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E ME, TTRARHAEZFEOHEKREIDAIHIET S Z & T, ZRREHZFEHL T
5. & b OEEFIE O Do > TS, TTRMEOMEZ D & Lz, RAFROREDZ <
FET 5. T ziZ, b FOEBHEILE <2625 < OBFFEE OBIKOMS & 7a>TE T,
LT, TN DMEZHRHT 57200 2GRN RE SN TE 2. LavLl, REICE b
OIEENHIENITRAEA R 55232 <, BUET ORISR Y N LR EDRkA 72538 T
b~ OEIHIEICE T HE5MTOI T\ D, ABFETIE, HEIICHEELRBHEIETSH 5
WATREITOA D = A L%, Mitthd, VR, HIEOBR»LHERT 5.

1.1 N34 BEEmYFo—IkER

SLRBHHEZAT S FOFEZ PR E O X5 IZHIE L TWD D2 & 5 I,
Ny a A UREE LTHONTEY (1), EHHIEICRE T 5 H IR 2R EE T H
L. IR LT, BEOREE TH 2 Bernstein 1%, HFEOWHHMIEH, 77205, fivFo—
WL THEMEEZFEREL TWDEWI YT UG [1] ZE L TWD. fiv Y —IidE
EIE T OB TH Y, HIEE BEOREZBS TIRTEMICERT 2. 20k, £<
DOIEBFE DB (EMG) Moy FY—a2 T2 LT, ~rrvay (W
DR 23R TWN D [2]-[16]. 7= & 21F, Torres-Oviedo HIFEEN AN 72 & D kDS
HlHE o> 16 /3 D EMG (ZHRMEITHIR 50 (NMF) 235 2 & T, #5880
MCEUT 2Ty —2MmH L2 [2]. 5612, Chvatal HIFEBEIZINZ 72 & & OREHIH,
BERZINZ T2 & 2DOHBT, BEIZIMZ 20 E EOTICBITHMHyFY—2HtL, £hb
DEAY @D TV =P FEET H 2 L &R LT 5 [3]. Cappellini Hidt hDOATR
EATHD 320 EMG ICEZ A BT 2 M+ 2 2 & T, ZAZ7HTEEUT 2 450/
V=LK XA TEHAED 1 OOy Y —% Ml L7z [4]. d’Avella 51 NMF ZHWT, &
TADY X T, KUK, BTHO 1350 EMG 06 2 A7 W THEET vy —L ¥ 27
B O —E M L= [5]. F72, Barroso Hi%, BHTEXFX Y 7 HOTFED 8D
EMG IZNMF Zj@Ef L, (7L~ Z ) 7hofhsFo—oitEzRr L Tna [6]. Zh
O ORERIT, HEEV PN BN )TN R 5 2 XA 7 BB O, & F U — B FET 2 FlEE
WERTHEDOTHLH., Lo T, PEOFHYFV—DEREDE TELEREEFNEI N
TWDHZEDNRBEIND.

1.2 BRI AZHIELTHSDH

HAXAFRE R AT A2 L T D O E WD W ERRT 5 Z &%, & kb OEB)H4E 4 B A7
THORZRFDNVICRD. REITIE, ZORIWIIHT 2FE2 O 2 i3 5.



1.2.1 HY—R{R:

nfEISND &, REZOEEZBHT HMHMENEET S, TOEED, s
KT D aEE = — 1 U Nmb Y, MESNEHEEHIEDL. 202 = XA HHIEK
SHEMEIND. RIS, HBHEINTOLM, HEEIZS U TR T D MRS
ERARME(R RS & FEN D . BRIEME SRR I IO S RO R E R 5 2 D EE/R A I = X A
ELTHLATWD [17].

Merton 1% = O EREME(RIES S DSEBNHIE O E/R A D= AL EZ 2, P—REELZIRE LT
[18]. P —AEFIC L 5 &, HARERILANAHE D AL T 2 v B = = — v IEBE S &
XY, BEMMERKFEN L CHELZHRETS. 20D, Y—=2EHITyET LV E BIER
N5, ZORHTIE, BIEMMERIIIIEFICRERTFA V2B TWAEIRESNTEDY,
NP RE K BL L THEBRMEMIEK S L 2V —REEN 2B @ &, fRITEM L7220,
LovL, BEEMEMIEN R O A 32D L ICHEFICRE R L O TIIRNZ E 0> T
% [19]. F7z, Bizzi bDFEBRIZE W TROMEMRE 2 MW Sz VBT OEEh 2 KB TE
7208 [20], BROEMEMERNR G OAE il = 2 —n  ~DOASE LTV DI —RIFLTIEZ D
AH=ZALEFATE 2V, ZTHHOBHRICZL Y, BIECIEY —ARFUISEF ST,

1.2.2 FH#S{RR

Feldman | Z4EHLAT X ORI 23890 & 5 & CEfER) 262 2 Lic L v BB 2 4L T
WD EBZ, PHRRB RS LT [21]. PGS, o FT V20,22, 23] &, ANET
IV (21, 24) O 2 FEIENTFET H. a ET AT, THHFERIL o EE = o —a v OiFE L
NEFIEIL, oS REEEZZILESES 2 LT, PR a 2 b S CEE 2 Ak T 5 &
LTWA., ANET/ATIE, HHARRR IXBREMIER S OBME X 2925 2 & T, P
ERENSE, FRICKIVRBEEES 24K TS5 L5, 2 LT, NETATIE, T8
U 2 @EE RS & L ORI O 1 command & @IPEHIEIOFE S ¢ command
ZRELTEY, THHRRITI NG 2MOES CEEBIZHIFEH L WD E LTS, aFT
e NETIVOERROEWVIL, FHARERDH O A T = XN EHENCFHIH L T E 9
MENHZLTHD.

HHRARR R A R 2 I35 2 & CIEEhZ AR L TWD L9575, LS OHuE T
D E N D BN 2 2. Bizzi 13 EWGE IR » RS2 83 2 & CiESEh &2 R L
TW5 LB 2 [22], Hogan 1% Z OB HAKEEE R 2 #2452 L7 [23]. 2 OGELIZE
W, T OFESRYIT — 2 I IARGE & FEEN D . RETE FIEVGEE ORI S, A
RDEENES & RO~y T EFEo TOUE, AT OIER) 2 £ T 5 OICiEh ) E %
RS MENIRLIRBLE NI ZETHD. Z0XHTiEIE, 74— KRy risEeHicko
T/MMENIC B )T N E ST 5 L D FHERRITHRREFE 0O F8R (25, 26] & X2 LTV
7z. Flash 1332 = L—3 3 N2 X DR E0E HIE R 0 2% G D FERE 2 kA 72 [27]. £ L
T, EBF OMIMEZ E LR ORIEDOESE DEA ISR E L BT, FEHuEIC LB,
FEDEALD e/ N 70D X0 RAEHUEZARET S &, & FORBOER) & [F U X 5 72 FEHuE D
HoNHZEEFEIELZ. L, %IZGomi b2 k- T, HEEFOMIEIX Flash & 23558 E
L7 LY S/ & <, IAREE b FEHNEIC LI N AL L MR EN D M R 2 — 2 L b 2



EDVRES I (28], b, EEVF OMIMEILE LI B ERIC R E N E WD T LT ],
F7o, FHERAOHIE S D b R BFHMAREEL L TW\Wienektn) Z L ThHs. Gomi
O 75 N OO A i & M A HEE L CLARE, S AR O GE 0 B X SRHIME D & 2 B RARER
EHEEGUIPHIC S 5 SN TWAD . ZRUSEY, SESERE O O Z R T 556 6
%75, Feldman /3 FH s KGN0, FFIZ AT 7 /L CITHEMZR PR OBLUEZE L T 5T, Hl
PEDENE WV D HFITEY BRIV TND [24] 22 FELTWAH [29]. 2L T, BIFETHF
flar ARG AT V) INEBNGIEOSEICB T A HENREHD 1 DL 7> TN,

TR ERIEDHERTE

ST ARG A KT D NS b B, b S OTEBNRIE 2 BRAE 5 7212, 1980 4EAR
DRI R A HEE T D 72O DWIZENR L < 72 SN TS . Mussa-Ivaldi 13 F5EIZEH)
BHz25Z LTk, BEMREFPOTEMMEEZFHIILZ [30). £ LT, FHERIPEEm LS
IR <AKAE L, MIMFEMHORE SITRETEX D0, TOHMXIZEAETE TSN %
WELTWD. 20k, i 5613F Mussa-Ivaldi 5 OFik [30] 2Lk L, REMRFFH OF IO
PE, CREVE, 1EMEZHEE LTS 72, Gomi HITTEHLEEA MK L- BT, LEEERED
O FIEMIEEHEE LTS [32]. D%, B 61E EEREES T OFLICEEZ 525 2
& TR A O i Sl 2 e L7z [28]). & LC, Mo FIemibE TR« %)« &
REESRMENEML, FEOFHEAHEIZFEIE LY MR R L. 2
NODMIEII~Y = 2T U F LY FRICEEZ 525 2 & THIMEZHEE Lz s D723,
EMC 2 BRIMEZHEET D2 HEBRESNTWD. d61%, 288 6 O BT T L& L
L, EMG 225 BRRAWEZHEE LT D, EDHIE, EMG S8 bvy 2HET 2 8t
TIVERBEL, TOETNVEZE L TREMMVEZRHT 2 FELZREL TV 5 [33, 34].

1.3 BLEHER

ATENCIE, 1EEhZ 7 5 BRI R Ml Z I L T2 0 &y 5 VISR 5 RGn 2 #7
MLTER, T ELEHAZITIBOIEIZED L IITRESNTWEIDEAS I =& 21T
FhREHDENOHDHHICERLIBEISES &) HHRER TY, T OB O LK

WZAHET D, LL, BEIZIZZD L D 2 FEREEE ORI, FRITEOLICHEHR -7

iﬁﬁ®ﬂﬁéh% AR5 ] O B LR TR R e~ VB O B &2 R D, N
@ﬁ&% BHNERD END L9 B TAREDORZERIMRHNZ b ofuE 2 i< [35]. =
@iﬁﬁ%%b%,ﬁ@%&m#ém;iﬁ%ﬁ@@%ﬁ [ZEAD Wi b3 e STV
5T HEZNAEENT (36,37, 38]. Flash &%, EBIRHIC 72 2 BEE O ZFfnii i/ & 72
LHEEIY, EEEOb o BiG#EE L L< 8T HZ L AERL, BER/INRFE AR LT [36].
Z OHFTIE, ﬁfﬁﬁmkﬁéioﬁﬁﬁ%éﬁbfwékwaé._®ﬁ %, AR
WOl [23] & LMD EN, BENF/NERD XD REIEEZREL TV & L
LCW/=. Uno b, EBNRFEIZH7 B30 N v 2 ORI D %ﬁﬁﬁmkﬁéivﬁ
HUEZER LTV EEZ, My Bl RRZRE L7 [37]. Z ORI, %Fwdﬁ
FED LIAWFIPHOEE Z HECX 5. RICZOFEIE, B by Tidde < EEES
e L72 hV7 TR TRETHDH EWVWI E 2D, Nakano HIZ LV ES FwﬁﬁMWdﬁ



FHICHBEIN TS, 2O L 9IZ, HuEEREZHRAT A 7-DICHA 2B fNIRES TS
HLOD, EOXIRBENIELVOD, THELARYICHENRHFET 200 E Vo 2N
B9 2 BAMERTRIIE STV, 7ok, Bt X ) lifix EGEE AR E L2 o
WIEEANETHL. STREDY X v 7 72 TEGEH)TIE, Lo L 9 Z2EEHE T3k <,
RO BE LA S T AR RIE BN - DIR B B AR S D & 9 B 2 AMFAE L [39, 40, 41],
T A~DIGH bITHhI TV 5 [42, 43].

1.4 HITEEFETODA DXL

b FOBTIZAFAE CROBERBHEEDO 1 SDTHD. & hOBTIZBWNT, HLIT
T —FROUBf &, EE) TR T — LLE TR F— A D 2 L TR —
BhEEEDTND ZEBMBILTND [44, 45]. ZD7=, & FOBTOA =R L%, LIE
UIRBINAR - CTET /UMb S5 [44, 45]. BINAR 7 /VIZZ B R T O =RV F — 205D
REEZHETHIOICAEHATH LN, TRV X—%2HET H A=A LZHHT 5123~
B THD. AU LT, ZEAMT [46] 1%, MTIEELEL LTZERRF A F I 7 AT b
0, BNROT X —ANPURETHLH I L 2rm Lz, ZORIZEL, rRy FILERAR
TIFDGEIIIRBNT, 20D RF— ANHENRINTND [46, 47]. 1 DIFAER 2~ — 2
& LRI OfE ML 27 1C kb =¥ —% AJ179 % hip actuation strategy, &
9 1Dl O E BRI DIEE MV 712 L 0 =k L ¥ —% A J19 % ankle actuation strategy
ThDH. THBITHELLIZBT O x 31— AT O RS O FEITEB E B O 438 T ek
SNTWD 48], £z, My Y —oOMEsHTHEN 6D ANTTELE OREMEHER S
HEEENME SN TWD. Ting HII_F ) I X A7 2 RBT 5120065 3 >0
Bt OIS S R LTS [49]. Zh b 350k, BIeZBIxt L Cmihd 5Hg6E,
RS Z BRI U CHIE T 28, BIOVEETIZER - BT 2L AT 5. FIFRZ,
e SITFF U O Z 0 & OIS TICOAET DT A R L TV D, OB REL
TR e a B o U CHIE 9 2 BEE 2 b DFE B & O Tk & J2 B & B - 35 i 9 5 Hee
% b OFEHUR AT O B FPEICIZZ FLE 4 hip actuation strategy & ankle actuation strategy &
ORFEPEHER SN D

EATIIT LITR R DA = AL L > TBEBOZRENK SN TND Z LML TE
D, BN AR TETMEEIND Z EBZ[50, 51]. BT EETICBIT DHERZERD 1 OR
HLOHBNCH D [52]. AT TIIVHFH CELOA R bR 252, ETTIE <&
ORI 2%, mEdh) & b ETIEE ISP TR /NS <R 5720, ST TIHLET
KNF— L EFB TRV F =P TET 2O L, EfTTIEFRMETELT S, 2%V,
LT T TTALND L 9 7B = L — EfLE = R F— ORI X TV, &
AT IS I EE) = L — L 7 E T R L T — B O e & O EERIZRIE L, BRI
M52 ERmbinnTing [52).

B hOBITREITOA B =X LT DHED L <1, AFHICEIT DT E2XRIZL T
WD, BOBIZR T D AMTICE R 2 Y TS W< O2FEL TV D [53]-[56]). 72 & 21,
Gottschall HIFRIEHITHO B~ OHELOEF) = F/LF— & JJZEHT R LF—Z2 R L, K
Wil COHBTRER, YGEAT THEB TR F— LB RLX =R 2SN TNDH Z



L& L72[53]. F£7=, Mclntosh & [54] X° Lay & [55] I$BGEATIZE T 5 45 BB O EEh =20
RS V7 OHEE ZATV, KEHE TOHSTEIGESTE TEENONRES BRI L%
wLTe. E6IT, Lay HIXBGEHRTICEIT 2 EMG OFHI ATV, A2 72 & LIEER, EMG
BT TOBIT L IGESITE TIIRES RRDH L AR L [56]. £ LT, #5132 Ok
RO, KM TOHT & SUEAT TITHHEARE R R 72 2 BRI 2R L TW\WDH 2 & &
R LTV 5 [55, 56].

1.5 £ITHEDRRE

Wl AU B EN NG DB 2 D &, Ty T U —ICBIT 5 AT [2]-[16] D FEIC
T SRR & LT, Pl & RIME & v 5 EEhFENC B o 5 B R AR A BE L T
BNEWNWS ZERFEFOLND. RO L HIZ, b FOEEHIENCE L TH L A SHEBENT
WD AR K AUE, PR IT RO b L < RN 2 R 5 2 FE O EE)
B EHICESTND 29, FD7=, EMGIE R ERMIMEOR T OEHREZER L TN D
EFZZ BN, EMGZObHDIZEEEMTZ M L iy rr—2Mmt LT, htishsd
T U—ICIEmERMBEL CLE . ZORE, 5272 — 08 Py sl o #il i 5
2L TV AR OFM AR L 72 5.

> I BT D EATASE [2)-[16) O FEICILET 56 9 1 SORES L LT, A EMF
Hra Wiz o O —H T, iV — OMRER 22 %51 2 E'EIICEHE T X /2 & v )
ZEBRBEFLND. ELT, BATMETIEIZLSOGE, Xy Iab—a (15, 16]
12 ETHE YT U — ORER & B 2 B 11T OFIR TR 2 IC £ o TV 5. ZORTEZ i
WT D120 EE LT, MBEETNVEBET L ENETOND. kD, vl v—
&V RPN e E o E & OBR BRI TENIL, BT Ul ORI & o
YRR EOEBHIEIC R - T RE L EENICGFHMITE 2026 Th b,

A S SCRIE DO HEE I BE S 2 S THIFSE [30]-[34) OFRERE & LTIk,  FEGEShH o A7 <l
PEDOHEEDTZ TVRNE WD T ENRET L. BHTOETR EO TMKIER)CIX, E#hf
[RGB ENE 525 2 ERREETH D, T, HITHR OB L1 TORLIREIME O HE
TE [57, 58, 59] L BIHI D AT BRE L 7= MIPEDHEE [60, 61] 72 EICH £ > TWHDONBURTH
D, FESEE T O AR OFERITIZ E A EH LMo TV, HTe, P sE
WHEE STV D ERGEBNCBI LT, FEx OEBIELE 36, 37, 38] MHER SN TIEWVD B
DO, TOVHEEE (HDH VX, EfuE) NEDXIITERSILTND DN E WD AU
U T2 BIZ T STV RV, FRGEBNCE - CIE, S H0E O G ARERR 72 72
W, PERPUEDAERA D= AL EEZLETHIETHTETWRVONREIRTH 5.

70, T2 & ZITBGEAITICEIT 2 S TAFE [53]-[56] OFREE S L CIE, fhtaaE, ST, Wl
PEE WD EEHENC D 2 EEAREEZBE L TRV E NS ZERFEF b5, Lay b,
HEEE, BT, EMG OZERND, AEHE TOHAT & SGESTT TIPSR B 518
BHRIE AR LT D 2 & 2RI LTV A8 55, 56], v T U — OB TIERY:, B/
ERREL A EHMHCHIBEON V=R ST\ 5 [3-[6]. ZD7=®, RO
BlRNBEBLETHZ LT, KFME TOT & SGESTIZHE T 5 GRS A & 2272 5 /]
R D 5. 72, Ting bR L7 HUH 6 O Wik [49] IZITAT O =¥ — AT



B9 %A T 7 ¥—"Td % hip actuation strategy X ankle actuation strategy & @ BEiE )3
S D., 207, HERAKICK > TR X —OZBEOBM AR E < R D
EATIZBIT 2 =R F— DA I =X L& fmi, Vs, BIEOBLENOHH~S Z &
%, SOEBTICRT 2 EERIE 2 BE T2 ECTEHHE LB OND.

oLk, FHHITEMG bR PO R AT 57201, b (A-A
ratio) & AFEHIFT (A-A sum) EWOBEERAIRE L, B &R OFEHUT X O Wit & fEdT
L TE72[62]-[66]. = 2T, MhfEHrbLidFEauahxt ~o@ER) 2~ > RO 2 EEH~D
o~ Rkl LT, Bt ~oE# =z~ Fofme LTERIND. £
LT, A& S ORI, RETAMPEORIENC T 5925 2 & 25, Al & & 7 Fek
b O NLFHDOET B W THEGRN I L OVERICHMEES LTV S [65]. S HIZES, F
B O (ISP & ISP OBEE 2 IS U, _EREGEENCE A rTRE A B T VIS T L
UM YT Y — O RS & - MR OHEE FIEARE L TV 5 [66]. ZOWBERET VIZE
WTC, FERDWER (=2 RARA R OVl Ry TV —2EM TRk SN 5720, T
V=R ORI IR T T EBIDS ISR 5. FEOIX, T2 XZomEET VICED
<y Fr—ofitiiEe EREREESIOEN T2 2 & T, FEfizH 0 & T BRIk
W TR o, RAGTHOEIHICTET 52 00/ TV —2dH L2 [66]. &5
2, WHEET VERNM LT, BEEEEE O FROPM SRz HEE L7z, L,
FE O ORI EIRBIEEES O A A XRICL TR Y, HFEAE TR EERBEHEEO 1
TH 2 TIGEENIRGIZ STV, E7z, BTRETO X O @SR, B FrICE
Ry D2 A7 BT DYV — L@ bERm STV,

1.6 XHAEOAR

AL TIE, £, Y= RO R T &RENICER L BT, gEleT L
IS Y F P —0fHiEZ HWT, iy —ICBET 2 SATHED 2 -0 RERE & & iR
THZEEAMETSH. £ LT, HEMICEE, FTEIES Th 52K FE ToOB T, £17 (LA
T, AR TIEERCE 20V R Y, 17, EfTIIKER MLy RV EToOE#2ET) , .
AT Ol SN B 2 v U — 23 5. Sblg, sz o — o8k
B, # A7 M TOELMEERD. EEFED, BIFEHICERRHDLIINLDH AT
BWTH YTV —DHLPMEEZRRD Z L1, 2RI AT ZEBTLHE PR ED LI IZHK
DOIEMZEREL TWLONEHLMNIT D ETEETHDL EEZOND. KRIZ, HIGEIN
KEWZHEMG ZiHlll LT WEITICEREZ Y T BT, WEET VICESS FEEZ A
T, ETHORIEO N S EE & A OREE 24T 5. T IRGEEh O Pl S EE SR X o
FHUOHEE L S ZITEENMT L A SRS TR, ZD7=8, E7H 0 R 50 WM S
BEMIMEEHEE T D 2 L1E, EfTOEMEFZEAT L ETEETHL EEZOLND. &5
2, BT X2 e Pl SuE OB 2R, RS A S LE DB A 1 = X LB
HIGREIRRZT D, RIS, WET R —OFIRNEITIZHTO L, EHEAEICE -
THFH T X —OELOEmMMN K E B2 PGERTICEREZ Y T BT, SGERTH
DIFHI RN —OEE) & i, Fa, MItEoRREZTH~S.



F 28 WYWEETIIZED(HIUFO—OHMEB & FEA - RltE
DHEE

KETE, EHEOSN—FRRET S, FHENICHT 5 L/ FHES) 8 TR 28
EF TS T D — Ol & TR - BIMEOHEE 17 [66] 1TV Tl 5.

2.1 BHEBHRETIL

Bl O —OBIEARRT 512 H 1= - THERIFE L O 2 ATREIC T 5728, K
MR T HIERMITE & R ICRIRmICOAFER T 5. Fig. 2.1A T X 9 72BN, MR
i, RBEfiZATLRREND3 Y 7Dt O FEET MTEBNT, FHIEE) L P a0
HEDOREREEZD. ZOEFETIIE OO Mi~Mg %8 L TEY, TNENKED, W
FER, RER TBAAREEAZ R NA A NY 7, RERER, PWRIAR, KR BEMEEE, BEE
i, BIZEH CTHD. ZNOOMIE, RIRENO FEGESICIHE W TCEEITIEH T 50 TH D
67]. BRI # R & Lz vy FEEE R % Fig. 21B®J:9G’Hﬂé'§b Exf%@ﬁ/ﬁ%reh[rad] 2
%%%Fﬂdmﬂ JEBIHIA L 0, [rad], MEBAEI A Hls & 3 DAREEAZERIZIS T B R SEALE T D)

R[m] &fRfy @rad] # HWC FEOFHEKET VEZEHT 5. @k ZINEN DA
Hh,Ep[rad], O gp[rad], O,pp[rad], Rep[m], Pgp[rad] &7 %.

2.2 FOETIVE

fHEOTZDIT, ERET MR CREIEE) & 500 -7 5 o0 BAFR 2 FRFE L 7= 3Lk [65) 12—

T, FHETATHLUTD3IDERETH. (1) KiE FROV V7 EERTTHS. (2) 8
DDOFDET—A L T —LFTTRTEHELL, FIZ—ETHD. (3) 8 OO OFFMEITT N THE
L<, EHIESIEGOEBEL m;[] 12 X > THMAREL k(m;)[N/m] & BIRE L (m;)[m] 73
FAbT H33xE LCUTO LD ICRBLITE, BEREIIATES) & LeBIBIfRIC, RIS
#h & e O BRI H D

fi - k(mz)(lz - lnat(mi)) (21)

k‘(m» =cim; + kmin = Clmi (22)
Co Cy

ln i) = 5 7 ln min — X ln min 2.3

ot (1) M + Kmin/C1  bnat m;  fat (23)

%ﬁbflﬂiﬁl/‘k%@#@ cz[m] il:l:fﬂm%( lnatmm[ ] iﬁﬁﬁ@Tﬁﬁfﬁ)é. it, m; =
mi + kmin/c1]-] THD. LT, mZH 670 Tm; LBV TEmaED 5.

LRBFFIC B TR E L 1T Fig. 2.1B © L 5 IR0 @4 Bkd 5.
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A B C

Hip joint
M, M,
My M
Knee joint
A
Ankle joint

Fig. 2.1 Musculo-skeletal models of human lower limb. A: Four pairs of eight muscles. These mus-
cles play major roles in locomotion in the sagittal plane. B: Definition of the joint angle
and polar coordination. C: Definition of the radial and angular directional stiffnesses.

2.3 EfEhtt & FiEiE

ABFIETIE, FEPUHA OWFNEICE B L THiETUL S fifEm e WOMEEZEAT 5. )
FEBE -] & RS si-], (= 1,---,4) BLLF O X 5 10 E# S5 [65).
- M2i—1 (2.4)
Maj—1 + Ma;
Si = Mai—1 + My (2.5)

BHESITHATHIZEICB W T, H-ESERICBW TR & LS B-fHte2 A5 A LB
ETVT, HETUITBE S ORIEIN, AR REERIMEOREIC T 535 Z L 2B
FRES KL OVEBRAVICIRGE L T 5 [65]. TN OfhiEbii & B ofksE % Table 2.1
T el xR, BEBEEI o 8 My OFIEEh my AL, BB O My ORE
Bhmy DT 5 & X, TP r IZIRBIEI O oM & L HIEiNT 5. 2ok oI,
BN A FR S PUte & i PURIC AT 2 Z & T, i ~OEEES 1 5 Wty & MM o5 %
M TEx 5. v FOEEHIEICE L CTEERE Th 5 i afkin (\E7 V) I,
HOAX AR VLB IR D Sl . & WV 2 F955 9~ 2 2 B OE B RS &2 fhIc k> T D 29 £
7o, AEED O R R EHIPEOEHR AT 5 2 & T, RGOV AT L% L0 R HfE
TEHLEWVWZ D,



Table 2.1 Definition of the A-A ratio and the A-A sum.

’ Label ‘ Definition ‘ Motor function
r my/(my + msy) Hip-joint EP extension
ro | mg/(ms+ my) | Hip-joint EP extension and knee-joint EP flexion
rs | ms/(ms + mg) Knee-joint EP extension
ry | my/(m7 + mg) Ankle-joint EP extension
S1 mi + mao Hip-joint stiffness increase
S9 ms + my Hip and knee-joint stiffness increase
S3 ms + Mg Knee-joint stiffness increase
Sy my -+ mg Ankle-joint stiffness increase

EP: equilibrium point

24 FYFO—OHMEERETEHRIDME

AREITIE, BHiEE & R ROBERER~S. £ LT, EEOITNV—TRRETHHY
T —oftE L R R OHEE TIEC OV TR~ 5.

2.4.1 BHEBEBETILOEHIZE

LIK, Fig. 2.1A OFF /L ORISR & BRI 2 B OF S D2 % 2 5. PIREE (6, =
Ono, O = Oxo) \ZIIT D My~ Mg OFTER) & ik Z m; = mo, I; = lo(> lnatmin) G=1,--+,6)
ET5H. TIT, TRISADBEN TR WER Rk EEZ 2 5. 2oL &, BEAE L
HE# S % LW DT,

0 = Onpp (2.6)
O = Orrp (2.7)

DV NLD. F£72, FEEICBIT2E—A 0 FDOODEWVWE Y L FOXMNLY Lo,
—Dfi+Dfs—Dfs+Dfy = 0 (2.8)

ZZTC, Dlm] 3PS L ERAEIOE— AL N7 —ATHD. 51T, IKBIF & EBIEI O W)
%%ﬁﬁﬁ)%@%’fﬂi%%h%h AHh = Qh — Qho[rad], A@k = 91{ — Hko[rad] k‘é—é ZD <E %ﬁ%
R & B A O BRI RTIEE D B,

D : Aﬁh - ll - lo = —(12 - lo) (210)
D : (Aﬁh - A9k> - l3 - lo - —(l4 - lo) (211)
D : Aek - l5 - lo - _(ZG - lo) (212)

7%, LT, X (28, (29 2 21 2ftAL, X (22), 23), 26), 27,
(2.10) , (2.11) , (2.12) Z WA 5 & BIERFl S & FiEBIOBIRICB T 2L T OX%E
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2
N

my + Mo + M3 + My —(m3+m4)

Aby gp
Aby gp

—(m3+m4) ms + my + ms + Mg

(2.13)

o — lyat,min my — Mg + M3 — My
D _

(m3 — MMy — Msy —i—mﬁ)

ZZ T, Aeh,Ep = eh,Ep — eho [rad], Aek,Ep = kaEp — eko [rad] Tg?) f) .
SBIT, WEHk r, &R s, (0= 1,2,3) 20T (2.13) 24T 5 LU TFO X
22D,

Abner | _ 2000 = bavwin) | 41 | 5, (2.14)
Aby gp D i
=72 L,
1 i —8182 — 8357 |
_ Cers 2.15
g 8182 + 5253 + 8351 - 219
L —8283
1 [ —5152 |
_ 2.16
% S152 + S283 + 8351 s (210
| — 5283 — 5351 |
T — %
R (2.17)
T3 — %
Thb.

242 UFO—ROKMILEDFO—RAT

i O B D IR S R 7 ZERIZ 38T, MRS LTI W B SR & RO 22 [ & BAE RIS
IR H D Z & 2R LT 5 [68]. (2SR & BB & Fls & U7 MREEFE I & =
Az - OO O AEZ TRRICEH T 5 &, S FRINCEBEEIZ I 1T D 5 R D 2L
(ARgp, APgp) & PEEN VT8 B DIENL (Aby pp, Abpp) PRBAFRIZLLT O X 51 s 5.

ARgp

2.18
Ad (2.18)

. 0 —LSiD(6k7EP/2)
1 —1/2

Aby gp
Aby gp

T, Lim]IZKREE TROESTHS. A (2.18) 12 (2.14) Z2RATH LU TORAL

_ | es(brp) O a3
0 ca || (g—gs/2)"

[y

i
)

ARgpp

Ar (2.19)
A Dpp




22T, es(bepp) = —2L(lo — hnagmin)sin(0ygp/2)/D(< 0)m], ¢ = 2(lo — lhatmin)/D(>
0)[rad ITEBERD TR, Vo7&, =AU M7 —L4, BESOEEAEICL > TRELHE
Thd. K (219) 1Eq, g B —ETHIUX, BIVHROEN & ST O BEfR
MR NIHDZ L HEWT 5. LT, ZORIIMHIHLHLOENL~T MV Ar(t) & s
EIFELTRED 20D Mg, BE U q, —q,/2 I L > TEOND FRA~FET 5 Z LT,
R TB R OB EHETE DL ERLTVS. LERST, q, 3EESH, q — qy/2
IR A IT 10D RS R OEEN T E S 57 MLz .

X, WASTROKEERT MLERDD &,

Ur = CI2/|QQ’ (2'20)
ug = (q,—qy/2)/|q; — q/2| (2.21)

LD, up, ue (L3 ODMHIEHULOEEE, RATR~DOFEDNT 2R/ L TEY,
OWFABRZERILL TS, 22T, ug,ue ZENENENES W, WAFTROTFT—_7
MLEEFL, EEPMELZATLIHY Y- LTS, 20X i, BEET I
DWWV —ORINEIZ LD, PR ORI R 7 T EEI DR R i 2 ) Y — 2 T
5. ET, up & ue lTEZRTHIERY Pl uges = (up X us)/|(ug X ug)| OH L
SV R ORI ERET G LRV, £ T, upxe ZEEMOT T V=7 MVEERTD.
AHEHTEL v(t) = [r1(t), ra(t), r3(8)]" DRFHIEAFY 7 O OB EEZ H LT T Ar(t) =
r(t)—7 &L, B8, RAFHOTFT—7 hré Ar ONFE wp = ug. Ar,we = ug. Ar
N, WAFMOYFU—R2ar LERT S, X (2.19) 1, up,ues AT HZ LTI
LIHZ L T ORI G LD,

—REPO(UR.AT‘ = WR (222)
@EPO(’U,@.AT' = Weo (223)

L7=oT, VI V—RaTIE T FARA L N THD RO SICEET 5 &5 %
HND. EEE, 21803 SOREICHE»ND LT, EREBEEEH TS U—RAa TRk
BepTy RRA LV b Th b PO VHAICHET 5 2 ENELES TS [66).

X (2.22), (2.23) 1%, v FV—RAaT wp,we HMUYNIKE LRSS Z LT, LIEOEE
J7 1) & AR A8 7 101 O oAl s#GE (Rgp, Ppp) ZHEETEXHZ LA/RL TS, 22T, AT
FEBRIICLLTFORICE Y v o—R a7 2 EAR L, &0 aiuE 2 He+ 5.

Rmax — Rmin

* *
R,max wR,min

@max - (pmin
QSEP = (’LU@ - w@,min) + ¢min (225)
W@ max — W min

ZZ7C, Ruaxs Buin, Pnax, unin 1EFZNTNH AT HD R E & DERIELFMETH Y, wh ase
W min> W maxs Womin (3 TALLENT AT PO wh = —wr & we DRKEEH/NMETH D
(Rgp, Ppp) & % A7 ZERINCERL LT (zgp, ygp) = (—Rgpcos(Pep), — Repsin(Pgp)) % &
B HHEE L7 RSl iuE & 1 5.

AEOE R, VY —_T MABRHHERRMORAZL > TREEND Z & (Thebb, &
B PRRE 2 AT 2 Y I XM T 5T AR RMED N T AL TEED 2 &)

Rgp =

(w;} - w;{,min) + Ruin (224)
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L, VT VmAY BB E ThIVT RS TR O & R UCRIE Y BRI Y
MOZETHD.

2.5 RERIEDHE

AEITIE, RIERIPEOHEE FIEIZ OV Tl %. Fig. 2.1A @%?/b@ﬁ&“l@e‘ﬂﬁﬁk%%ﬁﬁﬁ@
2T Oy DI EZ XD, PHREEN DRI 1B 2 T2 L&, IRBEE & BREAHEIC
Zrm[Nm], 7[Nm] D b2 REATS. 20L&, FRE ﬂ%k%%k%%m#%ﬂ
ZAVAG, AOL AL L T, 0y = Oy + Ay + AG] 0 = 0o + Ab, + AG, TH 1DV H ST
ET5. LT, ZOLEDOM; (i=1,---,6) OHEZEL, WEHE fleT5HE, TR
YEDOOYENLD,

n = Dfj—Dfs+Df—Df; (2.26)
n. = —Dfy+Dfi+Dfi—Df; (2.27)

MRV SID. F£7z, BMEAKRLD,

D (A0, +A0) =1 —1lg= —(l,—1) (2.28)

D - {(AO, + AG) — (A0 + A0y =1 —1lo= —(I; — 1) (2.29)

D (A +AG) =1 —1lo= —(l5— 1) (2.30)

MRV SIS, Lizd-C, & (2.35), (22712 (2.1), (2.2) ZfRAL, & (2.3), (2.36) ,
(2.29) , (2.30) ZHWTEHT S &uTmﬁ%ﬁ%%.

[ h ] _ D2 [ (k(ma) + k(m2)) A0, + (k(ms3) + k(ma)) (A8, — AbY)

Tk —(k(m3) + k(ma))(AG, — Ady) + (k(ms) + k(me)) A
_ 01D2 S1 + S2 —S9 Gh — 9h0 — AQh (231)
—S9 Sg + S3 Qk - ghO — A@k
X (231 kv, BN K, = 500 Tk FLLFD L 51725,
Kg _ 61D2 S1+ S2 —S9 — S1 1 S2 —S9 (232)
—S2 S+ 83 —S2 S+ 83

ZIT, 5= D) Nm] Tho. o, DIFERAROTes bEHKTHS. LIsi->T, Fig. 2.1A
DT L OREERIVEIEETR OB AR LW RETE L. £ LT, BohnE & BgimE
EBIRMNT 5% = 4751 J = SS90 & T, BRI Ky 2 U F O & 510 x 22 i
WA HZ LT, RERMMEK, 2155,

S1 + S92 —S9
—S9 S9o + S3

ZUT, RAERME K, 2R L L TR LB, BYEIA L AR A 7 ORIME K R[N /m),
K[N/m] % Fig. 2.1C DL 5 10E#T 5. &5IT, ky = Kp/esm™?), ko = Ko/c5/m=2) %

K, = (JH7'KyJ ' =c(JH™! J! (2.33)
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ENENEEE, RAFRMORMER 27 EERT D, kg, ke ($AFEHUM s1~s3 & Fig. 2.1B®
EOCER SN DB & BB O A 0, 0 NOEITE, B, RA MO RERIME L
EOMBEND 5. FEE, EREREES) T, WEETT MIESL FEEZ AW THIEEID S HE
TE ST FAEMIMESEENEAIC X 0 HEE S - FERMIMEICHIST 5 2 & BEFEZ TN S [66].

2.6 REHEETEREEREERIEDHETE

AREITIE, RIS & 2 BFERPEOHEE HFIEIZ DWW TR 5. Fig. 2.1A O 2D A

BEZD. HIHMREE (0, = 0.0) (28 D My, My OFFEE) & k% m; = mo, 1; = lo(> Luat.min)
(i=7,8 &T5. ZZT, FTRIZADHEBNTWARWERRNZRREEZE XS, Z0Lx, B
i P & BT S LUV T,

0. = O.pp (2.34)

MY SIS, 72721, Gupp[rad], ZEBEHOTFHEETHS. T—A L FODOVANVIVLT
DALY LD,

—Dfr+Dfs =0 (2.35)

2T, Dm] IZRBEEHOETE—AL VT —LThHDH. S5, REFHOVHIRED S DN
A0, =0, —Oypfrad] &35, 20L& fHE & BEIAEOBIRITRMIEEN D,

D : A@a - l7 - lo - _(l8 - lo) (236)

L%, LT, (235 120 (2.1 2UAL, K (22), (23), (234 (2.36) ZHW
THHS D & PAE PR & TR B OBIRICEET 2 L FOREES.

lo — lna min
(m7 + mg)(0agp — Oa0) = —OTt’(ﬂ”w —mg) (2.37)

ST, r ZAVTR (237) 2L, 20 — laomin)/D = cs #RAL, 00 =0LF%
LT, BT A L T O BIR A R UL T R A8
1

Qa’Ep = C4<T4 — 5) (238)

X (2.38) (TR ORI O WHFBIR AR T ry O REH PR ZHETE LI LEE
BRLTW5D.

iz, oL EORBEEHMIME K, [Nm/rad] (355 O k(my), k(mg) ZHWTELTO XL H 1
R END.

K. = D(k(m=) + k(my)) (2.39)

s, &30 (2.2) ZHWVWTH (2.39) 2L, 1D?> =c; AT HZ LT, EEIERIME L 7
PR ORRE R TUTOREES.

K, = c¢5s4 (2.40)

0 (2.40) 1FRPHE OFEHUH T O iABILR 2T 54 20 D EBIHIMIEZHEE TE 5 2 L 2 F%
LTW5%.
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¥ 3F TEREFHIBTIAHUTO—DOFRENE

KRETIX, fiv TV —0 Pl S ORI R e TRENCESREZ Y T BT, 1Ekofhyr-o—
BT 222 BT D, (1) Efrm L RIMEE WO TFEREBE L TR, (2) iyt o—okk
RERRE 2 EEINCFHME TE TV, LW 9 2 DDMEROMREZRAS. £ LT, Yt
ET IS U FU—otiEE2 VT, BEMICERE R FTHGES TH 58517, E17,
POEHAT I O T B b D Yo — 2T 5. &5, iHESni=myrF+o—o
WebRE T, 2 A7 BTCTOFEBPEETHRD.

3.1 ZEEBRAE

3.1.1 HEE

TR R ANBVET 4 A~G LT RN LPE 14 H (22.8+£1.45%, 169+5[cm], 55.3+4.2[kg]) 3
FERIZAR T T 4T TEM UL, RETITEN I FRINC AV R D BN BT 5/ > F 2 —
OFERNEZE RFHET A T2 DITHAT, EITD2ODE AT %{ToT-. &I, v TV —DARE
HaE X OBEICHRAET 2 2 L2 B E LT, EHOEENKEmH TOSRTEIFIRESBRD
WIEAATOFERZ 4 £ OWERE A~D Z X RITBINTITo 72, #RE 2L, TOEROBE,
NEIZOWTHS R ZITV, KA D EBRBIMORE 21572, FEBRIIKBRK R T
WZERMGHEEZ B 2 OKRDO T, ZEESNED HHTEFH S I/, FHITENT-.

3.1.2 EEIETA
17

R 1X R L R/ (SportsArt Fitness T650m) E T4 O X (2, 3, 4, 5[km/h])
TI5 MM, SMTEB AT o7, R Of T EEMRRIC B HEMRZ ALY 117, Fig.
BAARTHMMEH (AALETE (BF) , WEB-5000) b L< X Fig. 3.1B IR d HE#g
R (HASEETZE () , WEB-7000) (2L, E#iHo EMG{E %% 1000[Hz] T&HHl
L7z, IR L7ZfE, Fig. 2.1ART 8 THSH. F£72, Fig. 3.2A R T kL H— b
Z Fig. 3.2BO L) IOz AL, BRESSMAEFHT AT LN (=v % (k) , F-SCAN
MOBILE) # MW CEE% 100[Hz] TEM L7, 512, Fig. 3.3AICRT Lo Me~v—h &
Fig. 3.3BIZRTE—Ta Ty 7 Fy W ATEZHNT, KFRNE—Va vy 7 Fr—v
A7 2 (NaturalPoint, OptiTrack) (Z& V0, BRI, BRBIEI, @RI, TUCoER 2 IEW %
100[Hz] TEHAI L7z, EMGEZRHIS 2T &, IRECIFEHAIZ AT &, EEFFHIS 27 A%
AL T od. BITEBROKT % Fig. 3.4A 2R T
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E1T

BV FHNC AN R E S B BT L ETHOT TV —OREMERFET 72012, #
ITOERZIToT-. FRFII Ly RIV ET4@Y o s (7, 9, 11, 13[km/h]) T155
M, EfTEIZITo72. EMGES L BE L EEFIIATOFHO & & L EROFHIIZ1T -
7. BITHEBROBE % Fig. 3.4BIZRT.

WEHT

) DR K TOHBT LITRE S BARDICEBTICBIT D3 F ¥V — OREM 2 K
RET D 72012, 44 OWBRE A~D &3S BM CTYGESITOEREIT o /2. WHRE 1L 9 8@
D OBRMAE (M2 ST, 0, £3, £6, +9, +12[deg]) #fR-7= bl v FILk
T, BBEOARSITEREZSZE L GRS 4km/h] T 15 M, SMTESZ1To72. EMG1E
5 EIEE AT ORI O & & EEROFHIZTT 72, £, R BRIRHTEHI L7z, 4
ITHEBRORET % Fig. 3.4C (IR T.

3.1.3 T—4201E

FHAI S 72 EMG E Ny RS2 7 4 v B U v 7 (10-450[Hz)) (R B AEAT CEEHERIC Thh

TWHMEETH 5 [69]) , Fiifl, i baITo721%, RARBEENGHER O EMG (MVC) Tk
45 Z L TEMG #IEHIL (AMVC) L7=. MVCIZHOWTIE, FREFEE S LT kit
T 1RRAL [70) 12 & 0 EBRBIAAERTIC EMG 23 L, Rk 7 o2V 07, Bjifk, F
WL EAT- 1214, TORKMEAE MVC & Lz, &5612, Fig. 3.5A O X 5 (A REOEEH
7% b LIZEMG 7 —# Z B b FHE I E T o 1T 2 &1 10 23478353 81
DL, A7 T4 UMY KEHOT — 2 % 0~1000[%] IZEBUL L7z (Fig. 3.5B) .
D DOFIERFEMOEAR TS %2 & 5 2 LT, KRBT D HIEME L L0 E1T -
2. U EOWMEIZ L D%MVC &2 m(i =1,---,8) & Lz, &51Z, EMG 75 iy & mik:
DIEREHH T D701, kbt r(t) EmfEoif s(t) (=1, ,4) Z%9MVC Z AT
Table 2.1 DL O IZHH L. £ LT, WEHET MIESI T o—otikic kv iy
FU—EHH L.
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Fig. 3.1 EMG measurement system. A: WEB-5000. B: WEB-7000.

Fig. 3.2 Foot pressure measuremnt system. A: Sensor sheet of F-scan. B: Sensor sheet inserted
in a shoe.
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\ Zaygs*® /.
\owus®

C’) Oprilrack

Fig. 3.3 Motion capture system. A: OptiTrack. B: Markers for motion capture system.

Hip marker

. Knee marker
Wireless electrode

for EMG measurement
Ankle marker C
Foot pressure
measurement system
Toe marker
Treadmill
Jack stand

Fig. 3.4 Experimental setup. A: Measurement of level walking. B: Measurement of running. C:

Measurement of slope walking.
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Ist gait 2nd gait
cycle cycle

1
: Left heel contact
20
O =
> X
>
LI W N .
HSOO
=
(S
s
> 0
0 Time [s] 4
20
O =
> 2
> § é
X =

Gait phase [%] 100

== Averaged data

=== 10 cycles’ data

Fig. 3.5 Averaging procedure of measured data. A: Dividing procedure of the measured data.
The Measured data were divided into gait cycles. The beginning of the gait cycle was
determined by the left heel contact based on the ground reaction force (GRF) data. B:
Averaged data for ten consecutive gait cycles.
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3.2 #HER

AEITIE, 79, ¥ A7 POHIEEORSRYINZ — 2 L iidgditt, Mot O R EHER %
RY. Eie, XA HOEEET —X HoRT. RIZ, MELE T VIS W T S e
U—ThHHVFT =R "MVERT. Z LT, FATHOB T U—DEEEFHDH Z & T,
BAT DR —DORENEERGAET 5. RIZ, fiv Y —2 2 e Pl Oz R -9
KB PR 5. F72, B, RAGFINOR YTV —0EREGDETH 27 PO
PULORFEHERS 2 EORERITEX 200 %1, sttt o2 by & e i s O BB E
BE T OEGERHMET 5. &EIC, WBRER, ¥ A7MTEE, RASFBROHYTY—0
AR 2 RRGET 5.

3.2.1 EMG & fhsintt, Siginfn

AT, ET, SWESTH O SN HIEEI ORI N Z — > % Figs. 3.6~3.912 1%
BE Sy (BRE A) R~ Az EAEN, BT km/h) , E1T (A1km/h]) , JGEH&
1T (6]deg]) , WEHAT (-6[deg]) TH 5. KHOARMEEMBRIT 10 BHTEH 55 OF-H) & 1Y
Az L TWD., EOXA7 THRBOEIH, HEERZTIRE T RWeD, /A
RENTH BN D Z &<, EE 2 EH TS0 ORENE B &2 KK L7Z EMG 23 T& T
fclnwzx b, ZA7 B TOMEEORBRZ AT 5720, Figs. 3.6~3.91Z- L7%MVC
F—HEHELDTHIBE LI- b D% Fig. 3.10 12 1 #BRES WBRE A) =T, ZhAbrbHE
H SN & SisHiRn O EHER 2 Fig. 3.111C 1 #BRESy (W& A) R~

INBDOX AT ITEWEBFZIC B )IFINC L ERRH D720, ¥ A7 TAMVC R
s PiEE, AP RER > TWAH Z ENbnd. T2 21F, B OFA S o HI#1 %5
T2 r %, 6ldeg] DYGEATH OB T 0[%)]) BEHEOX A I 7 THOX A7 L)
EMREL o TWD., TS, WiE%E L5790 DOHERET) 215 2 72 DI IR BAHET O i sl 2 K
MBI ETWEMRTE 5. F7o, KB & BESORPEDOHIEIZEF 5T 5 s 1%, &
T OEEREH CRITA 0[%) fHED X A I v T TO X 27 L DERKE L 2>TnD. 2
X, EEWIOZOIZ TRORMEZERKIE TN EEZE LS.

3.2.2 EFHFET—4

AT, EAT, YOEATRER) ST — ¥ & Fig. 3.1212 1 #lBRE Y (BBRE A) =~ Zh
HOZ AT ITHWITER PN LB PRI b 2R N H L5720, EMG 7 — Rk, #HE)y
T B HATTRRSTWDHZ ERbnsd. 7ol X, KBEAE 0, 1%, 6[deg] DYGE
AATH O GRTH 0[%) Rtk XA IV T THOX A7 L 0ERKEL Lo TN5D.
F72, EATHOBBIEAEE 01T, ST Td 5 ATH 20[%) (ST ORRIE ML & 2 7 L1
ENRREL o TEY, THBWINOZDBENEE L T2 Exbnd.
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Fig. 3.6 Muscle activation patterns recorded from eight muscles of a representative subject (sub-
ject A) during level walking (4[km/h]). The thick and thin lines indicate the mean and
one standard deviation within ten consecutive gait cycles.
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Fig. 3.7 Muscle activation patterns recorded from eight muscles of the representative subject
(subject A) during running (11[km/h]). The thick and thin lines indicate the mean and
one standard deviation within ten consecutive gait cycles.
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Fig. 3.8 Muscle activation patterns recorded from eight muscles of the representative subject
(subject A) during slope walking (6[deg]). The thick and thin lines indicate the mean
and one standard deviation within ten consecutive gait cycles.

22



%MVC %MVC

20 20

my [%)]
ny [%]

20 20

ms [%
my [%)]

60 20

0

ms [ %]

|
mg |

20 50

my [%]
mg [ %]

0 0
0 Gait phase [%]IOO 0 Gait phase [%]

100

Fig. 3.9 Muscle activation patterns recorded from eight muscles of the representative subject
(subject A) during slope walking (-6[deg]). The thick and thin lines indicate the mean
and one standard deviation within ten consecutive gait cycles.
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S RN\ I N N
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=== Slope walking (6[deg]) Slope walking (-6[deg])

Fig. 3.10 The %MVC data of the representative subject (subject A) during level walking, running,
and slope walking. The %MVCs were different across tasks because of the kinematic
and dynamic differences across tasks.
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Fig. 3.11 The A-A ratios and A-A sums calculated from the %MVCs of the representative subject
(subject A) during level walking, running, and slope walking. The A-A ratios and A-A
sums were different across tasks because of the kinematic and dynamic differences across
tasks.
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Fig. 3.12 Time sereise data of each joint angle of the representative subject (subject A) during
level walking, running, and slope walking. The joint angle patterns were different across
tasks because of the kinematic and dynamic differences across tasks.
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3.23 LFIO—RH KL

M T ST SNy o —TCh D VTV —7 hlug, ugs % Fig. 3.13
I 1HEBRE Sy (R A) 9. PO T — R~ [F X ROV F =T MLV OEE &
EHEFETRLELOTHD.

BRROBDFHY T O—DFREME

T, FATHORY T VDR ER S, F A7 POR YTV DR E BEES
%. Fig. 31LITRT LIS, WGP 51, 50, 53 137 A7 FICKE S LBTH. 20720,
BERSHRD DRI SRS T V=T 5 ¥ F V7 b upug b5 A7 HICKE <2
W BARIR DS, LinL, v FU—~s MABKRAY MThs 2 L %525 & Fig.
313 DT — = I/hEL (D 7TH22(%) DRE X)), HrFY—FF A7 HIRIEET
Bot- b2 D, ZOMBIITRTOL AT L WBE CHE L TV, foT O—id 4
2 HOFRERChHolE WD, T, FAZRIHLF V- N —ETHE LIk,
JE S S DT & TR ICEI IR W BRI R Y S o (R (2.19) , L IR
S R AR T X RN S 5.

fr T O— DR DT

Z T, WY R R OSSR e TR E E TS 5. Y —Th DY
F =T RV ug, we \[EHTEFILE DB Ar ZEEE D & RS S OB TR & A 7 1)
DOEBN ML= (N (2.22), (2.23)), ur, ue (TTNEIEI TS OB T E, KA
FRIDEENZ 5T 5. 11 —ry —r3 ZEIZEB W T up, ue DRI L TWDEEE, ug HRIA~D
hfEHL L OB ENIENE T ERA T ROV — AT wp,we D)y, T7bb, @R
6] & AR T [0 D S O T ICEEE 52 5. LvL, ug,ue DNEHWIZELZ L TWAHA,
ﬁ%ﬁfﬁtti)‘ URr jﬁ‘ﬁ:’ﬂ’\?é%] L/VCI(I:) WR @yfz)v}é’ﬂﬁ L/, we ﬁi’jﬁ’”ﬁ L/fcﬁl/\- %@ff_&), UR L Ue
ThHIHIGE, up TR TEHMEEER T AICOAEEB S IOMIELRF>E VW2 5. FERIZ,
ur L up THILIGE, ue (TR FM A LRATMICOLLEEIELERELFOEVRD.
FIT, AW THIHE SNy T —Nup L ug =T ONEFTRD7=DIT, up & ue
OWNFEZREH L. SHEOMSE, WEIZ-0.01£0.03 (TXTOHRE L ¥ A7 TRE I
WNAED - + (R 2E) EIERIZ 0WZIVME & 7oz, 2D, T XTOLHATur L ug
Tl SN TV, 22 EnD, i SNy T O — 13T e Je ol s & B 7 )
ERATRICOARESELHREEZA L T\ E Wz 5.

BRRLEOEHADH LTS —DBHEER
TITE, X R ROFET vy, rs DZALA RS S O LB EET ST 2 E A

WD, ZIT, iy, BT VoY Ml ug, up DEREDETEORERATE 50

MEFIRD 2D, 11— 19 — 13 ZERNTIBNT wp, g D3E D Tl O 5 C[%) 2 AT X

IR LT,

~ 2b, Var[ri] — Var[ug,s. Ar]

a 25':1 Var[r;]
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Fig. 3.13 Muscle synergies extracted from level walking, running, and slope walking of the rep-
resentative subject (subject A). The error bars indicate standard deviation (SD) of the
variability of the synergy vectors within a trial. Small error bars suggest invariance of

muscle synergies within a trial.

HREORER, FEHERC, 1L 8848[%] (T_XTOWEBRE L ¥ 27 THRILSNZHEROTE +
AR ZE) L7200, AP ORRHERS DK 90[%] &2 v )P =T RV ug, ug DNIED VI
TRITE. LERoT, BT, £17, SWEST T, SRS IR Pl st rm &
AT ENCENT D L OIS 2B LSBT\ EEZLNS. Thbb, Hithito
ENE, SO S B E) L WL b U CUR e Wl s N B9 5 T K & 7
BEEDTWEZ. LT, Z0OZ &3 e E SN EEAH) L e W EZEMIZITIT L
A EEHIE 2 B AL SE TR 2 L2 BT 5. EMGIZEEND /A X0, YT
TCHEITHELHAEICLEDLT, Zo L)Y hERESEONTZ L1, MEET L
WZESL v o —HEOEEEZEZMT 5 1 ORI E 20155,

WERERDE > F O — DU

Z T, v OBREM COBEPMEERIET D, KX AT ORI H D VITEE
BHFEICBIT DWBREE DL TV —_7 FLOER % Fig. 3.14 1077, Kphox T ——
IR E R OO — T MVOERERAETH L. =T MNURENLART ML THD
L EEBET D LIEMERENIEF I NS WD (o 8£3[%] DRE X)), KX AT DOFHE
IHDHWVFFEAAEIZBWOTHEHBRER OV —_7 MLVOBEPEIXE -T2 Wnz D,
IHIZ, WEREHO LTV —_7 MLVOFEUMEE EEET 572012, KX A7 DOFEHESH
DUV EERMA B W TEME T, WA GO —_T ML ug, ue ODHERERON
BErtntnEH L. ZOEOH % Table 3.1 1279, NN LICEW =8, #ERER
DT V=T MVOBEPEIZIEFICE. TLT, ZOZ LI T_RTOHF A7 O SCH
FHAETHEL TWe., 20728, Jx OFENIHRF R TR DITH 006, £
A7 DR E D WVITBAERHE FE TR TV — 3R E T CHEFEICHLE LTVt nWi 5.
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Table 3.1 Average of inner product of synergy vector ug or u¢ across any pair of subjects at

each speed or inclination angle in each task.

Level walking [ Running | Slope walking | Slope walking
(4(km/h]) | (11{km/h]) | (6[deg]) (-6[deg])

ur | 0.96+0.05 | 0.96+0.04 | 0.99+£0.00 0.99 +0.01
ug | 0.97+0.03 | 097+0.03 | 0.99+£0.00 0.98 +0.02

RRVEDEH YT O—DFELE

T, Y TU—0X A7 BTTOREEMERGET S, £, B EISOEAVAER TOR
YO EREET A 1201, BHERE 0K X A TERTTIN, WAoo Y —
R7 Ml ug, ue DRSS HHWVITERAEMONE 2 ZNENEH Lz, 1BRES (R
A) DR % Table 3.2 12779, NRED LIZITW20D, KX ATZICBITHEEH D W IIER
AER O T —_7 MVOFEBEIIIEFICE . £ LT, 202 &Moo T X ToOMERE
THHBEL TV, LERST, fivFo—i3Z 27N THEL TV 2Lz 5.

WIZ, ZATRIO/YF Y —0MEPMEEREET 5. 22T, SEREICBIT D2 A7 B0
TFV—_7 MO EEE L. Fig. 3.1512 1 #8E 4 (s A) Ofi R %2R
M DTT— =[x X AT DT =T NVOEBEERETH D, T U—_7 hLRH
(7 bV TohDH I EEBRET D EIEERENIEFIT/ NI WD (D 7+0.6[%] DK E
X)), FRIZMOTFT V=7 NVOFEUELEN-ToEWR D, ZFATEOT Y —_Y
NV OFERIMEZ E BRI T 572012, SHEBREIZB W TER N, WA Y —x7
MV ug,ug DX A7 BONIEEZ ZNENEH L., ZORE, =& 213983 A TI3Eee
Fm, WA TR VO AT BIONFEIZZ 1 0.984£0.02,0.984+0.02 (¥
A7 B ONFED Y] + =R FE) Llpotz. WRED LICEW=®, X AZMOYFV—_Y
MLVOFEBE L IEFITE . T LT, ZOZ o XCogiia chibmL v £
D=, Hx ORI 27 B TRLD L0 LT, By Y—dZ A7 Tt kM
LTWzEWnWz5b.

3.24 YFP—Xa7

TR RIS T 5 L EX bND LTV —AaT wy, we & Fig. 3.16 12 1 #ERES (%
R A) T ARSI PURIFEIRE, X ATy Y —2 a7 nB o TW5. ok
BREICBWTHH A TU T V—=AaT7 RERS> TWDEDONEFRND 2D, HWREIC
BWTEVE T ERA TS Fo—2 a7 or 27 BOMBEREEZ TN ENEE L. £
DOFER, BT ERAITHO YTV — A a7 ORI ENE10.694+0.16,0.634+0.13
(FARSFREL DIRBRE M D) £ U ) LipoT=. VT V=T MO X A7 B TOREY
MERTUF U= FLONENZTIEL THho7m A25HESM) DOIZxfL, v FHy—=x
a7 DF AT TOREPMEEZRT YT —2 a7 OMEREIZ0TRETH 7=, Lo
T, WREIIHG LT —Thd up, up 1 3Z A7 TELESETIT, BT SITHYT S
Wr,We X AT TELSHETE XA ZRI LWLV 5.
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Fig. 3.14 Similar muscle synergies across subjects at each speed or inclination angle in each task.
The error bars show SD of the synergy vectors across subjects. The small error bars
indicate similarity of muscle synergies across subjects.

Table 3.2 Average of inner product of synergy vector ur or u¢g across any pair of speeds or
inclination angles in each task in the representative subject (subject A).

’ ‘ Level walking | Running | Slope walking ‘

urp | 0.993+0.00 |099=x0.00| 0.99=+0.01
ugp | 0.99+0.01 | 099+£0.00| 0.99+0.01

— 1

8 —
O

§ ,_42 -
>

X5

Qq) E 1] u.3
Q

2 @

N

|
[E—

Up Uy

Fig. 3.15 Similar muscle synergies across tasks in the representative subject (subject A). The
error bars show SD of the synergy vectors across tasks. The small error bars indicate
similarity of muscle synergies across tasks.

30



Synergy score

0.6

— D 4@@
NIV N2

-0.6

0.6

- N
—~ Y \%
/N
-0.6

0 Gait phase [%] 100
mmm [ evel walking (4[km/h]) === Running (11[km/h])

=== Slope walking (6[deg]) Slope walking (-6[deg])

Fig. 3.16 Different synergy scores across tasks in the representative subject (subject A).
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F4A4E EFTICETIERETFEYEDHETE L FA

ARETIE, SHIFEINAKE VWD EMG 23l LT WETICES 24 TR LT, e
JNZEESL FEEAWT, ETHP o R TFHSEUEDHEE 21T . S 51T, RIS P SEE
DERA T = AL EFTRD. Z LT, 3L ALEDOEEITEB TS i OBEREE L 5
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B, WHEHEOAERR A = X BT RNT I B EMAR SO TH D AREMIRIB S NS,

4.1 =EEBRAZE

4.1.1 HERE

PEFERRABVET 40 A~G LR AN ZME 14 (H) (22.8+1.45%, 16945[cm], 55.3+4.2kg])
IWFEBRIZRT VT 4 T TN, $BREICIE, POEBROBE, NEIZOWTHY il
ATV, ARNPOERSINORIE 21572, FEBIT RO T HAE TP 7Rk m B B2 D 7KGE
DF, ZERDPED DHHPTEFREE I, ZTIhi.

4.1.2 EFEHAI

ERFEIL P L R IL (SportsArt Fitness T650m) | C Table 4.1 {27793 X T 15 7,
EATEEN 21T 7. HERE O PR BRI EB R S A L 11, AmEs (H
AHELHE ), WEB-5000) & L <IFXIEREFHER (HAKRELE (), WEB-7000) (2 X
D, EE)F O EMGIE 5% 1000[Hz] Tl L7z, 2R L7251, Fig. 2.1A IR T 8 THS.
$70, RIENHAEHIS A7 A (=4 (), F-SCAN MOBILE) % i\ \C 4 100[Hy)
THHAIL7. &blg, e —T a3 F v 7F ¥ — A7 A (NaturalPoint, OptiTrack)
W&V, BxBIEN, BEBIEE, EBIHET, TUcoEEPIEH A 100[Hz] TEHIL72. EMG 1G53
AT N, IRRDGHAIS AT &, BEVFEHIIS A7 MEE L Tn D,

4.1.3 T—AH20E

FHAl S 72 EMG 133y K827 4 v &2 Y v 7 (10-450[Hz]) , #ififk, Fibz{T-7=
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L, Rtk 7 42 7, Bk, YR b EITo72t%, TORKEEZ MVC & Lz, &6
2, EREOEEBEFIZ S EICEMG 7 — % Z B O i E To 1 STEE 2 &
W10 BT L, A7 7 A4 MRS K 0 & 07— & % 0~1000[%0] IZIEH L L
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Table 4.1 Running speed of each subject.

’ Speed [km /h] ‘
Subject A
Subject B
Subject C
Subject D
Subject E
Subject F
Subject G
Subject H

O|0|0]0O|O|0|0|0O|«
O|0|0]0|0]0O|0|0
O|0|0]0|0]O|0|0

—_
—_
—_
w
—_
ot

O|0|0]0

O

O|0|0]0O|O|0|0|O|~

2. INHOFKIERROEAYS 2 L 5 2 LT, FRMCBIT 2iEE L~ Lo EE b E
1otz LEOMHEIZ X 52%MVC & m(i =1,---,8) & L. &512, EMG 25 Ffis &
BIE OIS A H T 2 72010, FRHEHIEE ri(t) & REHTR si(t) (i = 1,- -+ ,4) Z%MVC %
WT Table 2.1 DL HIZEH L7, WHET MICHESLS FEICL Y, B2 Bl s oHE e
1T o7,

4.2 $EE

AETIE, £, STEYSHB OB S EOETORMEERT. RIZ, FATHOD
FSEN O RY SN Z — > L s, st orM#ER 2 r9. 2L, WEET K
DL PRIV HEE S e Pl e & EHE AR, X B, R R EE S T
T TA Y IR DBEE R — N Ko THERENTWD Z L &R L, &I s DR
WEIL~NT I WO T o 7 4T 4 o T hEATHZE THY AR TERIND K
EOE N Z — 2 T 5. BRI, ETHENGRRIICHE Y — 2035 2 &
TR R OBREE Z TR TX 5 2 & &R

4.2.1 FETOHEE=E

EATHR O RYEERF DA EATHRE IR T 2517 E W %4 Table 4.2 12, SCHHOE|IA % Table
4317, 6T, ETHE LHITRAPORE 125752 TAFTIA N m] &, BT
A OW A 25T 2 2L THITR s 2R L., 2EBREORETHEIZBITH A
TA REBITEE Fig. 4.1 T. ok, SR EBITROBIETHE L 2D 2 LITHEE
Shizv. Fig. 4.1 10, ETEHEO EFITHEY, T TOHRE THEITHEML s Z
ERDMD. —J, BTRITERE L > TELOBEMN R 5. #RE D~H ITETHE
O IR, BlE L RIS TR Y EF LT D0, #RE B IS TR E A E AL
LT, 7o, #BRE A & CITETHED EAIZMEY, SMTRLEML TV D 00,
B D BHINIFESCHTH L. O DRRNG, #ERE D~H 13408 & B TROMm 7 %
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Table 4.2 Period of running of each subject in each running speed.

Speed [km/s] | 7 | 9 | 11 [ 13 | 15 |
Subject A | 0.71 ] 0.71 | 0.69 | 0.68 | 0.66
Subject B | 0.70 [ 0.71 [ 0.69 | 0.71 | 0.70
Subject C | 0.72 [ 0.67 [ 0.66 | 0.66 | 0.64
Subject D | 0.70 | 0.68 [ 0.63 [ 0.61 | 0.59
Subject E | 0.76 [ 0.73 [ 0.70 | 0.67 | -
Subject F | 0.76 [ 0.70 [ 0.68 | 0.63 | -
Subject G | 0.72 | 0.69 | 0.67 | 0.64 | -
Subject H | 0.72 ] 0.69 [ 0.66 | 0.64 | 0.62

Period [s]

Table 4.3 Ratio of stance phase of each subject in each running speed.

Speed [km/s] ‘ 7 ‘ 9 ‘ 11 ‘ 13 ‘ 15 ‘
Subject A | 38.8 | 36.2 | 35.1 | 32.6 | 32.0
Subject B | 51.3 | 43.2 | 37.6 | 34.7 | 31.6
Subject C | 51.0 | 45.7 | 38.6 | 35.4 | 33.4
Subject D | 48.1 | 40.3 | 35.8 | 33.9 | 30.6
Subject E | 43.3 | 39.0 | 37.6 | 36.3 | -
Subject F | 41.6 | 38.1 | 36.8 | 35.4 | -
Subject G | 38.9 | 37.0 | 34.6 | 34.0 | -
Subject H | 47.5 | 44.1 | 42.7 | 40.0 | 37.7

Ratio of stance phase [%]

BALSHDHZ LT, WA BIISEOREZE(LEIED 2 LT, #RFE A L CliEICHEE
FSEDLZ ECTETHEEZFHEL TV ZEWVWRD.
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Fig. 4.1 Stride length and stride frequency of each subject.
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4.2.2 EMG & ftgintt - Siginfn

TP OBIEEI OB RS % — % Fig. 4.212, TNLMBEH SN & i
PR OREHER % Fig. 4.3 10 1 #5E S (BE E) =~

4.2.3 RIEDTEHABNEEFEHE

WIZ, YPRET IS < FIEIZ Ko THEE S IUTABRIAEIZ 381 B S 46 A E Rep, Ppp
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BEZBT 5 BEDENE R, & LIEE R, ¢ 277, SbIT, ¥ A7 ZEHTHRRLIEEED
A pHGE (vgp, yep) & FEHLE (z,y) % Fig. 4.5 12787, HAERHLE TR EHESHLE TH
5. Fiz, BITEMO 0~100[%] £C, 10[%] ZIHTREEE FRROMELZRRLTND., —
Rz, PHAELEIXEIPEES EF LR I ERMLNTEY, & xE, ERRIEE
ﬁfi$&5%ﬁﬁNﬂéﬁé LR ENH BTV D [28]. Figs. 4.4, 4.5 1V, K%L
THEE L7l e b EPEEZ EF T E R TWND I ENbnD.

4.2.4 RIRIHE

MIFLE T VIS FEIC K o THEE S22 eIt Z2 27 v 7 # B EICRIERS ) & L

THRRLIEBD% Fig. 4.6 12 1#RE S (WERE E) =3, 2k, BERPED R r—/i3h
MERNDT, FHORE SIZIFEWR RN LICEESNW. KEY, SITEAaks
BLTHEMIEEMS, BMEEHOEMmS B XZREESOFmEZ RN TS Z LD,
L7 o T, ETHOEMRE SR OMINE K 1%, WAL ROMINE K IZH L TRED-TZEW
2%, Fio, WM OSITRE 50(%)] 7= TIEHRWEHM VRS W=, Bz Sy o7 7
REEICLTWZEWVWR 5.
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Fig. 4.2 Muscle activation patterns recorded from eight muscles of a representative subject (sub-
ject E) during running. The %MVCs were averaged for ten consecutive gait cycles.
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Fig. 4.3 The A-A ratios and A-A sums calculated from the %MVCs of the representative subject
(subject E) during running.
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Fig. 4.4 Endpoint trajectory, endpoint EP trajectory and endpoint acceleration during running
of the representative subject (subject E).
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Fig. 4.5 Stick pictures with endpoint EP trajectory of the representative subject (subject E).
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Fig. 4.6 Stick pictures with endpoint stiffness ellipse of the representative subject (subject E).
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4.2.5 REAETFEHEDEERE
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T, IV REGE (vpp, yrp) 2> D RIS OBSEREE |vgp| ZLLFO X S ICEH LT

[vep| = \/d%p + Uip (4.1)

W E O |vpp| & Fig. 4.7127 7. |vpp| IZREL 3DDH U T I A4 7 7215
TW5a. 2L T, ZRENOWNTETHEEICS U THAMICZL L TS X5tk zxb. il
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AN 2 LT DEHAICH D & ) Rt dem LTz, £72, Cappellini i3k FDOEFTIZ
EHTLT U TA IINET D 5 ODEERFN Y — U WIEET D L #E LT 4. ko
lvgp| IZ72 BB 2 DOREM L Cappellini b OFEFEA S, &5 VM ABLE 12 EITEEIZE U
THRAIICENT DT T T4 7720 DNORENE — 0 DBEDOETERITE D
EARFRAENL Tz, ZORMERRGET 72012, |vgp| I NVTF =T O T T 49T 4
ThaEHTHZ e TH Y AR TRAINDEE AR — L, U ABEHD/ T A —
B % EATHE D G RYRANCE T 5 Z & T, |vgp| O THIZHALD.

FT, SVTFE—IT AT T 40T 4T e RI R OGRS jvgp| 1AL, H
AR TR INDOHE N — O Z1T ). 74T 4 7T FORTEREIND
NABDOA T AR fi(t) i=1,--- ,N) ZHW\5.

fi(t) = Aie_%<t;?i)2 (4.2)

2T, Ay, ol ZENENGEB O T ARBBOER, Y, EERETHDL. S h
7e 77 7 ZABH D% Table 4.4 (2%, AEl, §XTOHEIZBWNT, 5 FEFTHEDO T 7 A
B s N, LT, #BE E oMb S0 v A% Fig. 4.8 12737, 7ok, it
DOYERE OFERILM = A ICFLHk L7e. DI, #RE B SN ORERIIME A ICFifi3 5.
KRETOFRNT O BIIE AT 7 AR DT A= ZElfaoird 5 2 & T, ETEEDOEIC
£%, |vep| DR E TRTZHZ L THD. 22T, DRI Sz A 7 2B OE A
CEATHEEN 32U Lo 2 ETHREDLZMT O R ET D (7oL 21X, #HREE CTix7~
13[km/h] &, #ERE G TIX9~13[km/h] X5 L3 2) . #HERE E OMHTxtg o 1T E
BT DT T ABEBDE T A—4 (A, i, 0;) % Fig. 4.915737. L ORT A—=HR37E
ITIRE L BIGIEVERICH D L O h 2D, 2T, BITREZRALE, K7 A —%
ZHBOERE L, BRSO 21To7-. Z LT, BUROHICE D PRISNTZ TG A—F %
FANWTH U AR E TR L. E5I18, 2o v A E R Labt s Z L TREF
15 OB E O T PUE |opp| ZFH L2, #5RHE E Ok S A o AL |ogp| %
Fig. 4.10 27”7, |vgp| & |vgp| DFEEEFRE A Table 5.7 IZ~7. [FARIZBWNT, §3TD
L& CHBIREN 0.9 L EH D DT, |ogp| D THEIZREIL T2 N2 5.
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Fig. 4.7 EP tangential velocity |vgp| of the representative subject (subject E).
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Table 4.4 The number of extracted gauss functions.
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Fig. 4.8 Overlap of the gauss functions in the representative subject (subject E). EP tangential
velocity |vgp| was fitted as overlap of gauss functions.
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Table 4.5 Coefficient of correlation between EP tangential velocity |vgp| and estimated EP tan-

gential velocity |0gp|.

Speed [km/s] SRR
Subject A [ 0.97 [ 0.97 [ 0.97 [ 0.99 | 0.99
Subject B | 0.96 | 0.95 | 0.97 | 0.98 | 0.98
Subject C | 0.99 [ 0.99 [ 098 | - | -
Subject D | 0.98 | 0.95 [ 0.97 [ - | -
Subject E | 0.99 | 0.98 | 0.97 [ 0.99 | -
Subject F | 0.98 [ 0.97 [ 098] - | -
Subject G | - |0.97| 097 [0.98 | -
Subject H | - ~ [0.9810.99 [ 0.99

Coeflicient of correlation

o1
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4.3.2 EENZ—2OYEEK
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%. Fig. 4.11 £V, fi 3TSEEELOBERTCTHRAEL, fo ITERHCRENTERICEIET 5
DTHRTLTND., LER->T, 1 2BHDOWLEERT S fi, fo (TELETHAE T E LTS
BEZHSTND EEZLND. £ LT, ETEHED EFIZHEN f1 OIER A BDRKE ko
T3 (Fig. 4.92M) . ZhiE, #HE->TWDE X ITTREEZZREL LT 508N
HY, TOTEDIZA PRELS oD EBEZBND. WRIZ, 2 OHOWLZEREKT S f31C
HHT S, f3 OREBERZI P S HE S E T &GP VIR Tnb 2, 7 1—F
RFEHO XA IV THREORRH EHS TS EEZILND. £ LT, ETHEED EHIZHEN
f3 DIRME A3 BDREL o TS, ZHUE, EfTHENEHWE ZITITLY RERITT L—
XENTDODMENHDLIZHEEZLND. ZLORKHEIT, MoEFETLAELN, Tl
S H O IDERECRENTERICEET HRIMZICK T L, 2 OB QIR REAEEZICHVIRT
EWVIORHEITIZ E A EOWBRE CTHLND. O LD, 1 DHOILEERT 2HE /S
H— TR ETES E T & BT A%E Z, 2 oBHDIUZRENRT HHEENAZY — 037 L —F
RBEHDZ A I TREORE LS TND T ENRBIND.

AWFZETIE, B S HOE ORI S, SAFE— I I T T 4T 4 752
WTH T AR CRELIND 5 ERREOME N Z — 2l Uiz, ETHOHIEE NG T
T UTA Y IRBER M D &V I IEITIRIC b EET D, 7o & 21F, Cappellini
S5, ETHORFHOEMG IO T T4 BT D550 —%2HiH LT
W5 [4]. REFFETH I U AR CTRILEIND 5 ERREDOHEE ¥ — RS, S561Z,
EMG Ot e/Z a2 &I 2 L rE C, E, F TIIRAEDH A 2 7% Cappellini S OfE 5
E—HTDHI LMD, WHOMEEOBEENSHERI IS, 272, H5IXEIC EMG IZS4
BT ZEA LTS T U= L7220 20 T, fiv T V—0ERSTRH N EWN G
DEIR-TWND. —J, KFZE T SN0 T AR TR SN D S F — 13 S
WIE DR 2 3 LT b DD T, Dl &b RO VMR T 25 &0V ) Bz
o, 20, KR THONT-T ST oI 7 BRI ONH LT T T
A7 RBEREEFEELIZbOEEZLND.

AAFIECTIE, EITHENS T T ABRBONRT XA —2 2 EIROICEET 5 2 & T, BEE
EPRTEDZ & &R L. GMP G [74] TIiE, EHFLBICHH S Wiz iEB) 2 — o 3k
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= RRAT— /WY T 5720, GMP G E RIS 2 Z Eniiffsnsg. £/, bIafE
DA T ARID/NT A =5 2 BATHEIDS U TRAMICIHEST 52 & T, ML IR
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ARETIX, s OBEE % hip actuation strategy & ankle actuation strategy (Zxfhis & &
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5.1 XEERAHK

5.1.1 #HERE
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OEBBSMORIEE 7. EERIZIKRKZEME TR EEE S OARO T, ZESN
TE WO D ATE Pl IV, BIT3NT-.
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PR O f2 T BRI T EBALFH A B Z B 0 H), AR ER (Elzlij‘n ST (B,
WEB-5000) & L <38 ER (AARETLE (), WEB-7000) (X b, #E#Ho EMG
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5.1.3 T—74XJ0IE
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4% Z & TEMG ZIEHE (ZMVC) L7z, MVCIZOWTIE, FRPEE L LTIk
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WA =7 ORFEHER 2 7:9. £ LC, hip actuation strategy & ankle actuation strategy %
AWFFED fhal OB & X Sz BT, PRI T 53 23T A =2 D& L T
=L — @Wm@%%%ﬁim:ﬁﬁﬁé RIS, TRAF—DAT PR b
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Fig. 5.1 Time series data of mechanical energy of the center of mass for a representative subject
(subject I). A: Kinetic energy KE. B: Potential energy PE.
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Fig. 5.2 Trajectories of kinetic energy KE and potential energy PE of the representative subject
(subject I).
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Fig. 5.3 Muscle activation patterns recorded from eight muscles of the representative subject
(subject I) during slope walking. The %MVCs were averaged for ten consecutive gait

cycles.
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Fig. 5.5 Time series data of synergy scores and stiffness scores of the representative subject

(subject I) during slope walking.
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Fig. 5.6 Time series data of variables contributing to EP or stiffness of the representative subject
(subject 1) during slope walking. A: Synergy score wg. B: Stiffness score kg. C: A-A
ratio r4. D: A-A sum sy4.
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Fig. 5.7 Relationship between the variables contributing to EP or stiffness and the mechanical
energy fluctuations averaged across subjects. A: Time mean of synergy score wg¢ versus
increment of mechanical energy AKE4+APE from gait phase 0[%)] to 10[%]. B: Time
mean of stiffness score k¢ versus increment of mechanical energy AKE+APE from gait
phase 0[%] to 10[%]. C: Time mean of A-A ratio 74 versus increment of mechanical
energy AKE4+APE from gait phase 40[%] to 60[%]. D: Time mean of A-A sum §4 versus
increment of mechanical energy AKE+APE from gait phase 40[%] to 60[%].
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