

Title	Optical properties of ZnO bulk crystals and microstructures as ultrafast and efficient scintillator materials
Author(s)	Empizo, Melvin John Fernandez
Citation	大阪大学, 2016, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/55908
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name: EMPIZO, MELVIN JOHN FERNANDEZ	
Title	Optical properties of ZnO bulk crystals and microstructures as ultrafast and efficient scintillator materials (高効率かつ高速応答シンチレータ材料としてのバルク及びマイクロ構造ZnO結晶の光応答性)
<p>Abstract of Thesis</p> <p>Radiation detection is increasingly important in various scientific and technological aspects. For example, radiation detectors are useful in energy or power generation, manufacturing and service industries, medicine, etc. Playing an integral role in various fields of interests, radiation detectors and more specifically, scintillators, are investigated due to their practical importance. Among candidate scintillator materials, zinc oxide (ZnO) is a II-IV semiconductor compound with a wide and direct band gap (3.3 eV) and large exciton binding energy (60 meV). ZnO has excellent scintillator attributes including fast scintillation response, good spectral match, high light yield, radiation-resistance, and stability. The investigations of ZnO as a scintillator, however, are mostly focused on bulk crystals, powders, or optical ceramics. These studies comprise mainly of their characteristics with radiation, their lifetime improvement through intentional doping, and their possible utilization as a detector. All the while, the advancement of micro/nanoscale technologies has resulted to a wide assortment of ZnO micro/nanostructures. With properties different from their bulk counterparts, these micro/nanostructures hold a promise for future scintillator applications.</p> <p>In this regard, this study investigates the optical properties of ZnO bulk crystals and microstructures as ultrafast and efficient scintillator materials. Specifically, the investigation is aimed to: (1) identify the effects of gamma-ray irradiation on the optical properties of ZnO bulk crystals; (2) determine the PL emission lifetimes of ZnO microstructures; (3) characterize the optical emission of ZnO microstructures helpful in scintillator applications; and, (4) propose possible designs for future ZnO-based scintillator devices. Bulk crystals and microstructures are then prepared by hydrothermal and carbothermal methods. The microstructures studied are uniform microrods, hexagonal crystals, and freestanding microribbons. To experimentally investigate the various material characteristics and emission processes, the optical properties of the samples are analyzed using time-integrated and time-resolved photoluminescence (PL) spectroscopies.</p> <p>Several results are obtained upon the implementation of this study's experimental design. ZnO bulk crystals have improved UV emission lifetimes as fast as 390 ps to 1.5 ns after gamma-ray irradiation. The bulk crystals are also proven to be radiation-resistant and stable with gamma-ray exposure. On the other hand, ZnO microstructures have UV emission lifetimes faster than their bulk counterparts. Uniform microrods have</p>	

emission lifetimes as fast as 30 ps, while hexagonal microcrystals and freestanding microribbons have lifetimes as fast as 120 ps. Moreover, the hexagonal microrods with uniform dimensions and well-faceted surfaces exhibit optical confinement leading to an amplified UV emission. A freestanding microribbon with uniform thickness and flat surface also possesses microcavity and optical waveguiding effects. The microrods and microribbons can then serve as amplifiers and optical fibers (couplers) in a scintillator device. In addition, proposed designs for future scintillators based on ZnO include an ultrafast neutron detector, a secondary emitter layer, and a compact scintillator screen. The ZnO bulk crystals and microstructures can work either as ultrafast emitters or efficient detectors with external light coupling and internal reflection.

This body of work will nonetheless lead not only to the better understanding of the fundamental physical phenomena and underlying mechanisms involved but also to the development of new radiation detectors. Bulk crystals are suitable to work in harsh radiation environments such as in laser fusion reactors or in outer space. Microrods, microcrystals, and microribbons can be used as fundamental building blocks for innovative and integrated optoelectronic microsystems. Both bulk crystals and microstructures can effectively and efficiently function as an external light coupler and internal reflector in a device. As an inorganic scintillator and semiconductor compound, ZnO indeed holds a promise for excellent radiation detector applications.

論文審査の結果の要旨及び担当者

氏名 (EMPIZO, MELVIN JOHN FERNANDEZ)	
	(職) 氏名
論文審査担当者	主査 教授 猿倉 信彦
	副査 教授 乗松 孝好
	副査 准教授 長友 英夫
	副査 教授 北田 孝典

論文審査の結果の要旨

本論文は、バルク及びマイクロ構造酸化亜鉛結晶について、高効率かつ高速応答シンチレータ材料として使用するための光応答性に関する研究を行ったものである。近年、次世代のエネルギーとしての核融合が着目されているが、その反応の際に発生する高エネルギー量子線の検出技術の開発は最重要課題の一つである。酸化亜鉛は高効率かつ高速応答の短波長光検出用シンチレータとして多くの研究がなされてきたものであるが、この目的への応用も始まっている。シンチレータとしての酸化亜鉛はバルクもしくは粒子状のものに対して応用が行われており、金属ドープによる改質が進められている。本研究では新しい高機能化手法として酸化亜鉛をマイクロ構造化することを提案している。また、別の手法としてガンマ線照射による改質も実施している。成果を要約すれば次の通りである。

- (1) 量子線検出、特に酸化亜鉛シンチレータについて現状と課題を調査し、基本事項を整理した。
- (2) バルク及びマイクロ構造酸化亜鉛結晶の作製手法をデザインし、実際にマイクロ構造酸化亜鉛を作製した。
- (3) 作製したマイクロ構造酸化亜鉛試料の光学特性を評価し、バルク酸化亜鉛との比較を行った。
- (4) バルク酸化亜鉛のガンマ線照射手法による改質を実施し、その光学応答を評価した。
- (5) マイクロ構造酸化亜鉛の光閉じ込め効果やガイディング効果等、バルクとは異なる特徴的な性質を見出した。
- (6) 酸化亜鉛シンチレータの工学応用にも言及し、核融合研究での適用等様々な実用的用途を検討した。

以上のように、本論文は従来の酸化亜鉛を新たな手法で高機能化させており、さらに複数の手法を提案している点が特長である。また、理学的な側面に留まらず、工学応用も主眼においていた研究であることが評価できる。特に核融合研究への実用も期待できることは重要である。本論文の成果は既に査読付き学術論文誌5件（内主著4件）として公表されている。

よって本論文は博士論文として価値あるものと認める。