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PREFACE 

This dissertation work was conducted under the supervision of Professor Hiroshi 

Umakoshi at Division of Chemical Engineering, Graduate School of Engineering Science, 

Osaka University from 2009 to 2016.  

 

The objective of this thesis is to establish the methodology to design the liposome 

membranes for the selective adsorption of amino acids and its application. The selective 

adsorption of amino acids on liposome membranes and its mechanism are investigated, 

especially focusing on the surface property of liposome membranes, in order to understand 

the key factors for efficient molecular recognition.  

 

The author hopes that this research would contribute to the design of the liposome 

membrane for the application of efficient separation processes. The methodology established 

in this study is expected to contribute to the understanding of the function induced in 

self-assembled interfaces and its application. 
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Summary 

 

Self-assembly system is known to exhibit the high molecular selectivity with variation of 

its configuration. Actually, the function of recognition and regulation of biological molecules 

can be induced by the self-assembled liposome membranes, which form ordered interfaces. In 

this study, the selective adsorption of amino acids is investigated by liposome membranes in 

order to establish the design of liposome membranes for the efficient molecular recognition 

systems. 

 

In chapter 1, the partition behaviors of amino acids are compared among different kinds of 

systems including phospholipid assemblies. The selective adsorption of L-tryptophan (Trp) is 

observed on liposome membranes, despite of non-selective Trp partition in emulsion systems, 

indicating the importance of both highly-ordered membranes and hydrophilic interface for 

selective adsorption. In addition, the liposome membranes can show the molecular 

recognition at the surface hydrophilic region. It is thus required to investigate the detail 

characterization of membranes, and to understand the mechanism of selective adsorption in 

liposome membranes. 

 

In chapter 2, the liposome membrane property during adsorption is evaluated based on the 

combination of several analyses. The adsorption of amino acids is assumed to progress in the 

surface region of liposome membranes together with the variation of membrane property. It is 

thus suggested that the detailed understanding of the membrane surface property can 

contribute to design of the liposome membrane for the efficient selective adsorption.  

 

In chapter 3, the surface property and the adsorption behavior of histidine (His) are 

investigated in the liposomes containing cholesterol. The enhancement of His adsorption is 

associated with the correlation diagram of two surface properties such as surface polarity and 

surface fluidity, indicating that the liposomes with high surface hydrophilicity or the domain 

formation in heterogeneous liposomes can induce the higher efficiency for adsorption. These 

findings can propose the strategy of the liposome membrane design for efficient molecular 

recognition.  

 

In chapter 4, the application of liposome membranes is examined by the case studies such 

as the polycondensation reaction and separation process. The oligomerization of His was 

enhanced by the adsorption of L-His on liposome membranes. In addition, the immobilized 

liposome membranes embedding in hydrogels showed the chiral resolution of Trp. These 

results are expected to contribute to the design strategy of efficient process by using liposome 

membranes.  

 

Based on the findings in this study, the selective adsorption of amino acids induced by 

liposome membranes is evaluated by the understanding of adsorption mechanism and of the 

effect of surface property of liposome membranes, proposing the design of liposome 

membranes for the induction of efficient molecular recognition function. 
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General Introduction 

 

In chemical process, the separation technique is an important unit operation since the 

purification and concentration of target material is essential for recovering the chemical 

products. The separation techniques are in general classified based on their principle, such as 

equilibrium separation and rate-governed separation (Table 1). Equilibrium separation is 

carried out based on the difference of characteristics of a system consisting of two different 

phases under the equilibrium condition, for example, distillation, liquid-liquid extraction, 

adsorption in solid phases, gas absorption and supercritical extraction. On the other hand, 

rate-limiting separation is based on the difference of the flux of the molecular transport that 

are derived from several driving forces, such as the difference of concentration and 

temperature and the difference of other kinds of potentials. The membrane separation, 

electrophoresis and centrifugation are exampled as these kinds of separation. Since the above 

traditional separation techniques require the certain kind of difference of physicochemical 

property in the system, it is unsuitable for the highly-selective separation of quite similar 

constituents, such as stereoisomers. Moreover, since the formation of different phases in a 

system and their phase transition are essential during the separation in many kinds of methods, 

a lot of energy are required to be consumed in their traditional separation techniques 

(enthalpy-driven aspect). To overcome such problems, the use of chromatography or micro-reactor 

 

Table 1  List of separation techniques 

  Principles of Separation Phase Method 

Equilibrium separation 

Different property  

between two phases 

Gas / Liquid Gas absorption 

Liquid / Liquid Liquid-liquid extractions 

Liquid / Solid Adsorption 

Phase transition 
From liquid to gas Distillation 

From liquid to solid Crystallization 

Rate-governed separation 

Concentration difference 
Gas Gas permeation 

Liquid Dialysis 

Pressure difference Liquid Ultrafiltration 

Potential difference Liquid Electrophoresis 

Centrifugal force Liquid Centrifugation 
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process has been proposed. Although these methods developed the performance of separation 

by means of the increase of the number of theoretical plates or the introduction of 

stereospecific structure, the low efficiency of separation was remained as an inevitable 

problem in terms of the cost. 

Chiral isomers are often obtained in the chemical synthesis of the chemicals that 

have asymmetric carbons in their structure and are formed by identical composition but 

non-superposable mirror image configurations, which shows reverse optical rotatory (Pasteur 

et al., 1848). Many kinds of chiral isomers sometimes show the different effects for the living 

systems, i.e., the side effect of teratogenic was found by only in one side of thalidomide 

enantiomer. Hence, the separation of one enantiomer from the other is important techniques 

for fine chemical products. Typical methods of separating chiral molecules are shown in 

Table 2. Although chiral column chromatography is in general utilized as the analytical 

methods (Kaida et al., 1994; Yang et al., 1993), the cost of equipment in its use is quite high 

because of the requirement of constructing chiral stationary phase and its maintenance. While 

the crystallization methods can be carried out in lower cost (Wu et al., 2012; Martín et al., 

2007; Takahashi et al., 2002), there are some difficulties in the optimization of the operational 

condition to obtain pure crystal of one side of enantiomers and to maintain the crystal quality 

during a long-term process in pharmaceutical industry. In the case of some rate-governed 

separations through the asymmetrically specific binding with proteins (Ghanem et al., 2004), 

low efficiency in the recovery yield is still remained. While chiral selective synthesis techniques 

 

Table 2  Chiral separation methods by several chiral selector 

Reference Selector Method 

Kaida et al., 1994 Polysaccharide carbamates Chromatography 

Yang et al., 1993 Human serum albumin Chromatography 

Gumí et al., 2005 N-Hexadecyl-L-hydroxyproline Capillary electrophoresis 

Wu et al., 2012 Enantiomeric tartaric acid Separation of diastereomer salt  

Martín et al., 2007 Methylbenzylamine Salt formation in supercritical carbon dioxide 

Takahashi et al., 2002 Crystal of NBMe3 Preferential enrichment 

Ghanem et al., 2004 Lipase enzyme Dynamic kinetic resolution 

List et al., 2000 L-Proline catalyst Synthesis of enantiomer 
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have been also developed by the design of catalysts (List et al., 2000), the cost of catalyst is 

still high. 

Amino acid is one of the basic biological molecules, which are known as the building 

block to construct proteins. From the viewpoint as for the physicochemical property, amino 

acids are known to be regarded as zwitterionic molecules that possess both amine and 

carboxyl group at the -carbon, together with other functions called as “side chains” that can 

be classified as about 20 species (Fig. 1). Based on the characteristics of side chains, the 

tertiary structures are constructed when the amino acids are polymerized to peptides or 

proteins. In the practical use, amino acid monomers are produced for the nutrient or seasoning. 

In addition, dipeptides such as carnosine are treated as the drug for recovery from exhaustion. 

One of the important features of amino acids is forming chiral compounds as L-form and 

D-form. Among these enantiomers, it is known that there is the difference in their biological 

function, such as the sense of taste. In biological system, amino acids in only L-form among 

 

 

Fig. 1  Chemical structures of amino acids. 
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their enantiomers are selected as the building block of the biomacromolecules or the key 

material of their derivatives. Besides, biopolymers such as proteins and DNA also exhibit 

homochirality. The origin of, reason for, and properties of homochirality have been still 

attracting many researchers and have been widely investigated (Bada et al., 1995). On the 

other hand, previous study revealed the asymmetric autocatalysis in the enantiomeric 

amplification (Kawasaki et al., 2009). Based on these findings, it is also possible that the 

chiral amplification is induced by utilizing the self-organizing system that consists of 

biological system. 

In contrast to the problems underlying in the conventional separation process, several 

kinds of biomacromolecules in biological system achieves the efficient and precise 

recognition. In biological cells, several unit processes including the separation process are 

regarded to be operated in the small and well-organized compartment at micro to nano-meter 

scale. Such hypothetical separation process in a biological cell has been carried out through 

the extremely selective molecular recognition, inducing the regulation of complicated 

functions. There are many examples of the selective separation in the biological system, such 

as the control of mass transfer by the specific channels of membrane protein, the signal 

transduction through the receptor proteins and the enzymatic activity for the specific 

substrates. In actual, these great functions of biological system are also utilized in the 

practical applications as the bio-separation techniques (Table 3). In these methods, efficient 

molecular recognition that exceeded against the traditional techniques can be performed by 

the induction of the functions of biomolecules themselves immobilized in artificial materials 

 

Table 3  Separation or recognition techniques by utilizing biological system 

Reference Biomolecules Separation 

Guo et al., 2006 DNA aptamer Isolation of mesenchymal stem cells from bone marrow 

Voller et al., 1978 Antigens Enzyme immunoassays (ELISA) 

Lee et al., 2002 Antibody Enantiomeric drug separations 

Kohli et al., 2004 DNA-functionalized nanotube membranes Recognition of single-base mismatch in hybridized DNA 

Higuchi et al., 2003 DNA immobilized membrane Chiral separation of phenylalanine 

Lee et al., 2009 Albumin imprinted membrane Adsorption of albumin from bovine serum 

Lundahl et al., 1991 Liposomes immobilized gel beads Separation for quaternary structure of proteins 

Shimanouchi et al., 2010 Liposome immobilized ITO-electrode Intermembrane interaction of liposomes 
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(Voller et al., 1978; Lee et al., 2002; Kohli et al., 2004; Higuchi et al., 2003). However, 

there is a problem in the cost of preparing such systems owing to the difficulty in the 

maintenance of the structure and function of biomolecules during their use. Therefore, the 

understanding of the insight about the biological system and its application are expected to be 

applied to the efficient design of artificial separation system for practical use, that is, 

“bio-inspired system”. 

Recently, self-assembled materials have attracted many interests of researchers in 

various research fields. Depending on the property derived from chemical structure and/or 

surrounding environment, some kinds of amphiphilic molecules can be automatically 

assembled to form the supramolecular structures. Amphiphilic molecules, for example, can 

form the self-assembly by several driving forces, such as electrostatic interactions and van der 

Waals interactions in hydrophobic regions. Apart from the typical polymers formed by 

covalent bonds, such self-assembly structures can show dynamic property despite of the 

increment of entropy, which is regarded as fluctuation in non-equilibrium state. These 

phenomena are described as the theory of dissipative systems (Prigogine et al., 1967), which 

contributes to research about the birth of living system. According to the biomolecules, 

various organisms such as cells is formed by the assemblies, called as “self-organization” 

system. Microtubule which is one of the organelle is constructed by the self-organization of 

tubulin proteins, forming the long and rigid fibers. Hence, they are enabled to transport 

proteins in the cell. As for the other example, the protein of actin can organize to filament 

structure and form the actomyosin complex with another protein of myosin, inducing the 

active movement of muscle fiber due to the flexible organization (Geeves et al., 2005). In 

more microscopic view, proteins or DNA is formed by the conformation of polymers of 

amino acids or nucleic acids (Fig. 2). The appropriate self-organization of such structures 

induces several functions by regulating the dynamic changes of its conformation. Furthermore, 

cell membranes, which exist in the boundary of cells, are composed by amphiphilic 

phospholipids. The dynamic changes of cell membranes such as endocytosis are induced by the 

rearrangement of phospholipid components of outer or inner membranes (Farge, 1995). These 

dynamic regulations of assembled states may possibly play important role for the flexible 

recognition of target materials. 
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Fig. 2  Self-organization of biological molecules. 

 

In reference to the knowledge of self-organization, the molecular recognition system 

using self-assembly system has been recently developed for efficient processes, such as 

separation (Table 4). Some studies revealed the high performance in the separation of chiral 

molecules by means of chiral monomers. Since self-assembly system can easily form the 

interactions with foreign molecules with “low energy consumption”, In addition, it is 

expected that the formation of highly-ordered structure required for asymmetric recognition 

is automatically induced in the self-assembly systems (Lee et al., 2002; Mohanty et al., 

2005; Kamata et al., 2015). In actual, it has been reported that the amphiphilic monomers 

possessing L-glutamic acid in their hydrophilic headgroup can form the self-assembled nanotube 

structures, which act as the platform of asymmetric synthesis (Jin et al., 2011). The 

micelle-phenylalanine interaction has been applied to cascading ultrafiltration to achieve 

enantiomer separation (Overdevest et al., 2002). Self-assembled monolayers at the air-water 

interface have also revealed selective partitioning of enantiomers of the amino acids of valine, 

leucine, and phenylalanine, depending on the surface pressure of the monolayer (Michinobu 

et al., 2011). 

Phospholipid molecules are known to form several kinds of self-assemblies in 

aqueous or organic solvents (Fig. 3). In particular, liposome membranes are constructed by 

forming the bilayer lamellar phase of a closed phospholipid assembly and can be regarded as  
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Table 4  Self-assembly systems formed by artificial monomers 

Reference Monomer and its application 

Lee et al., 2002 Bio-nanotube membranes for enantiomeric drug separations 

Ziserman et al., 2011 Helical nanotube formation from self-assembly of amphiphiles 

Eliseev et al., 1994 Molecular recognition of some biomolecules by aminocyclodextrins 

Mohanty et al., 2005 SDLV vesicles as pseudo-stationary phase for enantiomer separation 

Liu et al., 2015 Lyotropic liquid crystals for extractant of biomolecules 

Jin et al., 2011 Catalytic reaction by nanotube containing bola-amphiphilic amino acid 

Kameta et al., 2015 Enantiomer-sensitive vesicle formation by fluorescent glycolipid amphiphiles 

Makino et al., 2012 Vesicle formation from poly-L-lactic acid utilized in drug carrier 

 

 

Fig. 3  Self-assembled structures derived from phospholipids. 

 

the model of biomembranes. Moreover, these membranes also have the ordered alignment of 

phospholipids, inducing the increasing anisotropy of several steroid molecules. This feature is 

expected to contribute to the formation of stereospecific interactions. Furthermore, it is 

known that the liposome membranes are characterized by the degree of lateral diffusion as the 

membrane fluidity. Based on the thermodynamic analyses, the phase transition can be 

observed in specific temperatures, where the endothermic transition of enthalpy is induced 

with dynamic changes. Hence, the interaction with guest molecules may induce the change of 

assembled states of phospholipids in liposome membranes with easily formation. From 

another point of view, micelles or liposomes in aqueous phase can include the hydrophobic 

regions, resulting that it can induce the several reactions of hydrophobic substrates even in the 
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aqueous phase (Table 5). In this case, this approach for reactions is useful due to the reduction 

of solvent and the regulation of reaction rate by the assembled states. In addition, the reverse 

micelles may also develop the infinitely-connected structure to give the fiber network in some 

kinds of solvent conditions, resulting in the formation of the organogels containing emulsion 

phases (Scartazzini et al., 1986). This finding means that phospholipids can form the specific 

materials that can include the hierarchical assembly in their material structure. The several 

findings about the phospholipid assemblies indicate the emergence of functions and materials 

with varying systems dynamically (Walde et al., 2014). 

Based on the above findings, the development of liposome membrane systems is 

important for the efficient separation techniques with high molecular recognition. In the 

previous investigation, Liposomes have been developed as a functional platform for 

recognition of biomolecules: proteins and enzymes (Umakoshi et al., 2010), amyloid  fibrils 

(Shimanouchi et al., 2013), and single-stranded RNA (Suga et al., 2013). These recognition 

events were significantly affected by the liposomal membrane properties, such as fluidity and 

polarity. The phospholipid used to make the liposomes is usually consisted of L-enantiomers; 

thus, the liposomal membranes potentially possessing chiral specificity. It is therefore 

expected that not only chemical properties of amphiphilic molecules, but also the 

physicochemical properties of self-assembled membranes are possible clues to develop a 

novel, flexible recognition site (“Lock”) on the membranes. Based on the characterization of 

physicochemical properties of membranes, an ideal membrane surface for molecular 

recognition can be designed. Furthermore, in the surface region of liposome membranes, it is 

possible to form the highly-ordered alignment of charged functions and to induce the domain  

 

Table 5  List of reactions induced in hydrophobic region of self-assembly 

Reference Assembly Reaction 

Manabe et al., 2002 Emulsion droplets formed by DBSA Several dehydrative conversion 

Monti et al., 2002 CTAB and Mn-derived amphiphiles Epoxidation reactions 

Peng et al., 2003 SDS micelles Aldol reaction catalyzed by L-proline 

Mase et al., 2005 Assembly of catalyst with the reactants Direct asymmetric aldol reactions 

Otto et al., 1998 SDS, CTAB micelles or vesicles Diels–Alder reactions 

Li et al., 2012 Micellar assembly of amphiphilic catalysts Asymmetric reduction of aliphatic ketones 
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formation by plural components. As for the recognition of RNA in liposome membranes, the 

domain size is regarded as the key factor of the design of recognition (Suga et al., 2013).  

The final purpose of this thesis is to establish the methodology to design the 

liposome membranes for the selective adsorption of chiral small molecules such as amino 

acids by utilizing the liposome membranes as the platform of recognition and conversion 

processes. To design the molecular recognition, it is required to understand the membrane 

property in several aspects and to investigate the mechanism of bindings between liposome 

membranes and guest molecules. The framework and flow chart of the present study are 

schematically shown in Figs. 4 and 5, respectively. 

In chapter 1, the partitioning and adsorption behavior of amino acids were 

investigated in two kinds of self-assembled states of phospholipids, e.g., emulsion layer at the 

water-solvent interface or liposome membranes. In the liquid-liquid extraction system, the 

partitioning of the tryptophan (Trp) enantiomer in emulsion layer of phospholipids was 

investigated in different ratio of chloroform/methanol mixture as the solvent. In addition, the 

partitioning behavior of the Trp in liposome membranes was investigated by adsorption of L- 

or D-form amino acids dissolved in water phase. Based on the adsorption behaviors of several 

amino acids possessing hydrophilic or hydrophobic side chains and the adsorption isotherms, 

chiral recognition function by L-enantiomer of phospholipids was induced by the formation 

of highly-ordered assembly such as lamellar phase. 

In chapter 2, the variation of liposome membrane property was investigated by 

employing the adsorption of amino acids as targets. Time course of surface hydrophobicity 

was first evaluated by 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescent probes during 

the adsorption process of amino acids. This analysis for membrane surface property was also 

examined by analyzing dielectric dispersion spectra at the higher frequency region. As the 

evidence of multiple interactions, direct observation of adsorbed Trp or histidine (His) 

molecules was also carried out by Raman spectroscopic analysis. In addition, thermodynamic 

analysis for this adsorption was measured by differential scanning calorimetry (DSC), comparing 

the interaction behavior by the evaluating compensation of enthalpy and entropy. Each 

measurement mentioned above was conducted in both enantiomers of amino acids in order to 

discuss the mechanism of chiral recognition of the liposome membranes. 
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Fig. 4  Framework of the present study. 
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Fig. 5  Flow chart of the present study. 
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In chapter 3, the effect for chiral recognition of His is investigated by using 

liposomes of several components contained cholesterol (Ch). At First, the methodology of 

evaluating the surface property of the liposome membranes is developed by the combination 

of two fluorescent probes that can be localized at the surface edge of the membrane. By 

means of the comparison of Cartesian diagram for interior property, it is expected to evaluate 

the liposome membrane property in detail. According to the relation between such properties 

and the adsorption of L- or D-form of His, the effect of mixed Ch in liposome membranes is 

discussed. The transition of membrane property after the adsorption is also investigated to 

understand the behavior of liposome membranes. Furthermore, the membrane properties of 

ternary liposomes are observed based on their phase state, and then, the relation with chiral 

recognition of His are investigated. By comparing the domain states relating to the line 

tension, the contribution of domain is considered for understanding the effect of existing 

domain “edges”. 

In chapter 4, based on the molecular recognition in liposome membranes described in 

chapters 1, 2, and 3, the application of liposome membrane systems is demonstrated in the 

conversion reaction and optical resolution. The promotion of oligomerization of amino acids 

was investigated by partition in liposome membranes with molecular recognition of L-His. In 

this reaction, the behavior of conversed substrates was considered in reference to previous 

reports about the aqueous reactions (Kunishima et al., 2005). As for the application for 

separation process, continuous process is examined by liposomes accumulated in the 

ultrafilter. Besides, the immobilization of liposomes is developed by the embedding in several 

hydrogels, which is analyzed by the direct observation and the Raman spectroscopy. 

Adsorption behavior and chiral separation of Trp are evaluated in prepared liposome 

immobilized hydrogel (LI-gel). 

The results obtained in this work are summarized in the General Conclusions section. 

Suggestions for Future Works are described as extension of the present thesis. 
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Chapter 1 

Comparison of Separation of Amino Acids in Solvent-Water-Lipid 

System and in Liposome Membrane System 

 

1. Introduction 

Extraction is one of the separation methods based on the partitioning behavior of the 

molecules among the immiscible two-phase system. The operational conditions of this 

process have been usually optimized by the following factors: (i) physicochemical property of 

two solvent system, (ii) characteristics of the target material, and (iii) property of the interface 

formed in solvent-water two-phase system. Two-phase extraction process has a merit of low 

energy consumption because of no requirement of phase transition unlike the distillation. On 

the other hand, experimental knowledge is required in each separation process to optimize the 

separation condition. Therefore, the synthetic ligands that can specifically interact with target 

molecules (so called as “extractants”) are usually applied in the extraction in order to achieve 

highly-selective separations (Fig. 1-1). Calix[4]arene derivatives, for example, have been 

used as the extractants of Chromium (VI) with higher selectivity, where the extraction can be 

controlled by varying pH of the aqueous phase (Ediz et al., 2004). In other cases, the 

extraction processes of Am (III) in organic phase extraction have been investigated by using the 

extractant, N,N,N’N’-tetraoctyl-3-oxapentanediamide (Panja, et al., 2012). Chiral host 

molecules, such as hydrophilic--cyclodextrin (Wang et al., 2014) and L-tartaric acid 

derivatives (Ren et al. 2014), have been also used to perform the chiral recognition for 

pantoprazole and ibuprofens, respectively. 

In recent years, there have been some reports on the usage of surfactants as extractant 

in liquid–liquid extraction of the silica refinary (Kusaka et al., 1998), and in biomass recovery 

(Pursell et al., 2009). In general, the surfactant molecules are known to be distributed at the 

liquid-liquid interface due to their amphiphilic nature and, after that, they can enhance the 

emulsification of one liquid phase into another phase. These behaviors or both partitioning 

and emulsification have been reported to depend on the structure of surfactant, such as charges, 
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Fig. 1-1  Schematic illustration of extraction using extractants. 

 

hydrophilicity of headgroups and length of acyl chains. In addition, the surfactants and some 

amphiphilic molecules can form several kinds of self-assembly structures, depending on their 

geometry and solvent environment. In particular, micelles and lamellar structures are typical 

forms of amphiphilic surfactant or lipid (Fig. 1-2). Owing to the dynamic equilibrium nature 

(including their deformation under various temperatures or concentrations), the micelles can 

control the partitioning of micelle-constituting molecules and also guest molecules, resulting 

in the less stability of the host-guest complex. In contrast to the micelle, the lamellar 

structure forms relatively stable bimolecular phase at the high-ordered state in horizontal 

direction. Lamellar membranes can thus orientate the materials such as proteins (White, 1999) 

and several sterols (Biruss, et al. 2007). 

Phospholipid molecules are common amphiphilic molecules in L-enantiomer derived 

from biological system. Therefore, the lamellar membranes formed by phospholipids can 

partition several biological molecules in the hydrophobic interior and hydrophilic surface. 

Besides, the biological molecules can be recomposed in phospholipid membranes by the 

molecular order. Based on these features, there have been several researches focusing on the 

up- or down-regulation of function of gene expression machinery (Bui et al., 2008), and the 

conformational change of RNA (Suga, et al., 2011), peptide (Tuan, et al., 2008) and enzyme 

(Umakoshi, et al., 2012; Suga, et al., 2015) on the phospholipid membranes. In addition, the 

enantiospecific interaction of the amino acid dimers has been observed in the phospholipid  
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Fig. 1-2  Illustration of micelle and lamellar about specific features. 

 

bilayers. At the phospholipid liposomal or micellar surface, 
1
H NMR analysis indicated that 

dipeptide enantiomers at different conformations were interacted with their surface, in which 

the distance and dihedral angle of Trp-Trp differed between the enantiomers (Cruciani, et al., 

2006; Bombelli, et al., 2004). The possible of chiral recognition by the phospholipid 

membranes are also reported by using some liposomes (Yamada, et al., 2006; uniono et al., 

2011; Pathirana et al., 1992). It is expected that the use of the highly-ordered structure of 

phospholipid membrane could provide us some benefits on the chiral selectivity in the 

recovery of biomolecules. 

In this chapter, the partitioning and adsorption behavior of amino acids were 

investigated in two kinds of self-assembled states of phospholipids, e.g., emulsion layer at the 

water-solvent interface or liposome membranes (Fig. 1-3). In the liquid-liquid extraction 

system, the partitioning behavior of the tryptophan (Trp) enantiomer in emulsion layer of 

phospholipids was investigated in different ratio of chloroform/methanol mixture as the 

solvent. In addition, the partitioning behavior of the Trp in liposome membranes was 

investigated by adsorption of L- or D-form amino acids dissolved in water phase. Based on the 

adsorption behaviors of several amino acids possessing hydrophilic or hydrophobic side 

chains and the adsorption isotherms, the interaction model in liposome membranes was 

finally proposed. 
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Fig. 1-3  Conceptual illustration of chapter 1. 
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2. Materials and Methods 

2.1 Materials 

A zwitterionic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC; 

carbon number/unsaturated bond = 16:0), and negatively-charged phospholipids  

1,2-dimyristoyl-sn-glycero-3-phosphatidic acid (DMPA; 14:0), 

1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS; 14:0) were purchased from Avanti 

Polar Lipids, Inc. (Alabaster, AL, USA). L-Trp, D-Trp and other amino acids were purchased 

from Peptide Institute (Suita, Osaka, Japan). All the amino acids were over 98% purity of 

enantiomers. Chloroform, methanol and other chemicals were purchased from Wako Pure 

Chemical Industry Ltd. (Osaka, Japan) and used without further purification. 

 

2.2 Liposome Preparation 

A solution of phospholipids in chloroform was dried in a round-bottom flask by 

rotary evaporation under vacuum. The resulting lipid films were dissolved in chloroform and 

the solvent was evaporated twice. The lipid thin film was kept under high vacuum for at least 

3 h, and then hydrated with ultrapure water at room temperature. The vesicle suspension was 

frozen at -80 °C and then thawed at 50 °C to enhance the transformation of small vesicles into 

larger multilamellar vesicles (MLVs). This freeze-thaw cycle was repeated five times. MLVs 

were used to prepare large unilamellar vesicles (LUVs) by extruding the MLV suspension 11 

times through two layers of polycarbonate membrane with mean pore diameters of 100 nm 

using an extruding device (Liposofast; Avestin Inc., Ottawa, Canada). 

 

2.3 Evaluation of Partition Behavior of L-Trp in Solvent-Water System 

With regard to solvent-water systems, chloroform and its mixtures with methanol 

were used as solvent phases. First, DPPC was dissolved in solvent phase in 27 mM of 

concentration. In the case of chloroform/methanol mixtures, the ratio of methanol (xmet) varied 

from 0.05 up to 0.25. Secondly, L-Trp or D-Trp was dissolved in aqueous phase as 3 mM 

solution. Then, the distribution ratio (D) of Trp at each enantiomer (DL-Trp for L-Trp and 

DD-Trp for D-Trp) was calculated from the decrease of Trp in aqueous phase by following 

equation: 
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D = (Cini – Ceq) / Cini,  

where Cini and Ceq represent the initial and equilibrium concentration of Trp in aqueous phase. 

The Trp concentration in water phase was measured by UV absorbance of 280 nm, based on 

their calibration curves. 

 

2.4 Evaluation of Adsorption Behavior of L-Trp in Liposome Membrane System 

The liposome suspensions (lipid: 4.5 mM) were mixed with L-Trp or D-Trp, and 

other amino acids (0.5 mM). They were incubated at 25 
o
C for 48 hours, to be equilibrium of 

adsorption. After the incubation, liposomes and adsorbed amino acids were separated by 

ultrafiltration membrane with the molecular cut of 50,000 Da (USY-5; Toyo Roshi Kaisha, 

Ltd., Tokyo, Japan). The concentration of filtered amino acids (Cflt) was measured by the 

absorbance by using UV spectrometer (UV-1800; Shimadzu, Kyoto, Japan), and by the 

fluorescence of fluorescamine (Ex: 390 nm, Em: 475 nm)
 

(Stein et al., 1973) by 

spectrofluorometer (FP-8500; JASCO, Tokyo, Japan). The concentration of adsorbed amino 

acids (Cads) and adsorbed amount of amino acids per lipid amount (q) were calculated by 

using following equations: 

Cads = Cini – Cflt  

q = Cads / clip ,  

where Cflt represent the concentration of amino acids in leakage of ultrafiltration and clip 

represents the concentration of lipid (liposomes). The adsorption isotherms were evaluated by 

the plot of q versus Cflt in 48 hours incubation (regarded as equilibrium concentration) at the 

same lipid concentration (4.5 mM). Especially, Langmuir isotherms were described by 

following equations:  

q = qmax K Cflt  / (1 + K Cflt) ,  

where qmax and K represent the maximum of q and a binding constant. The correlation for 

Langmuir isotherms and qmax and K values were estimated by the plot of Cflt versus Cflt/qmax. 

From the Cads of L-amino acids and D-amino acids, separation parameter (SL/D) was calculated 

by following equations: 

SL/D = Cads (L form) / Cads (D form) ,  
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where Cads (L form) and Cads (D form) represent the Cads values of L-amino acids and that of D-amino 

acids, respectively.  

 

2.5 Circular Dichroism Spectroscopy Analysis of Racemic Amino Acids 

In order to analyze the concentration ratio of L- and D-amino acids, circular 

dichroism (CD) spectra were measured by JASCO J-820 SFU spectropolarimeter (JASCO, 

Tokyo, Japan). The CD spectrum from 300 nm to 200 nm was measured with a quartz cell 

(0.1 cm path length) at a scan speed of 100 nm per minute and a width of 2 nm. Three scans 

excluding water background signals were obtained at 25 ºC, and the data was calculated as 

molar ellipticities. In the case of racemic solutions, the initial concentrations of total amino 

acids were 1.0 mM. The racemic mixtures of L- and D-Trp or L- and D-His were incubated 

with DPPC liposome (4.5 mM) for 48 hour at 25 ºC, and the liposomes and adsorbed amino 

acids were removed by filtration shown in above. 

 

2.6 Statistical analysis 

Results are expressed as mean ± standard deviation. All experiments were performed 

at least three times. The distribution of data was analyzed, and statistical differences were 

evaluated using the Student’s t-test. A P-value of <5% was considered significant. 
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3. Results and Discussion 

3.1 Partitioning of Tryptophan in Solvent-Water System Modified Amphiphilic 

Phospholipids 

Although Trp is known as a hydrophobic amino acid due to the hydrophobic side 

chains (Tanford, 1962), it has a difficulty in its partitioning to organic solvent (Fig. 1-4(a)) 

because of its relatively hydrophilic nature that can be described in the negative value of 

LogP (-2.2). In order to investigate the partitioning of Trp, the effect of additives, such as the 

amphiphilic phospholipid (DPPC) and methanol, was first evaluated in the water-chloroform 

extraction system. When chloroform (dielectric constant = 5) was used as the organic phase, 

a thin cloudy layer was formed in chloroform phase on mixing the two phases (Fig. 1-4(b)) 

due to the emulsification mediated by DPPC molecules. This was probably caused by the 

formation of phospholipid aggregates at the interface on the solvent phase. When methanol 

(= 33) was added to the chloroform phase, the formation of such emulsion phases was 

enhanced with an increase in the ratio of methanol (Fig. 1-4(c)). 

The partitioning behaviors of L- and D-Trp in water-DPPC-solvent phase are shown 

in Fig. 1-5. The distribution ratio of Trp, DTrp, was determined by measuring the Trp 

concentration in water phase, which can be therefore regarded as an indicator of the Trp  

 

 

Fig. 1-4  Schematic illustration of the partitioning behavior of L- or D-tryptophan (Trp) in 

chloroform-water system with phospholipids. (a) Water-chloroform extraction system. (b) Formation 

of emulsion after mixing as the cloudy layer. (c) Increasing thickness of cloudy layer by addition of 

methanol. (d) Liposomes prepared by thin film of phospholipids in the aqueous phase. 
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partitioning in the water/organic two-phase systems (including the emulsion layer). The DTrp 

value was found to become larger as the increase of methanol ratio with expanding the 

emulsion phase, while the DTrp value was small (approximately 0.2) at the lower methanol 

ratio (xmet = 0 ~ 0.1). Finally, the DTrp value reached a plateau at a methanol ratio above 0.2. 

Incidentally, at methanol ratios over 0.25, the emulsion phase disappeared on mixing due to 

the reduction in the difference in the dielectric constant between the two phases. This behavior 

indicated that the DTrp value did not always depend on the dielectric constant of the organic 

solvent because the variation of the  values was slight in available range of forming emulsion 

(Fig. 1-5). It is thus considered that the enhancement in the formation of the emulsion layer is 

promoted by the efficient interaction of DPPC and Trp molecules. It is thus suggested that the 

partitioning behavior of Trp was enhanced through the strong binding between the 

phospholipid and Trp molecules in the emulsion layer containing lipid aggregation. The chiral 

selectivity of Trp partitioning was also investigated by determining the ratio of the DTrp value 

of L-Trp to that of D-Trp (DL-Trp/DD-Trp). As the xmet increased, the DL-Trp/DD-Trp value reached 

to approximately 1 (xmet = 0.15), while the DD-Trp became slightly larger at lower methanol 

ratio. From the viewpoint of actual recovery of amino acids, the partitioning behaviors were  

 

 

Fig. 1-5  Distribution ratio of L- or D-Trp (DTrp) and its chiral selectivity (DL-Trp/DD-Trp) in 

different ratio of methanol in chloroform solvent (xmet). Dielectric constant () of solvent were 

shown as the black keys and line. 
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thus improved with phospholipids and methanol. The distribution ratio of Trp can be 

predicted by 0.006 at the interface of water and organic solvent system based on the LogP 

value of Trp (-2.2). On the other hand, the DTrp value increased to approximately 0.2 by the 

addition of phospholipids that can induce the formation of emulsion phase. Furthermore, the 

increase of  in organic phase was also found to induce the increase of the DTrp up to 0.7. It 

was thus found that the specificity of enantiomers in partitioning Trp was not observed in the 

liquid-liquid two phase systems with the DPPC extractant. 

 

3.2 Adsorption of Tryptophan and Histidine in Liposome Membrane System and Its 

Chiral Selectivity 

DPPC liposome bilayer membranes have ordered structures owing to molecular 

alignment and can also be characterized as gradient polarity layers at nano-meter scale as 

shown in Fig. 1-4(d). As a preliminary experiment, Trp dissolved in the aqueous phase was 

partitioned to the liposome membranes by mixing them for 48 hours. In this liposome 

membrane system, the yield of L-Trp recovery, calculated by its partitioning behavior from 

the aqueous phase to the phospholipid phase, was found to be high, while that of D-Trp was  

 

 

Fig. 1-6  DL-Trp/DD-Trp and the yield of Trp (ratio of concentration between in water and in 

lipid phase) at the solvent of chloroform, chloroform mixed methanol and liposome 

membranes corresponding to Fig. 1-4. 
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extremely low (Fig. 1-6). As for the chiral selectivity, the liposome system showed an 

extremely high value (~10
4
) as compared with other solvent extraction systems. It is thought 

that the liposome membrane could provide a suitable environment for the partitioning of the 

hydrophilic Trp, where some interactions (i.e. electrostatic interaction, and hydrogen bond) 

neighboring to the chiral carbon of the lipid molecules could be related to its chiral 

recognition. For further investigation to the liposome membranes, the partitioning behavior of 

Trp and another amino acids (His) were investigated by analyzing the adsorption behaviors 

from aqueous solution. Figure 1-7(a) shows the time course for the adsorption of Trp on 

DPPC liposomes. The adsorbed amounts of L-Trp gradually increased after 16-hour incubation,  

 

 

Fig. 1-7  Time course of adsorbed concentration (Cads) of L or D-forms of amino acids. (a) 

Cads of L-Trp (filled) and D-Trp (open). (b) Cads of L-His (filled) and D-His (open). 

and reached to be an equilibrium after 48 hours, where almost all of the amino acids adsorbed on 
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DPPC liposomes. On the other hand, negligible amounts of D-Trp and D-His adsorbed on the 

DPPC liposomes even at 48 hours. As a result, extremely high chiral selectivity in the Trp 

adsorption on the DPPC liposome was observed at the final stage of the adsorption process, 

while such behaviors were not found in the solvent-water system modified with DPPC (Fig. 

1-6). As shown in Fig. 1-7(b), similar tendencies for the time course of the adsorption and for 

the chiral selectivity were observed in the case of His. It was also found that the adsorption 

kinetics of both L-Trp and L-His were sigmoidal with a lag time (no adsorption from 0 to 16 

hours). This result was also imply that the binding of L-amino acids on the liposome structure 

can be very weak at the initial stage of adsorption, considering the previous findings on the 

adsorption in supported lipid bilayer (Sarangi, et al., 2012). This is because the amino acids 

preferably exist in the aqueous phase rather than in liposome membranes, judging from the 

negative values of LogP. It is thought that the membrane property could be varied after the 

accumulation of amino acids on the membranes at the initial stage: such varied membrane 

properties could recruit the additional L-Trp partitioned to the membrane at the latter step. In 

comparison with the adsorption kinetics in L-Trp and L-His, it is assumed that there could be 

the similar steps to promote L-His adsorption. 

 

3.3 Adsorption Behavior of Other Amino Acids or Propranolol in Liposome Membranes 

Natural amino acids possess unique surface characteristics, depending on their side 

chains, such as hydrophobic and hydrophilic. In order to investigate the effect of side chain 

property in the chiral selective adsorption on liposomes, the Cads values for 10 kinds of amino 

acids were analyzed after 48 hours incubation (Fig. 1-8). For almost all amino acids (except 

for Ser), the adsorption of the L-form was dominant, indicating that DPPC liposomes could be 

widely applied to recognize the chirality of amino acids. The chiral selectivity (SL/D) was 

calculated from the ratio of Cads of L- and D-amino acids. The highest SL/D was obtained with 

Trp and His (SL/D >1000). Relatively high SL/D was also observed in the case of Tyr and Pro 

(SL/D >100), owing to the hydrogen donors or acceptors in their side chains, indicating that the 

formation of hydrogen bonds provided from the aromatic structure could play a crucial role in 

their high L-amino acid selectivity. In contrast, amino acids possessing hydrophobic (non-polar) 
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Fig. 1-8  Adsorbed concentration (Cads) of L- or D-forms of 10 amino acids on DPPC 

liposomes. Amino acids is listed by the hydrophobicity (Tanford, 1962) from left to right. 

Separation parameter (SL/D) of each amino acid is described above the corresponding bars. In 

all samples, the incubation temperature was 25 ºC. 

 

 

Fig. 1-9  Time course of Cads of L-Asp (filled) and D-Asp (open) in DPPC liposomes. 

 

side chains (Leu and Val) showed lower L-selectivity. Moreover, no L-selectivity was 

observed for Ser. These results indicate that the hydrophobicity of the side chains might not 
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be an important factor for inducing asymmetric recognition. The contribution of small side 

chains is also negligible in stereospecific recognition due to the difficulties in forming 

certain binding to phospholipid. Interestingly, Asp showed high chiral selectivity in adsorption 

kinetics at 0-40 hours, although the low SL/D values were obtained after 48 hours (Fig. 1-9). It 

is possibly explained that Asp molecules (even in D-form) easily form the hydrogen bonds 

with phospholipids due to possessing the polar and small side chains, resulting in decreasing 

L-selectivity in long time incubation. 

 

3.4 Chiral-Selective Adsorption of Racemic Tryptophan or Histidine 

In many case of chiral separation methods, enantiomer excess (ee) from racemic state 

is evaluated as the efficiency of chiral selectivity. As mentioned above, the chiral recognitive 

adsorption was observed only in enantio-pure solution, thus, the performance of chiral 

recognition of liposome membranes was evaluated by studying the adsorption of racemic Trp 

or His in CD spectroscopic analysis. 

In the CD spectra of aqueous solution of Trp or His, the peak intensities at 222 nm 

(Trp) and 213 nm (His) corresponded to the ratio of L- and D-amino acids at the same total 

concentration of amino acids (Fig. 1-10). From this result, the molar ratio of L-amino acids 

against D-form (XL) can be calculated. Figure 1-11 shows the CD spectra of racemic Trp and 

His solutions, before and after the treatment of ultrafiltration. The deracemization of both Trp 

and His solutions were observed in the ultrafiltrated solution, which indicates the removal of 

L-amino acids from the solution due to the binding of L-Trp and L-His to DPPC liposomes. 

The molar fractions of L-amino acids (XL) for Trp and His were 0.140 and 0.306, respectively. 

In the previous reports, a monolayer of cholesterol-armed cyclen Na
+
 and a cellulose acetate 

polymer imprinted with enantiomer glutamic acids resulted in the enantiomeric ratios of 0.36 

(for Trp) and 0.13 (for His), respectively (Michinobu, et al., 2011; Sueyoshi, et al. 2010). 

Although it is difficult to directly compare these values with our results, our results show a 

higher chiral selectivity for L-Trp and L-His. The above results indicate the preferential 

adsorption of L-Trp and L-His on DPPC liposomes in racemic solutions; however, the 

adsorbed amounts were not as large as with the enantio-pure (L-form) solutions (Fig. 1-7). It 

is hypothesized that the racemic amino acid solutions resulted in the inhibition of the adsorption 



27 
 

 

Fig. 1-10  (a) CD spectra of Trp solutions including L- and D-forms at different ratios (XL = 

1.0 - 0). Inset shows the plot of XL versus 222. (b) CD spectra of His solutions including L and 

D forms at different ratios (XL = 1.0 - 0). Inset shows the plot of XL versus 213. The total 

concentrations of amino acids are 1.0 mM. 

 

 

Fig. 1-11  CD spectroscopic analysis of racemic amino acid solutions before or after 

adsorption in DPPC liposomes. (a) CD spectra of initial racemic (dotted line) and filtered 

(solid line) solutions of Trp. The inset shows the XL calculated by 222. (b) CD spectra of 

initial racemic (dotted line) and filtered (solid line) solutions of His. The inset shows the XL 

calculated by 213. In all samples, the incubation time and temperature were 48 h and 25 ºC, 

respectively. 
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of L-forms. Although D-form Trp and His showed little adsorptions on DPPC liposomes, there 

still exists a possibility that D-form amino acids weakly interact with DPPC membranes, 

resulting in the occupancy of the amino acid binding site of L-forms. In the case of the 

enatio-pure samples, the interactive moieties (carboxyl group, amine group, side chain) in 

L-form amino acid molecules could fully interact with DPPC liposome, while those in 

D-forms did partially, and then, resulted in the enantioselective adsorption. 

 

3.5 A Plausible Model for Chiral Selectivity Based on Adsorption Isotherms 

The analysis of adsorption isotherms is known to be effective to investigate the 

adsorption type for several adsorbent. It could be analyzed by investigating the adsorption 

behavior in various initial concentrations of adsorbent and target molecules. In accordance 

with the profile of fitting curves, the adsorption type, such as Henry, Langmuir, Freundlich 

type, and so on, can be assessed. The adsorptive behaviors of L-amino acids on liposomal 

membranes can be, in general, regarded as those of guest molecules onto host materials (e.g., 

molecular imprinted membrane), according to the previous report for the molecular imprinted 

membrane (Yoshikawa et al., 2003). 

To estimate the adsorption type of Trp and His, the adsorbed amount (q) versus the 

equilibrium concentration of amino acids (Cflt) was plotted at against the different molar ratios 

of amino acids and DPPC (Fig. 1-12). A linear correlation between equilibrium and adsorbed 

concentrations, as revealed by the Langmuir plot (Fig. 1-13), suggesting that the adsorption 

isotherms of L-Trp and L-His with DPPC liposomes are Langmuir type. It has been reported 

that the adsorption of L-arginine on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 

or 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) liposomes was also correlated 

with Langmuir isotherms (Bouchet et al., 2010). The other report also revealed that the 

adsorption of propranolol (PPL) could be correlated with Langmuir isotherms in the case of 

the negatively-charged liposomes (Kubo et al., 1986). In the case of D-amino acids, reliable 

correlations were not obtained for Cflt vs. q, possibly due to their negligible adsorption on 

DPPC. According to general theory, a monolayer adsorption to the surface site is known as 

Langmuir model. These results therefore suggest that the membrane structure of DPPC 

liposome forms a “uniform adsorption site” for L-Trp and L-His molecules due to the rearrangement 



29 
 

 

Fig. 1-12  Evaluation of adsorption isotherms of L-Trp (filled circles), L-His (filled triangles), 

D-Trp (open circles), D-His (open triangles) on DPPC liposomes (4.5 mM). The fitting curve 

of Langmuir isotherms are shown by dotted line. 

 

 

Fig. 1-13  Langmuir plot of L-Trp (Circles) and L-His (Triangles) on DPPC liposomes. 

Linear relationships between Cflt and Cflt/q were obtained both for L-Trp (R
2 

= 0.9999) and for 

L-His (R
2
 = 0.9995). 

 

of phospholipid molecules, to decrease the binding free energy to achieve a local minimum. 
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From the fitting of Langmuir equation, the binding constants for L-Trp and L-His to 

DPPC liposomes were calculated as 39.6 and 42.3 mM
-1

, respectively. These values suggest a 

slightly strong binding of L-Trp to DPPC liposomes compared with the case of L-His. The 

ratio of DPPC per adsorbed L-Trp and L-His was about 3.9 and 8.8, respectively, indicating 

that the chiral recognition sites were composed of multiple DPPC molecules. In the other case 

of PPL adsorption in negatively-charged liposomes, those values became approximately 1, 

indicating that the strong binding between opposite charged molecules provided one-to-one 

interaction, resulting in non-chiral selectivity due to the lack of stereospecific formation of 

interactions by plural phospholipids. The plausible interaction model is shown in Fig. 1-14. It 

was therefore investigated whether the self-assembled membrane structure of the DPPC 

liposomes showed a higher chiral recognition for L-Trp and L-His. 

 

 

Fig. 1-14  The plausible adsorption model of each molecule on phospholipid assemblies. 
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4. Summary 

The assembly structures formed by phospholipids were shown to play an important 

role to promote their interaction with target molecules. In the liquid-liquid interface, the 

emulsion phase formed by phospholipids became expanded by the decrease of dielectric 

constant of the solvent, resulting in the increase of the partitioning of Trp from aqueous phase 

to organic phase. Because amphiphilic molecules (e.g. phospholipids) are known to decrease 

the interfacial tension, the formation of emulsion layers was promoted by the lipid 

aggregation in the organic phase. In the case of Trp partitioning, it is considered that 

electrostatic interactions were induced between phospholipids and Trp molecules owing to 

their zwitterionic group. Although it is indicated that the certain degree of phospholipids can 

be useful as the extractant to improve the recovery yield, the chiral selectivity lies in low level 

because of the formation of “disordered” aggregation. On the other hand, highly-selective 

recognition of L-Trp and L-His was observed in their partitioning in liposome membranes by 

using the same phospholipid DPPC. In comparison with above results, it was found that the 

chiral recognition function by L-enantiomer of phospholipids was induced by the formation of 

highly-ordered assembly bilayer membrane in gel phase. The comparison of partition 

behavior in solvent-water system and liposomes membranes system are shown in Fig. 1-15. 

This chiral recognition of liposomes was also induced in racemic amino acid solution. 

Although the chiral selective adsorption in liposome membranes was also observed 

in other amino acids in part, its efficiency depended on the chemical structure of side chain. 

Amino acids possessing polar side chain showed high chiral selectivity, wherein those with 

hydrophobic side chains or with low-molecular weight side chains remained lower adsorption 

amounts and lower chiral selectivity. From these results, it is considered that the hydrogen 

bonds were very important to form chiral selective adsorption rather than electrostatic 

interactions, which strongly affected on the direction and the distance. This assumption could 

be regarded as one of the factors to increase the adsorption of L-amino acids, although it 

requires very long time as compared with general adsorption strategies. From other 

viewpoints, it was shown that the adsorption of opposite-charged systems, such a 

negatively-charged liposome and a positively-charged PPL molecule while no adsorption of 

PPL occurred in the zwitterionic liposomes. Because amino acids and PPL have hydrophilic 

moieties, their bindings were possibly carried out at the surface region around the headgroup  
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Fig. 1-15  The overview in the comparison of the molecular recognition in phospholipid 

assemblies. 

 

of phospholipids. As for the molar ratio adsorbent against phospholipid, L-Trp and L-His were 

calculated as over 4, while that of PPL was approximately 1, speculating the interactions with 

plural phospholipids. From these results, it is suggested that chiral molecules is adsorbed to 

the liposome surface which forms the binding site regarded as the “lock-and-key” model. 

Based on the investigation in this chapter, it is obvious that detail analysis for 

the physicochemical properties of the membrane is required for chiral  recognition 

function in order to understand the mechanism. The variations in the membrane properties 

during amino acid adsorption were investigated in the following chapter (chapter 2). Besides, 

because the adsorption by using liposomes required very long time, this methodology might be 

unsuitable for the practical application for industrial processes. To overcome such 

disadvantages, the design of lipid composition of liposomes is an important strategy to 

improve the adsorption behavior as well as the selection of target molecules. Design of the 

liposome membranes for more effective chiral recognition, and the development of analyzed 

method is described in chapter 3. 
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Chapter 2 

Mechanism for the Selective Adsorption on Liposome Membranes 

Based on Physicochemical Properties 

 

1. Introduction 

It is important to analyze the interaction of the molecules for the deeper 

understanding of its mechanism. There have been several kinds of previous reports on the 

evaluation of inter-molecular interactions (Table 2-1). Fluorescent probe molecules are 

generally used for the evaluation of the specific interaction or environmental property based 

on the degree of Stokes shift. The fluorescent prove method has been usually applied not only 

the detection of calcium ions or reactive oxygen species (Minta et al., 1989; Umezawa et al., 

1999), but also characterization of lipid membranes, such as polarity (Parasassi et al., 1991), 

protonation degree (Zuidam et al., 1997) and membrane fluidity (Lentz, 1989). From 

another aspect, fluorescence resonance energy transfer has been also developed for the 

investigation of membrane fusion or peptide localization by energy transfer among the two 

fluorescent probes that can be closely interacted (Düzgünes et al., 1987; Persson, et al., 2004). 

 

Table 2-1  List of analyzing method for characterization of liposome membranes 

Method Objective Features 

Fluorescent probe molecules Membrane hydrophobicity/polarity Easily measurement 

  
Indirect information of liposomes 

Dynamic light scattering (DLS) Size of vesicles Good detection for aggregation process 

  
Limited information about shape 

NMR spectroscopy State of each molecule in liposomes Detailed analysis per molecules 

  
Different detection in fluid membranes 

IR/Raman spectroscopy State of each functional group Direct analysis for liposome membranes 

  
Many interferences from bulk solution 

Dielectric dispersion analysis Dipole moment of components Good detection of dynamics of headgroup 

  
Very weak signals 

Differential scanning calorimetry Internal energy in phase transition Giving the thermodynamic information 

  
Coarse information about lipid membrane 
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Although the fluorescent probes can be employed in the characterization of liposome 

membranes because of its comparative ease, the obtained results are not derived from the 

membrane itself and can provide us only indirect information. Thus, the combination of 

different kinds of the analyses can be important for interpretation of information of the 

properties of liposome membranes. 

Infrared spectroscopy (IR) and Raman spectroscopy analysis are useful tools for the 

direct detection of the liposome membrane properties. IR and Raman spectra are gained by 

the analyses of penetrating light and scattering light, respectively. In the IR spectra, the energy 

absorbance derived from each molecular vibration mode is observed as the peaks, which can 

be applied for evaluation of the interactions as each functional group. However, it is difficult 

to measure weak signals in a dispersion sample such as liposome suspension because of the 

obstruction from the bending vibration of water molecules. On the other hand, Raman spectra 

are obtained by observing difference of wavelength between incident and scattering light. 

Raman spectra are complement with IR spectra, and there have been advantages in the 

measurement of liposome suspension using confocal Raman spectroscopy. Recently, the 

enhanced Raman spectra induced by surface plasmon of nanoparticles was developed for the 

detection of liposome membranes to overcome the disadvantage about feeble scattering light 

(Suga et al., 2015). Incidentally, some electrochemical approaches are also available to 

analyze the characteristics of liposome membranes, such as surface charge and hydrophilicity. 

Zeta potential of liposomes provides the information about the surface charge and, 

furthermore, dielectric dispersion analysis (DDA) is also effective methodology of measuring 

the liposome membrane properties. In this measurement, assigned frequency becomes higher 

from center to surface of liposome membranes because of hydrophilicity. Actually, the 

rotation of headgroup or acyl chain moieties can be evaluated by dielectric dispersion spectra 

(Shimanouchi et al., 2014; Hayashi et al., 2013). 

By using the methods recommended above, the interactions of phospholipid 

membranes with foreign molecules have been evaluated. In the case of hydrophobic 

molecules such as cholesterol, the alignment in lipid assembly and the accumulation in 

hydrophobic core can be observed by the measurements of membrane polarity and fluidity 

evaluated by fluorescent probes (M'Baye et al., 2008; Suga et al., 2013). On the contrary, 

hydrophilic molecules with smaller molecular weight or hydrophilic polymers are interacting 
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with the headgroup regions of liposome membranes. Arginine, which is one of the amino 

acids, is adsorbed on the surface of some zwitterionic liposomes as well as negatively-charged 

ones (Bouchet et al., 2010). This adsorption induced the increase of membrane polarity and 

fluidity, indicating the effect in inner region of liposomes. From another viewpoint, the 

phospholipid monolayer membranes formed by PE phospholipids have reported to adsorb the 

tartaric acids at the headgroup region of the membrane (Petelska et al., 2002). Furthermore, 

adsorption of poly-L-lysine on anionic liposomes induces the marked changes of the phase 

transition temperature, depending on the polymerization degree of poly-L-lysine (Schwieger 

et al., 2007). These results were considered to be caused by the effect that these polymers 

could interact only in surface charged region small molecular weight and, in the case of larger 

polymers, the insertion into interior of membranes occurs by means of secondary structure of 

-helix. 

Furthermore, thermodynamic properties of the liposome membranes are helpful to 

evaluate the adsorption of guest molecules on the liposome membrane. Differential scanning 

calorimetry (DSC) can evaluate the variation of internal energy by measuring the change of 

temperature with heating constantly. In measurement of liposome membranes, a dramatic 

response appears around the phase transition temperature, which provides the thermodynamic 

effect due to forming interactions. In addition, isothermal titration calorimetry (ITC) can also 

evaluate the thermodynamic behavior of molecular adsorption such as difference of enthalpy 

and entropy, which is used for assignment of ligand of ciguatoxin fragment from 

thermodynamic aspects (Ui et al., 2008). Furthermore, the relation between enthalpy and 

entropy is also important for understanding the several host-guest interactions. In general, the 

change of enthalpy shows compensation to that of entropy, enabled to assume the degree of 

conformational changes and the dehydration from the slopes and the intercept of regression 

line (Rekharsky et al., 2007). As for the assembly of phospholipids, these relations are 

considered similar in the case of micellar formation (Sugihara et al., 1999), implying that it 

could be a good way of investigating the interactions of liposomes and amino acids. 

In this chapter, the variation of liposome membrane property was investigated by 

employing the enantioselective adsorption of amino acids as case study. Time course of the 

surface hydrophobicity was first evaluated by using ANS fluorescent probes during the  
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Fig. 2-1  Conceptual illustration of chapter 2. 

 

adsorption process of amino acids. This analysis for membrane surface property was also 

examined by analyzing dielectric dispersion spectra at the higher frequency region. As the 

evidence of multiple interactions, direct observation of adsorbed Trp or His molecules was also 

carried out by using Raman spectroscopic analysis. In addition, thermodynamic analysis for this 

adsorption was measured by DSC, comparing the interaction behavior by the evaluating 

compensation of enthalpy and entropy. Each measurement mentioned above was conducted in 

both enantiomers of amino acids in order to discuss the mechanism of chiral recognition of 

the liposome membranes. 
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2. Materials and Methods 

2.1 Materials 

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was purchased from Avanti 

Polar Lipids, Inc. (Alabaster, AL, USA). L-Trp, D-Trp, L-His and D-His amino acids were 

purchased from Peptide Institute (Suita, Osaka, Japan). All amino acid reagents were over 

98% purity of enantiomers. The fluorescent probe, 8-anilino-1-naphthalenesulfonic acid 

(ANS), was purchased from Sigma Aldrich (St. Louis, MO, USA). 1,4-Dioxane and other 

chemicals were purchased from Wako Pure Chemical Industry Ltd. (Osaka, Japan) and were 

used without further purification. 

 

2.2 Liposome Preparation 

A solution of phospholipids in chloroform was dried in a round-bottom flask by 

rotary evaporation under vacuum. The resulting lipid films were dissolved in chloroform and 

the solvent evaporated twice. The lipid thin film was kept under high vacuum for at least 3 h, 

and then hydrated with distilled water at room temperature. The vesicle suspension was 

frozen at -80 °C and then thawed at 50 °C to enhance the transformation of small vesicles into 

larger multilamellar vesicles (MLVs). This freeze-thaw cycle was repeated five times. MLVs 

were used to prepare large unilamellar vesicles (LUVs) by extruding the MLV suspension 11 

times through two layers of polycarbonate membrane with mean pore diameters of 100 nm 

using an extruding device (Liposofast; Avestin Inc., Ottawa, Canada). Liposomes with 

different compositions were also prepared by using the same method.  

 

2.3 Characterization of Fluorescent Probes 

The fluorescent probes 8-anilinonaphthalene-1-sulfonic acid (ANS) was excited at 

350 nm respectively. Fluorescent spectra in water/dioxane solutions were monitored using 

FP-6500 or FP-8500; JASCO, Tokyo, Japan).  

 

2.4 Hydrophobicity Analysis of the Membrane Surface by ANS 

The local hydrophobicity of the liposomal membrane was characterized by using an 

environmentally sensitive probe; ANS (Kachel et al., 1998). ANS dissolved in ethanol were 
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added to the liposome suspension or the pre-incubated mixture of liposome and amino acids. 

The final concentrations of lipid, ANS, and amino acids were 100 M, 1 M, and 10 M, 

respectively. The fluorescence spectra of ANS were measured by using a fluorescent 

spectrometer after incubation for 30 minutes. ANS was excited at 350 nm, and the emission 

spectra were measured from 375 nm to 600 nm. 

 

2.5 Dielectric Dispersion Analysis (DDA) for Analysis of Bound-Water at Liposome 

Surface 

The dielectric loss (’’) was measured at the frequency range from 1.0 GHz and 6.0 

GHz, by using a network analyzer (Keysight Technologies, PNA-X N5245A, 10 MHz to 50 

GHz). The measurements were performed at 25 ºC and the concentrations of lipid or amino 

acids of liposome suspension were 100 mM and 15 mM, respectively. 

 

2.6 DSC Analysis of Liposomal Membranes 

A differential scanning calorimeter (DSC-60; Shimadzu, Kyoto, Japan) was used for 

calorimetric measurements of liposomes. Liposome suspensions (100 mM) with or without 

amino acids (15 mM) were incubated for 48 hours at 25 ºC before DSC measurements. The 

20 l sample solution was sealed in an alumina hermetic pan. Thermograms were obtained 

with a heating and cooling rate of 2 ºC/min between 25 ºC and 50 ºC. There were no 

significant differences between the thermograms in heating and in cooling processes for one 

sample. At least three cycles of heating/cooling were repeated in each experiment, and the 

accumulated data was used for the calculation of the enthalpy variation (H) and transition 

temperature (Tm) values. 

 

2.7 Raman Spectroscopy Analysis of Trp and His 

UV resonance Raman spectra of Trp and His were measured by a confocal Raman 

microscope (LabRAM HR-800; HORIBA, Ltd., Kyoto, Japan) at a excitation wavelength of 

266 nm, with laser power of 50 mW. In addition, Raman spectra of liposomes were measured 

by using a confocal Raman microscope (LabRAM HR-800; HORIBA, Ltd., Kyoto, Japan) at 

a wavelength of 532 nm, with laser power of 100 mW and a total data accumulation time of 
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30 s. For each sample, the background signal of the solution was removed, and then the 

baseline was corrected.  

 

2.8 Statistical Analysis 

Results are expressed as mean ± standard deviation. All experiments were performed 

at least three times. The distribution of data was analyzed, and statistical differences were 

evaluated using the Student’s t-test. A P-value of <5% was considered significant. 
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3. Results and Discussion 

3.1 Analysis of Surface Hydrophobicity of Liposome Membranes by Using Fluorescent 

Probe, ANS 

The properties of liposomal membranes during amino acid adsorption were 

characterized by using the fluorescence probe, 8-anilino-1-naphthalenesulfonic acid (ANS). 

ANS is known as a polar environment-sensitive probe (Slavík, 1982), which has been 

extensively applied to the analysis of membrane hydrophobicity. In addition, the localization 

in surface region of liposome membranes was also considered by the quench of xanthene dye 

probes attached in phospholipids by covalent bond (Kachel et al., 1998). Figure 2-2(a) shows 

the fluorescent spectra of in the mixture of water and 1,4-dioxane. As the increase of dielectric 

constant, blue shifts of the spectra and the increase of intensity were observed. In reference to 

previous report about dielectric constant of the water and 1,4-dioxane mixtures (Critchpield et 

al., 1953), the relation of dielectric constant and ANS fluorescence was estimated by 

calculating the fluorescence intensity ratios (I474/I518) of ANS (Fig. 2-2(b)). Except for the plot 

in the lowest dielectric constant values, a linear correlation was obtained, indicating the 

I474/I518 of ANS fluorescence can monitor the hydrophobicity in the surface region of 

liposomes. 

Figure 2-3 shows the time course of the I474/I518 of ANS in the DPPC liposome with 

L- or D-forms of Trp and His. In the presence of L-Trp, the I474/I518 values increased after 20 

hours of incubation, while the opposite tendencies were observed in the presence of L-His 

(Fig. 2-3(a)). These results imply that the adsorption of amino acids induces the changes in 

the hydrophobicity of the surface region of liposome membranes. The adsorption of L-Trp 

resulted in the exclusion of water molecules from the DPPC liposomes, whereas L-His 

induced the hydration of the membrane surface, possibly because His is less hydrophilic than 

Trp (Tanford, 1962). As for the kinetics of surface hydrophobicity, these changes are 

corresponding to the adsorption behaviors of amino acids (Fig. 1-6). It is possible that the 

change of surface property is one of the essential factors for increasing adsorption. Conversely, 

there were no significant changes of I474/I518 values in the presence of D-Trp and D-His, even 

after 48 hours (Fig. 2-3(b)), indicating the importance of the change of surface 

hydrophobicity for the enantioselective adsorption, that is to say, chiral recognition. 
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Fig. 2-2  Fluorescent spectra of ANS in water/1,4-dioxane. (a) Fluorescence spectra of ANS 

at the excitation of 350 nm. (b) The ratio of fluorescence intensity (I474/I518) of ANS in the 

different dielectric constant. 

 

 

Fig. 2-3  Time course of the relative fluorescence intensity of ANS with amino acids. The 

ratio of fluorescence intensities at 474 nm and 518 nm (I474/I518) are measured in the presence 

of (a) L-Trp (filled circles) and L-His (filled triangles), (b) D-Trp (open circles) and D-His 

(open triangles). In all samples, the concentrations of amino acid and DPPC were 0.1 mM and 

1.0 mM, and the incubation temperature was 25 ºC before measurements. 

 

 

400 450 500 550 600

0

40

80

120

Wavelength [ nm ]

F
lu

o
re

s
c
e

n
c
e

 I
n

te
n

s
it
y
 o

f 
A

N
S

 [
 a

.u
. 

]
1,4–Dioxane ratio

0%
10%
20%
30%
40%
50%

60%
70%
80%
90%
100%

0%

100%

90%

0 20 40 60 80

0.5

1

1.5

2

2.5

Dielectric constant          [ – ]

( 
I 4

7
4
 /
 I

5
1
8
 )



R
a

ti
o

 o
f 
fl
u

o
re

s
c
e

n
c
e

 i
n

te
n
s
it
y

(a) (b)

0 20 40

1.5

2

2.5

Incubation time [ h ]

R
e
la

tiv
e
 f
lu

o
re

s
c
e
n
c
e
 in

te
n
s
ity

( 
I 4

7
4
 /
 I

5
1

8
 )

  
[ 
- 

]

DPPC + L-Trp

DPPC + L-His

0 20 40

1.5

2

2.5

Incubation time [ h ]

R
e
la

tiv
e
 f
lu

o
re

s
c
e
n
c
e
 in

te
n
s
ity

( 
I 4

7
4
 /
 I

5
1

8
 )

  
[ 
- 

]

DPPC + D-Trp

DPPC + D-His

(a) (b)



42 
 

3.2 Evaluation of Bound Water in Surface of Liposome Membranes by Dielectric 

Dispersion Analysis 

To investigate the hydration states of liposome membranes, dielectric dispersion 

analysis (DDA) is a useful tool because this is the direct analysis of bound water molecules. 

According to the previous studies (Noda et al., 2006; Takada et al., 2012), the peaks of 

dielectric loss around 0.1-5 GHz is assigned to bound water in liposome membranes, towards 

that around 20 GHz means the bulk water. Figure 2-4 shows the dielectric spectra of DPPC 

liposomes with or without L- or D-forms of Trp and His. In this figure, the mixing of L-Trp 

induced the suppression of the shoulder peak from bound water unlike the mixing of D-Trp. 

The suppression of this shoulder peaks is corresponding to diminishing the dielectric 

relaxation by insertion of cholesterols or proteins (Takada et al., 2012). It is thus considered 

that the adsorption of L-Trp resulted in the exclusion of water molecules from the membrane 

structure of the DPPC liposomes, while L-His induced the hydration of the membrane surface. 

Considering this result and ANS measurement, it is suggested that the chiral recognition of 

amino acids induced the changes in the membrane surface properties. 

 

 

Fig. 2-4  Dielectric dispersion analysis of DPPC liposome membranes with amino acids. (a) 

Dielectric dispersion spectra of DPPC mixed L-form (dashed line) or D-forms (dotted line) of 

Trp. (b) Dielectric dispersion spectra of DPPC mixed L-form (dashed line) or D-forms (dotted 

line) of His. The dielectric loss (’’) were analyzed in frequencies of 2-6 GHz. All samples 

were incubated by 25 
o
C in 48 hours before measurements. 
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3.3 Observation of Bindings of Tryptophan or Histidine in Liposomes by Resonance 

Raman Spectroscopy Analysis 

A possible model for interaction of amino acids by liposome membranes was 

investigated based on UV resonance Raman spectroscopic analysis. UV resonance Raman 

signals of Trp and His can be distinguished based on their constituents (Fig. 2-5),; for Trp, the 

peaks at 1467, 1550, 1576, and 1616 cm
−1

 were assigned as N1-H bending, C2-C3 or C3-C 

stretching, respectively (Hirakawa et al., 1978; Miura et al., 1989; Wei et al., 2007); for His, 

the peaks at 1498, 1576 and 1632 cm
-1

 were assigned as stretching mode of the imidazole ring, 

C1-C2 stretching mode, and C4-N5 stretching mode, respectively (Marques et al., 2013). 

Figures 2-6(a) and (b) showed the UV resonance Raman spectra of L-Trp and D-Trp in the 

presence of DPPC liposomes after 48 hours of incubation. In the presence of DPPC liposomes, 

the peak intensities at 1467, 1550, 1576 cm
−1

 of L-Trp decreased, while no significant changes 

was observed in the case of D-Trp. A decrease in the peak intensities of L-His was also observed, 

but not in the case of D-His (Figs. 2-6(d) and (e)). These results suggest that L-Trp and L-His 

interacted with the DPPC liposomes. In addition, the decrease in the peak intensities was 

proportional to the lipid concentration (Figs. 2-6(c), (f)). The Raman peak intensity of Trp is 

sensitive to environmental hydrophobicity (Nagatomo et al., 2013). It has been reported that 

the adsorption of cysteine ethyl ester on DPPC liposomal membranes resulted in a decrease in 

its Raman peak intensities, in which the interaction between the phospholipids and amino acid 

side chains could be induced by the replacement of water molecules, with a consequent 

weakening of the vibrational force constants (Arias et al., 2015).
 
Furthermore, nucleobases, 

 

 

Fig. 2-5  Peak assignments of side chains of amino acids. (a) Assignment of Trp. (b) Assignment 

and His. Atom number about carbon and nitrogen were described in chemical formula. 
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Fig. 2-6  UV resonance Raman spectroscopic analysis of Trp and His with DPPC liposomes. 

Raman spectra of each amino acids are measured without (dotted line) or with DPPC 

liposomes (solid line): (a) L-Trp, (b) D-Trp, (d) L-His and (e) D-His. (c) Relative Raman peak 

intensity of Trp (1467cm
-1

) with DPPC liposomes. The similar analysis for His (1498 cm
-1

) 

was shown in (f). All samples were incubated by 25 ºC in 48 hours before measurements. 

 

which are hydrophobic moieties in RNA molecules, can interact with the liposome 

membranes via hydrophobic and hydrogen bonding interactions (Suga et al., 2013). The logP 

values of the indole ring (Trp) and imidazole ring (His) are 2.1 and -0.1, respectively (cf. 

amino acid back bone (Gly): -3.9)), and the hydrogen bond donors and acceptors are 

accumulated at the hydrophobic-hydrophilic interface of membranes. Taken together, these 

data suggest that the side chains of L-amino acids interacted with the hydrophobic regions of 

the liposome membranes, in which hydrogen bonds could be formed between L-amino acids 
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and DPPC molecules. 

 

3.4 Thermodynamic Analysis for Adsorption in Liposome Membranes 

Based on the above results of amino acids, the “surface region” of liposomes was 

found to be significant in the adsorption of amino acids. To discuss the adsorption mechanism, 

thermodynamic analysis of adsorption energy is useful for understanding the behavior of 

liposomes as the adsorbent of amino acids. 

 

3.4.1 Evaluation of Phase Transition by DSC Analysis 

The phase transition of the DPPC liposomes was analyzed by DSC, and 

pre-transition and main transition peaks were observed at 34.69 ºC and at 41.09 ºC, 

respectively. The effect in phase transition is investigated by mixing L- or D-forms of Trp and 

His (Fig. 2-7). The main phase transition temperature (Tm) slightly increased by the addition 

of L-Trp or L-His, whereas no change was induced by D-amino acids (Figs. 2-7(a) and (b)). 

Such a variation of DPPC liposomes in Tm is corresponding to the previous report about the 

incorporation of cationic lipid, owing to the electrostatic interaction between lipid molecules 

(Troutier et al., 2005). In the case of anionic liposomes, Tm was increased by the addition of 

poly(L-lysine) or poly(L-arginine), owing to the stabilization of the gel phase via the 

restriction of electrostatic repulsion between neighboring phospholipid molecules (Schwieger 

et al., 2007; Schwieger et al., 2009). Considering our results, the slight increases in the Tm 

values indicate that the electrostatic interactions between L-amino acids and liposome 

membranes induced the stabilization of the membrane packing. The adsorption of L-amino 

acids is also suggested by the suppression of the pre-transitions to a ripple gel phase only in 

the presence of L-amino acids. The enthalpy (H) was also calculated for DPPC liposomes 

incubated with the amino acids (Fig. 2-7(c)). The H values slightly increased with the 

addition of L-amino acids, but no significant increase was observed in the presence of 

D-amino acids. Furthermore, the increase in H values was proportional to the amino acids 

concentration (Fig. 2-8). These results suggest that such variations in Tm and H correspond to 

the adsorption of the L-enantiomers on DPPC liposome membranes. It has been suggested that 

these endothermic changes could be related to the stabilization of acyl chain packing via interactions 
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Fig.2-7  DSC analyses of DPPC liposome membranes with or without amino acids. The 

thermograms of pure DPPC liposomes are shown as black lines. The main transition of DPPC 

liposomes (41.09 ºC) is shown as dotted line. (a)DSC thermograms of DPPC liposomes mixed 

with L-Trp (lowers) or D-Trp (uppers) at the different concentrations. (b)DSC thermograms of 

DPPC liposomes mixed with L-His (lowers) or D-His (uppers) at the different concentrations. 

(c)Table of phase transition temperatures (Tm) and enthalpies (H). All samples were 

incubated by 25 ºC in 48 hours before measurements. 

 

with L-amino acids (Zhao et al., 2007; Marques et al., 2013).
 
Therefore, it was investigated 

whether the enantioselective adsorption of L-Trp and L-His on DPPC liposomes induced the 

membrane to become more ordered, in which electrostatic and van der Waals interactions are 

possible driving forces of their interaction.  
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Fig. 2-8  Variations of the main transition enthalpy (H) in different concentrations of (a) L- 

or D-forms of Trp and (b) L- or D-forms of His, respectively. All samples are incubated by 25 

ºC in 48 hours before measurements. 

 

3.4.2 Discussion of Adsorption in Relation between Enthalpy and Entropy 

The compensation analysis between enthalpy and entropy is important to evaluate the 

adsorption of amino acids on liposome membranes. Since the entropy changes (H) are a 

state function, it can be estimated from the DSC analysis of phase transition behavior. In 

addition, entropy changes (TS) can be calculated from the free energy changes obtained by 

the distribution constant of amino acids (Klip) as the following equations: 

TS = H + RTm ln Klip 

Klip = Cflt Vlip / {(Cini – Cflt) V} 

where Cini and Cflt represent the concentration of amino acids in the initial solution and the 

ultrafiltrated dolution, V and Vlip represent the volume of the bulk solution phase and the 

liposome membrane phase, R means the gas constant. In the case of D-Trp or D-His, 

compensation relationship could not be discussed because of the positive value of free energy 

changes, which is caused by no adsorption. On the other hand, the adsorption of L-Trp or 

L-His showed the linear correlation of enthalpy changes and entropy changes (Fig. 2-9), 

indicating the compensation relationship. These plots lay in the upper-left area of diagram 

similarly in the case of the ligand bindings (Muralidhara et al., 2007) and distribution of water 
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in reverse micelle (Khougaz et al., 1997), implying that thermal changes by adsorption were 

relatively large compared to the structural change of whole system. As a result, these 

adsorptions were regarded as the high affinity of binding.  

To compare with general examples of interactions, the slopes () and intercepts 

(TS0) of plot of enthalpy changes and entropy changes were summarized in Table 2-2. When 

the TS0 values are positive, the entropy-driven adsorption can be applicable in general. 

Almost all the cases (including this study) can be regarded as the entropy-driven adsorption. 

As compared with other cases, the  value is relatively small in this study. From this result, 

the energy required in the structural change of the liposome membrane is assumed to be the  

 

 

Fig. 2-9  The relation between enthalpy changes and entropy changes in several systems. In 

addition to the L-amino acid adsorptions, the profile of solvent extraction (1), ligand bindings 

(2) and distribution of water in reverse micelle (3) were shown. Dotted line represents the 

proportional line whose slope and intercept are 1 and 0 kJ/mol, respectively. The detailed 

plots of adsorption of L-Trp and L-His were shown in the inset. 
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Table 2-2  List of thermodynamic parameters in several types of interactions 

Reference Interaction type  [-] TS0 [kJ mol
-1

] 

Bojesen et al., 2003 Fatty acid binding to BSA from water 1.4 68.8 

 
Fatty acid binding to BSA from hexane  1.01 0.13 

Khougaz et al., 1997 Distribution of water in reverse micelle 1.13 17.6 

Kojima et al., 2001 Distribution of carboxylic acids in solvent-water system  1.05 -3.16 

 
Dimerization of carboxylic acids 0.91 20 

Haroun et al., 2005 Binding Trp in chiral-recognitive ligand 1.02 22 

Kinkel et al., 1981 
Solvent extraction between phosphate buffer and 

2,2,4-trimethylpentane 
0.21 13.9 

Nagatoishi et al., 2009 Ligand binding to TATA-box 0.856 53.3 

Muralidhara et al., 2007 Allosteric binding to Cytochrome P450eryF 1.76 46.8 

Richieri et al., 1997 Fatty acid (PA) bindings by Mutant proteins 0.864 -1.2 

This work Adsorption of L-Trp on DPPC liposomes 0.416 14.5 

 
Adsorption of L-His on DPPC liposomes 0.459 10.4 

 

smaller than that of solvation or ligand bindings, which implies that the energy required in 

the adsorption and the relating change of hydrophobicity at the surface region are not so 

drastic as compared with that in the structural changes of liposomes: thus, the membrane 

fusion or disruption are hardly occurring. From the thermodynamic investigations, the 

liposome membranes were shown to act as the host adsorbents that recruit the guest molecules 

in entropy-driven manner. 

 

3.5 Adsorption Mechanism in Liposome Membranes 

Based on the above results, a plausible mechanism of chiral recognition is suggested 

as schematically shown in Fig. 2-10. In the early stage of adsorption, the adsorption amount 

of L-amino acids was still retained at the lower level till 12 hours of incubation, indicating that 

the relatively weak interactions were induced by the contribution of electrostatic interactions 

(Fig. 2-10). On the contrary, PPL adsorption in opposite charged-liposomes was saturated in 

short-times incubation. The contributions of electrostatic interactions are thought to be very 

important to improve the final recovery yield in the adsorption. The adsorption amount of 

L-Trp obtained was lower in acidic and basic pH conditions, wherein the L-Trp surface was 

positively- and negatively-charged, respectively (data not shown). During their interaction 
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Fig. 2-10  Schematic illustration of the mechanism of chiral recognition on liposomal 

membrane. 

 

process, the membrane property, such as hydrophobicity, was varied, especially at the surface 

region of the membranes. These variations were well corresponding to the increase of the 

adsorbed amount of L-amino acids, indicating that the adsorption can be promoted by the 

variation of the surface membrane properties. It is therefore implied that the surface property 

of liposome membranes transition to appropriate states for high adsorption. In the case of the 

adsorption of amino acids, it is also suggested that there are several steps in the adsorption 

mechanism as the variation of surface property induce the enhancement of the binding 

between amino acids and liposome membranes. At the step of variation in surface property, 

the liposome membranes are considered to exhibit the chiral recognition function, judging 

from the results of remarkable increase of the L-enantiomer. Finally, the adsorption of 

L-amino acids was saturated, resulting in the binding of plural phospholipids and one amino 

acid molecule, which means that the assembled state at the membrane surface is quite 

important for the chiral recognition. In addition, the possibility of more than three kinds of 

interactions was also evidenced by Raman spectroscopy analysis. Because the concept of 

three-points interaction is important for chiral recognition (Davankov, 1997), the 

suprastructure of liposome membranes may effectively induce such multiple interactions for 

chiral recognition. Furthermore, DSC thermograms revealed the increase of the phase 

transition temperature for the DPPC liposomes adsorbed with of L-amino acids, indicating 

that the recognized amino acid can be a member of the assembled membranes. In the 

viewpoint of adsorption energy, the slight conformational change is considered to be induced, 

and then the chiral recognitive interaction is gradually carried out to achieve a “local 
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minimum” of free energy. Based on the aforementioned adsorption mechanism, the high 

recognition function is induced on the liposome membranes. Considering the results in 

chapter 1, such adsorption steps are possibly suggested in the case of the adsorption of other 

amino acids, as shown in Fig. 2-11. 

 

 

Fig. 2-11  List of adsorption behavior in several amino acids (picked up) and propranolol.  
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4. Summary 

The chiral recognition of amino acids on the liposome membranes was found to be 

induced through the interactions especially at the surface region. The fluorescent probe 

analysis using surface-localized fluorescent probe, ANS, indicated the specific changes of 

hydrophobicity by mixing of L-Trp and L-His after 20 hours incubation, while no changes by 

mixing of D-Trp or D-His. The variations were also observed in dielectric dispersion spectra as 

the shift of the relaxation of peaks relating to “bound water” at the surface region of 

liposomes, indicating that the effect in membrane property can be corresponding to the amino 

acid adsorption. It is therefore important to form the interactions between the side chain of 

amino acids and lipid headgroups, which is evidenced by the decrease of peak intensity in 

resonance Raman spectra. In addition, the increase of the phase transition temperature 

occurred in liposomes that adsorbed L-Trp and L-His, implying the decrease of electrostatic 

dispersion in headgroup region of liposomes. Considering the relation of enthalpy and entropy 

changes, it is thought that this adsorption induces dehydration with slight effect of 

conformational changes in phospholipid assembly. 

According to the above results, the mechanism of chiral recognition can be explained 

as “step-by-step” adsorption. In the first step, the partitions derived from electrostatic 

interactions are dominant. In the case of amino acids, stereospecific interactions are induced 

by the formation of multiple interactions. After that, the increase of adsorption was induced 

by the rearrangement of surface assembly as the change of membrane property. The effect on 

bound water existing in the membrane surface region is possible key factors for the binding of 

amino acids. Finally, multiple bindings were formed between plural phospholipids and one 

amino acid, according to the results about adsorption isotherms investigated in chapter 1. In 

the energetic viewpoint, it is considered that the molecular adsorption can be induced with 

gradually transfer of the total free energy to a local minimum in organizing the self-assembled 

membrane composed with phospholipid and “adsorbed” amino acid. 

Aforementioned mechanism required longer time to complete adsorption process, 

which is one of the disadvantages for the practical application for industrial processes. Toward 

this, it is possible that the design of liposome membranes focusing on initial hydrophobicity 

or fluidity controls the adsorption behavior. Because such chiral recognition occurred in 

surface region of liposome membranes, the specific characterization for surface property is 
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important to design the chiral recognition function. The investigation of detailed surface 

property in liposomes for efficient chiral recognition will describe in the following chapter 3. 
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Chapter 3 

Evaluation of Surface Properties of Cholesterol-Containing 

Binary and Ternary Liposomes to Regulate Molecular 

Recognition and Design of Liposome Membranes 

 

1. Introduction 

According to the results in the previous chapter, the analysis of the surface property 

of liposome membranes is important in order to design the optimal liposome membranes for 

recognition of small molecules. As mentioned in chapter 2, the fluorescent probe analysis can 

provide the membrane property in specific region of liposome membranes. Actually, it has 

been investigated that the dielectric constants of liposome membranes decrease with the 

sigmoid curve from surface to interior (Cevc, 1990). Thus, the location of fluorescent probes 

in liposome membranes depends on the polarity of the probe molecule: such behaviors can be 

investigated by the quencher bound to phospholipids in designated location (Kachel et al., 

1998; Jurkiewicz et al., 2006; Kaiser et al., 1998; Asuncion-Punzalan et al., 1998). The 

locations of several fluorescent probes were summarized in Fig. 3-1. In contrast to ANS, 

Laurdan and DPH are stably localized in inner regions, and they indicate the whole property 

of liposome membranes. Among the surface-localized fluorescent probes, the detail 

localizationcan be analyzed by the distinction of fluorophore location. That is why the 

combination of multiple fluorescent probes is good way to evaluate the changes in the 

membrane properties in various regions. In addition, such a technique is also applied for 

evaluating the phase state of liposomes. Suga et al. have developed the evaluation method for 

the phase state of liposome membranes by Cartesian diagram evaluated by plotting the 

membrane polarity and fluidity derived from Laurdan and DPH, respectively (Suga et al., 

2013). 

Cholesterol (Ch) is known to regulate the membrane property because of the steroid 

skeletons which induce high order in liposome membranes. Besides, Ch also induces the increase 



55 
 

 

Fig. 3-1  Summary of the depth of fluorescent probes in liposome membranes. 

 

of membrane packing via the hydrogen bonds between hydroxyl groups of Ch and 

headgroups of phospholipids. As a result, disordered liposome membranes show the decrease 

of membrane fluidity by mixing Ch. On the contrary, the fluidity of quite rigid liposome 

membranes increased in mixing Ch by disturbing the membrane packing. Actually, the 

liposomes containing Ch resulted in the specific effects via the adsorption of some peptides 

(Shigematsu et al., 2007; Gopal et al., 2013). Furthermore, heterogeneous liposomes 

containing Ch indicate the regions of low fluidity, such as microdomains or “rafts” (Scolari et 

al., 2010; Björkbom et al., 2007). 

Microdomains mean the separated phases in liposome membranes, which are mainly 

induced by the difference of lateral diffusion in each phase and hydrophobic interactions. 

Such domains actually play significant roles in the regulation of protein and enzyme functions 

in the cell membranes (Litt et al., 2009; Anderson et al., 2002; Carozzi et al., 2002). In giant 

unilamellar vesicles (GUV), domains can be formed in micrometer order, and are directly 

observed in microscopic images by fluorescent labeling (Veatch et al., 2003; Stottrup et al., 

2004; Cicuta et al., 2007). In addition, the membrane property of domains has been evaluated 

by thermodynamic procedures (Svetlovics et al., 2012; Garidel et al., 2000), Raman, and 

nuclear magnetic resonance spectroscopy (de Lange et al., 2007; Davis et al., 2014). On the 

other hand, the analysis of domains for small liposomes (nanometer order) is difficult due to 

the limit of measurable scale in optical microscope, nevertheless, domain formation in 

liposome membranes can be analyzed by excimer/monomer ratios of pyrene probes and their 
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derivatives even in nano-order (Lagane et al., 2002; Arrais et al., 2007). The estimation of 

nanodomain formation (<5 nm) has been also carried out by the fluorescent quench method 

using TEMPO probe (Suga et al., 2013). Moreover, the line tension is generated in the edge of 

domains due to the boundary of different phases. Actually, the previous report revealed that 

the HIV fusion peptide preferentially targeted to lo-ld boundary regions and promoted full 

fusion at the interface between ordered and disordered lipids (Yang et al., 2015). As the 

increase of domain size, the contributions of such a line tension is thought to decrease 

(Tolpekina et al., 2004). Therefore, it is possible that the detailed investigation of the phase 

behaviors in heterogeneous liposomes contributes to understanding about the formation of 

interactions in liposome membranes. 

In this chapter, the effect for chiral recognition of His is investigated by using the 

liposomes with multiple components contained Ch (Fig. 3-2). At first, the methodology for 

evaluating the surface property of the liposome membranes was developed by the 

combination of two types of fluorescent probes that can be localized at the surface edge of the 

membrane. By means of the comparison of Cartesian diagram for interior membrane 

properties, it is expected to evaluate the liposome membrane property in details. According to 

the relation between such properties and the adsorption of L- or D-form of His, the effect of 

mixed Ch in liposome membranes is discussed. The variation in the membrane property after 

the His adsorption was also investigated to understand the behavior of liposome membranes. 

Furthermore, the membrane properties of ternary liposomes were evaluated based on their 

phase behaviors, and then, the relation with chiral recognition of His was investigated. By  

comparing the domain states relating to the line tension, the contribution of domain is 

considered for understanding the effect of existing domain “edges” 
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Fig. 3-2  Conceptual illustration of chapter 3. 
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2. Materials and Methods 

2.1 Materials 

Several phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3- 

phosphocholine (DOPC), were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, 

USA). A fluorescent probe, N-(5-dimethylaminonaphthalene-1-sulfonyl)-1,2-dihexadecanoyl- 

sn-glycero-3-phosphoethanolamine (Dansyl-DHPE) was also purchased from Avanti Polar 

Lipids, Inc., and 1,6-diphenyl-1,3,5-hexatriene (DPH), (1-(4-trimethylammoniumphenyl)-6- 

phenyl-1,3,5-hexatriene (TMA-DPH), 6-lauroyl-2-dimethylaminonaphthalene (Laurdan) were 

obtained from Sigma Aldrich (St. Louis, MO, USA). Cholesterol (Ch) was purchased from 

Wako Pure Chemical Industry Ltd. (Osaka, Japan), and L or D-form of histidine (His) were 

purchased from Peptide Institute (Suita, Osaka, Japan). Other chemicals were purchased from 

Wako Pure Chemical Industry Ltd. (Osaka, Japan) and were used without further purification. 

 

2.2 Liposome Preparation 

A solution of phospholipids in chloroform was dried in a round-bottom flask by 

rotary evaporation under vacuum. The resulting lipid films were dissolved in chloroform and 

the solvent evaporated twice. The lipid thin film was kept under high vacuum for at least 3 h, 

and then hydrated with ultrapure water at room temperature. The vesicle suspension was 

frozen at -80 °C and then thawed at 50 °C to enhance the transformation of small vesicles into 

larger multilamellar vesicles (MLVs). This freeze-thaw cycle was repeated five times. MLVs 

were used to prepare large unilamellar vesicles (LUVs) by extruding the MLV suspension 11 

times through two layers of polycarbonate membrane with mean pore diameters of 100 nm 

using an extruding device (Liposofast; Avestin Inc., Ottawa, Canada). Liposomes with 

different compositions were also prepared by using the same method. 

 

2.3 Evaluation of Membrane Properties by Fluorescent Probes 

Membrane properties of liposomes can be characterized in Cartesian diagram by the 

plot of the membrane fluidity versus polarity evaluated by DPH and Laurdan, respectively 

(Suga et al., 2013). The fluidity in the interior of the liposome membrane was evaluated by 
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measuring the fluorescence anisotropy of the DPH incorporated in the vesicles using the 

fluorescence spectrophotometer FP-6500 (JASCO, Tokyo, Japan). 10 μL of 100 μM DPH in 

ethanol was added into 1 mL of liposome suspension (lipid: 0.25 mM). The samples were 

excited with vertically polarized light (360 nm), and emission intensities both perpendicular  

(I⊥) (0°, 0°) and parallel (I∥) (0°, 90°) to the excited light were recorded at 430 nm. The 

polarization (P) of DPH was then calculated by using the following equations (Hayashi et al., 

2011):  

P = (I∥- GI⊥) / (I∥ + GI⊥) , 

G = i⊥ / i∥ , 

where i⊥ and i∥ are the emission intensities perpendicular to the horizontally polarized light 

(90°, 0°) and parallel to the horizontally polarized light (90°, 90°), and G is the correction 

factor. The membrane fluidities were evaluated based on the reciprocal of polarization, 1/P. 

The membrane fluidities were measured at room temperature. The fluorescent probe Laurdan 

is sensitive to the polarity around itself, which allows the membrane polarity of liposomes to 

be determined. Laurdan emission spectra exhibit a red shift caused by dielectric relaxation. 

Thus, emission spectra were calculated by measuring the general polarization (GP340) for each 

emission wavelength as follows (Parasassi et al., 1991): 

GP340 = (I440 − I490) / (I440 + I490) . 

Laurdan excited with 340 nm light at 20 ºC. The fluorescent spectrum of each sample was 

normalized. The total concentrations of amphiphilic phospholipid and Laurdan in the test 

solution were 1000 and 10 μM, respectively. 

Besides, the surface membrane property could be characterized by the similar 

diagram analyzed by partially-hydrophilic molecular probes. TMA-DPH could be used for 

characterization of the surface membrane fluidity (1/PTMA-DPH) by analyzing anisotropy with 

the same manner to DPH. As for surface membrane polarity, dansyl-DHPE was used as a 

probe molecule: it was mixed with a liposome suspension in final concentrations of lipid and 

dansyl-DHPE were 100 and 1.0 μM, respectively. The fluorescence spectra were analyzed by 

the excitation light (336 nm) for observing the wavelength of maximum fluorescence. 
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2.4 Measurement of Adsorption to Liposome Membranes 

The liposome suspensions (Lipid: 3.0 mM) were mixed with L-histidine (His) (0.5 

mM) and then they were incubated at 20 ºC for 24 or 48 hours. After incubation, liposomes 

and adsorbed L-His were separated by ultrafiltration with the 50,000 Da of molecular weight 

cut off (USY-5; Toyo Roshi Kaisha, Ltd., Tokyo, Japan). After filtration, the leaked 

concentration (Cflt) of L-His was measured by the absorbance of UV spectrometer (UV-1800; 

Shimadzu, Kyoto, Japan). The adsorbed concentration (Cads) and adsorption amount of L-His 

(qL-His) or D-His (qD-His) in several liposome membranes were calculated by following 

equations: 

Cads = Cini - Cflt 

qL-His or D-His = Cads / clip ,  

where Cini and clip represent an initial concentration of adsorbates and liposomes, respectively. 

To evaluate the selectivity of His enantiomer, percent based enantiomer excess (ee) were 

calculated by following equation: 

ee = (Cads(L-His) - Cads(D-His)) / Cini . 

 

2.5 Statistical Analysis 

Results are expressed as mean ± standard deviation. All experiments were performed 

at least three times. The distribution of data was analyzed, and statistical differences were 

evaluated using the Student’s t-test. A P-value of <5% was considered significant. 
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3. Results and Discussion 

3.1 Effect of Mixing Cholesterol for Interior Membrane Properties 

The properties of the interior of liposome membranes were first evaluated based on 

the previous report (Suga et al., 2013). As shown in Fig. 3-3, the general polarity (GP340) of 

Laurdan and the fluidity evaluated by DPH (1/PDPH) for several liposomes containing Ch were 

plotted in a Cartesian diagram, indicating the regression of the plotting data in a single line. 

POPC (Tm: −5 ºC) and DOPC (Tm: −20 ºC) liposomes were in the disordered (ld) phases, and 

an increase in both properties in the upper-left of the diagram along with increased Ch ratios, 

while DPPC (Tm: 41ºC) liposomes were in the solid-ordered (so) phases, and only a slight 

increase in both properties were observed. These results agree with the previous findings 

showing that Ch induced the phase transition of liposomes from ld to liquid-ordered (lo) phase 

caused by membrane orientation (Arrais et al., 2007; Walde et al., 2014). In the case of ternary 

DOPC/DPPC/Ch liposomes, their surface properties were similar to those of liposomes with 

corresponding Ch concentrations, indicating that there was no clear difference among  

 

 

Fig. 3-3  Cartesian diagram of membrane polarity (GP340) and fluidity (1/PDPH) for binary 

and ternary liposomes containing Ch. Numbered points are defined in the inset. 
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liposomes showing similar Tm in the plot of Fig. 3-3. Therefore, these results show that the 

Cartesian diagram, characterizing membrane polarity and fluidity, can be utilized for the 

understanding of overall membrane properties in the case of Ch-modified liposomes, owing to 

the composition of phospholipids or Ch. 

 

3.2 Effect of Mixing Cholesterol for Surface Membrane Properties 

It is important to evaluate the behavior of the surface region of liposome membranes 

in order to understand the interactions between hydrophilic molecules (at polar moieties) and 

liposomes. Detail analysis of the phase state of liposomes is also required. As the increase of 

Ch molar ratio, the liposomes mixed Ch in 50 mol% showed the transition of phase state in 

DPPC, DOPC and POPC (Fritzsching et al., 2013; de Almeida et al., 2003). Furthermore, 

some of DOPC/DPPC/Ch ternary liposomes formed the segregated lo phase regarded as 

domains.
 
However, the aforementioned probes, such as Laurdan and DPH, are basically 

categorized as hydrophobic fluorescent probes and, thus, are not suitable to monitor 

membrane properties at the surface region. Besides that, Cartesian diagram remains the 

evaluation of whole properties derived from each ratio of lipid components. As for the surface 

property, ANS fluorescent probe molecules could be used for the analyses of before or after 

adsorption of amino acids as described in chapter 2. Nevertheless, because this probe 

molecule is difficult to be inserted in ordered phase, it is not appropriate to compare the 

surface membrane properties among the liposomes especially in secondary and ternary 

systems. Hence, dansyl-DHPE is known as the fluorescent probe capable of localizing to 

hydrophilic regions at the surface of liposomal membranes (Asuncion-Punzalan et al., 1998), 

and can be used for the estimation of membrane hydrophobicity via the emission wavelength 

sift in the liposomes (Takechi et al., 2011). As shown in Fig. 3-4(a), the fluorescent spectra of 

dansyl-DHPE were measured in mixtures of water and 1,4-dioxane as solvents, showing a 

blue shift in the peak wavelength with decreased ratios of water. This behavior was caused by 

environmental changes around the fluorophore of the dansyl moiety. The shift in the peak 

wavelength was plotted against the dielectric constant of the solvent (Fig. 3-4(b)), resulting 

that a linear correlation in wavelengths was observed from 512 nm to 527 nm, except for the 

data plot in the dielectric constant value of 57. Hence, the surface-membrane hydrophobicity  
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Fig. 3-4  Peak wavelength analysis of dansyl-DHPE surrounding in solvent or liposome 

membranes. (a) Fluorescent spectra of dansyl-DHPE (Ex.: 336 nm) in several ratio of 

water/1,4-dioxane solvent. (b) Peak wavelengths versus dielectric constant. Dielectric 

constant values were calculated the ratio of water (ε = 80.1) and 1,4-dioxane (ε = 2.2). (c) 

Peak wavelength of dansyl-DHPE inserted in several liposome membranes. Numbered points 

are correlated in the inset of Fig. 3-3. 

 

can be evaluated by the normalized value of the surface hydrophobicity (N) by using the 

following equation: 

N = (- 1 ) / (0 - 1 ) 

where 0 and 1 represent the fiducial peak wavelengths in hydrophobic (512 nm) and 

hydrophilic (527 nm) condition, respectively. 

Based on these preliminary results, the peak wavelength of dansyl-DHPE 

fluorescence in the liposome was measured (Fig. 3-4(c)). The peak wavelength of highly 

ordered DPPC liposomes was found to be lower as compared with those in disordered 

membranes, such as DOPC and POPC, indicating that the DPPC liposome membrane was 

displaying a hydrophobic (dehydrated) surface. With the increase in Ch ratio, DOPC/Ch and 

DPPC/Ch liposomes displayed a red shift in the fluorescence spectrum, while no shifts were 

observed in the binary POPC/Ch liposomes. In the case of ternary liposomes, the wavelength 

of dansyl-DHPE spectra remained to be similar to those of hydrophilic surfaces, implying that 

the profile of surface hydrophobicity was not exactly characterized by the GP340 measured by 

using Laurdan.  

With reference to the Cartesian diagram (Fig. 3-3), Fig. 3-5 shows the evaluation of 

the properties at the surface of various liposomes by the plot of N versus TMA-DPH fluidity  

15 30 45 60
500

510

520

530

P
e
a
k
 w

a
v
e
le

n
g
th

 [
 n

m
 ]

Dielectric constant [ – ]

r
2
 = 0.9696

(512)

(527)

450 500 550 600
0

20

40

60

F
lu

o
re

s
c
e

n
t 

in
te

n
s
it
y
 [

 a
.u

. 
]

Wavelength [ nm ]

Dioxane ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

515

520

525

530

535

P
e

a
k
 w

a
v
e

le
n

g
th

 [
 n

m
 ]

1 2 3 4 5 6 7 8 9 10 11 12

Liposome composition

(a) (b) (c) 



64 
 

 

Fig. 3-5  Correlation diagram evaluated by surface membrane fluidity (1/PTMA-DPH) and 

surface membrane hydrophobicity (N) in several binary and ternary liposomes containing Ch. 

Numbered points are defined in the inset. Dotted line a0 represents the trend in pure or binary 

liposomes containing 30% of Ch; dotted line a1 and a2 also represent that in 50% Ch ratio 

liposomes and ternary liposomes, respectively. 

 

(1/PTMA-DPH). In the case of liposomes with single components (DOPC, POPC, and DPPC) 

or those with 30% Ch, the data were clustered on the right-downward trend line (a
0
), 

indicating that the surface hydrophobicity decreased with increased surface fluidity. However, 

in the case of binary liposomes at 50% Ch, the data were clustered in another trend line (a
2
) 

that demonstrated lower value of its slope, resulting in the discrimination of transitioned 

phase caused by Ch. The variation of these parameters was also plotted against the Ch ratio in 

order to discuss the features of membrane properties (Fig. 3-6). The N value of various 

liposomes, except for POPC, decreased depending upon the Ch ratio, with the 1/PTMA-DPH 

values indicating only a slight decrease, while GP340 and 1/PDPH reached values similar to 

those observed with DPPC liposomes. As increasing the Ch ratio, the liposome membranes 

change in accessible surface capable of permitting water-molecule invasion (Stein et al., 

2015), resulting in membrane variation toward hydrophilicity only at the surface regions of 

liposomes modified with Ch. The change in N became larger than that of 1/PTMA-DPH, since  
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Fig. 3-6  Transition of several membrane properties by increase of Ch molar ratio in three 

liposomes. Composition of liposomes represented below each bar. 

 

the water exclusion from the inner membrane to the surface region can be induced by 

insertion of Ch molecules (M’Baye et al., 2008). From these results, it is considered that 

membrane properties derived from fluorescent probes located at the surface region can be 

utilized for the evaluation of intrinsic properties of the liposome surface. 

The above characterization method was also applied to ternary liposomes. Although 

the Ch ratio was unchanged and kept at 30%, the data were found to be clustered on another 

trend line (a
1
). It has been reported that liposomes at these components could form the 

heterogeneous surfaces of lo and ld phases (Cicuta et al., 2007), resulting in hydrophilic 

liposome surfaces. Although previous methods evaluating membrane properties provided 

general information relating to phase separation, the proposed method for determining 

membrane properties at surface regions can discriminate between heterogeneous or Ch-rich 

liposomes. Based on these results, it is expected that variations in membrane properties before 

and after adsorption of hydrophilic guest molecules, such as amino acids, will be capable of 

more detailed study. 
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3.3 Relation between Membrane Properties and Chiral Recognition of Histidine in 

Binary or Ternary Liposomes 

Highly-selective adsorption of L-His molecules was induced in a DPPC liposome 

formed in the ordered (so) phase, where the surface membrane hydrophobicity decreased 

during the adsorption of L-His and the adsorption behavior of His was affected by initial 

membrane properties. The His adsorption behavior was studied by selecting various 

liposomes classified in different categories (a
1
, a

3
, and a

2
; Fig. 3-5). Figure 3-7(a) shows the  

 

 

Fig. 3-7  Adsorption and chiral recognition behavior in several liposomes. (a) Adsorption 

amount of L-His (qL-His) in 24 or 48 hours of incubation. (b) Adsorption amount of D-His 

(qD-His) in 24 or 48 hours of incubation. (c) Percent of His enantiomer excess (ee) in several 

liposomes. Closed and open keys show ee values in 24 and 48 hours of incubation. (d) Time 

course of qL-His in the three kinds of components categorized in a0 (dotted line), a2 (dashed 

line) and a1 (solid line). (e) Time course of qL-His in the three kinds of components categorized 

in a0 (dotted line), a2 (dashed line) and a1 (solid line). a0, a2 and a1 represent the trend lines 

described in Fig. 3-5. 
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adsorption levels of L-His (qL-His) in binary and ternary liposomes containing Ch. In the case 

of several liposomes categorized in a
0
, except for DPPC, the qL-His value increased after 24 

and 48 hours incubations, while the N value decreased. Specifically, the liposome of 

DOPC/Ch 7/3 indicated the larger qL-His after a 24- and 48-h of incubation in contrast to DPPC 

liposomes, resulting in more efficient adsorption as compared to results in previous chapter 1. 

This result was due to the promotion of the insertion of L-His molecules, resulting in high 

levels of surface fluidity and hydrophilicity. However, higher qL-His values over 24 h were 

obtained in several liposomes categorized as a
2
, despite the indications of lower 

surface-membrane fluidities. In comparison with the adsorption to liposomes categorized as 

a
0
, this result indicates that the liposomes categorized along the trend line with lower slope 

can have potentials capable of increasing qL-His. The conditions enabling fast and efficient 

adsorption can be estimated by the evaluation of surface-membrane properties, suggesting 

that the changes in membrane properties toward hydrophilic surfaces could be an important 

step in L-His adsorption as mentioned in chapter 2. Furthermore, high qL-His values observed 

over 24 h were obtained in all liposomes containing ternary components categorized in a
1
, 

indicating that the heterogeneous phase preferably influenced L-His adsorption in phase 

kinetics. To investigate the chiral recognition function of the above liposomes, the qD-His value 

was also shown in Fig. 3-7(b). In all liposomes, the qD-His value remained at level <0.01, even 

after a 48-h incubation, resulting in the high enantiomer excess (Fig. 3-7(c)). 

 

3.4 Variation of Liposome Membrane Properties Induced by Adsorption of L-Histidine 

In chapter 2, the changes of membrane properties by adsorption of L-amino acids 

were investigated by several procedures. To compare these changes among several phases of 

liposomes, the above evaluation is conducted after adsorption of L-His. 

As shown in Fig. 3-8(a), the variation of surface properties of the whole membrane 

was not significant before and after L-His adsorption in all components. This result may imply 

that the adsorption of L-His molecules had less effect on properties of the inner region of 

liposomes as mentioned in previous results involving dielectric dispersion spectra or 

anionic-probe hydrophobicity due to the difficulty of insertion of highly polar molecules. 

However, the surface-membrane properties were changed in the fixed areas of 0–0.4 in N and  
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Fig. 3-8  Transition of membrane properties by the adsorption of L-His. (a) Cartesian 

diagram analyzed by Laurdan and DPH before or after adsorption of L-His. (b) Correlation 

diagram of surface membrane properties before or after adsorption of L-His. The dotted circle 

showed the area of plots after adsorption. In both diagrams, numbered plots before and after 

adsorption of L-His are defined in the inset, and the plots after adsorption are described in 

primed numbers. 

 

2.8–3.8 in 1/PTMA-DPH after L-His adsorption, even in the initial surface properties (Fig. 

3-8(b)). This result revealed that L-His binding at the surface region of liposome membranes 

could induce the convergence of surface-membrane properties despite the initial phase state. 

Therefore, our results supported the previously-suggested hypothesis that L-His adsorption 

occurred in two steps (insertion and enhancement) during the simultaneous change of 

membrane property. Furthermore, it is considered that the variation of surface hydrophobicity 

is more effective than that of surface fluidity because qL-His indicates larger values in liposome 

membranes which show the N in the fixed area of 0-0.4. This suggestion can imply the 

adsorption model that the surface hydrophobicity of liposome membranes is regulated by the 

slight partition of amino acids at first, and then, the effective “trapping” of amino acids results 

in the increase of adsorption with decrease of surface membrane fluidity (Fig. 3-9). As for the 

phase state of liposome membranes, high ee value after 24 hand 48 h was obtained in ternary 

liposomes with separated lo phases as dispersed microdomains on the membrane surface (Fig. 

3-10). 
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Fig. 3-9  Adsorption steps described in the diagrams of interior and surface membrane 

properties.  

 

 

Fig. 3-10  Conceptual illustration of fast L-His adsorption in Ch containing phase. 

 

3.5 Design of DOPC/DPPC/Ch Ternary Liposomes to Induce Molecular Recognition 

Function 

Based on the above results, detailed investigation of ternary liposomes can play an 

important role for the understanding of molecular recognition function of liposome surface. 

The method for possible design of the liposome membranes with heterogeneous ones was 

further investigated based on the phase diagram of the ternary components membrane. In 

reference to the previous report (Cicuta et al., 2007), a phase diagram of DOPC/DPPC/Ch 

ternary liposomes is shown in Fig. 3-11. The detailed investigations is conducted focusing on 

the lo + ld phases and its boundary. 
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Fig. 3-11  Phase diagram of DOPC/DPPC/Ch ternary liposomes. Solid line shows the phase 

boundary and dotted lines showed the tie line in reference to the previous report (Cicuta et al., 2007). 

 

3.5.1 Inner and Surface Membrane Properties in Ternary Liposomes 

Figure 3-12(a) shows the phase diagram of DOPC/DPPC/Ch liposomes at 20 ºC, 

describing the phase boundaries as purple lines. In this diagram, ternary liposomes prepared in 

the above experiments (A, B, and C; Fig. 3-12(a)) existed at lo+ld heterogeneous phases, 

while all binary liposomes existed at homogeneous-ordered (so) or disordered phases. 

Although there were other findings that micro-domains at nanometer sizes could be formed in 

some binary liposomes, such as DOPC or DPPC liposomes (Suga et al., 2013), the Cartesian 

diagram of the membrane properties was similar to previous results. Figure 3-12(b) also 

indicated the existence of other ternary liposomes with different components in several phase 

states (D: ld phase; E: lo phase; F: lo+ld phase; Fig. 3-12(a)), showing that they must have the 

corresponding properties with the phase state. It has been already shown that the plot of 

surface properties revealed the specific distribution of several ternary liposomes, i.e., those 

categorized as a
1
 with another slope of the trend line (Fig. 3-12(c)). In this diagram, D and E 

were distributed regarding B as the intersection point, which was involved in the parallel 

direction of tie line. Additionally, F was plotted on line a
1
 due to the similarity of the phase 

ratio as a vertical direction of the tie line. It was found that surface properties of ternary 

liposomes depended upon the ratio of each phase, as well as Ch ratio. 
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Fig. 3-12  Evaluation of membrane properties in ternary liposomes. (a) Phase diagram of 

DOPC/DPPC/Ch ternary liposomes. (b) Cartesian diagram analyzed by Laurdan and DPH in 

several ternary liposomes. (c) Correlation diagram of surface membrane properties. All capital 

indicators are corresponded to components described in phase diagram. 

 

3.5.2 Effects of Phase State for Adsorption in Ternary Liposomes 

Figure 3-13(a) shows the qL-His values in several ternary liposomes, indicating the 

low adsorption of His for the liposomes in D and E, on the contrary, high adsorption of His 

for the liposome in F. Although single-phase liposomes in D and E, showed the lower qL-His 

values after 24- and 48-h incubation relative to heterogeneous-phase liposomes, L-His 

adsorption in lo phase (E) was more efficient than that observed in ld phase (D), indicating that 

the ordered phase preferably influenced on the adsorption of Ch-containing liposomes. In 

addition, because the qD-His values in the corresponding liposomes was negligible (Fig. 3-13(b)),  

(a) 

(b) (c) 
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Fig. 3-13  Adsorption and chiral recognition behavior of His in several ternary liposomes mentioned 

in Fig. 3-12. (a) Adsorption amount of L-His (qL-His) in 24 or 48 hours of incubation. (b) Adsorption 

amount of D-His (qD-His) in 24 or 48 hours of incubation. (c) Percent of His enantiomer excess (ee) in 

several liposomes. Phase state described below the diagrams was estimated from phase diagram in Fig. 

3-12(a). 

 

such differences in qL-His can directly reflect the ee after 24- and 48-h incubation (Fig. 

3-13(c)). The ee values in the liposomes forming micro-phase segregation were found to be 

higher, indicating that the high chiral selectivity of hydrophilic molecules can be attained in 

heterogeneous liposomes. In heterogeneous liposomes, a phase boundary includes the line 

tension derived from topological discontinuity. In terms of a spherical shape of liposomes, the 

mismatch of each phase also occurs in the phase boundary (Fig. 3-14). Such a mismatched 

region is thought to induce the attraction of L-His molecules because of the effect of line 

tension, resulting in the fast adsorption and high chiral recognition. Therefore, the design of 

domain formation is effective in controlling the phase boundary that can induce efficient 

adsorptions, rather than in controlling the phase state itself. 

 

(a) 

(b) 

(c) 
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Fig. 3-14  Conceptual illustration of domain boundary formed by separated phases in 

liposome membranes. 

 

3.5.3 Effects of Domain Edge in Adsorption and Chiral Recognition 

In terms of phase state, heterogeneous liposomes commonly indicated high qL-His 

value after 24 h incubation. As for the micro-domain formation, the diameters of the 

micro-domain on prepared heterogeneous liposomes (ddomain) were estimated by the 

fluorescent resonance energy transfer (FRET) between 1-myristoyl-2-[12-[(5-dimethylamino- 

1-naphthalenesulfonyl)amino]dodecanoyl]-snglycero-3-phosphocholine (DAN-PC) and 

dehydroergosterol (DHE) in the previous report (Brown et al., 2007). Therefore, the domain 

length per liposome perimeter (Ldomain) could be calculated from following equation: 

Ldomain = 4 × Xlo × (dlip / ddomain),  

where dlip and Xlo represent a diameter of liposomes (100 nm) and an area ratio of lo phase 

estimated by tie-lines in Fig. 3-12(a), respectively. The above equation can further be 

transformed into the following equations: 

l = Ldomain / dlip , 

that show the specific boundary length (l) regarded as the total domain length per liposome 

surface area. Considering this equation, l can be regarded as the parameter analogized to the 

specific surface area with the decrease of one order. The estimation of l is supported by the 

reported results that domain size may increase as the ratio of lo phase in liposomes of 100 nm  
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Fig. 3-15  Illustration of domain formation and profiles in several ternary liposome 

membranes. A, F, B and C indicating the composition described in Fig. 3-12(a). Circle area 

and background represent the lo and ld phase, respectively.  

 

diameter (Suga, et al., 2013). In comparison with the l value of A, B and C (Fig. 3-15), it is 

possible that the adsorption process becomes faster with the decrease of l value while the 

adsorption was low at the condition F with higher l value. As compared with the qL-His of ld or 

lo phase with no domains, it is possible that the existence of line tension can contribute to the 

adsorption in earlier stages (Fig. 3-16). However, in the situations of smaller or larger  

 

 
Fig. 3-16  The qL-His of several l values in 24 h. The comparison of qL-His with each phase 

state is illustrated below the diagram. 
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values of l, the liposome membranes become unstable state because of the larger line tensions, 

resulting in the decrease of qL-His in 24 h. Considering the relationship between l and qL-His in 

24 h, it is implied that there is the suitable range of l inducing the fast adsorption of L-His, that 

is, efficient molecular recognition. Considering this previous findings and our results 

mentioned above, it is hypothesized that binding of L-His can be stabilized “at the inter-phase” 

of larger domains bearing weak line tension, inducing the efficient adsorption. Therefore, 

these findings can contribute to the understanding the formation of electrostatic interactions 

among the dipoles at the phosphate region of lipid molecules and may afford the hydrophobic 

environment of the membrane surface for small molecules. 

Based on the results of adsorption behavior in several liposomes, the design of 

liposome membranes for the enhancement of the adsorption is suggested (Fig. 3-17). The 

highly hydrophilic surface in the initial property of liposome membranes can induce the fast 

adsorption because of the preferable partition of amino acids in liposome membranes. 

Provided that the liposomes in ld phase show the low adsorption due to the unstable formation 

of the interactions derived from high membrane fluidity. Liposomes containing Ch are 

suitable for the enhancement of adsorption because Ch molecules can change the surface 

region into hydrophilic state. In the surface region of liposome membranes, membrane  

 

 

Fig. 3-17  Overview of liposome membrane design for efficient molecular recognition on the 

basis of the diagrams about interior and surface properties.  
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fluidity decrease as the increase of adsorption of amino acids. It is considered that such 

variation may be derived from the formation of interactions with the rearrangement of 

phospholipid assemblies, resulting in the adsorption formed by plural phospholipids with high 

molecular recognition. In the case of liposome membranes forming domains, faster adsorption 

is induced by the effect of line tension in addition to the specific surface property in the 

boundary of domains. Since the appropriate domain size is implied in the above result, the 

length of domain in liposome membranes should be considered in the design of liposomes for 

efficient adsorption. 
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4. Summary 

The analysis of surface membrane property provided valuable information relating to 

the molecular recognition in liposome membranes. The methodologies for membrane property 

analysis are summarized in Table 3-1. While Catesian diagram of interior membrane property 

indicated the averaged information of phase state in whole liposome membranes, 

newly-developed diagram of the correlation of two surface properties showed the 

discrimination of liposomes that contain Ch in large ratio or that form heterogeneous phase. 

These specific properties also influenced on the adsorption of L-His, resulting in the induction 

of fast adsorption on the liposomes with low membrane fluidity and polarity at the surface 

region. Besides, the surface properties were found to be changed to be such states after the 

adsorption of L-His and these phenomena may imply the significant role of surface membrane 

property. Especially in the case of ternary liposomes containing Ch, the fast adsorption was 

induced only in the lipid composition forming heterogeneous phased liposomes. Among them, 

a faster adsorption was observed by some kinds of liposomes and was not affected by line tension, 

but the edge of domains, implying the relation to interactions forming at the boundary of 

different phases on the liposome membranes. 

 

Table 3-1  The comparison of several methods for membrane property analysis 

Target Methods Analysis 

Surface Membrane 

Property 

Correlation diagram of surface 

hydrophobicity (Dansyl-DHPE) and 

membrane fluidity (TMA-DPH) 

Evaluation of the effect for molecular recognition of 

hydrophilic molecules in liposome membranes (This 

work) 

Interior Membrane 

Property 

Cartesian diagram of membrane 

hydrophobicity (Laurdan) and 

fluidity (DPH) 

Evaluation of phase states including phase separation in 

nano-order liposomes (Suga et al., 2013) 

Bound Water in 

Membranes 

Dielectric dispersion analysis in 

0.1-5 GHz 

The depth of inserted proteins in liposome membranes 

and its effect on hydration (Takada et al., 2013) 

Phase Transition 

Behavior 
Differential scanning calorimetry 

The effect of mixing cholesterol in liposome membranes 

for phase transition temperature or enthalpy (Arrais et al., 

2007) 
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The scheme of liposome membrane design for the molecular recognition is shown in 

Fig. 3-18. The adsorption and chiral selectivity of several amino acids was observed on the 

liposome membranes with the relation in the property of its side chains, assuming the high 

molecular recognition through the multiple interactions with phospholipid molecules. Such a 

process that the guest molecule form interactions with host can be specifically discriminated 

from the non-selective adsorption, for example, the case of the PPL adsorption governed by 

electrostatic interactions with opposite-charged phospholipids. As for the mechanism of 

selective adsorption of amino acids in liposome membranes, the variation of membrane 

property, especially at the surface region, is suggested during the progress of the adsorption 

process, implying the possibility of the rearrangement of assembled states. The above 

plausible model is also involved in the result that no chiral selective partition of Trp is 

observed in the emulsion phase formed by solvent-water-lipid system. Although the chiral 

selective adsorption of amino acids requires the long-time incubation due to the stepwise 

adsorption, the regulation of surface property of liposome membranes, such as mixing of Ch, 

shows the possibility of inducing the faster adsorption. Furthermore, the enhancement of 

adsorption is also observed in the liposome membranes possessing segregated phases, which 

were characterized based on the relationship between the phase state and the surface property 

of liposome membranes. The effect of forming domains is notable in the fast adsorption of 

L-His. In spite of the positive effect of existing domains, it is assumed that the contribution of 

line tension induces the negative effect in the adsorption of L-His. While the phase boundaries 

of liposome membranes affect the adsorption via the specific assembly, such as the lateral 

mismatch of phospholipids and Ch molecules, it is possible that large line tension induces the 

instability of L-His bindings. Based on the comprehensive consideration of findings in chapter 

1, 2 and 3, consequently, a scheme to design the liposome membranes for the selective 

recognition of various target molecules can finally be proposed (Fig. 3-18). 

The mechanism of the molecular recognition induced by the liposome membranes is 

suggested based on several aspects of investigations. This molecular recognition is important 

in the application of liposomes for optical resolution (chiral separation) processes. The design 

of continuous process is reasonable because such a molecular recognition induces the 

dynamic behavior in adsorbed molecules and membrane property itself. It is therefore 

expected that the liposome membrane with adsorbed amino acids can be also applied for the 
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Fig. 3-18  Scheme of design of the molecular recognition. 
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conversion process in aqueous solution. Despite the advantages of the liposome membrane for 

the chiral recognition, the liposomes suspended in aqueous phase are regarded as unstable, as 

compared to the functional ligands immobilized in the solid surface. Hence, it is required to 

develop the techniques of immobilizing liposomes to fully utilize its functions. The case 

studies as an extension of the proposed strategy on membrane design will be described in the 

following chapter 4. 
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Chapter 4 

Application for Separation and Conversion Process by Liposomal 

Membrane System 

 

1. Introduction 

There are several reports on the use of liposome membranes as a platform of 

chemical conversion. In such reports, the main purpose of using the liposomes is to solubilize 

the hydrophobic substrates in water phase and to induce asymmetric catalyst function by 

utilizing the ordered chiral environment of the membranes. The previously-reported results 

revealed the possible functions of liposome membranes as the platform of molecular 

recognition. In addition to the recognition function, the specific hydrolysis for L-form 

enantiomer has been performed in lipid vesicles (Ueoka et al., 1986). It is generally known 

that the “recognition” of substrate on the active site of the enzyme is the most important step 

for the effective catalytic reaction because it varies the energy profiles of the reactant system 

and, as a result, the reduction of activation energy. It is therefore considered that the molecular 

recognition function of liposome membranes could be extended to the effective chemical 

reaction process on their surface, with a similar way of enzyme strategy. 

One of possible extensions to the chemical conversion is the homochiral 

polymerization of amino acids on the membranes. In biological system, amino acids form 

peptides and proteins through their polycondensation in the ribosomal apparatus. In this case, 

it is known that all of such products are constructed by L-amino acids. Based on the results 

obtained in previous chapters, it is considered that the selective adsorption of L-amino acids 

could be carried out in liposome membranes. It is also expected that the appropriate design of 

the liposome membranes could provide us the improvement of the effective polymerization of 

amino acids in liposome membranes in reference to the effect of enhancing reaction in the 

interface of lipid assemblies. 

From the viewpoint of practical application, the immobilization of liposome 

membranes in various carriers is required to effectively utilize the “membrane platform” for 
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the molecular recognition and conversion as an intact self-assembly structures. Various 

immobilization methods are classified, focusing on their immobilization principle as shown in 

Fig. 4-1. Depending on the binding strength, the functions of liposome membranes can be 

regulated. For practical use of the liposomes, the liposome-incorporated matrices become 

useful candidates: liposomes-immobilized in porous gel (Lundahl et al., 1991; Yang et al., 

1998; Yamanaka et al., 1997; Khaleque et al., 2003; Yang et al., 1988), liposomes-entrapped 

hollow fiber (Sugaya et al., 2009), and liposomes-incorporated hydrogel (Liu et al., 2012; 

Ditizio et al., 1998). In these cases, the liposomes are immobilized through the covalent 

bonding,
 
antigen-antibody interaction, avidin-biotin specific interaction, hydrophobic interaction, 

and physical entrapment. Although these preparation methods have been developed, there are 

still some technical problems, such as lower amounts of immobilized liposomes, multistep 

operation including chemical reactions, poor separation efficiency, and employment of 

derivatized lipid. 

According to the findings clarified in previous chapters 1, 2 and 3, the mechanism of 

molecular recognition induced at the surface region of liposome membranes suggests the 

strategy of suitable process of recognition and separation by liposome membranes. Especially 

in the case of the recognition of amino acids, the variation of surface hydrophobicity was 

observed during the adsorption of L-amino acids. In addition, since the variation of such properties 

 

 

Fig. 4-1  Several methods about immobilization of liposomes. 
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was assumed to remain the slight effect in surface regions according to the thermodynamic 

analysis, it is possible that the liposome membranes can preferably promote the reaction in 

hydrophilic regions. Meanwhile, to achieve the utilization of the above liposomal function, 

the moderate effects for surface property or bound water are important for the immobilization 

of liposomes. The necessity of this condition is also indicated by the results that the 

interactions in high molecular recognition are relatively weak. Consequently, direct 

embedding methods is suitable for the application of liposomes for molecular recognition, and 

then, the development of adsorption amount is required for the practical use. 

In this chapter, the application of liposome membrane systems is demonstrated in the 

conversion reaction and optical resolution, based on the molecular recognition of the liposome 

membranes described in chapter 1, 2, and 3, (Fig. 4-2). The promotion of oligomerization of 

amino acids was investigated by partition in liposome membranes with molecular recognition 

of L-His. In this reaction, the behavior of conversed substrates was considered in reference to 

previous reports about the aqueous reactions (Kunishima et al., 2005). As for the application 

for separation process, a continuous process is examined by liposomes accumulated in the 

ultrafilter. Besides, the immobilization of liposomes is developed by the embedding in several 

hydrogels, which is analyzed by the direct observation and the Raman spectroscopy. 

Adsorption behavior and chiral separation of Trp were evaluated in prepared liposome 

immobilized hydrogel (LI-gel). 

 

Fig. 4-2  Conceptual illustration of this chapter.  
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2. Materials and Methods 

2.1 Materials 

Several phospholipids, such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3- 

phosphocholine (DOPC) were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, 

USA). Amino acids, such as L-Trp, D-Trp, L-His and D-His, were purchased from Peptide 

Institute (Suita, Osaka, Japan). All amino acid reagents were over 98% purity of enantiomers. 

1-Hydroxybenzotriazole (HOBt) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC) were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, 

Japan). For the preparation of LI-gel, acrylamide (AAm), N,N'-methylenebisacrylamide, 

ammonium persulfate, calcein, poly(oxyethylene p-t-octylphenyl ether) (Triton X-100), and 

other chemicals were also purchased from Wako Pure Chemicals Industries, Ltd. (Osaka, 

Japan). Agarose was purchased from Bio-Rad Laboratories (Hercules, CA, USA). All 

chemicals were used without purification. Ultrafiltration membranes (molecular weight cut 

off: 50 kDa) were purchased from Toyo Roshi Kaisha, Ltd. Ultrapure water was produced 

using a Direct-Q 3 UV system (Merck, Darmstadt, Germany). 

 

2.2 Liposome preparation 

Liposomes were prepared by using a freeze–thaw extrusion method. Briefly, a 

chloroform solution of lipids was dried in a round-bottomed flask under vacuum with a rotary 

evaporator to prepare a lipid thin film. The thin film was hydrated with ultrapure water at 

room temperature to prepare a vesicle suspension. The vesicle suspension was frozen at 

−80 °C and thawed at 50 °C to enhance the transformation of small vesicles to large 

multilamellar vesicles (MLVs); this freeze–thaw cycle was performed five times. The MLVs 

were used to prepare smaller unilamellar vesicles by extruding the MLV suspension 11 times 

through two layers of polycarbonate membranes, with mean pore diameters of 100 or 200 nm, 

using an extruding device (Liposofast; Avestine Inc., Ottawa, ON, Canada). The obtained 

unilamellar vesicles were concentrated by centrifugation at 135,000 ×g for 2 h at 4 °C. In 

preparation of calcein-entrapped POPC liposomes, a calcein solution (1 mM) was added in 

the hydration of thin lipid film. 
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2.3 Adsorption of His on POPC Liposome Membrane 

L-His or D-His (40 mM) and POPC liposomes (50 mM lipid) were mixed in ultrapure 

water and incubated at 25 °C for 72 h. The suspension was then diluted 100-fold and filtered 

with an ultrafiltration membrane. The His concentration on the liposome membrane was 

determined using UV spectroscopy (UV-1800, Shimadzu, Kyoto, Japan). A calibration curve 

was obtained by plotting absorbance vs. His concentration and the amounts of adsorbed L-His 

(QL) and D-His (QD) were calculated using the following equation: 

QL or QD = (Cini – Cflt) × V 

where Cini is the initial His concentration, Cflt is the equilibrium concentration of His in the 

filtered solution, and V is the volume of the filtered solution. 

 

2.4 Oligomerization of His in Presence or Absence of POPC Liposomes 

A mixture of POPC and L-His or D-His was incubated for 72 h, and then His 

oligomerization was performed at 25 °C for 48 h by adding HOBt (1.0-fold against substrate) 

and EDC (5.0-fold against substrate) to the POPC suspension, as shown in Fig. 4-3. After 

oligomerization, the supernatant and POPC were separated using an ultrafiltration membrane. 

The oligomerization of His in the absence of a liposome membrane was conducted under the 

same conditions but without POPC. The molecular weights of oligo(His) in the reaction 

using matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry 

(MALDI-TOF MS) using a Voyager-DE STR instrument (Applied Biosystems, Framingham, 

MA, USA) equipped with a N2 laser (337 nm), in linear mode. The locations of His and activated 

 

 

Fig. 4-3  Scheme of adsorption and oligomerization of His with POPC Liposomes. The 

chemical structures of His and oligo-(His) are given with the expected dominating states of 

protonation/deprotonation. 
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intermediates in the POPC membrane were predicted from the logP values, which were 

calculated using ChemBioDraw 12.0.2 (CambridgeSoft Corporation, MA, USA). It is 

assumed for estimation of logP values that the carboxyl group of His is deprotonated and one 

of nitrogen atom at imidazoyl group would be protonated. 

 

2.5 Preparation of LI-gel 

Liposomes of diameter 100 or 200 nm were used to prepare LI-gels. An LI-gel based 

on poly(AAm) was prepared as follows. Liposomes (lipid: 100 mM) and AAm (1.15 M) were 

mixed in ultrapure water and degassed for 1 h. This solution was heated at 50 °C and 

polymerized overnight by the addition of ammonium persulfate (0.48 mM) and 

tetramethylethylenediamine (2.0 mM). An LI-agarose gel containing 6.0 wt% agarose and 

liposomes (lipid: 100 mM) was prepared by heating and cooling a mixture of agarose and 

liposomes. Prepared LI-gel was cut into a rectangle-shape of 20 × 20 mm with 0.75 mm 

thickness. 

 

2.6 Scanning Electron Microscopy (SEM) Observations Using Plasma Replica Method 

The sample structures were examined using the plasma replica method, as previously 

reported (Iida et al., 2005). A small amount of agarose gel and liposomes immobilized in 

agarose gel were injected into a cellophane-tape cylinder of diameter 2 mm. The sample was 

vitrified by dipping in liquid nitrogen (−80 °C). The quenched sample was cracked under 

vacuum with a cutter, and immediately replicated by plasma polymerization of methane and 

ethylene (NL-OP50SF, Laser Techno Co., Ltd., Nagoya, Japan). After osmium coating to 

make it electrically conductive, the replica was examined using SEM (S-5000, Hitachi, Ltd., 

Tokyo, Japan). 

 

2.7 Investigation of Dynamic Properties Using Raman Spectroscopy 

DMPC liposomes were used to determine the dynamic properties of liposomes in a 

poly(AAm) gel using Raman spectroscopy. The phase transition temperature of DMPC 

liposomes is 23 °C. The Raman spectra of the liposomes were recorded using a confocal 

Raman microscope (LabRAM HR-800, Horiba, Ltd., Kyoto, Japan) at 532 nm (YAG, 50 
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mW), with a 600 grooves/mm grating and a total data accumulation time of 30 s. For each 

sample, the background signal of the solution was removed and then the baseline was 

corrected. The packing density of the lipid membrane (Huang et al., 1983), R, was determined 

using the following equation: 

R = I2880 / I2850, 

where I2880 and I2850 are the peak intensities at 2880 and 2850 cm
−1

, respectively. 

 

2.8 Adsorption of Trp on Liposome Membrane in the Hydrogel 

The amount of Trp adsorbed on the liposome membrane in the hydrogel was 

determined, using 100 mM DPPC liposomes of diameter 200 nm immobilized in a 

poly(AAm) gel, by incubation in ultrapure water (10 mL) containing L-Trp or D-Trp (0.15 

mM) for 48 h at room temperature under stirring. The concentration of non-adsorbed Trp was 

determined using ultraviolet spectroscopy, based on a calibration curve at 280 nm. The 

distribution ratio of Trp was determined by assuming that three phases are present, i.e., a lipid 

membrane phase, hydrogel phase, and bulk water phase. For the hydrogel without liposomes, 

the distribution constant (KZ) of Trp between the hydrogel and bulk ultrapure water is 

calculated using the following equations: 

KZ = CH / CW , 

Cini VW = CW VW + CH VH . 

These equations are combined to give 

KZ = (Cini – CW ) VW / (CW VH) , 

where CW is the Trp concentration in the bulk water phase, CH is the Trp concentration in the 

hydrogel phase, Cini is the initial Trp concentration, VW is the volume of the bulk ultrapure 

water phase, and VH is the volume of the hydrogel phase. In the case of a hydrogel containing 

liposomes, the distribution constant (Klip) of Trp between the liposome membrane and bulk 

ultrapure water is calculated using the following equations: 

Klip = C(lip) / CW , 

Cini VW = CW VW + CH VH + Clip Vlip . 

These equations are combined to give 

Klip = (Cini VW / CW – KZ VH – VW) / Vlip , 
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where C(lip) is the Trp concentration in the liposome membrane phase, Vlip is the volume of the 

liposome membrane phase in the LI-gel, and VH is the volume of the hydrogel phase. The 

separation factors of L-Trp against D-Trp in the bulk water phase ((L/D)) and on the liposome 

membrane phase ((L/D)) are calculated using the following equations. 

(L/D) = CW(L-Trp) / CW(D-Trp) , 

(L/D) = Klip(L-Trp) / Klip(D-Trp) , 

where CW(L-Trp) and CW(D-Trp) are the concentrations of L-Trp and D-Trp in the bulk water phase, 

respectively, and Klip(L-Trp) and Klip(D-Trp) are the distribution ratios of L-Trp and D-Trp, 

respectively, between the liposome membrane and bulk ultrapure water.  

For optical resolution of Trp, a racemic solution of Trp (1 mM) was incubated in 

ultrapure water (10 mL) with DPPC liposomes immobilized in poly(AAm) gel. The decrease 

in the Trp concentration in the bulk water phase was determined using circular dichroism 

spectroscopy (JASCO J-820 SFU spectropolarimeter, JASCO, Tokyo, Japan) at 222 nm. 

 

2.9 Statistical analysis 

Results are expressed as mean ± standard deviation. All experiments were performed 

at least three times. The distribution of data was analyzed, and statistical differences were 

evaluated using the Student’s t-test. A P-value of <5% was considered significant. 
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3. Results and Discussion 

3.1 Scheme for Application of Liposome Membranes Using Designed Membranes 

The design scheme of the application of liposome membranes is shown in Fig. 4-4. 

The appropriate selection on the characteristics of the target materials is required to utilize the 

hydrophobic region of the membrane and highly ordered structure constructed in liposome 

membranes. The effective suggestions are expected in the application of liposome membranes 

 

 

Fig.4-4  Design scheme for the application of liposome membranes. 

 

 



90 
 

by means of utilizing the findings about the mechanism of molecular recognition and about 

the surface properties of liposome membranes. 

As for the selective adsorption of several hydrophilic molecules described in the 

previous chapters, some advantages are expected by using the liposome membranes as the 

platform of reactions. In the process of polycondansation of amino acids, the polarity of the 

molecule of reaction intermediate is known to be varied during the reaction. In spite of the 

reaction conducted in aqueous solution, the LogP values of intermediates indicate the positive 

values, which means less hydrophobic nature of intermediates. By means of utilization of 

liposome membranes, the formation of such intermediates is considered to enhance their 

localization at the hydrophobic region of the membrane, as a result, promoting the 

polycondensation reaction (Fig. 4-5). The design of selective conversion is also expected by 

the specific interactions against the chemical structures of target molecules, such as the 

accumulation of ionic function by the electrostatic interactions, and as the organized 

alignment of ring moieties. Thus, the membrane property is thought to be important for the 

control of polycondensation reactions. In previous chapters, it was revealed that the formation 

of domains and the concomitant line tension could be key factors to promote the adsorption 

of L-His. In addition, the surface fluidity and hydrophobicity are considered to be involved 

in the formation of intermediates because of the transition of polarity to be hydrophobic. 

Toward the change of characteristics in conversion process, liposome membranes may induce 

the rearrangement of the lipid ordering in membrane surface based on the findings that the surface 

property changes during adsorption with several steps. 

 

 

Fig. 4-5  Variation of polarity of molecules during their oligomerization process. 



91 
 

Considering direct embedding of liposomes, the hierarchical structure of the 

liposome immobilized materials is suggested as shown in Fig. 4-6. Such materials are 

expected to show the effective function in molecular recognition and conversion, because the 

interactions between phospholipids and amino acids are stereospecific in assembled structures. 

Hence, the performance of prepared devices can be predicted by that of liposome membranes. 

In particular, the performance of this device in the recognition of hydrophilic molecules can 

be controlled by means of the evaluation of surface property of liposomes. On the other hand, 

the effect of immobilization in liposome membranes can be estimated via the evaluation of 

membrane characteristics and of adsorption behavior. In reference to the effect of 

poly(L-lysine) in anionic liposome membranes (Schwieger et al., 2007), the embedding in 

hydrogels derived from hydrophilic monomer can affect the surface property of liposome 

membranes, which mean the possibility of the effect of interactions with amino acids. 

Therefore, the design in surface hydrophobicity or line tension is required for the effective 

performance of the device. 

 

 

Fig. 4-6  Conceptual illustration of hydrogel matrix immobilizing liposomes. 
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3.2 Oligomerization of Histidine on Liposome Membranes 

To demonstrate the polycondensation of the His adsorbed in liposome membranes, 

the adsorption behavior of L- or D-form of His was investigated in the high concentration of 

amino acid as compared with previous experiments. In these conditions, the polycondensation 

was examined with water soluble initiators. In order to invade reactants easily, liposomes 

were prepared by POPC phospholipids that form ld phase in room temperature. 

 

3.2.1 Adsorption and Condensation of Histidine on Liposome Membranes 

Figure 4-7 shows the amount of L- or D-form of His adsorbed on the POPC 

liposomes after incubation for 72 h was 5.0 × 10
−6

 mol. In contrast, negligible amount of 

D-His were adsorbed on the POPC liposomes. The total volume of POPC liposome 

membranes in the sample solution was 5.9 vol%, wherein the adsorbed L-His was condensed. 

From these results, the concentration of L-His on or within the POPC liposome bilayer 

membrane (Con membrane) after incubation for 72 h was estimated to be 84.3 mM, using the 

following equations: 

Cads (on membrane) = nads / Vlip  

Vlip = (4π/3) × ( rout
3
 - rin

3
 ) 

where Vliposome is the volume of POPC liposomes (100 nm diameter), nads is the amount of His 

 

 

Fig. 4-7 Time-course of adsorption of L-His (Diamonds) or D-His (Circles) on POPC 

liposomes. 
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adsorbed on the POPC liposome membrane (5.0 × 10
−6

 mol), and rin (~46 nm) and rout (~50 

nm) are the inner and outer radius, respectively, of the POPC liposomes. Although the 

adsorption of His in POPC liposomes required long time of incubation, the result also 

showed high selectivity of L-His as shown in chapter 3. Furthermore, the concentration of 

His on the POPC membrane was twice as large as that in the bulk solution, i.e., POPC 

liposomes enantioselectively concentrated L-His on the liposome membrane. These specific 

properties of the POPC liposomes suggest that they could be used for the specific 

oligomerization of L-His. 

 

3.2.2 Polymerization Degree of Adsorbed L- or D-Histidine 

The oligomerization of L/D-His in the presence and absence of POPC liposomes were 

determined by using MALDI-TOF MS. Figures 4-8(a), (b) and (c) show that the 

oligomerization degrees of oligo(L-His) in the reaction solution including POPC liposomes 

reached 13 mer. After the reaction solution was treated with ultrafiltration to remove the  

 

 

Fig. 4-8 MALDI-TOF mass spectra of oligo(L-His) and oligo(D-His). (a), (d); in reaction 

solution containing POPC liposomes, (b), (e); in supernatant, (c), (f); in absence of POPC 

liposomes. 
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liposome-binding oligomer, the oligomerization degree of oligo(L-His) in the supernatant 

reached 5 mer. The oligomerization degree in the absence of POPC reached 8 mer. These 

results indicate that POPC liposomes can promote the oligomerization of L-His and enable 

longer peptide production. Similar effects of the liposomes have been seen in the previous 

findings of the oligomerization of Trp in the presence of POPC liposomes (Hitz et al., 2001). 

In contrast, the oligomerization degrees of oligo(D-His) in the reaction solution, in the 

supernatant, and in the absence of POPC reached 10 mer, 7 mer and 9 mer, respectively, as 

shown in Figs. 4-8(d), (e) and (f). The lack of significant differences among the 

oligomerization degrees shows that the POPC liposomes did not greatly affect the 

oligomerization of D-His, because D-His has no specific interactions with the POPC 

liposomes and is not adsorbed on them.  

 

3.2.3 Mechanism of Inducing Reaction on Liposome Membranes 

The following theoretical model of L-His oligomerization with POPC liposomes was 

employed to understand the details of the liposomal effect. A theoretical study of the 

polycondensation of amino acids (Orgel et al., 1998) showed that the average chain length 

𝑛 depends on the balance between the rate of chain elongation and the rate of hydrolysis, as 

shown in following equations: 

n̅ = √𝛬 / 𝑘h  

 = ke Cmono 

where  is the elongation rate, kh is the hydrolysis rate constant, ke is the elongation rate 

constant, and Cmono is the concentration of the activated monomer. A longer polymer chain can 

where  is the elongation rate, kh is the hydrolysis rate constant, ke is the elongation rate 

constant, and Cmono is the concentration of the activated monomer. A longer polymer chain can 

be therefore obtained by using a sufficient concentration of reactants, suppression of 

hydrolysis, and removal of water from the reaction field. In this oligomerization system with 

liposomes, the emergent properties of the liposomes, such as enantioselectivity, hydrophobic 

environments, and fluidity (Walde et al., 2014), are favorable for the formation of longer 

peptide chain; L-His is enantioselectively concentrated and the fluidity enables molecular 

interactions, in contrast to solid-phase reactions (Ferris et al., 1996). A hydrophobic environment 
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Fig. 4-9  Predicted locations of His monomer and activated monomer in POPC liposome 

membrane. Please note that the pKa values of the acidic groups present in the molecules may 

change in the vicinity of the liposome membrane. The logP calculations were made for the 

chemical structures given. 

 

prevents hydrolysis (Kunishima et al., 2005) and removes the produced water. The use of the 

liposome membrane system can therefore enhance to synthesize of L-form peptides with 

longer chain lengths than the D-form peptide synthesis. The L-His concentration increased 

from 40 mM in the bulk solution to 84.3 mM in the POPC membrane area. Furthermore, the 

estimated logP values of the monomer and activated intermediates suggest that the activated 

intermediates are located in the center of the bilayer and protected from hydrolysis, as shown 

in Fig. 4-9. 

The superior properties of the liposomes in our oligomerization system, such as 

enantiomer selectivity, a hydrophobic environment, and fluidity, therefore enable efficient 

oligomerization of L-amino acids rather than D-amino acids. The system has potential 

applications in homochiral oligomerization from racemic monomers. 

 

3.3 Preparation of Liposome-Immobilized Hydrogels (LI-gel) for Utilizing Liposomes as 

a Device of Separation Process 

In order to apply the function of liposomes for separation, the condensed liposomes 

were immobilized within hydrogels. By adopting this method, the stability of liposomes in 
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solid matrices could be enhanced with high amount of immobilized liposomes, which permits 

an easy separation of liposomes from sample. The methodologies of liposome immobilization 

have been developed, while the liposome immobilized hydrogels reduce the operation steps 

for immobilization, and need neither chemical reaction between liposomes and matrices nor 

derivatized lipid, with keeping the potential properties of liposome membranes. To access this 

method, the membrane property of immobilized liposomes was investigated by Raman 

spectra, and then, their chiral separation efficiencies were determined. 

 

3.3.1 Observation and Evaluation of Liposomes Embedded in LI-gel 

In immobilization of liposomes in a gel matrix for use of the liposome membrane for 

separation or analysis, it is important that the liposomes remain intact. The immobilization 

and intactness of the liposomes were examined by eye (visually) and by using SEM. Visual 

observations showed that the liposomes were successfully immobilized both in the 

poly(AAm) and in agarose gels, because the gels became cloudy, as a result of light scattering 

by the liposomes, as shown in Figs. 4-10(b) and (d), whereas both gels were transparent 

without liposomes, as shown in Figs. 4-10(a) and (c). Although these figures showed the 

results of immobilization of DMPC liposomes, similar immobilization was observed in spite 

of the phase state of liposomes. The detail structures of the immobilized liposomes were 

furthernore examined by SEM observations of the gels, using the plasma replica method. A 

comparison of Figs. 4-10(e) and (f) indicates that intact spherical liposomes were present in 

the LI-agarose (6 wt%) gel. For calcein-trapped liposomes, the intactness of the immobilized 

liposomes, i.e., their retention of DMPC liposomes, similar visual of immobilization was 

observed in spite of the phase state of liposomes. The detailed structures of the immobilized 

liposomes were examined by SEM observations of the gels, using the plasma replica method. 

A comparison of Fig. 4-10(e) and (f) shows that intact spherical liposomes were present in the 

LI-agarose (6 wt%) gel. For calcein-trapped liposomes, the intactness of the immobilized 

liposomes, i.e., their retention of the inner aqueous phase, was confirmed. After washing the 

LI-gel with 10 mM phosphate buffer containing 143 mM NaCl (pH 7.4), the color of calcein 

still remained in the hydrogel, indicating the integrity of liposomes (lipid bilayer structure) in 

hydrogel. The volume fraction of liposomes against the total volume of the hydrogel can be  
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Fig. 4-10  Visual and SEM observations of poly(AAm) and agarose hydrogels: (a) 

poly(AAm) gel without liposomes, (b) poly(AAm) gel containing DMPC liposomes, (c) 

agarose gel without liposomes, (d) agarose gel containing DMPC liposomes, (e) SEM image 

of agarose gel without liposomes, and (f) SEM image of agarose gel containing DMPC 

liposomes. 

 

 

Fig. 4-11  (a) Calculated volume fractions of liposomes prepared with different 

concentration and diameter in poly(AAm) hydrogel.  (b) Volume fraction of lipid membrane, 

hydrogel and inner water phase of liposome, which lipid concentration and diameter were 100 

mM and 200 nm, respectively. 
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Table 4-1  Comparison of amount of immobilized liposome and its stabilities at some 

liposome immobilized system 

References Matrix Type 
Immobilization 

Method 

Amount of Immobilized 

Lipid [μmol -lipid/ml 

-matrix] 

Volume Fraction 

of Liposome [%] 

Yang et al., 1998 Sepharose® gel Avidin-biotin binding 37.6 14.6 

Yang et al., 1998 TSK® gel Covalent bond 34.2 13.3 

Yang et al., 1999 Cellulose gel beads Covalent bond 14.5 5.8 

This work Acrylamide hydrogels Radical polymerization 100.0 68.6 

This work Agarose hydrogels Non-covalent bond 100.0 68.6 

 

estimated from the lipid concentration, liposome diameter, area occupied by lipid molecules, 

and thickness of the lipid membrane. Figure 4-11(a) shows the theoretical volume fractions 

of DPPC liposomes in hydrogels prepared using liposomes of various sizes and 

concentrations. In the case of 100 mM liposomes of diameter 200 nm, the volume fraction of 

immobilized liposomes in the hydrogel was estimated to be 68.6% and the combined volume 

of the hydrogel and bulk water phase was 31.4 vol% (Fig. 4-11(b)). These results indicate that this 

method immobilizes larger amounts of liposomes than other methods do, as shown in Table 

4-1. 

 

3.3.2 Analysis of Embedded Liposomes by Using Raman Spectroscopy 

In the use of LI-gels in separation or analysis, the surface properties of the liposome 

membrane, especially the membrane fluidity, surface charge, and microdomain formation, are 

important for controlling the interactions between liposome and target molecule. Among these 

properties, the dynamic nature of the liposome membrane is particularly important, because 

selective interactions of target molecules with the liposome membrane can be achieved 

through rearrangement of the membrane molecules. In LI-gels, the flexible surface of the 

liposome membrane must be preserved after immobilization. The dynamic properties of 

liposomes was determined by using Raman spectroscopy, focusing on the symmetric and 

asymmetric vibrations of C–H bonds in the hydrocarbon tail region of the lipid, where Raman 
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peaks at 2850 and 2880 cm
−1

 are assigned to CH2 symmetric and asymmetric oscillations, 

respectively. Figure 4-12(a) shows the Raman shifts of DMPC liposomes immobilized in 

poly(AAm) gel at various temperatures (15–35 °C). The results show that the intensity of the 

Raman peak at 2880 cm
−1

 decreased with increasing temperature, and reached to the 

minimum value above 30 °C. This is because the asymmetric vibration becomes similar to the 

symmetric one as a result of enhancement of lipid molecular motion at higher temperatures 

and in a disordered phase. The hydrocarbon-packing density inside the liposome membrane 

was determined from the ratio of I2880 to I2850 (Huang et al., 1983). The DMPC liposomes in 

aqueous solution and the poly(AAm) LI-gel showed similar phase transition behaviors, where 

the phase transition from gel (ordered) phase to liquid-crystalline (disordered) phase was 

found at around 23 °C, while the packing densities of DMPC in chloroform solution were 

constant independent to temperatures, as shown in Fig. 4-12(b). The reversible changes in the 

packing densities were confirmed by performing heating and cooling cycles between 15 and 

35 °C. Figure 4-13 shows that the packing densities of the LI-gel could be controlled based 

on the successive temperature shifts, and those values in gel phases (15 °C) or those values in 

liquid-crystalline phases (35 °C) remained at similar levels (constant). These results suggest 

that polymer chains do not interfere with the dynamic behaviors of liposomes, indicating the 

 

 

Fig. 4-12  Raman spectroscopic analysis of LI-gels: (a) DMPC liposomes immobilized in 

poly(AAm) hydrogels at various temperatures, (b) temperature dependence of packing density 

of DMPC liposome membrane immobilized in poly(AAm) hydrogel. 
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Fig. 4-13  Reversibility of packing density of DMPC liposome membranes. 

 

liposomes immobilized in a hydrogel possess their original dynamic properties that are necessary 

for their emergent functions (e.g. selective adsorption of amino acids).  

 

3.3.3 Optical Resolution of Tryptophan in LI-gel 

The adsorption behaviors of L-Trp and D-Trp on DPPC liposomes immobilized in 

poly(AAm) gel were investigated to determine whether LI-gels have this function. Figure 

4-14(a) shows the time courses of Trp adsorption on poly(AAm) gels with or without 

liposomes. In the absence of liposomes, little amounts of L-Trp and D-Trp were entrapped (or 

adsorbed) in the poly(AAm) gel. In contrast, L-Trp adsorption on the LI-gel increased and 

reached a plateau at approximately 0.009 mM (99% of the initial concentration) after 

incubation for 20 h, but D-Trp adsorption was negligible. These results suggest that the chiral 

selective separation of amino acids can be achieved using the LI-gel. In Fig. 4-14(a), a time 

lag before the adsorption occurring was observed, which is similar to the case of free DPPC 

liposomes in chapter 1. After incubation for 27 h, the amount of L-Trp adsorbed on liposomes 

in the poly(AAm) hydrogel turned to be greater than that on bulk liposomes at the same lipid 

concentration, as shown in Fig. 4-14(b). One possible reason for this enhancement is the 

concentration difference between Trp in bulk water and the hydrogel, which accelerates the  
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Fig. 4-14  (a) Time course of Trp concentration in bulk water phase coexisting with 

poly(AAm) LI-gel. (b) The adsorbed concentration of L-Trp (Cini-Cw) in liposome suspension 

or LI-gel. 

 

adsorption. Another is the hydrophobic environment around the liposomes in the poly(AAm) 

hydrogel. In this case, a dehydration of the liposome membrane surface was induced by 

strong binding of water molecules to the poly(AAm) side chains (Sekine et al., 2014). The Trp 

concentration difference and liposome dehydration cause faster adsorption of Trp in the LI-gel 

in the early stage. 

The separation efficiency was estimated for the distribution ratios of L-Trp and D-Trp 

between the lipid membrane and bulk water phases. The separation factors of L-Trp against 

D-Trp on the liposome membrane phase ((L/D)of L-Trp and D-Trp were calculated as shown 

in Fig. 4-15. The distribution ratio of L-Trp and (L/D) for the LI-gel was higher than that 

for the liposome-free hydrogel. The separation factors of L-Trp against D-Trp in the bulk 

water phase ((L/D)for the current and other separation methods are summarized in Table 4-2.  

The data show that the separation factors achieved using the method described here 

are higher than those obtained using other methods such as protein-captured polymer 

membranes (Yong et al., 2010) and -cyclodextrin glutaraldehyde crosslinked membranes 

(Singh et al., 2012). The selective adsorption of L-Trp in a racemic solution was 

investigated. Figure 4-16(a) shows the time course of the Trp concentration in the racemic 

solution; the Trp concentration gradually decreased after 20 h, and was reduced to the half of 

the total Trp concentration in the racemic solution after incubation for 40 h. Circular dichroism 
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Fig. 4-15  Distribution ratios (Klip) and separation factors ((L/D)) of L-Trp and D-Trp in 

liposome membrane phase. 

 

Table 4-2  Comparison of separation factors achieved using several methods 

References Materials  Separation Factor ((L/D)) 

Yong et al., 2010 Bovine serum albumin captured polymer membranes  3.8 

Singh et al., 2012 -CD glutaraldehyde cross-linked membranes  5.8 

This work Poly(AAm) hydrogel  0.77 

This work Liposomes immobilized poly(AAm) hydrogel 27 h 15 

  52 h 32 

 

 

 

Fig. 4-16  Chiral separation of racemic Trp solution by LI-gel: (a) time course of racemic 

Trp concentration (CW) and (b) circular dichroism spectrum of bulk water phase with LI-gel. 
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spectroscopy clearly shows that mainly D-Trp remained in the chamber, because of the selective 

adsorption of L-Trp, after incubation for 46 h (Fig. 4-16(b)). It is therefore concluded that 

LI-gels can be used as novel optical resolution agents for amino acids.  
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4. Summary 

In this chapter, some possible extensions of the design scheme described in previous 

chapter and described by selecting (i) homochiral oligomerization on designed membranes 

and (ii) optical resolution using designed membranes embedded in hydrogel, by selecting 

amino acid recognition as a core phenomenon. The developments of chiral resolution and 

oligomerization for amino acids are induced by utilizing the functions of liposome 

membranes to selectively accumulate the molecules at the membrane surface and to induce 

the chiral recognition. 

By means of the adsorption of amino acids on liposome membranes, the 

oligomerization of L-His was found to be promoted as compared with that in bulk solution. In 

the case of selective adsorption of L-His, the hypothetical concentration increased in the 

liposome membranes. This situation induced the longer oligomers than bulk L-His in 

polycondensation conducted by water-soluble initiators such as EDC and HOBt. The effect of 

the adsorption into liposome membranes is revealed by no elongation of D-His 

oligomerization in the presence of the liposomes. With regards to the reaction process of 

oligomerization, there are some relatively hydrophobic intermediates. Hence, the localization 

of reactants in liposome membranes leads to the protection of such intermediates against the 

hydrolysis. 

The above results indicated that the promotion of conversion reaction is conducted in 

surface region of liposome membranes. Therefore, the design of more efficient reaction is 

expected by the analysis of surface membrane property developed in chapter 3. It is possible 

that mixing Ch in liposome membranes may induce the interference of conversion reaction by 

hydrolysis. However, the heterogeneous liposomes possibly induce the accumulation or 

orientation of reactants due to the specific assembled states around phase boundaries, which 

results in the promotion of conversion reaction in liposome membranes. In addition, the above 

oligomerization is examined by His molecule that possesses hydrophilic side chain. Thus, the 

evaluation of the surface membrane property is expected to contribute to the supposition of 

the effect of liposome membranes for the conversion of other molecules such as Trp that have 

hydrophobic side chain.  

The immobilization of liposomes was examined by the embedding in poly(AAm) 

and agarose hydrogels. In these hydrogels, it was observed that DPPC liposomes embedded in 
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high concentration, which was monitored by the microscopy and SEM images. The 

immobilization of liposomes encapsulating calcein was also observed, indicating that the 

vesicle structure was still maintained during immobilization in hydrogels. As for the 

membrane property of liposomes, the packing density of immobilized liposome membranes 

was characterized by Raman spectra. The embedded DMPC liposome membranes showed the 

similar phase transition temperature to the DMPC liposomes in water, and the phase 

transitions were reversibly, implying that the effect of interactions with the branch of 

poly(AAm) was not so large. In the case of investigation of Trp adsorption in hydrogel 

prepared above, high selectivity for L-forms was shown after 27 hours of incubation. The 

adsorption performance of this method is at least equal to or more than other separation 

membranes. The optical resolution of racemic Trp was also demonstrated in the hydrogels 

immobilized liposomes. 

According to the L-Trp adsorption in LI-gel, the incubation time for adsorption 

became shorter than the bulk condition with same liposomes, which means that the adsorption 

steps suggested in chapter 2 is induced efficiently. The enhancement of adsorption was also 

observed by the mixing of Ch based on the results in chapter 3, indicating that the 

understanding of the surface property plays an important role in the design of liposome 

membranes for the selective adsorption of amino acids. Although the use of fluorescent 

probes is very difficult to apply for the characterization of the solid materials embedded 

liposomes, LI-gel systems are expected to be utilized by designing and easily-characterization 

of the liposomes membrane properties optimized for separation processes. This examination 

treated DPPC as the liposome components, nevertheless, the mixing of Ch may be available 

for the design of LI-gel in the case of the negligible interference of polymerization. 

Furthermore, the above results about selective adsorption of Trp show the great significance 

in the development for various polar molecules including amino acids. 

As a summary of this chapter, it is found that liposome membranes, as a 

self-assembly system, can induce the selective adsorption of amino acids, suggesting its 

plausible mechanism and the membrane design for performing its functions. Based on the 

case studies focusing on the separation and conversion processes, the application of liposome 

membranes is expected to contribute for the development of practical separation techniques. 
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General Conclusions 

 

The method to design the liposome membranes for selective adsorption of amino 

acids was established in order to develop innovative separation processes. Based on the 

previous findings of the recognition functions that can be performed by some biological 

molecules, the utilization of liposome membranes is expected to be extended for the 

separation process that can perform the prominent recognition of amino acids. From the 

viewpoint of the self-assembly system, the variation of the surface properties of liposome 

membranes, together with their physicochemical state, was observed during the 

above-described recognition step and can also play an important role to elucidate the highly 

selective adsorption. A scheme for the liposome membrane design was proposed based on the 

obtained results on the characterization of the liposome membrane, its adsorption function and 

their relationship. Consequently, some extensions of the proposed scheme were examined 

through two kinds of case studies. 

In chapter 1, the selective interaction of target molecules was examined by some 

assembled structures of phospholipids. In a solvent-water system, emulsion layer formed by 

phospholipids at the interface in the solvent phase became expanded by the decrease of 

dielectric constant of solvent, resulting in the increase of the partitioning of Trp from aqueous 

phase to organic phase with low enantiomer discrimination in the formation of “disordered” 

aggregation. On the other hand, highly selective recognition of L-Trp and L-His was observed 

in their partitioning in the liposome membrane prepared by the same phospholipids; DPPC. 

Such a difference between the solvent-water system and the liposome membrane system can 

be caused by the formation of highly-ordered assembly, wherein the certain orientations of the 

membrane-constituting lipid molecules and of the guest molecule interacting at the 

hydrophilic-hydrophobic interface were organized. In addition, the liposome membranes also 

induced the discrimination of charge in guest molecules and the enantioselective adsorption in 

racemic solution. Considering the assumption of monolayer adsorption by the adsorption 

isotherms, it is proposed that some recognition sites for L-amino acid could be formed on the 

liposome membranes. 

In chapter 2, the variation of liposome membrane property was investigated by 
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employing the adsorption of amino acids as targets. In the case of selective adsorption of 

L-amino acids, the formation of interactions from side chain of amino acids was evidenced by 

the decrease of peak intensity in resonance Raman spectra. In addition, the variation of 

surface hydrophobicity of liposome membranes was observed by fluorescent spectra of ANS 

fluorescent probes and, also, by dielectric dispersion analysis. Therefore, the selective 

adsorption could be carried out by accompanying with the subtle changes in the surface 

property on the liposome membranes. This assumption was supported by the thermodynamic 

analysis i.e. the relation of enthalpy and entropy in L-amino acid adsorption. These findings 

suggest the mechanism of step-by-step adsorption in the surface region of liposome 

membranes. It was thus found that the detailed evaluation of surface property of liposome 

membranes could be important to design the recognition performance for L-amino acids.  

In Chapter 3, the design of liposomes containing Ch was investigated based on the 

surface membrane property analysis and His adsorption. The methodology of evaluating the 

surface property of the liposome membranes was developed with the combination of two 

fluorescent probes that can be localized at the surface edge of the membrane. The diagram 

obtained by this methodology enabled to characterize the variation by selective adsorption of 

L-His, indicating the convergence of the surface property by adsorption of L-His. Furthermore, 

in the lipid composition forming heterogeneous phase, the fast adsorption of L-His was shown 

to correspond with the increase of the line tension derived from domain boundary. These 

results indicate that the understanding of the surface property leads to the important 

contribution in the design of liposome membranes for the efficient and selective adsorption 

for amino acids.  

The above findings revealed that the liposome membranes could perform high 

selective adsorption of L-amino acids. The design of electrostatic interactions in hydrophilic 

region could control the adsorption behaviors of amino acids, resulting in the selectivity of 

chiral molecules. The highly ordered structures of phospholipid assemblies could play a 

beneficial role in inducing the stereochemical selectivity through multiple interactions. In 

addition, the design of membrane property induced by surrounding adsorbed molecules was 

also important for enhancement of adsorption process. The formation of interactions in 

adsorption was induced together with the changes of membrane property and of assembled 

states in surface region of liposome membranes. It is thus considered that such changes could 
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be promoted by the design of initial states of liposome membranes, resulting in the induction 

of fast adsorption. Besides, the flexibility on the heterogeneously-segregated liposome 

membranes could provide suitable environments for the adsorption in the energetic aspect. 

According to the above findings, the strategy of liposome membrane design for efficient 

performance of chiral separation was proposed as utilizing the function of liposomes, i.e., 

asymmetric recognition of amino acids.  

In Chapter 4, some extensions of the design scheme of the liposome membrane have 

been investigated through two case studies, such as the conversion reaction followed by the 

amino acid recognition, and optical resolution of racemic solution of amino acids by using the 

liposome immobilizing hydrogel. The adsorption of L-His molecules could induce their 

condensation and localization in hydrophobic region of the liposome membranes. This 

behavior was utilized for the efficient oligomerization of L-His assisted in liposome 

membranes, resulting in the elongation of poly(L-His), but not poly(D-His). It is thus proposed 

that the liposome membranes could be utilized as the platform of prominent conversion 

process of hydrophilic molecules due to the combination with its function of selective 

adsorption. Furthermore, a development of immobilization method of liposomes can 

contribute to the practical use of the functions of liposome membranes. The embedding of 

liposomes in hydrogels could achieve the immobilization in high concentration with 

unimpaired property of liposome membranes. Based on the results about the chiral separation 

by liposome-immobilized hydrogels, the expansion of the selective adsorption of amino acids 

is expected by designing the processes utilizing liposome membranes.  

The scheme of the design of liposome membranes for molecular recognition was 

thus established based on the analysis of surface membrane property, and on the mechanism 

of adsorption of target molecules. These findings are expected to contribute to the approach 

for the separation processes and for the unit process in practical use such as fine chemicals. 
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Suggestions for Future Works 

 

To expand the findings obtained in this work, the following studies are recommended 

as future work. 

 

(1) Further Investigation on the Design of Molecular Recognition by Regulating 

External Condition 

In order to design the property of liposome membranes, the external condition such 

as temperature, pH, salt concentration, are important factors. For the practical use of liposome 

membranes, the design and characterization of liposome membranes through such conditions 

is valuable because of the easier handling and regulation. From the viewpoint of surface 

property of liposome membranes, the addition of the other molecules such as small organic 

acids or metal-affinity ligands can be used to assist the molecular recognition. In addition to 

the effect of membrane property, the formation of clusters with target molecules is expected to 

affect the regulation of molecular recognition. For the development of recognition processes 

by the above methods, it is useful to employ the methodology of evaluating surface 

membrane property proposed in this study. 

 

(2) Extension of Selective Adsorption of Liposome Membranes for Various Processes 

In this study, the application for separation or conversion processes was examined by 

employing some case studies. From these findings, it is expected to apply for various 

processes. On liposome membranes, the condensation of amino acids could be induced with 

high chiral selectivity. This result is considered to be developed for the chiral crystallization 

of amino acids on the liposome membranes. Furthermore, because the location of inserted 

molecules can be regulated by the design of liposome membranes, the effective production 

such as self-reproduction can be induced by not only controlling the localization of reactants 

but also the dynamic changes of assembled structures derived from alignment of product.  
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(3) Expansion of Target Molecules for Asymmetric Recognition of Liposome Membranes 

The molecular recognition function of liposome membranes was performed by 

employing small hydrophilic molecules such as amino acids in this study. In actual, the 

liposome membranes are considered to be applied for molecular recognition in the wide range 

of target molecules because of the recognition functions for several biological molecules. 

According to the chiral selectivity, the application of liposome membranes for hydrophobic 

chiral molecules is important in addition to hydrophilic molecules. It is possible to achieve 

chiral recognition by the features of liposome membranes with ordered structures in acyl 

chains and stacked rings derived from cholesterols. In this case, the design strategy of 

liposome membranes suggested in this study can be applied by the several evaluations for 

both interior and exterior membrane properties.  

 

(4) Approach of Inversed Stereochemistry by Utilization of D-Liposomes 

In biological system, all kinds of phospholipids are produced in only the L-form 

enantiomer. A novel understanding can be therefore obtained about the chiral recognition in 

liposome membranes by means of the investigation in liposomes formed by D-phospholipids. 

In reference to this study and previous findings, self-assembly systems are expected to 

perform chiral recognition function based on the ordered structures of the components. It is 

thus required to consider the effect of the chirality of the phospholipid molecules for chiral 

recognition induced by liposome membranes. Such a finding possibly contributes to excellent 

control such as chiral switching.  
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Nomenclatures 

 

Cads  = concentration of adsorbent on liposome membranes   [mM] 

Cads (on membrane) = concentration of adsorbent per liposome membrane volume  [mM] 

D  = distribution ratio in emulsion phase       [-] 

ee  = enantiomer excess         [-] 

G  = correction factor         [-] 

GP340  = general polarization calculated at exciting light at 340 nm     [-] 

I474 / I518  = fluorescence intensity of ANS        [-] 

K  = binding constant           [mM
-1

] 

KZ  = distribution constant in hydrogel phase       [-] 

Klip  = distribution constant on liposome membranes      [-] 

l  = specific boundary length           [nm
-1

] 

Ldomain  = domain length per liposome perimeter       [-] 

1/P  = membrane fluidity         [-] 

P  = fluorescence polarization of probes embedding in membranes    [-] 

q  = amount of adsorbent per lipid amount        [mmol/g] 

Q  = amount of adsorbent on liposome membranes      [-] 

R  = packing density of lipid membrane       [-] 

SL/D  = separation parameter         [-] 

XL  = molar ratio of L-amino acids against D-form      [-] 

Xlo  = area ratio of lo phase         [-] 

(L/D)  = separation factor in the bulk water phase       [-] 

(L/D)  = separation factor on the liposome membrane phase     [-] 

N  = normalized surface hydrophobicity       [-]  



112 
 

List of Abbreviations 

 

AAm Acrylamide 

ANS  8-Anilino-1-naphthalenesulfonic acid 

Asp  Aspartic acid 

BSA  Bovine serum albumin 

CD  Circular dichroism 

CTAB  Cetyltrimethylammonium bromide 

Ch  Cholesterol 

Cys  Cysteine 

DBSA  Dodecylbenzenesulfonic acid 

DDA  Dielectric dispersion analysis 

DLS  Dynamic light scattering 

DMPA  1,2-Dimyristoyl-sn-glycero-3-phosphate 

DMPC  1,2-Dimyristoyl-sn-glycero-3-phosphocholine 

DMPE  1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine 

DMPS  1,2-Dimyristoyl-sn-glycero-3-phospho-L-serine 

DOPC  1,2-Dioleoyl-sn-glycero-3-phosphocholine 

DPH  1,6-Diphenyl-1,3,5-hexatriene 

DPPC  1,2-Dipalmitoyl-sn-glycero-3-phosphocholine 

DSC  Differential scanning calorimetry 

Dansyl-DHPE N-(5-Dimethylaminonaphthalene-1-sulfonyl)-1,2-dihexadecanoyl- 

sn-glycero-3-phosphoethanolamine 

EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

ELISA  Enzyme-linked immunosorbent assay 

Em  Emission wavelength 

Ex  Excitation wavelength 

GUV Giant unilamellar vesicle 

HIV Human immunodeficiency virus 

1
H NMR Proton nuclear magnetic resonance 
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HOBt 1-Hydroxybenzotriazole 

His  Histidine 

IR  Infrared resonance 

ITC  Isothermal titration calorimetry 

ITO  Indium tin oxide 

ld  Liquid disordered 

LI-gel  Liposome-immobilized hydrogels 

lo  Liquid ordered 

LUV  Large unilamellar vesicle 

Laurdan  6-Lauroyl-2-dimethylamino naphthalene 

Leu  Leucine 

MALDI-TOF MS Matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry 

MLV  Multilamellar vesicle 

POPC  1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

PPL  Propranolol 

Phe  Phenylalanine 

Pro  Proline 

SDS  Sodium dodecyl sulfate 

SEM Scanning electron microscopy 

Ser  Serine 

so  Solid ordered 

TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

TMA-DPH 1-(4-Trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene 

TNS  6-(p-Toluidino)naphthalene-2-sulfonate 

Tm  Phase transition temperature 

Triton X-100 Poly(oxyethylene p-t-octylphenyl ether) 

Trp  Tryptophan 

Trp-Trp  Ditryptophan 

Tyr  Tyrosine 

UV  Ultraviolet-visible 

Val  Valine  
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