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Abstract

Binomial ideals appear in various areas of pure mathematics as well as of applied
mathematics, including algebraic geometry, commutative algebra, combinatorics and
algebraic statistics. In the present dissertation, two classes of binomial ideals are
studied. One is the class of toric ideals arising from finite simple connected graphs,
and the other is the class of ideals generated by 2-minors called polyomino ideals,
which are attached to polyominoes. In the former class, a main result is to show the
existence of infinite series of finite simple connected graphs G for which the toric ideal
I of G is generated by quadratic binomials, but possesses no quadratic Grobner
basis. In the latter class, we challenge the outstanding open problem of classifying
all polyomino ideals which are prime. First, we prove that the polyomino ideal of a
simple polyomino, i.e., a polyomino with no “holes,” is prime. Second, we discuss
nonsimple polyominoes which are obtained by removing convex polyominoes from
their ambient rectangles and show that the attached polyomino ideals are prime.
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Introduction

The main motivation of this thesis is to study algebraic properties of various
binomial ideals associated with particular combinatorial structures. Binomial ideals
have been discussed from various viewpoints including algebraic geometry, com-
mutative algebra, combinatorics and algebraic statistics. In commutative algebra,
binomial ideals which are defining ideals of toric rings have been well studied. For
a given toric ring, properties such as the Krull dimension, normality and Cohen—
Macaulayness have been studied. Here, our aim is to study binomial ideals arising
from finite connected graphs and polyominoes, and to characterize their algebraic
properties.

We now discuss the contents of this thesis in detail. In Chapter 1, we provide
background information to support the study of the binomial ideals. In Section 1.1,
we recall the definition of Grobner bases. In Section 1.2, the definition of toric ideals
and toric rings are given. Then, in Section 1.3 and Section 1.4, we give some known
results on the toric ideals of graphs and the polyomino ideals, respectively.

In Chapter 2, we study the question of how often the toric ideals of finite con-
nected graphs have a quadratic squarefree Grobner basis. The results given in
Chapter 2 are based on [14]. Let K be a field and G be a finite connected simple
graph on the vertex set [n] = {1,...,n} with the edge set E(G) = {ej,...,eq}. For
a finite graph G, we attach the ring K[G] = K|t;it; | {i,7} € E(G)] C K[t1, ..., t,].
This ring is called the edge ring of G and has been well studied for example in
23, 24, 25, 26, 37]. Let K[x| = K[x1,...,x4 be the polynomial ring in d vari-
ables over K with each degz; = 1. If e = {i,j} € E(G), then we write t¢ for
tit; € K[t1,...,t,]. We define the surjective ring homomorphism 7 : K[x] — K[G]
by setting m(x;) =t for 1 <1 < d. The toric ideal I of G is the kernel of 7.

In general, if an ideal has a quadratic Grobner basis then the ideal is generated
by quadratic binomials. We study graphs G which disprove the converse. Namely,
we look for finite graphs with the following property:

(%) The toric ideal I of G is generated by quadratic binomials, but possesses no
quadratic Grobner basis.

Moreover, a graph G satisfying (x) is said to be (x)-minimal if there does not exist
an induced subgraph G’ of G which satisfies (x). An example of (*)-minimal graph
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is given in [25, Example 2.1]. In Section 2.1, we give an infinite series of (x)-minimal
graphs. This result is interesting because [25, Example 2.1] has been the only known
(*)-minimal graph. Another result of this chapter given in Section 2.2 involves a
computer search to search for other graphs satisfying (x). In [25], an algorithm to
decide if the toric ideal I of a given graph G is generated by quadratic binomials was
given. We combine several computer programs in order to find quadratic Grobner
bases. By using the algorithm and the software, we find all finite connected graphs
with up to 8 vertices satisfying the above condition (x).

In Chapter 3, we study the ideals generated by inner 2-minors of polyominoes.
The results given in this chapter are based on [12, 29, 33]. A polyomino is a plane
figure obtained by joining squares of equal sizes, which are called cells. Polyominoes
have been discussed in recreational mathematics and combinatorics. For example,
the tiling problem of an m x n rectangle using a given set of polyominoes has been
discussed. In commutative algebra, polyominoes first appeared in 2012 in [28] by
assigning each polyomino the set of its inner 2-minors. These ideals of inner 2-minors
are called polyomino ideals.

Let P be a polyomino. We denote by Ip the polyomino ideal attached to P in
a suitable polynomial ring over K. The quotient ring defined by Ip is denoted by
K[P]. It is natural to investigate the algebraic properties of Ip and K[P]. One of
the most fascinating questions is the classification problem of polyominoes whose
polyomino ideals are prime ideals. In previous studies, the class of polyominoes
whose polyomino ideals are known to be prime has gradually developed (see Fig-
ure 1). The class of polyomino ideals can be regarded as a generalization of the class
of ideals of all 2-minors of an m X n-matrix studied in [5, 36] and of the one or two
sided ladder studied in [3]. In these papers, it was shown that the polyomino ideals
for such a class of polyominoes are prime. In [28], it was shown that for a convex
polyomino, the quotient ring K[P] is a normal Cohen—-Macaulay domain. It was
also shown that polyomino ideals attached to a row or column convex polyomino
are prime ideals. Later, in [8], a classification is given of the convex polyomino ideals
which are linearly related. Our starting point is the conjecture suggested by Qureshi
in [28]. It is conjectured that the polyomino ideal attached to a simple polyomino
is prime. Roughly speaking, a simple polyomino is a polyomino with no “hole.”

In Section 3.1, we introduce the concept of balanced polyominoes. Then, an im-
portant characterization of balanced polyominoes is given: A polyomino is balanced
if and only if the polyomino ideal Ip coincides with the lattice ideal attached to P.
In Section 3.2, we prove that the polyomino ideal of a balanced polyomino is prime.
We further show that if P is balanced, then K[P] is a normal Cohen—Macaulay
domain of dimension |V (P)| — |P|, where |V (P)| is the number of vertices in P and
|P| is the number of cells in P.

Qureshi’s conjecture was solved independently by Herzog and Saeedi Madani in
[11] and Qureshi, Shibuta and the author in [29]. In [11], Qureshi’s conjecture is
proved by showing that simple polyominoes are balanced. Their result is briefly
introduced in Section 3.2. In Section 3.3, we give the proof of Qureshi’s conjecture



presented in [29]. We prove the conjecture by using a much simpler argument. We
prove that K[P] is isomorphic to the toric ring associated with a weakly chordal
bipartite graph.

Another class of polyominoes studied in this thesis is the class of nonsimple poly-
ominoes. In Section 3.4, we investigate the binomial ideals attached to a special class
of nonsimple polyominoes, which are, roughly speaking, “rectangle minus convex.”
We find a toric toric ring generated by monomials of degree two or three which is
isomorphic to the quotient ring of the polyomino ideal of “rectangle minus convex.”
It is proved in [15] that polyomino ideals of “rectangle minus convex” are prime. It
is known that every binomial prime ideal is a toric ideal and every toric ideal is a
binomial prime ideal (see [7, 34]). This result is interesting because it is generally
not easy to find a toric ring which is isomorphic to a given binomial prime ideal.



polyominoes

not prime prime

nonsimple simple = balanced

row or column convex

convex
two-sided ladders

one-sided ladders
m X n-matrices

Figure 1: Overview of classes of polyominoes
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Chapter 1

Background

In this chapter, we provide background information to support the study of the
binomial ideals. We give a definition of Grébner bases and toric ideals. Then, we
introduce known results on the binomial ideals associated with finite graphs and
polyominoes.

1.1 Grobner bases

In this section, we briefly introduce Grobner bases. Let S = K{z1, ..., x,] be the
polynomial ring in n variables over a field K with each degx; = 1. Let Mon(S) be
the set of monomials of S. For monomials x = 225> - - - 2% and x? = 25"z - - - 2l»

of S, we say that x® divides x? if each b; < a;. We write Xb|xal if xP divides x2. Let
M be a nonempty subset of Mon(S). A monomial x? is said to be a minimal element
of M if the following condition is satisfied: If there exists an element x® € M which
divides x®, then x* = xP. Let M™® be the set of minimal elements of M. We give
some known classical results for Grobner bases without proving them. The proofs
for these results can be found in the literature, for example, in [10, 13].

Proposition 1.1.1 (Dickson’s lemma). Let M be a nonempty subset of Mon(S).
Then M™® 4s q finite set.

Recall that a partial order on a set P is a relation < on P such that for all
x,1y,z € P we have

(a) z <z (reflexivity):
(b) x <yand y < x = x =y (antisymmetry);
(c) z<yand y <z =z <z (transitivity).

A total order on a set P is a partial order < on P such that, for any z,y € P, one
has either x <y or y < z. A monomial order on S is a total order on Mon(.S) such
that
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(a) 1 <wu for all 1 # u € Mon(S);
(b) if u,v € Mon(95) and u < v, then uw < vw for all w € Mon(S).

We will work with a fixed monomial order < on S. Let f =3\ s) @utt. The
initial monomial of f with respect to < is the biggest monomial with respect to <
among the monomials appearing in f. We write in_(f) for the initial monomial of
f with respect to <. The coefficient of in_(f) in f is called the leading coefficient
or the initial coefficient of f.

Lemma 1.1.2. Let u,v be monomials of S and f, g nonzero polynomials of S. Then
the following holds.

a) Ifu divides v, then u < v;

b) inc(uf) =uinc(f);

(c) inc(fg) =inc(f)in<(g);

(d) inc(f +g) < max{inc(f),in<(g)} with equality if in<(f) # in<(g).

Recall that an ideal is said to be a monomial ideal if it is generated by monomials.
Let I C S be a monomial ideal. It follows that I is generated by a subset N C
Mon(S) N1 if and only if (I NA)™ C N. Hence, (I NAN)™" is the unique minimal
system of monomial generators of I. Dickson’s lemma guarantees that (I NA)™in
is a finite set. Therefore, every monomial ideal I of S is finitely generated. Let [
be a nonzero ideal of S. The initial ideal of I with respect to < is the monomial
ideal of S which is generated by {in<(f) | 0 # f € I}. We denote the initial ideal
of I by in.(I). The set (in.(I) N Mon(S))™™ is the minimal system of generators of
in.(I). Since inc (/) N Mon(S) = {in.(f) | 0 # f € I}, there exists a finite number
of nonzero polynomials g1, ..., gs € I such that in_ (/) is generated by their initial
monomials given by in.(g1),in-(gs), .. .,in<(gs).

(
(

Definition 1.1.3. Let I be a nonzero ideal of S. A finite set of nonzero polynomials
{91, 92, - .., 95} with each g; € I is said to be a Gréibner basis of I with respect to <
if in_ (1) is generated by the monomials in-(g1),in-(g2),...,in-(gs).

It is known that a Grébner basis of I with respect to < exists. If G is a Grébner
basis of I with respect to <, then every finite set G’ with G C G’ C I is also a Grobner
basis of I with respect to < and if fi,..., fs are nonzero polynomials belonging to
I with each in.(f;) = in<(g;) then {f1,..., fs} is a Grobner basis of I with respect
to <.

Now we note some known facts about Grobner bases. An important property of
Grobner bases is the following:

Proposition 1.1.4. Let I be an ideal and G be a Grobner basis of I with respect to
some monomial order. Then, G is a generating set of I.
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A Grobner basis {g1,...,9s} is called reduced if the following conditions are
satisfied:

(a) The coefficient of in.(g;) is 1 for 1 <i < s;

(b) If i # j, then none of the monomials appearing in g; are divisible by in(g;).

Proposition 1.1.5. For a given monomial order <, a reduced Grobner basis exists
and 1s uniquely determined.

Proposition 1.1.6. Let I and J be nonzero ideals of S. Then, I = J if and only if
the reduced Gréobner basis of I with respect to a given monomial order < coincides
with that of J.

If the degree of all monomials appearing in a polynomial are equal to ¢, then
the polynomial is called homogeneous polynomial of degree q. An ideal is called a
homogeneous ideal if the ideal is generated by homogeneous polynomials. A binomial
tdeal is an ideal which is generated by binomials. The following proposition is
elementary but it is important for our study of binomial ideals.

Proposition 1.1.7. Let [ C S be an ideal and < a monomial order on S.

(a) If I is homogeneous, then the reduced Grébner basis of I with respect to <
consists of homogeneous polynomials.

(b) If I is a binomial ideal, then the reduced Grébner basis of I with respect to <
consists of binomials.

The ideals studied in this thesis are homogeneous binomial ideals. In particular,
the reduced Grobner bases of our ideals consist of homogeneous binomials. We say
a monomial x{'z3?-- -z is squarefree if each a; € {0,1}, 1 < i < n. A Grébner
basis G of a binomial ideal I consisting of binomials is called a squarefree Grobner
basis if every (initial and non-initial) monomial appearing in G is squarefree.

Let I C S be an ideal. A finite set G,, C [ is called a universal Grobner basis if it
is a Grobner basis with respect to any monomial order. By the following proposition,

a universal Grobner basis always exists.

Proposition 1.1.8. Let I C S be an ideal. Then, there exists only finitely many
wnitial ideals for I.

A homogeneous binomial f = f* — f~ € I is called a primitive binomial in I if
there does not exist any homogeneous binomial h = h™ —h~ € I with degh < deg f
such that h*|f* and h~|f~. The following proposition is important for finding a
universal Grébner basis for a homogeneous binomial ideal.

Proposition 1.1.9. Let I C S be a homogeneous binomual ideal. The set of primi-
tive binomials in I is a universal Grobner basis of 1.
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Note that a universal Grobner basis consisting of primitive binomials is not
necessarily reduced (see e.g., [34, Chapter 4]).

Next, we state the elimination theorem. Let S = K][xq,..., 2, be a polynomial
ring. We write B;, ;. for the subset of S consisting of those polynomials f € .S such
that each monomial appearing in f is a monomial in the variables z;,, z;,, ..., x; ,
where 1 <) <ty < - <4, <n. If flge B, then the sum and the product
of f and g also belong to B;, ;.. Thus, B, ;. itself is a polynomial ring. A
monomial order < on S can naturally induce the monomial order <" on B, ;.
defined as follows: If monomials u and v belong to B;, ., we have u <" v if and
only if u < v in S. For the sake of simplicity, we denote the naturally induced
monomial order <" on B;, ;. by <.

cobm )

Proposition 1.1.10 (The elimination theorem). Let < be a monomial order on S
and G be a Grobner basis of an ideal I C S with respect to <. Suppose that

e For each g € G, one has g € By, ifinc(g) € Bi,..i.-

Then G N By, i, 1s a Grobner basis of I N B, ;.. with respect to < on By, ;. .

m m

1.2 Toric ideals and toric rings

Let A = (aij)1<i<n be an n x d matrix and
1<j<d

a; = . s 1<]<d (11)

be the column vectors of A.

A matrix A € Z™? is called a configuration matriz if there exists ¢ € R™ such

that
ajrc=1, 1<j<d.

Let ti,...,t, be variables. Let A € Z"*? be a configuration matrix. With each
column vector a;, we associate the monomial t = ¢{7#5% - - 13"/ allowing negative
powers. We define the toric ring K[A] associated with a configuration matrix A by
KA =K[tY |1 <j <d].

Note that, in this thesis, we sometimes define a toric ring for a set of monomials
of the same degree without defining its configuration matrix.

Let m: S — K[A] be a surjective ring homomorphism with the setting 7 (z;) =
t?. Then the toric ideal of A denoted by I, is the kernel of 7.

Equivalently, we can define the toric ideal as follows. For a given configuration
matrix A € Z™? we define kerz A = {b € Z¢ | Ab = 0}.

14



Lemma 1.2.1. If a column vector

belongs to kerzy A, then
by +---4+bg=0.

Now for a given column vector b = [by, ..., b4]" € kerz A, we define the binomial
fo € Klxy, ..., z4] as
bi —b;
b;>0 bj <0

It is clear that the binomial ideal

({fo | b € kery A})

coincides with 74. From Lemma 1.2.1, we see that the toric ideals are generated by
homogeneous binomials.

Therefore, it follows from Proposition 1.1.7 that every reduced Grobner basis of
14 for a given configuration matrix A consists of homogeneous binomials.

1.3 Toric ideals and toric rings associated with
finite simple graphs

Let G be a finite simple connected graph on the vertex set [n| = {1,2,...,n}
and the edge set E(G) = {e1,...,eq}. Recall that a finite graph G is called simple
if it has no loops and no multiple edges. Given a subset W of [n], we define the
induced subgraph of G on W to be the subgraph Gy on W consisting of those
edges {i,7} € E(G) with {i,j} € W. A complete graph on [n] is a finite simple
graph consisting of all possible edges on [n]. The complementary graph G of a finite

graph G is the finite graph on [n] whose edge set E(G) consists of {7, j} C [n] with

{1,7} ¢ E(G).
A cycle in G of length ¢ is a subgraph C of G such that

E(C) = {{i1,i2},{i2, s}, ... {ig—1, 0}, {ig, i1 }}

where i1, .. .1, are vertices of G and i; # iy, if j # k. A cycle is called an even (odd)
cycle if its length ¢ is even (odd).

A graph is called bipartite if there is a decomposition [n] = V; U V4 such that
every edge of G is of the form {7, j} with « € V; and j € V5. Bipartite graphs can
be characterized as follows:

15



Proposition 1.3.1. A finite graph G is a bipartite graph if and only if there exist
no cycles of odd length in G.

We now introduce the toric ideals arising from finite graphs. Let K be a field and
K[t] = K[t1,...,ty] the polynomial ring in n variables over K. If e = {i, j} € E(G),
then we write t¢ for ¢;t; € KJt]. The edge ring of G denoted by K[G] is a subring
of K[t] with K[t ... t%]. Let K[x] = K[x,...,x4) be the polynomial ring in d
variables over K with each degx; = 1. We define the surjective ring homomorphism
7 : K[x|] = K[G] by setting m(x;) = t% for 1 <i < d. The toric ideal I of G is the
kernel of 7.

A walk of length ¢ of G connecting v; € V(G) and v, € V(G) is a finite
sequence of the form

I'= <{U17U2}7{U27U3}7"'7{UQ7U(I+1}> (1'2)

with each {vg, vk41} € E(G). An even (odd) walk is a walk of even (odd) length. A
walk I' of the form (1.2) is called closed if v,41 = v1. A cycle in G can be naturally
regarded as a closed walk

C = ({v1,v2}, {v2, v3}, ..., {vg, 11 }) (1.3)

with ¢ > 3 and v; # v; for all 1 <i < j < ¢q. A chord of a cycle (1.3) is an edge
e € E(G) of the form e = {v;,v;} for some 1 < i < j < ¢ with e ¢ E(C). If a
cycle (1.3) is even, an even-chord (odd-chord) of (1.3) is a chord e = {v;,v,;} with
1 <i < j < gsuch that j — i is odd (even). If e = {v;,v;} and € = {vy, v} are
chords of a cycle (1.3) with 1 <i < j < gand 1 <i < j' < g, then we say that e
and €' cross in C' if the following conditions are satisfied:

(a) either t <4’ < j<j or? <i<j <y
(b) either {{v;,vi},{v;,v;}} C E(C) or {{v;,vj},{v;,vs}} C E(C).

A minimal cycle of GG is a cycle that has no chords. If C; and Cy are cycles of G
that have no common vertices, then a bridge between C; and C5 is an edge {3, j} of
G with ¢ € V(C) and j € V(Cy).

The toric ideal I is generated by the binomials associated with even closed
walks. Given an even closed walk I' = (e;,, €5, ...,€;,,) of G, we write fp for the

binomial . ,
f[‘ = Hxi%*l — HSL’Z'% c [G-
k=1 k=1
The following is known ([37, Proposition 3.1], [25, Lemma 1.1] and [34, Chapter 9]).

Proposition 1.3.2. Let G be a connected graph. Then, I is generated by all the
binomials fr, where I' is an even closed walk of G. In particular, I = (0) if and
only if G has at most one cycle and the cycle is odd.
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Note that, for a binomial f € Ig, deg(f) = 2 if and only if there exists an even
cycle C' of G of length 4 such that f = fo. On the other hand, a criterion for the
existence of a set of quadratic binomial generators of I is given in [25, Theorem
1.2].

Proposition 1.3.3. Let G be a finite connected graph. Then, I is generated by
quadratic binomials if and only if the following conditions are satisfied:

(a) If C is an even cycle of G of length > 6, then either C' has an even-chord or
C' has three odd-chords e, € and €’ such that e and €' cross in C;

(b) If Cy and Cy are minimal odd cycles with exactly one common vertex, then

there exists an edge {i,j} ¢ E(Cy) U E(Cy) with i € V(C}) and j € V(Cs);

(¢) If Cy and Cy are minimal odd cycles with no common vertices, then there exist
at least two bridges between C7 and Cs.

Even if I = (0), we say that “Ig is generated by quadratic binomials” and “Ig
possesses a quadratic Grobner basis.”
If G is bipartite, then the following is shown in [24]:

Proposition 1.3.4. Let G be a bipartite graph. Then the following conditions are
equivalent:

(a) Ewvery cycle of length > 6 has a chord in G;
(b) Ig possesses a quadratic Grébner basis;
(c) Ig is generated by quadratic binomials.

If G is not bipartite, then the conditions (b) and (c) are not equivalent. The
following example is known from [25, Example 2.1].

Example 1.3.5. Let G be the graph in Figure 1.1. Then, [; is generated by
quadratic binomials. However, I has no quadratic Grobner bases.

1.4 Polyominoes and polyomino ideals

In order to define polyominoes, first we introduce some notation. We consider
the natural partial order on N? as follows: (z,5) < (k,[) if and only if 7 < k and
j <. Let a,b € N? with a < b and a # b, then the set [a,0] = {c e N* | a < ¢ < b}
is called an interval of N%. If a = (7, 7) and b = (k, 1), then the interval [a, b] is called
a proper interval if i < k and j < . Further, an interval is called a horizontal (or
vertical) edge interval if j =1 (i = k).

For a proper interval [a, b], the elements a, b together with ¢ = (k, j) and d = (i, 1)
are called the corners of [a,b]. The elements a,b are the diagonal corners and ¢, d
are the anti-diagonal corners of [a, b].
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Figure 1.1: Wheel with 6 vertices.

The interval C' = [a,a + (1,1)] is called a cell in N* with lower left corner a.
The edges of a cell C' = [a,a + (1,1)] are the sets {a,a + (1,0)}, {a,a + (0,1)},
{a+(1,0),a+ (1,1)} and {a+ (0,1),a+ (1,1)}. We denote the set of edges of C
by E(C). The corners of a cell C' are called the vertices of C' and the set of vertices
of C'is denoted by V(C).

Let P be a finite collection of cells. Two cells C, D € P are said to be connected
in P, if there exists a finite sequence of cells C : C' = C1,Cs,...,C,, = D in P
such that each of C; and C;1, 7= 1,...,m — 1 have an edge in common. A finite
collection of cells P is called a polyomino if for every pair of cells in C;D € P, C
and D are connected in P. For example, the collection of cells shown in Figure 1.4
is a polyomino.

Figure 1.2: A polyomino

Let P be a polyomino. We set V(P) = [Joep V(C) and E(P) = Upep £(C)
and call them the verter set of P and the edge set of P, respectively.

Let P be a polyomino and K be a field. Let S = K[z;; | (i,7) € V(P)] be the
polynomial ring over K. A 2-minor x;;xy — x42y; is called an inner minor of P if
all the cells [(r,s), (r+1,s+1)] withi <r <k—1and j < s <I—1 belong to P. In
such a case, the interval [(i,7), (k,1)] is called an inner interval of P. The ideal Ip
generated by all inner minors of P is called the polyomino ideal of P. A horizontal
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cell interval of P is an inner interval [(7,j), (k,[)] of P with l =j 4+ 1 and k > i. A
vertical cell interval in P is defined similarly. A polyomino P is called row convez if
for any two vertices (i,7), (k,1) in V(P) with i < k and | = 5+ 1, [(4,7), (k,j + 1)]
is an inner interval of P. Similarly a polyomino P is called column convex if for any
two vertices (i,7), (k,1) with j <l and k =i+ 1, [(¢,7), (i + 1,1)] is an inner minor
of P. Finally, a polyomino is called convex if it is row convex and column convex.
We now introduce a known result from [28].

Proposition 1.4.1. Let P be a row or column conver polyomino. Then Ip is a
prime ideal.

Let P be a polyomino and let [a,b] be an interval with the property P C [a, b].
According to [28], a polyomino P is called simple, if for any cell C' not belonging
to P, there exists a path C = C1,Cy,...,C,, = D with C; € P fori =1,...,m
and such that D is not a cell of [a,b]. Roughly speaking, a simple polyomino is a
polyomino with no “holes.” For example the polyomino displayed in Figure 1.3 is
not simple.

Figure 1.3: A polyomino that is not simple but is prime

In [28], the following conjecture is suggested.

Conjecture 1.4.2 (Qureshi’s conjecture [28]). Let P be a simple polyomino. Then
Ip is a prime ideal.

The converse of Qureshi’s conjecture is not true. In fact, the polyomino in
Figure 1.3 is not simple but its polyomino ideal is prime. The motivation of our
study of polyomino ideal is to solve this conjecture. In Chapter 3 of this thesis, we
solve this conjecture and discuss the primeness of polyomino ideals of wider class of
polyominoes.
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Chapter 2

Toric ideals generated by
quadratic binomials with no
quadratic Grobner bases

Let G be a finite connected simple graph on the vertex set [n] = {1,2,...,n}
with E(G) = {e,...,eq} its edge set. Let K[G] be the toric ring and I the toric
ideal as defined in Section 1.3

It is clear that if a toric ideal I has a quadratic Grobner basis, then the ideal
is generated by quadratic binomials. However, the converse is not true [25].

We study finite connected simple graphs G satisfying the following condition:

(%) Ig is generated by quadratic binomials and I possesses no quadratic Grébner
basis.

Historically, examples of homogeneous binomial ideals generated by quadratic
binomials that have no quadratic Grobner basis have been discussed. Such examples
are presented by Ohsugi and Hibi in [25], Roos and Sturmfels in [30] and Schenck
and Stillman in [31].

We say that a finite connected simple graph G is (x)-minimal if G satisfies the
condition (%) and if no induced subgraph H (# G) satisfies the condition (x). A
(*)-minimal graph is given in [25, Example 2.1].

A nontrivial infinite series of (*)-minimal finite graphs is given in Section 2.1. In
Section 2.2, we implement a combinatorial characterization for I to be generated by
quadratic binomials (Proposition 1.3.3), and, by using computer search, we classify
the finite graphs G with up to 8 vertices satisfying the condition (x).

2.1 Toric ideals of the suspension of graphs

In this section, we study the existence of quadratic Grébner bases of toric ideals
of the suspension of graphs.
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Let G be a graph with the vertex set V(G) = [n] = {1,2,...,n} and edge
set E(G). Recall that if a graph G’ on the vertex set V(G') C V(G) satisfies
EG) ={{i,j} € E(G) | i,7 € V(G")}, then G’ is called an induced subgraph of G.
The following proposition is a fundamental and important fact regarding the toric
ideals of graphs.

Proposition 2.1.1 ([23]). Let G’ be an induced subgraph of a graph G. Then, K[G'|
is a combinatorial pure subring of K|G|. In particular,

(a) If I possesses a quadratic Gréobner basis, then so does I .
(b) If Ig is generated by quadratic binomials, then so is Igr.

The suspension of the graph G is a graph G whose vertex set is n+ 1] =
V(G) U{n + 1} and edge set is E(G) U {{i,n+ 1} | : € V(G)}. Note that, any
graph G is an induced subgraph of its suspension G. The edge ideal of G is the
monomial ideal I(G) of K[t] which is generated by {t;t; | {i,j} € E(G)}. See, e.g.,
[10, Chapter 9].

It is easy to see that the edge ring K [@] of the suspension G of G is isomorphic
to the Rees algebra

RUI(G) =P I(GYs = K[ta, ..., tu, {tit;s}ijyenc)
=0

of the edge ideal I(G) of G.

We now characterize graphs G such that I is generated by quadratic binomials.
Recall that the complementary graph G of G is the graph whose vertex set is [n]
and whose edges are the non-edges of G. A chordal graph is a finite graph such that
each cycle of length greater than 3 has a chord. Note that every induced subgraph
of a chordal graph is also chordal. Moreover, a graph G is said to be co-chordal if
G is chordal. A graph G is called a 2K,-free graph if it is connected and does not
contain two independent edges as an induced subgraph. For a connected graph G,
the following hold in general:

o G is 2K,-free < any cycle of G of length 4 has a chord in G;
e (G is co-chordal = G is 2Ks-free,
Moreover, it is known (e.g., [2]) that
Lemma 2.1.2. Let G be a connected graph. Then,
(a) If G is co-chordal, then any cycle of G of length > 5 has a chord;

(b) If G is 2Ks-free, then any cycle of G of length > 6 has a chord.
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The toric ideals I of 2K,-free graphs G have been studied in [4, 26]. The edge
ideals I(G) of 2Ks-free graphs G are studied by many researchers, such as in [20]
and [21]. (Note that these papers call 2Ks-free graphs a different name.)

Now, we characterize the toric ideals Iz of G that are generated by quadratic
binomials in terms of 2K5-free graphs.

Theorem 2.1.3. Let G be a finite connected graph. Then, the following conditions
are equivalent:

(a) Ig is generated by quadratic binomials;
(b) G is 2Ks-free and I is generated by quadratic binomials;
(¢) G is 2Ky-free and satisfies condition (a) in Proposition 1.3.3.

Proof. ((a) = (b)) Suppose Iz is generated by quadratic binomials. Using Propo-
sition 2.1.1, we know [ is also generated by quadratic binomials. We have to show
that G is 2Ks-free. For a proof by contradiction, let us assume that G is not 2K5-
free. Then we have a pair of disjoint edges, say {i,j},{k,(} € E(G) such that
none of {i, k}, {i,1}, {7, k},{J,1} is an edge in G. By the definition of suspension of
graphs, G has the graph in Figure 2.1 as an induced subgraph. This contradicts the
fact that I is generated by quadratic binomials. Hence G is 2K,-free.

Figure 2.1: Two triangles with one common vertex.

((b) = (c)) is obvious by Proposition 1.3.3.

((c) = (b)) Suppose G is 2K,-free and satisfies the condition (a) in Proposition
1.3.3. Let C,Cy be a pair of minimal odd cycles of G. Suppose C; and C5 have a
vertex v in common. Then, there exist an edge {7, j} in C; and an edge {k, [} in Cy
such that i, j,k,1 # v. Since G is 2Ks-free, at least one of {i, k}, {71}, {j, k}, {J,(}
is an edge in G. Therefore, the condition (b) in Proposition 1.3.3 is satisfied. Next,
we show that condition (c) in Proposition 1.3.3 is also satisfied. Let Cj, Cy be the
vertex disjoint pair of minimal odd cycles of G. For each pair of edges {i,j} in C}
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Figure 2.2: An even cycle with three odd chords.

and {k,l} in Cy, we have at least one of {7, k}, {i,1}, {7, k}, {J,l} in E(G). Since C4
has at least 3 vertices, we have at least 2 bridges between C; and Cs.

((b) = (a)) Suppose I is generated by quadratic binomials and G is 2K,-free.
We show that I is generated by quadratic binomials. We now check conditions (a),
(b) and (c) in Proposition 1.3.3. Note that if there exist cycles in G which do not
satisfy the condition (a), (b) or (c¢) in Proposition 1.3.3, then the vertex n + 1 must
be contained in these cycles. Otherwise, the cycles which do not contain n 4 1 also
appear in G, contradicting the fact that I is generated by quadratic binomials. Let
C be an even cycle of length > 6 in G. If the cycle C contains the vertex n + 1,
then since n + 1 is incident with any other vertex, we have an even chord. Hence
the condition (a) in Proposition 1.3.3 is satisfied.

Now let C'; and (5 be minimal odd cycles in G having exactly one common vertex
v. If v =n 4+ 1, then minimality of the cycles requires that C; and Cy are cycles of
length 3. Then, we have edges {i,j} in Cy and {k, [} in Cy. Since G is 2K,-free, we
have at least one of {7, k},{4,1},{j,k},{J,l} in E(@) Suppose v # n + 1. We may
assume the vertex n + 1 is contained in ;. Then, since the vertex n + 1 is incident
with any other vertex, we have the condition (b) in Proposition 1.3.3.

Finally, assume that C'; and C5 are minimal cycles in G having no common
vertex. Also, assume that n+1 is contained in C;. Then, it is clear that we have at
least three bridges since n+ 1 is incident with any other vertex in GG. Thus, we have
the condition (c) in Proposition 1.3.3. Hence, the three conditions are equivalent,
as desired. O

Example 2.1.4. There is no implication between the conditions (1) /¢ is generated
by quadratic binomials and (2) G is 2K,-free.

(a) Let G be the graph in Figure 2.2. Then, I is not generated by quadratic
binomials. On the other hand, G is 2K,-free.
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(b) If G is a bipartite graph consisting of a cycle C' of length 6 and a chord of C,
then I is generated by two quadratic binomials. On the other hand, G is not
2 K5-free.

These examples show that both (1) = (2) and (2) = (1) are not true.

By using the theory of the Rees algebra of edge ideals, we now give a necessary
condition for Iz to have a quadratic Grobner basis as follows:

Proposition 2.1.5. Let G be a connected graph. If 15 possesses a quadratic Grobner
basis, then G is co-chordal.

Proof. Suppose Iz has a quadratic Grébner basis. It is known from [10, Corollary
10.1.8] that each power of the edge ideal I(G) of G has a linear resolution. Hence,
I(G) itself has a linear resolution. By Froberg’s theorem [10, Theorem 9.2.3], G is
co-chordal, as required. O

The converse of Proposition 2.1.5 is not true. See Example 2.1.10 later in this
section. However, if GG is bipartite, then we have equivalent conditions as below.

Theorem 2.1.6. Let G be a bipartite graph. Then, the following conditions are
equivalent:

(a) Ig is generated by quadratic binomials;

)
(b) Is possesses a quadratic Grébner basis;
(¢) G is 2Ky-free;

)

(d) G is co-chordal.

Proof. First, (d) = (c) is trivial. By Proposition 2.1.5, we have (b) = (d).

((c) = (a)) Suppose G is 2K,-free. Since G is bipartite, Proposition 1.3.1 shows
that we have no odd cycles in G. By Lemma 2.1.2, every even cycle of G has an even
chord. Therefore, Proposition 1.3.4 guarantees that Is is generated by quadratic
binomials. Hence, (a) follows from Theorem 2.1.3.

((a) < (b)) Since G is bipartite, any odd cycle of G has the vertex n + 1. Then
by [27, Proposition 5.5], there exists a bipartite graph G’ such that I5 = Ir. By
Proposition 1.3.4, I is generated by quadratic binomials if and only if I possesses
a quadratic Grobner basis. Thus, the four conditions are equivalent, as desired. [

If G is not bipartite, then the conditions (a) and (b) in Theorem 2.1.6 are not
equivalent. In fact,

Example 2.1.7. Let G be a cycle of length 5. Then, G is also a cycle of length
5. Hence G is not co-chordal, but is 2Ks-free. By Theorem 2.1.3 and Proposition
2.1.5, Iz is generated by quadratic binomials and has no quadratic Grobner bases.
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We say a graph G is sort-closed if there exists a labeling of vertices of G which
satisfies the following condition:

e Each vertex of GG is identified with a vertex in a regular n-gon in a plane labeled
clockwise from 1 to n. For each pair of vertex disjoint edges {i, 7}, {k,l} €
E(G), if they do not intersect in a plane, then the pair of intersecting edges
determined by {1, j, k,} also belong to E(G).

The following proposition immediately follows from [34, Chapter 9].

Proposition 2.1.8. Let G be a connected sort-closed graph. Then, I possesses a
quadratic Grobner basis.

Proof. Tt is known from [34, Theorem 9.1] that the toric ideal of the complete graph
K, has a Grobner basis G,, consisting of quadratic binomials x;x; — z;; attached to
a cycle of length 4, where the initial monomial x;x; comes from a non-intersecting
pair of edges and the non-initial monomial z,x; comes from a pair of intersecting
edges. We claim that a Grobner basis of I can be obtained from this Grobner
basis by eliminating the variables that do not appear in G. Since G is sort-closed,
it is easy to see that the condition in the elimination theorem (Proposition 1.1.10)
is satisfied. Thus, I has a quadratic Grobner basis. U

Recall that a finite connected simple graph G is called (x)-minimal if G satisfies
the condition

(%) Ig is generated by quadratic binomials and I possesses no quadratic Grébner
bases

and if no induced subgraph H (# G) of G satisfies the condition (x). The suspension
graph G given in Example 2.1.7 is a (*)-minimal graph. We now generalize this
example and give a nontrivial infinite series of (*)-minimal graphs.

Theorem 2.1.9. Let G be the graph on the vertex set [n| whose complement is a
cycle of length n. If n > 5, then G is (x)-minimal, i.e., G satisfies the following:

(a) Ig is generated by quadratic binomials;

(b) Ig has no quadratic Grébner bases;

(¢) For any induced subgraph H (# (A}’) of G, the toric ideal Iy of H possesses a
quadratic Grobner basis.

Proof. Since a cycle of length n > 5 is not chordal, (b) follows from Proposition 2.1.5.
We will show (c) using Proposition 2.1.8. Since we have Proposition 2.1.1, it suffices
to show that I; and I5 have quadratic Grébner bases, where G’ is the graph with
n vertices whose complementary graph G’ is a path of length n — 1. First, we show
that G is sort-closed. Let the edges {1,2},{2,3},...,{n —1,n}, {1,n} form a cycle
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in G. Then, all the possible intersecting pairs of edges in G belong to F(G). Thus, G
is sort-closed. Next, we show that G’ is sort-closed. Let {1,2},{2,3},...,{n—1,n}
be the path of length n — 1 contained in G’. Then, all the possible intersecting pairs
of edges again belong to E(G’). Thus, G’ is sort-closed. Hence we have (c).

Next, we will prove (a). By the condition (b), I is generated by quadratic
binomials. Since G is a cycle of length > 5, G has no cycle of length 4 and so G is
2K,-free. By applying Theorem 2.1.3, we have (a).

Moreover, since G is the cycle of length n > 5, Thus, we have (a) by Theorem
2.1.3 as desired. O

Even if G is co-chordal, G may be (*)-minimal:

Example 2.1.10. Let G be the graph whose complement is the chordal graph in
Figure 2.2. Then, I is generated by quadratic binomials since G is co-chordal (and
hence 2Ks-free) and I = (0). On the other hand, computational experiments in
Section 2.2 will show that G is (*)-minimal.

2.2 Computational experiments

In this section, we use various computer programs to enumerate all finite con-
nected simple graphs G with up to 8 vertices that satisfy the condition (x). Propo-
sition 1.3.3 is key to our enumeration method.

Proposition 1.3.3 gives an algorithm to determine if a toric ideal I is generated
by quadratic binomials. Since the criteria in Proposition 1.3.3 are characterized
by cycles of GG, we need to find all even cycles and minimal odd cycles of G to
implement the algorithm. CyPath [35] enabled us to find all cycles. CyPath is an
enumeration program of paths and cycles implemented by T. Uno. The algorithm
from Proposition 1.3.3 is used at step (2) of the following procedure to search for
graphs satisfying (k).

(1) Use nauty [17] to generate all connected simple graphs with n vertices up to
graph isomorphism.

(2) By using Proposition 1.3.3, classify graphs G whose toric ideals I are gener-
ated by quadratic binomials.
If I is generated by quadratic binomials, then G is added to the list of can-
didates of graphs satisfying (x).

(3) For each graph G in the list of candidates, repeat (a), (b) and (c) 10000 times
or a quadratic Grobner basis is found.

(a) Rondomly choose a weight vector w on each iteration.

(b) Compute a Grébner basis of the toric ideal I with respect to the chosen
weight vector w with Risa/Asir [22].
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(c) If the Grobner basis is quadratic, exclude the graph G from the list of
candidates.

(4) Check the Koszulness of the edge ring K[G] of each candidate graph using
Macaulay2 [9]. It is known (see, for example, [25]) that if K[G] is not Koszul
then I; has no quadratic Grobner bases. If K[G] is not Koszul, then we
exclude the graph G from the candidates. If Koszulness cannot be determined,
compute all Grobner bases using TiGERS [16].

In our experimentation, we computed step (2) 10000 times in the case of 8 ver-
tices. We thus obtained 214 graphs as remaining candidates, 213 of which were not
Koszul using Macaulay2. The last is indeterminable by computational methods in
our environment. However, Theorem 2.1.9 tells us that it has no quadratic Grobner
basis, because it is the suspension of the complement graph of a cycle whose length
is 7. Thus, we completed the classification of finite graphs with 8 vertices. Table
2.1 shows the numbers of (1) the connected simple graphs, (2) the graphs whose
toric ideals I are generated by quadratic binomials (including the number of zero
ideals), and (4) the graphs satisfying (x) (including the number of the graphs which
have degree 1 vertices).

vertices (1) (2) (4)
3 2 2 (2] 0
1 6] 6 (3)] 0
5 21 20 (7)] O
6 112 95 (4)]| 1 (0
7 853 | 568 (34) | 14 (2)
8 11117 | 4578 (78) | 214 (51)
Table 2.1:

The graph with 6 vertices satisfying (x) is the graph given in Example 2.1.7. The
list of graphs with 7 vertices satisfying () are given on the next page. Figures 2.5,
2.8, 2.14, 2.15 and 2.16 are (*)-minimal. Figure 2.15 belongs to the infinite series
presented in Theorem 2.1.9 and Figure 2.5 is the (*)-minimal graph introduced in
Example 2.1.10. The list of graphs with 8 vertices satisfying (x) is available at

URL: http://cr.math.sci.osaka-u.ac.jp/ a-shikama/
website/minimalgraphs/minimalgraphs.html
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Chapter 3

Polyominoes and polyomino ideals

In this chapter, we classify some classes of polyominoes whose polyomino ideals
are prime. In Section 3.1, we introduce the concept of balanced polyominoes and
show that the polyomino ideals of balanced polyominoes are prime. In Section 3.2,
we show that initial ideals of polyomino ideals of balanced polyominoes are gener-
ated by squarefree monomials with respect to any monomial order. In Section 3.3,
we show that the polyomino ideals of simple polyominoes are prime. This result
completely answers Conjecture 1.4.2 presented by Qureshi in [28]. Finally, in Sec-
tion 3.4 we discuss the polyomino ideals of the polyominoes obtained by removing
a convex polyomino from its ambient rectangle. We find a toric ring generated by
monomials of degree two or three which is isomorphic to the ring K[P] associated
with such polyominoes, which immediately implies that Ip is prime.

3.1 The ideal of inner minors of a polyomino

Let P be a polyomino and let K be a field. Let S = Klz;; | (i,7) € V(P)] and
let Ip C S be the polyomino ideal as defined in Section 1.4. We set K[P] = S/Ip.

According to [28], an integer value function o : V(P) — Z is called admissible
if, for all maximal horizontal and vertical edge intervals Z of P, it holds that

Z ala) = 0.

a€l

Figure 3.1 shows an example of an admissible labeling of a polyomino. For a
given admissible labeling o, we define the binomial

fo = H xg(a)_ H x;a(a)’

acV(P) a€V(P)
a(a)>0 a(a)<0

Let Jp be the ideal generated by the binomials f, where « is an admissible
labeling of P. It is easy to see that Ip C Jp. We say a polyomino P is balanced, if
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Figure 3.1: An admissible labeling

Ip = Jp holds. This is if and only if for any admissible labeling «, the binomial f,
belongs to Ip.

Consider the free abelian group G = @, ; ey (p) Ze;; With basis elements e;;. To
any cell C' = [(2,7), (i + 1,j + 1)] of P we attach the element bo = €;; + €i11,j+1 —
€i+1,; — €ij+1 in G and let A € G be the lattice spanned by these elements.

Lemma 3.1.1. The elements bo form a Z-basis of A and hence rankz; A = |P|.
Moreover A is saturated. In other words, G/A is torsionfree.

Proof. We order the basis elements e;; lexicographically. Then the leading term of
bc is e;;. This shows that the elements b¢ are linearly independent and hence form
a Z-basis of A. We may complete this basis of A by the elements e;; for which (¢, j)
is not a lower left corner of a cell of P to get a basis of G. This shows that G/A is
free and hence torsionfree. O

The lattice ideal attached to A is generated by all binomials

fe I o= I o

a€V(P) a€V(P)
vg >0 vq <0

with v = (Va)acv(p) € A
Proposition 3.1.2. Let P be a balanced polyomino. Then Ip = Jp = I,.

Proof. First, since each inner 2-minor is just a sum of suitable elements b¢, it is clear
that Ip C I,. It is enough to show that for any v € A, there exists an admissible
labeling « of P such that v, = a(a) for all @ € V(P). Since the elements b form a
Z-basis of A, there exist integers zc € Z(C € P) such that v =3, zcbc. We set
o= cep zcac where for C = [(4,7), (i + 1,5 + 1)],

1, if (k)= (i,7)o0r (k1)=(i+1,j+1),
ac((k, 1) =4 —1, if (k1) = (i +1,5) or (k,1) = (3,5 + 1),

0, otherwise.

Then, a(a) = v, for all a € V(P). Since each a¢ is an admissible labeling and since
any linear combination of admissible labelings is again admissible, this concludes
the proof. O
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Corollary 3.1.3. If P is a balanced polyomino, then Ip is a prime ideal of height
|P|, where |P| is the number of cells in P.

Proof. By Proposition 3.1.2, Ip = I, and by Lemma 3.1.1, A is saturated. It follows
that Ip is a prime ideal, see [18, Theorem 7.4]. Next, it follows from [6, Corollary
2.2] (or [18, Proposition 7.5]) that height Ip = height I, = rankz A, Since we have
that rankz A = |P| from Lemma 3.1.1, this completes the proof. O

3.2 Primitive binomials of balanced polyominoes

The purpose of this section is to identify the primitive binomials of polyomino
ideals of balanced polyominoes. This will allow us to show that the initial ideal of
Ip is a squarefree monomial ideal for any monomial order.

The primitive binomials in Ip are determined by cycles. A sequence of vertices
C=ay,...,ay in V(P) with a,, = a1 and a; # a; for 1 <i < j <m —11is called a
cycle in P if the following conditions hold:

(a) [a;, a;41] is a horizontal or vertical edge interval of P for all i =1,...,m — 1;

(b) for i = 1,...,m — 1, if [a;,a;41] is a horizontal edge interval of P, then
[a;i1,a;40] is a vertical edge interval of P, and vice versa. Here, a,,.1 = as.

ay a2

a3 4

Figure 3.2: A cycle (left) and a non-cycle (right) in P

Note that by definition of the cycle, m — 1 is even. Given a cycle C, we attach

to C the binomial
m—1)/2 (m—1)/2

(m—-1)
fe= H Lagi1 — H Lag;
i=1 i=1

A cycle C in P is said to be primitive if each maximal interval of P contains at most
two vertices of C.

Theorem 3.2.1. Let P be a balanced polyomino.
(a) Let C be a primitive cycle in P. Then fe € Ip.

(b) Let f € Ip be a primitive binomial. Then there exists a primitive cycle C in
P such that f = +fc.
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Proof. (a) Let C = a4, ..., a, be a primitive cycle in P. We set the labeling « of P
by setting a(a) = 0 if a ¢ C and a(a;) = (—1)"! for i = 1,...,m. We claim that «
is an admissible labeling of P. For each maximal horizontal or vertical edge interval
Z, it ZNC = 0 then we have a(a) = 0 for all a € Z. If ZNC # ), Then since the
cycle is primitive we have exactly two vertices that are consecutive in the cycle, say
a;,a;+1 € ZNC such that a(a;) # 0, a(a;1) # 0. By the definition of the labeling,
each two consecutive vertices in C have opposite signs. Therefore we see that « is
admissible and so f = f, € Jp. Hence, since P is balanced, we have f € Ip.

(b) Let f € Ip be a primitive binomial. Since P is balanced and f is irreducible,
[28, Theorem 3.8(a)] implies that there exists an admissible labeling o such that
f = fa- We choose a; € V(P) such that a(a;) > 0. Let Z; be the maximal
horizontal edge interval to which a; belongs. Since « is admissible, there exists
at least one vertex, say ay € Z;, such that a(ay) < 0. Similarly, let Z, be the
vertical edge interval to which as belongs. Then, we find a vertex as € Z, such
that a(az) > 0. In the next step, we find a vertex from a maximal horizontal edge
interval to which as belongs. By continuing this operation, we obtain a sequence of
vertices of P ay, as, ... such that a(a;) < 0 for even i and a(a;) > 0 for odd 4. Since
V('P) is a finite set, there exists a number m such that a; # a; forall 1 <i < j <m
and a,, = a; for some ¢ < m. Let m be the minimum number which satisfies this
condition. Then, the sequence C : a;, a;y1,...,a, is a cycle in P. If ¢ is odd, then
f& divides ff and f; divides f,. If i is even, then fJ divides f, and f; divides
[k, Hence, since f is primitive, f = +fc

We now show that C is a primitive cycle. Suppose that there exists a maximal
vertical or horizontal edge interval Z such that at least 3 vertices of C belong to Z.
We may assume that 7 is a horizontal edge interval. By the definition of cycle in a
polyomino, we observe that ag,asi1,a; € C with s +2 < t. Also, we see from the
definition of cycle that a;_; or a;y1 , say a;y1, belongs to Z. Since Z is a horizontal
edge interval, both s and ¢ are odd. Then, we can construct a subsequence C’ of C
as follows: C' : a;,...as_1as, Gy, G441, . Thus, we see that C’' is a cycle of P such
that f3 divides f7 and f,, divides f;. This contradicts that fe = & f is a primitive
binomial. Thus , C is a primitive cycle.

By using (a), we obtain fe € Ip, as desired. O]

The above theorem gives the following corollaries. Recall that we say a Grobner
basis G of a binomial ideal I C S is squarefree if every monomial appearing in G is
squarefree.

Corollary 3.2.2. Let P be a balanced polyomino. Then Ip has a squarefree Grobner
basis with respect to any monomial order.

Proof. By Corollary 3.1.3, Ip is a prime ideal. It is known that the binomial prime
ideals are toric ideals [7, Theorem 5.5]. Also, it is known that the set of primitive
binomials of a toric ideal is a universal Grobner basis (Proposition 1.1.9). Since by
Theorem 3.2.1, the primitive binomials of I have squarefree initial monomials with
respect to any monomial order, we have the conclusion. O
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Corollary 3.2.3. Let P be a balanced polyomino. Then K[P] is a normal Cohen—
Macaulay domain of dimension |V (P)| — |P]|.

Proof. A toric ring whose toric ideal has a squarefree initial ideal is normal [34,
Chapter 8]. By a theorem of Hochster, ([1, Theorem 6.3.5]) a normal toric ring is
Cohen—Macaulay. By Proposition 3.1.2, we see that height I» = |P|. Since K[P] is
Cohen—Macaulay, it holds that the Krull dimension of K[P] is equal to |V (P)|—|P],
as desired. O

Later Herzog and Saeedi Madani proved the following:
Theorem 3.2.4 ([11]). Let P be a simple polyomino. Then P is balanced.

This theorem and Corollary 3.3.4 given in the next section completely answer
Qureshi’s conjecture (Conjecture 1.4.2).

3.3 Simple polyominoes are prime

In this section, independent of Theorem 3.2.4, we prove Qureshi’s conjecture
by finding a toric ring which is isomorphic to the quotient ring K[P] of a simple
polyomino. Our argument is much simpler than that of Theorem 3.2.4 given in [11].
We also give another interesting result: If P is simple, then Ip has a squarefree
quadratic Grobner basis.

Let {V1,...,Viu} be the set of maximal vertical edge intervals and {H;, ..., H,}
be the set of maximal horizontal edge intervals of P. We denote by G(P), the
associated bipartite graph of P with vertex set {vy,..., v} | [{h1,...,h,} and edge
set

E(G(P)) = {{vi, hy} [ Vin Hy € V(P)}.

Example 3.3.1. Figure 3.3 shows a polyomino P with maximal vertical and maxi-
mal horizontal edge intervals labeled as {Vi,...,V5} and {H, ..., Hy} respectively,
and Figure 3.4 shows the associated bipartite graph G(P) of P.

Hy
Vi , Vi
Va Vs
s Vs
Hy

Figure 3.3: Maximal intervals of P
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Vi Ve Vs Vi Vs

hw h2 ha h4

Figure 3.4: Associated bipartite graph of P

Let S be the polynomial ring over a field K with variables z;; with (4, 5) € V(P).
Note that |V, NH,| < 1. If V,NH, = {(,j)}, then we can write x;; = zv,nq,, when
required. For each cycle C : v;,, hj,, viy, hjy, . .., 05, by in G(P), we associate a bino-
mial in S given by fe = Ty, nH;, TV nH;, TV NH,, — TVi,NHy, TVinH, * TV OH;, -

Note that if C : v, hj,,viy, hjy, ..., v;,, hj defines a cycle in G(P), then the
sequence of vertices Cp : V;, N H;,,V,, " H;, Vi, " Hj,,...,V;, " H; Vi, NHj is a
primitive cycle in P and vice versa. Also, fe = fe,.

We set the edge ring of G(P) by K[G(P)] = K[vyh, | {p,q} € E(G(P))|C T =
Klvy,...,0m, h1,... hy). Let w: S — T be the surjective K-algebra homomorphism
defined by ¢(x;;) = v,hy, where {(4,j)} = V,NH,. We denote by Lp, the toric ideal
of K[G(P)]. It is known from Proposition 1.3.3 that Lp is generated by the binomials
associated with cycles in G(P).

Let P be a polyomino and let [a,b] an interval with the property P C [a,b].
We recall from graph theory that a graph is called weakly chordal if every cycle of
length greater than 4 has a chord. To prove the following lemma, we introduce
some notation. We say that a cycle Cp : ay,a9,...,a, in P with a,, = a; has a
self-crossing if there exist indices ¢ and j such that a;,a;41 € Vi and a;,a,41 € Hy,
and a;, a;41,a;,a;41 are all distinct, and Vi N H; # 0. For example, the left side

as ay
by by

as bs bg

bg

ag ar 7

aio ag 12 by

Figure 3.5: Cycles with no self-crossing (left) and two self-crossings (right)

of Figure 3.5 is a cycle with no self-crossing and the right is a cycle with two self-
crossings. When there is a self-crossing, if C is the associated cycle in G(P), then it
holds that {vg, i} € E(G(P)), which gives a chord in C.

Let Cp : ay,as,...,a, be acycle in P that does not have any self-crossing. Then,
we call the area bounded by edge intervals [a;, a;41] fori € {1,...,r—1} the interior
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of Cp. Moreover, we call a cell C' an interior cell of Cp if C' belongs to the interior
of Cp .

Lemma 3.3.2. Let P be a simple polyomino. Then, the graph G(P) is weakly
chordal.

Proof. Let C be a cycle of G(P) of length 2r with n > 3 and Cp be the associ-
ated primitive cycle in P. We have no self-crossings in Cp since otherwise, by the
definition of self-crossing, we know that C would have a chord.

Let C : vy, hj, vig, Ry ..., 05, Ry and Cp 2 VN H; Vi, M H, Vi, M HG,, 0V N
H; ViyNH; . We may write a; = V;, NHj,, a0 = V;,NH; a3 = Vi,NHjy, ..., a2p—1 =
Vi,NH; , a9 = V;,NHj, . Further, we may assume that a; and ay belong to the same
maximal horizontal edge interval. Then, as, and a; belongs to the same maximal
vertical edge interval.

First, we show that every interior cell of Cp belongs to P. Suppose that we have
an interior cell C' of Cp which does not belong to P. Let J be any interval such
that P C J. Then, using the definition of a simple polyomino, we obtain a path
of cells C = C1,Cy,...,Cy with C; ¢ P, i =1,...,t and C} is a boundary cell in
J. This shows that V(Cy) UV (Cy) U...UV(Cy) intersects at least one of [a;, a;41]
for i € {1,...,2r — 1} or [a,, a;], which is not possible because Cp is a cycle in P.
Hence C € P. Thus, an interval in the interior of Cp is an inner interval of P.

Let Z be the maximal inner interval of Cp to which a; and as belong and let b, ¢
be corner vertices of Z. We may assume that a; and c are the diagonal corners and
ay and b are the anti-diagonal corners of Z. If b,c¢ € V(Cp), then the primitivity of
C implies that C is a cycle of length 4. We may assume that b ¢ V(Cp). Let H' be
the maximal horizontal edge interval which contains b and ¢. The maximality of Z
implies that H' NV (Cp) # 0. For example, see Figure 3.6. Therefore, {v;,,h'} is a
chord in C, as desired.

oot e L

0 c
z T

ap as ay %

Figure 3.6: Examples of maximal inner intervals of polyominoes

Theorem 3.3.3. Let P be a simple polyomino. Then Ip = Lp.

Proof. First, we show that Ip C Lp. Let f = x;;21 — xy2; € Ip. Then, there exist
maximal vertical edge intervals V), and V, and maximal horizontal edge intervals
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H,, and H, of P such that (i, 7), (i,1) € V,, (k,j), (k,1) € V, and (4, ), (k,j) € Hpm,
(¢,1), (k,1) € H,, leading to 7(z;;zk) = vpvshmhy, = m(zyzy;). Thus, f € Lp.

Next, we show that Lp C Ip. Using Proposition 1.3.4, we know that the toric
ideal of weakly chordal bipartite graph is minimally generated by quadratic binomi-
als associated with cycles of length 4. It suffices to show that fo € Ip where C is a
cycle of length 4 in G(P).

Let Z be an interval such that P C Z. Let C : hy, vy, ho,v9. Then, Cp : a1 =
H NVi,as1 = HyNVy, ass = Hy NV and a9 = Hy N V5 is the associated cycle in P
which also determines an interval in Z. Let ay; and asy be the diagonal corners of
this interval. We need to show that [a11, ags] is an inner interval in P. Assume that
[a11, ass] is not an inner interval of P, that is, there exists a cell C' € [aj1, age] which
does not belong to P. Using the fact that P is a simple polyomino, we obtain a path
of cells C' = C4,Cy,...,C. with C; ¢ P, i=1,...,r and C, is a boundary cell in Z.
Then, V(C1U...UC,) intersects at least one of the maximal intervals Hy, Hy, Vi, V5,
say Hi, which contradicts the fact that H; is an interval in P. Thus, every cell C
in the interval [a;1, age] belongs to P. Hence, [a11, as)] is an inner interval of P and
fe € Ip.

O

Corollary 3.3.4. Let P be a simple polyomino. Then K[P] is a normal Cohen—
Macaulay domain.

Proof. By using Proposition 1.3.4, we know that Lp = Ip has a squarefree quadratic
Grobner basis with respect to a suitable monomial order. By the theorem of Sturm-
fels [34], it holds that K[P] is normal and then following a theorem of Hochster [1,
Theorem 6.3.5], it holds that K[P] is Cohen—Macaulay. O

3.4 Toric rings of nonsimple polyominoes

In this section, we generalize the result given in [32]. In general, it is interesting,
but not so easy, to find a toric ring which is isomorphic to the quotient ring of a
given binomial prime ideal. In [32], the author find a toric ring which is isomorphic
to K[P], where P is a polyomino obtained by removing a rectangle from its ambient
rectangle.

We work with a polyomino which is obtained by removing a convex polyomino
from its ambient rectangle and give its toric representation. It is proved in [15] that
the polyomino ideals of this class is prime.

Recall from [19] that a simple polyomino is called a one-sided ladder if it is of
the type shown in Figure 3.7. The sequence of vertices aq, ..., as of the corners of
one-sided ladder P excluding the opposite corner of the ladder is called the defining
sequence of P if each a; and a;;; are in the horizontal or vertical position. For
example, the sequence ay,as,...,a;; in Figure 3.7 is the defining sequence of this
one-sided ladder.

38



Figure 3.7: A one-sided ladder

To prove the main theorem, we give some properties of convex polyominoes.

Lemma 3.4.1. Let P be a convex polyomino and let T be the unique minimal interval
such that P C Z. Then,

(a) Z\ P consists of at most 4 connected components;
(b) each connected component of T\ P contains exactly one corner vertex of Z;

(c) each connected component of T\ P is a one-sided ladder.

Let P be a convex polyomino. A vertex of P is called an outside corner if it
belongs to exactly one cell of P. On the other hand, a vertex of P is called an inside
corner if it belongs to three cells of P. A vertex is called an interior vertex if it
belongs to four cells of P. The boundary vertices of P are the vertices of P which
are not interior vertices. A cell of P is called an interior cell if all of its 4 vertices
are interior vertices. A cell of P is called a boundary cell if it is not an interior cell.
We denote by 9P the set of boundary vertices of P.

To each interval [a, b], we attach a polyomino P, in the obvious way. Such a
polyomino is called a rectangle. Hereafter, let P be a polyomino which is obtained
by removing a convex polyomino Q from its ambient rectangle Pj,;. We assume
OPlap NOQ = 0; otherwise, P is a simple polyomino and its toric representation is
already well studied in Section 3.3. We further assume that a = (1,1) and b = (m, n).

We define two types of intervals of P as follows:

(i) For the lowest corner e among all most left outside corners of Q, let Z, = [a, €.
(ii) The maximal vertical or horizontal edge intervals Z of P.

For example, for a given polyomino, the intervals of types (i) and (ii) are displayed
in Figures 3.8, 3.9.

We denote the set of intervals of types (i) and (ii) by €. We define a map
B :V(P) — K[{uz}zeq) by v — H uz. Now, we define the toric ring and the toric

vEL
e

ideal. The toric ring denoted by T' is defined as
T = K[B(v) |veV(P)] € K[{uz}zeql.
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(m,n)

(1,1)

Figure 3.8: (i) Interval Z, of a polyomino

(m,n)
|

\
(1,1) mmmmmnn

Figure 3.9: (ii) Edge intervals of a polyomino

Let ¢ : S — T be the surjective ring homomorphism with the setting ¢(x;;) =
B((7,7)). The toric ideal Lp is the kernel of ¢. We claim that Lp = Ip. In order to
prove this, we will repeatedly use the next lemma.

For any binomial f = f*— f~ € Lp, we write V, is the set of vertices v such that
x, appear in f*. V_ is defined similarly. A binomial f in a binomial ideal I C S is
said to be redundant if it can be expressed as a linear combination of binomials in
of lower degree. A binomial is said to be irredundant if it is not redundant.

Lemma 3.4.2. Let f = f* — f~ be a binomial of degree > 3 belonging to Lp. If
there exist three vertices p,q € Vi and v € V_ such that p,q are diagonal (anti-
diagonal) corners of an inner interval and r is one of the anti-diagonal (diagonal)
corners of the inner interval, then f is redundant in Lp.

Proof. Let s be the other corner of the interval determined by p,q and r. Then,

f=f-f
fr _
= I, T, —
P qxpxq f
+ + -
= (zp2y — 2,25) / + 2,2 / —xrf—
pLq pTq Ly
+ + -
= (zpzy— xr:ps)f— + z, (:ps / — f—) )
Tply TpTy Ty



Since x,x, — =, is an inner minor of P and since Lp is a toric ideal, this completes
the proof. O

Theorem 3.4.3. Let P = Pya,1),(mn) \ @ be a polyomino where Q C Pja1),(mn)] S
a convex polyomino. Then Ip = Jp.

Proof. 1t is easy to see that Ip C Lp. In order to prove Lp C Ip, it suffices to show
that every binomial of degree 2 in Lp belongs to Ip and that every irredundant
binomial in Lp is of degree 2. First, we show that every binomial f € Lp of
degree 2 belongs to Ip. Suppose f = z,x, — x,2s € Lp is a binomial such that
{p.q} # {r,s}.

Since ¢(z,7,) = ¢(z,x5), we may assume that [p,¢] is an interval which has r
and s as its anti-diagonal corners. Assume the pair p and r and the pair s and ¢
belong to the same horizontal edge interval. Then we see that the pair p and s and
the pair r and ¢ belong to the same vertical edge interval. If [p, ¢] is an inner minor
of P, then we are done. Suppose that [p, ¢| is not an inner interval. Then we have
either @ C Ppq or Q & P q and QNP g # (). Suppose that Q@ C Pip,q- We see
that p € Z, and q,r, s ¢ Z., where Z, is the interval given in Figure 3.8. Then, we
have uz, |¢o(x,) and uz, |¢(z,25s), which contradicts x,z, — x,2, € Lp. Hence, this
case is not possible. Suppose Q ¢ Py, 4 and [p,¢] is not an inner interval of P. We

see that at least one of [p,r], [p, s, [s, ¢] and [r, ¢] is not an edge interval in P. Say
[p, r] is not an edge interval in P.

J p% }_‘7’

Figure 3.10: A maximal interval

Suppose J € € is the maximal horizontal edge interval to which p belongs. Since
TpT, — T, Ts € Lp, we see that uy|p(z,) and, hence, uy|p(z,xs). This contradicts
that neither r nor s belongs to J (see Figure 3.10). Hence, this case is not possible.
Thus, every binomial f € Lp of degree 2 belongs to Ip.

We now show that every binomial f € Lp with deg f > 3 is redundant. Suppose
f = f*t— f~ is an irredundant binomial with deg f > 3.

First, we show that there does not exist any vertex v € V, UV_ such that v € Z,
where Z, is the interval shown in Figure 3.8. To show this, suppose the contrary,
that is, that there exists v; € V., NZ.. Since ¢(fT) = ¢(f7), we have a vertex
v € V_ such that v] € Z.. We also have a vertex v4 such that v; and v} belong to
the same maximal vertical edge interval. We see that there exists a vertex vy € V.
such that vy and v] belong to the same horizontal edge interval of P.
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If v} and v; are in the same horizontal edge interval, then by applying Lemma
3.4.2 to the vertices vy, v}, v}, we obtain that f is redundant, which is a contradiction.
Using the same argument, we see that vy & Z,

Suppose v; and vy are in the same vertical edge interval. Assume v; is lower
than v]. Using Lemma 3.4.1 (c), we observe that vy, vq, v} are three corners of an
inner interval. Applying Lemma 3.4.2; we see that f is redundant. Similarly, if v} is
lower than vy, we obtain that f is redundant. Hence, this case is not possible.

Finally, assume that v; and v} are not in the same edge intervals. If v; and vy
belong to the same vertical edge interval, then, by applying Lemma 3.4.2 to the
vertices vq, v}, vy, we are done. Assume the second coordinate of vy is lower than
that of v]. Let g,h be the other corners of the inner interval defined by v] and
vy. Assume v,v5 and g belong to the same vertical edge interval. Then we have
Ty Ty — TyTp € Lp and

f= 11—
_ ot
- f B :L‘v’lxvé .TUIISU ’
_ B} /-
= [T — (v xy, — x4p) — Ty ———

Let f' = f"*" —f'~ = [t —zgz) Jj; - and let V] and V'’ be the vertices appearing
U1 V2

in f* and f'~. Note that since f and x, 2, — x4) are binomials belonging to Lp,
it holds that f’ € Lp.

Then, by applying Lemma 3.4.2 to the vertices v;,v, € V| and g € V', we obtain
that fis redundant, which implies that f is redundant. Thus, the vertices appearing
in f do not belong to Z,. In other words, we have f € LpNK{z;; | (i,)) € V(P)\Z.].

Let P’ be the subpolyomino of P which consists of all cells of P having no vertices
belonging to Z.. Then, we have Ip = Ip N Klx;; | (i,7) € V(P) \ Zc]. We observe
that P’ is a simple polyomino. Notice that 5(v) for each v € P \ Z, is a monomial
of degree 2 determined by the maximal horizontal and vertical edge intervals to
which v belongs. Then, it is known from Theorem 3.3.3 that Ipr = Ip N K[z;; |
(i,§) € V(P)\Ze] = Lp N Kx;; | (4,5) € V(P) \ Zc]. Note that if f is irredundant
in Lp, then it is also irredundant in Lp N K[z;; | (4,5) € V(P) \ Z.] since we have
LpNK|xi; | (i,5) € V(P)\Z] C Lp. We know that LpNK|[z;; | (4,7) € V(P)\Z.] is
generated by binomials of degree 2 since we have Ipr = LpNK|[z;; | (i,7) € V(P)\Z.]
is generated by binomials of degree 2. This is a contradiction. Hence, the proof is
complete. O
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