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Abstract

Metallic glasses have unique mechanical properties such as high strength, high elastic
strain limit and high wear resistance, and has been promised to use as structural ma-
terials. However the brittle failure is a disadvantage of metallic glasses to use practical
application, thus it is important to improve the plastic deformability. In this thesis,
pressurized-thermal loading process was newly proposed, which improve plastic deforma-
bility by realizing less relaxed glassy state, so called rejuvenation. The reason of improve-
ment of plastic deformability in this rejuvenated metallic glass is revealed by theoretically
approach and atomistic viewpoint. Moreover the glassy state constructed by pressurized
cooling process is unique glassy phase owing high-density well-ordered yet high-energy.

First, the temperature dependence of viscosity of Cu-Zr bulk metallic glass above the
glass transition temperature 7T is investigated by using both molecular dynamics tech-
nique and a recently developed energetic technique. The temperature decadency of vis-
cosity at the supercooled liquid state is very important information to understand reju-
venation behavior.

Second, atomistic study proposes the application of compressive hydrostatic pressure
during the glass-forming quenching process and demonstrates highly rejuvenated glass
states that have not been attainable without the application of pressure. The pressure-
promoted rejuvenation process increases the characteristic short- and medium-range order,

even though it leads to a higher-energy glassy state. This“ local order energy ”
relation is completely opposite to conventional thinking regarding the relation, suggesting
the presence of a well-ordered high-pressure glass/high-energy glass phase. Moreover the
rejuvenated glass made by the pressure-promoted rejuvenation exhibits greater plastic
performance than as-quenched glass and greater strength and stiffness than glass made
without the application of pressure.

Finally, I report on the design of a high-density/well-ordered yet high-energy glassy
phase realized by pressurized-quenching process. This unique less-relaxed state may be
against our knowledge on the structural aspect of metallic glass via the conventional free-
volume theory that the decrease of full-icosahedra in less-relaxed state is realized by rapid
cooling process. Because the technique used here still remains in laboratory experiments,
understanding of the fundamental nature of this unique phase is required for its practical
use. Accordingly, we focus on its structural properties and relaxation behavior through
directly monitoring the evolutions of potential energy, full-icosahedral (FI) clusters, and
anti-free volume along with the processes. Unlike the case of aging where the existence
of icosahedral cluster is stable, the icosahedral cluster in such high-density /high-energy
phase behaves quite unstable and strongly connected with anti-free volume.
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Fig. 1.1: Schematic illustration of DSC chart.
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Fig. 1.2: Schematic illustration of Angell plot.
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Fig. 2.1: Shear stress correlation functions at 950, 1000, 1100, 1200 K.
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Fig. 2.6: Temperature dependence of activation barrier.

0000000000000000000000000000000000000000
OO0fagility 0000000000000 00000000 2700000000000
0000000000000 000000000000000000000000000
00000000000 00000000000000000000000000000
00000000000000000000000Green-KuboJOOODOODODOO 102
Pas000000000000O000O0
SPAODOOOOOO0O0OOOOOOOO0O0O0OODOO Cedyy'000000000
0000000000000000000000007T,/T=007=10°Pas000
0000000000 Angell0000000000000000000000 102 Pas
000000000000000000T,/T=1000075=102Pas000000
0000000000000 000000000000 a00000 Quax 0 Qo000
00000 a=056013500000000Qu. 0 Q00000000000000
000000000000 Qe 000000 SPAOODOCOOOODOOCOOOO

18



SPA (Qmax) -
SPA () ~ ——
1010 SPA (Qconst) .
Green-Kubo (Vconst) L
~ Green—Kubo (Pconst) °
g 10° T :
<

w » *

107> pien: ]
0 0.2 0.4 0.6 0.8 1

Fig. 2.7: Angell plots obtained from Green-Kubo relation and SPA.

0270000

SPA 00 Green-KuboJOOODOODOOOOOOOOODOODOOODOOOOOOOO
00000000000 0000000000000 Qe J00000Angell0000
000000 strong0 000000000000 000C0O000O00000000000
0000000000000000000000000000000000000000
0000000000000 0000000000000000000000 Arrhenius
0000000000000 QuaxD Q00 Qeonst 100 fragile 000000000 Qo
000 fragile 0000000000000 00000000000O00007,0000
0000000000000000000007/7,~200000000000000
ooooo
O000OSPADDOOCOOOOOCOOODOOCOOOOOOOOOONOOOOONOOn
0000000000000000000000000000002700000000
O0OSPAOODOOOOOCOOO Green-KuboJOOOOOOOOOOOOOOOOODOO

19



O000000000O00D0D0DOOstrong0 0000000 DOOOODOODOOOSPA
goobobobobooboooboboobobbbooboouotdououdoooooooooooonbn
Dooboboobobooboboooobobooboboboboob 270000
Omax U QU OO000O0O0O0ODOOO0DOO0ODOOODOOLODOOODOODOOODOO
Dooobog2s50000b000bo0boboooboobooobooboobobon
goobbogooboboogobbooooboobooooboboao

OO00D0O0O00000D0OC00DDOO0DOOOSPADDOO CuspZrsp00O0ODOOOO
goooobobooobooobobbbbbbobddddodoooooooooooooo
O0o0o00o0o0o0ooo00260000000T/T,=2000000000000
0000000000000 000000000 240000000 7T/T,=20000
gooodgbbogoboobgb2s0bbggbobooobbogbbooobbogon
OO000000DO0o00o0ob00obobuoboboobCusZsponoooooon
0ooMDbDOOOOODOOOOOOOOODOODOOO0OO0O0OO0O00T/T,=200000
goobobobobooooobobbbbbobootbododduoooooooooooooobn
ooooobon

20



237 UO0oOoobDoOoOoOoon

CuxZripo— 0 x =200 250 300 350 400 4500 500 550 600 650 700 750 800 8501 9001 O
O000000DbO00O0O0Green-KuboOOODOODOODOO 2200000000000
OO0000000O00D AngellDOOODOOODOOOO 280000

1016

Cu,yZrgy
Cu25ZI75 ------------
CU3Ozr7O

Cu3SZr65

n [Pas]

10
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Fig. 3.1: Relationship between volume and temperature in Zrs,CuygAl;y model of quench-
ing processes with pressure, P. V(P) and Vy(P) are volumes at T = T and T = 0,
respectively. The color lots indicate molecular dynamics (MD) volume-temperature data,
while the black solid lines are fitting lines used to estimate 7§, which is determined from
the crossover point between a high-temperature and a low-temperature fitting lines. The
vertical dashed lines indicate the position of the crossover point (i.e., the estimated T5).
The positive and negative pressures are compressive and tensile, respectively.
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Fig. 3.4: The change in potential energy, AFE, of the Zr;yCuypAl;p model induced by the
thermal-pressure loading process (D—J). The error bars represent the standard error of
ten different simulations. The positive and negative pressures indicate compressive and
tensile pressures, respectively. The horizontal axis represents the annealing temperature,
which is normalized by T(F,) for each pressure condition. In general, 7, depends on
the applied pressure condition®. Therefore, we conducted melt-quenching simulations
under different pressure conditions, and computed T (F,) for each P, from the kink in
the quenching process volume-temperature curve
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Fig. 3.5: Change in potential energy, AFE, of small (10,000-atom) and large (100,000-
atom) models induced by the thermal-pressure loading process (D—J of Fig. 3.3) both
with (P, = 5.0 GPa) and without (P, = 0.0 GPa) external pressure. The AE values of
the small model (10,000 atoms) are same with the data of Fig. 3.4. The small model data
are averaged over ten simulations, while the large model data are obtained from one cal-
culation for each thermal-pressure loading condition, because of the large computational

cost.
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Fig. 3.6: Change in potential energy, AFE, induced by thermal-pressure loading process
(D—J of Fig. 3.3) in CusoZrsp (LJ) model. The horizontal axis represents the annealing
temperature, T,, normalized by the glass transition temperature estimated for each pres-
sure condition, T,(P,). The positive and negative pressures are compressive and tensile,

respectively.
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Fig. 3.7: The change in potential energy, AE, of ZrsgCuyAlyg, ZrsoCuyAgig, CusgZrsg
(FS), CusoZrsg (LJ), AlgoLayg, NigoPag, PdgaSiig, ZrggPtag, and AlsgFeso. For each alloy
system, we conducted ten independent simulations with different initial atomic configu-
rations and velocities. The averaged AFE values over ten simulations with standard error
bars are shown. Similar to Fig. 3.4, detailed analyses of effect of annealing temperature
and pressure were conducted for CusoZrsg (LJ) model.
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Fig. 3.8: Schematic of inherent structure energy change during quenching process with
(blue and red curves) and without (black curve) compressive pressure. The temperature
decreases from left to right on the horizontal axis. The blue and red curves correspond to
the aging process referred to as case (i) and the rejuvenation process referred to as case
(ii) in the main text, respectively.
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Fig. 3.9: The left figure shows the crossover between the inherent structure energy-—
temperature curves both with and without pressure in the ZrsoCuygAlyy alloy, whereas
the right figure shows no crossover in the CusgZrs (LJ) alloy.
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Fig. 3.10: The left and right figures show the pressure effect on the temperature-dependent
diffusivity of ZrsoCuygAlyp and CusgZrsg (LJ), respectively. Here, we take Cu atoms as
an example. The diffusion kinetics could be divided by a critical temperature T, above
which the diffusivity of the liquid shows Arrhenius-type behavior.
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Fig. 3.11: (a) Icosahedral SRO™ and (b), (¢) MRO™" *” exist in the inherent structure of
the quenching process. The left figure shows the ZrsqCuygAlyg alloy results, whereas the
right one shows the CusoZrsy (LJ) alloy result. Figure 3.11(a) shows a fraction of icosa-
hedral SRO, and figures 3.11(b) and 3.11(c) show the average and maximum size of the
MRO cluster™ *” composed of interpenetrating, s*, syax, respectively. (d) Spatial distri-
bution of icosahedral SRO and MRO™ in the 0 K inherent structure of the Zr50CugpAlyg
(left) and CusoZrsy (LJ) (right) models constructed via quenching process with (P = 5.0
GPa) and without pressure (P = 0.0 GPa).
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Fig. 3.12: Von Mises atomic strain™ distributions in the uniaxial tensile tests at various
nominal strains for the as-quenched model (left), the pressure-promoted thermal rejuve-

nation model (center), and the pure thermal rejuvenation model (right).
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Fig. 3.13: Nominal stress-strain relations along the loading direction (x direction) during
uniaxial loading tests. Black, red, and blue curves represent the nominal stress—nominal
strain relation of the as-quenched model, the pressure-promoted thermal rejuvenation

model, and the pure thermal rejuvenation model, respectively.
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Fig. 3.14: Nanoindentation MD simulation settings.
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Fig. 3.15: Von Mises atomic strain™ distributions beneath the indenter at various inden-
tation depths for as-quenched model (left), the pressure-promoted thermal rejuvenation
model (center), and the pure thermal rejuvenation model (right).
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Fig. 3.16: (a) von Mises atomic strain distributions in the shear tests at shear strain -y
of 0.12 (upper) and 0.16 (medium) and 0.20 (lower) for the as-quenched model (left), the
pressure-promoted thermal rejuvenation model (center), and the pure thermal rejuvena-
tion model (right). (b) Engineering shear stress - strain relation. Black, red, and green
curves are of the as-quenched model, the pressure-promoted thermal rejuvenation model,
and the pure thermal rejuvenation model, respectively.
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Fig. 3.17: (a) Nanoindentation MD simulation settings. (b) von Mises atomic strain dis-
tributions beneath the indenter at indentation displacement, h = 3.0, 4.0, and 5.0 nm for
as-quenched model (left) and pressure-promoted thermal model (right) for ZrsoCuyspAlyg
MG. (c) Load vs. displacement curves of the as-quenched model (black) and the pressure-
promoted thermal rejuvenated model (red). Loading force is divided by the model thick-

ness.
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Fig. 3.18: (a) Nanoindentation MD simulation settings. (b) von Mises atomic strain dis-
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Fig. 3.19: (a) Nanoindentation MD simulation settings. (b) von Mises atomic strain dis-
tributions beneath the indenter at indentation displacement, h = 3.0, 4.0, and 5.0 nm for
as-quenched model (left) and pressure-promoted thermal model (right) for NiggPsy MG.
(c) Load vs. displacement curves of the as-quenched model (black) and the pressure-
promoted thermal rejuvenated model (red). Loading force is divided by the model thick-

ness.
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Fig. 3.20: (a) Nanoindentation MD simulation settings. (b) von Mises atomic strain dis-
tributions beneath the indenter at indentation displacement, h = 3.0, 4.0, and 5.0 nm
for as-quenched model (left) and pressure-promoted thermal model (right) for AlgyLaig
MG. (c) Load vs. displacement curves of the as-quenched model (black) and the pressure-
promoted thermal rejuvenated model (red). Loading force is divided by the model thick-

ness.
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Fig. 4.1: (a)Cooling rate effects and (b)compressive pressure effects for rejuvenation maps
that show the change of potential energy AE vs. the change of volume AV.
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Fig. 4.4: Cooling rate effects (R = 1 ~ 100 K/ps) for (a) provability density function
(PDF) of local volume strain, (c¢) the number of total full icosahedra (FI) and N-type FI,
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FI, respectively.
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The inflection point of volume

change vs. pressure curve is decreasing with increasing the cooling rate, suggesting the
inflection point depends on cooling rate and relaxation time allowed during the cooling

process.
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