a matching function must be defined to match these

patterns with a newly observed movement; then, what comes after the similar move-

ment pattern founded on the predictive tree will become the predicted next location. In

contrast, temporal patterns-based models [66, 55, 60] are more promising for long-term

prediction in which future whereabouts of a user even for several hours or days ahead

are predicted.

2.4 Online Kernel Density Estimation

Density estimation are fundamental in a wide range of scientific applications including

machine learning. Probabilistic machine learning models oftentimes require a knowledge

of underlying samples distribution in order to work. Besides, it is a common tool for

data analytic tasks in which the probability density can be visualized with heat-maps

or contour plots for visual presentation and analytic purposes.

Density estimation is a costly operation. The time complexity for a traditional kernel

density estimation (KDE) is the order of O(MN), where M is the number of evalua-

tion points and N is the number of samples (also equals to the number of kernels when

implemented without any tweaks). That is, density estimation becomes slower as the

size of the dataset increases. For this reason, traditional KDE cannot be efficiently used

with streaming data, where new samples are continuously observed. Although state-of-

the-art dual-tree based KDE [24], which is known to be the fastest and most accurate

algorithm, can scale the computation to O(N), it requires O(N logN) time for con-

struction (building tree structures). However, the dual-tree approach was not designed

as an incremental algorithm. Namely, it is inefficient in an online setting, where the

tree-based data structure requires reconstruction every time a new observation becomes

available. So are the recently proposed distributed and parallel KDE [81] that was de-

signed specially for very large datasets. The distributed KDE employed sub-sampling

techniques to reduce size of KDE model and speedup the density estimation. However,

the algorithm proposed in [81] was not designed to be incremental, namely a new data

8

point cannot be directly inserted to the built model without rebuilding the entire model.

Because each update takes O(N), the sub-sampling KDE was obviously more suitable

for batch processing than online processing, where N could grow unboundedly.

Reducing the number of computations required to compute a point estimate of the

density has been a main interest in optimizing KDE. A number of improvements have

been considered to reduce the number of kernel components. For example, a straight-

forward binning method has been introduced in [61, 30], where the density is estimated

from a sum of densities estimated from each bin weighted by the number of samples

placed in each bin. In [64], a method that estimates the density with the convolution

theorem using Fourier transformation, in which binning of data is also required, has

been proposed. However, this requires the bin size for each dimension to be specified;

therefore, such approaches quickly become inefficient for high-dimensional multivariate

data streams.

As an alternative to binning, in [1, 32, 38, 37, 79, 77], samples were clustered and

reduced by replacing them with cluster centroids. The main problem with the cluster-

based approaches is the computational burden of the optimization required for data

partitioning and the solution’s dependency on the initial condition. In addition, cluster-

based methods, including a self organizing map-based KDE [12], often update their

models with a small batch of buffered data (often a few hundreds). Hence, the models

are not truly up-to-dated to each new sample, because they have to wait until the

buffers get filled so that the models can call clustering procedure to update their density

estimators with the new samples.

Some methods have been adapted to handle streaming data by reducing the data

condensation overhead so that the model can keep pace with the input stream. The M-

kernel merging technique [82] is an online density estimator that can handle a univariate

data stream by limiting the number of kernel components and substituting redundant

components with a representative component (kernel merging). The model invokes a

merging routine whenever its buffer is full. Then, downhill simplex optimization is em-

ployed to find the best way to replace two components with a representative component

that would minimize the merging cost, which is the absolute error (L1-norm) between

the estimation and the underlying density. Since its kernel merging strategy is based on

numerical optimization, the time that the algorithm requires to update the model to a

new sample can be high. As a solution, Heinz [28] has introduced an M-kernel based

9

online KDE with a constant time pairwise merging technique to solve the problem of

high update cost of the M-kernel algorithm. However, the M-kernel and other M-kernel-

based approaches [28, 29, 6] cannot be generalized to support multivariate data streams

without losing speed because the algorithms rely on sortedness which is more compli-

cated to achieved for multivariate data. The lack of total ordering in multidimensional

data forces the algorithms to use nearest neighbors search, which would incur additional

computational complexity [29]. Therefore, in Chapter 5, we propose a fast kernel com-

pression technique for multivariates kernel density estimation that can be efficiently for

data streams.

10

Chapter 3

Human Mobility Modeling

In this chapter, we discuss how human mobility can be modeled from noisy sensors data.

Additionally, we investigate the limits of predictability for a mobility dataset derived

from data collected by the sensors.

3.1 Collective Human Mobility Data

Our experimental smart environment was a functioning working space that included in-

dividual cubicle work stations, recreational space, and meeting areas. Twenty graduate

students and faculty regularly work in this space. The floor plan is depicted in Fig-

ure 3.1(a). Individuals may have different duties, different class schedules, and different

daily routines, which results in different directional and temporal mobility patterns. We

installed two types of sensors in the environment to monitor activities and movements.

Infrared distance sensors were primarily used to detect movement at each specific loca-

tion. Magnetic sensors were attached to the hinge of the refrigerator and the oven to

detect their use (Figure 3.1(b)). All sensors were connected through our laboratory’s

network, and they continuously fed live streams of mobility data to a database. By em-

ploying these ambient sensors, participants did not need to be equipped with an intrusive

tracking device during the experimental period and could move normally without being

overtly aware that they were being monitored. We observed visitations and mobility in

the experimental environment 24 hours a day for 3 months (precisely 92 days) during

the autumn semester. The experimental space was divided into 30 locations of interest

(N = 30); sensors were concealed at each located to record movements. We modeled

human mobility with two representations for different purposes as follows.

Temporal sequences of repeated visitations. Collective mobility at each location

11

M
ee

tin
g

R
oo

m

2 3 4 5

6 7 8

9

10 11 12 13 14 15
1

16 17

18

19 20 21 22 23 24

28

29

30

27

26

25

(a) Floor plan (b) Infrared and magnetic sensors
used to observe mobility in the ex-
perimental space

Figure 3.1: (a) Infrared and magnetic sensors used in the experiment (b) Placement of
the sensors

is represented by the temporal sequence of repetitive visitations visited by un-

known people during the observation. The state of visitation at a particular time

is denoted by a binary value: 1 for visited, 0 for not visited. For instance, a se-

quence vx represents mobility at location x from 00:00 to 23:59, with the sample

rate µ of one sample per hour.

vx =
(
〈t′0, 0〉, 〈t′1, 1〉, 〈t′2, 0〉, . . . , 〈t′23, 1〉

)
,

where t′i represents the observed time frame from t0 + iµ to t0 + (i + 1)µ, and t0

is the start time, i.e., t0 = 00:00 and t′0 = [00 : 00, 01 : 00).

Trajectories. By increasing the sensors’ sample rate µ to one sample per 200 ms, we

were able to record every visitation. Then, from a temporal sequence of visita-

tions, (〈x0, t0〉, 〈x1, t1〉, . . . , 〈xw−1, tw−1〉), we linearly searched for each transition

point in the sequence where the transition time ti+1 − ti > 30 s to create smaller

sequences that represent trajectories.

Despite the unobtrusiveness and simplicity of the ambient sensing method, a con-

siderable amount of the obtained data was noisy. To handle noises (such as false

triggered events, sensors blocked by obstacles, and simultaneous trajectories from

different people) and extract movement trajectories from the collective mobility

12

dataset efficiently, we applied the sequential pattern mining algorithm PrefixS-

pan [50] to extract only sub-trajectories of length n that appeared in a set of

all observed trajectories, T , more frequently than a certain minimum number of

occurrences, supportmin, during the observation.

3.2 Limits of Predictability

We evaluated the predictability over the collective mobility dataset using the methodolo-

gies introduced by Song et al. [69]. By employing Fano’s inequality [17, 46], we assessed

whether the upper limit of the probability of a moving person’s destination could be

correctly predicted given the most recent trajectory and the past collective mobility

data.

Let T ′i denote a movement trajectory, and Di be a destination of T ′i from the obser-

vations, T = (〈T ′0, D0〉, 〈T ′1, D1〉, . . . , 〈T ′m, Dm〉). Given a predictor: f : T ′i 7→ D′i that

works well to predict a future location Di of a moving individual based on recent length

n movement trajectory T ′i and a set of length n trajectories Tn, in which Tn ⊆ T , let e

denote the event of failed prediction, i.e., f(T ′i) 6= Di, and let P (e) be its probability.

According to Fano’s inequality, the lower bound on the error probability P (e) can be

found in the following inequality.

H(D|T ′) ≤ H(e) + P (e) log(N − 1). (3.2.1)

Thus, the probability of predicting correctly, denoted by Π, is 1− P (e). Namely,

H(D|T ′) ≤ H(e) + (1−Π) log(N − 1), (3.2.2)

where the destination D can take up to N possible locations and H(e) is the correspond-

ing binary entropy as follows:

H(e) = −P (e) log(P (e))− (1− P (e)) log(1− P (e))

= −(1−Π) log(1−Π)−Π log(Π). (3.2.3)

The conditional entropy H(D|T ′) appeared in Eq. (3.2.2) quantifies the amount of in-

formation needed to predict the destination D, given recent trajectory T ′. Given the

probability P (T ′) of the set of past trajectories Tn containing T ′ and the joint probability

13

3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

Π
m

ax

supmin = 5

supmin = 10

supmin = 15

supmin = 20

(a) The probability Πmax as functions of trajectory
length n

3 4 5 6

0
5

10
15

20
25

30

n

A

va
ila

bl
e

lo
ca

tio
ns

 (
N

)

supmin = 5

supmin = 10

supmin = 15

supmin = 20

(b) Relation between the parameter supportmin, tra-
jectory length n, and the number of predictable des-
tinations N left after noise removal

Figure 3.2: Predictability of collective human mobility in smart environment: Πmax

is the upper bound of the probability that a particular predictive algorithm is able to
predict a person’s location correctly using only the collective dataset.

P (T ′, d), the conditional entropy H(D|T ′) is defined by

H(D|T ′) =
∑

d∈D,T ′∈T
P (T ′, d) log

P (T ′)

P (T ′, d)
. (3.2.4)

Then, we calculated the entropy H(D|T ′) separately for each length n trajectories,

i.e., Tn ⊆ T , and analyzed the maximum potential predictability (denoted by Πmax) or

the probability of predicting the destination of a person correctly given the collective

mobility dataset by solving for the Πmax, where Π ≤ Πmax in Eq. (3.2.5), according to

Eqs. (3.2.2), (3.2.3) and (3.2.4)

H(D|T ′) = −(1−Πmax) log(1−Πmax)−Πmax log(Πmax)+(1−Πmax) log(N−1). (3.2.5)

Figure 3.2(a) shows Πmax as functions of n, where n denotes length of the consid-

ered trajectories. It is not surprising that n increases predictability; a longer trajectory

provides the predictor with more evidence, which helps narrow the search space. The

supportmin also shows potential to eliminate unusual trajectories in the dataset, and

gives significantly higher potential predictability. However, there is a trade-off between

the degree of predictability and the number of predictable locations, as shown in Fig-

ure 3.2(b). A high threshold of minimum support (supportmin) results in fewer numbers

of locations N available to the predictive algorithm.

To summarize, despite the fact that the collective human mobility cumulative move-

14

ments and behaviors from different people and seems diverge to the experimenter in

the first place, accurate prediction of the location of a person is achievable with accept-

ably high probability. However, the analysis does not provide any clue about potential

predictability for a long-term prediction configuration when the inference of a person’s

mobility cannot rely on recent movement patterns and frequent historical trajectories.

Moreover, predictive techniques that work well for short-term human mobility predic-

tions cannot be extended to long-term predictions effectively [59, 55]. Therefore, in the

next section, we studied the possibility to employ the periodicity in human behavior to

foresee their mobility in far future instead of directly modeling trajectories.

3.3 Periodicity in Collective Human Mobility

Even without the use of data mining tools, it is evident that most of human activities are

periodic to some extent. If a certain action or movement pattern is repeated regularly

with a particular interval τ , and if this behavior is consistent over time, it is certainly

predictable with the time period τ . In addition, the probability of predicting the cor-

rect location of an individual in the future depends on the tendency of such mobility

patterns recurring at intervals. Therefore, we define periodicity probability to quantify

this property formally.

Definition 3.3.0.1. Let Px(τ) denotes the periodicity, which is the probability of a

particular event x reoccurring regularly with the constant time interval τ , where τ is a

positive integer. Given the temporal sequence, as described in Section 3.1, of events from

t′0 to t′m in which the location x was visited, the periodicity probability Px(τ) is defined

by

Px(τ) = P
(
vx(t′i+τ) = 1|vx(t′i) = 1

)
, t′i ∈ {t′0, t′1, . . . , t′m−1}, (3.3.1)

where vx(t′i) indicates the state of the visitation at x during the time frame t′i.

At the location x1, apparent daily periodic behavior is revealed in the density plot

presented in Figure 3.3(a), where dense areas are concentrated and aligned on a certain

time of the day. In contrast, the density plot of x2 in presented Figure 3.3(b) shows

slightly weaker daily periodicity. The loosely dense areas that are distributed broadly

over time suggest a low degree of certainty of the repetition. However, weekly periodic

behavior is evident in x2, as distinct shades appeared on each the day of the week row

15

0
:0

0
1
:0

0
2
:0

0
3
:0

0
4
:0

0
5
:0

0
6
:0

0
7
:0

0
8
:0

0
9
:0

0
1
0
:0

0
1
1
:0

0
1
2
:0

0
1
3
:0

0
1
4
:0

0
1
5
:0

0
1
6
:0

0
1
7
:0

0
1
8
:0

0
1
9
:0

0
2
0
:0

0
2
1
:0

0
2
2
:0

0
2
3
:0

0

Mon
Tue

Wed
Thu

Fri
Sat
Sun

(a) Visiting density at x1

0
:0

0
1
:0

0
2
:0

0
3
:0

0
4
:0

0
5
:0

0
6
:0

0
7
:0

0
8
:0

0
9
:0

0
1
0
:0

0
1
1
:0

0
1
2
:0

0
1
3
:0

0
1
4
:0

0
1
5
:0

0
1
6
:0

0
1
7
:0

0
1
8
:0

0
1
9
:0

0
2
0
:0

0
2
1
:0

0
2
2
:0

0
2
3
:0

0

Mon
Tue

Wed
Thu

Fri
Sat
Sun

(b) Visiting density at x2

2
4

4
8 7
2

9
6

1
2
0

1
4
4

1
6
8

1
9
2

2
1
6

2
4
0

2
6
4

2
8
8

3
1
2

3
3
6

3
6
0

3
8
4

τ(hours)

0.0

0.2

0.4

0.6

0.8

1.0

P
x

1
(τ

)

(c) The periodicity Px1(τ)
2
4

4
8 7
2

9
6

1
2
0

1
4
4

1
6
8

1
9
2

2
1
6

2
4
0

2
6
4

2
8
8

3
1
2

3
3
6

3
6
0

3
8
4

τ(hours)

0.0

0.2

0.4

0.6

0.8

1.0

P
x

2
(τ

)

(d) The periodicity Px2(τ)

Figure 3.3: In (a) and (b), the density of visitations at location x1 and x2 related to
time of the day and day of the week are depicted, respectively. Busy times and days, in
which a high number of visitations occurred within the same period of time, are shown
in dark red. Dark blue indicates the opposite. The periodicity Px1(τ) and Px2(τ) of the
corresponding locations x1 and x2 are shown as a function of time period τ , in (c) and
(d), respectively.

indicating unique behavioral patterns on each day.

To find significant periodicity in the collective human mobility, we searched for τ

that maximizes the periodicity probability at each location separately. Figures 3.3(c)

and 3.3(d) show two sample locations where periodic behavior can be observed. The

small peaks in these plots reveal relatively high probability that these particular loca-

tions were visited regularly with the time period τ , when τ is in multiples of 24 hours.

Moreover, the maximum predictability probabilities are found at multiples of 168 hours.

Without doubt, this clearly indicates that daily and weekly behaviors exist in the col-

lective mobility data. Using a more algorithmic method to find significant period τ , the

Fourier analysis also suggested that τ = 24 hours and 168 hours correspond to two of the

most significant frequencies of ≈ 4.167× 10−2 Hz and ≈ 5.925× 10−2 Hz, respectively.

In the next section, we analyze the possibility of the collective human mobility being

predictable with periodic behavioral patterns.

16

3.4 Predictability of the Periodic Model

Intuitively, the periodicity Px(τ) can be assumed to have estimated the precision of a

periodic-based predictive model, which is based on a strong assumption of periodically

repeated visitations. Hence, the periodicity Px(τ) can be considered as a measurement

for the predictability of the periodic model. In addition, we want to provide another

predictability analysis applying an academic concept from information theory to the

periodic model.

First, we assign periodic entropy to the history data of repetitive visitations at each

location to determine the amount of information needed to foresee future visits given

historical records of repetitive visitations. At each location x, the periodic entropy is

computed as follows.

Definition 3.4.0.1. Given the collective mobility data, the entropy Sτx that quantifies

the degree of uncertainty of the periodicity Px(τ) in the dataset is as follows:

Sτx =
∑

ν∈{0,1}

P (vx)H(vx(t′i+τ |vx(t′i) = ν)), t′i ∈ {t′0, . . . , t′m−1}, (3.4.1)

where P (vx) is the probability of a location x being visited, and the conditional entropy

H(vx(t′i+τ)|vx(t′i) = ν) is

H(vx(t′i+τ)|vx(t′i) = ν) =
∑

ϕ∈{0,1}

P (ϕ|ν) log

(
1

P (ϕ|ν)

)
, (3.4.2)

where P (ϕ|ν) stands for P (vx(t′i+τ) = ϕ|vx(t′i) = ν).

In addition, let Sτxf be the entropy of future visitations; i.e.,

Sτxf = −
∑

ϕ∈{0,1}

P (vx(t′i+τ) = ϕ) log(P (vx(t′i+τ) = ϕ)), t′i ∈ {t′0, . . . , t′m−1} (3.4.3)

Next, we determine the predictability for each location x of the periodic model with

the probability Πx,τ defined as follows.

Definition 3.4.0.2. Let Πx,τ be the probability that the periodic model predicts times of

future visitations at x correctly by always predict visits at all times that are kτ apart from

the last visit for k = 1, 2, Thus the associated entropy H(Πx,τ) of the predictability

17

24 168
τ(hours)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Π
m
a
x

(a) Predictability of
periodic models.

x
1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9
x

10
x

11
x

12
x

13
x

14
x

15
x

16
x

17
x

18
x

19
x

20
x

21
x

22
x

23
x

24
x

25
x

26
x

27
x

28
x

29
x

30

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p
y

S τxf

S τx

0.0

0.1

0.2

0.3
S
τ x
f−
S
τ x

(b) Differences between the periodic entropy and the
entropy of future visits at each location.

Figure 3.4: Predictability Πmax
τ and corresponding periodic entropy

Πx,τ is as follows:

H(Πx,τ) = −Πx,τ log2(Πx,τ)− (1−Πx,τ) log2(1−Πx,τ). (3.4.4)

The maximum predictability Πmax
x,τ can be determined using Fano’s inequality in

accordance with Eq. (3.2.2).

Sτx ≤ H(Πx,τ) + (1−Πx,τ) log2(N − 1). (3.4.5)

Because Πx,τ ≤ Πmax
x,τ and N = 2 prevents this boundary to the binary classification,

the following correction is required.

Sτx ≤ H(Πx,τ) + (1−Πx,τ) log2(N − 1) ≤ H(Πx,τ) + (1−Πx,τ) log2(N)

= −Πmax
x,τ log2(Πmax

x,τ)− (1−Πmax
x,τ) log2(1−Πmax

x,τ) + (1−Πx,τ) log2(N). (3.4.6)

After solving for Πmax
x,τ in Eq. (3.4.6), the predictability Πmax

x,τ determines the upper

limit of the probability of predicting future visits of people at location x in the far future

given an appropriate periodic model (with the time period τ). We evaluated Sτ and

Πmax
τ separately for each location, and the associated distribution of Πmax

τ is shown

in Figure 3.4(a). Both distributions of the predictability Πmax
τ indicate the average

predictability over all locations is approximately greater than 80%, in both daily and

weekly models. The average predictability of the weekly model is slightly higher and

has lower variance than the daily model. It is reasonable to conclude that the weekly

model fits the collective mobility data better than the daily periodic model.

18

Figure 3.4(b) shows differences between the periodic entropy, Sτx , and the entropy

of future visitations, Sτxf , at each location x when τ = 24 hours. Note that as Sτx is

closer to zero and farther from Sτxf , future visitations are more likely to periodically

depend on previous visitations. For instance, locations x5, x6, x17, x18, and x28
1 were

not periodic, while the locations x1, x2, x8, x9, x29 and x30 appeared to be more periodic

than others. Therefore, the periodicity-based predictive model alone would not work in

all locations; hence, we have developed the integrated aperiodic and periodic model for

long-term human mobility prediction.

3.5 Conclusion

Human mobility and activities monitoring technologies have been improved notably in

the past decade. Many advance non-intrusive techniques, such as WiFi signal strength-

based techniques [18, 19, 51] and laser-based tracking [14], have been developed and

made available for human behavior researches. Similarly, we aim at unobtrusiveness

and simplicity and opt for the ambient sensors, in which tracking sensitivity is rela-

tively higher than the other methods. In addition, the hierarchical probabilistic model

and statistical method proposed in [47] are also capable of applying to non-intrusive

sensing data and, yet, are able to recognize multi persons’ behaviors. The limitation

that these techniques are facing, however, is that they cannot distinguish individual

identities. Consequently it is impossible to create an individual predictive model for

each individual’s mobility pattern. That is, despite advance acquisition techniques, the

obtained data are still mixed up and inseparable among multi users.

In conclusion, the answer to the question about limitations of the predictability of

collective human mobility from simple ambient sensor data collected in a smart envi-

ronment has been found. The dataset collected from such ambient systems appeared to

be noisy and did not contain much useful information for prediction tasks at first. After

sufficient preprocessing with sequential patterns mining, our analyses have shown the

potential predictability of the dataset in both short-term prediction setting and long-

term prediction setting. Moreover, we have also discovered the key factors that greatly

affect the accuracy, which give us some insight on how and where to be careful with

when preprocessing the dataset.

For short-term prediction, the length and the support of the trajectory pattens are

1Placement of each point of interest xi can be found in Figure 3.1(a)

19

the key factors that most influence the predictability of the dataset. In other words,

trajectory patterns with more evidences to support are less likely to be observed from

actual moving subject rather than from noise or false alarm sensor triggers. And longer

patterns contain more more information about past mobility patterns (i.e., paths and

speeds) compared to shorter patterns.

For long-term prediction, it is straightforward that the likelihood of repetitive pat-

terns, either periodic or aperiodic, is the most important feature that determines the

limit of its predictability.

20

Chapter 4

Human Mobility Prediction

4.1 Long-term Human Mobility Prediction

The proposed Aperiodic and Periodic model (APP) for long-term human mobility pre-

diction [65] combines two paradigms. The first approach (periodic approach) employs

the periodic property in human mobility to foresee future visits. The second approach

(aperiodic approach) does not rely on the periodicity; rather, it presumes that mobility

patterns are similar to a day in the past that has similar features. APP model uses

one of the two approaches to predict human mobility at a certain location x depending

on the periodicity probability Px(τ) at that specific location. If Px(τ) is more than

the user-specific threshold P τmin, then APP uses the periodic approach. Otherwise, it

switches to the aperiodic approach.

4.1.1 The Periodic Approach

APP model’s periodic predictive approach was designed to foresee times of future visita-

tions at each location in the smart space. To predict future locations of multiple people,

the predictions are computed independently for each location. Then all the results are

combined to provide a set of locations that are likely to be visited at the specific time

in the far future.

The fundamental idea behind the prediction is based on the assumption of period-

icity. If the visitations at x recur regularly and repeatedly with constant time interval

τ and if this periodic behavior appears consistently over time, then the probability

P τx (t′f) that the future visitation will occur within the time frame t′f , when the last visit

21

happened at t′m−1 can be computed as

P τx (t′) = P (vx(t′m−1−(k)τ+δ) = 1|vx(t′m−1−(k+1)τ+δ) = 1), k = 1, 2, . . . , bm/τc (4.1.1)

where δ = τ − (f −m+ 1) mod τ .

This simple, yet accurate, predictive approach works well only at locations, where

individuals’ mobility has apparent periodicity. Otherwise, the periodic approach obtains

poor predictions because mobility in those particular locations is not governed by peri-

odic behavior. To address this problem, we proposed the optional aperiodic approach,

which is independent of the periodic behavior.

4.1.2 The Aperiodic Approach

In the second predictive technique implemented in APP method, we extract significant

patterns of repetitive visitations that occurred on different days at each location. Next

the days that have a similar visiting behavior pattern are clustered, resulting in groups

of similar days. Then, we extract contextual features from each group of similar days.

Due to the limited dataset available, in this project only two features of interest were

considered: (1) day of the week, (2) whether or not it was a holiday. Note that un-

limited additional features, such as temperature, traffic, weather conditions, or meeting

schedule, that might relate to the mobility pattern can be used to more comprehensively

characterize the day.

The intuition that supports this predictive approach is derived from the weekly

model presented in Section 4.1.1, i.e., human mobility patterns on the same day of the

week are likely similar. In addition, human activities on national holidays are apparently

different from normal workdays; therefore, we need an additional bit to explicitly specify

this property. Hence, the mobility pattern of a day can be individually modeled by the

visitations at each location. Recall the temporal sequence vx described in Section 3.1;

mobility at a certain location x can be represented by a vector:

dx =[vx, dayweek, holiday]

=[vt′0 , . . . , vt′23 , Sun,Mon, . . . , Sat,Hol]. (4.1.2)

The day vector dx consists of 32 bits. The first 24 bits model visitations at location

x during a specific time frame of a day, which is divided into hours. The next 7 bits

22

(3) Tue, Thu, Fri	

(2) Mon, Wed	

(1) Sat, Sun, Hol	

0:
00
	

1:
00
	

2:
00
	

3:
00
	

4:
00
	

5:
00
	

6:
00
	

7:
00
	

8:
00
	

9:
00
	

10
:0

0	

11

:0
0	

12
:0

0	

13

:0
0	

14
:0

0	

15

:0
0	

16
:0

0	

17

:0
0	

18
:0

0	

19

:0
0	

20
:0

0	

21

:0
0	

22
:0

0	

23

:0
0	

 M
on
	

 T
ue
	

 W
ed
	

 T
hu
	

 F
ri	

 S
at
	

 S
un
	

H
ol
	

Figure 4.1: Three cluster centroids that represent three mobility patterns.

indicate day of week, and the last bit indicates a holiday.

Similarity between two day vectors is generally measured by the Hamming distance

[26]. Then, the k -means clustering algorithm [42] is applied to a set of day vectors to

find clusters of similar days. Note that the clustering considers only the first 24 bits,

the visitation part of day vectors. The parameter k of the algorithm directly implies the

number of different mobility patterns that occurred on different days. The centroid of

each cluster now represents a common mobility pattern that provides predictions (prob-

ability) of visitations on particular future days that have similar features. A concrete

example of similar day clusters from the real dataset is shown in Figure 4.1. The cluster

centroids in Figure 4.1 clearly show three different visiting patterns at that particular

location. Cluster (1) contains a set of days in the past history when visitations rarely

happened, and the majority of this set are Saturdays, Sundays, and days specified as

holidays. On the other hand, clusters (2) and (3) contain more active days. The days in

cluster (2), primarily Mondays and Wednesdays, have very low visitations records from

11.00–12.00 and 21.00–22.00; moreover, the visitations seem to occur earlier than on

the days in cluster (3). Interestingly, this follows from the fact that we have scheduled

meetings in the experimental space every Monday and Wednesday, which causes the

mobility pattern on these days to be different from other days.

sectionEvaluating Prediction Performance In this section, we report on an evaluation

of the prediction performance of the proposed long-term human mobility predictor on

a physical collective human mobility dataset accumulated inside the working environ-

ment. As described in Section 3.1, the dataset contains 92 days of mutual movements

of all participants. Data were collected consecutively 24 hours a day, 7 days a week

from approximately 20 participants using infrared sensors and magnetic sensors. These

sensors were installed at 30 locations over the experimental space to detect activities

and mobility at each area (Figure 3.1(a)). Movements and activities were not scripted

beforehand; all actions occurred spontaneously or deliberately in relation to each indi-

23

Table 4.1: Human Mobility Dataset

Dataset Training Test

Sample rate hourly

Number of participants ≤ 20

Observed locations 30

Size of data 62 days
(1,488
hours)

30 days
(720 hours)

vidual’s routine, work schedule, and needs at that instant.

First, we evaluated the periodic approach for long-term human mobility prediction.

Two months of collective mobility data was used to build the predictive model and the

remaining 30 days of mobility data were used to test the model. Details of the dataset

are summarized in Table 4.1.

4.1.3 Periodicity and Prediction Performance

We determined relations between the periodicity probability (Px(τ = 24) and Px(τ =

168)) and the prediction accuracy precision and recall rate at each location separately.

Dashed lines drawn in Figure 4.2 estimated predictive performance as a linear function

of the periodicity at each location of interest. Figures 4.2(a) and 4.2(d) exhibit a de-

creasing trend of prediction accuracy with increasing periodicity probability; however,

the periodic predictor returns higher precision and recall rates as the dataset has higher

probability of such movements being periodically repeated. Nevertheless, the measure-

ment of prediction accuracy is meaningless to us because the datasets, which contain

historical visitations records for each location, have negative skew. In other words, a

naive predictor could achieve at least a 60% chance of correctly predicting visitations (ei-

ther “visited” or “not visited”) at a specific time frame in the future by always guessing

“not visited”. Figures 4.2(b) and 4.2(e) show a direct relationship between the precision

rate and periodicity probability. Likewise, the recall rates in Figures 4.2(c) and 4.2(f)

show that the datasets with higher periodicity are more predictable than others. More-

over, when the periodicity probabilities are lower than 0.4, the daily periodic approach

(Figure 4.2(c)) clearly returns poor results, i.e., those visitations were not daily peri-

odic and were hardly covered by the weekly periodic model. These results confirm our

hypothesis that the periodic approach alone is not effective for predictions with low

periodicity probability.

24

0.0 0.2 0.4 0.6 0.8 1.0
Periodicity (τ=24)

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
u
ra

cy

(a) Accuracy, τ = 24

0.0 0.2 0.4 0.6 0.8 1.0
Periodicity (τ=24)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

(b) Precission, τ = 24

0.0 0.2 0.4 0.6 0.8 1.0
Periodicity (τ=24)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(c) Recall, τ = 24

0.0 0.2 0.4 0.6 0.8 1.0
Periodicity (τ=168)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

(d) Accuracy, τ = 168

0.0 0.2 0.4 0.6 0.8 1.0
Periodicity (τ=168)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

(e) Precission, τ = 168

0.0 0.2 0.4 0.6 0.8 1.0
Periodicity (τ=168)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll
(f) Recall, τ = 168

Figure 4.2: Periodicity and prediction performance

4.1.4 Prediction Performance of the Aperiodic Approach

The aperiodic part of APP is implemented with the similar-day predictive approach

described in 4.1.2. In previous experiments, the periodic approach underperformed on

the datasets where mobility was not really periodic. This was particularly the case for

the daily periodic model (see Figures 4.2(a), 4.2(b), and 4.2(c)) when most locations

in the experimental space had periodicity probability lower than 0.4. Hence, in this

experiment, the aperiodic part of APP is activated when periodicity is lower than the

minimum threshold of P τmin = 0.4.

Figure 4.3 reveals the benefit of including the aperiodic component in the APP pre-

dictive model. In Figure 4.3(a), the precision rates of the APP model after the imple-

mentation of the similar-day approach for low-periodicity data are noticeably improved

compared to the periodic approach alone. The precision plots of the periodic approach

on the left (periodicity ≤ 0.4) were mostly omitted from analysis because the periodic

predictor never predicted “visited” for those locations, resulting in undefined precision

rates.

APP also improves the recall rates, as shown in Figure 4.3(b). It is interesting

25

0.0 0.2 0.4 0.6 0.8 1.0
periodicity (τ=24)

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

periodic

APP

(a) Periodicity and Precision

0.0 0.2 0.4 0.6 0.8 1.0
periodicity (τ=24)

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

periodic

APP

(b) Periodicity and Recall

Figure 4.3: Prediction performance of the similar-day approach

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

AUC ROC 0.76

(a) AUROC x1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

AUC ROC 0.79

(b) AUROC x19

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

AUC ROC 0.48

(c) AUROC x5

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

AUC ROC 0.52

(d) AUROC x28

Figure 4.4: Area under the ROC curve

that the recall rates used to achieve close to 0.0 with the periodic approach increase to

0.6 when the APP predictive technique is employed. Samples of prediction evaluations

of the two most accurate and the two least accurate predicted locations are shown in

Figure 4.4. In the most accurate case, APP was able to obtain the area under the

receiver operating characteristic (ROC) of 0.79, where the sensitivity of the decision

threshold was varied (Figure 4.4(b)). Nonetheless, the worst predictor scores occurred

for a ROC of 0.48 (Figure 4.4(c)).

In this final evaluation, we measured how close the predicted visitations are to the

actual visits. The prediction error is simply the distance between the predicted times-

tamp of an expected future visit and the timestamp of the closest actual future visit.

The results are summarized in Figure 4.5. Impressively, 60% of the estimation errors

are less than 2.5 hours (with mean = 7.5 hours, and median = 1.5 hours), considering

that the prediction was made a month in advance.

26

0 5 10 15 20 25 30
Prediction error (hours)

0

20

40

60

80

100

p
e
rc

e
n
t

(a) Histogram of prediction error

0 5 10 15 20 25 30
Prediction error (hours)

0

20

40

60

80

100

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
t

(b) CDF of prediction error

Figure 4.5: Distribution of prediction error

In summary, the aperiodic part in our proposed long-term human mobility pre-

dictive technique improves prediction performance, particularly when the periodicity

probability is too low to infer future visitations. However, the similar-day approach in

the aperiodic part is not sufficiently effective to improve the predictive technique that

employs the weekly periodic approach (τ = 168). The reason for this is that the day

of week feature resulted from cluster analysis in the similar-day approach corresponded

to the weekly periodic model, and holiday is not a significant feature since there were

few holidays during the three months when the dataset was collected. Implementa-

tion of the similar-day approach (aperiodic part) and the weekly periodic approach did

not achieve noticeable improvement compared with implementation of only the weekly

periodic predictive approach.

4.1.5 Long-term Prediction Performance

In this section, we report the results of testing the robustness of APP over a long-term.

(Details of the dataset are summarized in Table 4.1.) Prediction performance for each

day was summarized and plotted across a prediction range of 30 days. The results pre-

sented in Figure 4.6 show steady prediction performances even when predicting for 30

days in the future. The F1 score, which is the harmonic mean of the precision and the

recall rate (Figure 4.6(c)), summarizes the prediction performance of the three proposed

predictive techniques as follows. First, the collective mobility dataset that initially ap-

pears to be random contains sufficient information to enable accurate predictions even

27

5 10 15 20 25 30
Prediction range ∆T (days)

0.0

0.2

0.4

0.6

0.8

1.0
P
re

ci
si

o
n

APP:simday+daily

Daily

Weekly

(a) Precision

5 10 15 20 25 30
Prediction range ∆T (days)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

APP:simday+daily

Daily

Weekly

(b) Recall

5 10 15 20 25 30
Prediction range ∆T (days)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

APP:simday+daily

Daily

Weekly

(c) F1 score

Figure 4.6: Long-term prediction performance

in the far future. Activities and corresponding mobility in the dataset are likely to be

periodic on a weekly basis; hence, the weekly periodic predictive approach alone can

achieve an average F1 score of 0.55. On the other hand, the daily model performs rela-

tively poorly (average F1 score of 0.37) with this dataset because of the low periodicity

probability on a daily basis. However, after implementing the similar-day approach to-

gether with the daily predictive model, the integrated model can achieve an average F1

score of 0.52.

4.2 Short-term Mobility Prediction

In our earlier attempts in modeling and predicting human mobility using the dataset

from the same set of sensors used in this project [68], we have succeeded in predicting

future whereabouts of a moving participant with the average precision of 90% using a

decision tree-based classifier trained on sequential patterns of users’ trajectories. How-

ever, the result from our recent analysis [66] (details were summarized in Chapter 3) on

the theoretical limit of the predictability of human mobility given the dataset from the

same selection of sensors has revealed the potential of achieving a near perfect predic-

tion. That being said, despite the possibility of missing and other failures that could

happened and affect the quality of sensor reading, we have shown that, with essential

preprocessing step, the sensor data contains sufficient information to train a machine

learning model and get highly accurate predictive model.

Our previous predictive technique [68] relied on the decision tree learning, which has

a few advantages over other classification approaches for exploratory analysis. Model

of a decision tree has a structure that is easy to understand, even to people with little

28

background in machine learning, and features importance can be analyzed directly from

the model for broader understanding of mobility patterns.

However, decision tree learning has a couple of downsides which can greatly affect

the accuracy of the prediction. Firstly, decision tree-based learnings are related to

the problem in which two (or more) variates explain the same thing. A decision tree

will extend its branch on the best variable, whereas other approach will consider them

both. Secondly, in a decision tree, all variates are assumed to interact. That is all

variates are forced to interact with every variables further up in the tree. The assumed

interactions that two variates behave dependently can greatly degrade the predictive

accuracy. Thirdly, poor resolution with continuous variables.

The proposed method is trajectory pattern-based with the information of transition

times incorporated into the model to take into account moving speed which has the

potential to identify users’ identity and intentions.

4.2.1 Extracting Trajectories from Sensor Readings

Representation of a trajectory used by this algorithm is similar to the sequential rep-

resentation described in Section 3.1. Regardless of different types of sensors, we want

each sensor to report a binary state of its vicinity being visited by a user (or users).

Then these states of visitations triggered from different sensors are sorted by their time

of visits resulting in a sequence of visited location IDs (sensor IDs) and time stamps

that represent movements. We cut the continuous sequence of sensor readings at the

intervals with longer duration than 30 seconds resulting in shorter sequences in which

each sequence represent individual trajectory. Specifically, a trajectory is represented

with a sequence of visitation tuples. Each visitation tuple contains 1) visited location

ID si and 2) visited time ti. For instance, the movement demonstrated from area A to

area D in Fig. 4.7 can be represented with the following sequence of length-4.

trABCD = 〈(xa, t1), (xb, t2), (xc, t3), (xd, t4)〉 (4.2.1)

While movement speed can be determined simply by transition times between each hop

along the path.

tiABCD = 〈tiab, tibc, ticd〉 (4.2.2)

As stated earlier in the introduction, we have to handle the problem of inaccu-

29

M
ee

tin
g

R
oo

m

xa xb

xc

xd

A B

C D

tiab

tibc

ticd

Figure 4.7: Placement of each sensor is indicated with read circle. The trace shows an
example trajectory of a person traveling inside the environment from area A to area D.
Each transition time tiij implies moving speed.

rately generated trajectories from noises and collateral movements. Similar to previous

works [68, 65], we applied the temporal sequential pattern mining algorithm to extract

spatial-temporally frequent movement patterns from the original dataset, i.e. frequent

in term of both speed and direction. The resulting trajectory patterns are expected to

be far less noisy and more predictable, according to the analysis in [66].

4.2.2 Trajectory Patterns-based Human Mobilility Predictive Model

Future location of a moving user is dependent on the most recent visits history, with

respect to moving speed and chosen route. Trajectory patterns-based models have been

studied in a number of ways, such as Markovian model [70] and Spatio-temporal sequen-

tial pattens-based model [59]. In this work, we opted for the trajectory patterns-based

method, which is a standard sequential patterns-based predictive model which is for-

mally defined as the following steps:

1. Given a set of trajectories Γ = {tr1, . . . , trN | ∀|tri| ≥ 2}, let Γ̃ be the mined

set of frequent sub-trajectories that occur at least suppmin
1 times in Γ with the

minimal transition probability of confmin
2. Specifically, we used the PrefixSpan

algorithm [27] for frequent trajectories mining.

2. Let the transition probability Ptr(n | m) be the probability of finding that the

next visitation is at n given that m is the most recent trajectory of the user as

1The minimum support threshold
2The minimum confidence threshold

30

follows

ptr(n | m) = conf(m→ n) =
supp(m→ n)

supp(m)
, (4.2.3)

where supp(m→ n) denotes the number of occurrence that the trajectory m were

followed by a visitation at n and supp(m) is the number of occurrence of m in Γ.

Note that supp(t̃ri) ≥ suppmin > 0 and conf(t̃ri) ≥ confmin ≥ 0, ∀t̃ri ∈ Γ̃.

3. For each length-l frequent trajectory t̃ri ∈ Γ̃, define t̃r
[0]
i as the first tuple of

the trajectory t̃ri and let t̃r
[−1]
i be the first tuple from the end of the trajectory

t̃ri. t̃r
[−2]

is the second element from the end, and so forth. Assign a notation

t̃r
[a:b]
i to denote the sub-trajectory of t̃ri from the ath tuple to the (b− 1)th tuple

(inclusive), where a < b. Apparently, t̃r
[0:l]
i equals to t̃ri itself. Further, to make the

notation less cluttered, we would like to abbreviate t̃r
[0:b]
i to just t̃r

[:b]
i ; likewise,

t̃r
[a:l]
i is equal to t̃r

[a:]
i . For instance, if t̃ri = 〈(xa, t1), (xb, t2), (xc, t3), (xd, t4)〉

then the destination is t̃r
[−1]
i = (xd, t4) and its corresponding prefix is t̃r

[:−1]
i =

〈(xa, t1), (xb, t2), (xc, t3)〉, while t̃r
[1:]
i = 〈(xb, t2), (xc, t3), (xd, t4)〉.

Given a length-l test trajectory tr′, the prediction step works as follows:

(a) Create a candidate set C containing all the frequent trajectories in which

their prefixes are identical to tr′, i.e. C = {t̃ri | ∀t̃ri ∈ Γ̃∧ t̃r[:−1]
i = tr′}. The

equality in this sense concerns only the spatial context of the trajectories.

Two trajectories are considered equal if every visitations at each step are

similar, regardless of the difference of the visited times or the time spent at

each visit.

(b) If the set C is empty and |tr′| > 1, repeat step 3a with a shorter tr′, that is

the new tr′ ← tr′[1:], which results in a shorter test trajectory that disregards

the fist visit of the trajectory.

(c) In the case that step 3a and 3b are repeated until the test trajectory cannot

be trimmed anymore i.e. |tr′| = 1, the model returns an empty set, which

indicates that the model cannot recognize the query trajectory and cannot

provide a proper prediction. In other words, the probabilities of all possible

outcomes are, evenly, zeros.

(d) Otherwise, in the case that C is not empty, the model returns a distinct set,

which contains the predicted locations and the confidence of each prediction.

31

Algorithm 4.2.2.1 Trajectory Patterns-based Prediction
(transition time concerned)

1: procedure predict proba nnb(tr, ti, Γ̃)
2: C ← ∅
3: while C is ∅ ∧ |tr′| ≥ 1 do

4: C ← {t̃ri | ∀t̃ri ∈ Γ̃ ∧ t̃r[:−1]
i = tr′}

5: tr′ ← tr′[1:]

6: end while
7: if C 6= ∅ then
8: PNNB ← {(ỹ, pNNB(ỹi | ti)) | ∀ỹ ∈ Possible outcomes} . equation ((4.2.5))
9: return argmaxỹ∈Possible outcomes P

NNB

10: else
11: return ∅
12: end if
13: end procedure

Although the introduced trajectory patterns-based model is able to provide the pre-

diction probability properly, the temporal context of a trajectory has not been utilized

in the prediction process yet. Thus we introduce a transition time concerned version

of trajectory patterns-based model wherein the prediction probability of each potential

location is computed based on the expected transition time between the last visit and

the destination. That is rather than only asking: “Where is the user expected to be

next, given his most recent movement trajectory tr′”, we would add “Where is the user

expected to be ti after?”.

We keep the modification simple. In step 3d, when C is not empty, final transition

times

tit̃ri = |t̃r[−1]
i .t− t̃r[−2]

i .t| (4.2.4)

of each candidate trajectory t̃ri ∈ C are computed, where t̃r
[k]
.t accesses the timestamp

property of a tuple t̃r
[k]

. Then the prediction probability of each possible outcome ỹ is

estimated based on soft nearest neighbor classification [60]. That is

pNNB(ỹ | ti) =

∑
t̃ri∈C∧t̃r

[−1]
i =ỹ

exp(−(ti− tit̃ri)2)
∑

t̃ri∈C∧t̃r
[−1]
i 6=ỹ exp(−(ti− tit̃rj)2)

, (4.2.5)

where tr′ is the most recent trajectory of a moving user and ti is the given time

interval between tr′ and the next visitation. The prediction is then selected from the

most likely position as follows:

Predicted location = argmaxỹ p
NNB(ỹ | ti) (4.2.6)

32

The complete procedure of the transition time concerned trajectory patterns-based

model is elaborated in Algorithm 4.2.2.1.

4.2.3 Performance Evaluation using Real-world

Mobility dataset from Smart Environment

In this section, we compared the proposed trajectory patterns-based transition time

concerned model with our prior attamps at predicting human mobility [15] (denoted

as DT). The predictive technique used in [15] was based on a decision tree classifier.

The decision tree-based human mobility predictor takes n − 1 previous visited steps,

n− 2 transition times between each step and the expected time until the last step and

the predicting location as features for length-n trajectories. To train the model, we

divide training data by length and train the decision tree separately for each length-i

trajectory, where i = 2, . . . , 4. Both decision tree-based approach and the proposed

method rely on the training trajectories to be provided in good quality. To extract

real trajectories from noises and other sensor events other than human mobility, we

employed the temporal sequential patterns mining algorithm [15] with the minimum

support of 2 and the minimum confidence of 10% to the raw sensor data to connect

sensor events, remove spurious sequences and extract only a set of trajectories that

meet the requirement stated above.

We tested two competing human mobility predictive techniques and evaluated their

predictive performance using 10-fold cross validation. Referred to the dataset of mobility

tracked from 30 interested locations mentioned in Section 3.1, sequence of sensor firing

events were split into set of sequences with the 30 seconds threshold, i.e. events that

are over 30 seconds apart are considers unconnected events). Then the set of events

sequences equally divided into 10 partitions, where 9 of them will be used to train

the predictive model and the remaining partition is kept for testing. The processes is

repeated 10 times, with different testing partitions. Note that the test set can also

contain noises, such as false positive triggering and interleaving sequences due to two

or more users walked at the same time, because we partitioned raw data into train

and test sets without any preprocessing. Therefore, to cleanup testing datasets, we

applied temporal sequential patterns mining algorithm [67] to extract frequent temporal

sequential patterns that appeared at least five times with the minimum confidence of

35% within the test set; namely, suppmin = 5 and confmin = 0.35. The test dataset

33

0 0.1 0.2 0.3
min confidence

2

16

32

64

m
in

 s
u
p
p
o
rt

0.834 0.854 0.948 0.000

0.848 0.854 0.948 0.000

0.837 0.837 0.948 0.000

0.000 0.000 0.000 0.000

(a) precision

0 0.1 0.2 0.3
min confidence

2

16

32

64

m
in

 s
u
p
p
o
rt

0.883 0.898 0.796 0.000

0.898 0.898 0.796 0.000

0.898 0.898 0.796 0.000

0.000 0.000 0.000 0.000

(b) recall

0 0.1 0.2 0.3
min confidence

2

16

32

64

m
in

 s
u
p
p
o
rt

0.858 0.875 0.865 0.000

0.872 0.875 0.865 0.000

0.866 0.866 0.865 0.000

0.000 0.000 0.000 0.000

(c) F1 score

Figure 4.8: Effects of minimum support and confidence parameter settings on prediction
accuracy

contained 3,771 trajectories of varying lengths and only 19 locations from 30 locations

of interest appeared as destinations of the testing trajectories.

Both decision tree-based predictor and the trajectory patterns-based transition time

concerned predictor rely heavily on the quality of the input trajectory patterns. That

is the higher the confidence, the more precision score the predictors could obtain. In

contrary, the lower the confidence and the lower the support, the more recall score the

predictors could obtain. Therefore, the right balance between precision and sensitivity

must be fine tuned to suit each applications. For instance, in applications where false

positive are not as severe as false negatives, we would want to lower the minimum

confidence and support parameters to have our predictors trained on more generalized

patterns. Whereas, if false positives cost more than false negatives, we would want out

predictors only learn from highly confident patterns. As shown in Figure 4.8, prediction

accuracy of an interested location x was measured with the precision, recall and F1

scores. From Figure 4.8(a), the precision increased as we incremented the minimum

support and confidence parameters, until the predictor failed since the minimum support

and/or the minimum confidence were too high such that the mined patterns did not

contain any trajectory patterns towards x. In contrary, Figure 4.8(b) shows that as the

minimum support and confidence parameters were decreasing, recall rate also decreased

because of the mined patterns contained less and less patterns that can be used to

predict x.

Since we do not have specific preference of whether to emphasis on the precision

or sensitivity, we chose to maximize the harmonic mean of both, namely the F1 score.

34

5 10 15 20 25 30

number of neighbors

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99
F

1
 s

co
re

min_sup=2

min_sup=16

Figure 4.9: Number of nearest neighbors k and prediction accuracy

From Figure 4.8(c), we picked the minimum support parameter of 16 and the minimum

confidence parameter of 0.1 to extract trajectory patterns that will be used to train our

predictors.

Other than the support and confidence parameters, the proposed trajectory patterns-

based transition time concerned model has an additional parameter k which is used to

control the number of nearest patterns that will be considered to make a prediction.

Smaller k limits the model to consider only a few nearest patterns, whereas Larger

k allows the model to consider more candidate patterns. In general, it is important

to find the right k so that the model would not be too general (underfitting) or too

specific to the training patterns (overfitting). This is true for our method only when

the input patterns are mined with low minimum support and confidence settings, where

infrequent patterns that possibly contain noise signals might still be included in the

training patterns. We can see from Figure 4.9, in which the training patterns were

mined from the TSPMalgorithm with the minimum support setting of 2 and no minimum

confidence limit, that the accuracy of the model (as measured by the F1 score) was

heavily relied on the k parameter. Since the training patterns contained more infrequent

patterns, it needed more number of candidates to make good prediction. In contrast,

when the minimum support and confidence parameters were set properly, the parameter

k didn’t affect the accuracy of the model as much.

Next, we set the minimum support to 16 and the minimum confidence to 0.1. Pre-

diction performance of the proposed method and a competition were evaluated using the

35

Loc IDs # of visits
Precisions Recalls F1 scores

DT TBTT DT TBTT DT TBTT

1 5 1.0000 1.0000 0.6000 1.0000 0.7500 1.0000

2 5 0.5556 1.0000 1.0000 1.0000 0.7143 1.0000

3 6 1.0000 1.0000 0.5000 0.8333 0.6667 0.9091

4 11 0.6429 1.0000 0.8182 0.8182 0.7200 0.9000

5 11 0.8182 1.0000 0.8182 1.0000 0.8182 1.0000

6 12 0.7778 0.6667 0.5833 0.5000 0.6667 0.5714

7 21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 46 0.6486 0.8571 0.5217 0.5217 0.5783 0.6486

9 54 0.9074 0.9818 0.9074 1.0000 0.9074 0.9908

10 55 0.9216 0.9643 0.8545 0.9818 0.8868 0.9730

11 90 0.8161 1.0000 0.7889 0.9667 0.8023 0.9831

12 110 0.6619 0.9259 0.8364 0.9091 0.7390 0.9174

13 116 0.8560 0.9431 0.9224 1.0000 0.8880 0.9707

14 117 0.9806 1.0000 0.8632 0.9658 0.9182 0.9826

15 239 0.8315 0.9713 0.9289 0.9916 0.8775 0.9814

16 289 0.9560 0.9601 0.9031 1.0000 0.9288 0.9797

17 312 0.7855 0.9614 0.8333 0.9583 0.8087 0.9599

18 1130 0.9982 1.0000 0.9867 1.0000 0.9924 1.0000

19 1142 0.9722 0.9922 0.9510 0.9991 0.9615 0.9956

Avg 0.8489 0.9592 0.8220 0.9182 0.8223 0.9349

Weighted Avg 0.9304 0.9821 0.9260 0.9828 0.9269 0.9818

Table 4.2: predictive accuracy per class (locations)

precision, recall and F1 scores. The results in details displayed in Table 4.2 clearly indi-

cate that the proposed trajectory patterns-based model has outperformed the decision

tree-based model at every classes (locations). The proposed method even obtained per-

fect prediction of the location ID 1, 2, 5 and 18, whereas the decision tree approach only

achieved a moderate 75%-99% of F1 score. The proposed method not only performed

well on large classes, such as Loc IDs 15-23, with over a hundred visitations during the

experiment, but also performed well on locations where the occupants rarely visited, e.g.

Loc IDs 1-3. Whereas, the decision tree approach experienced more prediction errors at

these locations, especially Loc IDs 2, 4 and 8.

The errors from misclassification from both methods can be seen more clearly in

confusion matrices in Figure 4.10. The confusion matrix from the results of the decision

tree-based predictor (Figure 4.10(a)) clearly shows more erroneous predictions compared

to the results to the proposed method in Figure 4.10(b), which, from the results, seems

more promising in delivering location-based services to the occupants than its competing

predictive technique.

36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Predicted location IDs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

T
ru

e
 l
o
ca

ti
o
n
 I
D

s

3 1 1

5

3 2 1

9 2

9 1 1

7 2 1 2

21

24 3 6 5 8

49 1 1 1 2

47 4 3 1

1 71 8 4 1 5

3 2 92 2 9 2

1 2 107 2 4

4 101 10 2

3 1 3 1 222 5 3 1

6 4 8 261 7 3

2 1 4 3 1 2 13 3 8 1 260 2 12

2 6 1 6 1.1k

1 3 1 5 1 8 6 16 15 1.1k

(a) tree-based model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Predicted location IDs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

T
ru

e
 l
o
ca

ti
o
n
 I
D

s

5

5

5 1

9 2

11

6 6

21

24 3 12 7

54

54 1

87 3

2 100 8

116

113 4

2 237

289

3 2 8 299

1.1k

1 1.1k

(b) trajectory patterns-based transition time con-
cerned model

Figure 4.10: Accuracy of (a) tree-based human mobility model and (b) trajectory
patterns-based transition time concerned human mobility model visualized with con-
fusion matrices

4.2.4 Conclusion

We have proposed a promising framework for human mobility predicting that works

well even when presented with noisy data from simple motion detection sensors. Other

than the essential preprocessing step of trajectory patterns mining that we have used

in the past researches [15, 67] (see [66] for the analysis), in this work we presented a

novel trajectory predictive technique that can model trajectory patterns from multiple

occupants and predict future position of a moving subject with very high accuracy.

The proposed transition time concerned trajectory pattern-based model has achieved

over 98.21% of precision and the F1 score of 98.18% prediction on a real world human

mobility data. The proposed predictive model outperforms our previously proposed

predictive model which has achieved only 95.92% of precision and 93.39% of F1 scores

on the same performance evaluation test. In addition, this result has closed the gap

between the empirical performance and the theoretical limit of the predictability of that

we have estimated in the previous research [66]. The proposed predictive technique has

introduces a great opportunities to smart environment researchers to develop successful

location-based applications with less complicated sensor system that leads to lower cost

of production and development.

37

Chapter 5

Kernel Density Compression for

online KDE

5.1 Kernel Density Estimation

KDE is a nonparametric method for approximating an unknown probability density

function p(x) from observations. The term kernel refers to any probability density

function that is placed over each observation to quantify the likelihood of a small region

around each observation containing x. Thus, the estimated density is the weighted

summation of contributions that each observation makes to the distribution.

5.1.1 Traditional Kernel Density Estimation

By definition, any kernel function K(u) : R 7→ R≥0 must be symmetric, i.e. ∀u∈R :

K(−u) = K(u), and satisfy the following condition:

∫ ∞

−∞
K(u)du = 1. (5.1.1)

Given a set of observations {X1, . . . ,XN}, ∀Xi ∈ Rd, the estimated probability density

function p(x), x ∈ Rd is as follows:

p(x) =
1

Nhd

N∑

i=1

K

(
Xi − x
h

)
, (5.1.2)

where h is a parameter used to define the width of each kernel. This parameter is

often referred to as bandwidth. For instance, a commonly used Gaussian kernel has the

following density function:

38

p(x) =
1

N

N∑

i=1

1

hd
√

(2π)d
exp

(
−1

2

(Xi − x)T (Xi − x)

h2

)
. (5.1.3)

In general cases, the bandwidth parameter can be represented by a vector h = [h1, h2, . . . , hd]

of d dimensions, in which each element individually represents the bandwidth parameter

of each dimension. Thus, the density estimation function in Eq.(5.1.3) can be generalized

as follows:

p(x) =
1

N

N∑

i=1

1
∏d
j=1 hj

√
(2π)d

exp

(
−1

2

(
Xi − x
h

)T (Xi − x
h

))
. (5.1.4)

5.1.2 Problem of KDE with online data

Kernel density estimation is a costly operation. The computation in Eq.(5.1.2) involves

N iterations over all observations. Thus, a simple looping density estimation of M query

points has a time complexity of O(MN) or O(N2), where M ≈ N . Although state-of-

the-art dual-tree based KDE [24], which is known to be the fastest and most accurate

algorithm, can scale the computation to O(N), it requires O(N logN) time for con-

struction (building tree structures). However, the dual-tree approach was not designed

as an incremental algorithm. Namely, it is inefficient in an online setting, where the

tree-based data structure requires reconstruction every time a new observation becomes

available. So are the recently proposed distributed and parallel KDE [81] that was de-

signed specially for very large datasets. The distributed KDE employed sub-sampling

techniques to reduce size of KDE model and speedup the density estimation. However,

the algorithm proposed in [81] was not designed to be incremental, namely a new data

point cannot be directly inserted to the built model without rebuilding the entire model.

Because each update takes O(N), the sub-sampling KDE was obviously more suitable

for batch processing than online processing, where N could grow unboundedly.

Reducing the number of computations required to compute a point estimate of the

density has been a main interest in optimizing KDE. A number of improvements have

been considered to reduce the number of kernel components. For example, a straight-

forward binning method has been introduced in [61, 30], where the density is estimated

from a sum of densities estimated from each bin weighted by the number of samples

placed in each bin. In [64], a method that estimates the density with the convolution

theorem using Fourier transformation, in which binning of data is also required, has

been proposed. However, this requires the bin size for each dimension to be specified;

39

therefore, such approaches quickly become inefficient for high-dimensional multivariate

data streams.

As an alternative to binning, in [1, 32, 38, 37, 79, 77], samples were clustered and

reduced by replacing them with cluster centroids. The main problem with the cluster-

based approaches is the computational burden of the optimization required for data

partitioning and the solution’s dependency on the initial condition. In addition, cluster-

based methods, including a self organizing map-based KDE [12], often update their

models with a small batch of buffered data (often a few hundreds). Hence, the models

are not truly up-to-dated to each new sample, because they have to wait until the

buffers get filled so that the models can call clustering procedure to update their density

estimators with the new samples.

Some methods have been adapted to handle streaming data by reducing the data

condensation overhead so that the model can keep pace with the input stream. The M-

kernel merging technique [82] is an online density estimator that can handle a univariate

data stream by limiting the number of kernel components and substituting redundant

components with a representative component (kernel merging). The model invokes a

merging routine whenever its buffer is full. Then, downhill simplex optimization is em-

ployed to find the best way to replace two components with a representative component

that would minimize the merging cost, which is the absolute error (L1-norm) between

the estimation and the underlying density. Since its kernel merging strategy is based on

numerical optimization, the time that the algorithm requires to update the model to a

new sample can be high. As a solution, Heinz [28] has introduced an M-kernel based

online KDE with a constant time pairwise merging technique to solve the problem of

high update cost of the M-kernel algorithm. However, the M-kernel and other M-kernel-

based approaches [28, 29, 6] cannot be generalized to support multivariate data streams

without losing speed because the algorithms rely on sortedness which is more compli-

cated to achieved for multivariate data. The lack of total ordering in multidimensional

data forces the algorithms to use nearest neighbors search, which would incur additional

computational complexity [29].

5.1.3 Idea of the proposed method

In this work, we addressed the problem of finding an optimal merging pair from a

different perspective. Rather than optimizing for the optimal merging components pair

40

0 20 40 60 80 100

distance between two merge components (d)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
m

e
rg

e
 c

o
st

 (
L

1
-n

o
rm

)

(a) Distance and merging cost

10 20 30 40 50 60 70 80 90 100

τ

0.0

0.2

0.4

0.6

0.8

1.0

p
(d
i
<
d
j|L

1i
<
L

1j
,d
j
τ)

(b) Probability of finding a pair of Gaussians i
having smaller distance than the other j given
that merging pair i would cost less than pair j
and merging only occurs when the distance is less
than the distance threshold τ

Figure 5.1: Relationship between distance and merging cost

that is expected to minimize the overall merging cost, we skip such optimization and

search for the best merging pair by their distance to reduce the time required to process

each new sample. In particular, a newly arriving component will be merged with the

nearest kernel component only if the nearest kernel exists within a specified distance

threshold τ . Otherwise, the new component will be inserted into the model without

merging. The parameter τ is used to limit the scope for neighbor search and can be

used to control the compression ratio. Additionally, validity of the M-kernel based

approaches is limited to one-dimensional data only. Generalization of the M-kernel to

higher dimensional data would impact the compression overhead. In other words, the

time required for the query of the optimal merging pair would be quadratic in stead of

linear to the buffer size. On the contrary, the time required by our approach to search

for the nearest component is always linear.

A simulation wherein 1,000 pairs of 2D multivariate Gaussian components in which

different weights, widths and centres were randomly assigned shows a result that sup-

ports our approach. The result shown in Figure 5.1(a) indicates a clear relationship

between the resulting merging cost and the distance between the two merging compo-

nents; smaller distances, to some extent, tend to give smaller errors. Note that when

the distances are greater than 10, this presumption is less likely to be true. Thus, we

introduce a distance threshold parameter τ that limits the greatest distance allowed for

merging to avoid the high probability of merging non-cost-optimized pairs at greater

41

distances. Furthermore, the necessity of τ is made clear in Figure 5.1(b). Given two ar-

bitrary pairs of Gaussians i and j, the probability of finding a pair of Gaussians i having

smaller distance than j’s distance, given that merging pair i costs less than pair j and

the merging only happens when the distance is less than the threshold τ , is a function

of the distance threshold τ . The plot shows that the probabilities are high when the

limits of the distance between two components allowed for merging are small. Namely,

employing a smaller distance threshold τ yields a higher chance of finding optimal pairs

on the basis of the shortest distance. However, note that it is difficult to find nearby

neighbour kernels to merge with when the search radius (distance threshold τ) is small,

which results in a less compressed model. Thus, the trade-off between the additional

error caused by merging non-optimal pairs and the compactness of the resulting model

can be managed by the τ parameter.

5.2 Proposed online kernel density estimation

5.2.1 Kernel compression algorithm

In an online setting, where observations are made sequentially and data samples arrive in

order, the compression algorithm is required to process and compress new samples faster

than the rate of the input stream so that the model is always updated and ready for

the density estimation at any time. The process for handling new observation (training)

stream is illustrated by a flowchart in Figure 5.2. Start off with an empty model G,

as a new data sample xi arrives, a Gaussian kernel is assigned with xi as the centre

with a predefined diagonal covariance matrix Σ. Note that Σ = diag(h2), where h2 =

[h2
1, h

2
2, . . . , h

2
d]. Each new component is weighted uniformly with a weight coefficient

w of 1. The algorithm then looks for an opportunity to merge this new component

with an existing component in the mixture model in order to maintain the number

of components. The algorithm performs a search for the most proper component to

merge the new sample with in order to minimize compression error. Search for the

proper component is done by a nearest neighbour search that considers the Mahalanobis

distance between two components. In other words, it attempts to find a Gaussian

component ĝ in a set of Gaussian mixture models G that minimizes the Mahalanobis

distance Dĝ(xi) as follows:

ĝ = argmin
gj∈G

Dgj (xi), (5.2.1)

42

Start

Initialize G = ∅

Is stream open?

Get new sample: xi

AddSample(xi)

End

Yes

No

Figure 5.2: Training data stream handler

1: function AddSample(xi)
2: g′ ← N (1,xi,Σ)
3: if G is empty then
4: G.insert(g′)
5: else
6: ĝ ← argmingj∈GDgj (xi)
7: if Dĝ(xi) ≤ distance threshold

then
8: G.remove(ĝ)
9: g′′ ←Merge(g′, ĝ)

10: G.insert(g′′)
11: else
12: G.insert(g′)
13: end if
14: end if
15: end function

Algorithm 5.1: Adding new sample

where

gj = N (wj ,µj ,Σj) (5.2.2)

and

Dgj (xi) =
√

(xi − µj)TΣ−1
j (xi − µj). (5.2.3)

The Mahalanobis distance Dĝ is then used to determine whether the newly arrived

data sample should be merged to the nearest component. Only the nearest component

with a specified distance threshold is merged. Otherwise, a new Gaussian kernel is

assigned where the new data sample is with a predefined covariance matrix Σ, thereby

resulting in a new component. The outline of the algorithm for adding a new sample is

given in Algorithm 5.1. We further discuss how the kernel merging routine (line 9) is

handled in the next subsection.

5.2.2 Gaussian kernel merging

Goal of kernel merging is to substitute a mixture of two Gaussian components with a

single Gaussian component that approximates the mixture best. The M-kernel merg-

ing [82], an alternative solution for Gaussian kernel merging that we have introduced in

Section 5.1, approximated mean and bandwidth of the merged component using down-

hill simplex optimization method on the function of accuracy lost in the kernel merging.

However, the optimization becomes less efficient when applying the M-kernel technique

to higher dimensional data. Therefore, rather than optimizing for the mean vector and

43

the covariance matrix that would minimize the accuracy lost from kernel merging, we

opt for the moment-preserving merge, which the approximation can be done in almost

constant time (O(1)) given that the number of dimensions are small.

Full covariance match

A mixture of two Gaussian components N (w1,µ1,Σ1) and N (w2,µ2,Σ2) can be ap-

proximated by a single representative Gaussian component by matching the zeroth, first,

and second moments to the mixture. Namely, weight w, mean vector µ and covariance

matrix Σ of the resulting component N (w,µ,Σ) can be approximated by the moment

matching method as follow.

w = w1 + w2. (5.2.4)

µ = w−1(w1µ1 + w2µ2). (5.2.5)

Σ = w−1
(
w1(Σ1 + (µ1 − µ)(µ1 − µ)T) + w2(Σ2 + (µ2 − µ)(µ2 − µ)T)

)

= w−1
(
w1Σ1 + w2Σ2 + w1µ1µ

T
1 + w2µ2µ

T
2

)
− µµT

= w−1
2∑

i=1

wi(Σi + µiµ
T
i)− µµT . (5.2.6)

Although the moment-preserving merge described above was proven to give a merged

component that has a minimal Kullback-Leiber discrimination from the mixture (see

Theorem 3.2 in [54]), the resulting covariance matrix is not always diagonal in which

many computational optimizations can take advantage of its mathematical properties

(see Section 5.2.3 for further details). Therefore, we propose another kernel merging

method for Gaussian components called the Bandwidth match, wherein the merge hap-

pens on the bandwidth vector of a Gaussian kernel and the merged covariance matrix is

reconstructed from the merged bandwidth. To put it differently, the merge only consid-

ers diagonal elements of the covariance matrices. Hence, the resulting covariance matrix

is guaranteed to be a diagonal matrix.

Bandwidth match

Suppose we are given a d-dimensional Gaussian kernel with the bandwidth h = [h1, h2, . . . , hd].

By definition, the corresponding d× d covariance matrix Σ of the Gaussian kernel can

44

be constructed as follows.

Σ ≡




h2
1 0 . . . 0

0 h2
2 . . . 0

...
...

. . .
...

0 0 . . . h2
d



. (5.2.7)

In other words,

Σ ≡ diag([h2
1, h

2
2, . . . , h

2
d])

= diag(h2). (5.2.8)

Referring to the moment-preserving merge, we modified Eq.(5.2.6) to only match diag-

onal elements of the covariance matrix, ignoring all other elements as follow.

h2 = w−1
(
w1(h2

1 + (µ1 − µ)2) + w2(h2
2 + (µ2 − µ)2)

)

= w−1
(
w1h

2
1 + w2h

2
2 + w1µ

2
1 + w2µ

2
2

)
− µ2

= w−1
2∑

i=1

wi(h
2
i + µ2

i)− µ2. (5.2.9)

If needed, the resulting bandwidth h2 can also always be used to reconstruct a

diagonal covariance matrix Σ using Eq.(5.2.8).

It is worth noting that, in contrast to the full covariance match, the proposed band-

width match method does not require matrix multiplication, which takes Θ(d2) to com-

pute for each merge. Instead, h2 only requires Θ(d) time complexity to compute. Hence

, kernel merging of high-dimensional data could perform significantly faster with the

bandwidth match method. Kernel merging can be done even faster without the second-

moment matching. In the next merging method, we proposed an experimental idea of

keeping the bandwidth parameter constant through out the entire stream.

Differences among the two merging methods for one-dimensional (1D) and two-

dimensional (2D) kernels are visualized in Figure 5.3.

45

(a) before (b) full covariance (c) bandwidth

(d) before (e) full covariance (f) bandwidth

Figure 5.3: Kernel merging methods

5.2.3 Efficient Density Evaluation

Suppose we are given a mixture of Gaussian components, probability density function

of the mixture containing C components can be expressed as follows:

p(x) =

C∑

i=1

wiφi(x), (5.2.10)

where

φi(x) =
1√

(2π)d|Σi|
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)
. (5.2.11)

An interesting characteristic of the bandwidth match merging method is the covariance

matrices of all components remain diagonal after compression. Therefore, we can rewrite

Eq.(5.2.11) to

φi(x) =
1√

(2π)d
∏d
j=1 h

2
i,j

exp


−1

2

d∑

j=1

(xj − µi,j)2

h2
i,j


 , (5.2.12)

where we can set a cut-off threshold to skip the density evaluation of certain components

µi when they are too distant, which assumes that the evaluating point x is less likely to

be drawn from such distributions. Thus, the very low density contributions from distant

components are omitted to obtain a computational speedup. The cut-off optimization

46

is implemented while looping the sum through d dimensions in the exponent part of

Eq.(5.2.12). That is, if the normalized sum of the squared distance at any point reaches

the threshold, then the evaluation of φi(x) is stopped, the result of φi(x) is dismissed

and the procedure moves on to the next component φi+1(x). Note that the cut-off can

occur earlier if the dimensions are sorted such that dimensions with higher variance are

considered first. This optimization significantly reduces evaluation time, particularly for

high-dimensional data.

5.3 Simulations and applications to experimental data

To gain a better understanding of how neural ensembles communicate and process in-

formation, neural decoding algorithms are used to extract information encoded in their

spiking activity. Bayesian decoding is one of the most used neural population decoding

approaches to extract information from the ensemble spiking activity of rat hippocam-

pal neurons. Recently it has been shown how Bayesian decoding can be implemented

without the intermediate step of sorting spike waveforms into groups of single units.

Here we extend the approach in order to make it suitable for online encoding/decoding

scenarios that require real-time decoding such as brain-machine interfaces. We propose

an online algorithm for fast Bayesian decoding that reduces the time required for de-

coding neural populations, resulting in a real-time capable decoding framework. More

specifically, we improve the speed of the probability density estimation step, which is the

most essential and the most expensive computation of the spike-sorting-less decoding

process, by developing a kernel compression algorithm. In contrary to existing online

kernel compression techniques, rather than optimizing for the minimum estimation error

caused by kernels compression, the proposed method compresses kernels on the basis of

the distance between the merging component and its most similar neighbor. Thus, with-

out costly optimization, the proposed method has very low compression latency with a

small and manageable estimation error. In addition, the proposed bandwidth matching

method for Gaussian kernels merging has an interesting mathematical property whereby

optimization in the estimation of the probability density function can be performed effi-

ciently, resulting in a faster decoding speed. We successfully applied the proposed kernel

compression algorithm to the Bayesian decoding framework to reconstruct positions of

a freely moving rat from hippocampal unsorted spikes, with significant improvements in

the decoding speed and acceptable decoding error.

47

Neural encoders and decoders are commonly used by neuroscientists to study the

relation between behavioural stimulus and neural responses. Statistical inferences have

played an important role in many encoding/decoding frameworks, e.g. [10, 80, 49, 71,

73, 52]. Generally, the encoding model captures necessary properties from the recorded

neural activities and construct a model that maps to the observed behaviours or stimuli.

The decoding model then employs the constructed relation to infer behaviours or stimuli

based on the observed neural activity. For example, neural signals recorded from the

action potentials (spikes) of pyramidal neurons in the CA1 region of the hippocampus

contain information that is correlated to spatial behaviours of an animal [48]. These

cells are also known as place cells because spiking activities of certain place cells become

more active when an animal is in a certain location [11]. In other words, the temporal

patterns of spikes from different place cells are spatially tuned to different locations.

Most of existing neural encoders/decoders require sorted spikes to operate [4, 9, 10,

21, 20, 44, 57, 58, 62, 72, 76, 80] (see [8] for a review). That is spiking activity of each

single neuron has to be isolated from others and separated from background electrical

noise before being handed over to the encoding/decoding model. This prerequisite step

is called “spike sorting”. Many works have been contributed to the developing of fast

and reliable spike sorting algorithms [41]. However, a study has shown that classification

errors of assigning spikes to incorrect unit have various impact to information capacity

of the resulting sorted spikes [23]. In addition, objective of spike sorting to isolate and

identify the cell that originated each spike is rather different from the goal of neural

decoding which is to minimize the decoding error. Unclassified spikes during the sorting

in attempt to minimize sorting errors could still convey information that is necessary to

the encoder/decoder.

To avoid the possibility of information loss and accumulation of errors from spike

sorting, Bayesian encoding/decoding framework proposed in [35] has introduced a method

to create a direct mapping between spike waveform features and the covariates of in-

terest without a prerequisite step of spike sorting. The name “Bayesian” comes from

the adoption of a statistical inference that utilizes Bayes’ theorem. More specifically,

the decoding is obtained by the maximum posterior probability in Eq.(5.3.1), where the

covariates are spatial behaviors of the animal, e.g. positions or head directions.

48

Encoding

Neural Data
(Training data)

(A) Spike Detection

time

sp
ik

e
w

av
ef

or
m

s

(B) Feature Extraction

time

sp
ik

e
fe

a
tu

re
s

(s
)

(C) Image Processing/Position Extraction

p
o
si

ti
on

s
(x

)

time

(D) Model

p(s, x)

π(x)

Decoding

Neural Data
(Test data)

(a) Spike Detection (b) Feature Extraction

(e) Density Estimation

p(s′, x′)

p(x′)

π(x′)

∆tsp
ik

e
fe

at
u

re
s

(s
′) decoding bin

(f) Maximum a Posteriori Estimation

p(s′|x′) = ∆tn [
∏n
i=1 λ(s′i, x

′)] e−∆tλ(x′)

x̂ = argmaxx′p(s′|x′)p(x′)

p(x′0 |s′)
p(x′1 |s′)
p(x′2 |s′)
p(x′3 |s′)
p(x′4 |s′)
p(x′5 |s′)
p(x′6 |s′)
p(x′7 |s′)
p(x′8 |s′)

decoding bin

es
ti

m
a
te

d
p

o
si

ti
o
n

s
(x̂

)

Figure 5.4: Bayesian decoding using unsorted spikes in the rat hippocampus

p(covariates|spikes) = p(x|s) =
p(s|x)p(x)

p(s)

∝ p(s|x)p(x) (5.3.1)

Outline of the Bayesian encoding/decoding framework [35] is illustrated in Figure 5.4.

The first stage (A) detects and extracts spike waveforms from extracellularly recorded

multiunit activity from CA1 region of a free moving rat. Next (B), waveform features,

such as amplitudes, are extracted. At the same time (C), positions of the animal is

tracked using a video camera and forwarded together with the waveform features to the

next stage (D), where the probability models p(s, x) and π(x) are modeled.

During the decoding phase (e), a sequence of spikes is partitioned into bins. For

each decoding bin, the posterior probability is computed and the behaviour is decoded.

The likelihood p(s|x) of the stimulus x given a set of spike features s models the re-

lation between spiking patterns (modulation of spike amplitudes and firing rates) and

49

behaviours by assuming spatiotemporal Poisson statistics as follows:

p(s|x) = ∆tn

[
n∏

i=1

λ(si, x)

]
e−∆tλ(x), (5.3.2)

where the decoding bin containing n spikes has a size of ∆t time interval. Rate parameter

λ(si, x) which is the fraction of the occurrences of certain spike features si coinciding

with certain stimulus x divided by the total time stimulus x (occupancy(x)) is presented

as follows:

λ(si, x) =
spikecount(si, x)

occupancy(x)
=
N

T

p(si, x)

π(x)
= µ

p(si, x)

π(x)
, (5.3.3)

where N is the total number of spikes and T is the total time from all the decoding

bins. p(si, x) is the joint probability distribution of finding spike features si that occur

simultaneously when the animal experiences stimulus x. The probability distribution

π(x) is the probability of finding the animal experiencing stimulus x. Similarly,

λ(x) =
spikecount(x)

occupancy(x)
=
N

T

p(x)

π(x)
= µ

p(x)

π(x)
, (5.3.4)

with the exception that spikecount(x) counts all the spikes that occur during the expe-

rience of stimulus x regardless of the spike features.

The most time consuming step is the computation of the probability densities p(si, x),

p(x) and π(x), which can be estimated using kernel density estimation (KDE). However,

time complexity of KDE is approximately quadratic, which is extremely expensive, often

requires excessive time and impractical for applications such as our goal of developing

real-time Bayesian decoding framework. Moreover, tradition KDE does not scale well

to the unbounded streams of data, which is the nature of all real-time applications.

Thus we implemented the proposed kernel compression algorithm into the encoder/decoder

to speedup the density estimation task in order to achieve real-time decoding. The

proposed method achieves faster density estimation by replacing redundant kernel com-

ponents with mixtures of merged components, resulting in a reduced number of kernel

components; thus, the density evaluation time is reduced.

We have separated the experiments into three parts to cover (1) the trade-off between

speed and accuracy, (2) performance evaluation on high-dimensional data streams and

(3) performance evaluation on the real-time decoding of the rat hippocampus.

50

0 2000 4000 6000 8000 10000

nth sample

100

101

102

103

104

#
 c

o
m

p
o
n
e
n
ts

w/o compression τ=1 τ=2 τ=3

(a) number of components after adding the nth

sample

(b) time required to compress each new sample

1 2 3 4 5 6 7 8 9 10

distance threshold (τ)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

m
e
a
n
 r

e
la

ti
v
e
 e

rr
o
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

to
ta

l
e
st

im
a
ti

o
n
 t

im
e
 (

se
co

n
d
)

mean relative error (bandwidth)

mean relative error (full)

total estimation time (bandwidth)

total estimation time (full)

(c) time required to compress each new sample

Figure 5.5: Performance of the kernel compression algorithm on the data stream of spike
features from rat hippocampus

5.3.1 Trade-off between speed and accuracy

We tested the proposed kernel compression algorithm using data stream of neural and

behavioral recoding of a free moving rat in the experiment environment described in

the introduction. Each sample of the spike features stream contains 4 values (from 4

separated electrode in a tetrode), and the data stream of the animal positions contains

2 values (xy-coordinates). To give an overview image of how the distance threshold

τ has an effect to the compression, we streamed the first 10,000 samples from the 4-

dimensional data stream of spike features to the proposed compression algorithm. As

displayed in Figure 5.5(a), the larger the distance threshold τ , the more the number

of KDE components were reduced. As a result, the time required to handle each new

sample was also reduced greatly, as shown in Figure 5.5(b). After the compression, we

compared the estimation accuracy and the estimation speed of the compressed model

51

with tradition KDE model which was built from the same set of dataset. The densities

estimated from the traditional KDE (without compression) were used as a ground truth.

The accuracy of the compressed model was evaluated by the average of relative errors

which is defined as follows:

relative errori =
dcompressedi − dKDEi

dKDEi

=
dcompressedi

dKDEi

− 1, (5.3.5)

where dcompressedi is the density at the evaluation point i estimated from the compressed

KDE and dKDEi is the true density at i estimated from the uncompressed KDE. The

averaged errors were computed from the density estimations of other 10,000 data points

drawn from the spike features stream. Accuracy and speed of the density estimation

of the proposed method with two different kernel merging methods are shown in Fig-

ure 5.5(c). From the result, as we increased the distance threshold parameter τ , the

times required to estimate all 10,000 evaluation points were reduced quickly. At the

same time, the accuracy loss from kernels merging started to increase as we raised τ

higher until the errors were almost stable when τ were high enough to merge every new

sample, resulting in a compressed KDE with only one component. In addition, from

the result we can observe that it was a very good trade-off between speed and accuracy.

From the experiment, traditional KDE took 2.5 seconds to finish density estimations

of 10,000 evaluation points. At τ = 2, the proposed methods only took 0.15 second to

finish the same task. That is we speeded up the density estimation by almost 17 folds,

whereas the average estimation errors were raised only by 15% from the full covariance

match and bandwidth match methods.

5.3.2 Performance evaluation on high-dimensional data streams

To emphasize on the advantages of the proposed bandwidth match method over other

kernel compression techniques on high dimensional data streams, we compared com-

pression speeds of the proposed methods and the cluster-based Online Discriminative

Kernel Density Estimator with Gaussian kernels [37] on a synthesized dataset of high

dimensional data streams of 1,000 uniformly random numbers. In this simulation, all

compression algorithms were set to compress 1,000 original samples to about 500 sam-

ples (50% compression ratio). For the cluster-based online KDE, an existing cluster

is updated every time 100 new sample is added (buffer size = 100). Visualization in

Figure 5.6(a) and Figure 5.6(b) clearly shows that our kernel merging approaches out-

52

1 2 3 4 5 6 7 8 9 10
number of dimensions

10-2

10-1

100

101

102

co
m

p
re

ss
io

n
 t

im
e
 (

5
0
%

 c
o
m

p
re

ss
io

n
 r

a
ti

o
)

cluster full bandwidth

(a) the average time required to compress each
high-dimensional sample

1 2 3 4 5 6 7 8 9 10
number of dimensions

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

m
e
a
n
 r

e
la

ti
v
e
 e

rr
o
r

(5
0
\%

 c
o
m

re
ss

io
n
 r

a
ti

o
)

cluster full bandwidth

(b) the average time required to compress each
high-dimensional sample, focusing on the cluster-
based approach [38] and the proposed kernel
compression with full covariance match

Figure 5.6: Performance comparison on high dimensional data streams

performed the cluster-based online KDE in both speed and accuracy tests. From the

result, it is apparent that the number of dimensions has significant impact on the per-

formance of the cluster-based approach, while our choices of kernel merging techniques

suffered less from high dimensionality, especially for the proposed bandwidth matching

method.

5.3.3 Performance evaluation on the real-time decoding of the rat hip-

pocampus

In this final experiment, we integrated the proposed kernel compression algorithm into

the Bayesian decoding framework [35]. The dataset that will be used in this experi-

ment was prerecorded from the experiment similar to the setup illustrated in Figure 5.4.

Spiking activity from the hippocampus was recorded using 9 tetrodes1. Positions of the

animal in xy-coordinates were tracked using a video camera. To simulate real-time en-

coding/decoding environment, we set a non-overlapping sliding window to read in small

batches from data streams of both spike features and the animal’s positions at a time.

Size of the sliding window was set to 250 milliseconds, which is the recommended bin

size of for decoding unsorted spikes of rat hippocampus [35]. Real-time decoding frame-

work implemented in this experiment was designed to alternate between the decoding

and encoding steps. Referring to a block diagram presented in Figure 5.7, when the

1Tetrode is a bundle of 4 electrodes

53

(a) Read spike features si from current sliding window i

(b) Decode

Estimate p(si,x
′), p(x′), and π(x′); ∀x′ ∈ set of candidate positions

Maximum a posteriori estimation

(c) Read positions xi from current sliding window i

(d) Update encoding model

Add new samples and compress p(si,xi) and π(xi)

(e) Move current window 250 ms forward; ++i

Figure 5.7: Block diagram of the experimental real-time encoding/decoding framework

sliding window moves on to the next batch of the streams (a), the decoding step (b)

is invoked first to decode information from the newly observed neural signals then the

encoding step (d) joins to update the encoding model with the newly observed data.

The the sliding window is proceeded (e) to process next batch of data from the streams.

Accuracy of the decoding is evaluated by the euclidean distance between the observed

position and the position estimated from neural data. To find the right amount of

compression that would speed up the encoding/decoding to real-time and would not

incur much accuracy loss, we varied the merging distance threshold (τ) to find the right

parameters for each kernel merging methods. Because the number of spikes in the sliding

window may vary from time to time, the amount of time required to process each window

can also vary. We measured the max amount of time required to decode and encode each

window and visualized the longest time needed by each algorithm as a function of τ . The

results are shown in Figure 5.8(a). For the encoding/decoding framework to be able to

process data streams in real-time, the time required to process each batch of neural and

behavioral data in a sliding window has to be shorter than the streaming rate, which

is 250 millisecond per batch. According to the results displayed in Figure 5.8(a), the

encoding/decoding model that implements full covariance matrix match would need to

set the distance threshold above 2.8, whereas the proposed bandwidth match can afford

to have lower distance threshold τ , which resulted in lower decoding errors as shown

in Figure 5.8(b). Despite the fact that the bandwidth matching method only matches

diagonal elements of the covariance matrix and discard the rest, we can expected the

54

1.5 2.0 2.5 3.0 3.5 4.0
distance threshold(τ)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
a
x
 e

n
co

d
in

g
 +

 d
e
co

d
in

g
 t

im
e
 p

e
r

b
in

 (
s)

250ms

bandwidth match full cov. match

(a) Relation between the amount of time required to
decode and encode each window and the merging dis-
tance threshold (τ)

1.5 2.0 2.5 3.0 3.5 4.0

distance threshold(τ)

8

9

10

11

12

13

14

15

m
e
d
ia

n
 e

rr
o
r

(c
m

)

Baseline error from KDE w/o compression

bandwidth match full cov. match

(b) Relation between the decoding error (cm) and the
merging distance threshold (τ)

Figure 5.8: Performance comparison between the full covariance match and the proposed
bandwidth match kernel merging approaches

bandwidth matching method to produce more error. Interestingly, it was as accurate as

its competition until τ = 2.0, yet always faster.

ext, we set the distance threshold τ = 3.0 for both of the kernel merging methods.

Results in Figure 5.9(a) show progressions of the time required to process each window

as the encoding models processed more data points over time. It can be seen that the

performance in terms of speed was steady. Namely, the model can scale to large data

stream efficiently. Decoding accuracy from both kernel compression methods visualized

by the moving median of the decoding errors (cm) are shown in Figure 5.9(b). From the

result, it can be seen that the decoding errors decreased quickly and became stable when

both decoders had sufficient training data for the decoding at about the 500th bin. The

decoding model that was equipped with the full covariance matrix matching methods

obtained the median decoding error of 11.03 cm, compared to a slightly larger median

error of 11.21 cm from the bandwidth matching method. However, the bandwidth

matching method was much faster and truly capable of real-time decoding. In contrast

to the full covariance match, the decoding model could not process all bins within the

time limit of 250 milliseconds per encoding/decoding bin.

In summary, we were able to speedup the Bayesian encoding/decoding framework

by at least 300 times, which is fast enough to run the encoder/decoder on real-time

55

0 1000 2000 3000 4000

nthbin

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

e
n
co

d
in

g
 +

 d
e
co

d
in

g
 t

im
e
 p

e
r

b
in

 (
se

co
n
d
)

bandwidth match full cov. match

(a) Progression of the encoding/decoding speed over time

0 1000 2000 3000 4000

nthbin

0

20

40

60

80

100

120

d
e
co

d
in

g
 e

rr
o
r

(c
m

)

8.8 cm

moving median of the decoding error (bandwidth) moving median of the decoding error (full)

(b) Decoding accuracy of the decoder that implements full covariance matching method in details

Figure 5.9: Performance comparison between the full covariance match and the proposed
bandwidth match kernel merging approaches on the decoding of rat positions from
unsorted spikes

data. The decoding accuracy loss from kernel compressions were relatively small and

still manageable.

Notes on the developing and testing environment

All the core algorithms that were used for the experiments in this paper were imple-

mented in C programming language. The codes for all experiments and performance

evaluations were written in Python. The computing server used in all experiments runs

on Intel Xeon 12-Core 2.7 GHz × 2 CPUs.

5.4 Conclusions

In this work, we have improved the decoding speed of the Bayesian framework for

encoding and decoding of unsorted spikes from the rat hippocampus. Real challenges

of this work were to design a kernel compression algorithm that could enable KDE to

handle high-dimensional data streamed at high speed efficiently. Thus we proposed a

fast kernel compression technique that not only can reduce size of a density estimator

56

with very low accuracy loss, but also works well with high-dimensional data. More

specifically, the proposed bandwidth match for kernel compression has been shown by

the experiments presented in this paper to be very efficient especially when compressing

high-dimensional data. Results from the real-time neural decoding experiment also

confirmed the potentials of the bandwidth matching method.

57

Chapter 6

Conclusions

6.1 Summary of Contributions

In this research, we advanced the techniques in human mobility modeling and prediction

that are practical to implemented in real-world applications without privacy issues and

provide highly accurate result.

Starting with a careful choice of human mobility sensing and tracking method that

less obtrudes the users compared to other methods, such human tracking using cameras

and GPS tracking devices. In this research, we used ambient simple sensors, such as IR

proximity sensors, light sensors, and magnetic sensors, that can be installed easily and

can blend-in very well to the environment. Although, it can be expected that the data

that these simple sensors collect are very noisy and seem inappropriate to use them to

train a machine learning model directly without any careful preprocessing.

In Chapter 3, not only we discussed how human mobility can be model efficiently for

different prediction tasks (short-term and long-term prediction), but we also analyzed to

find theoretical limits of the predictability of the collected human mobility data and the

factors that affected most to the predictability of the data. The results have confirmed

that even though the simple sensors’ human mobility data were very noisy, sufficient

information can be extracted and can be used to train a classification model to give

acceptably high accuracy for both short-term and long-term predictions

Next, we proposed the Aperiodic and Periodic models for long-term human mobility

prediction that can accurately predict visitations of the uses at any locations of interest

for days ahead of time with acceptably high accuracy compared to an exiting model

that is based on nonlinear component analysis [60]. The proposed predictor aims at

modeling repetitive patterns of users’ visitations using both periodic model (constant

58

time interval) and aperiodic model (days with similar visitations patten are discovered

using a clustering technique). With the proposed method, we could achieved stable F1

score of 55% from predicting future visitations at 30 locations of interest for 30 days

ahead.

In addition, we also proposed a new design for short-term human mobility predictor

that can improve the prediction accuracy from about 96% of F1 score from a tree-based

model to 98% of F1 score with the proposed technique that implements nearest neighbors

classification to incorporate transition times between each step into the model.

Finally, the study was focused on the improvement of the kernel density estimation

technique, which is useful in many probabilistic machine learning model and statistical

applications. One specific application that we are addressing in this work is to have a

KDE technique that can handle multi-dimensional data stream efficiently and accurately

enough to encode/decode neural signals from a moving rat. Therefore, we designed

and proposed a fast kernel compression technique that can efficiently compress and

remove redundancy in the samples and results in a more compact representation of

the distribution than tradition KDE, which cannot be scaled to efficiently to streaming

data. The proposed techniques successfully enable real-time encoding/decoding of rat

hippocampal spikes with moderately (and controllable) accuracy trade-off.

In summary, we addressed a variety of technical problems that are related to mobility

study, from human mobility tracking, modeling and prediction to a tool for neuroscien-

tists to study how the brain performs navigational tasks. Not only location-based smart

home applications and real-time brain machine interface will benefit from the analyses

and predictive techniques proposed in this work, but also more general applications,

such as human social study and link prediction [74] and real-time population density

visualization, also can be built based on the techniques presented in this research.

6.2 Recommendation for Future Works

Although, we have shown that a collection of simple motion detection sensors can be

used to track mobilities from multiple participants in an indoor environment effectively.

The collected mobility data contain sufficient information to train a machine learning

model to predict next steps of a traveling user (short-term) or future visitations at any

location of interest at any point in time in the future (long-term). Another question yet

to be studied further afterwards is the predictability analysis and predictive accuracy

59

evaluation that factor in size of the environment, number of sensors, placements and

distribution of the sensors, and the number of participants.

Additionally, there are recent studies that have been trying to investigate the cor-

relations between social relationships and human dynamics. The studies [13, 74] have

discovered that there are correlations between individuals’ movements and social inter-

actions (e.g. phone calls, messages). Moreover, Cho et al. [13] have also succeeded in

improving prediction performance by integrating social contexts with mobility model.

Whereas Wang et al. [74] have utilized the similarity between two individuals’ move-

ments to foresee their future interactions.

From here, we have seen that more aspects of human dynamics have helped re-

searchers constructed human mobility models that employ broader understanding of

human mobility. Ensemble methods, such as stacked generalization [75], can be imple-

mented combine predictions from different machine learning models that are trained to

predict human mobility from different aspects. Stacked generalization technique has

been successfully used to improve prediction accuracy in many classification tasks [63,

3, 33]. The intuition behind stacked generalization is straightforward. Base models that

are trained from different aspects of human mobility can be seen as different feature

extractors, thus stacking is basically having another layer of classification model learn

from these features to improve their accuracy.

In addition to the proposed fast kernel compression for online KDE, even thought the

proposed kernel compression algorithm has an advantage over the some existing online

KDE algorithms, such as the M-kernel merging algorithm [82], and most of cluster-

based approaches [1, 32, 38, 37, 79] when dealing with multi-dimensional data streams,

the proposed methods has not taken into account the situation where data stream is

not stationary. Evolving density is a common problem that can impact performance of

our kernel compression algorithms in many ways. Firstly, kernel merging would be less

likely to occur, size of the model could expand uncontrollably if the distribution keeps

drifting away its over time with out repeating the same spot. Secondly, the fixed distance

threshold parameter (τ) might get outdated when the underlying distribution expanded

or condensed as the distribution evolved. The first problem can be handled easily using

decaying weights similarly to [28, 29], in which old components would weighted less

and can be removed after certain period of time. The more challenging problem is the

second problem. Detecting changes [34, 40, 56] and adapting KDE model to changes in

60

streaming data are another challenging topics that could significantly improve accuracy

of the density estimation of non-stationary data streams, which will be our next main

focus in future works.

61

Bibliography

[1] Gregory A Babich and Octavia I Camps. Weighted parzen windows for pattern

classification. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

18(5):567–570, 1996.

[2] M.H. Baeg, Jae-Han Park, Jaehan Koh, Kyung-Wook Park, and Moon-Hong Baeg.

Building a smart home environment for service robots based on RFID and sen-

sor networks. In International Conference on Control, Automation and Systems,

(ICCAS ’07), pages 1078–1082, 2007.

[3] Xinlong Bao, Lawrence Bergman, and Rich Thompson. Stacking recommendation

engines with additional meta-features. In Proceedings of the third ACM conference

on Recommender systems, pages 109–116. ACM, 2009.

[4] Riccardo Barbieri, Loren M Frank, David P Nguyen, Michael C Quirk, Victor

Solo, Matthew A Wilson, and Emery N Brown. Dynamic analyses of information

encoding in neural ensembles. Neural Computation, 16(2):277–307, 2004.

[5] Csaba Beleznai, D. Schreiber, and M. Rauter. Pedestrian detection using GPU-

accelerated multiple cue computation. In Computer Vision and Pattern Recognition

Workshops, (CVPRW ’11), pages 58–65, 2011.

[6] Arnold P Boedihardjo, Chang-Tien Lu, and Feng Chen. Fast adaptive kernel density

estimator for data streams. Knowledge and Information Systems, 42(2):285–317,

2015.

[7] Philipp Bolliger, Kurt Partridge, Maurice Chu, and Marc Langheinrich. Improving

location fingerprinting through motion detection and asynchronous interval label-

ing. In Location and Context Awareness, pages 37–51. Springer, 2009.

62

[8] AE Brockwell, Robert E Kass, and AB Schwartz. Statistical signal processing and

the motor cortex. Proceedings of the IEEE, 95(5):881–898, 2007.

[9] Anthony E Brockwell, Alex L Rojas, and RE Kass. Recursive bayesian decoding of

motor cortical signals by particle filtering. Journal of Neurophysiology, 91(4):1899–

1907, 2004.

[10] Emery N Brown, Loren M Frank, Dengda Tang, Michael C Quirk, and Matthew A

Wilson. A statistical paradigm for neural spike train decoding applied to position

prediction from ensemble firing patterns of rat hippocampal place cells. The Journal

of Neuroscience, 18(18):7411–7425, 1998.

[11] J Bures, AA Fenton, Yu Kaminsky, and L Zinyuk. Place cells and place navigation.

Proceedings of the National Academy of Sciences, 94(1):343–350, 1997.

[12] Yuan Cao, Haibo He, and Hong Man. Somke: Kernel density estimation over

data streams by sequences of self-organizing maps. Neural Networks and Learning

Systems, IEEE Transactions on, 23(8):1254–1268, 2012.

[13] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user

movement in location-based social networks. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

1082–1090. ACM, 2011.

[14] Grzegorz Cielniak, Maren Bennewitz, and Wolfram Burgard. Where is...? learning

and utilizing motion patterns of persons with mobile robots. In IJCAI, pages 909–

914, 2003.

[15] Sodkomkham Danaipat, Legaspi Roberto, Kurihara Satoshi, and Numao Masayuki.

A study on activity predictive modeling for prompt and delayed services in smart

space. In Workshop on Computation: Theory and Practice (WCTP 2012) (PICT

7), pages 316–328, 2012.

[16] B. Das, C. Chen, N. Dasgupta, D.J. Cook, and A.M. Seelye. Automated prompting

in a smart home environment. In Data Mining Workshops (ICDMW), 2010 IEEE

International Conference on, pages 1045–1052. IEEE, 2010.

[17] Robert M Fano. Transmission of information: A statistical theory of communica-

tions. American Journal of Physics, 29:793–794, 1961.

63

[18] Brian Ferris, Dieter Fox, and Neil D Lawrence. Wifi-slam using gaussian process

latent variable models. In IJCAI, volume 7, pages 2480–2485, 2007.

[19] Brian Ferris, Dirk Haehnel, and Dieter Fox. Gaussian processes for signal strength-

based location estimation. In In Proc. of Robotics Science and Systems. Citeseer,

2006.

[20] Apostolos P Georgopoulos, Ronald E Kettner, and Andrew B Schwartz. Primate

motor cortex and free arm movements to visual targets in three-dimensional space.

ii. coding of the direction of movement by a neuronal population. The Journal of

Neuroscience, 8(8):2928–2937, 1988.

[21] Apostolos P Georgopoulos, Andrew B Schwartz, and Ronald E Kettner. Neuronal

population coding of movement direction. Science, 233(4771):1416–1419, 1986.

[22] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. Understanding

individual human mobility patterns. Nature, 453(7196):779–782, 2008.

[23] Ilan N Goodman and Don H Johnson. Information theoretic bounds on neural

prosthesis effectiveness: The importance of spike sorting. In Proc. of Acoustics,

Speech and Signal Processing, IEEE International Conference on, pages 5204–5207.

IEEE, 2008.

[24] Alexander G Gray and Andrew W Moore. Nonparametric density estimation: To-

ward computational tractability. In Proc. of SIAM International Conference on

Data Mining, pages 203–211. SIAM, 2003.

[25] Hamed Haddadi, Pan Hui, and Ian Brown. MobiAd: Private and Scalable Mobile

Advertising. In Proceedings of the Fifth ACM International Workshop on Mobility

in the Evolving Internet Architecture, (MobiArch ’10), pages 33–38, 2010.

[26] Richard W Hamming. Error detecting and error correcting codes. Bell System

Technical Journal, 29(2):147–160, 1950.

[27] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar

Dayal, and MC Hsu. Prefixspan: Mining sequential patterns efficiently by prefix-

projected pattern growth. In Proceedings of the 17th International Conference on

Data Engineering, pages 215–224, 2001.

64

[28] Christoph Heinz and Bernhard Seeger. Towards kernel density estimation over

streaming data. In Proc. of International Conference on Management of Data,

pages 80–91, 2006.

[29] Christoph Heinz and Bernhard Seeger. Cluster kernels: Resource-aware kernel

density estimators over streaming data. Knowledge and Data Engineering, IEEE

Transactions on, 20(7):880–893, 2008.

[30] Lasse Holmström. The accuracy and the computational complexity of a multivariate

binned kernel density estimator. Journal of Multivariate Analysis, 72(2):264–309,

2000.

[31] Sajid Hussain, Scott Schaffner, and Dyllon Moseychuck. Applications of Wireless

Sensor Networks and RFID in a Smart Home Environment. In Proceedings of the

2009 Seventh Annual Communication Networks and Services Research Conference,

(CNSR ’09), pages 153–157, 2009.

[32] Byeungwoo Jeon and David A. Landgrebe. Fast parzen density estimation using

clustering-based branch and bound. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 16(9):950–954, 1994.

[33] Leif Jonsson, David Broman, Kristian Sandahl, and Sigrid Eldh. Towards auto-

mated anomaly report assignment in large complex systems using stacked general-

ization. In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth

International Conference on, pages 437–446. IEEE, 2012.

[34] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data

streams. In Proc. of the Thirtieth international conference on Very large data

bases, volume 30, pages 180–191. VLDB Endowment, 2004.

[35] Fabian Kloosterman, Stuart P Layton, Zhe Chen, and Matthew A Wilson. Bayesian

decoding using unsorted spikes in the rat hippocampus. Journal of neurophysiology,

111(1):217–227, 2014.

[36] Ahmed E Kosba, Ahmed Saeed, and Moustafa Youssef. Rasid: A robust wlan

device-free passive motion detection system. In Pervasive computing and commu-

nications (PerCom), 2012 IEEE international conference on, pages 180–189. IEEE,

2012.

65

[37] Matej Kristan and Ale Leonardis. Online discriminative kernel density estimator

with gaussian kernels. Cybernetics, IEEE Transactions on, 44(3):355–365, 2014.

[38] Matej Kristan and Aleš Leonardis. Multivariate online kernel density estimation.

In Proc. of Computer Vision Winter Workshop, pages 77–86, 2010.

[39] John Krumm and Eric Horvitz. Predestination: Inferring Destinations from Partial

Trajectories. In Proceedings of the 8th International Conference on Ubiquitous

Computing, (UbiComp’06), pages 243–260, 2006.

[40] Ludmila I Kuncheva. Change detection in streaming multivariate data using

likelihood detectors. Knowledge and Data Engineering, IEEE Transactions on,

25(5):1175–1180, 2013.

[41] Michael S Lewicki. A review of methods for spike sorting: the detection and clas-

sification of neural action potentials. Network: Computation in Neural Systems,

9(4):R53–R78, 1998.

[42] James MacQueen. Some methods for classification and analysis of multivariate

observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, volume 1, pages 281–297, 1967.

[43] Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. WhereNext:

A Location Predictor on Trajectory Pattern Mining. In Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, (KDD ’09), pages 637–646, 2009.

[44] Daniel W Moran and Andrew B Schwartz. Motor cortical representation of speed

and direction during reaching. Journal of Neurophysiology, 82(5):2676–2692, 1999.

[45] May Moussa and Moustafa Youssef. Smart cevices for smart environments: Device-

free passive detection in real environments. In Pervasive Computing and Communi-

cations, 2009. PerCom 2009. IEEE International Conference on, pages 1–6. IEEE,

2009.

[46] Nicolas Navet and Shu-Heng Chen. On predictability and profitability: Would gp

induced trading rules be sensitive to the observed entropy of time series? Natural

Computing in Computational Finance, pages 197–210, 2008.

66

[47] Nam Nguyen, Svetha Venkatesh, and Hung Bui. Recognising behaviours of multiple

people with hierarchical probabilistic model and statistical data association. In

BMVC 2006: Proceedings of the 17th British Machine Vision Conference, pages

1239–1248. British Machine Vision Association, 2006.

[48] John O’Keefe and Jonathan Dostrovsky. The hippocampus as a spatial map. pre-

liminary evidence from unit activity in the freely-moving rat. Brain research,

34(1):171–175, 1971.

[49] Liam Paninski, Jonathan Pillow, and Jeremy Lewi. Statistical models for neu-

ral encoding, decoding, and optimal stimulus design. Progress in brain research,

165:493–507, 2007.

[50] Jian Pei, Helen Pinto, Qiming Chen, Jiawei Han, Behzad Mortazavi-Asl, Umeshwar

Dayal, and Mei-Chun Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by

Prefix-Projected Pattern Growth. In Proceedings of the 17th International Confer-

ence on Data Engineering, (ICDE ’01), pages 215–224, 2001.

[51] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. Whole-home

gesture recognition using wireless signals. In Proceedings of the 19th annual inter-

national conference on Mobile computing & networking, pages 27–38. ACM, 2013.

[52] Rodrigo Quian Quiroga and Stefano Panzeri. Extracting information from neu-

ronal populations: information theory and decoding approaches. Nature Reviews

Neuroscience, 10(3):173–185, 2009.

[53] Stefan Roth. Discrete-continuous Optimization for Multi-target Tracking. In Pro-

ceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recogni-

tion, (CVPR ’12), pages 1926–1933, 2012.

[54] Andrew R Runnalls. Kullback-leibler approach to gaussian mixture reduction.

Aerospace and Electronic Systems, IEEE Transactions on, 43(3):989–999, 2007.

[55] Adam Sadilek and John Krumm. Far out: Predicting long-term human mobility.

In AAAI, 2012.

[56] Yusuke Sakamoto, Ken ichi Fukui, Joao Gama, Daniela Nicklas, Koichi Moriyama,

and Masayuki Numao. Concept drift detection with clustering via statistical change

67

detection methods. In Proc. of The seventh international conference on knowledge

and systems engineering, KSE2015, 2015.

[57] Emilio Salinas and LF Abbott. Vector reconstruction from firing rates. Journal of

computational neuroscience, 1(1):89–107, 1994.

[58] Terence David Sanger. Probability density estimation for the interpretation of

neural population codes. Journal of Neurophysiology, 76(4):2790–2793, 1996.

[59] Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Andrew T.

Campbell. NextPlace: A Spatio-temporal Prediction Framework for Pervasive Sys-

tems. In Proceedings of the 9th International Conference on Pervasive Computing,

(Pervasive’11), pages 152–169, 2011.

[60] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear compo-

nent analysis as a kernel eigenvalue problem. Neural computation, 10(5):1299–1319,

1998.

[61] David W Scott and Simon J Sheather. Kernel density estimation with binned data.

Communications in Statistics-Theory and Methods, 14(6):1353–1359, 1985.

[62] Shy Shoham, Liam M Paninski, Matthew R Fellows, Nicholas G Hatsopoulos,

John P Donoghue, and Richard A Normann. Statistical encoding model for a

primary motor cortical brain-machine interface. Biomedical Engineering, IEEE

Transactions on, 52(7):1312–1322, 2005.

[63] Joseph Sill, Gábor Takács, Lester Mackey, and David Lin. Feature-weighted linear

stacking. arXiv preprint arXiv:0911.0460, 2009.

[64] BW Silverman. Algorithm as 176: Kernel density estimation using the fast fourier

transform. Applied Statistics, pages 93–99, 1982.

[65] Danaipat Sodkomkham, Roberto Legaspi, Ken-ichi Fukui, Koichi Moriyama,

Satoshi Kurihara, and Masayuki Numao. App: Aperiodic and periodic model for

long-term human mobility prediction using ambient simple sensors. In The Fourth

International Workshop on Mining Ubiquitous and Social Environments, page 3,

2013.

68

[66] Danaipat Sodkomkham, Roberto Legaspi, Ken-ichi Fukui, Koichi Moriyama,

Satoshi Kurihara, and Masayuki Numao. Predictability analysis of aperiodic and

periodic model for long-term human mobility using ambient sensors. In Mining,

Modeling, and Recommending’Things’ in Social Media, pages 131–149. Springer,

2015.

[67] Danaipat Sodkomkham, Roberto Legaspi, Satoshi Kurihara, and Masayuki Numao.

A study on next location predictive modeling using mined temporal sequential

patterns as input to a decision tree.

[68] Danaipat Sodkomkham, Roberto Legaspi, Satoshi Kurihara, and Masayuki Numao.

A study on activity predictive modeling for prompt and delayed services in smart

space. In Theory and Practice of Computation, pages 266–278. Springer, 2013.

[69] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits

of predictability in human mobility. Science, 327(5968):1018–1021, 2010.

[70] L. Song, U. Deshpande, U.C. Kozat, D. Kotz, and R. Jain. Predictability of WLAN

Mobility and Its Effects on Bandwidth Provisioning. In Proceedings of the 25th

IEEE International Conference on Computer Communications., (INFOCOM ’06),

pages 1–13, 2006.

[71] Eran Stark and Moshe Abeles. Predicting movement from multiunit activity. The

Journal of neuroscience, 27(31):8387–8394, 2007.

[72] Wilson Truccolo, Uri T Eden, Matthew R Fellows, John P Donoghue, and Emery N

Brown. A point process framework for relating neural spiking activity to spiking

history, neural ensemble, and extrinsic covariate effects. Journal of neurophysiology,

93(2):1074–1089, 2005.

[73] Valérie Ventura. Spike train decoding without spike sorting. Neural computation,

20(4):923–963, 2008.

[74] Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca Giannotti, and Albert-Laszlo

Barabasi. Human mobility, social ties, and link prediction. In Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 1100–1108. ACM, 2011.

[75] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

69

[76] W Wu, A Shaikhouni, JP Donoghue, and MJ Black. Closed-loop neural control

of cursor motion using a kalman filter. In Proc. of Engineering in Medicine and

Biology Society, IEMBS’04. 26th Annual International Conference of the IEEE,

volume 2, pages 4126–4129. IEEE, 2004.

[77] Min Xu, Hisao Ishibuchi, Xin Gu, and Shitong Wang. Dm-kde: dynamical kernel

density estimation by sequences of kde estimators with fixed number of components

over data streams. Frontiers of Computer Science, 8(4):563–580, 2014.

[78] Shoou-I Yu, Yi Yang, and Alexander Hauptmann. Harry Potter’s Marauder’s Map:

Localizing and Tracking Multiple Persons-of-Interest by Nonnegative Discretiza-

tion. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern

Recognition, (CVPR ’13), pages 3714–3720, 2013.

[79] Kai Zhang and James T Kwok. Simplifying mixture models through function ap-

proximation. In Proc of Advances in Neural Information Processing Systems, pages

1577–1584, 2006.

[80] Kechen Zhang, Iris Ginzburg, Bruce L McNaughton, and Terrence J Sejnowski.

Interpreting neuronal population activity by reconstruction: unified framework with

application to hippocampal place cells. Journal of neurophysiology, 79(2):1017–

1044, 1998.

[81] Yan Zheng, Jeffrey Jestes, Jeff M Phillips, and Feifei Li. Quality and efficiency

for kernel density estimates in large data. In Proc. of the 2013 ACM SIGMOD

International Conference on Management of Data, pages 433–444. ACM, 2013.

[82] Aoying Zhou, Zhiyuan Cai, Li Wei, and Weining Qian. M-kernel merging: Towards

density estimation over data streams. In Proc. of Database Systems for Advanced

Applications, DASFAA 2003. Eighth International Conference on, pages 285–292.

IEEE, 2003.

70

List of Publications

Journal Paper

1. Danaipat Sodkomkham, Davide Ciliberti, Matthew A. Wilson, Ken-ichi Fukui,

Koichi Moriyama, Masayuki Numao, and Fabian Kloosterman. “Kernel Density

Compression for Real-time Bayesian Encoding/Decoding of Unsorted Hippocam-

pal Spikes” (in press)

URL: http://www.sciencedirect.com/science/article/pii/S0950705115003524

doi:10.1016/j.knosys.2015.09.013

Conference and Workshop Proceedings

1. Danaipat Sodkomkham, Roberto Legaspi, Ken-ichi Fukui, Koichi Moriyama, Satoshi

Kurihara, and Masayuki Numao. “Predictability Analysis of Aperiodic and Peri-

odic Model for Long-Term Human Mobility Using Ambient Sensors”, Proc. the

4th International Workshops, MUSE 2013, Prague, Czech Republic, September

23, 2013, and MSM 2013, Paris, France, May 1, 2013, Revised Selected Papers

2. Roberto Legaspi, Danaipat Sodkomkham, Kazuya Maruo, Ken-ichi Fukui, Koichi

Moriyama, Satoshi Kurihara, and Masayuki Numao. “Time-Interval Clustering

in Sequential Pattern Recognition Towards Predictive Modeling of Human Char-

acteristics”, Theory and Practice of Computation, pp. 174-186. Springer Japan,

2012.

Presentations

1. Danaipat Sodkomkham, Roberto Legaspi, Ken-ichi Fukui, Koichi Moriyama, Satoshi

Kurihara, and Masayuki Numao. “APP: Integrated Aperiodic and Periodic Model

for Long-Term Human Mobility Prediction Using Ambient Simple Sensors”, Proc.

71

the 4th International Workshop on Mining Ubiquitous and Social Environments,

p. 3. 2013.

2. Danaipat Sodkomkham, Roberto Legaspi, Satoshi Kurihara, and Masayuki Nu-

mao. “A Study on Next Location Predictive Modelingusing Mined Temporal Se-

quential Patterns as input to a Decision Tree”, International Organized Session

“Application Oriented Principles of Machine Learning and Data Mining”. JSAI

26 (2012): 1-5.

3. Roberto Legaspi, Danaipat Sodkomkham, Kazuya Maruo, Ken-ichi Fukui, Koichi

Moriyama, Satoshi Kurihara, and Masayuki Numao. “Clustering Multiple and

Flexible Time Intervals in Sequential Patterns Towards Predictive Modeling of Hu-

man Gait Behavior”, International Workshop on Finding Patterns of Human Be-

haviors in Network and Mobility Data (NEMO) (held in conjunction with ECML-

PKDD2011), Athens, Greece, September 9 2011

4. Kazuya Maruo, Danaipat Sodkomkham, Ken-ichi Fukui, Koichi Moriyama, Satoshi

Kurihara, and Masayuki Numao. “Mining Frequent Sequences with Flexible Time

Intervals”, The 1st International Workshop of Sensor Data Mining (IWSDM2011)

held in conjunction with The 8th International Conference on Networked Sensing

Systems (INSS2011), Penghu, Taiwan, Taiwan, June. 12 2011

5. Kazuya Maruo, Danaipat Sodkomkham, Ken-ichi Fukui, Koichi Moriyama, Satoshi

Kurihara, and Masayuki Numao. “Mining Frequent Sequences with Flexible Time

Intervals”, The 5th International Workshop on Data-Mining and Statistical Sci-

ence (DMSS2011), Osaka, March 29-30 2011

72

	List of Figures
	List of Tables
	Introduction and Problem Statement
	Literature Review
	Human Mobility Tracking
	Limits of the predictability in Human Mobility
	Human Mobility Modeling and Prediction
	Online Kernel Density Estimation

	Human Mobility Modeling
	Collective Human Mobility Data
	Limits of Predictability
	Periodicity in Collective Human Mobility
	Predictability of the Periodic Model
	Conclusion

	Human Mobility Prediction
	Long-term Human Mobility Prediction
	The Periodic Approach
	The Aperiodic Approach
	Periodicity and Prediction Performance
	Prediction Performance of the Aperiodic Approach
	Long-term Prediction Performance

	Short-term Mobility Prediction
	Extracting Trajectories from Sensor Readings
	Trajectory Patterns-based Human Mobilility Predictive Model
	Performance Evaluation using Real-world Mobility dataset from Smart Environment
	Conclusion

	Kernel Density Compression for online KDE
	Kernel Density Estimation
	Traditional Kernel Density Estimation
	Problem of KDE with online data
	Idea of the proposed method

	Proposed online kernel density estimation
	Kernel compression algorithm
	Gaussian kernel merging
	Efficient Density Evaluation

	Simulations and applications to experimental data
	Trade-off between speed and accuracy
	Performance evaluation on high-dimensional data streams
	Performance evaluation on the real-time decoding of the rat hippocampus

	Conclusions

	Conclusions
	Summary of Contributions
	Recommendation for Future Works

