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ABSTRACT

Cholesterol is one of the most essential molecule in phospholipid bilayers of animal cell
membranes and is known to help to maintain the bilayer integrity under mechanical stresses without
bilayer rupture. Although the bilayer rupture is critical for cell viability, the details of the cholesterol
effects are still unclear. It is because the rupture process is divided into two stages, the formation of a
nano-pore penetrating the bilayer and the spontaneous expansion of the pore, which are extremely fast
processes and elusive in experiments. In order to understand the cholesterol effects on the bilayer
rupture at the molecular level, a series of molecular dynamics simulations of stretched phospholipid
bilayers containing cholesterol was performed. When the areal strain of the bilayer exceeded a critical
value, water molecules permeated into the bilayer inside and a pore was formed. The critical areal
strains for the cholesterol-containing bilayers were larger than that of the pure bilayer. The stretched
cholesterol-containing bilayer formed an interdigitated gel phase like structure, in which the
phospholipid and cholesterol molecules in one leaflet of the bilayer penetrated into the opposite leaflet
and their orientations became ordered. The ordered bilayer structure after the phase transition might
prevent the water permeation into the bilayer inside, which was an initiation of the pore formation,
resulted in the higher critical areal strain of the cholesterol-containing bilayer. Moreover, the pore in
the cholesterol-containing bilayer can spontaneously close even under higher areal strain than the pure
bilayer. From the pore closure areal strain, the line tension of pore edge, which is an energetic loss per
unit length, was estimated to increase with increasing the cholesterol concentration. This indicated that
cholesterol facilitated the pore closure and prevented the pore expansion. In conclusion, behind the
well-known cholesterol effects on the bilayer rupture, there were two molecular-level mechanisms.
First, the stretch-induced phase transition to the interdigitated gel-like phase in the cholesterol-
containing bilayer prevents the pore formation. Second, the higher line tension of the cholesterol-
containing bilayer facilitates the pore closure and prevents the pore expansion. These findings will be
fruitful to control the dynamics of pores and the subsequent membrane rupture in biological
membranes, which are important problems in some medical treatments and experimental techniques

for cell biology.
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CHAPTER 1.
INTRODUCTION

Cholesterol is an important component of biological cell membranes and occurs at a wide range of
concentrations depending on the membrane type [1]. The roles of cholesterol in functions and physical
properties of the membrane have long been recognized [2—4]. To understand the details of the
cholesterol effects, the interactions between cholesterol and phospholipids, which are main
components of the cell membranes and form a bilayer structure, have been comprehensively
investigated. On the mechanical aspects, it is, for example, clarified that cholesterol reduces the passive
permeability of water molecules across the bilayer [5], modulates the fluidity of the bilayer [6], induces
the formation of micro-domains in the bilayer, called a lipid raft [7], and increases the mechanical
stiffness of the bilayer [8]. Furthermore, at the molecular level, these cholesterol effects are considered
to come from the ordering of phospholipids coexisting with cholesterols and subsequent condensation
of the bilayer structure, which are called as ordering and condensing effects of cholesterol, respectively
[9,10]. Progresses in understanding cholesterol effects in phospholipid bilayers at the molecular level
have been summarized in excellent reviews over the years by several researchers [9,11-14].

Related to the cholesterol effects listed above, cholesterol in the bilayers is known to help to
maintain the membrane integrity in situations where the membranes are exposed to various stresses.
Needham and Nunn [8] performed a micropipette aspiration experiment for giant bilayer vesicles
consisting of various phospholipids and cholesterol, and showed that the critical areal strain, where the
rupture of the vesicle occurs, non-linearly changes with the cholesterol concentration. Koroniewicz
and Kalinowski [15] performed an electroporation experiment using constant-current measurements
for a planar bilayer containing cholesterol and showed that the presence of cholesterol in the bilayer

causes an increase in the value of the breakdown potential. Both experiments suggest that cholesterol



increases the resistance of the bilayer to mechanical and electrical stresses, but the molecular details
are not fully understood. Generally, animal phospholipid bilayers contain considerable amount of
cholesterol molecule [1] and cholesterol effects on bilayer properties are profound. Thus,
understanding the rupture of the cholesterol-containing bilayer is important for the development of
various medical and experimental techniques that require delicate control of the permeability or failure
of the biological membrane, e.g., electroporation [16], sonoporation [17], and ventricular assisted
devices [18]. Furthermore, cholesterol is often employed as a stabilizer for synthetic bilayer vesicles,
i.e., liposome, used for drug containers in drug delivery system [19,20]. Hence, to understand the
molecular details of the cholesterol effects on the bilayer rupture can provide the fruitful knowledge
for various medical and biological issues and is the aim of this study.

As the bilayer rupture is critical to cell viability, to clarify the details of the rupture mechanism,
various experimental and theoretical studies have been performed. At the microscopic level, a pipette
aspiration experiment for phospholipid bilayer vesicles is one of the commonest experimental
technique and has yielded insights into the basic features of the bilayer rupture. Generally, the bilayer
rupture occurs when the stress or strain of the bilayers exceed critical values, which depend, for
example, on the lipid compositions of the bilayer (type of head group, unsaturation degree and length
of tail groups, and, of course, cholesterol concentration) [21-23] and the time history of the applied
stress or strain [23]. Evans and coworkers [23] reported experimental results about the latter: the
rupture tension of pure phospholipid vesicles increases with increasing loading rate. They also
interpreted their results based on a kinetic model for the bilayer rupture, in which the rupture process
was modeled as a Markov process with a few intermediate states.

The basic idea used in the Evans’s kinetic model was first proposed by Helfrich [24] and applied
to the bilayer rupture by Litster [25]. The model has been long developed and used for explaining
various membrane-related phenomena [26-29]. An important concept for the model of the bilayer

rupture is dynamics of transmembrane pores in the phospholipid bilayer. The pore penetrates the



phospholipid bilayer and is filled with water molecules. At first, a pore is formed in the intact bilayer
by external stresses. The pore is unstable and can close spontaneously. However, the pore can continue
to expand indefinitely when once the pore exceeds a critical radius, leading to the bilayer rupture. From
these, the rupture process can be divided into two processes: the pore formation in the intact bilayer
and the subsequent pore expansion. As these processes are extremely fast, highly localized, and
including complicated non-linear rearrangements of phospholipid and cholesterol molecules, the
experimental observation or the theoretical prediction of the molecular details of the rupture process
are difficult.

Molecular dynamics (MD) simulation of the bilayer is a promising method to reveal such
molecular level phenomena in the bilayer [30]. In fact, MD simulation studies of various cholesterol
effects in the unstressed bilayer [9,12,13] have been reported. Furthermore, several researchers,
including our group, have performed MD simulations of the pore formation in the pure phospholipid
bilayers under various stresses [31-34]. Nevertheless, MD simulations have not been applied to clarify
the molecular details of the effect of cholesterol on pore formation and rupture under mechanical
stresses.

In this study, in order to understand the molecular details of the cholesterol effects on the rupture
of the bilayer under mechanical stresses, a series of MD simulation of stretched phospholipid bilayers
containing cholesterol at various concentration is performed. As the rupture process can be considered
to include two processes, pore formation and expansion, as described above, the simulations are also
divided into two stages. In the first stage, MD simulations of stretched bilayers without a pore are
performed to investigate the cholesterol effects on the pore formation stage in the rupture process. In
the second stage, MD simulations of bilayers with a pre-formed pore are performed to investigate the
cholesterol effects on the pore expansion stage in the rupture process. The details of the simulations
for the two stages are described in the Chapter 2 and 3, respectively. Additionally, to develop

understanding the cholesterol effects on the bilayer rupture, the interaction effects of cholesterol and



the stretching speed on the pore formation are investigated. The stretching speed is one of the important
factor closely related to the bilayer rupture. For this objective, MD simulations of cholesterol-
containing bilayers under stretching with various stretching speed are performed and details of the
simulations are described in the Chapter 4. Finally, in the Chapter 5, conclusions of this study are

stated.



CHAPTER 2.
CHOLESTEROL EFFECTS ON PORE FORMATION
IN STRETCHED PHOSPHOLIPID BILAYER

2.1. INTRODUCTION

Cholesterol molecules in phospholipid bilayers are known to enhance the bilayer toughness to
mechanical stresses and help to maintain the membrane integrity [8,22,35]. Despite there are many
reports about the cholesterol effects, the molecular-level mechanism is not fully understood. From
theoretical and experimental studies of the bilayers under mechanical and electrical stresses, the
irreversible breakdown of the bilayer (rupture) is estimated to occur through two stages. In the first
stage, unstable transmembrane pores are transiently formed in intact bilayers by external stresses.
Accordingly, in the second stage, the pore expands spontaneously and indefinitely, resulting the bilayer
rupture. The pore formation is a very fast and local event, involved in the molecular level structural
changes of the bilayer. Thus, the role of cholesterol molecules in the pore formation in the rupture
process is still unknown.

In this chapter, in order to understand the cholesterol effects on the pore formation, a series of
molecular dynamics simulations of stretched dipalmitoylphosphatidylcholine (DPPC) bilayers
containing different concentrations of cholesterol (0, 20, 40, and 60 mol%) is performed. From the
trajectories of the stretched bilayers, how the processes of pore formation, the critical area where the
pore is formed, and the molecular orientations in the stretched bilayers are related to the concentration
of cholesterol are analyzed. Furthermore, the relationships between the resistance of the bilayer to pore
formation and the change of the membrane structure induced by stretching are discussed. These
analyses will reveal the difference of the molecular mechanism of the pore formation process in the

phospholipid/cholesterol bilayers with different compositions of lipid and cholesterol molecules, and



provide insight into the toughness of red blood cell (RBC) membranes.

2.2. METHODS

2.2.1. Bilayer Systems

Planar phospholipid/cholesterol bilayer systems with cholesterol concentrations of 0, 20, 40, and
60 mol% were used. Each system comprised 200 lipid molecules of DPPC and cholesterol molecules
in rectangular simulation boxes with periodic boundary conditions. To avoid the effects of the periodic
images in the bilayer normal direction during stretching, a large number of water molecules (at least
11,918) were added to the systems. The pure DPPC bilayer and DPPC/cholesterol bilayers with 20, 40,
and 60 mol% cholesterol were labeled as S00, S20, S40, and S60, respectively. DPPC and cholesterol
molecules were represented by the united atom force fields for DPPC [36] and cholesterol [37], and
water molecules by the simple point charge model [38]. For the equilibration, constant temperature (7)
and pressure (P) MD simulations were performed for 100 ns at 7= 323 K and P = 1 bar. The details
of the system construction, simulation parameters for the equilibrium simulation, and structural
properties of DPPC/cholesterol bilayers in equilibrium states are summarized in the Appendix Al. The
structural properties of the four bilayers were in agreement with those obtained by experimental
measurements [10,39-41] and previous simulations [42—44]. All MD calculations were performed
with the GROMACS molecular dynamics simulation codes [45,46]. All snapshots were rendered using

Visual Molecular Dynamics [47].

2.2.2. Stretching Simulations

The equilibrated bilayers prepared above were first stretched by the unsteady and equibiaxial
stretching algorithm [32], and the stretched bilayers in desired areas were taken from the trajectories.
Constant NP.4|T MD simulations of the bilayers [48] were performed for 100 ns at a constant

temperature (7 = 323 K), pressure in the z direction (P: = 1 bar), and various areas (4)). 4| was set to



satisfy the areal strain g4 = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4, as explained below. To statistically
analyze the critical areal strain where the pore forms, stretching simulations were performed starting
from three different configurations taken from the trajectory of the equilibrated bilayers. The
simulation parameters were essentially the same as those for the equilibrium simulations (see
Appendix Al) except that the barostat method (Berendsen algorithm [49]) was used in the stretching
simulations. It took about 3.6 x 10> CPU hours on a Linux cluster with 2.21 GHz Opteron processors

for the S40 system under the areal strain g4 = 1.0.

2.2.3. Analysis

The areal strain was defined by &4 = A)/4o — 1, where 4 is the area of the simulation box upon
stretching, and Ao is the reference value obtained from the average for the last 50 ns of the equilibrated
MD simulation. Pore formation in the bilayer was examined by visual inspection of the snapshots for
each areal strain condition. It should be noted that because the areas were discretized in the stretching
simulations, to more accurately estimate the critical strain &, not only the minimum value of areal
strain with a pore (&p) but also the maximum value without a pore (&) during the stretching simulations
were analyzed, and the actual critical strain can be found in the range from & to &p.

Ordering in the hydrophobic tails of the lipid molecules was evaluated by the averaged order

parameter:

Nc

§CD:LZC:(SCD):LZ[_i<3COSZ @i_1>)’ (2.1)

N 3 N3

where 0; is the angle between the axis of the ith molecular axis and the bilayer normal (the z axis), N.
is the number of carbons in the lipid chains, and the brackets denote both ensemble and the time
average. In this study, N. was the number of carbons in the sn-2 chains (N. = 14). Furthermore, to
analyze the orientations of the cholesterol molecules in the stretched bilayers, the cholesterol tilt angle

parameter was defined as



A = <cos2 9C> , (2.2)
where @. is the instantaneous angle between the segmental vector, which is the vector between the
carbon atoms of the ring structure connected to the tail (C21) and the hydroxyl group (C5) (see Fig.
A1.1), and the bilayer normal (the z axis). If most of the cholesterol molecules are normal to the bilayer
plane (the x-y plane), 4. will be close to 1, whereas if they are not, it will be close to 0. To analyze the
association between the cholesterol molecules, the lateral radial distribution function (RDF) [42]
between C21 carbon atoms in the cholesterol molecules for the bilayer plane (the x-y plane) was

calculated in the individual layers and between layers.

2.3. RESULTS

2.3.1. Pore Formation Process

Figure 2.1 shows representative snapshots of the stretched DPPC/cholesterol bilayers for S40. With
increasing the applied areal strain of the bilayer, the thickness monotonically decreases (Fig. 2.1, 4—
F) and, when the areal strain exceeds a critical value, water molecules penetrate into the hydrophobic
region of the bilayer and bridge the bilayer (Fig. 2.1 E). The water bridge rapidly grows (Fig. 2.1 F),
but is not clearly lined with the hydrophilic headgroups (i.e., it is similar to a hydrophobic pore) (Fig.
2.2 right column), unlike the case of the formation of hydrophilic pore for SO0 (Fig. 2.2 left column)
and for other stretched pure lipid bilayers [31,50]. This difference may be explained by the difference
in line tensions between the hydrophilic and the hydrophobic pore in the bilayer [51]. In addition, there
is a remarkable difference in the molecular orientations in the stretched bilayers. For the system S00
(i.e., a pure lipid bilayer), the DPPC molecules continue to tilt or spread their hydrophobic tails until
pore formation (insets in Fig. 2.1, G-I). For the systems containing cholesterol, the DPPC and

cholesterol molecules initially tilt, but then recover (see insets in Fig. 2.1 C).
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FIGURE 2.1 Representative snapshots of the stretched bilayers for S40 (4—F) and S00 (G—/). The
applied areal strains are 0.0 (4 and G), 0.4 (B and H), 0.6 (1), 1.0 (C), and 1.4 (D-F). The DPPC
headgroups are shown in red, the DPPC tails in orange, the cholesterol molecules in green,
phosphorus atoms of the DPPC as yellow spheres, hydrogen atoms of the cholesterol molecules as
white spheres, and the water molecules in blue. In the sections shown in the white frames in panels
D-F, the DPPC tails and cholesterol molecules are not shown, and the water molecules in the
hydrophobic part of the membrane are emphasized for clarity. The insets in panels A—C and G—/ are

representative positions and orientations of the DPPC and cholesterol molecules.
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FIGURE 2.2 Representative snapshots of the pore growth processes for SO0 (left column) and S40
(right column). The DPPC headgroups are shown in red, phosphorus atoms of the DPPC as yellow
spheres, hydrogen atoms of the cholesterol molecules as white spheres, and the water molecules in
blue. The DPPC tails and cholesterol molecules are not shown for clarity. t* in each panel shows the

time that elapses after the formation of the water bridge.
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2.3.2. Critical Areal Strain

The ¢p and & values obtained for the four systems are shown in Fig. 2.3. Both ¢p and & initially
increase, peak at 40 mol%, and then decrease with increasing amount of cholesterol up to 60 mol%.
As the areas were discretized in the stretching simulation, this indicates that the actual critical areal
strain & follows the same trend of ¢p and & (gray region in Fig. 2.3). The results of the critical areal
strains of the phospholipid/cholesterol bilayer agree well with previous experimental observation (peak
at 3040 mol%) [8]. It should be noted that the range of & obtained here is about two orders of
magnitude higher than that reported in the experiments, which can be explained by the small size of

the system [29] (see also Appendix Al).

I [
1.4+ oc, LN -
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0 20 40 60

Cholesterol Concentration [mol%]

FIGURE 2.3 Minimum areal strain & where the pore forms and maximum areal strain & where the
pore does not form as a function of the cholesterol concentration. The dashed lines show the linearly
interpolated lines between the points, and the region, where the real critical areal strain is expected

to be found, is shown in gray.
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2.3.3. Molecular Orientation
In the phospholipid/cholesterol bilayer, the orientations of the DPPC and cholesterol molecules

depended on the applied areal strain (Fig. 2.1). The relationships between the averaged order parameter

S, and the areal strains, and between the cholesterol tilt angle parameter A. and the areal strains for
the four systems, are shown in Fig. 2.4, 4 and B, respectively. Both parameters initially decrease and
then begin to increase when the applied areal strain exceeds 0.4 or 0.6. From the distributions of S,
in the sn-2 hydrophobic tail for S40 (Fig. 2.5), it is clear that the recovery of S, is because of the
recovery of the order at the distal end of the hydrophobic tails.

The recovery of S, and A. is prominent for S40. The association of cholesterol molecules was
analyzed by using the lateral RDFs between the C21 carbon atoms of the cholesterol molecules (Fig.
2.6, A and B). Based on the transitional change of S, for the system S40 in Fig. 2.4 4, the stretching
process can be divided into two stages: the low areal strain stage (g4 = 0.0-0.4) and the high areal
strain stage (&4 > 0.4). In the low areal strain stage, the peak heights of the RDFs decrease with
increasing areal strain, except for the peak at about 0.7 nm (Fig. 2.6 A). On the other hand, in the high
areal strain stage, the peaks become higher with increasing areal strain up to 1.0 (Fig. 2.6 B).

The RDFs between the C21 carbon atoms in the upper and lower layers are useful to understand
the interactions of cholesterol molecules between the layers (Fig. 2.6 C). In the low areal strain stage,
the RDFs do not have peaks, indicating that there is no significant interaction of cholesterol molecules
between the layers. On the other hand, in the high areal strain stage, some peaks appear at small radial
distances, indicating that the interaction between cholesterol molecules of the upper and lower layers
becomes significant. In particular, the profile of the RDF between cholesterol molecules of the upper
and lower layers for g4 = 1.0 (thick dashed line in Fig. 2.6 C) is similar to that for g4 = 0.0 (see Fig.
A1.2). Figure 2.7 shows representative snapshots of the cholesterol molecule orientations and
distributions for &4 = 0.0 and 1.0. The two monolayers in the bilayer interpenetrate for &4 = 1.0 (Fig.

2.7 bottom-right), forming an interdigitated gel-phase-like structure [52]. In the interdigitated bilayer,

12



cholesterol molecules are localized and form domains (Fig. 2.7 top-right), whereas the localization of

DPPC molecules is indistinct.

0.5 A I I I
- O 0mol% .
H 20 mol%
04F A 40 mol% _
T W 60 mol%

0.1+ —
0 | | | | | |
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Areal strain
1 ' ' — 1 T A

B B 20 mol%
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|
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FIGURE 2.4 (4) Average lipid chain order parameter S, and (B) cholesterol tilt angle parameter

Ac versus areal strain.
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FIGURE 2.6 RDFs of C21 atoms of cholesterol molecules in the stretched bilayers for S40: (4)
RDF calculated from the atoms within individual monolayer for the small areal strains, (B) RDF for
the large areal strains (B), and (C) RDF calculated from the atoms between the upper and lower
monolayers. The data for different areal strains are shown by different line types (see legend in the

figure).
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FIGURE 2.7 Representative snapshots of the stretched bilayers for S40 under areal strains of 0.0
(left) and 1.0 (right). The upper panels are top views and the lowers are side views of the systems
cut along the dashed lines in the top views. Cholesterol molecules in the upper and lower monolayers
are shown in red and green, respectively. DPPC molecules in the upper and lower monolayers are
shown in pink and yellow, respectively. Phosphorous atoms in DPPC headgroups are shown as pink
and yellow spheres. In the top views, water and DPPC molecules, except for the phosphorous atoms,
are omitted for clarity. White lines in the top and side views show the outlines of the periodic
simulation boxes. Dotted curves in the top-right figure represent the rough boundaries between the

upper and lower component regions in the interdigitated bilayer.

2.4. DISCUSSION

2.4.1. Ordering Effect in Stretched Bilayers
Many studies have reported that cholesterol molecules increase the ordering of the hydrophobic

chains of coexisting lipid molecules, the so-called ordering effect, in unstressed bilayers [43,44]. The
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results here elucidate that the cholesterol ordering effect under stretching depends on the amount of
cholesterol and the applied areal strain of the bilayer (see Fig. 2.4 4). In the low areal strain stage, the
order parameter for each system monotonically decreases with increasing applied areal strain. In
contrast, in the high areal strain stage, the order parameter increases with increasing applied areal strain,
and this tendency is most prominent in the system with 40 mol% cholesterol. In the system with 40
mol% cholesterol, the two monolayers of the bilayer interpenetrate and form an interdigitated gel-
phase-like structure (Fig. 2.7), especially under high areal strain. As the interdigitated gel-like structure
is an ordered structure (Fig. 2.1 (), it might be less permeable to water molecules in the stretched
bilayer, as in unstressed bilayers with different amounts of cholesterol [53]. Although more expensive
calculations are required, the permeability change may be quantified by calculating the free energy
profiles of water [54] across the stretched membranes. Because pore formation in the bilayer begins
with penetration of water into the bilayer [31] (Fig. 2.1 E), the increase of the critical areal strain in
phospholipid/cholesterol bilayers [8,15] (Fig. 2.3) seems to be due to the transient formation of the

interdigitated gel-like structure.

2.4.2. Toughness of Red Blood Cell Membranes

The concentration of cholesterol in cell membranes differs depending on the type of cell: 20-30
mol% in typical animal cell membranes, 40—50 mol% in RBC membranes, and as high as 70 mol% in
ocular lens membranes, whereas the amount of cholesterol is non-existent in coli bacillus membranes
[1,55]. According to previous experimental studies [ 8], the elastic stiffness of the membrane, e.g., areal
compressibility, monotonically increases with increasing cholesterol in this range (< 60 mol%). The
simulations here have added evidence at the molecular level that a bilayer with 40 mol% cholesterol
is the most resistant to pore formation, which causes the permeability increase and failure of the
membrane. In regard to the toughness of the membrane, the feature may be favorable for red blood

cells, because they require high elastic deformability and stability to pass through capillaries and are
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exposed to high shear flows during blood circulation. Moreover, controlling the concentration of
cholesterol in the membranes is a key factor in the development of synthetic RBCs to prevent

hemolysis [56].

2.4.3. Stretch-Induced Interdigitation

In the findings in this chapter, the stretch-induced phase transition to the interdigitated gel-like
phase in the cholesterol-containing bilayer is one of the most surprising discovery. According to
experimental studies for lipid phase behaviors [57], excepting several lipid species e.g., 1,3-DPPC, F-
DPPC, and dihexadecylphosphatidylcholine (DHPC), the interdigitation is known to occur only when
bilayers are exposed to high hydrostatic pressure [58] or lower alcohols [59]. Furthermore, cholesterol
is, interestingly, known to be an inhibitor of the pressure- and alcohol-induced interdigitation [60,61].
It might be one of the reason why the interdigitation is observed only in model phospholipid bilayers
not in biological membranes, which usually containing cholesterol. Contrarily, although the
mechanism of the stretch-induced interdigitation remains unclear, the MD simulations here provided
a possibility of the stretch-induced interdigitation in cholesterol-containing bilayers (Figs. 2.1 and 2.7),
which is a more realistic model for biological membranes than pure phospholipid bilayers. As the
interdigitation is accompanied with drastic structural changes of the membrane, impacts of the
interdigitation in biological membranes on the biological functions will be profound. This might be

related to the biological responses to the mechanical stresses, i.e., cellular mechanotransduction.

2.5. SUMMARY

MBD simulations of pore formation in stretched DPPC/cholesterol bilayers reveal that the critical
areal strain, where the pore is formed, is influenced by the amount of cholesterol in the stretched
bilayers. In particular, the critical areal strain reached a maximum when the amount of cholesterol was

40 mol%. With increasing the areal strain of the bilayer, the lipid tails become disordered and the tilt
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angle of the cholesterol molecules increases, resulting in the formation of a hydrophilic pore. However,
especially in the system with 40 mol% cholesterol, interdigitation of lipid and cholesterol molecules
is observed at high areal strain, resulting in increased ordering of the lipid tails and the formation of a
hydrophobic pore. The transient formation of the interdigitated gel-phase-like structure in the stretched
phospholipid/cholesterol bilayer might increase the resistance to water permeability, followed by the

increase of the critical areal strain.
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CHAPTER 3.

CHOLESTEROL EFFECTS ON LINE TENSION OF
PORE EDGE IN PHOSPHOLIPID/CHOLESTEROL
BILAYER

3.1. INTRODUCTION

A formation of water-filled pores penetrating the bilayer is an initiation of the bilayer rupture.
Depending on the intensity of mechanical stress on the bilayer, the pore can spontaneously close or
continue to grow. The excessive growth of the pore disturbs the cellular environments and induces
rupture of the bilayer. On the positive aspects, the pore in the bilayer acts as a path into the cell for
extracellular molecules and enables passive molecular transport. The temporal permeabilization with
the pore formation has been used as artificial molecular transport techniques, such as electroporation
[16] and sonoporation [62—64]. To prevent the unexpected bilayer rupture and develop the effective
molecular transport techniques, it is necessary to understand the details of pore dynamics in the bilayer
under mechanical stresses.

Previously, to describe the pore dynamics, Litster proposed the free energy difference AF between

bilayers with and without a pore with a radius R, as:

AF =27y, R— 7y R, (3.1
where 7 and ys are the line tension (edge tension) and the surface tension, respectively [25]. This
model describes the free energy change with the change of the pore radius as the balance between the
edge energy of the pore and the surface energy of the bilayer. From this model, the pore spontaneously

closes when the pore radius is below Rc = y:/ys, which is defined as the critical pore radius. However,

when the pore exceeds Rc, the pore spontaneously grows, resulting in the rupture of the bilayer. Thus,
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the line tension yz, which governs Rc, is an important property of the bilayer and is useful for discussing
the bilayer-edge-related phenomena, that is, rupture.

The estimations of the line tension have been conducted by experimental [65—67], theoretical [68],
and computational studies [29,51,69]. In these experiments, researchers have estimated the line tension
from the pore closure dynamics in giant bilayer vesicles under stresses. These studies reported that the
line tension depends on not only the lipid composition of the bilayer but also the purity of the lipids
[66]. In computational studies, MD simulations of planar bilayer systems with a pore [29] or bilayer
ribbon system [69] have been performed. These studies clarified that the molecular details of the
bilayer edge structure, and the line tensions estimated in MD simulations (10—50 pN) are in qualitative
agreement with those obtained from experiments (5-30 pN). In these MD simulation studies, pure
phospholipid bilayers or mixture bilayers of phospholipids, which have different lengths of the
hydrophobic tails [70,71], were used.

Actual cell membranes are intricately composed of various molecules. Among the various
molecules in the cell membranes, cholesterol is especially known to be of importance. Cholesterol is
abundant in mammalian cell membranes and the cholesterol concentration in phospholipid bilayers
strongly depends on the type of the cell [1]. The cholesterol concentration is closely related with
various properties of the bilayer. In particular, experimental studies reported that the inclusion of
cholesterol into the bilayer altered the line tension of the bilayer [65,66]. Nevertheless, the details of
the edge structure of cholesterol-containing bilayers at the molecular level and the relationship between
the cholesterol around the pore edge and the line tension are still unclear. Furthermore, the edge
structures at the molecular level are potentially related to the translocations of phospholipids between
the inner and the outer leaflet of the bilayer [72] and the permeations of ions and peptides trapped on
the bilayer surface [73,74]. Thus, the molecular-level structure of the pore edge in the cholesterol-
containing bilayer, which is a more realistic model for biological cell membranes than a pure bilayer,

is a meaningful research target.
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In this chapter, to understand the cholesterol effects on the pore dynamics, MD simulations of
phospholipid/cholesterol bilayers with a pore under constant bilayer area conditions are performed and
the line tension of the cholesterol-containing bilayer is estimated. The line tension is calculated from
the free energy model of a bilayer with a pore proposed by Tolpekina and co-workers [29]. In their
model, the line tension can be estimated from the critical condition that a pore spontaneously closes.
Additionally, the potential relationships between the line tension of the bilayers and the efficiency of

the pore-mediated molecular transport into cells are presented.

3.2. METHOD

3.2.1. Estimation of Line Tension

The line tension of the pore edge is estimated from MD simulations. For this purpose, the method
presented by Tolpekina et al. [29] is applied to the DPPC/cholesterol bilayer systems. In this method,
to include the finite constant area in MD simulations, the free energy of the bilayer with a pore can be

determined by:

K )
F=2;zyLR+j(gAAO—7zR2) , (3.2)

0

where Ky is the area compressibility modulus [29]. As defined in the Chapter 2, g4 is the areal strain
of the simulation box area calculated by 4|/40 — 1. Ao is the simulation box area without a pore at
equilibrium. Here, we consider the equation dF/dR = 0, whose roots are the stable or quasi-stable pore
radii. When the discriminant of the cubic equation is negative, the equation has no positive root, which

means that a pore will spontaneously close. The critical condition is given by:

2 1
3 3
e =3 |2, (3.3)
, 2K, ) \ 4,

where &, is the critical pore closure areal strain where a pore spontaneously closes. Equation (3.3) is

rewritten as:
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y, = 2KA(8‘3’CA° Jz . (3.4)
2T

K4 and 4o can be obtained from MD simulation of the bilayers without a pore at equilibrium. The pore

closure areal strain &., where a pore is closed, is estimated by equilibrating MD simulations of

stretched bilayers with a pore under various areal strain conditions. From these three parameters

obtained in MD simulations and Eq. (3.4), the line tension can be estimated.

Bilayers with a pore are prepared through equibiaxial stretching simulations of intact bilayers.
Stretch-induced pore formation was proposed to be more suitable for the purpose here, the
investigation of pore dynamics under mechanical stresses, than several other protocols used for making
a pore employed in previous studies, such as self-aggregation [75] and manual construction [29,69].
However, it is noted that the pore structures are very similar despite the different protocols used for

the pore formation [76]. Thus, the selection of the protocols is expected to be a minor problem unless

the pore formation process itself is discussed.

3.2.2. Initial Systems

One pure DPPC bilayer system and two DPPC/cholesterol bilayer systems are used, as the force
field and simulation protocols of DPPC bilayers have been well studied in MD simulations. These
bilayers are composed of 200 DPPC and cholesterol molecules so that the cholesterol concentrations
are 0, 20, and 40 mol%, respectively. These bilayers are set in the center of a square cylinder simulation
box with periodic boundary conditions. The systems are solvated in at least 8284 water molecules.
DPPC, cholesterol, and water molecules are represented by the united atom force fields for DPPC [36],
for cholesterol [37], and the simple point charge model for water [38]. The initial configurations of
bilayers are taken from the previous study [77]. The systems were equilibrated at a temperature of 323
K and a pressure of 0.1 MPa for at least 100 ns in the previous study [77]. The trajectories during the

latter 50 ns are used for the analysis of the bilayers at equilibrium. Details of MD simulation parameters
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are summarized in the supplementary material of the previous study [77] and the same parameters are

used in the current investigation.

3.2.3. MD Simulation Outline

To obtain the line tension . from Eq. (3.4), the pore closure areal strain &,, where a pore
spontaneously closes, is estimated from the results of a series of MD simulations of bilayers with a
pore. Herein, MD simulations are divided into three stages: stretching, compressing, and equilibrating
stages (Fig. 3.1). The first stage is to induce the pore formation, the second is to modulate the applied
areal strain of the system with a pore, and the third is to examine whether the pore closes under the
constant areal strain conditions. Through these stages, MD simulations of the bilayers are performed
with a thermostat [78] and barostat (Berendsen et al., 1984) to maintain the temperatures of DPPC,
cholesterol, and water molecules at 323 K and the pressure in the z-direction (normal to the bilayer) at
0.1 MPa. For the x- and y-directions (bilayer plane), the box lengths are controlled to apply an arbitrary
areal strain on the bilayer. The box lengths are elongated or shortened at a constant rate ¢, and,
simultaneously, the atom positions are proportionally scaled to follow the changes of the box lengths
[32]. c is set to a positive value for stretching, negative for compressing, and zero for maintaining the
bilayer area at a constant level.

In the stretching stage, the bilayer systems without a pore at equilibrium, taken from the previous
study [77], are used for the initial configurations of this stage. Using these systems, MD simulations
with ¢ = 1.0 m/s are performed until a pore is formed. It should be noted that, to induce the pore
formation in conventional MD simulations, the bilayers have to be excessively stretched. This is
believed to be because there is an energetic barrier between the bilayer with and without a pore [79],
which impedes the transition of the bilayer state from “without a pore” to “with a pore”. In the MD
simulations here, the pore formation occurs in the range of the areal strain from about 1 to 2. The range

is considerably larger than the pore closure areal strain &,., where a pore spontaneously closes (< 0.5).
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In the compressing stage, the stretched bilayer with a pore just after the pore formation in the
stretching stage is used for the initial configuration of this stage. To relax the excessive areal strain on
the bilayer, MD simulations with ¢ = —1.0 m/s are performed until the areal strain reaches 0. As both
the stretching and compressing stages occur at non-equilibrium, the bilayer system in the two stages
has not yet reached a stable state nor a quasi-stable state.

In the equilibrating stage, MD simulations with ¢ = 0 m/s are performed for 100 ns. The initial
configuration of this stage is obtained from the trajectories in the compressing stage, where the box
area is set to satisfy areal strains g4 =0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. After the 100-ns simulation in the
equilibrating stage, the existence of the pore is examined by visual inspection and the minimum areal
strain where a pore remains in the bilayer and the maximum areal strain where a pore is no longer
observed are obtained. The &y, where a pore spontaneously closes, is expected to be in the range
between the two areal strains. Accordingly, the upper and lower limits of the line tension are estimated

by Eq (3.4).

25



>

cC Step 2:
'© | i | Compre:ssmg
o Step 1: : i T
= Stretching /1 \ (d) Step 3: Equilibrating
< | |
(b)&= |
Step O:
Pre-equilibrating
s /A
0 [
) >

Time

FIGURE 3.1 Schematic of the outline of MD simulations of the pore formation and closure. Panels
(a—i) are representative snapshots of the pure DPPC bilayer during stretching, compressing, and

equilibrating stages. White regions in panels (c—/) are pores.

3.2.4. Analysis
In the bilayer without a pore, the bilayer area is considered to be equal to the simulation box area
A. The area compressibility modulus of the bilayer K4 is estimated from the fluctuations of A4 at

equilibrium by using:

Ak, T
K, = 005 : (3.5)

where o is the variance of 4, ks is the Boltzmann constant, and T is the temperature of the system.
For the estimation of K4, the trajectories in the pre-equilibrating stage obtained from the previous study
[77] are used.

As there are large fluctuations of the geometric structure of the pore in MD simulations, it is
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difficult to clearly distinguish the pore edge region of the bilayer. Herein, the region of the pore edge
is defined by using the distance from the bilayer center along the z axis (normal to the bilayer). The
bilayer center is defined as the center of mass of the phosphorous atoms in DPPC molecules and the
pore edge is defined as the region within which the distance is lower than 0.8 nm (region between the
two dashed white lines in Fig. 3.4). A DPPC molecule, whose phosphorous atom is in the pore edge
region, is considered to be in the pore edge region. As with the DPPC molecule, a cholesterol molecule

is distinguished by the position of the hydrogen atom in the hydroxyl group.

3.3. RESULTS

3.3.1. Pore Formation and Closure

In the stretching stage, owing to the stretching of the bilayer, the bilayer area increases and a pore
is formed when the areal strain exceeds a critical value (Fig. 3.1 (a—c)). The pore rapidly grows to a
constant area, which depends on the applied areal strain (Fig. 3.1 (¢)). After the pore formation, the
simulation proceeds to the compressing stage. In the compressing stage, owing to the compression, the
area of the pore decreases; however, the pore is not closed only when the areal strain &4 reaches 0.0
(Fig. 3.1 (c—)). In the equilibrating stage, under lower areal strains, the area of the pore decreases
gradually during the 100-ns equilibrium simulations, which resulted in the pore closure (Fig. 3.1 ()
and (7)). However, under higher areal strains, the pore closure does not occur at least within the current
simulation time (Fig. 3.1 (d), (e), (g), and (h)). Figure 3.2 shows the snapshots of DPPC and
DPPC/cholesterol bilayers taken from the end of the equilibrating stage. In the pure DPPC bilayer, the
pore closure occurs with the areal strains g4 < 0.1, and does not occur for g4 > 0.2 (upper row in Fig.
3.2). In the DPPC bilayer with 20 and 40 mol% cholesterol, the pore closure occurs for g4 < 0.2 and
0.3, and does not for g4 > 0.3 and 0.4, respectively (middle and lower rows in Fig. 3.2). These indicate
that g,.s for the bilayers are expected to be in the range of 0.1-0.2, 0.2—0.3, and 0.3-0.4, respectively,

and &, increases with the increase of the cholesterol concentration (Fig. 3.3 A4).
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0 mol%

20 mol%

40 mol%

FIGURE 3.2 Representative snapshots of the bilayers containing cholesterol molecules at O (upper
low), 20 (middle), and 40 mol% (lower) after stretching, compressing, and equilibrating MD
simulations. The column of the panels corresponds to the applied areal strain. DPPC head groups
are shown in red, DPPC tails in orange, and cholesterol molecules in light green. Water molecules
are not shown for clarity. White region at the center of the panels is a pore. The black bar on the

bottom right corner corresponds to 3 nm.
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FIGURE 3.3 Relationships between cholesterol concentration and critical areal strain (A4), line
tension (B), or cholesterol concentration in the pore edge region (C). The dashed lines show the
linearly interpolated lines between the points, and the region, where the real critical areal strain and
the line tension are expected to be found, are shown in gray. Black bars in the panels 4 and B
represent the estimated range within which are the critical areal strain or the line tension. Error bars

in the panel C represent standard deviation.

29



3.3.2. Estimation of Line Tension

From the trajectory of the bilayer at equilibrium taken from the previous study [77], the averaged
system box areas on the x-y plain 4o are 65.4, 48.7, and 39.2 nm? for the bilayers containing cholesterol
at 0, 20, and 40 mol%, respectively. The corresponding areas per molecule are 0.65, 0.49, and 0.39
nm?, respectively, which are in good agreement with those obtained from MD simulations reported by
other groups [42,54]. Additionally, the variances of 4, O'j , are 0.95, 0.54, and 0.23 nm* for the
different cholesterol concentration bilayers, respectively. From Ao, o, and Eq. (3.5), the area
compressibility modulus K4 can be calculated as 306, 402, and 760 mN/m, respectively. K4 increases
with the increase of the cholesterol concentration, which is in qualitative agreement with that observed
from experiments [8,80]. Using these parameters Ao, K4, and &, in Fig. 3.3 A4, the line tension . can
be calculated by Eq. (3.4) and the relationships between the line tension and the cholesterol rate are
shown in Fig. 3.3 B. The upper and lower limits of the line tensions of the bilayers containing
cholesterol at 0, 20, and 40 mol% are estimated to be 17.0-48.2, 54.5-100, and 170-261 pN,
respectively. The line tension of the pure DPPC bilayer is in agreement with those estimated by
different methods in previous MD simulation studies (27.5-50 pN) [51,69,75]. The line tension
increases with the increase of the cholesterol concentration, which qualitatively agrees with those for

similar phospholipid bilayers reported from experiments [65,66].

3.3.3. Pore Edge Structure

Figure 3.4 shows the representative snapshots of the bilayers with stable pores, whose radii are
similar. From a visual inspection, the pore edges are lined with a considerable number of DPPC
molecules and several cholesterol molecules. The number of cholesterol molecules in the pore edge
region increases with the increase of the cholesterol concentration in the whole system. Figure 3.3 C

shows the relationship between the cholesterol concentration in the pore edge region and that in the
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whole system. In the bilayer with 20 mol% cholesterol, the edge cholesterol concentration is slightly
lower than the cholesterol concentration of the whole system. However, in the bilayer with 40 mol%

cholesterol, the edge cholesterol concentration is slightly higher.

FIGURE3.4 Representative snapshots of the pore structures in the bilayer containing cholesterol at
0 (4), 20 (B), and 40 mol% (C). Phosphorus atoms of DPPC molecules are shown as tan beads,
hydrogen atoms of cholesterol molecules as white beads, and water molecules are blue. Dashed lines
show the boundary between the pore edge region and the others. Phosphorous atoms and hydrogen

atoms of cholesterol molecules in the pore edge region are enlarged for clarity.

3.4. DISCUSSION

3.4.1. Cholesterol Effects on Line Tension

From the simulation here, the line tension increases with the increase of the cholesterol rate (Fig.
3.3 B). First, the results here are compared with the experimental data. However, experimental data of
the line tension in DPPC bilayers are non-existent to my knowledge, whereas DPPC bilayers are
commonly used in MD simulation studies. Thus, experimental data for similar phospholipids are used
to evaluate the cholesterol effects obtained in the MD simulation here. In experimental studies, similar
phospholipid molecules, for example, stearoyloleoylphosphatidylcholine (SOPC) or
dioleoylphosphatidylcholine (DOPC), are used and the line tensions of pure DOPC bilayers are in the
range of 3.9-27.7 pN (summarized by Portet and Dimova [67]). Zhelev and Needham reported that
the line tension of pure SOPC bilayers is increased about 3-fold by the inclusion of cholesterol at 50

mol% [65]. Karatekin and co-workers also reported that the line tension of pure DOPC bilayers is
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increased about 3-fold by the inclusion of cholesterol at 30 mol% [66]. In the MD simulations here,
the line tension of the pure DPPC bilayer is increased about 3- to 15-fold by the inclusion of cholesterol
at 40 mol% (Fig. 3.3 B). Cholesterol effects on the line tension of the DPPC bilayer in the MD
simulation here are large compared to those observed for similar phospholipid bilayers investigated
experimentally. This difference can be considered to be acceptable because of the large variations in
experimental measurements [67] and the underlying effects of the types of phospholipids, which are
difficult to state from the available data. This paper is, to the best of my knowledge, the first estimation
of the line tension in the cholesterol-containing bilayer on the molecular scale and succeeds in
determining the relationship between the cholesterol concentration and the line tension.

The line tension of the pore edge, which is an energetic loss per edge length, partially arises from
the bending energy of the phospholipid monolayer of the bilayer around the pore edge [51]. Although
estimation of the bending modulus at the nanometer edge is a challenging problem [81], the increase
of the cholesterol concentration around the pore edge might increase the bending modulus of the pore
edge and the line tension [82]. According to previous experimental [83] and simulation studies [9],
cholesterol molecules rectify the disordered orientations of hydrophobic tails of co-existing
phospholipid molecules, which is one of the causes for the high bending moduli of cholesterol-
containing bilayers. In the MD simulations here, the cholesterol molecules are distributed around the
pore edge (Fig. 3.4) and the cholesterol concentration around the pore edge increases with the increase
of the overall cholesterol concentration (Fig. 3.3 C). Thus, the increase of the cholesterol concentration

around the pore edge might increase the bending modulus of the pore edge and the line tension.

3.4.2. Line Tension and Physical Methods for Drug Delivery
It is known that the cholesterol concentration varies depending strongly on the type of cell [1].
With the increase of the cholesterol concentration, the line tension can increase about 3—15 fold in the

MD simulation (Fig. 3.3 B). From Lister’s model for pore dynamics [25], an increase of the line tension
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means an increase of the critical pore radius Rc (= 72/ys). It is known that the tension of the bilayer also
depends on the cholesterol concentration. For example, it is reported that the tension of a phospholipid
bilayer containing cholesterol at 40 mol% is about 2—3 times larger than that of a pure bilayer [84]. In
this case, bilayers containing cholesterol at 40 mol% can contain 1-7.5 times larger pores. Additionally,
the pore closure process with the higher line tension is faster owing to the higher energetic loss to
maintain the edge [66]. In the physical methods of molecular transport through the pore, for example,
sonoporation, these significant differences of the line tension and the critical pore radius Rc might limit
the size and the amount of transporting molecules without rupture of the bilayer. In fact, the
transduction efficiencies by sonoporation treatment are different depending on the cell lines [85].
Although the transduction efficiency is sensitively affected by a huge number of potential factors [62],
the line tension, which depends strongly on the membrane composition, especially cholesterol
concentration, might be the underlying factor and will be useful for explaining the variation of the
transduction efficiencies in sonoporation. However, it should be noted that real biological membranes
are consisted of various lipids, mostly of unsaturated lipids. The bending rigidity of mono-unsaturated
lipid bilayer, e.g. SOPC [82], increases with the cholesterol concentration, as of saturated phospholipid

bilayer, e.g. dimyristoylphosphatidylcholine [86].

3.5. SUMMARY

To understand the cholesterol effects on the line tension of the pore edge and the molecular details
of the pore edge structure, MD simulations of DPPC/cholesterol bilayers with a pore were performed.
The pores in the cholesterol-containing bilayers are lined with not only the DPPC molecules but also
the cholesterol molecules. The cholesterol concentration in the pore edge region is almost the same as
the cholesterol concentration in the whole system. Based on the free energy model of the bilayer with
a pore, the line tension of the pore edge is estimated to considerably increase with the increase of the

cholesterol concentration. The increasing tendency is in agreement with that observed from

33



experiments. The increase of the line tension might arise from the increase of the bending rigidity of
the bilayer around the pore edge, which is induced by the cholesterol molecules distributed around the
pore edge. Additionally, the considerable difference of the line tension, depending on the bilayer
compositions, might be useful to explain the large variations of the transduction efficiency observed

with sonoporation treatment.
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CHAPTER 4.

EFFECTS OF STRETCHING SPEED ON PORE
FORMATION IN PHOSPHOLIPID/CHOLESTEROL
BILAYER UNDER MECHANICAL STRESSES

4.1. INTRODUCTION

To understand the details of mechanical rupture, many biomechanical experiments have been
conducted on biological cell membranes [87-92] and model membranes consisting of phospholipid
bilayers [8,22,23,53]. Under static or at least quasistatic stresses, the rupture tension of biological
membranes varies in the range from 1 to 30 mN/m and the rupture areal strain in the range from 0.01
to 0.05 depending on the lipid composition. In addition to the lipid composition, the time history of
the applied stress or strain affects the rupture stress or strain. Evans and coworkers [23] performed
micropipette aspiration experiments at various loading rates (0.01-100 mN/m/s) and showed that the
rupture tension of vesicles increased with increasing loading rate. The rupture tension for a pure SOPC
vesicle, for example, increased 2-fold when the loading rate increased by 3 orders of magnitude [23].
Li and coworkers [89,93] performed impulse-like stretching experiments on RBCs using a laser-
induced cavitation. In their experiments [89,93], the RBCs were rapidly stretched within tens of
microseconds and could withstand much higher areal strains of about 0.3, which is about one order of
magnitude higher than those in quasistatic stretching experiments. These experiments indicate that
membrane rupture is a time-dependent phenomenon and information on the rate, at which a membrane
is stressed, is essential to understanding membrane rupture. However, the molecular details of the
initiation of the rupture, pore formation, are still unclear.

Many researchers, including our group, have performed MD simulations of the pore formation in
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the bilayer under various conditions [29,31,32,77,94,95]. Our group has performed MD simulations
of stretched phospholipid bilayers and investigated the effects of stretching speed [32] and cholesterol
concentration [77] on pore formation. For pure phospholipid bilayers, the critical areal strain, where a
pore is formed, increases with increasing stretching speed, while that under quasistatic stretching also
increases with the increasing cholesterol concentration up to 40 mol%. In the simulations, a
phospholipid bilayer containing cholesterol at 40 mol% under quasistatic stretching is the toughest
composition and forms an interdigitated gel-phase-like structure, in which phospholipid and
cholesterol molecules in one leaflet of the bilayer penetrate into the opposite leaflet and become
ordered, under stretching. The stretch-induced interdigitation might retard pore formation and enhance
the toughness of the phospholipid/cholesterol bilayer [77]. Although stretch-induced interdigitation
has been also observed in some coarse-grained simulations of pure bilayers under tension [96,97], the
details of that system are still unknown.

Mammalian cell membranes are usually rich in cholesterol molecules within the phospholipid
bilayer [1]. The inclusion of cholesterol in the phospholipid bilayer alters various bilayer
characteristics. Thus, consideration of the effects of cholesterol at a molecular level is essential to
understanding pore formation and subsequent bilayer rupture. Additionally, whereas it has been shown
that the stretching speed markedly affects pore formation in a pure phospholipid bilayer, the
mechanisms behind the stretching speed effects seen in cholesterol-containing bilayer are still
unknown at the molecular level. In particular, the dependence of the stretch-induced interdigitation on
the stretching speed must be clarified to understand pore formation under unsteady stretching
conditions.

In this chapter, a series of molecular dynamics simulations of a DPPC bilayer comprising
cholesterol molecules at 40 mol% and a pure DPPC bilayer for comparison under stretching at various
stretching speeds is performed. The effects of stretching speed on pore formation in the

DPPC/cholesterol bilayer are evaluated by analyzing the pore formation patterns, molecular
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orientations under stretching, critical areal strain where the pore is formed, bilayer thickness, and phase

transition to interdigitated gel-like phase under stretching.

4.2. METHODS

4.2.1. Bilayer Systems

A planar DPPC/cholesterol bilayer system with a cholesterol concentration of 40 mol% and a pure
DPPC bilayer system for comparison were employed. For fair comparison of the stretching speed and
to minimize the effects of system size differences between the two systems on the pore formation [29],
the total number of DPPC and cholesterol molecules in the DPPC/cholesterol bilayer was carefully set
to minimize the difference in bilayer areas between the pure DPPC and DPPC/cholesterol bilayers at
equilibrium states at 323 K and 1 bar. In this study, the pure DPPC and DPPC/cholesterol bilayers were
respectively composed of 128 DPPC and 16,483 water molecules, and 128 DPPC, 86 cholesterol, and
13,842 water molecules, in a square cylinder simulation box with periodic boundary conditions. Here,
the number of water molecules was set to prevent the interactions between periodic images of bilayer
in the z-direction during stretching [32]. DPPC and cholesterol molecules were represented by the
united atom force fields for DPPC [36], and cholesterol [37] and water molecules by a simple point
charge model [38]. For equilibration, constant temperature (7) and pressure (P) MD simulations were
performed for more than 100 ns at 323 K and 1 bar. The areas of the pure DPPC and DPPC/cholesterol
bilayers in the equilibrium states were 41.98 and 41.84 nm?, respectively, which were essentially as
expected. Several structural properties of the pure DPPC and DPPC/cholesterol bilayers in equilibrium
states were in agreement with those obtained experimentally [10,39,83,98] and in other simulations
[54]. The details of the construction of the systems, MD simulation parameters for the equilibrium
simulation, and the structural properties of the bilayers in equilibrium states are summarized in the

Appendix A2.
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4.2.2. Unsteady Stretching Simulation

The following method [32] was employed for unsteady stretching (US) of the bilayer, involving
proportional and temporal scaling of both the atom positions and system box lengths, implemented in
GROMACS codes as the deform option. Briefly, the box lengths /; and coordinates of all atoms » were

proportionally scaled per time step At from /; to gd; and r to g with

c
p=lr At (4.1)

1

(i = x, y, z), where c is the stretching speed, ¢ set to eight values in the range from 0.025 to 30 m/s.
Although the stretching speeds here were specified at much higher values than those used during
micropipette experiments [23], these values were chosen because of computational limitations. For
example, it took about 3,800 CPU hours on a Linux cluster with 2.21 GHz Opteron processors to
complete a simulation for a DPPC/cholesterol bilayer with ¢ = 0.05 m/s. The same value of x in the x
and y directions were used to express the equibiaxial stretching. However, to maintain the pressure in

the z direction at a constant value, Berendsen’s scaling factor [49],

p= _%{E) - P(1)} 4.2)

p

where 7, = 0.5 ps, f=4.5 x 107 bar’!, and Py = 1 bar, was applied for scaling in the z direction.
During stretching, each temperature for DPPC, cholesterol, and water was individually kept
constant at 323 K using the velocity rescaling method [78] with a 0.2-ps coupling constant. The
simulation parameters of the US simulation were essentially the same as those for the equilibrium
simulations (see Appendix A2) except for the update frequency of the neighbor list (every 10 steps for
¢ < 1.0 m/s and every step for ¢ > 1.0 m/s). To validate the parameters in the US simulations, the same
simulations were performed using different parameters: calculation precision (single or double
precision), coupling constant 7, for Berendsen’s scaling factor (0.3—1.0 ps), or number of water
molecules (13,842 or 26,183 water molecules). The essential pore formation process was independent

of the parameters mentioned above. Because of the statistical nature of pore formation [95], several
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replicates of the US simulations, starting from different initial configurations, were performed to obtain
sample averages. The number of the replicates for the stretching speed conditions is summarized in

Table 4.1.

TABLE 4.1 Summary of parameters for the US simulations

Label Replicates  Stretching speed [m/s] & mean £+ S.D. Multi-pore rate
DC0.025 3 0.025 1.43 +£0.04 0.00
DCO0.05 5 0.05 1.57+0.12 0.00
DCO0.30 6 0.30 1.66 £0.18 0.00
DC1.00 20 1.00 1.57+£0.18 0.20
DC3.00 20 3.00 1.56 £0.23 0.65
DC10.0 20 10.0 1.67+0.22 0.90
DC30.0 20 30.0 1.87+£0.33 1.00
PD0.025 3 0.025 0.91 +0.04 0.00
PDO0.05 5 0.05 0.88 +£0.08 0.00
PD0.30 6 0.30 1.05+0.10 0.50
PD1.00 20 1.00 1.14+0.12 0.55
PD3.00 20 3.00 1.24 +£0.15 0.85
PD10.0 20 10.0 1.37+£0.15 0.95
PD30.0 20 30.0 1.48+0.14 1.00

4.2.3. Quasistatic Stretching Simulation

For comparison with the US simulations, a series of constant NP.4,7 MD (quasistatic stretching,
QS) simulations of the bilayers [32,48,77] were performed at constant temperature 7= 323 K, pressure
in the z direction P: = 1 bar, and various constant bilayer areas 4| that were set to satisfy areal strains
up to 1.40, as explained below. The initial configurations were extracted from the trajectories of the
US simulations with ¢ = 0.05 m/s and performed the simulations using these systems for at least 100
ns so that the systems were equilibrated. The simulations were performed starting from three initial

configurations, around the critical areal strains where a pore is formed. The basic QS simulation
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protocols were same to that of the stretching simulation in the Chapter 2.

4.2.4. Analysis

The lengths of the simulation box became /, /,, /-, and the bilayer thickness /; upon stretching. The
[, was defined as the distance between phosphorous atoms of DPPC molecules in the upper and lower
layers. The bilayer area in the system 4| was defined as 4 = I x [, = [* for I = I, in equibiaxial
stretching. The areal strain of the bilayer &4 was also defined as 1 = (Ii/lx0)> — 1, where Iy is the average
value of /, during the latter 50 ns of the equilibrium simulation. Ordering in the hydrophobic tails of
lipid molecules in the US simulations was evaluated by the averaged instantaneous order parameter

Sen 199
A l 4 I 1 &1
S, =8 = —>(3c082@ —1)], 43
w="755- Z[NZZ( ,)j (43)

where 0; is the angle between the axis of the ith molecular axis and bilayer normal (the z axis) and N
is the number of carbons in the lipid chains. In this study, the number of carbons in sn-2 chains was
used (N = 14). For the QS simulation, S «p Wwas averaged over time, which is same to S, defined
by the Eq. (2.1) in the Chapter 2. Furthermore, to analyze the orientations of cholesterol molecules
during both the stretching simulations, the cholesterol tilt angle & was defined as the instantaneous
angle between the vector linking the C5 and C21 carbon atoms in the cholesterol ring structure and the
bilayer normal (the z axis). The C5 and C21 atoms are hydrocarbon atoms that both belong to the
steroid ring of the cholesterol molecules and are bonded to the oxygen atom of the hydroxyl group and
the hydrocarbon chain, respectively.

In the previous QS simulation in the Chapter 2 ([77]), the stretch-induced transition to the
interdigitated gel-phase-like structure of the DPPC bilayer containing cholesterol at 40 mol% is likely

to be completed around &4 = 1.00 through maximization of —S.,. However, such a transition is not

observed in pure DPPC bilayers. The DPPC/cholesterol bilayer under g4 = 1.00 was assumed to form
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a standard interdigitated gel-like bilayer, and the pure DPPC bilayer was assumed not to form an
interdigitated gel-like bilayer structure under stretching, at least compared with the DPPC/cholesterol

bilayer. Based on these assumptions, an evaluation index for the transition to the interdigitated gel-like

phase Ry was defined as R,(c) = ($5 ()~ 87 (o)) (82" (gs)- 87 (0)). $i(e) and 877(0)
are the order parameter SA'CD of, respectively, the DPPC/cholesterol and pure DPPC bilayers, where
the bilayer thicknesses becomes congruent with that for the DPPC/cholesterol bilayer under &4 = 1.00.
R will take on a value close to 1 when the bilayer forms an interdigitated gel-phase-like structure and
will be around 0 when the bilayer dose not, as is the case for the pure DPPC bilayer. Note that the
overlap length of the lipid tails that is a measure of the lipid interdigitation shows the similar tendency

as Ry; under stretching simulations (see Fig. A2.2). Therefore, R.; was used as an evaluation index for

the transition to the interdigitated gel-like phase.

The first step in the pore formation process is the creation of a chain of water molecules penetrating
the bilayer [31,100]. The areal strain, where the water chain is formed, was defined as the critical areal
strain & in the US simulations. Because the applied areal strains were discretized in the QS simulations,
not only the minimum value of areal strain with a pore, but also the maximum value without a pore in
the QS simulation, were analyzed. The actual & in the QS simulation was expected to be within this
range.

Data obtained in unsteady MD simulations, e.g., the critical areal strain, are quite-limited because
of the limitation of currently available computational power. To obtain quantitative implications from
the limited data, standard statistical analyses were used. The critical areal strains obtained in the US
simulations were influenced by two factors: the system composition and the stretching speed. To test
these effects, a two-way analysis of variance (ANOVA) on the critical areal strain was performed.
When the interaction effect was significant, the tests of the simple main effect and multiple comparison
(Ryan’s method) were performed as post-hoc procedures. The differences were considered to be

statistically significant at p < 0.05.
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4.3. RESULTS

4.3.1. Pore Formation Process

Representative snapshots of the stretched DPPC/cholesterol bilayers in the US and QS simulations
are shown in Fig 4.1. In all stretching simulations, the thickness of the bilayer decreases with stretching
(Fig. 4.1 a—c) and, when &4 exceeds a certain value, which corresponds to &, water molecules penetrate
into the central part of the bilayer (Fig. 4.1 d). The number of water molecules inside the bilayer
quickly increases and a water-filled pore penetrating the bilayer is formed (Fig. 4.1 e). From a visual
inspection of snapshots of the DPPC/cholesterol bilayers under stretching, three remarkable
characteristics of the pore formation process were found. (i) Just before pore formation, the molecular
orientations, e.g., the orientation direction of cholesterol molecules or the configurations of DPPC tails,
are more ordered in lower-speed stretching simulations (Fig. 4.1 ¢, f, and g). (ii) The pore formation
patterns vary depending on the stretching speed. Two patterns of pore formation in the simulation box
were observed in the US simulations; single pore and pores (multi-pore) formations (Fig. 4.1 4 and i).
In the multi-pore formation, small pores are temporarily formed in small area [32]. The probabilities,
where multi-pore formation was observed, are summarized in Table 4.1. The probability increases with
an increase in the stretching speed. (iii) The pore edges of the DPPC/cholesterol bilayer in the US
simulations with ¢ = 0.025 and 0.05 m/s and the QS simulations are not fully lined with the hydrophilic
head groups of lipid molecules, i.e., hydrophobic pore (Fig. 4.1 e), unlike a hydrophilic pore [76],
whose edge is not lined in pure phospholipid bilayers. For higher-speed stretching simulation, because
the structure of the pore changes rapidly with continuous stretching after pore formation in the system
with periodic boundary conditions, the pore edge structure is difficult to examine by visual inspection.
In the pure DPPC bilayer, there are several differences from the DPPC/cholesterol bilayer. In particular,
the pore structure is a typical hydrophilic pore, the molecular orientations are insensitive to the
stretching speed, and multi-pore formation occurs more frequently. The overall tendency in the pore

formation process in the pure DPPC bilayer is consistent with the results from the previous US

42



simulations for pure POPC bilayers [32].

FIGURE 4.1 Representative snapshots of DPPC/cholesterol bilayers before stretching (a), under
unsteady stretching with ¢ = 0.025 (b—e) and 3.00 m/s (f, 4, and i), and QS simulations (g). Panels
(a—g) are side cross-sectional views and (%) and (i) are top views. The areal strains of the bilayers
are 0.00 (a), 0.60 (), 1.00 (c, £, and g), 1.44 (d), 1.51 (e), and 2.40 (4 and i). The DPPC head groups
are shown in red, the DPPC tails in orange, the cholesterol molecules in green, the water molecules
in blue, the phosphorous atoms in the DPPC molecules as yellow spheres, and the hydrogen atoms
in the cholesterol molecules as white spheres. The water molecules in panels (/) and (i) are not

shown, for clarity. The white bars in panels (g) and (i) correspond to 3 nm.

4.3.2. Molecular Orientation

From a visual inspection of snapshots of the bilayers, the orientations of DPPC and cholesterol
molecules just before pore formation depend upon the stretching speed (Fig. 4.1 ¢, f, and g). As a

measure of the molecular orientations of DPPC and cholesterol molecules, the instantaneous order

~

parameter S, and the cholesterol tilt angle 6. were evaluated. Figure 4.2 shows the relationships

A

between — S, and the areal strain &4. In the QS simulation for the DPPC/cholesterol bilayer (Fig.

~

4.2 A), the change in — S, with an increase of &4 depends strongly on the range of &4, as reported

previously [77]. — SCD decreases in the range 0.00 < g4 < 0.30, recovers slightly in the range 0.30 <
&4 < 0.80 and relatively sharply in the range 0.80 < g4 < 1.00, peaks at &4 = 1.00, and decreases again
over the range 1.00 < g4 < &. In the US simulations with ¢ =0.025 and 0.05 m/s, a similar recovery in

A

—SCD occurs after exceeding &4 = 0.80, although in the US simulations with ¢ > 0.30 m/s, — S,
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decreases monotonically until pore formation is initiated (&4 < &). For the pure DPPC bilayer (Fig. 4.2

A ~

B), —S.p decreases monotonically in all US and QS simulations, and — S, for ¢ =0.025 and 0.05
m/s is similar to that in the QS simulations.

Figure 4.3 shows relationships between the tilt angle of cholesterol molecules, &, and the areal
strain. (The vertical axis in Fig. 4.3 is inverted for easy comparison with Fig. 4.2.) The tendency for 6.

A

is similar to the inverse for —S.,. However, 6. in the QS simulation peaks at & = 0.90, which is

A

slightly smaller than the peak position of —S,.
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FIGURE 4.2 Lipid chain order parameter — S, versus areal strain in the DPPC/cholesterol
bilayer (a) and the pure DPPC bilayer (b). The error bars represent standard deviation.
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FIGURE 4.3 Cholesterol tilt angle versus areal strain. The vertical axis is inverted for convenient

comparison with Fig. 4.2. The error bars represent standard deviation.

4.3.3. Critical Areal Strain

In the QS simulations for the DPPC/cholesterol bilayer, a pore is formed in all triplicate simulations
for 4= 1.40, whereas no pore is formed in any of the triplicate simulations for &4 = 1.20. This indicates
that the critical areal strain & in the QS simulation is expected to be in the range 1.20 to 1.40. Similar
to the DPPC/cholesterol bilayer, & in the QS simulation for the pure DPPC bilayer is expected to be
in the range 0.60 to 0.80.

Figure 4.4 shows the relationship between the critical areal strain & and the stretching speed ¢ in
the US simulations. The maximum areal strains, where a pore is not formed, and the minimum areal

strains, where a pore is formed, obtained in the QS simulations, are also shown in Fig. 4.4 for ¢ =0
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m/s. For the pure DPPC bilayer, & increases with increasing stretching speed, with a linear curve in
semilogarithmic plots. However, for the DPPC/cholesterol bilayer, & non-monotonically changes with
increasing stretching speed and tends to increase slightly. At all stretching speeds, & for the
DPPC/cholesterol bilayer is larger than that for the pure DPPC bilayer. The two-way ANOVA test
indicates that there is a significant interaction effect between the inclusion of cholesterol and the
stretching speed (p = 0.041). Tests of simple main effect were performed following the statistical
procedure described in the Method section above. The tests show that there are significant effects of
cholesterol at all stretching speeds (p < 0.003) and significant effects of the stretching speed in both
pure DPPC (p < 10**) and DPPC/cholesterol bilayers (p = 0.001). Finally, the multiple comparison
tests show that & in the pure DPPC bilayer tend to significantly increase with increasing stretching
speed. The pairs of & groups in which there is a significant difference are summarized in the Appendix
A2.4. In the DPPC/cholesterol bilayer, & at ¢ =30.0 m/s is significantly larger than those at ¢ = 0.025,
0.05, 1.0, or 3.0 m/s (p =2.3 x 10, 1.0 x 10, 0.0017, and 2.0 x 10, respectively). These statistical
analyses clearly show that the effects of stretching speed depend on the range of the stretching speed
in the DPPC/cholesterol bilayer, whereas those in the pure DPPC bilayer are monotonic. Additionally,
the inclusion of cholesterol increases &, regardless of the stretching speed in the range used here. The
increasing trend in & with increasing stretching speed and the inclusion of cholesterol are in qualitative
agreement with previous simulations [32,77] and experimental studies [8,23]. However, it must be
noted that the & value obtained here is about two orders of magnitude larger than that obtained from

experiments. This discrepancy will be addressed in the Discussion section.
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are shown here at ¢ = 0.00 m/s. The error bars represent standard deviation.

4.3.4. Bilayer Thickness

The thickness of the bilayer markedly decreases with stretching (Fig. 4.1 a—d). Figure 4.5 shows
the representative relationship between the bilayer thickness and the areal strain. For both the pure
DPPC and DPPC/cholesterol bilayers, /; decreases with increasing &4 and there is no difference
between the simulations at different stretching speeds before pore formation (g4 < &). After pore
formation (&4 < &), [; for the DPPC/cholesterol bilayer at ¢ < 3.0 m/s recovers slightly, but /; continues
to decrease in the other simulations. For the pure DPPC bilayer, the recovery of /; is observed at ¢ <

10.0 m/s and the recovered amount is larger than that for the DPPC/cholesterol bilayer. Under the same
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areal strain, /; for the DPPC/cholesterol bilayer without a pore is larger than that for the pure DPPC

bilayer.
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FIGURE 4.5 Representative results of bilayer thickness versus areal strain in the DPPC/cholesterol
bilayer (a) and the pure DPPC bilayer ().

4.3.5. Stretch-Induced Transition to Interdigitated Gel-like Phase
The relationships between R;; and the stretching speed are shown in Fig. 4.6. With an increase in
stretching speed, Rz in the DPPC/cholesterol bilayer decreases under relatively low-speed stretching

(¢ £0.30 m/s) and, in contrast, does not markedly change under the relatively high-speed stretching (¢

~

> 0.30 m/s). This trend in R;; occurs because the difference in the order parameter S, between the

DPPC/cholesterol and pure DPPC bilayers, where their thicknesses are the same as that for the

interdigitated gel-like bilayer, becomes smaller with an increase in stretching speed (inset in Fig. 4.6).
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FIGURE 4.6 The relationship between the transition index R;; and the stretching speed. The inset
shows the relationship between —.§,; and the stretching speed, which is used to calculate R;;. The

error bars represent standard deviation.

4.4. DISCUSSION

4.4.1. Interaction Effects of Cholesterol and Stretching Speed

The rupture of the bilayer is a time-dependent phenomenon. Pipette aspiration experiments
performed by Evans and coworkers [23] showed that an increase in loading rate induced an increase
in rupture tension. They predicted that, at high loading rate, the pore formation during the rupture
process became the rate-limiting step, which retards the rupture, resulting in an increase in the rupture
tension. Assuming a linear relation between tension and strain, the simulation results here agree

qualitatively with the experimental results. A significant increase in critical areal strain in the
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simulation here is also confirmed (Fig. 4.4), in spite of the large difference in the range of stretching
speed between experiments and simulations. Additionally, the effects of the stretching speed on the
critical areal strain in the DPPC/cholesterol bilayer depend upon the range of the stretching speed. The
critical areal strain increases at the higher range of stretching speed but does not increase at the lower
range. Under lower-speed stretching, the bilayer forms an interdigitated gel-phase-like structure (Fig.
4.1 c and g), followed by the ordering of DPPC and cholesterol molecules (Figs. 4.2 a and 4.3). With
an increase in stretching speed, the structural characteristics of the interdigitated gel-like phase
becomes ambiguous at the lower range and, in contrast, remain almost constant at the higher range
(Fig. 4.6). The results in the Chapter 2 suggested that stretch-induced interdigitation retarded the
initiation of the pore formation [77]. Therefore, with an increase in stretching speed at the lower range,
pore formation is retarded by its rate-limiting nature and is simultaneously precipitated by the collapse
of the interdigitated gel-like bilayer structure, which may be mutually canceled. However, in the higher
range, almost no interdigitation occurs and the pore formation is simply retarded by its rate-limiting
nature. In summary, the difference in stretching speed effects on the critical areal strain, which depends
on the range of the stretching speed, might arise from the dependency on the stretching speed of the

stretch-induced ordering with interdigitation.

4.4.2. Discrepancy of Critical Areal Strain between MD Simulation and
Experiments

The critical areal strains of planar lipid bilayers obtained in MD simulations range from ~1 to ~2

(Table 4.1). The values are about two orders of magnitude larger than those of RBCs and vesicles

obtained in micropipette aspiration experiments (0.01-0.05) [8]. Tolpekina and coworkers [29] showed

that the critical areal strain was inversely proportional to the cube root of the reference bilayer area

from the free energy model of the bilayer with a pore, considering the finite area in MD simulations.

The typical area of the RBCs [101] and the bilayer vesicle [8,23] in experiments ranges from ~100 to
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1000 pm? and that used here is ~42 nm?. The range of critical areal strains in the MD simulations here
becomes the order of 0.001-0.01 by the scaling, which is close to the range in the experiments.
However, it should be noted that the model presented by Tolpekina and coworkers does not consider
the effects of stretching speeds. It may be required to develop more sophisticated model including the
effects of the reference area and the stretching speed [23] on pore formation, although this is beyond

the scope of this study.

4.4.3. Pore Formation in Red Blood Cell Membrane

RBCs have a cholesterol-rich membrane, with a cholesterol concentration in the range 40 to 50
mol% [1], and they have been used as a model of biological cells in various biomechanical experiments
[88-90,92]. Li and coworkers [89,93] performed impulse-like stretching experiments for RBCs using
laser-induced cavitation. They reported that RBCs can withstand higher areal strain (~0.3) than those
obtained in micropipette experiments (~0.05). Additionally, leakage of preloaded calcein from RBCs
and RBC rupture does not occur immediately after impulsive stretching, but occurs up to tens of
seconds after stretching. They suggested that this time lag was caused by the formation of small pores,
which are smaller than calcein and are not detectable in optical measurements.

The previous simulation study in our research group showed that multi-pore formation is observed
in pure phospholipid bilayers under high-speed stretching [32]. In this study, under higher speed
stretching, the same multi-pore formations are observed in cholesterol-containing bilayers, whose
molecular composition is essentially closer to that of the RBC membrane than that of the pure bilayer.
The results here show that, although the inclusion of cholesterol affects several mechanical properties
of phospholipid bilayers, multi-pore formation is not predominantly limited by cholesterol and

provides the potential for multi-pore formation in biological cell membranes.
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4.5. CONCLUSION

MD simulation of DPPC/cholesterol and pure DPPC bilayers under unsteady stretching at various
stretching speeds provides three observations about the critical areal strain, where the pore is formed.
These observations are quantitatively confirmed by standard statistical procedures. (i) The effects of
stretching speed on the critical areal strain reported in experiments is also observed in the simulation
here despite the much higher stretching speed compared with those applied in the experiments. (ii) The
effects of stretching speed in the DPPC/cholesterol bilayer depend on the range of stretching speed
and may arise from the dependence of stretch-induced interdigitation on stretching speed. (ii1) The

effects of cholesterol are not eliminated even under conditions of extremely rapid stretching.
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CHAPTER 5. CONCLUSION

In this study, in order to understand molecular details of the cholesterol effects on the rupture of
phospholipid bilayers under mechanical stresses, a series of MD simulations of the stretched
phospholipid bilayers containing cholesterol molecules was performed. As the rupture process is
consisted of two stages, the pore formation in the intact bilayer and the subsequent pore expansion,
MD simulations were also divided into two stages. In the Chapter 2, MD simulations of the pore
formation in the stretched bilayers containing cholesterol at 0, 20, 40, and 60 mol% were performed.
Cholesterol effects on how large areal strain the bilayers can withstand, the pore formation process,
and the molecular orientational changes with stretching were evaluated. In the Chapter 3, the
equilibrating MD simulations of the cholesterol-containing bilayers starting from those with a pre-
formed pore were performed. From the mechanical condition for the spontaneous pore closure, the
cholesterol effects on the line tension of the pore edge, which is an energetic loss and prevents the
spontaneous expansion of the pore, were estimated. In the Chapter 4, to develop understanding the
cholesterol effects on the bilayer rupture, the interaction effects of cholesterol and the stretching speed
on the pore formation were investigated by MD simulations of the pure phospholipid and cholesterol-
containing bilayers under stretching with various stretching speed. In this chapter, the main results of
these chapters are briefly summarized and then the conclusion of this study is presented.

In the Chapter 2, to understand the cholesterol effects on the pore formation in the rupture process,
MD simulations of pore formation in stretched DPPC bilayers containing different concentrations of
cholesterol (0, 20, 40, and 60 mol%) were performed. With increasing cholesterol concentration, the
critical areal strain, where a pore is formed, initially increased, peaked at 40 mol%, and then decreased,
which qualitatively agrees with the available experimental data. For the bilayers containing cholesterol,
DPPC molecules became disordered at low areal strains, whereas the order slightly increased when

the areal strain exceeded a certain value depending on the cholesterol concentration. For 40 mol%
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cholesterol, the two monolayers in the bilayer interpenetrate under high areal strains, inducing an
increase of the order parameters and the peak positions of the radial distribution function compared
with their states at low areal strains, indicating the formation of an interdigitated gel-phase-like
structure. The transient increasing of the order of the molecular orientations may inhibit water
penetration into the bilayer, resulting in increased critical areal strain in the phospholipid/cholesterol
bilayers.

In the Chapter 3, to understand the cholesterol effects on the pore expansion in the rupture process,
MD simulations of DPPC bilayer with a pore containing cholesterol in different concentrations (0, 20,
and 40 mol%). The bilayers with a pore was obtained by using an equibiaxial stretching simulation.
The stretched bilayer with a pore was subsequently compressed and the pore spontaneously closed
when the applied areal strain of the bilayer was below a certain value. Using the pore closure areal
strain and a free energy model of a stretched bilayer with a pore, the upper and lower limits of the line
tensions for the bilayers containing cholesterol at 0, 20, and 40 mol% were estimated to be 17.0-48.2,
54.5-100, and 170-261 pN, respectively. The increasing tendency of the line tension qualitatively
agreed with that observed experimentally. The pores in the cholesterol-containing bilayers were lined
with several cholesterol molecules, which might increase the bending rigidity of the pore edge, and
resulted in the higher line tension of the cholesterol-containing bilayer. The higher line tension
promotes the closure of the pore and prevent the expansion in cholesterol-containing bilayers. The
considerable dependency of the line tension on the bilayer compositions might be useful to explain the
large variations of the transduction efficiency observed with sonoporation treatment.

In the Chapter 4, the effects of stretching speed on mechanical rupture of DPPC/cholesterol
bilayers were investigated using unsteady molecular dynamics simulations. The unsteady stretching
was modeled by proportional and temporal scaling of atom positions at stretching speeds from 0.025
to 30 m/s. The effects of the stretching speed on the critical areal strain was composed of two regimes.

At low speeds (< 1.0 m/s), the critical areal strain was insensitive to speed, whereas it significantly
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increaseed at higher speeds. Also, the strain was larger than that of a pure bilayer, regardless of the
stretching speeds, which qualitatively agreed with available experimental data. Transient recovery of
the cholesterol and phospholipid molecular orientations was evident at lower speeds, suggesting the
formation of a stretch-induced interdigitated gel-like phase. However, this recovery was not confirmed
at higher speeds or for the pure bilayer. The different responses of the molecular orientations may help
explain the two regimes for the effect of stretching speed on pore formation.

MD simulations of cholesterol-containing bilayers here successfully produced the basics
cholesterol effects on the structural and mechanical properties of the bilayers (area per lipid, bilayer
thickness, lipid tail orientations, cholesterol tilt angle, and area compressibility modulus) at
equilibrium as with many previous simulation studies. Additionally, in this study, changes of the
critical areal strain, where the pore is formed in MD simulation, with increasing the cholesterol
concentration or the stretching speed qualitatively agreed with those where the bilayer rupture occurs
in experiments, respectively. Thus, the stretching MD simulations here successfully reproduced the
microscopic responses of cholesterol-containing bilayers to mechanical stresses observed
experimentally.

The main aim of this study is to understand the molecular-level mechanism of the well-known
effects of cholesterol on the mechanical rupture, “Inclusion of cholesterol helps to maintain the
membrane integrity under mechanical stresses”, reported by many researchers. According to the
molecular-level findings in the MD simulations, the mechanism was deduced as follows. Schematic
picture of the rupture of the cholesterol-containing bilayer is shown in Fig. 5.1. When the cholesterol-
containing bilayer is exposed to mechanical stretching, phospholipid and cholesterol molecules form
the interdigitated gel-like phase structure, in which the membrane molecules interpenetrate and
become ordered (Fig. 5.1 g”). Due to the phase transition, the cholesterol-containing bilayer can keep
its ordered, in other word, well-packed or condensed structure. Such the bilayer structure is expected

to be less permeable to water. As the pore formation is triggered by the water permeation into the
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hydrophobic inside of the bilayer, the pore formation is considered to hardly occur in less permeable
bilayers. Thus, the inclusion of cholesterol prevent the pore formation in the bilayer. Furthermore, once
a pore is formed, the edge of the pore is lined with both the phospholipid and cholesterol molecules
(Fig. 5.1 1). The condensed and stiffened cholesterol-containing membrane increases the energetic loss
around the pore edge, which means the higher line tension of the pore edge. The higher line tension
promotes spontaneous pore closure and prevents the pore expansion and subsequent rupture. In
conclusion, the inclusion of cholesterol prevents the bilayer rupture from two aspects: the less
permeable stretched bilayer structure and the higher line tension of the pore edge. These are the
molecular level mechanisms of the well-known cholesterol effects on mechanical rupture of
phospholipid bilayers. This finding will be useful to estimate the maximum intensities of mechanical
stresses without the pore formation or the rupture of the cholesterol-containing bilayers. This must
contribute to the development of various medical and experimental techniques that require delicate
control of not only the membrane rupture but also the pore formation in the biological membranes,
e.g., electroporation, sonoporation, and ventricular assisted devices.

Additionally, in the findings of this study, the stretch-induced phase transition to the interdigitated
gel-like phase in the cholesterol-containing bilayer is one of the most surprising discovery. This study
is the first reports that the combination of the mechanical stretching and the inclusion of cholesterol
can induce the phase transition to the interdigitated phase. As the interdigitation is accompanied with
drastic structural changes of the membrane, impacts of the interdigitation in biological membranes on
the biological functions will be profound. Thus, this finding suggested that the phase transition to the
interdigitated phase might be one of the key factors in transduction from mechanical stresses to
biological signals via, for example, changes of bilayer properties or structures and functions of
membrane proteins in living cells. I believe this finding will encourage the further experimental and
simulation studies on the phase behavior of lipid bilayer membranes under mechanical stresses.

This study provided molecular details of the cholesterol effects on the bilayer rupture under
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mechanical stresses. Such the molecular level information is inaccessible in current experimental
techniques and will be fruitful to understand and control the structures and the functions of bilayer

membranes under mechanical stresses in the fields of biological chemistry and medical engineering
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FIGURE 5.1 Schematic picture of the rupture process of cholesterol-containing bilayer.
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Appendix 1

Supplementary Information for Chapter 2

A1.1 Initial System

First, two monolayers were constructed by placing DPPC and cholesterol molecules rotated around
their long axis on a 10x10 grid (default size: 0.8 nm). These monolayers contained the same
number of cholesterol molecules and the position of each molecule was randomly assigned. Then, the
two monolayers were stacked to build a bilayer and the entire system was energy minimized. The
bilayer was solvated with water molecules, which covered the polar head group of the DPPC and
cholesterol molecules. Finally, the solvated system was energy minimized again. To check the effects
of the initial molecular positions on the structural properties of the bilayer in the equilibrium state,
additional bilayer systems were constructed using the same method with grid size 0.6 —0.8 nm and
different arrangements of molecules. There was no significant difference in the structural properties

after the equilibrium simulation and the construction parameters.

A1.2 Equilibrium Simulation

All MD calculations were carried out under constant temperature (323 K) and pressure (1 bar).
The leap-flog algorithm was used for the numerical solution of the equation of motions and the time
step was set to 2.0 fs. The PME method [102] with periodic boundary conditions in all directions
was used for calculating the Coulombic interactions with a maximum Fourier spacing of 0.12 nm
and fitting function in the fourth order. A 1.0-nm cutoff was used for both the van der Waals and short-
range Coulombic interactions. The neighbor list was updated every 10 steps and the center of mass
motion was removed every step. All bonds were constrained using the linear constraint solver (LINCS)

[103] for the DPPC and cholesterol molecules, and the SETTLE algorithm [104] for the water
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molecules. The temperatures of DPPC, cholesterol, and water were separately kept constant using the
velocity rescaling method [78] with a 0.2 ps coupling constant. The pressure normal and lateral to
the bilayer plane were separately maintained using the Parrinello-Rahman method [105] with a 0.5

ps coupling constant.

A1.3 Structural Properties of DPPC/Cholesterol Bilayers

Several typical structural properties of the pure DPPC and DPPC/cholesterol bilayers were
calculated and are summarized in Table Al.1. The area per molecule monotonically decreases with
increasing cholesterol rate, but there is a relatively small variation between the systems with 40 and
60 mol% compared with the systems of 20 and 40 mol% cholesterol. The area per molecule and
its decreasing tendency are in agreement with the previous experimental observations for
DMPC/cholesterol bilayers at 303 K [10] and DPPC/cholesterol bilayers at 298 K [39]. The
bilayer thickness and average lipid order parameter —S,, increase with increasing cholesterol
concentration in the range from 0 to 40 mol%, and then slightly decrease between 40 and 60
mol%. The values of the bilayer thickness and — S, in the systems with 0, 20, and 40 mol%
cholesterol are in agreement with the experimental measurements for DMPC/cholesterol bilayers at
303 K and DPPC/cholesterol bilayers at 318 K. The 4. value increases with increasing
cholesterol concentration, although the difference between 40 and 60 mol% is relatively small.
These A, values mean that the average tilt angles are 18.7, 10.1,and 9.3° for S20, S40, and S60,
respectively. This decreasing trend of tilt angle is in line with experimental measurements for
DPPC/cholesterol membranes at 297 and 333 K [40] and simulation results for DMPC/cholesterol
bilayers at 308 K [106]. The differences of all the properties investigated here with increasing
cholesterol concentration are small or the general trend reverses from 40—60 mol% cholesterol,

which indicates the phase transition occurs in the range 0 to 40 mol% cholesterol. In fact,

according to the phase diagram reproduced by Sankaram and Tompson [41], the pure DPPC bilayer is
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a liquid-disordered phase, DPPC bilayers with 10 —30 mol% cholesterol are a combination of liquid-
disordered and liquid-ordered systems, and the structure of DPPC bilayers with more than 30 mol%
cholesterol is a liquid-ordered phase at this temperature (323 K). This experimental result agrees with

the phase transition in the simulations.

TABLE Al.1 Structural parameters of pure DPPC and DPPC/cholesterol bilayers

System Cholesterol Area per Bilayer Lipid chain Cholesterol

label concentration molecule thickness” [nm] order tilt angle
[mol%] (system area) parameter’ parameter
[nm’] -5, Ac

S00 0 0.65 (65.4) 3.71 0.16 -
S20 20 0.49 (48.7) 4.07 0.28 0.87
S40 40 0.39 (39.2) 4.53 0.38 0.96
S60 60 0.38 (37.6) 4.40 0.36 0.97

“Bilayer thicknesses are represented by the average P—P distance along the bilayer normal.

"Lipid chain order parameters were averaged over sn-2 chain.
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A1.4 Definition of Cholesterol Tilt Angle

The cholesterol tilt angle 6. was defined as shown in Fig. Al.1. The carbon atoms of the ring

structure connected to the hydroxyl group and the tail are labeled C5 and C21, respectively.

FIGURE A1.1 Definition of the cholesterol tilt angle 6. and the positions of the C5 and C21 carbon

atoms.
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A1.5 Comparison between the RDFs
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FIGURE A1.2 RDFs of C21 atoms of cholesterol molecules in the stretched bilayers for S40: the RDF
calculated from the C21 atoms within the monolayers for ¢, = 0.0 (thin solid line) and 1.0 (thin

dashed line), and the RDF calculated for C21 atoms between the upper and lower monolayers for
g,=0.0 (thick solid line) and 1.0 (thick dashed line).

A1.6 Verification of Effects of Reference Areas

A previous numerical study [29] has given the maximum areal strain where the pure bilayer

maintains its structure without a pore, corresponding to the critical areal strain &, as

23
go=3Z L[ ke | 1 (AL.1)
4.4,\ K,

where A, k.,and K, are the reference system area, the line tension, and the areal compressibility
of the bilayer, respectively. Considering the size of the vesicle in experiments [8] and the area of the
bilayer in this study (Table A1.1), the critical areal strains obtained in the simulation were two orders
of magnitude smaller, which is roughly in the range of the experimental values. Furthermore, to verify
the effects of reference areas on the result shown in Fig. 2.2, Equation A1.1 was applied to the systems

here. It is because the current MD simulation was performed at the constant number of lipid and
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cholesterol molecules and 4, decreases with increasing cholesterol concentration (Table A1.1). For
appropriate comparison of the critical areal strain under the same reference area, the ratio R,
R=¢.(4)/e.(4,)=(4,/ 4, )1/ *, was estimated between the critical areal strains for two systems with
the same concentration of cholesterol molecules and the different reference areas 4, and A4,. Inthe
case of the system S00 and S40, where the clearest difference of the critical areal strain was obtained,
if the system SO0 has the same A4, as system S40 by adjusting N for the system S00, the critical areal
strain 1s expected to be 1.18 times larger than that obtained from the original system S00. In the
simulations, the critical areal strain (&, ) for the system S40 is twice as large as that for the system S00.

This indicates that differences of the reference system area 4, do not markedly affect the results here.
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Appendix 2

Supplementary Information for Chapter 4

A2.1 Initial System Construction and Equilibration

The procedure for the construction of pure DPPC and DPPC/cholesterol bilayer systems, with
almost identical planar bilayer areas and square bilayer shapes, is briefly explained in this section. The
fundamental procedure is the same as in the previous study [77]. First, two monolayers were
constructed by placing DPPC and cholesterol molecules rotated around their long axis on a 8x8 grid.
These monolayers contained the same number of cholesterol molecules and the position of each
molecule was assigned randomly. The two monolayers were then stacked up to build a bilayer and the
entire system was energy minimized. The bilayer was solvated with water molecules, which immersed
the polar head group of DPPC and the cholesterol molecules. The solvated system was energy
minimized again and equilibrated by NPT MD simulation for more than 100 ns. At this point, the pure
DPPC bilayer consisted of 128 DPPC and 4,955 water molecules, and the DPPC/cholesterol bilayer
of 76 DPPC, 52 cholesterol, and 4,864 water molecules. Additionally, the bilayer areas of the pure
DPPC and DPPC/cholesterol bilayer systems at equilibrium state were 41.87 and 25.12 nm?
respectively. To reduce the difference in bilayer areas, the DPPC/cholesterol bilayer system was
developed further. The square DPPC/cholesterol bilayer system was replicated along the direction
parallel to the bilayer plain and a rectangular bilayer system was thus formed. The rectangular bilayer
system was deformed using the MD simulation with the deform option, implemented in GROMACS
codes, to obtain a square bilayer system. Then, three DPPC and two cholesterol molecules per leaflet
were randomly removed from the deformed square bilayer system and the system was equilibrated by
NPT MD simulation for 10 ns. Once again, eight DPPC and six cholesterol molecules per leaflet were

removed and the system was equilibrated for 20 ns. The DPPC/cholesterol bilayer consisted of 128
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DPPC and 86 cholesterol molecules. Finally, water molecules were added to both the pure DPPC and
DPPC/cholesterol bilayer systems. Both the systems were equilibrated using NPT MD simulation for

more than 100 ns.

A2.2 Equilibrium Simulation Parameters

Unless otherwise mentioned, all MD calculations were carried out under the conditions shown
below. The leap-frog algorithm was used for numerical solution of the equations of motion and the
time step was set to 2.0 fs. The PME method [102] with periodic boundary conditions in all directions
was used to calculate the Coulombic interactions with 0.12 nm of the maximum Fourier spacing and
fitting function in the fourth order. A 1.0-nm cutoff was employed for both van del Waals and short-
range Coulombic interactions. The neighbor list was updated every 10 steps and the center of mass
motion was removed after every step. All bonds were constrained using the linear constraint solver
(LINCS) [103] for the DPPC and cholesterol molecules, and the SETTLE algorithm [ 104] for the water
molecules. The temperatures of DPPC, cholesterol, and water were maintained individually at 323 K
using the velocity rescaling method [78] with a 0.2 ps coupling constant. The pressure normal and
lateral to the bilayer plane were individually maintained at 1 bar using the Berendsen method [49] with

a 0.5-ps coupling constant.

A2.3 Structural Parameters of the Bilayers

To validate the bilayer structures of the pure DPPC and DPPC/cholesterol bilayers before
stretching, the typical structural parameters, i.e., area per molecule, bilayer thickness, and the order
parameter for the lipid tails, were evaluated. The areas per molecule are 0.656 and 0.391 nm? for the
pure DPPC and DPPC/cholesterol bilayers, respectively. These are in good agreement with a recent

MD simulation study for a DPPC/cholesterol bilayer at 323 K (0.657 and 0.389 nm?) [54]. However,
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the area per molecule for the DPPC/cholesterol bilayer is slightly smaller than those obtained in
experiments for similar lipid mixtures [10,39], whereas that for the pure DPPC bilayer is in good
agreement with those obtained in experiments (summarized by Nagle and Tristram-Nagle [98]). The
bilayer thicknesses are 3.70 and 4.68 nm for the pure DPPC and DPPC/cholesterol bilayers,
respectively. As with the area per molecule, the bilayer thicknesses for both bilayers are in good
agreement with those obtained in a recent MD simulation study [54] and that for the pure DPPC bilayer
is in agreement with experiments for similar lipid bilayers [10]. However, the thickness of the
DPPC/cholesterol bilayer is slightly larger than those obtained in experiments with similar lipid
mixtures [10]. The averaged order parameter of DPPC tails are 0.16 and 0.38 for the pure DPPC and
DPPC/cholesterol bilayers, respectively. These are in good agreement with the recent MD simulation
study [54] and in qualitative agreement with experimental measurements [83]. In summary, whereas
the structural parameters for the pure DPPC bilayer are in good agreement with those obtained in
experiments, those for the DPPC/cholesterol bilayer are slightly different. In particular, the
DPPC/cholesterol bilayer in MD simulation tends to be overly condensed, which may be caused by a
mismatch in the force field between the DPPC and cholesterol molecules. Meanwhile, the trends in
the bilayer structure changes induced by the inclusion of cholesterol are in agreement with both
simulations and experimental studies. In conclusion, the bilayer systems used in this study represented

real bilayers, without departing from the accuracy of the current MD simulation for lipid mixtures.

A2.4 Detailed Results of Statistical Analyses

In this section, the set of critical areal strains obtained in stretching simulations for a given
simulation condition is written as &(@, ¢). @is a bilayer composition parameter, which is 0 for the pure
DPPC bilayer and 1 for the DPPC/cholesterol bilayer, and c is a stretching speed. For example, the set

of critical areal strains in the US simulation with ¢ = 0.025 m/s for the DPPC/cholesterol bilayer is
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written as &(1, 0.025). In the results of the statistical procedures, i.e., the two-way ANOVA, the test
of the simple main effect, and the multiple comparison test, there are significant differences for the
critical areal strain in the pure DPPC bilayer between following pairs: &(0, 0.025) and &(0, ¢ > 10.0),
&/(0, 0.05) and &(0, ¢ > 3.00), &(0, 0.30) and &(0, ¢ > 10.0), &(0, 1.00) and &(0, 30.0), and &(0, ¢ >
3.00) and &(0, 30.0). This implies that the effects of the stretching speed in the range used here on the
critical areal strain are monotonic, except for ¢ = 0.025 m/s, and an increase in stretching speed by

about two orders of magnitude induces a significant increase in the critical areal strain.

A2.5 Overlap of DPPC Tails between the Upper and Lower

Monolayer

In the interdigitated gel-phase-like structure of the DPPC/cholesterol bilayers under lower speed
stretching, the DPPC tails penetrate into the opposite monolayer across the mid-plane of the bilayer,
resulting in the overlap of the tails between the upper and lower monolayers (Fig. 4.1 ¢ and g). The
overlap length Do was defined as Dol = Ziower — Zupper, Where Ziower and zupper are the average z-positions
of the terminal methyl groups of the DPPC tails in the lower and upper monolayers, respectively. Do
will be positive when the tails are interdigitated and will be negative when the tails do not. Figure S1
shows relationships between the overlap length Do and the areal strain. The overlap lengths in both
the pure DPPC and DPPC/cholesterol bilayers are about —0.4 nm before stretching and increase with
stretching. In the DPPC/cholesterol bilayer, those during the QS simulation and the US simulations
with ¢ = 0.025 and 0.05 m/s considerably increase and become positive. Especially, that in the QS
simulation is about 1.3 nm at g = 1.00. However, those with ¢ > 0.30 m/s remain negative during the
simulations before the pore formation. In the pure DPPC bilayer, those with ¢ > 0.30 m/s remain
negative and those with ¢ < 0.30 m/s slightly exceed 0.

Figure A2.2 shows the relationships between the stretching speed and the overlap length where the
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bilayer thickness becomes congruent with that for the DPPC/cholesterol bilayer under g4 = 1.00. The
overlap length in the DPPC/cholesterol bilayer considerably decreases under relatively low-speed
stretching (¢ < 0.30 m/s), becomes negative, and slightly decreases under relatively high-speed
stretching (¢ > 0.30 m/s). This trend in the overlap length in the DPPC/cholesterol bilayer is very
similar to the trend in R;; (Fig. 4.6). In the pure DPPC bilayer, the overlap length in the all stretching

simulations remains negative.
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FIGURE A2.1 The relationship between the overlap length and the areal strain & in the
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