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Effect of yttrium addition on mechanical properties of magnesium crystals:
An atomistic study

Kazuki Matsubara
ABSTRACT

Magnesium (Mg) has received increasing attention as promising candidates for next-generation
lightweight structural materials; however, the low strength and poor plastic workability of Mg
compared with other metals are identified as critical drawbacks for technical applications. Thus,
the improvement of strength and ductility via alloying gorcheat treatment is essential for the
use of Mg for a wide range of industrial applications as structural materials. Recently, it was re-
ported that the addition of yttrium (Y) to the Mg alloys led to a well-balanced work hardening;
the ductility was distinctively improved at room temperature while maintaining comparable
strength in the Mg-Y alloy. Interestingly, it was experimentally observed that a quite small
amount of Y (even less than 1 at.%) has a remarkatiecteon the deformation behavior in
Mg-Y binary alloys. It suggests that understanding the details of the mechanism responsible
for the dramatic changes in the deformation behavior of Mg-Y alloys may provide an insight
into new possibilities for developingdtective and #icient processing techniques that enable the
achievement of excellent mechanical properties of Mg-based alloys. In this thesis, the author
investigated theféect of Y addition on the mechanical properties of Mg using atomistic sim-
ulations, such as molecular dynamics (MD) and first-principles (FP) calculations, and clarified
the underlying mechanisms of strengthening at an atomic level in both concentrated and dilute
Mg-Y alloys.

First, the formation mechanism of nanosized Y precipitate phases (@lfthses), which
exhibit characteristic periodic arrays of Y-rich zigzag-shaped atomic clusters at regular intervals
of 1.1 nm, was investigated to understand their precipitation-hardefiiact en the matrix in
concentrated Mg-Y alloys. The interaction energies between Y clusters at various distances
were gquantitatively evaluated using FP calculations based on density functional theory. A weak
but distinct interaction between the clusters was observed and found to be caused by the inter-
play between attractive chemical interactions and repulsive relaxation energies. This interplay
determines the energetically favorable structure of the cluster arrangements, and these struc-
tures are consistent with the experimental observations. It was suggested that the long-range
intercluster interactions dominate the alignment of Y clusters, which leads to the formation of
B’ precipitates in the Mg matrix, followed by the short-range clustering of Y atoms.

Second, the nature of the interactions betwgeype stacking faults (SFs) and dislocations
was investigated to understand the role;e8Fs in the non-basal deformation behavior of dilute
Mg-Y alloys. This was because it has been suggested that8feslformed via the Y addition
to Mg may work as the nucleation source of the non-basal dislocations, which serve as impor-
tant deformation modes to improve the workability. The atomic models of pure Mg including
an h-SF were deformed using MD calculations with multi-body interatomic potentials. The
characteristic dissociation reaction was observed at both ends of-8f¢ ivhere the partial
dislocations on the pyramidal plane, Shockley partial dislocations on the basal plane, and stair-
rod dislocations were nucleated. Instead of the activation of the non-basal dislocitiis,
twins were nucleated in the early stage of the reaction and steadily grown as the applied stress



was increased. It was suggested that tR8HF was not likely to work as the nucleation source

of “multiple” (c + a) dislocations, but as the reactive lattice defect to assist and accommodate

the c-axis deformation. Besides, the deformation-induced twin boundaries were found to act as
obstacles for dislocation movement on the basal planes in the Mg matrix, which results in the

improvement of the strength of Mg.

In addition, a numerical framework for evaluating the free energies of Mg-based systems at
finite temperatures was constructed based on the quasi-harmonic approximation (QHA) using
FP density functional theory calculations. To consider the structural anisotropy of a Mg single
crystal, two individual structural parameters were introduced into the QHA scheme so that static
total energy and lattice vibration frequencies of the system were numerically described by the
approximate polynomials as a function of the lattice parameteasdc. It was found that
the proposed approach successfully reproduced the thermal expansion behavior of Mg over the
wide temperature range by adopting the second- and higher-order polynomial to describe the
lattice vibration, in a manner consistent with the experimental measurements. The nonlinear
dependence of the lattice vibration frequencies on the axial strain was suggested to play an
important role in understanding the thermal expansion anisotropy due to the anharmonicity in
the interatomic interactions.
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Fig. 1.1: Schematic diagram of the relationship between the strength and ductility of materials.
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Fig. 1.2: Schematic of (a) the structure and (b) the slip and twin systems of a hcp crystal.
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Fig. 3.1: Schematic of the arrangements of zigzag-shaped clusters with an intercluster distance
d and a zigzag phasg (a) in-phase (IP) and (b) anti-phase (AP) patterns. Each cluster is
formed from the Y-Y pairs at the second-nearest neighbor (2NN) positions, represented by the
bars between the Y atoms. Ordinarily aligned clusters are shown in red and inverted (half-cycle
shifted) ones in yellow.
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Table 3.1: Arrangements of zigzag clusters in the hcp Mg-Y system used for DFT calculations.
Each arrangement is defined by an intercluster distathcand a zigzag phase,= IP or AP.
Models with superscripts (a)—(f) correspond to the arrangements (a)—(f) in FigNg, Befers

to the number of solute clusters in the 128-atom supercell.

Composition #atoms Distance Phase # clusters
Mg Ny d ¢ Ncls

MgsY 96 32 \/éaMg IP, AP@ 16

Mg7Y 112 16 2\/§aMg IP®),  AP© 8

MgisY 120 8 4V3ay, IPO@, AP® 4

Mgz Y 124 4 8V3awgs IP, AP 2

MgesY 126 2 16V3ay, PO 1

000000000 oooooooMgb0oooDboooooooooooon
goooooooood

O0000000O00000D Vienna Ab initio Simulation PackageVASPO [121]0 O
OO00OO0OO0DFTODODODOODOOODOODOOOOVASPOOODOOOOOOPAWDO [101,
122|000 000000000000 0000000000000O0O0000Od Mgd
000030YODOO00434p4d52000000000000000000O000O0O
0000000000000 ooOo0obo0oooooooboooooil02030---000
O00D000DO00000sOdop0O0OdO0O---000000OD0OD0ODODOODO
O00 Perdewd OO WangD OO OO OO0 PWOl1O [12310 0000000 0O GGAO
O000000o0ooooooooooooo00o cGAOOOOOoOooooooooo
O000000000 Perdewd BurkeD 00O Ernzerhof 1 D O OO0 OO PBED [124]0
O0O0O00o0o0DoODOOoooooPWOlDOOOODODOOOOOO0OODODOO0OO0O0O0OoOoooOono
Brillouin OO DO OOOODOOO 20x2x300 Monkhorst-Packl kO OO OO [125]0000
O00000000000000 34de6evid0ddonDoooooODoO2evOoOooon
0 Methfessel-Paxton 0 00000 [126]0 0000000000000 3meVAO O
0ooopooboooodbobbodooooooonbooboboboobbbboooooo
OOO00O0OO0O0OO0BlechDOODOODOO [127]000000000

25



(a) (\/chMg :AP) 16\/§aMg

v".‘.' NP (EY NS =Y N
1= 0sdP I~ $s=<PI~ s~ @
.4.’v.".'v."..'."
LS
L

'~ -v'ov'v'ov-r"av

.a‘l'..'. ®g<h .
Ol B S S S S S
wl® g )L JY JCL T

GO TN VeSS VNS YN TSNS VNS TS v S e IS VrSe TN e vNS e TS e Ve s
o4l o= el JEd JT ( I [E( JEd JO( J [T ( JEE JE( I

PO JE (AT e ( P I L AT e ( PR IR X JE( Yo ( Je( LT ([ J1
e JSd SO ( e od e B sd® 5« [ e Yo Iy sd e B od® o=

QAP P od P P AP (P o4 P P 4PN (P o< P sl P o 4P (P o< P s H
BedPo«(? (P o D odP o<? (B 07 P ¢s(P o(? o(P o= B ¢(P o<* sdB &=

AP g P o 4P 0P (P P o P o (P €D sl P o (P sl P 2P s P s (P os(#
A ar B ar® o ad@ar S ad@ ad® pui@ar B ad@ ar® pui@ar B ad® o

NS TNSYNSS USS USS USS IS NS YN UNS UNe UNe UNe YN TN e YNe
ReodP odPodP o PododPodf o PeodPodPodPo P odPododd =
R oy yo (e (Y e ref yriyefrerc( ey ye (.
AP o< o< o4? AP 0P 0P 04" AP odP ¢4dP (" o{P 0P o<P &
ndB odP odP odB o AP <P o<P o4 o P o< 0P o< (P s<P os<P o<
DoedP odP gdP o P odP ¢l 0P o« P od P oD st P o< P odP 0P ¢<dP &
A oA oA P oD AP AP oA P oA P <P (P 0P 0P <P o P o(P o< #
Ad® A B a® al? 2@ adB oS and? ad B ad B ad B o’ adBad B ad® &

Tl 3l L Lty
B od® 0P ol sd” oD odB o(B o< P od P 0P 0P (" ¢ P ¢ ¢s(P o=
PP e P el P oA P AP AP AP AP P P s P AP 4P o dP o d P o4 F
(| [E( JE( Y0 Yo JT( JE( I ( I B [E( T ( Y YT YT (I ( I E( I
adP odP odP oA P 24P 0P 0P AP 4P o AP 0P 4P 24P 0P o 4P o4 P

AP a®a®a Dad® ad® o o AP ad®a® a Rad@Sad® ad® o

NS VSS VNS VNSNS VNS VN VA U e s
PeodP odP od P oD od P oD odP o P o F
14 ed P od P o d P ol P ol P od(P (P 4P o« .
| Y ( Yo ( YO ( I AP odP o 4P o< o4 9= [
D odP oAl odP & (P 4P

Fig. 3.2: Periodic supercell models for the zigzag-cluster arrangements at intercluster distances
ranging from \/§aMg to 16\/§aMg. Gray and red spheres represent Mg and Y atoms, respec-
tively. The arrangements (a)—(f) correspond to the cases labeled in Table 3.1 with the same
characters. The dashed rectangle in (a) shows the 128-atom supercell used in the DFT calcula-
tions.
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Table 3.2: Formation energieEg:{ for the p’-like cluster arrangements with an in-phase (IP)
and anti-phase (AP) pattern at an intercluster distancdrmthe Mg-Y system.

Distance E: (eV/solute atom)
PW91 PBE

d p=IP ¢p=AP ¢=IP ¢=AP

\/:_%aMg — -0.356

2V3ay, -0379 -0395 -0371 -0.388
4V3ayy, -0.387 -0.367

8V3ay, -0.377 -0.373

16V3ayy, -0.366 ~—  -0.363
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Fig. 3.3: Local displacements of atomic layers from the ideal hcp geometry alonﬁjtﬁ@][
direction, obtained for the cluster arrangementd at8 \/:_%aMg (open symbols) and 1¢§aMg
(solid squares).

29



0000000000000 00000000000000000000000000
000 YODODOOOOOOODOOOOO0OO0O00O000000000000000000
00d=16V3ay, 0 0000000000000000000000000000000
0000000000000000003nmI000000000000000000
0000000000000 MgOOO0OO0OO0O00000000000000000000
000d=8V3ay,000000000000000001.5nmO00000000000
0000000000000000 4V3ay,00000000000000000000
00d=8V3ay, 00000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000(16V3ay, IP) 0000000000 (3200000000
00000000000 00000000000000

30



333 U00OO0O0OOooboooobobooo

(16V3ay,, IP)O0000 MgOOOOOO0O00000000000000000000
(3.2) 000 Eme 000000000000 340000000000000000000
000000000000 0000000Ew000000000000000000
D000EwO00000000C0000000C0000000000000000000
0000000 4V3ay, 0000000000 APOOOOO0000 EeeD IPOOOO
0000000000000000000d=2V3ay,000000000000000
0000000000 V3awO00 Ene 00000000000

Intercluster distance (nm)

0 2 4 6 8 10
0.02 —— . —
= IR 3 P {1
S (@ AP —O—
4y} : : : :
0.01 rO . | | | -
() ! ! ! !
= ? i i i
2 | I ‘ ‘
L
E 0.00
>
S
e -0.01 |
()
(3
5
S -0.02 r
Q
= s s s
-0.03 — | | |

012 4 8 16
Intercluster distance (\/§aMg)

Fig. 3.4: Intercluster interaction energy as a function of distance between the zigzag clusters
with an in-phase (IP) and anti-phase (AP) pattern. Plots (a)—(f) correspond to the arrangements
(a)—(f) in Fig. 3.2.
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Fig. 3.5: Intercluster interactions decomposed into the relaxationEpast (open symbols)
and chemical parEnem (solid symbols) as a function of intercluster distance for in-phase (IP;
triangles) and anti-phase (AP; inverted triangles) patterns.
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Fig. 3.6: Atomic configurations (upper panels) and isosurfacesftdrdnce charge densities

(lower panels) of unrelaxed zigzag cluster arrangements projected on the (0001) plane: (a)
(d.¢) = (4V3awg, AP), (b) [, ¢) = (4V3aug, IP), (¢) @ ¢) = (2V3awg, AP), and (d) ¢, ¢)

= (2 \/§aMg, IP). Gray and red spheres indicate Mg and Y atoms, respectively, while only Y
atoms are displayed as spheres in the isosurfaces. Red and blue surfaces represent positive and
negative densities (i.e., 0.0001 anr@.0001), respectively, based on the reference state of an
isolated cluster system.
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Fig. 3.7: Total densities of state per unit volume for the cluster arrangemenhts hﬁ\/C_%aMg,
4\/§aMg, and 2\/§aMg with the Fermi level defined at O eV.
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Fig. 3.8: Partial densities of state for the Y atoms (per atom) in the cluster arrangemegts at
16V3ayg, 4V3ayy, and 2V3ay, with the Fermi level defined at 0 eV.
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Fig. 3.9: Local densities of state for the Mg atoms in the cluster arrangem@isrﬁ\/’f%aMg,
4\/§aMg, and 2\/§aMg: (a) Schematic of two types of sites for Mg atoms, i.e., adjacent to the
Y clusters and in the middle of two neighboring clusters in the matrix, which are labeled “A’
and “M”, respectively. (b, c) Local densities of state for the Mg atoms (per atom) at the (b) A
and (c) M sites. The results for pure Mg are also shown for comparison. The horizontal axis
indicates the energy relative to the Fermi energy.
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Fig. 4.1. (a) Schematic of analytical model containing atype stacking fault (SF) and (b,c)
its atomic arrangement.
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Table 4.1: Critical shear stress (CSS) along thép]jl:iirection on the basal plane.

Potential-type CSSatl K (MPa) CSS at300K (MPa)
Sun 380 330
Wu 950 330
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(a) s=0 MPa, t=0 ps (relaxed) (1122} {1121}
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s=380 MPa s=400 MPa s=450 MPa
t=388 =

Fig. 4.2: (a) Atomic structure of Mg crystal with-BF and (b) the MD results of the transfor-
mation process of}SF region for the potential of Stet al. at 1 K.
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s=470 MPa
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s=480 MPa
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t=482 ps t=484 ps t=490 ps

Fig. 4.3: MD results of the nucleation process{bifl} twins for the potential of Suet al. at
1K.
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s=100 MPa s=200 MPa s=300 MPa

s=330 MPa s=340 MPa s=360 MPa
t=335 ps t=340 ps t=360 ps

Fig. 4.4: (a) Atomic structure of Mg crystal with-SF and (b) the MD results of the transfor-
mation process ofi}SF region for the potential of Siet al. at 300 K.
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Fig. 4.5: MD results of the nucleation process{bﬁl} twins for the potential of Suet al. at
300 K.
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(c) s=990 MPa, t=990 ps

xxxxxxxx

uuuuu

;;;;; :@
=

Fig. 4.6: (a) Atomic structure of Mg crystal with-5SF, and the MD_resuIts of (b) the transfor-
mation process of}SF region and (c) the nucleation proces$id?1} twins for the potential
of Wuet al at 1 K.
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Fig. 4.7: (a) Atomic structure of Mg crystal with-SF and (b) the MD results of the transfor-
mation process of}SF region for the potential of Wet al. at 300 K.
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Fig. 4.8: MD results of the nucleation process bf21} twins for the potential of Wiet al. at
300 K.
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(a) Sun potential (b) Wu potential
Process (i)

LIOLUULGL

(1121}

Process (iii)

300 K

Fig. 4.9: Atomic structures during the processes of (i) the transformati0ﬁ§iF Iregion, (ii)
the activation of the partial dislocation on theSF, and (iii) the nucleation ¢fL121} twins from
the 1;-SF region obtained from the (a) Sun’s potential and (b) Wu'’s potential, respectively.
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(d) Twin plane

Matrix

Fig. 4.11: (a) Atomic structure of tHa 121} twin nucleated from thetSF region. (b) The same
atomic structure visualized using the atomic coordination number coloring. (c, d) The stacking
sequence on basal plane for both the matrix and the twin. The atomic layers parallel to (g) the
(1122} pyramidal Il plane and (h) thgl 121} plane are colored according to the location (depth)

of atoms, based on the units shown in (e) and (f), respectively.
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Fig. 4.13: Interaction between th&121} twin and basala) dislocations at 1 K; (a) the pinning
of (a) dislocation in the vicinity of the twin boundary; (b) the unpinning and penetratigayof
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Fig. 4.14: Interaction between tl{ﬁalfl} twin and basa{a) dislocations at 300 K.
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(a) Isolated solute atom (b) Twin boundary
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Fig. 4.15: Schematic image of thé&ect of (a) isolated solute atoms and (b) twin boundaries on
the motion of{(a) dislocations.
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Fig. 5.1: Schematic of hexagonal close-packed lattice structure. Open spheres represent atoms
within the unit cell.
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Fig. 5.3: Histograms of total fitting errors in the phonon frequencies calculated by a linear,
guadratic and cubic polynomial over all the discrete points. Insets show the phonon densities of
state (DOS) curves reproduced by using each polynomial,ef
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