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Preface

Congestion of data traffic is one of the most significant issues to be addressed in
designing communication systems. Queueing theory is a branch of applied math-
ematics, which provides a set of mathematical tools for evaluating the impact of
congestion on the performance of systems. In queueing theory, analytical methods
for abstract mathematical models, called queueing models, are studied. Along with
the development of communication technologies, a large variety of queueing models
have been analyzed.

In particular, queueing models with underlying processes are fundamental mod-
els for the current communication networks, where data traffic has the following
two characteristics: (i) traffic patterns are bursty rather than completely random
and (ii) traffic consists of multiple data streams with different properties such as
text, audio, video, and control packets. This class of queueing models is well stud-
ied, and efficient computational algorithms for performance measures are available
in the literature.

Presently, adaptive resource allocation mechanisms are being developed in each
field of communication technology. For example, dynamic spectrum allocation in
cognitive radio, reconfigurable wavelength division multiplexing (WDM), and dy-
namic route control based on the software-defined network (SDN) technology are
regarded as adaptive resource allocation mechanisms. To make efficient use of
bandwidths, these technologies dynamically change the allocation of bandwidths
and restrict the volume of incoming traffic through admission control. Mathemat-
ically, communication systems with adaptive resource allocation mechanisms can
be formulated as queueing models interacting with underlying processes. Interac-
tion between queues and underlying processes makes the behavior of systems more
complicated, so that known results for queueing models with underlying processes
cannot be applied directly.

The main contribution of this dissertation is the development of analytical and
computational methods for two kinds of queueing models interacting with underly-
ing processes, which are regarded as fundamental models for communication sys-
tems with adaptive resource allocation mechanisms. In the first model, the state of



the underlying process is switched when the system becomes empty. In the second
model, on the other hand, the state of the underlying process is assumed to change
continually according to the workload in system. Although these two models do not
cover the whole class of queueing models interacting with underlying processes,
they formulate two fundamental behaviors of adaptive resource allocation mech-
anisms. The first model corresponds to allocation mechanisms that bandwidth is
added when congestion continues for a while, and the additional bandwidth is re-
leased when the congestion gets relieved. This is reasonable because the addition
and the removal of bandwidth are usually performed with a delay, so that they can-
not be executed very frequently. On the other hand, the second model corresponds
to allocation mechanisms that are performed in real-time, such as an adaptive ad-
mission control. Note that the first model describes relatively long-term changes
in the state of the underlying process, while the second model describes short-term
changes in it. In this dissertation, we analyze these two kinds of queueing models
separately so that their mathematical structures to be well understood.

Chapter 1 provides a background of this study, and introduces the two kinds of
queueing models mentioned above. Chapter 2 presents a basic approach to analyz-
ing the first model, through an extensive analysis of a closely related model referred
to as the multi-class M/G/1 queue with working vacations. Chapter 3 analyzes the
queueing model with disasters and multiple Markovian arrival streams, where the
approach of Chapter 2 is extended into a more general case that arrival streams
are governed by an underlying Markov chain. Chapter 4 generalizes the results in
Chapters 2 and 3 by considering a continuous-time Markov process with the skip-
free to the left property and reducible generators for busy periods, which provides
a unified way to analyze the first model.

Chapters 5, 6, and 7 are devoted to a queueing model with impatient customers,
which is formulated as a stochastic process equivalent to the second model. This
model has been studied for a long time, and a basic result for the stationary work-
load was already obtained in 1961 by Kovalenko. While this result for the station-
ary workload is often used as a starting point of the analysis of another performance
measures of interest such as the stationary queue length and busy periods, we could
not find further results for the stationary workload in the literature. Chapters 5 re-
visits the formula obtained by Kovalenko and provides a new perspective on it.
This leads to a unified understanding of special cases of this model, for which ana-
lytical results were reported independently in several research papers. Chapter 6
analyzes the stationary loss probability, which is the fundamental quantity of in-
terest in the second model. Based on the results in Chapter 5, various properties
of the loss probability such as theoretical lower and upper bounds and stochastic
ordering relations are derived. In Chapter 7, a computational algorithm for the loss
probability is developed. This computational algorithm has a remarkable feature
that it also outputs an upper bound of its numerical error. Finally, we conclude this
dissertation in Chapter 8.
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Abbreviations and Conventions

Throughout this dissertation, we use the following abbreviations:

FCFS : First-Come First-Served,

i.i.d. : independent and identically distributed,

LCFS-PR: Last-Come First-Served Preemptive-Resume,

LST : Laplace-Stieltjes transform,

MAP : Markovian arrival process,

PDF : probability distribution function,

p.d.f. : probability density function.

In addition, we follow the following conventions of mathematical notation unless
otherwise mentioned:

• Vectors are denoted by bold-type lower-case letters.

• Matrices are denoted by bold-type upper-case letters.

• Inequalities between matrices or vectors imply that they hold elementwise.

• Empty sum terms are defined as zero.

• Empty product terms are defined as one.

• 00 is defined as one.
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1 Introduction

1.1 Queueing theory

For the last several decades, communication technologies have been highly devel-
oped, and they are still under rapid development. The most notable example is the
emergence and the growth of the Internet, which is a huge communication network
connecting billions of people world-wide. Today, the Internet has become a vital part
of our everyday life and it is used for a variety of services, such as the World Wide
Web, E-mail, E-commerce, video and photo sharing, and social networks. Techni-
cally, the Internet is a network of networks, which interconnects a large number of
networks operated by different service providers. In those networks, various types
of physical media are used for communication links, e.g., copper wire, optical fiber,
and radio spectrum.

Although properties and performances of communication links highly depend
on the nature of the underlying physical media, there is a common important re-
striction on them: each communication link has a limited bandwidth (or capacity).
Because of this fact, data packets arriving at a communication link have to wait
in a buffer to be transmitted when the instantaneous volume of the input traffic
exceeds the bandwidth. This causes congestion of data traffic, which has a signif-
icant impact on the performance of communication systems. Therefore, regardless
of the physical media used, it is important in designing communication systems to
understand the congestion phenomena occurring in them.

Queueing theory provides a set of mathematical tools for evaluating the impact
of the congestion on the performance of a communication system. Based on the
theory of probability and stochastic processes, queueing theory analyzes various
properties of abstract mathematical models called queueing models. In this disser-
tation, we focus our attention on single-server queueing models (Figure 1.1), where
the system consists of a server and a waiting room with infinite capacity. Customers
arrive at the system, wait for their turns, and leave the system on their service com-
pletion. Single-server queueing models are used as models of single communication
links, and they are building blocks of networked systems. Note here that customers

1
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waiting room server

customers
       arrive

leave the system
on service completion

Figure 1.1: Single-server queueing model.

in this case represent incoming packets.
Using Kendall’s notation, single-server queueing models are usually denoted by

A/B/1, where A and B represent the arrival process of customers and the service
time distribution, respectively, and the last symbol “1” means that there is only one
server. Various symbols are used for A and B to specify the arrival process and
the service time distribution, e.g., “D” denotes the deterministic distribution, “M”
denotes the exponential distribution, “G” denotes the general non-negative proba-
bility distribution, and so on. To determine the behavior of a queueing system, we
also need to specify the service discipline, i.e., the order of services. The most ba-
sic service discipline is first-come first-served (FCFS). Other service disciplines are
also often considered, e.g., last-come first-served (LCFS), services in random order,
and processor-sharing.

One of the most basic models of customer arrival processes is the Poisson arrival
process, where arrivals of customers occur completely randomly in time. A Poisson
process is characterized only by mean arrival rate λ (λ > 0), and its inter-arrival
times are independent and identically distributed (i.i.d.) according to an exponen-
tial distribution with mean 1/λ. Single-server queueing models with Poisson ar-
rivals and generally distributed service times, denoted by M/G/1, have been widely
studied and various results for M/G/1 queues can be found in the literature. For
classical results of single-server queueing models including M/G/1 queues, readers
are referred to [Coh82, Kle75].

While the occurrences of Poisson arrivals are assumed to be completely random,
data traffic of current communication networks are usually bursty. Markovian ar-
rival processes (MAPs) are an extension of the Poisson arrival process [LMN90],
which can be used to model bursty arrivals. MAPs form a rich class of arrival pro-
cesses, and they include Markov modulated Poisson processes (MMPPs) and phase-
type renewal processes. In particular, MAPs have an important property that they
are dense in the set of all stationary point processes [AK93]. In this sense, MAPs
are one of the most general arrival processes.

In addition to the burstiness of arrivals, data traffic of current communication
networks has another important property: it is a superposition of several packet
streams with different properties such as text, audio, video, and control packets.
Such a superposition of different arrival streams can be modeled using marked
MAPs [He96], which consists of several arrival streams of MAP. As we will see be-
low, the superposition of different arrival streams makes the behavior of queueing
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models essentially more complicated.
The single-server queue with MAP arrivals (MAP/G/1) and marked MAP ar-

rivals (multi-class MAP/G/1) are formulated as queueing models with underlying
processes, for which efficient computational algorithms for performance measures
are known in the literature. In the next section, we briefly review these results as
preliminaries to this dissertation.

1.2 Queueing models with underlying processes

1.2.1 MAP/G/1 queue [LMN90, Neu89]
Throughout this chapter, the service discipline is always assumed to be FCFS un-
less otherwise mentioned. We start with the definition of the MAP. Consider an
irreducible continuous-time Markov chain with finite state space M = {1,2, . . . , M}.
We refer to this Markov chain as the underlying Markov chain. The behavior of a
MAP is governed by this Markov chain as follows. The underlying Markov chain
stays in state i (i ∈M ) for an exponential interval of time with mean 1/σi (σi > 0),
and when the sojourn time in state i is elapsed,

• with probability qi, j, an arrival of a customer occurs, and the underlying
Markov chain changes its state to j ( j ∈M ),

• with probability pi, j, no customer arrivals occur, and the underlying Markov
chain changes its state to j ( j ∈M , j ̸= i).

It is assumed that ∑

j∈M

(pi, j + qi, j)= 1, i ∈M ,

where pi,i is defined as zero. The MAP is usually represented using M×M matrices
C and D whose (i, j)-th (i, j ∈M ) elements are given by

[C]i, j =
{
σi pi, j, i ̸= j,

−σi, i = j,
[D]i, j =σi qi, j.

Note that C and D denote a defective infinitesimal generator and a transition rate
matrix, respectively, and they satisfy

(C+D)e = 0, (1.1)

where e denotes an M ×1 vector whose elements are all equal to one. It is readily
verified that C+D represents the irreducible infinitesimal generator of the underly-
ing Markov chain. Therefore, C+D has its invariant probability vector π uniquely
determined by

π(C+D)= 0, πe = 1. (1.2)
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Let N(n, t) (n = 0,1, . . ., t ≥ 0) denote an M ×M matrix whose (i, j)-th (i, j ∈ M )
element represents the probability that n customers arrive in time period (0, t] and
the state of the underlying Markov chain is equal to j at time t, given that the state
of the underlying Markov chain is equal to i at time 0. We define N∗(z, t) (|z| ≤ 1,
t ≥ 0) as

N∗(z, t)=
∞∑

n=0
N(n, t)zn.

Note that for ∆t ≥ 0, N∗(z, t) satisfies

N∗(z, t+∆t)= N∗(z, t)[I +C∆t+ zD∆t+ o(∆t)],

where I denotes a unit matrix. It is readily verified that this equation implies

∂N∗(z, t)
∂t

= N∗(z, t)(C+ zD).

Therefore, noting N∗(z,0)= I , we obtain

N∗(z, t)= exp[(C+ zD)t].

The MAP/G/1 queue is a single-server queueing model, where customers arrive
according to a MAP, and service times are i.i.d. according to a general distribution.
Let H(x) (x ≥ 0) denote the probability distribution function (PDF) of service times.
Also let E[H] denote the mean service time. Because the mean arrival rate is given
by πDe, the traffic intensity ρ of this model is given by

ρ =πDe ·E[H].

The stability of the MAP/G/1 queue is ensured if ρ satisfies

ρ < 1. (1.3)

Under the stability condition (1.3), performance measures of the system can
be obtained through an analysis of an embedded queue length process obtained
by observing the system only at departure time instants. Let x(n) (n = 0,1, . . .)
denote a 1× M vector whose j-th ( j ∈ M ) element represents the stationary joint
probability that the number of customers in the system is equal to n and the state
of the underlying Markov chain is equal to j just after a customer departure. We
can verify that x(n) is given by the stationary distribution of a positive-recurrent
discrete-time Markov chain with transition probability matrix

P =

⎛

⎜⎜⎜⎜⎜⎝

B0 B1 B2 B3 · · ·
A0 A1 A2 A3 · · ·
O A0 A1 A2 · · ·
O O A0 A1 · · ·
...

...
...

... . . .

⎞

⎟⎟⎟⎟⎟⎠
, (1.4)
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where An (resp. Bn) denotes an M × M matrix whose (i, j)-th (i, j ∈ M ) element
represents the probability that n (n = 0,1, . . .) customers arrive and the state of
the underlying Markov chain changes from i to j in the service time of a customer
(resp. in time period from an instant that the system becomes empty, to the next
departure of a customer). It is easy to see that

∞∑

n=0
Anzn =

∫∞

0
exp[(C+ zD)x]dH(x). (1.5)

From this equation, the coefficient matrices A0, A1, . . . can be obtained with an al-
gorithmic approach [TMSH94]. Furthermore, Bn is given by

Bn =
∫∞

0
exp[Cx]Ddx · An = (−C)−1DAn, n = 0,1, . . . .

Markov chains with the transition structure (1.4) are said to have the skip-free to
the left property, and such Markov chains are called M/G/1-type Markov chains. For
this class of Markov chains, an efficient computational algorithm for the stationary
distributions can be found in the literature [Neu89], so that we can compute the
stationary distribution x(n) (n = 0,1, . . .) of the queue length at departure instants.

Other performance measures in the MAP/G/1 queue are given in terms of x(n).
Let y(0) denote a 1×M vector whose j-th ( j ∈M ) element represents the stationary
probability that the system is empty and the state of the underlying Markov chain
is equal to j. Further let y(n, t) (t ≥ 0, n = 1,2, . . .) denote a 1× M vector whose
j-th ( j ∈M ) element represents the joint probability that the number of customers
in the stationary system is equal to n, the remaining service time of the customer
being served is not greater than t, and the state of the underlying Markov chain is
equal to j. We define a joint transform y∗(z, s) (|z|≤ 1, Re(s)> 0) as

y∗(z, s)= y(0)+
∞∑

n=1
zn

∫∞

t=0
exp[−st]dy(n, t).

It can be verified that y∗(z, s) is given by

y∗(z, s)= (1−ρ) · x(0)(−C)−1

x(0)(−C)−1e
+ρ

(
x∗(z)− x(0)+ zx(0)(−C)−1D

)
Ã∗(z, s), (1.6)

where
Ã∗(z, s)=

∫∞

0

xdH(x)
E[H]

∫x

0

dt
x

·exp[−s(x− t)]exp[(C+ zD)t].

Let y∗(z) (|z|≤ 1) denote the probability generating function of y(n).

y∗(z)=
∞∑

n=0
y(n)zn = lim

s→0+
y∗(z, s).
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Also let Ã(z) (|z|≥ 0) denote an M×M matrix given by

Ã(z)= lim
s→0+

Ã∗(z, s) =
∫∞

0

dH(x)
E[H]

∫x

0
exp[(C+ zD)t]dt

=
∫∞

0
exp[(C+ zD)t]dt

∫∞

t

dH(x)
E[H]

=
∫∞

0
exp[(C+ zD)t]h̃(t)dt,

where h̃(x) (x ≥ 0) denotes the probability density function (p.d.f.) of the equilibrium
distribution of service times. Note here that Ã(z) takes the form

Ã(z)=
∞∑

n=0
Ãnzn,

where the coefficient matrices Ã0, Ã1, . . . can be calculated in the same way as
A0, A1, . . . (cf. (1.5)). It then follows from (1.6) that

y∗(z)= (1−ρ) · x(0)(−C)−1

x(0)(−C)−1e
+ρ

(
zx(0)(−C)−1D+ x∗(z)− x(0)

)
Ã∗(z),

from which we obtain

y(0) = (1−ρ) · x(0)(−C)−1

x(0)(−C)−1e
,

y(n) = ρ
(
x(0)(−C)−1DÃn−1+

n∑

i=1
x(i)Ãn−i

)
, n = 1,2, . . . .

y(n) is thus given in terms of x(n).
The actual waiting time and the sojourn time are also analyzed based on (1.6).

Let u(x) (x ≥ 0) denote a 1×M vector whose j-th ( j ∈M ) element represents the joint
probability that the workload in system is not greater than x and the underlying
Markov chain is in state j in steady state. We define u∗(s) (Re(s)> 0) as the Laplace-
Stieltjes transform (LST) of u(x).

u∗(s)=
∫∞

0
exp[−sx]du(x).

We then have from (1.6),

u∗(s)= y(0)+ y∗(h∗(s), s)− y(0)
h∗(s)

,

where h∗(s) (Re(s)> 0) denotes the LST of the service time distribution. After some
calculations based on this equation, it can be verified that u∗(s) (Re(s)> 0) satisfies

u∗(s)[sI +C+h∗(s)D]= y(0)s. (1.7)
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We define w∗(s) and w∗(s) (Re(s) > 0) as the LSTs of the actual waiting time and
the sojourn time distributions, respectively. It is easy to verify that w∗(s) and w∗(s)
are given in terms of u∗(s) by

w∗(s)= u∗(s)De
πDe

, w∗(s)= u∗(s)De
πDe

·h∗(s). (1.8)

With a straightforward calculations based on (1.7) and (1.8), we can obtain a com-
putational algorithm for the moments of these distributions [TH94].

1.2.2 Multi-class MAP/G/1 queue [He96, TH94, Tak01, Tak05]
We next consider an extension of the single-class MAP/G/1 queue described in Sec-
tion 1.2.1 to a multi-class queueing model. We start with an extension of the MAP,
called the marked MAP, where K (K = 1,2, . . .) classes of customers exist. Let
K = {1,2, . . . ,K} denote the set of customer classes. The arrival process of class
k customers is assumed to follow a MAP (C,Dk) with the same state space and a
common generator C. Also, service times of class k (k ∈K ) customers are assumed
to be i.i.d. with PDF Hk(x) (x ≥ 0).

If all customer classes have the same service time distribution H(x), i.e., Hk(x)=
H(x) (k ∈K ), this model reduces to a single-class MAP/G/1 queue with

D =
∑

k∈K

Dk.

However, if service times depend on the customer class, this relation no longer holds
because service times and the state of the underlying Markov chain are dependent
in general, so that service times are not i.i.d. To deal with the multi-class MAP/G/1
queue with different service time distributions among classes, it is useful to intro-
duce a more general model described as follows.

Similarly to the case of the MAP, consider an irreducible underlying Markov
chain with finite state space M = {1,2, . . . , M}. There are K (K = 1,2, . . .) classes of
customers, and the set of customer classes are denoted by K = {1,2, . . . ,K}. The
underlying Markov chain stays in state i (i ∈M ) for an exponential interval of time
with mean 1/σi (σi > 0), and when the sojourn time in state i is elapsed,

• with probability pi, j, it changes its state to j ( j ∈M , j ̸= i) without customer
arrivals,

• with probability qk,i, j, it changes its state to j ( j ∈ M ) and a class k (k ∈ K )
customer arrives.

It is assumed that
∑

j∈M

(

pi, j +
∑

k∈K

qk,i, j

)

= 1, i ∈M ,
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where pi,i is defined as zero. Furthermore, service times of class k customers who
arrive with state transitions from i to j are assumed to be i.i.d. according to a
general distribution with PDF Hk,i, j(x) (x ≥ 0, i, j ∈M , k ∈K ).

We then define C and Dk(x) (x ≥ 0, k ∈ K ) as M × M matrices whose (i, j)-th
(i, j ∈M ) elements are given by

[C]i, j =
{
σi pi, j, i ̸= j,

−σi, i = j,
[Dk(x)]i, j =σi qk,i, jHk,i, j(x).

We further define D(x) (x ≥ 0) as

D(x)=
∑

k∈K

Dk(x).

Throughout this dissertation, we refer to a single-server queue with this general
arrival stream as the multi-class MAP/G/1 queue. We can readily verify that this
model includes the MAP/G/1 and the marked MAP/G/1 queues as special cases.

We define D∗(s) (Re(s)> 0) and D as

D∗(s)=
∫∞

0
exp[−sx]dD(x), D = lim

x→∞
D(x)= lim

s→0+
D∗(s).

Because the underlying Markov chain is assumed to be irreducible, C+D satisfies
(1.1), and it has the unique invariant probability vector π determined by (1.2). The
traffic intensity ρ of this model is given by

ρ =π

∫∞

0
xdD(x)e,

and the system is stable if ρ < 1. Below we assume that the system is stable.
Unlike the single-class MAP/G/1 queue, the queue length process in the multi-

class MAP/G/1 queue is not easy to analyze directly, because it is necessary to keep
track of the classes of all waiting customers to construct the embedded Markov
chain at customer departures, which results in an explosion of the state space. On
the other hand, the workload process in the multi-class MAP/G/1 queue is easy to
analyze. From a balance equation for the stationary workload distribution u(x), we
can verify that its LST u∗(s) satisfies (cf. (1.7))

u∗(s)[sI +C+D∗(s)]= (1−ρ)κ, (1.9)

where κ denotes a 1× M vector whose j-th element ( j ∈ M ) represents the con-
ditional probability that the underlying Markov chain is in state j given that the
system is empty. An effective computational algorithm for κ is reported in the lit-
erature [TH94].
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Let w∗
k(s) and w∗

k(s) (k ∈K , Re(s)> 0) denote the LSTs of the actual waiting time
and the sojourn time distributions of class k customers, respectively. Similarly to
(1.8), they are given in terms of u∗(s) by

w∗
k(s)= u∗(s)Dke

πDke
, w∗

k(s)=
u∗(s)D∗

k(s)e
πDke

,

where
D∗

k(s)=
∫∞

0
exp[−sx]dDk(x), Dk = lim

x→∞
Dk(x)= lim

s→0+
D∗

k(s).

Furthermore, a computational algorithm for the joint queue length distribution of
respective classes can be derived based on (1.9), as shown in [Tak01].

In [Tak05], the multi-class MAP/G/1 queue is further extended to a model where
the service speed of the server varies depending on the state of the underlying
Markov chain. [Tak05] shows that the analysis of this model is reduced to that
of a multi-class MAP/G/1 queue with constant service rate, through the following
observation: by extending the time axis of a sample path of the original model so
that the service rate is constant, we obtain a sample path equivalent to that of an
ordinary multi-class MAP/G/1 queue.

1.3 Motivation of this study
Presently, adaptive resource allocation mechanisms are being developed in each
field of communication technology. For example, dynamic spectrum allocation in
cognitive radio, reconfigurable wavelength division multiplexing (WDM), and dy-
namic route control based on the software-defined network (SDN) technology are
regarded as adaptive resource allocation mechanisms. To make efficient use of
bandwidths, these technologies dynamically change the allocation of bandwidths
and restrict the volume of incoming traffic through admission control.

Mathematically, systems with adaptive resource allocation mechanisms can be
formulated as queueing models interacting with underlying processes, where states
of the queues such as the queue lengths and the workloads have an effect on state
transitions of the underlying processes. Because the ordinary analytic methods re-
viewed in the previous section assume that the dynamics of the underlying process
is invariant with respect to the state of the queue, they cannot be applied directly
to these systems. Note that there are some recent studies on computational algo-
rithms of the stationary distribution of Markov chains with level-dependent transi-
tion structures [BS12, Mas15, PMKT10] that can formulate a wide class of queue-
ing models interacting with underlying processes. However, they deal with only
Markov chains, i.e., the case that the state space is countable, which corresponds to
the queue length process in queueing models. Therefore, it is difficult to apply them
to: (i) multi-class queueing models, where we need to analyze the workload process,
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and (ii) queueing models where underlying processes interact with the workload
processes (or wating times) not the queue length processes.

In this study, we consider two types of queueing models interacting with under-
lying processes, which are regarded as fundamental models for communication sys-
tems with adaptive resource allocation mechanisms. In the first model, we assume
that the state of the queue affect the underlying state only when the system be-
comes empty. We assume that the underlying process is a continuous-time Markov
chain with finite state-space similarly to the ordinary MAP/G/1 queue, and its state
is switched at the instant that the system becomes empty. This corresponds to a
system where bandwidth is added when congestion continues for a while, and the
additional bandwidth is released when the congestion gets relieved.

On the other hand, the second model assumes that the state of the underly-
ing process changes continually according to the workload in system. Specifically,
when the workload in system is equal to x (x ≥ 0), the arrival rate of customers
is reduced from λ to λG(x), where G(x) denotes a non-increasing function taking
value in [0,1]. This model corresponds to a system with real-time traffic control
such as an adaptive admission control. Note that the first model describes rela-
tively long-term changes in the state of the underlying process, while the second
model describes short-term changes in it.

In this dissertation, we develop analytical methods for these two fundamental
models through an analysis of closely related queueing models: queueing models
with working vacations and queueing models with impatient customers. As we
will see, queueing models with working vacations (resp. impatient customers) has
a similar mathematical structure to the first (resp. second) fundamental model in-
troduced above. In the rest of this section, we review these models more specifically,
discussing the relation between those and our two fundamental models.

1.3.1 Queueing models with working vacations
In queueing models with working vacations, the server takes a period called work-
ing vacation when the system becomes empty. During working vacation periods,
arriving customers are served at processing rate σ (σ > 0), which may differ from
the normal processing rate of one. This model is an extension of ordinary vaca-
tions models, where the server does not serve customers during vacation periods,
i.e., σ = 0. In what follows, time intervals during which customers are served at
processing rate one are referred to as normal service periods.

The queueing model with working vacations was first introduced in [SF02], as
a model of an access router in a reconfigurable WDM optical access network. While
each access router has its own wavelength, there are some additional wavelengths
that are shared among several access routers, and those additional wavelengths
are assigned to those access routers cyclically. A working vacation period then cor-
responds to the situation that the access router has no additional wavelengths, and
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the following normal service periods corresponds to the situation that the access
router utilizes the additional wavelengths as well.

[SF02] studies an M/M/1 queue with exponential working vacations, where ser-
vice times are assumed to be i.i.d. according to an exponential distribution. Fur-
thermore, in [KCC03, LTZL09, WT06], the model of [SF02] is generalized to the
M/G/1 queue. These models can be viewed as special cases of our first model of the
two fundamental models introduced above, regarding that they have two underly-
ing states {WV,NP}, where WV and NP denote working vacation period and normal
service period, respectively. Therefore, to make analytical methods applicable to
the general case of our first model, it is necessary to extend the state space of the
underlying process to N-states.

1.3.2 Queueing models with impatient customers
In queueing models with impatient customers, each customer has his/her own max-
imum allowable waiting time, which is referred to as the impatience time. If elapsed
waiting times of customers reach their impatience times, they leave the system
immediately without receiving their services. Our fundamental model of the sec-
ond kind is equivalent to the M/G/1 queue with impatient customers and generally
distributed impatience times, which is usually denoted by M/G/1+G. The equiva-
lence between these models can be verified as follows. Note first that we define
the workload in the M/G/1+G queue as the sum of the remaining service times of
all customers in the system who receive their services eventually. Therefore, cus-
tomers who leave the system without receiving their services do not contribute to
the workload in system. The workload process in the M/G/1+G queue, where im-
patience times have a complementary PDF G(x), is thus equivalent to that in our
second model, because the arrival rate λ is essentially reduced to λG(x) when the
workload in system is equal to x.

Queueing models with impatient customers have been studied for a long time,
and a large number of research papers have been published. The numbers of cus-
tomers in the M/M/s+D, M/M/1+M, and M/G/1+M queues are studied in [Bar57],
[AG62], and [Rao67], respectively. [Kov61] shows that the p.d.f. v(x) of the work-
load distribution satisfies a Volterra integral equation of the second kind. [Dal65]
studies the actual waiting time in the GI/G/1+G queue and derives the actual wait-
ing time distributions in the M/G/1+D and M/G/1+M queues and the workload dis-
tribution in the M/G/1+M queue. [Coh69] studies the workload in the GI/G/1+D
queue and it shows the result for the M/G/1+D queue as a special case. In [Coh69],
the workload in the M/G/1+M queue is also analyzed. [Sta79] studies the GI/G/1+G
queue, where the stationary distributions of the actual waiting time and the num-
ber of customers in the system are related to the stationary workload distribution.
Furthermore, in [Sta79], some special cases are also discussed, which include the
stationary workload distribution in the M/M/1+G queue. The GI/G/1+G queue is
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also studied in [BH81] and [BBH84], and the p.d.f. v(x) of the stationary work-
load in the M/G/1+G queue is derived as a special case, reproducing the result in
[Kov61]. In addition, a formula for the M/G/1+Er queue is obtained. In recent
papers, some special cases of the M/G/1+G queue are discussed, where v(x) has a
simpler expression than the general case, e.g., the M/G/1+D queue [BKL01], the
M/PH/1+D queue [KK13], the M/G/1+PH queue [BB13], and the M/G/1 queue with
discrete impatience times [Bae13]. Moreover, there exist further works which an-
alyze the busy period [BPS11, BPSZ10, BB13, KBL01, LK08, PA95, PSZ00] and
the joint distribution of the residual/original waiting times of all waiting customers
[BB99].

The fundamental quantity of interest in queues with impatient customers is
the stationary loss probability Ploss, i.e., the probability that a randomly chosen
customer leaves the system without receiving his/her service. Ploss is also the most
important quantity in our second model, where Ploss represents the ratio of rejected
arrivals. To the best of our knowledge, however, any further results for Ploss in the
M/G/1+G queue beyond those of [BBH84, Kov61] are not found in the literature. As
we will see, under the formulation of [BBH84, Kov61], Ploss is given in terms of the
sequence of recursively determined functions, so that it is not easy to evaluate the
impacts of the parameters of the model on Ploss.

1.4 Overview of the dissertation
The rest of this dissertation is organized into 7 chapters. Chapters 2, 3, and 4 are
related to our first model, while Chapters 5, 6, and 7 are related to our second
model.

In Chapter 2, we analyze the multi-class FCFS M/G/1 queue with working va-
cations. Past studies on the single-class M/G/1 queues with working vacations
[KCC03, LTZL09, WT06] take an approach that the queue length process is ana-
lyzed first, and other performance measures are derived using the queue length
distribution. Note that queue length processes in multi-class FCFS queues are
not easy to analyze directly as mentioned in Section 1.2.2, so that the approach
of [KCC03, LTZL09, WT06] cannot be applied to our model considered in Chapter
2. Furthermore, to make the analysis of the queue length simple, those studies
assume the preemptive-repeat with resampling when working vacations end, i.e.,
the server always restarts the ongoing service at the beginning of normal service
periods, where the new service time is resampled according to the service time dis-
tribution. In Chapter 2, we present an analytical method for the multi-class M/G/1
queue with working vacations, where the server continues the ongoing service at
the beginning of a normal service period in a preemptive-resume manner. We fur-
ther generalize the conventional model with working vacations assuming that the
arrival rate in the working vacation and normal service periods may be different.



1.4. OVERVIEW OF THE DISSERTATION 13

Our analysis takes an approach different from those in the past studies. We first
analyze the workload process, and other performance measures are derived us-
ing the workload distribution, similarly to the analysis of the ordinary multi-class
MAP/G/1 queue without working vacations.

As we will see in Chapter 2, analyzing queues with working vacations are essen-
tially the same as analyzing the corresponding queueing models with disasters. We
thus focus our attention on queues with disasters in Chapter 3, and extend the ap-
proach based on the workload distribution shown in Chapter 2 into the multi-class
MAP/G/1 queue with disasters. The model discussed in Chapter 3 is considered as
a generalization of the single-class M/G/1 queue with disasters studied in [JS96],
where both the customer arrival process and the disaster occurrence process are
assumed to follow Poisson processes. [DN99, Shi04] generalize the model of [JS96]
such that customers arrive according to a batch MAP (BMAP) and disasters oc-
cur according to a MAP. While [JS96] analyzes the workload distribution directly,
[DN99, Shi04] takes an approach that the queue length distribution is analyzed
first. Note again that the multi-class model considered in Chapter 3 cannot be an-
alyzed with the approach of [DN99, Shi04] based on the queue length distribution.

In Chapter 4, we generalize the results in Chapters 2 and 3 by considering a
continuous-time bivariate Markov process {(U(t),S(t)); t ≥ 0}, where U(t) and S(t)
are referred to as the level and the phase, respectively, at time t. U(t) (t ≥ 0) takes
values in [0,∞) and S(t) (t ≥ 0) takes values in a finite set M = {1,2, . . . , M}. U(t) and
S(t) correspond to the workload in system and the state of the underlying process
in a queueing model. U(t) (t ≥ 0) is assumed to be skip-free to the left, and therefore
we call it the M/G/1-type Markov process. The M/G/1-type Markov process was first
introduced in [Tak96] as a generalization of the workload process in the MAP/G/1
queue and its stationary distribution was analyzed under a strong assumption that
the conditional infinitesimal generator of the underlying Markov chain S(t) given
U(t) > 0 is irreducible. In Chapter 4, we extend known results for the stationary
distribution to the case that the conditional infinitesimal generator of the underly-
ing Markov chain given U(t)> 0 is reducible. This extension provides a unified way
to analyze our fundamental model of the first kind.

In Chapter 5, we revisit the formula for the p.d.f. v(x) of the workload distri-
bution in the M/G/1+G queue obtained in [Kov61], and provide a new perspective
on it. More specifically, we consider a last-come first-served preemptive-resume
(LCFS-PR) M/G/1 queue with workload dependent loss, whose workload process is
identical to that of the M/G/1+G queue. Through an analysis of the model, we show
that v(x) can be interpreted as the p.d.f. of a random sum of dependent random
variables. As we will see, this new perspective leads to a unified understanding of
special cases of the M/G/1+G queue.

Chapter 6 analyzes the stationary loss probability Ploss in the M/G/1+G queue.
Based on the results in Chapter 5, various properties of the loss probability such as
theoretical lower and upper bounds and stochastic ordering relations are derived.
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In particular, as a consequence of the stochastic ordering relations, we show a the-
oretically interesting result that the loss probability Ploss in the M/D/1+D queue is
smallest among all M/G/1+G queues with the same and finite arrival rate, mean
service time, and mean impatience time.

In Chapter 7, a computational algorithm for Ploss in the M/G/1+PH queue is
developed, where impatience times are assumed to follow a phase-type distribu-
tion. The phase-type distribution is a probability distribution defined as the length
of absorbing time of a continuous-time absorbing Markov chain, which has suit-
able properties for numerical computation. The set of phase-type distributions is
known to be dense in the class of all non-negative probability distributions [Neu89],
so that it is one of the most general probability distribution function. To the best
of our knowledge, the M/G/1+PH queue has been studied only in [BB13]. Unfor-
tunately, formulas obtained in [BB13] are not suitable for numerical computation
because if we followed it, we would have to deal with exponentially growing number
of terms. We develop a computational algorithm for Ploss based on the uniformiza-
tion technique [Tij94, Page 154] and the results in Chapters 5 and 6. With this
algorithm, we can effectively compute Ploss without being involved with the expo-
nentially growing number of terms. Moreover, this computational algorithm has a
remarkable feature that it also outputs an upper bound of its numerical error.

Finally, we conclude this dissertation in Chapter 8.



2 Multi-Class M/G/1 Queue with
Working Vacations

2.1 Introduction
In this chapter, we consider a stationary multi-class FCFS M/G/1 queue with ex-
ponential working vacations. When the system becomes empty, the server takes a
working vacation, during which customers are served at processing rate σ (σ > 0).
If the system is empty at the end of the working vacation, the server takes another
working vacation. On the other hand, if a customer is being served at the end of the
working vacation, the server switches its processing rate to one and continues to
serve customers in a preemptive-resume manner, until the system becomes empty.
We assume that lengths of working vacations are i.i.d. according to an exponential
distribution with parameter γ (γ > 0). Let V denote a generic random variable for
lengths of working vacations.

Pr(V ≤ x)= 1−exp[−γx], x ≥ 0.

There are K classes of customers, labeled one to K . Let K = {1,2, . . . ,K} denote
the set of customer classes. During working vacation periods (resp. normal service
periods), class k (k ∈K ) customers arrive according to a Poisson process with rate
λWV,k (resp. λNP,k). Let λWV and λNP denote the total arrival rates during working
vacation periods and during normal service periods, respectively.

λWV =
∑

k∈K

λWV,k, λNP =
∑

k∈K

λNP,k,

where we assume λWV > 0 to avoid trivialities. The amounts of service requirements
of class k (k ∈ K ) customers who arrive in working vacation periods (resp. normal
service periods) are assumed to be i.i.d. according to a general distribution with
PDF HWV,k(x) (resp. HNP,k(x)). For each k (k ∈ K ), let HWV,k and HNP,k denote
generic random variables with PDFs HWV,k(x) and HNP,k(x), respectively.

Pr(HWV,k ≤ x)= HWV,k(x), x ≥ 0, Pr(HNP,k ≤ x)= HNP,k(x), x ≥ 0.

15
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Let HWV (resp. HNP) denote a random variable representing the amount of the
service requirement brought by a customer randomly chosen among those arriving
in working vacation periods (resp. normal service periods). We define h∗

WV(s) and
h∗

NP(s) (Re(s)> 0) as the LSTs of HWV and HNP, respectively.

h∗
WV(s)=

∑

k∈K

λWV,k

λWV
·h∗

WV,k(s), h∗
NP(s)=

∑

k∈K

λNP,k

λNP
·h∗

NP,k(s),

where h∗
WV,k(s) and h∗

NP,k(s) (Re(s) > 0) denote the LSTs of HWV,k and HNP,k, re-
spectively.

h∗
WV,k(s)=

∫∞

0
exp[−sx]dHWV,k(x), h∗

NP,k(s)=
∫∞

0
exp[−sx]dHNP,k(x).

We define ρWV,k (k ∈K ), ρNP,k (k ∈K ), ρWV, and ρNP as

ρWV,k = λWV,kE[HWV,k], ρNP,k =λNP,kE[HNP,k],
ρWV =

∑

k∈K

ρWV,k, ρNP =
∑

k∈K

ρNP,k.

In what follows, we assume ρNP < 1. The service discipline is assumed to be FCFS,
unless otherwise mentioned, and services are nonpreemptive.

Remark 2.1. When γ> 0, the system is stable if and only if ρWV <∞ and ρNP < 1.
To see this, consider the length Φ̂ of an interval between successive starts of working
vacations. Note that the system is stable if and only if E[Φ̂] < ∞. By definition,
Φ̂ can be divided into two parts, one of which is the length of a working vacation
period Φ̂WV with mean 1/γ and the other is the length of the following normal service
period Φ̂NP. Let UE

WV denote the total workload in system at the end of the working
vacation period. If ρWV < ∞ and ρNP < 1, the stability of the system is ensured
because E[Φ̂NP]=E[UE

WV]/(1−ρNP) and

E[Φ̂]= 1
γ
+

E[UE
WV]

1−ρNP
≤ 1

γ
+ ρWV/γ

1−ρNP
<∞,

where the first inequality comes from the fact that in every sample path, UE
WV is

bounded above by the total workload brought in the working vacation period.
Conversely, if the system is stable, E[UE

WV] < ∞ holds, and therefore ρWV < ∞.
Furthermore, in an ordinary M/G/1 queue, the first passage time to the idle state
with finite initial workload is finite if and only if the traffic intensity is less than one.
Therefore, we have ρWV <∞ and ρNP < 1 if the system is stable.

Remark 2.2. If we ignore customer classes, the above model is reduced to a single-
class M/G/1 with exponential working vacations characterized by arrival rates λWV
and λNP, amounts of service requirements HWV and HNP, processing rate σ during
working vacation periods, and exponential lengths of working vacation periods with
mean 1/γ.
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We first analyze the stationary workload in system and obtain its LST. Using
this result, we derive the joint LST of the attained waiting time [Sen89] and the
remaining service requirement in terms of the LST of the workload. Because the
server has two different processing rates, the analysis of the attained waiting time
distribution in our model is not as simple as in queues without working vacations
[BT03, Tak01]. This also makes the joint LST of the attained waiting time and the
remaining service requirement complicated. We classify the attained waiting time
into several cases, so that the formula for the joint LST of the attained waiting time
and the remaining service requirement is given in a comprehensible form.

Note that all waiting customers in the FCFS system arrived in the attained
waiting time [BT03, Tak01]. Based on this observation, we obtain the joint trans-
form of the queue lengths and the the workloads in system in respective classes.
We also derive the LSTs of the stationary distributions of waiting time and sojourn
time and the joint transform of the length of a randomly chosen busy cycle and the
number of customers served in the cycle.

Owing to the independent and stationary increment of Poisson arrival processes,
the stationary system behavior conditioned that the server is on working vacation
is equivalent to that in the corresponding queue with disasters. Therefore, as by-
products, we also obtain various formulas for the multi-class FCFS M/G/1 queue
with Poisson disasters, which are generalized into the multi-class FCFS MAP/G/1
queue with disasters in Chapter 3.

The rest of this chapter is organized as follows. In Section 2.2, the stationary
workload in system is analyzed. In Section 2.3, the actual waiting time and sojourn
time distributions are analyzed. In Section 2.4, we study the joint distribution of
the numbers of customers and the workloads in system in respective classes. In
Section 2.5, we analyze the busy cycle. Finally, we conclude this chapter in Section
2.6.

2.2 Total workload in system
In this section, we discuss the total workload in system in steady state. Let U
denote the total workload in system. We define UWV (resp. UNP) as the conditional
workload in system given the server being on working vacation (resp. being in a
normal service period). Let u∗(s), u∗

WV(s), and u∗
NP(s) denote the LSTs of U , UWV,

and UNP, respectively. We then have

u∗(s)= PWV ·u∗
WV(s)+PNP ·u∗

NP(s), (2.1)

where PWV (resp. PNP) denotes the time-average probability of the server being on
working vacation (resp. being in a normal service period).

Let UE
WV denote the total workload in system at the end of a working vacation.

We denote the LST of UE
WV by u∗

WV,E(s). Consider a censored workload process by
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removing all normal service periods. In the resulting process, the ends of working
vacations occur according to a Poisson process with rate γ. Therefore, owing to
PASTA [Wol82], we have

u∗
WV,E(s)= u∗

WV(s), E[UE
WV]=E[UWV]. (2.2)

We then have the following two lemmas, whose proofs are given in Appendices 2.A
and 2.B, respectively.

Lemma 2.1. u∗
NP(s) is given by

u∗
NP(s)=

1−u∗
WV(s)

sE[UWV]
·u∗

M/G/1(s), (2.3)

where u∗
M/G/1(s) denotes the LST of the workload in system in an ordinary M/G/1

queue and it is given by

u∗
M/G/1(s)= (1−ρNP)s

s−λNP +λNPh∗
NP(s)

. (2.4)

Lemma 2.2. PWV and PNP are given by

PWV = 1−ρNP

1−ρNP +γE[UWV]
, PNP = γE[UWV]

1−ρNP +γE[UWV]
, (2.5)

respectively.

With Lemma 2.1, u∗(s) is given in terms of u∗
WV(s) and E[UWV].

u∗(s)= PWV ·u∗
WV(s)+PNP ·

1−u∗
WV(s)

sE[UWV]
·u∗

M/G/1(s), (2.6)

where PWV and PNP are given in (2.5).
We now characterize u∗

WV(s). Note that the conditional workload UWV given
the server being on working vacation is equivalent to that in the corresponding
M/G/1 queue with Poisson disasters [JS96, YKC02]. Therefore we can readily ob-
tain u∗

WV(s) using the results in [JS96, YKC02]. Note that a similar observation
with respect to the queue length is made in [KCC03] for a single-class M/G/1 queue
with exponential working vacations.

Lemma 2.3. u∗
WV(s) and E[UWV] are given by

u∗
WV(s)= (1−ν)s−γ/σ

s−λWV/σ+ (λWV/σ)h∗
WV(s)−γ/σ

, E[UWV]= ρWV −σν

γ
, (2.7)
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respectively, where ν denotes the conditional steady state probability that the server
is busy given that it is on working vacation. Note that ν is given by

ν= (1− r)λWV

(1− r)λWV +γ
, (2.8)

where r (r > 0) denotes the unique real root of the following equation.

z = h∗
WV

(
γ/σ+λWV/σ− (λWV/σ)z

)
, |z| < 1. (2.9)

The proof of Lemma 2.3 is given in Appendix 2.C.

Remark 2.3 (Remark 2.2 in [YKC02]). The solution r of (2.9) represents the prob-
ability that a randomly chosen busy period starting in a working vacation ends
within the working vacation. To see this, consider an M/G/1 queue with arrival
rate λWV, the LST h∗

WV(s) of service requirements of customers, and the process-
ing rate σ. The LST φ∗(s) of the lengths of busy periods is then given by φ∗(s) =
h∗

WV(s/σ+λWV/σ− (λWV/σ)φ∗(s)). Comparing this with (2.9), we have r =φ∗(γ)> 0.

Rearranging terms on the right side of u∗
WV(s) in (2.7) yields

u∗
WV(s)= 1−ν

1−ν f̃ ∗WV(s)
, (2.10)

where f̃ ∗WV(s) is given by

f̃ ∗WV(s)=
h∗

WV(s)− r
(σν/λWV){γ/σ+λWV/σ− (λWV/σ)r− s}

. (2.11)

Remark 2.4. Theorem 2 in [JS96] shows that f̃ ∗WV(s) represents the LST of the re-
maining service requirement F̃WV of a randomly chosen customer present in working
vacation periods when customers are served under the LCFS-PR basis. Note that
(2.7) and (2.10) imply

E[F̃WV]= 1−ν

ν
·E[UWV]= 1−ν

ν
· ρWV −σν

γ
. (2.12)

Theorem 2.1. u∗(s) is given by

u∗(s)= u∗
WV(s) ·

(

PWV +PNP ·
1− f̃ ∗WV(s)

sE[F̃WV]
·u∗

M/G/1(s)

)

, (2.13)

where u∗
M/G/1(s), u∗

WV(s), f̃ ∗WV(s), and E[F̃WV] are given by (2.4), (2.7), (2.11), and
(2.12), respectively, and PWV and PNP are given by

PWV = 1−ρNP

1−ρNP +ρWV −σν
, PNP = ρWV −σν

1−ρNP +ρWV −σν
, (2.14)

respectively.
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Proof. It follows from (2.10) and (2.12) that

1−u∗
WV(s)

sE[UWV]
= 1−ν

1−ν f̃ ∗WV(s)
·
1− f̃ ∗WV(s)

sE[F̃WV]
= u∗

WV(s) ·
1− f̃ ∗WV(s)

sE[F̃WV]
. (2.15)

Substituting (2.15) into (2.6) yields (2.13). Further (2.14) follows from (2.5) and
(2.7).

Remark 2.5. Theorem 2.1 shows that U is stochastically decomposed into two inde-
pendent non-negative random variables, i.e., U = UWV +UI, where the LST of non-
negative random variable UI is given by

u∗
I (s)= PWV +PNP ·

1− f̃ ∗WV(s)

sE[F̃WV]
·u∗

M/G/1(s).

2.3 Waiting time and sojourn time
In this section, we consider the actual waiting time and sojourn time distributions
of class k (k ∈K ) customers in steady state, assuming the FCFS service discipline.
Let Wk (k ∈K ) denote the waiting time of a randomly chosen class k customer. For
each k (k ∈K ), we define WWV,k (resp. WNP,k) as the waiting time of a randomly cho-
sen class k customer arriving in a working vacation period (resp. a normal service
period). Let w∗

k(s), w∗
WV,k(s), and w∗

NP,k(s) (k ∈ K ) denote the LSTs of Wk, WWV,k,
and WNP,k, respectively. Similarly, let Wk (k ∈ K ) denote the stationary sojourn
time of class k customers. For each k (k ∈K ), we define WWV,k (resp. WNP,k) as the
sojourn time of a randomly chosen class k customer arriving in a working vacation
period (resp. a normal service period). Let w∗

k(s), w∗
WV,k(s), and w∗

NP,k(s) (k ∈ K )
denote the LSTs of Wk, WWV,k, and WNP,k, respectively.

For each k (k ∈K ), we define PA
WV,k (resp. PA

NP,k) as the probability that a ran-
domly chosen class k customer finds the server being on working vacation (resp. be-
ing in a normal service period) upon arrival. By definition, w∗

k(s) and w∗
k(s) (k ∈K )

are given by

w∗
k(s) = PA

WV,k ·w
∗
WV,k(s)+PA

NP,k ·w
∗
NP,k(s), (2.16)

w∗
k(s) = PA

WV,k ·w
∗
WV,k(s)+PA

NP,k ·w
∗
NP,k(s), (2.17)

respectively. Because class k customers arrive according to a Poisson process with
rate λWV,k during working vacation periods and rate λNP,k during normal service
periods, PA

WV,k and PA
NP,k satisfy

PA
WV,k

PA
NP,k

=
λWV,kPWV

λNP,kPNP
.
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Therefore, using PA
WV,k +PA

NP,k = 1, we obtain

PA
WV,k =

λWV,kPWV

λWV,kPWV +λNP,kPNP
=

λWV,k(1−ρNP)
λWV,k(1−ρNP)+λNP,k(ρWV −σν)

, (2.18)

PA
NP,k =

λNP,kPNP

λWV,kPWV +λNP,kPNP
=

λNP,k(ρWV −σν)
λWV,k(1−ρNP)+λNP,k(ρWV −σν)

. (2.19)

Both Wk and Wk (k ∈ K ) are considered as the processing time of a certain
amount of workload. More specifically, Wk (k ∈ K ) corresponds to the stationary
processing time of the workload in system seen by an arriving customer of class k.
On the other hand, Wk (k ∈K ) corresponds to the stationary processing time of the
sum of workload in system seen by an arriving customer of class k and his/her ser-
vice requirement. To treat Wk and Wk in a unified way, we define χWV(UX ) (resp.
χNP(UX )) as the processing time of the amount UX of workload conditioned that
the server is on working vacation (resp. in a normal service period) when its pro-
cessing starts, where UX is assumed to be a non-negative random variable whose
distribution function and LST are given by UX (x) and u∗

X (s), respectively. Because
the processing rate in χWV(UX ) may change from σ to one, we divide χWV(UX ) into
two parts, χ(σ)

WV(UX ) and χ(1)
WV(UX ), where χ(σ)

WV(UX ) (resp. χ(1)
WV(UX )) is defined as the

length of a subinterval in χWV(UX ), during which the processing rate is equal to σ

(resp. one). By definition, χWV(UX ) = χ(σ)
WV(UX )+χ(1)

WV(UX ), where χ(σ)
WV(UX ) > 0 for

UX > 0, and χ(1)
WV(UX )≥ 0. We then define χ∗∗

WV(ω, s |UX ) and χ∗
NP(s |UX ) as

χ∗∗
WV(ω, s |UX ) = E

[
exp[−ωχ(σ)

WV(UX )]exp[−sχ(1)
WV(UX )]

]
,

χ∗
NP(s |UX ) = E

[
exp[−sχNP(UX )]

]
,

respectively.

Lemma 2.4. χ∗∗
WV(ω, s |UX ) and χ∗

NP(s |UX ) are given by

χ∗∗
WV(ω, s |UX )= u∗

X

(ω+γ

σ

)
+

u∗
X (s)−u∗

X

(ω+γ

σ

)

(σ/γ){(ω+γ)/σ− s}
, χ∗

NP(s |UX )= u∗
X (s),

respectively.

Proof. We first consider χ∗
NP(s |UX ). When the processing of UX starts in a normal

service period, the processing rate is fixed to one throughout its processing. We
then have χNP(UX ) = UX /1, from which χ∗

NP(s | UX ) = u∗
X (s) follows. On the other

hand, when the processing of UX starts in a working vacation period, we have

(χ(σ)
WV(UX ),χ(1)

WV(UX ))=

⎧
⎪⎪⎨

⎪⎪⎩

(
UX

σ
,0), ṼS > UX

σ
,

(ṼS,UX −σṼS), ṼS ≤ UX

σ
,
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where ṼS denotes the remaining length of the working vacation when the process-
ing starts. Owing to the memoryless property of the exponential distribution, ṼS is
exponentially distributed with parameter γ. We then have

χ∗∗
WV(ω, s |UX )

=
∫∞

0
dUX (x)

[
exp[−γ(x/σ)]exp[−ω(x/σ)]

+
{
1−exp[−γ(x/σ)]

}∫x/σ

0

γexp[−γτ]
1−exp[−γ(x/σ)]

·exp[−ωτ]exp[−s(x−στ)]dτ
]
,

(2.20)

from which the expression of χ∗∗
WV(ω, s |UX ) follows.

Using Lemma 2.4, E[χ(σ)
WV(UX )], E[χ(1)

WV(UX )], and E[χNP(UX )] are obtained to be

E
[
χ(σ)

WV(UX )
]
= (−1) · lim

ω→0+

d
dω

[
χ∗∗

WV(ω,0 |UX )
]
=

1−u∗
X (γ/σ)
γ

, (2.21)

E
[
χ(1)

WV(UX )
]
= (−1) · lim

s→0+

d
ds

[
χ∗∗

WV(0, s |UX )
]
=E[UX ]−σ ·

1−u∗
X (γ/σ)
γ

, (2.22)

E
[
χNP(UX )

]
= E[UX ]. (2.23)

We now turn our attention to the waiting time distribution. Consider the cen-
sored process obtained by removing all normal service periods. In the resulting
process, class k customers arrive according to a Poisson process. Owing to PASTA,
the conditional workload in system seen by a randomly chosen class k customer
arriving in a working vacation period has the same distribution as UWV. Therefore
the conditional waiting time distributions are identical among classes. Similarly,
the conditional workload in system seen by class k (k ∈ K ) customers arriving in
normal service periods has the same distribution as UNP. Thus, the conditional
waiting time distributions are also identical among classes.

Let W (σ)
WV (resp. W (1)

WV) denote the length of an interval during which a randomly
chosen customer waits for his/her service in a working vacation period (resp. nor-
mal service period), given that the customer arrived in the working vacation period.
By definition, WWV,k =W (σ)

WV+W (1)
WV for all k (k ∈K ). Also, let WNP denote the condi-

tional waiting time of a randomly chosen customer given that the customer arrives
in a normal service period. We then define w∗∗

WV(ω, s) as the joint LST of W (σ)
WV and

W (1)
WV, and w∗

NP(s) as the LST of WNP.

w∗∗
WV(ω, s)=E

[
exp[−ωW (σ)

WV]exp[−sW (1)
WV]

]
, w∗

NP(s)=E
[
exp[−sWNP]

]
.
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Theorem 2.2. w∗∗
WV(ω, s) and w∗

NP(s) are given by

w∗∗
WV(ω, s)= u∗

WV

(ω+γ

σ

)
+

u∗
WV(s)−u∗

WV

(ω+γ

σ

)

(σ/γ){(ω+γ)/σ− s}
, w∗

NP(s)= u∗
NP(s),

respectively.

Proof. By definition, w∗∗
WV(ω, s) = χ∗∗

WV(ω, s |UWV) and w∗
NP(s) = χ∗

NP(s |UNP), so that
Theorem 2.2 immediately follows from Lemma 2.4.

Because WWV,k =W (σ)
WV +W (1)

WV and WNP,k =WNP for all k (k ∈K ),

w∗
WV,k(s)= w∗∗

WV(s, s), w∗
NP,k(s)= w∗

NP(s), ∀k ∈K .

Thus the LST w∗
k(s) (k ∈K ) of the waiting time distribution of class k customers is

obtained by (2.16). In particular, the mean waiting time is given by

E[Wk]= PA
WV,k ·

[(1−σ)(1−u∗
WV(γ/σ))

γ
+E[UWV]

]
+PA

NP,k ·E[UNP],

where E[UNP] denotes the mean conditional workload in system given the system
being in a normal service period and it is obtained from (2.3) and Lemma 2.3.

E[UNP]= ρWV −σ

γ
+
λWVE[H2

WV]
2(ρWV −σν)

+
λNPE[H2

NP]
2(1−ρNP)

.

Next we consider the sojourn time distribution. For each k (k ∈ K ), let W
(σ)
WV,k

(resp. W
(1)
WV ,k) denote the length of time during which a randomly chosen class k

customer spends in a working vacation period (resp. a normal service period), given
that the customer arrives in the working vacation period. By definition, W

(σ)
WV,k > 0,

W
(1)
WV,k ≥ 0, and WWV,k =W

(σ)
WV,k +W

(1)
WV,k. We define w∗∗

WV,k(ω, s) (k ∈K ) as the joint

LST of W
(σ)
WV,k and W

(1)
WV ,k, and w∗

NP,k(s) (k ∈K ) as the LST of WNP,k.

w∗∗
WV,k(ω, s)=E

[
exp[−ωW

(σ)
WV,k]exp[−sW

(1)
WV,k]

]
, w∗

NP,k(s)=E
[
exp[−sWNP,k]

]
.

Theorem 2.3. w∗∗
WV,k(ω, s) and w∗

NP,k(s) (k ∈K ) are given by

w∗∗
WV,k(ω, s) = u∗

WV

(ω+γ

σ

)
h∗

WV,k

(ω+γ

σ

)

+
u∗

WV(s)h∗
WV,k(s)−u∗

WV

(ω+γ

σ

)
h∗

WV,k

(ω+γ

σ

)

(σ/γ){(ω+γ)/σ− s}
,

w∗
NP,k(s) = u∗

NP(s) ·h∗
NP,k(s),

respectively.
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Proof. By definition, w∗∗
WV,k(ω, s) = χ∗∗

WV(ω, s | UWV + HWV,k), and w∗
NP,k(s) = χ∗

NP(s |
UNP +HNP,k). Theorem 2.3 then follows from Lemma 2.4.

Note that w∗
WV,k(s) = w∗∗

WV,k(s, s) (k ∈ K ). Thus the LST w∗
k(s) (k ∈ K ) of the

sojourn time distribution of class k customers is obtained by (2.17). In particular,
the mean sojourn time is given by

E[Wk]= PA
WV,k ·E[WWV,k]+PA

NP,k ·E[WNP,k],

where

E[WWV,k] =
(1−σ)(1−u∗

WV(γ/σ)h∗
WV,k(γ/σ))

γ
+E[UWV]+E[HWV,k],

E[WNP,k] = E[UNP]+E[HNP,k].

2.4 Joint distribution of queue lengths and
workloads in system

In this section, we consider the joint distribution of the numbers of customers and
the workloads in system in respective classes. To do so, we first derive the joint LST
of the attained waiting time and the remaining amount of service requirement of a
class k customer being served. With this result, the joint distributions are derived.

For each k (k ∈ K ), let ρ(σ)
WV,k (resp. ρ(1)

WV,k) denote the time-average probability
that class k customers, who arrived in working vacation periods, are being served
in working vacation periods (resp. in normal service periods). Also, let ρ(1)

NP,k (k ∈
K ) denote the time-average probability that class k customers arriving in normal
service periods are being served.

Lemma 2.5. ρ(σ)
WV,k, ρ(1)

WV,k, and ρ(1)
NP,k (k ∈K ) are given by

ρ(σ)
WV,k = PWV ·ν ·

λWV,k
(
1−h∗

WV,k(γ/σ)
)

λWV
(
1−h∗

WV(γ/σ)
) , (2.24)

ρ(1)
WV,k = PWV ·

[

ρWV ,k −σν ·
λWV,k

(
1−h∗

WV,k(γ/σ)
)

λWV
(
1−h∗

WV(γ/σ)
)

]

, (2.25)

ρ(1)
NP,k = PNP ·ρNP,k, (2.26)

respectively.

The proof of Lemma 2.5 is given in Appendix 2.D.
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Remark 2.6. Let ρ denote the utilization factor, i.e., the time-average probability
that customers are being served. Recall that ν in (2.8) represents the conditional
probability of the server being busy given that the server is on working vacation. We
then have

ρ = 1−PWV · (1−ν)= PWV ·ν+PNP = (1−ρNP)ν+ρWV −σν

1−ρNP +ρWV −σν
.

Furthermore, using Lemma 2.5, we can verify
∑

k∈K

ρ(σ)
WV,k = PWV ·ν,

∑

k∈K

(ρ(1)
WV,k +ρ(1)

NP,k)= PNP.

We now consider the attained waiting time [Sen89], which is defined as the
length of time spent by a customer being served (if any) in the system. When the
system is empty, the attained waiting time is defined to be zero. Note that under the
FCFS service discipline, all waiting customers in the system arrived in the attained
waiting time.

For later use, we divide the attained waiting time into two parts: One is the
(sub)interval in working vacation periods and the other is the (sub)interval in nor-
mal service periods. Let A(σ)

WV,k (k ∈ K ) denote the length of time in the attained
waiting time, during which the server was on working vacation, given that a class k
customer is being served. Furthermore, for each k (k ∈K ), let A(1)

WV,k (resp. A(1)
NP,k)

denote the length of time in the attained waiting time, during which the server
worked in a normal service period, given that a class k customer, who arrived in a
working vacation period (resp. a normal service period), is being served. For a class
k (k ∈ K ) customer being served, let H̃k denote the remaining amount of his/her
service requirement. We then define the following joint LSTs:

a∗∗
WV,WV,k(ωk,αk)

= E
[
exp[−ωk A(σ)

WV,k]exp[−αkH̃k]
∣∣a class k customer is being served

at processing rate σ
]
,

a∗∗∗
WV,NP,k(ωk, sk,αk)

= E
[
exp[−ωk A(σ)

WV,k]exp[−sk A(1)
WV,k]exp[−αkH̃k]

∣∣a class k customer who arrived in a working vacation period

is being served at processing rate one
]
,

a∗∗
NP,k(sk,αk)

= E
[
exp[−sk A(1)

NP,k]exp[−αkH̃k]
∣∣a class k customer, who arrived in a

normal service period, is being served
]
.
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remaining service requirement

waiting
time elapsed service time

time
arrival

Figure 2.1: Attained waiting time of a class k customer in a working vacation pe-
riod.

remaining service requirement

waiting
time elapsed service time

working vacation period normal service period

time
arrival

Figure 2.2: Attained waiting time of a class k customer who started his/her service
in a working vacation period and will end his/her service in a normal service period.

See Figures 2.1–2.4. Figure 2.1 corresponds to a∗∗
WV,WV,k(ωk,αk), Figures 2.2 and

2.3 correspond to a∗∗∗
WV,NP,k(ωk, sk,αk), and Figure 2.4 corresponds to a∗∗

NP,k(sk,αk).
Moreover, for each k (k ∈ K ), let H(σ)

WV,k (resp. H(1)
WV,k) denote the lengths of

time during which a class k customer, who started his/her service in a working
vacation period, is served in the working vacation period (resp. the subsequent
normal service period). We then define ĥ∗∗

WV,k(ω, s) as the joint LST of H(σ)
WV,k and

H(1)
WV,k. Using Lemma 2.4, we obtain

ĥ∗∗
WV,k(ω, s) = E

[
exp[−ωH(σ)

WV,k]exp[−sH(1)
WV,k]

]
= χ∗∗

WV(ω, s | HWV,k)
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Figure 2.3: Attained waiting time of a class k customer who arrived in a working
vacation period and started his/her service in a normal service period.

elapsed
service time

arrival
time

remaining service requirement

waiting time

Figure 2.4: Attained waiting time of a class k customer who arrived in a normal
service period.



28 MULTI-CLASS M/G/1 QUEUE WITH WORKING VACATIONS

= h∗
WV,k

(ω+γ

σ

)
+

h∗
WV,k(s)−h∗

WV,k

(ω+γ

σ

)

(σ/γ){(ω+γ)/σ− s}
.

We then have the following theorem, whose proof is provided in Appendix 2.E.

Theorem 2.4. a∗∗
WV,WV,k(ωk,αk), a∗∗∗

WV,NP,k(ωk, sk,αk), and a∗∗
NP,k(sk,αk) are given by

a∗∗
WV,WV,k(ωk,αk) =

(1/γ)u∗
WV

(ωk +γ

σ

)

E
[
W

(σ)
WV,k −W (σ)

WV,k

] ·
h∗

WV,k(αk)−h∗
WV,k

(ωk +γ

σ

)

(σ/γ){(ωk +γ)/σ−αk}
, (2.27)

a∗∗∗
WV,NP,k(ωk, sk,αk) = 1

E
[
W

(1)
WV,k −W (1)

WV,k

] (2.28)

·
[

u∗
WV

(ωk +γ

σ

) ĥ∗∗
WV,k(ωk,αk)− ĥ∗∗

WV,k(ωk, sk)

sk −αk

+
u∗

WV(sk)−u∗
WV

(ωk +γ

σ

)

(σ/γ){(ωk +γ)/σ− sk}
·
h∗

WV,k(αk)−h∗
WV,k(sk)

sk −αk

⎤

⎥⎦ ,

(2.29)

a∗∗
NP,k(sk,αk) = u∗

NP(sk) ·
h∗

NP,k(αk)−h∗
NP,k(sk)

E[HNP,k](sk −αk)
, (2.30)

respectively, where E[W
(σ)
WV,k −W (σ)

WV,k] and E[W
(1)
WV,k −W (1)

WV,k] are given in (2.48) and
(2.49), respectively.

With Theorems 2.2, 2.3, and 2.4, we can verify that the LSTs of conditional
attained waiting times a∗∗

WV,WV,k(ωk,αk) and a∗∗∗
WV,NP,k(ωk, sk,αk) are represented in

terms of w∗∗
WV(ω, s) and w∗∗

WV,k(ω, s).

Corollary 2.1. a∗∗
WV,WV,k(ωk,αk) and a∗∗∗

WV,NP,k(ωk, sk,αk) are given by

a∗∗
WV,WV,k(ωk,αk)=

w∗∗
WV(ωk,αk)h∗

WV,k(αk)−w∗∗
WV,k(ωk,αk)

(ωk −σαk)E
[
W

(σ)
WV,k −W (σ)

WV,k

] ,

a∗∗∗
WV,NP,k(ωk, sk,αk)

=
(
w∗∗

WV(ωk, sk)−w∗∗
WV(ωk,αk)

)
h∗

WV,k(αk)−
(
w∗∗

WV,k(ωk, sk)−w∗∗
WV,k(ωk,αk)

)

(sk −αk)E
[
W

(1)
WV,k −W (1)

WV,k

] ,

respectively.
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Let LWV,k (resp. LNP,k) (k ∈ K ) denote the number of class k customers in the
system, who arrived in working vacation periods (resp. normal service periods).
Also, let UWV,k (resp. UNP,k) (k ∈ K ) denote the workload in system, which is
brought by class k customers who arrived in working vacation periods (resp. normal
service periods). We then define the joint transform ψ(zWV, zNP,sWV,sNP) as

ψ(zWV, zNP,sWV,sNP)

= E

[
∏

k∈K

(
zLWV,k

WV,k · zLNP,k
NP,k ·exp[−sWV,kUWV,k] ·exp[−sNP,kUNP,k]

)]

,

where

zWV = (zWV,1, zWV,2, . . . , zWV,K ), zNP = (zNP,1, zNP,2, . . . , zNP,K ),
sWV = (sWV,1, sWV,2, . . . , sWV,K ), sNP = (sNP,1, sNP,2, . . . , sNP,K ).

Theorem 2.5. ψ(zWV, zNP,sWV,sNP) is given by

ψ(zWV, zNP,sWV,sNP)
= (1−ν)PWV

+
∑

k∈K

zWV,kρ
(σ)
WV,ka∗∗

WV,WV,k

( ∑

i∈K

[
λWV,i −λWV,i zWV,ih∗

WV,i(sWV,i)
]
, sWV,k

)

+
∑

k∈K

zWV,kρ
(1)
WV,ka∗∗∗

WV,NP,k

( ∑

i∈K

[
λWV,i −λWV,i zWV,ih∗

WV,i(sWV,i)
]
,

∑

i∈K

[
λNP,i −λNP,i zNP,ih∗

NP,i(sNP,i)
]
, sWV,k

)

+
∑

k∈K

zNP,kρ
(1)
NP,ka∗∗

NP,k

( ∑

i∈K

[
λNP,i −λNP,i zNP,ih∗

NP,i(sNP,i)
]
, sNP,k

)
.

Proof. Note first that the system is empty with probability 1−ρ = (1−ν)PWV (see
Remark 2.6). Furthermore, when a customer is being served, all waiting customers
arrived in the attained waiting time, as noted at the beginning of this section. The-
orem 2.5 immediately follows from those observations.

Remark 2.7. Let LWV (resp. LNP) denote the total number of customers in the sys-
tem, who arrived in working vacation periods (resp. normal service periods). Also,
let UWV (resp. UNP) denote the total workload in system, which was brought by cus-
tomers who arrived in working vacation periods (resp. normal service periods). As
stated in Remark 2.2, we can obtain those by considering the single-class system with
λWV, h∗

WV(s), λNP, and h∗
NP(s). Therefore Theorem 2.5 also provides the formula for

the joint transform of LWV, LNP, UWV, and UNP implicitly, because it corresponds
the case of K = 1.
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Taking the partial derivatives of ψ(zWV, zNP,sWV,sNP), we can obtain the mo-
ments of LWV,k, LNP,k, UWV,k, and UNP,k (k ∈K ). In particular, we have

E[LWV,k] = λWV,kPWV ·E[WWV,k], E[LNP,k]=λNP,kPNP ·E[WNP,k],

E[UWV,k] = PWVρWV,k

(

E[UWV]+
E[H2

WV,k]

2E[HWV,k]
+ 1
γ

)

− σ

γ

(
ρ(σ)

WV,k +ρ(1)
WV,k

)
,

E[UNP,k] = PNPρNP,k

(
E[H2

NP,k]

2E[HNP,k]
+E[UNP]

)

.

2.5 Busy cycle
The busy cycle is defined as the interval between ends of successive busy periods.
In order to analyze the busy cycle and related quantities, we first consider the first
passage time to the empty system. More specifically, we define TE|WV (resp. TE|NP)
as the first passage time to the empty system given that the server is on working
vacation (resp. in a normal service period) at time 0. We divide TE|WV into two parts:
T(σ)

E|WV and T(1)
E|WV, where T(σ)

E|WV (resp. T(1)
E|WV) denotes the length of a subinterval

during which the server is on working vacation (resp. in a normal service period).
By definition, TE|WV = T(σ)

E|WV +T(1)
E|WV. Furthermore, for each k (k ∈ K ), we define

N(σ)
WV,k (resp. N(1)

WV,k) as the number of class k customers arriving in T(σ)
E|WV (resp.

T(1)
E|WV ). Similarly, we define NNP,k (k ∈ K ) as the number of class k customers

arriving in TE|NP. Let S(t) (t ≥ 0) denote the state of the server at time t, i.e., and
S(t) = WV if the server is on working vacation at time t, and otherwise S(t) = NP.
We define U(t) (t ≥ 0) as the total workload at time t. We are interested in the
following joint transforms.

ζ∗WV(zWV, zNP, sWV, sNP | x)

= E
[( ∏

k∈K

z
N(σ)

WV,k
WV,k · z

N(1)
WV,k

NP,k

)
exp

[
−sWVT(σ)

E|WV
]
exp

[
−sNPT(1)

E|WV
] ∣∣∣ U(0)= x,S(0)=WV

]
,

ζ∗NP(zNP, sNP | x)

= E
[( ∏

k∈K

zNNP,k
NP,k

)
exp

[
−sNPTE|NP

] ∣∣∣U(0)= x,S(0)=NP
]
,

where zWV = (zWV,1, zWV,2, . . . , zWV,K ) and zNP = (zNP,1, zNP,2, . . . , zNP,K ).

Lemma 2.6. ζ∗NP(zNP, sNP | x) is given by

ζ∗NP(zNP, sNP | x)= exp
[
−q∗

NP(zNP, sNP)x
]
, (2.31)

where q∗
NP(zNP, sNP) is defined as

q∗
NP(zNP, sNP)= sNP +λNP −

∑

k∈K

zNP,kλNP,k

∫∞

0
ζ∗NP(zNP, sNP | y)dHNP,k(y), (2.32)
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and it is given by

q∗
NP(zNP, sNP)= sNP +λNP −

∑

k∈K

zNP,kλNP,kh∗
NP,k

(
q∗

NP(zNP, sNP)
)
. (2.33)

The proof of Lemma 2.6 is given in Appendix 2.F.
Next, we consider the joint transform ζ∗WV(zWV, zNP, sWV, sNP | x). Given S(0) =

WV, let TWV denote the time instant when the server ends the current working
vacation for the first time after time 0. Because of the memoryless property, TWV
is exponentially distributed with parameter γ. We classify the first passage time
TE|WV to the empty system into two cases, TE|WV ≤ TWV and TE|WV > TWV, and we
define ζ∗WV,WV(zWV, sWV | x) and ζ∗WV,NP(zWV, sWV,α | x) as

ζ∗WV,WV(zWV, sWV | x) = E
[( ∏

k∈K

z
N(σ)

WV,k
WV,k

)
exp

[
−sWVT(σ)

E|WV
]

∣∣∣U(0)= x,S(0)=WV,TE|WV ≤ TWV

]
,

ζ∗WV,NP(zWV, sWV,α | x) = E
[( ∏

k∈K

z
N(σ)

WV,k
WV,k

)
exp

[
−sWVTWV

]
exp

[
−αU(TWV)

]

∣∣∣U(0)= x,S(0)=WV,TE|WV > TWV

]
,

respectively. Note here that (2.31) implies

E
[( ∏

k∈K

z
N(1)

WV,k
NP,k

)
exp

[
−sNPT(1)

E|WV
] ∣∣∣U(0)= x,S(0)=WV,TE|WV > TWV,U(TWV)= y

]

= E
[( ∏

k∈K

zNNP,k
NP,k

)
·exp

[
−sNPTE|NP

] ∣∣∣U(0)= y,S(0)=NP
]

= ζ∗NP(zNP, sNP | y)
= exp[−q∗

NP(zNP, sNP)y].

We then have

ζ∗WV(zWV, zNP, sWV, sNP | x) = PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x)
+PWV,NP(x) ·ζ∗WV,NP(zWV, sWV, q∗

NP(zNP, sNP) | x),
(2.34)

where PWV,WV(x) and PWV,NP(x) are defined as

PWV,WV(x) = Pr(TE|WV ≤ TWV |U(0)= x,S(0)=WV),
PWV,NP(x) = Pr(TE|WV > TWV |U(0)= x,S(0)=WV).
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Lemma 2.7. The following equations hold.

PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x) = exp[−q∗
WV,WV(zWV, sWV)x], (2.35)

PWV,NP(x) ·ζ∗WV,NP(zWV, sWV,α | x) =
exp[−αx]−exp[−q∗

WV,WV(zWV, sWV)x]

q∗
WV,WV(zWV, sWV)−α

· q∗
WV,NP(zWV, sWV,α), (2.36)

where q∗
WV,WV(zWV, sWV) and q∗

WV,NP(zWV, sWV,α) are defined as

q∗
WV,WV(zWV, sWV)

= sWV

σ
+ γ

σ
+ λWV

σ

−
∑

k∈K

zWV,kλWV,k

σ

∫∞

0
PWV,WV(y) ·ζ∗WV,WV(zWV, sWV | y)dHWV,k(y), (2.37)

q∗
WV,NP(zWV, sWV,α)

= γ/σ+
∑

k∈K

zWV,kλWV,k

σ

∫∞

0
PWV,NP(y) ·ζ∗WV,NP(zWV, sWV,α | y)dHWV,k(y), (2.38)

and they satisfy

q∗
WV,WV(zWV, sWV)

= sWV

σ
+ γ

σ
+ λWV

σ
−

∑

k∈K

zWV,kλWV,k

σ
·h∗

WV,k
(
q∗

WV,WV(zWV, sWV)
)
, (2.39)

q∗
WV,NP(zWV, sWV,α)

= γ

σ
+

∑

k∈K

zWV,kλWV,k

σ
·
h∗

WV,k(α)−h∗
WV,k

(
q∗

WV,WV(zWV, sWV)
)

q∗
WV,WV(zWV, sWV)−α

· q∗
WV,NP(zWV, sWV,α). (2.40)

The proof of Lemma 2.7 is given in Appendix 2.G.
It follows from (2.34), (2.35), and (2.36) that ζ∗WV(zWV, zNP, sWV, sNP | x) is given

by

ζ∗WV(zWV, zNP, sWV, sNP | x) = exp[−q∗
WV,WV(zWV, sWV)x]

+
exp[−q∗

NP(zNP, sNP)x]−exp[−q∗
WV,WV(zWV, sWV)x]

q∗
WV,WV(zWV, sWV)− q∗

NP(zNP, sNP)

· q∗
WV,NP(zWV, sWV, q∗

NP(zNP, sNP)).
(2.41)

With (2.37) and (2.38), we define qWV,WV and qWV,NP as

qWV,WV = q∗
WV,WV(e,0), qWV,NP = q∗

WV,NP(e,0,0),

where e denotes a vector whose elements are all equal to one.
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Lemma 2.8. qWV,WV and qWV,NP are given by

qWV,WV = qWV,NP = γ/σ
1−ν

, (2.42)

and PWV,WV(x) and PWV,NP(x) are given by

PWV,WV(x)= exp[−qWV,WV · x], PWV,NP(x)= 1−exp[−qWV,WV · x]. (2.43)

The proof of Lemma 2.8 is given in Appendix 2.H.
We then consider the busy cycle. Recall that the server is always on working

vacation at the beginning of busy cycle. Let Φ denote the length of a randomly
chosen busy cycle. We divide Φ into two parts, and let Φ(σ) (resp. Φ(1)) denote the
length of the subinterval during which the server is on working vacation (resp. in
a normal service period). Furthermore, we divide Φ(σ) into two parts, and let Φ(σ)

E
(resp. Φ(σ)

B ) denote the length of the subinterval during which the server is idle

(resp. busy). By definition, Φ=Φ(σ)
E +Φ(σ)

B +Φ(1). For each k (k ∈K ), let N
(σ)
k (resp.

N
(1)
k ) denote the number of class k customers arriving in Φ(σ) (resp. Φ(1)). We define

the joint transform of those quantities as follows.

φ∗(zWV, zNP,ω, sWV, sNP)

= E
[( ∏

k∈K

zN(σ)
k

WV,k · z
N(1)

k
NP,k

)
·exp

[
−ωΦ(σ)

E
]
·exp

[
−sWVΦ

(σ)
B

]
·exp

[
−sNPΦ

(1)]
]
.

By definition, φ∗(zWV, zNP,ω, sWV, sNP) satisfies

φ∗(zWV, zNP,ω, sWV, sNP)

= λWV

ω+λWV

∑

k∈K

zWV,kλWV,k

λWV

∫∞

0
ζ∗WV(zWV, zNP, sWV, sNP | y)dHWV,k(y).

Therefore, with (2.41), we obtain the following theorem.

Theorem 2.6. φ∗(zWV, zNP,ω, sWV, sNP) is given by

φ∗(zWV, zNP,ω, sWV, sNP)

= λWV

ω+λWV

∑

k∈K

zWV,kλWV,k

λWV

[
h∗

WV,k
(
q∗

WV,WV(zWV, sWV)
)

+
h∗

WV,k(q∗
NP(zNP, sNP))−h∗

WV,k
(
q∗

WV,WV(zWV, sWV)
)

q∗
WV,WV(zWV, sWV)− q∗

NP(zNP, sNP)

· q∗
WV,NP(zWV, sWV, q∗

NP(zNP, sNP))
]
.
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Remark 2.8. It is clear from the derivation of Theorem 2.6 that

Pr(A randomly chosen busy period ends while the server is on working vacation)

= lim
ω→0+

λWV

ω+λWV

∑

k∈K

λWV,k

λWV
·h∗

WV,k
(
q∗

WV,WV(0,0)
)
= h∗

WV(qWV,WV)= r,

where we use (2.54). This result is consistent with Remark 2.3. Furthermore, using
(2.39) and (2.40), we obtain an alternative expression for φ∗(zWV, zNP,ω, sWV, sNP).

φ∗(zWV, zNP,ω, sWV, sNP) = λWV

ω+λWV

[ 1
λWV

{
sWV +λWV −σq∗

WV,WV(zWV, sWV)

+σq∗
WV,NP

(
zWV, sWV, q∗

NP(zNP, sNP)
)}]

.

Taking the partial derivatives of φ∗(zWV, zNP,ω, sWV, sNP), we can obtain the
moments of N

(σ)
k , N

(1)
k , Φ(σ)

B , and Φ(1). In particular,

E[N
(σ)
k ]=λWV,k ·

(
1

λWV
+E[Φ(σ)

B ]
)
, E[N

(1)
k ]=λNP,k ·E[Φ(1)],

E[Φ(σ)
B ]=

σqWV,WV

γλWV
− 1
λWV

, E[Φ(1)]= (1− r) · E[UWV]/ν
1−ρNP

.

2.6 Conclusion
In this chapter, we considered the stationary multi-class FCFS M/G/1 queue with
exponential working vacations. We first analyzed the stationary workload in sys-
tem. Based on it, we derived the LSTs of the stationary waiting time and sojourn
time in each class, and further obtained the joint transform of the queue lengths
and the workloads in respective classes. Moreover, we derived the joint transform
associated with the busy cycle.

As stated in Section 2.1, if we delete time intervals in normal service periods
from the time axis, the resulting process can be viewed as a multi-class FCFS M/G/1
queue with Poisson disasters, where the processing rate is equal to σ. Appendix
2.I summarizes the analytical results for the multi-class FCFS M/G/1 queue with
Poisson disasters, all of which are immediately obtained from the results in this
chapter. These results are generalized to the case of the multi-class FCFS MAP/G/1
queue in Chapter 3.

Appendices

2.A Proof of Lemma 2.1
We define UB

NP as the total workload in system at the beginning of a normal service
period. Note that UB

NP is a conditional random variable of UE
WV given that the server
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is busy at the end of a working vacation. Let u∗
NP,B(s) denote the LST of UB

NP. We
then have

u∗
NP,B(s) = E

[
exp[−sUE

WV] |UE
WV > 0

]
=

u∗
WV,E(s)−Pr(UE

WV = 0)

1−Pr(UE
WV = 0)

, (2.44)

E
[
UB

NP

]
=

E
[
UE

WV
]

1−Pr(UE
WV = 0)

. (2.45)

Consider a censored workload process by removing all working vacation periods
from the time axis. In steady state, the censored process has the same distribution
as UNP. Also, the censored process can be viewed as the conditional workload pro-
cess of the M/G/1 vacation queue with exhaustive services, given that the server is
busy. Therefore, it follows from (5.6) in [Dos90] that u∗

NP(s) is given by

u∗
NP(s)=

1−u∗
NP,B(s)

sE
[
UB

NP
] ·u∗

M/G/1(s).

Note here that (2.2), (2.44), and (2.45) imply

1−u∗
NP,B(s)

sE
[
UB

NP
] =

1−u∗
WV,E(s)

sE
[
UE

WV
] =

1−u∗
WV(s)

sE[UWV]
,

which completes the proof.

2.B Proof of Lemma 2.2
We regard an interval between successive ends of working vacations as a cycle.
Let CWV (resp. CNP) denote the length of an interval during which the server is
on working vacation (resp. in a normal service period) in a randomly chosen cycle.
Owing to the renewal reward theorem, we have

PWV = E[CWV]
E[CWV]+E[CNP]

, PNP = E[CNP]
E[CWV]+E[CNP]

. (2.46)

Because CWV is equivalent to the working vacation length V , we have E[CWV] =
E[V ]. On the other hand, E[CNP] equals to the mean first passage time to the
empty system in the corresponding ordinary M/G/1 queue with initial workload of
UB

NP. Noting that CNP = 0 if the system is empty at the end of the working vacation,
we have

E[CNP]=Pr(UE
WV = 0) ·0+ {1−Pr(UE

WV = 0)} ·
E[UB

NP]
1−ρNP

= E[UWV]
1−ρNP

, (2.47)

where we use (2.2) and (2.45). (2.5) now follows from (2.46), (2.47), and E[CWV] =
E[V ]= 1/γ.
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2.C Proof of Lemma 2.3
The censored process obtained by removing all normal service periods is considered
as an M/G/1 queue with Poisson disasters with rate γ, where the system becomes
empty when disasters occur. The M/G/1 queue with Poisson disasters has already
been studied in [JS96, YKC02], where the processing rate is assumed to be one. In
order to apply the results in [JS96, YKC02] to our system, we consider the new pro-
cess created by extending the time axis of the workload process in working vacation
periods σ times so that the processing rate becomes one. Note that the time-average
quantities of the new censored process are identical to those of the original process.
In the new process, the arrival rate of customers is equal to λWV/σ and lengths
of working vacations are exponentially distributed with parameter γ/σ. u∗

WV(s) in
(2.7) then immediately follows from Proposition 1 in [JS96]. We also obtain (2.8) by
substituting 0 to the repair time in (2.1a) in [YKC02]. The existence of the unique
real root of (2.9) is shown in Remark 2.2 in [YKC02]. See Remark 2.3 for the posi-
tivity of r. Furthermore, taking the derivative of u∗

WV(s) in (2.7) and evaluating at
s = 0 yields E[UWV] in (2.7).

2.D Proof of Lemma 2.5
We first consider ρ(σ)

WV,k. Note that all customers being served in working vaca-
tion periods arrived in working vacation periods. Thus, from Little’s law, we have
ρ(σ)

WV,k = λWV,kPWV ·E[W
(σ)
WV,k −W (σ)

WV]. Furthermore, with Lemma 2.3 and (2.21),

E[W
(σ)
WV,k −W (σ)

WV] is obtained to be

E
[
W

(σ)
WV,k −W (σ)

WV

]
= E

[
T(σ)

WV(UWV +HWV,k)
]
−E

[
T(σ)

WV(UWV)
]

=
u∗

WV(γ/σ)
(
1−h∗

WV,k(γ/σ)
)

γ
= ν

λWV
·
1−h∗

WV,k(γ/σ)

1−h∗
WV(γ/σ)

, (2.48)

from which (2.24) follows.
Similarly, ρ(1)

WV,k follows from ρ(1)
WV,k =λWV,kPWV ·E[W

(1)
WV,k −W (1)

WV] and

E
[
W

(1)
WV,k −W (1)

WV

]
= E

[
T(1)

WV(UWV +HWV,k)
]
−E

[
T(1)

WV(UWV)
]

= E[HWV,k]− σν

λWV
·
1−h∗

WV,k(γ/σ)

1−h∗
WV(γ/σ)

. (2.49)

Finally, we consider ρ(1)
NP,k. Note that all customers arriving in normal ser-

vice periods are served in normal service periods. Therefore ρ(1)
NP,k = λNP,kPNP ·

E[HNP,k]= PNP ·ρNP,k, from which (2.26) follows.
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2.E Proof of Theorem 2.4
We first consider (2.27). Suppose a class k (k ∈ K ) customer is being served at
processing rate σ (i.e., in a working vacation period). Note here that

E
[
W

(σ)
WV,k −W (σ)

WV,k |W
(σ)
WV,k −W (σ)

WV,k > 0
]
=

E
[
W

(σ)
WV,k −W (σ)

WV,k
]

u∗
WV(γ/σ)

.

We thus have

a∗∗
WV,WV,k(ωk,αk)

= 1

E[W
(σ)
WV,k −W (σ)

WV,k]

u∗
WV(γ/σ)

·
u∗

WV

(ωk +γ

σ

)

u∗
WV(γ/σ)

·
∫∞

0
dHWV,k(x)

[
exp[−γ(x/σ)]

∫x/σ

0
exp[−ωkt]exp[−αk(x−σt)]dt

+
∫x/σ

0
γexp[−γτ]dτ

∫τ

0
exp[−ωkt]exp[−αk(x−σt)]dt

]
,

from which (2.27) follows.
Next we consider (2.29). Suppose a class k (k ∈ K ) customer, who arrived in a

working vacation period, is being served at processing rate one (i.e., in a normal
service period). We then have

E
[
W

(1)
WV,k −W (1)

WV,k |W
(1)
WV,k −W (1)

WV,k > 0
]
=

E
[
W

(1)
WV,k −W (1)

WV,k
]

1−u∗
WV(γ/σ)h∗

WV,k(γ/σ)
.

Therefore

a∗∗∗
WV,NP,k(ωk, sk,αk)

= 1

E
[
W

(1)
WV,k −W (1)

WV,k
]

1−u∗
WV(γ/σ)h∗

WV,k(γ/σ)

·
[u∗

WV(γ/σ)(1−h∗
WV,k(γ/σ))

1−u∗
WV(γ/σ)h∗

WV,k(γ/σ)
·
u∗

WV

(ωk +γ

σ

)

u∗
WV(γ/σ)

· 1
1−h∗

WV,k(γ/σ)

·
∫∞

0
dHWV,k(x)

∫x/σ

0
γexp[−γτ]dτ

∫τ+x−στ

τ
exp[−ωkτ]exp[−sk(t−τ)]

·exp[−αk(x−στ− (t−τ))]dt
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+
1−u∗

WV(γ/σ)
1−u∗

WV(γ/σ)h∗
WV,k(γ/σ)

· 1
1−u∗

WV(γ/σ)
·
u∗

WV(sk)−u∗
WV

(ωk +γ

σ

)

(σ/γ){(ωk +γ)/σ− sk}

·
∫∞

0
dHWV,k(x)

∫x

0
exp[−skt]exp[−αk(x− t)]dt

]
,

from which (2.29) follows.
Finally, a∗∗

NP,k(sk,αk) is given by

a∗∗
NP,k(sk,αk)= 1

E[HNP,k]
·u∗

NP,k(s)
∫∞

0
dHNP,k(x)

∫x

0
exp[−skt]exp[−αk(x− t)]dt,

from which (2.30) follows.

2.F Proof of Lemma 2.6
For x ≥ 0, y ≥ 0, we have ζ∗NP(zNP, sNP | x+ y) = ζ∗NP(zNP, sNP | x) · ζ∗NP(zNP, sNP | y).
Therefore

ζ∗NP(zNP, sNP | x+∆x)
= ζ∗NP(zNP, sNP | x) ·ζ∗NP(zNP, sNP |∆x)

= ζ∗NP(zNP, sNP | x)
[
1− sNP∆x−λNP∆x+λNP∆x

∑

k∈K

zNP,k

·
λNP,k

λNP

∫∞

0
ζ∗NP(zNP, sNP | y)dHNP,k(y)+ o(∆x)

]
,

from which it follows that

∂

∂x

[
ζ∗NP(zNP, sNP | x)

]
=−ζ∗NP(zNP, sNP | x)q∗

NP(zNP, sNP).

Noting ζ∗NP(zNP, sNP | 0) = 1, we obtain (2.31). Also, substituting (2.31) into (2.32),
we obtain (2.33).

2.G Proof of Lemma 2.7
It is easy to see that for x ≥ 0, y≥ 0,

PWV,WV(x+ y) ·ζ∗WV,WV(zWV, sWV | x+ y)
= PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x) ·PWV,WV(y) ·ζ∗WV,WV(zWV, sWV | y),

PWV,NP(x+ y) ·ζ∗WV,NP(zWV, sWV,α | x+ y)
= PWV,NP(x) ·ζ∗WV,NP(zWV, sWV,α | x) ·exp[−αy]

+PWV,WV (x) ·ζ∗WV,WV(zWV, sWV | x) ·PWV,NP(y) ·ζ∗WV,NP(zWV, sWV,α | y).
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Therefore we have

PWV,WV(x+∆x) ·ζ∗WV,WV(zWV, sWV | x+∆x)
= PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x) ·PWV,WV(∆x) ·ζ∗WV,WV(zWV, sWV |∆x)
= PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x)

·
[
1− sWV

∆x
σ

−γ
∆x
σ

−λWV
∆x
σ

+λWV
∆x
σ

∑

k∈K

zWV,kλWV,k

λWV

∫∞

0
PWV,WV(y) ·ζ∗WV,WV(zWV, sWV | y)dHWV,k(y)

+ o(∆x)
]
,

from which it follows that

∂

∂x

[
PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x)

]

= −PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x) · q∗
WV,WV(zWV, sWV). (2.50)

(2.35) now follows from (2.50) with PWV,WV(0) ·ζ∗WV,WV(zWV, sWV | 0)= 1.
Similarly,

PWV,NP(x+∆x) ·ζ∗WV,NP(zWV, sWV,α | x+∆x)
= PWV,NP(x) ·ζ∗WV,NP(zWV, sWV,α | x) ·exp[−α∆x]

+PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x) ·PWV,NP(∆x) ·ζ∗WV,NP(zWV, sWV,α |∆x)
= PWV,NP(x) ·ζ∗WV,NP(zWV, sWV,α | x) · (1−α∆x)+ o(∆x)

+PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x)

·
[
γ
∆x
σ

+λWV
∆x
σ

∑

k∈K

zWV,kλWV,k

λWV

·
∫∞

0
PWV,NP(y) ·ζ∗WV,NP(zWV, sWV,α | y)dHWV,k(y)+ o(∆x)

]
,

and therefore

∂

∂x

[
PWV,NP(x)ζ∗WV,NP(zWV, sWV,α | x)

]

= −αPWV,NP(x) ·ζ∗WV,NP(zWV, sWV,α | x)
+PWV,WV(x) ·ζ∗WV,WV(zWV, sWV | x)q∗

WV,NP(zWV, sWV,α). (2.51)

Multiplying both sides of (2.51) by exp[αx] and using (2.35) yield

∂

∂x

[
PWV,NP(x) ·ζ∗WV,NP(zWV, sWV,α | x) ·exp[αx]

]
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= exp[−q∗
WV,WV(zWV, sWV)x] · q∗

WV,NP(zWV, sWV,α) ·exp[αx].

Because PWV,NP(0)= 0, we obtain

PWV,NP(x) ·ζ∗WV,NP(zWV, sWV,α | x) ·exp[αx]

=
∫x

0
exp[−{q∗

WV,WV(zWV, sWV)−α}y] · q∗
WV,NP(zWV, sWV,α)dy,

from which (2.36) follows. Substituting (2.35) into (2.37) yields (2.39), and substi-
tuting (2.36) into (2.38) yields (2.40).

2.H Proof of Lemma 2.8
(2.43) follows from ζ∗WV,WV(e,0 | x) = 1, PWV,WV(x)+PWV,NP(x) = 1, and (2.35). We
thus consider (2.42) below. Note that ζ∗WV,NP(e,0,0 | x) = 1. Therefore, taking the
limits α→ 0+ and s → 0+ in (2.36), we obtain

PWV,NP(x)=
qWV,NP

qWV,WV
· (1−exp[−qWV,WV · x]),

from which and (2.43), we have qWV,WV = qWV,NP.
It is readily seen from (2.39) that qWV,WV satisfies

qWV,WV = γ/σ+λWV/σ− (λWV/σ)h∗
WV(qWV,WV), (2.52)

and h∗
WV(qWV,WV) = h∗

WV
(
γ/σ+λWV/σ− (λWV/σ)h∗

WV(qWV,WV)
)
. Furthermore, it fol-

lows from (2.37) that

qWV,WV = γ/σ+λWV/σ−
∑

k∈K
(λWV,k/σ)

∫∞

0
PWV,WV(y)dHWV,k(y)

= γ/σ+λWV/σ− (λWV/σ)
∫∞

0
PWV,WV(y)dHWV(y)≥ γ/σ> 0, (2.53)

so that |h∗
WV(qWV,WV)| < 1. As a result, h∗

WV(qWV,WV) is identical to the minimum
non-negative root r of (2.9). Finally, from (2.8) and (2.52), we obtain

γ/σ+λWV/σ− (λWV/σ)r = γ/σ
1−ν

, (2.54)

which completes the proof.

2.I The multi-class FCFS M/G/1 queue with Poisson disasters
In this Appendix, we summarize the results of the stationary multi-class FCFS
M/G/1 queue with Poisson disasters, where the processing rate is equal to one. We
can readily obtain those results by considering the conditional counterparts in the
multi-class FCFS M/G/1 with exponential working vacations and σ= 1, given that
the server is on working vacation.



2.6. CONCLUSION 41

2.I.1 Model

Consider a stationary multi-class FCFS M/G/1 queue with Poisson disasters. Class
k (k ∈ K ) customers arrive according to a Poisson process with rate λk. Let hk(x)
and h∗

k(s) (k ∈ K ) denote the distribution function of service times Hk of class k
customers and its LST, respectively. Disasters occur according to a Poisson process
with rate γ (γ> 0), and the system becomes empty when disasters occur. We define
λ and h∗(s) as

λ=
∑

k∈K

λk, h∗(s)=
∑

k∈K

λk

λ
·h∗

k(s).

Note that if we ignore customer classes, the system can be regarded as a single-
class FCFS M/G/1 queue with Poisson disasters. Note also that the system is stable
regardless of values of system parameters.

2.I.2 Results

The LST u∗(s) of the workload in system is given by [JS96, YKC02] (cf. Lemma 2.3
and its proof)

u∗(s)= (1−ν)s−γ

s−λ+λh∗(s)−γ
.

Note that ν denotes the stationary probability of the server being busy.

ν= (1− r)λ
(1− r)λ+γ

, (2.55)

where r denotes the minimum non-negative root of the following equation.

z = h∗(γ+λ−λz), |z| < 1. (2.56)

We denote the workload in system seen by a randomly chosen customer on ar-
rival by UA, and the length of the interval from the arrival of this customer to the oc-
currence of the next disaster by D̃A. Owing to the memoryless property, D̃A is expo-
nentially distributed with parameter γ. We define Wk and Wk (k ∈K ) as the wait-
ing time and sojourn time, respectively, of class k customers, i.e., Wk =min(UA, D̃A)
and Wk = min(UA +Hk, D̃A). Note that owing to PASTA, Wk (k ∈ K ) is identical to
the waiting time W of a randomly chosen customer. Furthermore, we define

PW
N = Pr(UA ≤ D̃A), PW

D =Pr(UA > D̃A),
w∗

N(s) = E
[
exp[−sW] |UA ≤ D̃A

]
, w∗

D(s)=E
[
exp[−sW] |UA > D̃A

]
,

and for each k (k ∈K )

PQ
N,k = Pr(UA +Hk ≤ D̃A), PQ

D,k =Pr(UA +Hk > D̃A),
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w∗
N,k(s) = E

[
exp[−sWk] |UA +Hk ≤ D̃A

]
, w∗

D(s)=E
[
exp[−sWk] |UA +Hk > D̃A

]
.

By definition, we have

w∗(s) = E[exp[−sW]]= PW
N w∗

N(s)+PW
D w∗

D(s),

w∗
k(s) = E[exp[−sWk]]= PQ

N,kw∗
N,k(s)+PQ

D,kw∗
D,k(s).

Because W corresponds to W (σ)
WV in the queue with working vacations, we obtain

from Theorem 2.2

w∗(s)= u∗(s+γ)+ 1−u∗(s+γ)
(1/γ)(s+γ)

. (2.57)

Note here that u∗(s+γ) = PW
N w∗

N(s). Therefore the second term on the right hand
side of (2.57) represents PW

D w∗
D(s). It then follows that

w∗
N(s) = u∗(s+γ)

u∗(γ)
, w∗

D(s)= 1
1−u∗(γ)

· 1−u∗(s+γ)
(1/γ)(s+γ)

,

PW
N = u∗(γ), PW

D = 1−u∗(γ).

Similarly, it follows from Theorem 2.3 that

w∗
k(s)= u∗(s+γ)h∗

k(s+γ)+
1−u∗(s+γ)h∗

k(s+γ)
(1/γ)(s+γ)

, k ∈K ,

and therefore for each k (k ∈K )

w∗
N,k(s) =

u∗(s+γ)h∗
k(s+γ)

u∗(γ)h∗
k(γ)

, w∗
D,k(s)= 1

1−u∗(γ)h∗
k(γ)

·
1−u∗(s+γ)h∗

k(s+γ)
(1/γ)(s+γ)

,

PQ
N,k = u∗(γ)h∗

k(γ), PQ
D,k = 1−u∗(γ)h∗

k(γ).

Let ρk (k ∈K ) denote the probability of a class k customer being served, which
corresponds to ρ(σ)

WV,k/PWV in the queue with working vacations. It follows from
(2.24) that

ρk = ν ·
λk(1−h∗

k(γ))
λ(1−h∗(γ))

,

where ν is given in (2.55).
Let Ak (k ∈ K ) denote the conditional attained waiting time given that a class

k customer is being served and let H̃k (k ∈K ) denote the remaining service time of
class k customer being served. We then define a∗∗

k (sk,αk) (k ∈K ) as

a∗∗
k (sk,αk)=E

[
exp[−sk Ak] ·exp[−αkH̃k] | a class k customer is being served

]
.



2.6. CONCLUSION 43

Note that a∗∗
k (sk,αk) corresponds to a∗∗

WV,WV,k(ωk,αk) in the queue with working

vacations. Moreover, Wk and Wk corresponds to W
(σ)
WV,k and W (σ)

WV,k, respectively. It
then follows from (2.27) that

a∗∗
k (sk,αk)= u∗(sk +γ)

E[Wk −Wk]
·
h∗

k(αk)−h∗
k
(
sk +γ

)

sk +γ−αk
,

where E[Wk −Wk] is obtained from (2.48).

E[Wk −Wk]= ν

λ
·
1−h∗

k(γ)
1−h∗(γ)

.

Let Lk (k ∈ K ) denote the number of class k customers in the system and let
Uk (k ∈K ) denote the workload in system belonging to class k. We then define the
joint transform ψ(z,s) as

ψ(z,s)=E

[
∏

k∈K

zLk
k ·exp[−skUk]

]

,

where z = (z1, z2, . . . , zK ) and s= (s1, s2, . . . , sK ). We then have

ψ(z,s)= 1−ν+
∑

k∈K

zkρka∗∗
k

( ∑

i∈K

[λi −λi zih∗
i (si)], sk

)
,

which corresponds to Theorem 2.5.
Finally, we consider the busy cycle, which is defined as the interval between

successive ends of busy periods. Let Φ denote the length of a randomly chosen
busy cycle. We divide Φ into two parts, and let ΦE (resp. ΦB) denote the length of
the subinterval during which the server is idle (resp. busy). We define Nk (k ∈ K )
as the number of class k customers arriving in Φ. Let ŨL denote the workload in
system that is lost due to disasters. We then define joint transforms φ∗

N(z, s) and
φ∗

D(z, s,α) as follows.

φ∗
N(z,ω, s) = E

[(
∏

k∈K

zNk

)

·exp[−ωΦE] ·exp[−sΦB]

∣∣∣ a busy period ends without disasters
]
,

φ∗
D(z,ω, s,α) = E

[(
∏

k∈K

zNk

)

·exp[−ωΦE] ·exp[−sΦB] ·exp[−αŨL]

∣∣∣ a busy period ends with disasters
]
.
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We also define PB
N as

PB
N =Pr(a busy period ends without disasters),

and let PB
D = 1−PB

N. It then follows from Lemma 2.7 that

PB
N ·φ∗

N(z,ω, s) = λ

λ+ω

∑

k∈K

zk ·
λk

λ

∫∞

0
exp[−q∗

N(z, s)y]dHk(y)

= λ

λ+ω

∑

k∈K

zk ·
λkh∗

k
(
q∗

N(z, s)
)

λ
(2.58)

= λ

λ+ω
·
s+γ+λ− q∗

N(z, s)
λ

, (2.59)

PB
D ·φ∗

N(z,ω, s,α) = λ

λ+ω

∑

k∈K

zk ·
λk

λ

∫∞

0

exp[−αy]−exp[−q∗
N(z, s)y]

q∗
N(z, s)−α

· q∗
D(z, s,α)dHk(y)

= λ

λ+ω

∑

k∈K

zk ·
λk

λ
·
h∗

k(α)−h∗
k
(
q∗

N(z, s)
)

q∗
N(z, s)−α

· q∗
D(z, s,α)

= λ

λ+ω
·

q∗
D(z, s,α)−γ

λ
, (2.60)

where q∗
N(z, s) and q∗

D(z, s,α) satisfy

q∗
N(z, s) = s+γ+λ−

∑

k∈K

zkλkh∗
k(q∗

N(z, s)),

q∗
D(z, s,α) = γ+

∑

k∈K

zkλk ·
h∗

k(α)−h∗
k(q∗

N(z, s))
q∗

N(z, s)−α
· q∗

D(z, s,α),

which correspond to q∗
WV,WV(zWV, sWV) in (2.37) and q∗

WV,NP(zWV, sWV,α) in (2.38),
respectively.

We define qN and qD as

qN = q∗
N(e,0), qD = q∗

D(e,0,0).

We then have (cf. Lemma 2.8 and its proof)

qN = qD = γ

1−ν
, h∗(qN)= r,

where r is the minimum non-negative root of (2.56). It then follows from (2.58) that

PB
N = r, PB

D = 1− r,

and from (2.59) and (2.60) that

φ∗
N(z,ω, s)= λ

λ+ω
·
s+γ+λ− q∗

N(z, s)
γ+λ− qN

, φ∗
D(z,ω, s,α)= λ

λ+ω
·

q∗
D(z, s,α)−γ

qD −γ
.



3 Multi-Class MAP/G/1 Queue
with Disasters

3.1 Introduction
In this chapter, we consider the multi-class FCFS MAP/G/1 queue with disasters.
When disasters occur, all workload in system is removed instantaneously and the
system becomes empty. There are K classes of customers, which are labeled one to
K . Let K denote K = {1,2, . . . ,K}. We assume that the disaster occurrence process
and the customer arrival process are governed by a common continuous-time un-
derlying Markov chain. We assume that the underlying Markov chain is irreducible
and has finite state-space M = {1,2, . . . , M}. The underlying Markov chain stays in
state i (i ∈ M ) for an exponential interval of time with mean 1/σi, where σi > 0
(i ∈M ). When the sojourn time in state i is elapsed, the chain changes its state to
j ( j ∈M , j ̸= i) with probability pi, j without customer arrivals and disasters. Also,
with probability qk,i, j (resp. γi, j), it changes its state from i to j ( j ∈M ) and a class
k (k ∈K ) customer arrives (resp. a disaster occurs). We assume that the arrival of
a customer and the occurrence of a disaster do not occur simultaneously. We thus
have ∑

j∈M

[
pi, j +

( ∑

k∈K

qk,i, j

)
+γi, j

]
= 1, i ∈M ,

where pi,i = 0 (i ∈M ).
We assume that the amounts of service requirements brought by class k (k ∈K )

customers who arrive with state transition from state i to state j (i, j ∈M ) are i.i.d.
according to a general distribution function Hk,i, j(x) (x ≥ 0).

To deal with the underlying Markov chain described above, we introduce M×M
matrices C, Dk(x) (k ∈K , x ≥ 0), and Γ, whose (i, j)-th (i, j ∈M ) elements are given
by

[C]i, j =
{ σi pi, j, i ̸= j,

−σi, i = j, [Dk(x)]i, j =σi qk,i, jHk,i, j(x), [Γ]i, j =σiγi, j,

45
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respectively. Let D∗
k(s) (k ∈K , Re(s)> 0) denote the LST of Dk(x).

D∗
k(s)=

∫∞

0
exp[−sx]dDk(x).

We define Dk (k ∈K ) as

Dk = lim
x→∞

Dk(x)= lim
s→0+

D∗
k(s).

Furthermore, we define D(x) (x ≥ 0) as

D(x)=
∑

k∈K

Dk(x),

and D∗(s) (Re(s)> 0) as its LST.

D∗(s)=
∫∞

0
exp[−sx]dD(x).

We also define D as
D = lim

x→∞
D(x)= lim

s→0+
D∗(s).

Note here that
D∗(s)=

∑

k∈K

D∗
k(s), D =

∑

k∈K

Dk.

By definition, C +D +Γ represents the infinitesimal generator of the underlying
Markov chain, and it satisfies

(C+D+Γ)e = 0, (3.1)

where e denotes an M×1 vector whose elements are all equal to one. Let π denote
the stationary probability vector of the underlying Markov chain. Because the un-
derlying Markov chain is irreducible and has finite state-space M , π > 0 and it is
determined uniquely by

π(C+D+Γ)= 0, πe = 1.

We assume that Dk ̸= 0 (k ∈K ) and Γ ̸= 0. Because the system becomes empty
when a disaster occur, Γ ̸= 0 and the irreducibility of the underlying Markov chain
ensure the existence of the steady state. We assume that the service discipline is
nonpreemptive FCFS, unless otherwise mentioned.

Remark 3.1. C represents the defective infinitesimal generator of the underlying
Markov chain when neither arrivals nor disasters occur. Also, C +D (resp. C +Γ)
represents the defective infinitesimal generator of the underlying Markov chain when
no disasters occur (resp. no arrivals occur). Therefore C, C+D, and C+Γ are non-
singular, and all eigenvalues of those matrices have strictly negative real parts. It
then follows that sI−(C+D) and sI−(C+Γ) are also non-singular for all s (Re(s)>
0).
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We first analyze the first passage time to the idle state, the busy cycle, and
the total workload process. We then derive two different representations of the
LST of the total stationary workload in system and discuss the relation between
those. Note that similar formulas are derived in [Tak02] and [TH94] for the ordi-
nary MAP/G/1 queue without disasters. Next, using the results on the total work-
load distribution, we analyze the waiting time and the sojourn time distributions of
each class, and the joint queue length distribution.

The rest of this chapter is organized as follows. In Section 3.2, the first passage
time to the idle state is analyzed. In Section 3.3, we analyze the busy cycle and
derive the stationary probability that the system is empty. In Section 3.4, the total
stationary workload in system is studied. In Section 3.5, we analyze the waiting
time and sojourn time distributions. In Section 3.6, we derive the joint probability
generating function of the queue length distribution, and consider the computa-
tional procedure of the joint queue length distribution. In Section 3.7, we briefly
summarize the computational procedure for performance measures of interest and
provide an numerical example. Finally, we conclude this chapter in Section 3.8.

3.2 First passage time to the idle state
Let Ut (t ≥ 0) denote the total workload in system at time t. We define TE as the
first passage time to the idle state after time 0.

TE = inf{t; Ut = 0, t > 0}.

Let St (t ≥ 0) denote the state of the underlying Markov chain at time t. We then
define P(t | x) (t ≥ 0, x ≥ 0) as an M×M matrix whose (i, j)-th (i, j ∈M ) element rep-
resents the conditional joint probability that the first passage time is not greater
than t and the underlying Markov chain is in state j at the end of the first pas-
sage time, given that at time 0, the total workload in system is equal to x and the
underlying Markov chain is in state i.

[P(t | x)]i, j =Pr(TE ≤ t,STE = j |U0 = x,S0 = i).

Let P∗(s | x) (Re(s)> 0, x ≥ 0) denote the LST of P(t | x) with respect to t.

P∗(s | x)=
∫∞

t=0
exp[−st]dP(t | x),

where the (i, j)th (i, j ∈M ) element of dP(t | x) represents Pr(t < TE ≤ t+dt,STE =
j |U0 = x,S0 = i). We classify the first passage process by whether or not a disaster
occurs in the first passage time. Let TD denote the time when a disaster occurs
for the first time after time 0. We define PN(t | x) (t ≥ 0, x ≥ 0) as an M×M matrix
whose (i, j)-th (i, j ∈M ) element represents the conditional joint probability that no
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disaster occurs in the first passage time, the first passage time is not greater than
t, and the underlying Markov chain is in state j at the end of the first passage time,
given that at time 0, the total workload in system is equal to x and the underlying
Markov chain is in state i.

[PN(t | x)]i, j =Pr(TE ≤ t,TE < TD,STE = j |U0 = x,S0 = i).

We also define PD(t | x) (t ≥ 0, x ≥ 0) as an M × M matrix whose (i, j)-th (i, j ∈ M )
element represents the conditional joint probability that the first passage time to
the idle state ends with a disaster, the first passage time is not greater than t, and
the underlying Markov chain is in state j at the end of the first passage time, given
that at time 0, the total workload in system is equal to x and the underlying Markov
chain is in state i.

[PD(t | x)]i, j =Pr(TE ≤ t,TE = TD,STE = j |U0 = x,S0 = i).

Let P∗
N(s | x) and P∗

D(s | x) (Re(s)> 0, x ≥ 0) denote the LSTs of PN(t | x) and PD(t | x),
respectively, with respect to t.

P∗
N(s | x)=

∫∞

t=0
exp[−st]dPN(t | x), P∗

D(s | x)=
∫∞

t=0
exp[−st]dPD(t | x).

By definition, we have P∗
N(s | 0)= I , P∗

D(s | 0)= 0, and

P∗(s | x)= P∗
N(s | x)+P∗

D(s | x). (3.2)

Lemma 3.1. P∗
N(s | x) (Re(s)> 0, x ≥ 0) satisfies

P∗
N(s | x)= exp

[
Q∗

N(s)x
]
, (3.3)

where Q∗
N(s) (Re(s)> 0) is defined as

Q∗
N(s)=−sI +C+

∫∞

0
dD(y)P∗

N(s | y). (3.4)

On the other hand, P∗
D(s | x) (Re(s)> 0, x ≥ 0) satisfies

P∗
D(s | x)=

∫x

0
exp

[
Q∗

N(s)w
]
dw ·Q∗

D(s), (3.5)

where Q∗
D(s) (Re(s)> 0) is defined as

Q∗
D(s)=Γ+

∫∞

0
dD(y)P∗

D(s | y). (3.6)
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The proof of Lemma 3.1 is given in Appendix 3.A.
We define QN and QD as M×M matrices given by

QN = lim
s→0+

Q∗
N(s), QD = lim

s→0+
Q∗

D(s),

respectively. It then follows from (3.4) and (3.6) that

QN = C+
∫∞

0
dD(y)P∗

N(0 | y), (3.7)

QD = Γ+
∫∞

0
dD(y)P∗

D(0 | y), (3.8)

where
P∗

N(0 | x)= lim
s→0+

P∗
N(s | x), P∗

D(0 | x)= lim
s→0+

P∗
D(s | x).

Using (3.3) and (3.5), we rewrite (3.7) and (3.8) as

QN = C+
∫∞

0
dD(y)exp[QN y], (3.9)

QD = Γ+
∫∞

0
dD(y)

∫y

0
exp[QNw]dw ·QD, (3.10)

respectively.

Lemma 3.2. QN is non-singular and QD is given by

QD = (−QN)
[
−(C+D)

]−1
Γ. (3.11)

The proof of Lemma 3.2 is given in Appendix 3.B.
Note here that [−(C+D)]−1Γ appeared in (3.11) represents the transition prob-

ability matrix of the embedded Markov chain obtained by observing the state of
the underlying Markov chain immediately after disasters, and therefore [−(C +
D)]−1Γe = e, which can also be verified with (3.1). We then have from (3.11)

(QN +QD)e = 0. (3.12)

In addition, it can be shown with (3.7) and (3.8) that off-diagonal elements of QN
and all elements of QD are non-negative. Therefore QN +QD can be interpreted
as the infinitesimal generator of a continuous-time Markov chain defined on finite
state-space M .

The probabilistic interpretation of QN and QD is as follows. Consider a censored
underlying Markov chain obtained by removing all busy periods from the time axis.
The first term C on the right-hand side of (3.7) represents the defective infinitesi-
mal generator of the underlying Markov chain when neither arrivals nor disasters
occur. On the other hand, the integral on the right-hand side of (3.7) represents
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the transition rate matrix when busy periods without disasters are removed. Sim-
ilarly, the first term Γ on the right-hand side of (3.8) represents the transition rate
matrix when disasters occur in the idle state, and the integral on the right-hand
side of (3.8) represents the transition rate matrix when busy periods ending with
disasters are removed. Therefore QN+QD represents the infinitesimal generator of
the censored underlying Markov chain obtained by removing all busy periods from
the time axis.

Let κ denote a 1× M vector whose j-th ( j ∈ M ) element represents the condi-
tional probability that the underlying Markov chain is in state j, given that the
system is empty in steady state.

[κ] j = lim
t→∞

Pr(St = j |Ut = 0).

By definition, κ represents the steady state probability vector of the censored un-
derlying Markov chain obtained by removing all busy periods from the time axis.
Because the original underlying Markov chain is irreducible, the censored underly-
ing Markov chain is also irreducible. Therefore κ is determined uniquely by

κ(QN +QD)= 0, κe = 1, (3.13)

and the irreducibility of the censored underlying Markov chain implies

κ> 0. (3.14)

We now consider the computational procedure of QN. For this purpose, we define
Q(n)

N (n = 0,1, . . .) as an M×M matrix defined by the following recursion:

Q(0)
N = C,

Q(n)
N = C+

∫∞

0
dD(y)exp[Q(n−1)

N y], n = 1,2, . . . . (3.15)

Lemma 3.3. {Q(n)
N ; n = 0,1, . . .} is an elementwise increasing sequence of matrices

and QN is given by
QN = lim

n→∞
Q(n)

N .

The proof of Lemma 3.3 is given in Appendix 3.C
Because Q(n)

N is regarded as a defective infinitesimal generator, the integral on
the right-hand side of (3.15) can be computed with uniformization [Tij94, Page 154],
so that we can numerically obtain QN = limn→∞Q(n)

N .

Remark 3.2. Because QN represents a defective infinitesimal generator, the stop-
ping criterion for computing QN is not clear in general. We address this issue under
a more general condition in Section 4.4.2.
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Let f (x) (x ≥ 0) denote an M ×1 vector whose i-th (i ∈ M ) element represents
the mean first passage time to the idle state, given that at time 0, the workload in
system is equal to x and the underlying Markov chain is in state i.

[f (x)]i =E[TE |U0 = x,S0 = i].

By definition, we have

f (x)= (−1) · lim
s→0+

∂

∂s
[
P∗(s | x)

]
e. (3.16)

Lemma 3.4. f (x) is given by

f (x)= [I −exp[QNx]][−(C+D)]−1e. (3.17)

The proof of Lemma 3.4 is given in Appendix 3.D

3.3 Busy cycle

This section considers the busy cycle, which is defined as the interval between
successive ends of busy periods. Let Φ denote the length of a busy cycle which starts
at time 0. We divide Φ into two parts, i.e., Φ=ΦE+ΦB, where ΦE (resp. ΦB) denotes
the length of a subinterval during which the server is idle (resp. busy).

We define Φ(τ, t) as an M×M matrix whose (i, j)th (i, j ∈M ) element represents
the conditional joint probability that in a busy cycle, the length of the idle period
is not greater than τ, the length of the subsequent busy period is not greater than
t, and the underlying Markov chain is in state j at the end of the busy cycle, given
that the underlying Markov chain is in state i at the beginning of the busy cycle.

[Φ(τ, t)]i, j =Pr(ΦE ≤ τ,ΦB ≤ t,SΦ = j | S0 = i),

We then define Φ∗∗(ω, s) (Re(ω)> 0, Re(s)> 0) as the joint LST of Φ(τ, t).

Φ∗∗(ω, s)=
∫∞

τ=0

∫∞

t=0
exp[−ωτ]exp[−st]dΦ(τ, t),

where the (i, j)th (i, j ∈ M ) element of dΦ(τ, t) represents Pr(τ < ΦE ≤ τ+ dτ, t <
ΦB ≤ t+dt,SΦ = j | S0 = i). By definition, Φ∗∗(ω, s) is given by

Φ∗∗(ω, s) =
∫∞

0
exp[−ωτ]exp

[
(C+Γ)τ

]
dτ

∫∞

0
dD(y)P∗(s | y)

= [ωI − (C+Γ)]−1
∫∞

0
dD(y)P∗(s | y). (3.18)

Recall that ωI − (C+Γ) (Re(ω)> 0) is non-singular (see Remark 3.1).
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Let φ denote an M ×1 vector whose i-th (i ∈ M ) element represents the mean
length of a busy cycle, given that the underlying Markov chain is in state i at the
beginning of the busy cycle. Also, let φE denote an M×1 vector whose i-th (i ∈M )
element represents the mean length of the idle period in a busy cycle, given that
the underlying Markov chain is in state i at the beginning of the busy cycle.

[φ]i =E[Φ | S0 = i], [φE]i =E[ΦE | S0 = i].

By definition, we have

φ = (−1) · lim
s→0+

∂

∂s
[
Φ∗∗(s, s)

]
e, (3.19)

φE = (−1) · lim
ω→0+

lim
s→0+

∂

∂ω

[
Φ∗∗(ω, s)

]
e. (3.20)

Note that the i-th (i ∈M ) element of φE represents the mean length of time elapsed
before the first customer arrives after time 0, given that the underlying Markov
chain is in state i at time 0. We thus have

φE =
∫∞

0
exp[(C+Γ)τ]edτ= [−(C+Γ)]−1e. (3.21)

Lemma 3.5. φ is given by

φ= [−(C+Γ)]−1(−QN)[−(C+D)]−1e. (3.22)

The proof of Lemma 3.5 is given in Appendix 3.E.
Let η denote a 1×M vector whose j-th ( j ∈M ) element represents the probabil-

ity that the underlying Markov chain is in state j at the beginning of a busy cycle.
By definition, ηe = 1 and η satisfies

η = η lim
s→0+

lim
ω→0+

Φ∗∗(ω, s)

= η[−(C+Γ)]−1
∫∞

0
dD(y)

[
P∗

N(0 | y)+P∗
D(0 | y)

]

= η[−(C+Γ)]−1[QN +QD − (C+Γ)],

where we use (3.2), (3.7), (3.8), and (3.18). We then have

η[−(C+Γ)]−1(QN+QD)= 0,

which implies that η[−(C+Γ)]−1 is a real multiple of κ defined in (3.13), and there-
fore we have

η= κ[−(C+Γ)]
κ[−(C+Γ)]e

. (3.23)
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It then follows from (3.21), (3.22), and (3.23) that

E[Φ] = ηφ= κ(−QN)[−(C+D)]−1e
κ[−(C+Γ)]e

,

E[ΦE] = ηφE = 1
κ[−(C+Γ)]e

.

Let ν denote the time-average probability that the server is busy. Because of the
ergodicity of the system, ν is also regarded as the limiting probability of the server
being busy.

ν= lim
t→∞

Pr(Ut > 0).

Owing to the renewal reward theorem [Cin75], we have ν= 1−E[ΦE]/E[Φ]. There-
fore we obtain the following lemma.

Lemma 3.6. ν is given by

ν= 1− 1
κ(−QN)[−(C+D)]−1e

. (3.24)

3.4 Total workload in system

Let ut(x) (t ≥ 0, x ≥ 0) denote a 1×M vector whose j-th ( j ∈ M ) element repre-
sents the joint probability that the total workload in system is not greater than x
and the underlying Markov chain is in state j at time t.

[ut(x)] j =Pr(Ut ≤ x,St = j).

We define u(x) (x ≥ 0) as
u(x)= lim

t→∞
ut(x),

and u∗(s) (Re(s)> 0) as its LST.

u∗(s)=
∫∞

0
exp[−sx]du(x).

Theorem 3.1. u∗(s) satisfies

u∗(s)[sI +C+D∗(s)]= s(1−ν)κ−πΓ, (3.25)

where κ and ν are given in (3.13) and (3.24), respectively.

The proof of Theorem 3.1 is given in Appendix 3.F.
Differentiating both sides of (3.25) with respect to s, taking the limit s → 0+,

and rearranging terms, we have

−u′(0)=
[
π(−D′(0))− {π− (1−ν)κ}

]
[−(C+D)]−1, (3.26)
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where
u′(0)= lim

s→0+

d
ds

[
u∗(s)

]
, D′(0)= lim

s→0+

d
ds

[
D∗(s)

]
.

Therefore, the mean stationary workload E[U] in system is given by

E[U]=
[
π(−D′(0))− {π− (1−ν)κ}

]
[−(C+D)]−1e.

Next, we derive an alternative formula for u∗(s), following the same approach as
in [Tak01]. For a while, we assume that customers are served under the LCFS-PR
basis. Note that this service discipline is work conserving. Let L̂t (t ≥ 0) denote the
number of customers in the system at time t under the LCFS-PR service discipline.
We define ut(x,n) (t ≥ 0, x ≥ 0, n = 0,1, . . .) as a 1× M vector whose j-th ( j ∈ M )
element represents the joint probability that at time t, the total workload in system
is not greater than x, the number of customers in the system is equal to n, and the
underlying Markov chain is in state j.

[ut(x,n)] j =Pr(Ut ≤ x, L̂t = n,St = j).

We define u(x,n) (x ≥ 0, n = 0,1, . . .) as

u(x,n)= lim
t→∞

ut(x,n).

By definition, we have

u(x,0)= u(0)= (1−ν)κ, x ≥ 0,

and
u(x)=

∞∑

n=0
u(x,n).

Let u∗(s,n) (Re(s)> 0, n = 0,1, . . .) denote the LST of u(x,n) with respect to x.

u∗(s,n)=
∫∞

x=0
exp[−sx]du(x,n),

where the i-th (i ∈ M ) element of du(x,n) represents Pr(x < U ≤ x+ dx,L = n),
where U and L denote the stationary workload in system and the number of cus-
tomers in the system, respectively.

Lemma 3.7. u∗(s,n) is given by

u∗(s,n)= (1−ν)κ[R∗(s)]n, n = 0,1, . . . , (3.27)

where R∗(s) (Re(s)> 0) denotes an M×M matrix defined as

R∗(s)=
∫∞

0
exp[−sx]dx

∫∞

x
dD(y)exp

[
QN(y− x)

]
, (3.28)

and it satisfies
R∗(s)(sI +QN)=QN−C−D∗(s). (3.29)
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The proof of Lemma 3.7 is given in Appendix 3.G. Note that (3.29) is equivalent to

sI +C+D∗(s)= [I −R∗(s)](sI +QN). (3.30)

It follows from Lemma 3.7 that

u∗(s,n)= u∗(s,n−1)R∗(s), n = 1,2, . . . .

Summing up both sides of the above equation over all n (n = 1,2, . . .) then yields

u∗(s)− (1−ν)κ= u∗(s)R∗(s).

Therefore, taking the limit s → 0+, we have

π− (1−ν)κ=πR, (3.31)

where R is defined as
R = lim

s→0+
R∗(s).

It then follows from (3.29) that R is given by

R = I + (C+D)(−QN)−1. (3.32)

Lemma 3.8. R is a non-negative matrix and all eigenvalues of R lie inside the unit
disk.

The proof of Lemma 3.8 is given in Appendix 3.H.
We now obtain the alternative formula for u∗(s), whose proof is given in Ap-

pendix 3.I.

Theorem 3.2. u∗(s) (Re(s)> 0) is given by

u∗(s)= (1−ν)κ
[
I −R∗(s)

]−1 . (3.33)

Before closing this section, we consider the relation between two representa-
tions for u∗(s) in Theorems 3.1 and 3.2. Recall that R is given by (3.32). Therefore,
using π(C+D+Γ)= 0, we obtain

πR =π−πΓ(−QN)−1. (3.34)

It then follows from (3.31) and (3.34) that (1−ν)κ is given by

(1−ν)κ=πΓ(−QN)−1. (3.35)

As a result, (3.25) is equivalent to

u∗(s)[sI +C+D∗(s)]= (1−ν)κ(sI +QN). (3.36)



56 MULTI-CLASS MAP/G/1 QUEUE WITH DISASTERS

On the other hand, (3.33) is equivalent to

u∗(s)[I −R∗(s)]= (1−ν)κ. (3.37)

In what follows, we will show that (3.36) can be derived from (3.37), and vice versa.
Post-multiplying both sides of (3.37) by sI+QN and using (3.30), we have (3.36).

Therefore (3.36) is derived from (3.37).
Conversely, to derive (3.36) from (3.37), we should note that sI +QN is singular

for some s (Re(s) > 0). Let Ξ denote the set of s (Re(s) > 0) for which sI +QN is
singular.

Ξ= {s; det(sI +QN)= 0,Re(s)> 0}.

Note that Ξ is a (sub)set of eigenvalues of −QN, whose real parts are positive. Be-
cause QN represents a defective infinitesimal generator of the censored underlying
Markov chain, all eigenvalues of −QN have positive real parts. Therefore, Ξ con-
sists of all eigenvalues of −QN, so that the cardinal number of Ξ is not greater than
M. It then follows from (3.30) and the elementwise continuity of R∗(s) (Re(s) > 0)
that

I −R∗(s)= [sI +C+D∗(s)](sI +QN)−1, s ∉Ξ,

and
I −R∗(s)= lim

α→s
[αI +C+D∗(α)](αI +QN)−1, s ∈Ξ.

Remark 3.3. Because I −R∗(s) (Re(s) > 0) is non-singular, (3.30) implies that sI +
C+D∗(s) (Re(s)> 0) is singular only for s ∈Ξ.

Therefore an M×M matrix X∗(s) (Re(s)> 0) defined as

X∗(s)=

⎧
⎨

⎩

[sI +C+D∗(s)](sI +QN)−1, s ∉Ξ,

lim
α→s

[
[αI +C+D∗(α)](αI +QN)−1] , s ∈Ξ,

satisfies
X∗(s)= I −R∗(s), Re(s)> 0.

Furthermore, because of the elementwise continuity of u∗(s) (Re(s) > 0), it follows
from (3.36) that

u∗(s)X∗(s)= (1−ν)κ, Re(s)> 0.

(3.37) is thus derived from (3.36).

3.5 Waiting time and sojourn time

In this section, we consider the waiting time and sojourn time distributions in
steady state. Recall that the service discipline is assumed to be FCFS. Let UA

k
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(k ∈K ) denote the workload in system seen by a randomly chosen class k customer
on arrival and let Bk (k ∈K ) denote the amount of the service requirement of this
customer. Also, let T̃A

D,k (k ∈K ) denote the length of the interval from the arrival of
this customer to the occurrence of the next disaster. We define Wk and Wk (k ∈K )
as the waiting time and the sojourn time, respectively, of a randomly chosen class
k customer.

Wk =min(UA
k , T̃A

D,k), Wk =min(UA
k +Bk, T̃A

D,k), k ∈K .

For k ∈ K and x ≥ 0, we define wk(x) (resp. wk(x)) as a 1× M vector whose j-th
( j ∈M ) element represents the joint probability that the waiting time (resp. sojourn
time) of a randomly chosen class k customer does not exceed x and the underlying
Markov chain is in state j at the end of the waiting time (resp. sojourn time).

[wk(x)] j = Pr(Wk ≤ x,StA+Wk = j),
[wk(x)] j = Pr(Wk ≤ x,StA+Wk

= j),

where tA denotes the arrival time. Let w∗
k(s) and w∗

k(s) (Re(s)> 0) denote the LSTs
of wk(x) and wk(x), respectively.

w∗
k(s)=

∫∞

0
exp[−sx]dwk(x), w∗

k(s)=
∫∞

0
exp[−sx]dwk(x).

Moreover, for k ∈K and x ≥ 0, we define wN,k(x) (resp. wN,k(x)) as a 1×M vector
whose j-th ( j ∈ M ) element represents the joint probability that the waiting time
(resp. sojourn time) of a randomly chosen class k customer does not exceed x, the
underlying Markov chain is in state j at the end of the waiting time (resp. sojourn
time), and no disasters occur in the waiting time (resp. sojourn time).

[wN,k(x)] j = Pr(UA
k ≤ x,UA

k < T̃A
D,k,StA+UA

k
= j),

[wN,k(x)] j = Pr(UA
k +Bk ≤ x,UA

k +Bk < T̃A
D,k,StA+UA

k +Bk
= j).

Also, for k ∈K and x ≥ 0, we define wD,k(x) (resp. wD,k(x)) as a 1×M vector whose
j-th ( j ∈ M ) element represents the joint probability that the waiting time (resp.
sojourn time) of a randomly chosen class k customer does not exceed x, the under-
lying Markov chain is in state j at the end of the waiting time (resp. sojourn time),
and the waiting time (resp. sojourn time) ends with a disaster.

[wD,k(x)] j = Pr(T̃A
D,k ≤ x,UA

k ≥ T̃A
D,k,StA+T̃A

D,k
= j),

[wD,k(x)] j = Pr(T̃A
D,k ≤ x,UA

k +Bk ≥ T̃A
D,k,StA+T̃A

D,k
= j).

We define LSTs w∗
N,k(s), w∗

D,k(s), w∗
N,k(s), and w∗

D,k(s) (k ∈K , Re(s)> 0) as

w∗
N,k(s) =

∫∞

0
exp[−sx]dwN,k(x), w∗

D,k(s)=
∫∞

0
exp[−sx]dwD,k(x),
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w∗
N,k(s) =

∫∞

0
exp[−sx]dwN,k(x), w∗

D,k(s)=
∫∞

0
exp[−sx]dwD,k(x).

We then have

w∗
k(s)= w∗

N,k(s)+w∗
D,k(s), w∗

k(s)= w∗
N,k(s)+w∗

D,k(s). (3.38)

Theorem 3.3. w∗
N,k(s) and w∗

N,k(s) (k ∈K , Re(s)> 0) are given by

w∗
N,k(s) = 1

πDke

∫∞

0
du(x)Dk exp

[
(C+D− sI)x

]
, (3.39)

w∗
N,k(s) = 1

πDke

∫∞

0
du(x)

∫∞

0
dDk(y)exp

[
(C+D− sI)(x+ y)

]
, (3.40)

respectively. On the other hand, w∗
D,k(s) and w∗

D,k(s) (k ∈K , Re(s)> 0) are given by

w∗
D,k(s) =

(
πDk

πDke
−w∗

N,k(s)
)
[sI − (C+D)]−1Γ, (3.41)

w∗
D,k(s) =

(
πDk

πDke
−w∗

N,k(s)
)
[sI − (C+D)]−1Γ, (3.42)

respectively.

The proof of Theorem 3.3 is given in Appendix 3.J. Recall that sI − (C+D) is non-
singular for all s (Re(s)> 0) (see Remark 3.1).

With (3.38) and Theorem 3.3, we have the following corollary.

Corollary 3.1. w∗
k(s) and w∗

k(s) (k ∈ K , Re(s) > 0) are represented in terms of
w∗

N,k(s) and w∗
N,k(s), respectively.

w∗
k(s) = w∗

N,k(s)+
(
πDk

πDke
−w∗

N,k(s)
)
[sI − (C+D)]−1Γ, k ∈K , (3.43)

w∗
k(s) = w∗

N,k(s)+
(
πDk

πDke
−w∗

N,k(s)
)
[sI − (C+D)]−1Γ, k ∈K . (3.44)

We now discuss the computation of the moments of the waiting time and so-
journ time distributions, which we can obtain by taking the derivatives of their
LSTs. From Theorem 3.3 and Corollary 3.1, we observe that w∗

N,k(s) and w∗
N,k(s)

are essential quantities for the waiting time and sojourn time distributions, so that
we consider those first.

Let θ denote the maximum absolute value of the diagonal elements of matrix C.
With uniformization at rate θ, (3.39) and (3.40) are rewritten to be

w∗
N,k(s) = 1

πDke

∞∑

m=0

∫∞

0
du(x)exp

[
−(s+θ)x

] (θx)m

m!
Dk[I +θ−1(C+D)]m
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= 1
πDke

∞∑

m=0
u(m)(s,θ)Dk[I +θ−1(C+D)]m, (3.45)

w∗
N,k(s) = 1

πDke

∞∑

j=0

∞∑

i=0

∫∞

0
exp[−(s+θ)x]

(θx) j

j!
du(x)

·
∫∞

0
exp[−(s+θ)y]

(θy)i

i!
dDk(y)

· [I +θ−1(C+D)]i+ j

= 1
πDke

∞∑

m=0

m∑

i=0
u(i)(s,θ)D(m−i)

k (s,θ)[I +θ−1(C+D)]m, (3.46)

respectively, where

u(m)(s,θ) =
∫∞

0
exp

[
−(s+θ)x

] (θx)m

m!
du(x), m = 0,1, . . . ,

D(m)
k (s,θ) =

∫∞

0
exp

[
−(s+θ)x

] (θx)m

m!
dDk(x), k ∈K , m = 0,1, . . . .

We define w(n)
N,k and w(n)

N,k (k ∈K , n = 0,1, . . .) as

w(0)
N,k = lim

s→0+
w∗

N,k(s), w(0)
N,k = lim

s→0+
w∗

N,k(s),

w(n)
N,k = lim

s→0+

∂n

∂sn w∗
N,k(s), w(n)

N,k = lim
s→0+

∂n

∂sn w∗
N,k(s), n = 1,2, . . . ,

It then follows from (3.45) and (3.46) that

w(0)
N,k = 1

πDke

∞∑

m=0
u(m)(θ)Dk[I +θ−1(C+D)]m,

w(0)
N,k = 1

πDke

∞∑

m=0

m∑

i=0
u(i)(θ)D(m−i)

k (θ)[I +θ−1(C+D)]m,

where u(m)(θ) (m = 0,1, . . .) and D(m)
k (θ) (k ∈K , m = 0,1, . . .) are defined as

u(m)(θ) = lim
s→0+

u(m)(s,θ)=
∫∞

0
exp[−θx]

(θx)m

m!
du(x), (3.47)

D(m)
k (θ) = lim

s→0+
D(m)

k (s,θ)=
∫∞

0
exp[−θx]

(θx)m

m!
dDk(x). (3.48)

Note here that D(m)
k (θ) (k ∈K , m = 0,1, . . .) satisfies

D∗
k(θ−θz)=

∞∑

m=0
D(m)

k (θ)zm, |z| < 1. (3.49)
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Therefore we can obtain D(m)
k (θ) (k ∈K , m = 0,1, . . .) by comparing the coefficient of

zm on both sides of this equation. In a numerical example, we demonstrate how to
compute D(m)

k (θ) when the service requirement distribution is of phase-type.
Note that the probability that no disasters occur in the waiting time of a ran-

domly chosen class k (k ∈K ) customer is given by

Pr(UA
k < T̃A

D,k)= w(0)
N,ke,

and the probability that no disasters occur in the sojourn time of a randomly chosen
class k (k ∈K ) customer is given by

Pr(UA
k +Bk < T̃A

D,k)= w(0)
N,ke.

Next we consider w(n)
N,k and w(n)

N,k (k ∈K , n = 0,1, . . .).

Lemma 3.9. The limits s → 0+ of the n-th (n = 1,2, . . .) derivatives of u(m)(s,θ) (m =
0,1, . . .) and D(m)

k (s,θ) (k ∈ K , m = 0,1, . . .) with respect to s are given in terms of
u(m+n)(θ) and D(m+n)

k (θ), respectively.

lim
s→0+

∂n

∂sn
[
u(m)(s,θ)

]
= (−1)n · (n+m)!

m!θn ·u(n+m)(θ), (3.50)

lim
s→0+

∂n

∂sn
[
D(m)

k (s,θ)
]
= (−1)n · (n+m)!

m!θn ·D(n+m)
k (θ). (3.51)

The proof of Lemma 3.9 is given in Appendix 3.K.
Differentiating both sides of (3.45) and (3.46) with respect to s, taking the limits

s → 0, and using Lemma 3.9, we obtain the following theorem.

Theorem 3.4. w(n)
N,k and w(n)

N,k (k ∈K , n = 0,1, . . .) are given by

w(n)
N,k = n!

πDke

(−1
θ

)n ∞∑

m=n

(
m
n

)
u(m)(θ)Dk[I +θ−1(C+D)]m−n,

w(n)
N,k = n!

πDke

(−1
θ

)n n∑

l=0

∞∑

i=l

(
i
l

)
u(i)(θ)

∞∑

m=0

(
n− l+m

n− l

)
D(n−l+m)

k (θ)

·[I +θ−1(C+D)]i−l+m,

respectively.

The remaining is to show a computational procedure for u(m)(θ) (m = 0,1, . . .).
Note that u(m)(θ) (m = 0,1, . . .) can be obtained in a way similar to that in [Tak01,
Lemma 3]. We define Am (m = 0,1, . . .) and E as M×M matrices given by

A0 = I +θ−1C+θ−1D(0)(θ), (3.52)
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Am = θ−1D(m)(θ), m = 1,2, . . . , (3.53)
E = θ−1Γ, (3.54)

respectively, where

D(m)(θ)=
∑

k∈K

D(m)
k (θ), m = 0,1, . . . .

We also define A as an M×M matrix given by

A =
∞∑

m=0
Am = I +θ−1(C+D).

Note that I − A =−θ−1(C+D) is non-singular.

Lemma 3.10. {u(m)(θ), m = 0,1, . . .} is identical to the stationary distribution of a
Markov chain, whose transition probability matrix T is given by

T =

⎛

⎜⎜⎜⎜⎜⎝

A0+ A1+E A2 A3 · · ·
A0+E A1 A2 · · ·

E A0 A1 · · ·
E 0 A0 · · ·
...

...
... . . .

⎞

⎟⎟⎟⎟⎟⎠
,

i.e.,

(u(0)(θ),u(1)(θ), . . .)T = (u(0)(θ),u(1)(θ), . . .), (3.55)
∞∑

m=0
u(m)(θ)e = 1. (3.56)

The proof of Lemma 3.10 is given in Appendix 3.L.
Lemma 3.10 shows that u(m)(θ) (m = 0,1, . . .) can be computed by using an al-

gorithm developed in [DS04, Ram88]. To that end, we need to find the boundary
vector u(0)(θ) first. Let GN denote an M × M substochastic matrix given by the
minimum non-negative solution of the following equation.

GN =
∞∑

m=0
AmGm

N .

We define GD as an M×M substochastic matrix given by

GD = E+
∞∑

m=1
Am

m−1∑

i=0
G i

NGD.

It can be verified that
GD = (I −GN)(I − A)−1E,

and
(GN+GD)e = e.
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Remark 3.4. It can be shown that GN and GD are given by

GN = I +θ−1QN, GD = θ−1QD, (3.57)

respectively.

We define K as an M×M stochastic matrix given by

K = A0+
∞∑

m=1
AmGm−1

N +E+
∞∑

m=2
Am

m−2∑

i=0
G i

NGD. (3.58)

Note that K represents the transition probability matrix of a censored Markov
chain obtained by observing the evolution of the Markov chain characterized by
T only when it stays in level zero, so that

u(0)(θ)= u(0)(θ)K. (3.59)

We then introduce the invariant probability vector κ̂ of K.

κ̂K = κ̂, κ̂e = 1.

Lemma 3.11. u(0)(θ) is given by

u(0)(θ)= 1−ν−πEe
κ̂A0e

· κ̂.

The proof of Lemma 3.11 is given in Appendix 3.M. Once we obtain u(0)(θ), u(m)(θ)
(m = 1,2, . . .) can be computed successively in the same way as in [DS04, Theorem
1], i.e.,

u(m)(θ)=
m−1∑

i=0
u(i)(θ)Am−i+1(I − A1)−1, m = 1,2, . . . ,

where

A i =
∞∑

j=i
A jG j−i

N , i = 1,2, . . . .

So far, we provide the numerically feasible formulas for w(n)
N,k and w(n)

N,k. Next
we consider w∗

D,k(s) and w∗
D,k(s) in Theorem 3.3. We define w(n)

D,k and w(n)
D,k (k ∈ K ,

n = 0,1, . . .) as

w(0)
D,k = lim

s→0+
w∗

D,k(s), w(0)
D,k = lim

s→0+
w∗

D,k(s),

w(n)
D,k = lim

s→0+

∂n

∂sn w∗
D,k(s), w(n)

D,k = lim
s→0+

∂n

∂sn w∗
D,k(s), n = 1,2, . . . ,
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Theorem 3.5. w(n)
D,k and w(n)

D,k (k ∈K , n = 0,1, . . .) are given by

w(n)
D,k =β(n)

D,kΓ, w(n)
D,k =β

(n)
D,kΓ,

respectively, where β(n)
D,k and β

(n)
D,k are determined successively by

β(0)
D,k =

(
πDk

πDke
−w(0)

N,k

)
[−(C+D)]−1,

β(n)
D,k = (−1)

(
nβ(n−1)

D,k +w(n)
N,k

)
[−(C+D)]−1, n = 1,2, . . . ,

β
(0)
D,k =

(
πDk

πDke
−w(0)

N,k

)
[−(C+D)]−1,

β
(n)
D,k = (−1)

(
nβ

(n−1)
D,k +w(n)

N,k

)
[−(C+D)]−1, n = 1,2, . . . ,

respectively.

The proof of Theorem 3.5 is given in Appendix 3.N.
In summary, we can compute the moments of waiting time and sojourn time

distributions based on Theorems 3.4 and 3.5, i.e., for n = 1,2, . . .,

E[Wn
k | no disasters occur in the waiting time] = (−1)n

w(n)
N,ke

w(0)
N,ke

, (3.60)

E[Wn
k | the waiting time ends with a disaster] = (−1)n

w(n)
D,ke

w(0)
D,ke

, (3.61)

E[Wn
k ] = (−1)n

(
w(n)

N,k +w(n)
D,k

)
e, (3.62)

E[W
n
k | no disasters occur in the sojourn time] = (−1)n

w(n)
N,ke

w(0)
N,ke

, (3.63)

E[W
n
k | the sojourn time ends with a disaster] = (−1)n

w(n)
D,ke

w(0)
D,ke

, (3.64)

E[W
n
k] = (−1)n

(
w(n)

N,k +w(n)
D,k

)
e. (3.65)

In particular, we have

E[Wk | no disasters occur in the waiting time]

= 1
Pr(UA

k < T̃A
D,k)

· 1
πDke

∞∑

m=0

m+1
θ

·u(m+1)(θ)Dk[I +θ−1(C+D)]me,

E[Wk | the waiting time ends with a disaster]
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= 1
1−Pr(UA

k < T̃A
D,k)

·
[
(−1) · 1

πDke

(
∞∑

m=0

m+1
θ

·u(m+1)(θ)Dk[I +θ−1(C+D)]me
)

+
(
πDk

πDke
− 1
πDke

∞∑

m=0
u(m)(θ)Dk[I +θ−1(C+D)]m

)

[−(C+D)]−1e
]
,

E[Wk] =
(
πDk

πDke
− 1
πDke

∞∑

m=0
u(m)(θ)Dk[I +θ−1(C+D)]m

)

[−(C+D)]−1e,

E[Wk | no disasters occur in the sojourn time]

= 1
Pr(UA

k +Bk < T̃A
D,k)

· 1
πDke

∞∑

m=0

m∑

i=0

m+1
θ

(
u(i+1)(θ)D(m−i)

k (θ)+u(i)(θ)D(m−i+1)
k (θ)

)

· [I +θ−1(C+D)]me,

E[Wk | the sojourn time ends with a disaster]

= 1
1−Pr(UA

k +Bk < T̃A
D,k)

·
[
(−1) · 1

πDke

{ ∞∑

m=0

m∑

i=0

m+1
θ

(
u(i+1)(θ)D(m−i)

k (θ)

+u(i)(θ)D(m−i+1)
k (θ)

)
[I +θ−1(C+D)]me

}

+
( πDk

πDke
− 1
πDke

∞∑

m=0

m∑

i=0
u(i)(θ)D(m−i)

k (θ)

· [I +θ−1(C+D)]m
)
[−(C+D)]−1e

]
,

E[Wk] =
( πDk

πDke
− 1
πDke

∞∑

m=0

m∑

i=0
u(i)(θ)D(m−i)

k (θ)

· [I +θ−1(C+D)]m
)
[−(C+D)]−1e.
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3.6 Joint queue length distribution

In this section, we consider the joint distribution of the numbers of customers in
respective classes. Let Lk,t (k ∈K , t ≥ 0) denote the number of class k customers in
the system at time t, and Lk,t (k ∈K , t ≥ 0) denote the number of waiting customers
of class k at time t. We define n as a 1×K non-negative integer vector whose i-th
(i ∈K ) element is denoted by ni.

n= (n1,n2, . . . ,nK ).

Let N denote the set of all 1×K non-negative integer vectors.

N = {(n1,n2, . . .nK ); nk ∈ {0,1, . . .} (k ∈K )}.

Let y(t,n) (t > 0, n ∈ N ) denote a 1×M vector whose j-th ( j ∈ M ) element repre-
sents the joint probability that for each k ∈K , the number of class k customers in
the system is equal to nk and the underlying Markov chain is in state j at time t.

[y(t,n)] j =Pr(L1,t = n1,L2,t = n2, . . . ,LK ,t = nK ,St = j).

Similarly, let x(t,n) (t > 0, n ∈ N ) denote a 1× M vector whose j-th ( j ∈ M ) ele-
ment represents the joint probability that for each k ∈ K , the number of waiting
customers of class k is equal to nk and the underlying Markov chain is in state j at
time t.

[x(t,n)] j =Pr(L1,t = n1,L2,t = n2, . . . ,LK ,t = nK ,St = j).

We then define y(n) and x(n) (n ∈N ) as

y(n)= lim
t→∞

y(t,n), x(n)= lim
t→∞

x(t,n),

respectively. By definition, y(0) = (1−ν)κ. For complex numbers zk (k ∈ K ) such
that |zk| < 1, we define z as a 1×K vector given by

z = (z1, z2, . . . , zK ).

Let Z denote the set of all 1×K vectors whose elements are complex numbers with
moduli less than 1.

Z = {(z1, z2, . . . , zK ); |zk| < 1 (k ∈K )}.

Let y∗(z) and x∗(z) (z ∈Z ) denote the joint probability generating functions of y(n)
and x(n), respectively.

y∗(z) =
∑

n∈N

y(n)zn1
1 zn2

2 · · · znK
K ,
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x∗(z) =
∑

n∈N

x(n)zn1
1 zn2

2 · · · znK
K .

Furthermore, let xk(t,n) (k ∈K , t > 0, n ∈N ) denote a 1×M vector whose j-th
( j ∈ M ) element represents the joint probability that a class k customer is being
served, the numbers of waiting customers of class i (i ∈ K ) is equal to ni, and the
underlying Markov chain is in state j at time t.

[xk(t,n)] j = Pr(a class k customer is being served at time t,
L1,t = n1,L2,t = n2, . . . ,LK ,t = nK ,St = j).

We define xk(n) (k ∈K , n ∈N ) as

xk(n)= lim
t→∞

xk(t,n).

Let x∗
k(z) (k ∈K , z ∈Z ) denote the joint probability generating function of x(n).

x∗
k(z)=

∑

n∈N

xk(n)zn1
1 zn2

2 · · · znK
K .

We then have

y∗(z) = (1−ν)κ+
∑

k∈K

zkx∗
k(z), z ∈Z , (3.66)

x∗(z) = (1−ν)κ+
∑

k∈K

x∗
k(z), z ∈Z . (3.67)

Theorem 3.6. x∗
k(z) (k ∈K , z ∈Z ) is given by

x∗
k(z)=

∫∞

0
du(x)

∫∞

0
dDk(y)

∫y

0
exp

[(
C+

∑

l∈K

zlD l

)
(x+ t)

]
dt. (3.68)

The proof of Theorem 3.6 is given in Appendix 3.O.
Next we discuss the computational procedure of xk(n) (k ∈K , n ∈N ). We first

rewrite (3.68) by using the uniformization technique.

x∗
k(z) =

∞∑

m=0

∫∞

0
du(x)

∫∞

0
dDk(y)

∫y

0
exp[−θ(x+ t)]

(θ(x+ t))m

m!
dt

·
[
I +θ−1

(
C+

∑

l∈K

zlD l

)]m

=
∞∑

m=0

m∑

i=0

∫∞

0
exp[−θx]

(θx)i

i!
du(x)

∫∞

0
dDk(y)

∫y

0
exp[−θt]

(θt)(m−i)

(m− i)!
dt

·
[
I +θ−1

(
C+

∑

l∈K

zlD l

)]m

=
∞∑

m=0

m∑

i=0
u(i)(θ)D̃(m−i)

k (θ)
[
I +θ−1

(
C+

∑

l∈K

zlD l

)]m
, (3.69)



3.6. JOINT QUEUE LENGTH DISTRIBUTION 67

where u(m)(θ) (m = 0,1, . . .) is given in Lemma 3.10 and D̃(m)
k (θ) (k ∈K , m = 0,1, . . .)

is defined as
D̃(m)

k (θ)=
∫∞

0
dDk(y)

∫y

0
exp[−θt]

(θt)m

m!
dt.

Lemma 3.12. D̃(m)
k (θ) (k ∈K , m = 0,1, . . .) is given by

D̃(m)
k (θ)= 1

θ

[
Dk −

m∑

i=0
D(i)

k (θ)
]
. (3.70)

The proof of Lemma 3.12 is given in Appendix 3.P.
We define x(m)

k (θ) (k ∈K , m = 0,1, . . .) as

x(m)
k (θ)=

m∑

i=0
u(i)(θ)D̃(m−i)

k (θ). (3.71)

It then follows from (3.69) that

x∗
k(z)=

∞∑

m=0
x(m)

k (θ)
[
I +θ−1

(
C+

∑

l∈K

zlD l

)]m
, k ∈K , z ∈Z . (3.72)

Let |n| (n ∈N ) denote the sum of elements of n.

|n| =
∑

k∈K

nk.

We then define Fm(n) (n ∈N , |n|≤ m, m = 0,1, . . .) as an M×M matrix that satisfies
[
I +θ−1

(
C+

∑

l∈K

zlD l

)]m
=

∑

n∈N ,|n|≤m
Fm(n)zn1

1 zn2
2 · · · znK

K . (3.73)

As shown in [MT03, Lemma IV.2], Fm(n) (n ∈ N , |n| ≤ m, m = 0,1, . . .) can be
computed recursively by

F0(0) = I , (3.74)

Fm(n) = Fm−1(n)(I +θ−1C)
+

∑

k∈K ,nk≥1
Fm−1(n−ϵk)θ−1Dk, n ∈N , |n| = 1,2, . . . ,m−1, (3.75)

Fm(n) =
∑

k∈K ,nk≥1
Fm−1(n−ϵk)θ−1Dk, n ∈N ,n ̸= 0, |n| = m, (3.76)

where ϵk (k ∈K ) denotes a 1×K unit vector whose k-th element is equal to one and
all other elements are equal to zero.

It now follows from (3.72) and (3.73) that

x∗
k(z) =

∞∑

m=0
x(m)

k (θ)
∑

n∈N ,|n|≤m
Fm(n)zn1

1 zn2
2 · · · znK

K
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=
∑

n∈N

∞∑

m=|n|
x(m)

k (θ)Fm(n)zn1
1 zn2

2 · · · znK
K , k ∈K , z ∈Z .

Therefore, xk(n) (k ∈K , n ∈N ) can be computed by

xk(n)=
∞∑

m=|n|
x(m)

k (θ)Fm(n). (3.77)

In summary, we have the following theorem.

Theorem 3.7. y(n) and x(n) (n ∈N ) are given by

y(0) = (1−ν)κ,
y(n) =

∑

k∈K ,nk≥1
xk(n−ϵk), n ̸= 0,

x(0) = (1−ν)κ+
∑

k∈K

xk(0),

x(n) =
∑

k∈K

xk(n), n ̸= 0,

respectively, where xk(n) (k ∈K , n ∈N ) is given in (3.77).

3.7 Numerical examples

In this section, we show some numerical examples. Figure 3.1 shows a brief
summary of the computational procedure.

We assume that the amounts of service requirements of class k (k ∈ K ) cus-
tomers are i.i.d. according to a phase-type distribution with representation (αk,Bk).
Let B∗

k(s) (k ∈K , Re(s)> 0) denote the LST of the amounts of service requirements
of class k customers.

B∗
k(s)=αk(−Bk)(sI −Bk)−1e.

In this case, D(m)
k (θ) (k ∈K , m = 0,1, . . .) can be computed as follows. It follows

from (3.49) that
∞∑

m=0
D(m)

k (θ)zm = B∗
k(θ−θz) ·Dk =αk(−Bk)[(θ−θz)I −Bk]−1e ·Dk.

We then define Hk(z) (k ∈K , |z| < 1) as

Hk(z)= [(θ−θz)I −Bk]−1.

Let Hk,m (k ∈K , m = 0,1, . . .) denote the coefficient matrix of zm in Hk(z). Because

H(z)[(θI −Bk)−θIz]= I ,
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Input : C, Dk(x) (k ∈K ), and Γ.

Output : The moments of waiting times and sojourn times in (3.60)–(3.65),
and the joint queue length distributions x(n) and y(n).

1. Computation of Fundamental Quantities
(a) Compute QN by Lemma 3.3 and compute QD in (3.11).
(b) Compute GN and GD in (3.57).
(c) Compute κ in (3.13) and ν in (3.24).
(d) Compute D(m)

k (θ) (k ∈K ,m = 0,1, . . .) in (3.48).
(e) Compute D̃(m)

k (θ) in (3.70).
(f) Compute Am (m = 0,1, . . .) in (3.52) and (3.53), and E in

(3.54).
(g) Compute K in (3.58) and its invariant probability vector

κ̂.
(h) Compute u(m)(θ) (m = 0,1, . . .) in Lemma 3.10 and Lemma

3.11.
(i) Compute x(m)

k (θ) (k ∈K , m = 0,1, . . .) in (3.71).
(j) Compute Fm(n) (n ∈ N , |n| ≤ m, m = 0,1, . . .) in (3.74),

(3.75), and (3.76).

2. Computation of Waiting Time and Sojourn Time Moments
(a) Compute w(n)

N,k and w(n)
N,k (k ∈ K , n = 0,1, . . .) in Theorem

3.4.
(b) Compute w(n)

D,k and w(n)
D,k (k ∈ K , n = 0,1, . . .) in Theorem

3.5.
(c) Compute the moments of waiting time and sojourn time

distributions in (3.60)–(3.65).

3. Computation of the Joint Queue Length Distribution
(a) Compute xk(n) (k ∈K , n ∈N ) in (3.77).
(b) Compute x(n) and y(n) (n ∈N ) in Theorem 3.7.

Figure 3.1: Brief summary of the computational procedure.
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Table 3.1: Joint queue length distribution y(n1,n2)e (a = 0.1).

n2 0 1 2 3 4
n1
0 0.30776170 0.05304471 0.01592757 0.00575379 0.00216682
1 0.12508144 0.04994412 0.02100711 0.00939074 0.00425087
2 0.05167721 0.03280510 0.01803788 0.00972928 0.00514504
3 0.02431553 0.02079512 0.01377549 0.00851632 0.00506414
4 0.01251500 0.01328265 0.01010444 0.00690758 0.00448230

we have

H0 = (θI −Bk)−1,
Hm = Hm−1(I −θ−1Bk)−1, m = 1,2, . . . .

Therefore D(m)
k (θ) (m = 0,1, . . .) is given by

D(m)
k (θ)=αk(−Bk)Hme ·Dk

In the rest of this section, we assume K = {1,2} and consider the case that C,
Dk (k = 1,2), and Γ are given by

C =
(
−0.65 0.05

0.1 −1.4−a

)
, D1 =

(
0.3 0
0 1.0

)
, D2 =

(
0.3 0
0 0.3

)
, Γ=

(
0 0
0 a

)
,

respectively, where a (a > 0) is a parameter. We also assume that αk and Bk (k =
1,2) are given by

α1 = (1,0), B1 =
(
−2 2
0 −2

)
, α2 = (0.2,0.8), B2 =

(
−0.25 0

0 −4

)
,

respectively. We thus have π = (2/3,1/3). Note that the mean amount of service
requirements is equal to one in both classes, so that the traffic intensity is about
0.83.

Table 3.1 shows the joint queue length distribution y(n1,n2)e when a = 0.1. We
observe that in steady state, the system is busy with probability about 1−0.31 =
0.69, while the traffic intensity is about 0.83. The discrepancy between those is
due to disasters. We also observe that when we fix one of n1 and n2, y(n1,n2) is
not necessarily a decreasing function of the other. For example, y(n1,4) takes its
maximum value for n1 = 2. This indicates that the queue lengths are (positively)
correlated.

Finally, Figure 3.2 shows the distribution mass function of the total number of
customers, where a is set to be 1, 0.1, 0.01, 0.001, and 0.0001. The frequency of
disasters decreases with a, and the queue length distribution converges to that in
the corresponding queue without disasters.
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Figure 3.2: Total queue length mass function.

3.8 Conclusion

In this chapter, we considered the multi-class FCFS MAP/G/1 queue with disas-
ters. We assumed that arrivals of customers and occurrences of disasters are gov-
erned by a common underlying Markov chain, and the amounts of service require-
ments brought by arriving customers follow general distributions, which depend
on the customer class and the states of the underlying Markov chain immediately
before and after arrivals.

We first analyzed the first passage time to the idle state and the busy cycle. We
then derived two different formulas for the LST of the stationary total workload in
system, and showed that those formulas are equivalent in a sense that one can be
derived from another. Furthermore, using the result on the workload distribution,
we analyzed the waiting time and sojourn time distributions of each class. We
also analyzed the joint queue length distribution, and provided its computational
procedure. We also showed some numerical examples.

The model we analyzed in this chapter is a generalization of the multi-class
FCFS M/G/1 queue with Poisson disasters considered in Appendix 2.I. As men-
tioned in Chapter 1, this model is closely related to the multi-class FCFS MAP/G/1
queue with working vacations. Analytical results for the corresponding queueing
model with working vacations can be derived from the results in this chapter, not-
ing that the censored process obtained by removing all normal service periods in
the working vacation model is equivalent to the disaster model considered in this
chapter.
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Appendices

3.A Proof of Lemma 3.1
It is easy to see that for x ≥ 0 and y≥ 0,

P∗
N(s | x+ y)= P∗

N(s | x)P∗
N(s | y).

We thus have

P∗
N(s | x+∆x) = P∗

N(s | x)P∗
N(s |∆x)

= P∗
N(s | x)

[
I − sI∆x+C∆x+

∫∞

0
dD(y)∆xP∗

N(s | y)+ o(∆x)
]
.

It then follows that
∂

∂x
[
P∗

N(s | x)
]
= P∗

N(s | x)Q∗
N(s), (3.78)

where Q∗
N(s) is given by (3.4). (3.3) now follows from (3.78) and P∗

N(s | 0)= I .
Similarly, it is readily verified that

P∗
D(s | x+ y)= P∗

D(s | x)+P∗
N(s | x)P∗

D(s | y),

and therefore

P∗
D(s | x+∆x) = P∗

D(s | x)+P∗
N(s | x)P∗

D(s |∆x)

= P∗
D(s | x)+P∗

N(s | x)
[
Γ∆x+

∫∞

0
dD(y)∆xP∗

D(s | y)+ o(∆x)
]
.

We thus have

∂

∂x
[
P∗

D(s | x)
]
= P∗

N(s | x)Q∗
D(s)= exp

[
Q∗

N(s)x
]
Q∗

D(s), (3.79)

where Q∗
D(s) is given by (3.6). (3.5) now follows from (3.79) and P∗

D(s | 0)= 0.

3.B Proof of Lemma 3.2
We define J as an M×M matrix given by

J = I −
∫∞

0
dD(y)

∫y

0
exp[QNw]dw. (3.80)

By definition, J satisfies

JQN = QN −
∫∞

0
dD(y)

[
exp[QN y]− I

]
=QN−

[
(QN−C)−D

]

= C+D. (3.81)
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Because C+D is non-singular (see Remark 3.1),

det(JQN)= det(J)det(QN)= det(C+D) ̸= 0.

We thus have det(J) ̸= 0 and det(QN) ̸= 0, and therefore J and QN are non-singular.
Using (3.10) and (3.80), we have

QD = J−1Γ,

from which and (3.81), (3.11) follows.

3.C Proof of Lemma 3.3
We prove the lemma by providing a probabilistic interpretation of Q(n)

N . Suppose
customers are served under the LCFS-PR basis. Note that this service discipline
is work conserving. Let A (k) (k = 0,1, . . .) denote the set of customers who find k
customers in the system on arrival. Due to the LCFS-PR service discipline, all
customers in A (k) (k = 1,2, . . .) arrive in service periods of customers in A (k−1). Let
B(n) (n = 1,2, . . .) denote the set of busy periods in which no customers in A (l) (l =
n,n+1, . . .) arrive. Furthermore, let B(n)

N (n = 1,2, . . .) denote a subset of busy periods
in B(n), in which no disasters occur. By definition, B(1)

N ⊂ B(2)
N ⊂ · · · ⊂ B(∞)

N , where
B(∞)

N denotes the set of all busy periods in which no disasters occur.
It is clear that Q(0)

N = C represents the infinitesimal generator of the censored
underlying Markov chain when there are neither arrivals nor disasters. Also, Q(n)

N
(n = 1,2, . . .) in (3.15) represents the infinitesimal generator of the censored under-
lying Markov chain when (i) there are neither arrivals nor disasters, or (ii) busy pe-
riods removed from the time axis belong to B(n)

N . This implies that Q(n)
N (n = 0,1, . . .)

increases elementwise with n and converges to QN. Note that a similar observation
has been made in [TH94] for the ordinary MAP/G/1 queue without disasters.

3.D Proof of Lemma 3.4
Pre-multiplying both sides of (3.5) by −Q∗

N(s) and calculating the integral on the
right-hand side yield

(
−Q∗

N(s)
)
P∗

D(s | x)=
[
I −exp

[
Q∗

N(s)x
]]

Q∗
D(s). (3.82)

Using (3.2), (3.3), and (3.82), we have

(
−Q∗

N(s)
)
P∗(s | x) =

(
−Q∗

N(s)
)
exp

[
Q∗

N(s)x
]
+

[
I −exp

[
Q∗

N(s)
]]

Q∗
D(s)

= Q∗
D(s)−exp

[
Q∗

N(s)
][

Q∗
N(s)+Q∗

D(s)
]
, (3.83)
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where we use Q∗
N(s)exp[Q∗

N(s)] = exp[Q∗
N(s)]Q∗

N(s). Post-multiplying both sides of
(3.83) by e, taking the partial derivative with respect to s, and taking the limit
s → 0+, we obtain

(
−Q′

N(0)
)
e+ (−QN) · lim

s→0+

∂

∂s
[
P∗(s | x)

]
e

= Q′
D(0)e− lim

s→0+

∂

∂s
[
exp

[
Q∗

N(s)x
]]

[QN+QD]e

−exp[QNx]
[
Q′

N(0)+Q′
D(0)

]
e,

where
Q′

N(0)= lim
s→0+

d
ds

[
Q∗

N(s)
]
, Q′

D(0)= lim
s→0+

d
ds

[
Q∗

D(s)
]
.

It then follows from (3.12) and (3.16) that

f (x)= (−QN)−1[I −exp[QNx]]
[
Q′

N(0)+Q′
D(0)

]
e. (3.84)

Furthermore, with (3.4) and (3.6), we have
[
Q′

N(0)+Q′
D(0)

]
e = e+

∫∞

0
dD(y)f (y)

= e+
∫∞

0
dD(y)(−QN)−1[I −exp[QN y]] ·

[
Q′

N(0)+Q′
D(0)

]
e

= e+ [D− (QN −C)](−QN)−1 ·
[
Q′

N(0)+Q′
D(0)

]
e

= e+ [I + (C+D)(−QN)−1]
[
Q′

N(0)+Q′
D(0)

]
e,

which implies
[
Q′

N(0)+Q′
D(0)

]
e = (−QN)

[
−(C+D)

]−1e.

(3.17) then follows from (3.84) and [I −exp[QNx]](−QN)= (−QN)[I −exp[QNx]].

3.E Proof of Lemma 3.5
Pre-multiplying both sides of (3.18) by ωI − (C +Γ), setting ω = s, and taking the
partial derivative with respect to s, we have

[sI − (C+Γ)]
d
ds

[
Φ∗∗(s, s)

]
+Φ∗∗(s, s)=

∫∞

0
dD(y)

∂

∂s
[
P∗(s | y)

]
. (3.85)

Furthermore, post-multiplying both sides of (3.85) by e, taking the limit s → 0+,
and rearranging terms yield

[−(C+Γ)]φ = e+
∫∞

0
dD(y)f (y)= e+ [D− (QN−C)][−(C+D)]−1e

= (−QN)[−(C+D)]−1e,

where we use (3.9), (3.16), (3.17), and (3.19). (3.22) now follows immediately.
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3.F Proof of Theorem 3.1
Considering the transition from time t to time t+∆t, we have

ut+∆t(x) = ut(x+∆t)(I +C∆t)+
∫x

0
ut(x− y+∆t)dD(y)∆t+ut(∞)Γ∆t+ o(∆t),

where ut(∞)= limx→∞ ut(x). It then follows that

∂

∂t
[
ut(x)

]
= ∂

∂x
[
ut(x)

]
+ut(x)C+

∫x

0
ut(x− y)dD(y)+ut(∞)Γ. (3.86)

Because the system is stable, taking the limit t →∞ in (3.86) yields

0= d
dx

[
u(x)

]
+u(x)C+

∫∞

0
u(x− y)dD(y)+πΓ, (3.87)

where we use limt→∞ ut(∞) = π. Furthermore, taking the LST on both sides of
(3.87), we obtain

0= u∗(s)−u(0)+u∗(s)C/s+u∗(s)D∗(s)/s+πΓ/s.

Note here that u(0)= limt→∞Pr(Ut = 0) is given by

u(0)= (1−ν)κ.

(3.25) now follows from the above two equations.

3.G Proof of Lemma 3.7
We can prove Lemma 3.7 in the same way as in [Tak02], where a similar result for
the ordinary MAP/G/1 queue is discussed. Therefore we provide only the outline of
the proof. Let Ĥ j(x,n) ( j ∈M , x ≥ 0, n = 1,2, . . .) denote the time-average joint prob-
ability that a customer who found n−1 customers in the system on arrival is being
served, the workload in system is not greater than x, and the underlying Markov
chain is in state j. Also, let Ŷj(x,n) ( j ∈M , x ≥ 0,n = 1,2, . . .) denote the mean length
of time in which a randomly chosen customer, who found n−1 customers in the sys-
tem on arrival, is served, the workload in system is not greater than x, and the
underlying Markov chain is in state j.

By definition, Ĥ j(x,n) ( j ∈M ) is identical to the j-th element of u(x,n). On the
other hand, Ŷj(x,n) is given by

Ŷj(x,n)=
[∫x

0

u(dw,n−1)
u(∞,n−1)De

∫x−w

0
dt

∫∞

t
dD(y)exp

[
QN(y− t)

]]

j
,

where u(∞,n− 1) = limx→∞ u(x,n− 1) (n = 1,2, . . .). Note that the arrival rate of
customers who find n−1 customers in the system on arrival is given by u(∞,n−
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1)De. Owing to the relation H = λG between time and customer averages [HS80,
Tak02], we have

u(x,n)=
∫x

0
u(dw,n−1)

∫x−w

0
dt

∫∞

t
dD(y)exp

[
QN(y− t)

]
.

Therefore, taking the LST with respect to x yields

u∗(s,n)= u∗(s,n−1)R∗(s), n = 1,2, . . . , (3.88)

from which and u∗(s,0) = (1−ν)κ, (3.27) follows. Furthermore, (3.29) is derived
from (3.28) as follows.

R∗(s)(sI +QN) =
∫∞

0
dD(y)exp[QN y]

∫y

0
exp

[
−(sI +QN)x

]
dx · (sI +QN)

=
∫∞

0
dD(y)

[
exp[QN y]−exp[−sy]I

]

= QN −C−D∗(s).

3.H Proof of Lemma 3.8
With (3.3) and (3.28), we have

R =
∫∞

0
dD(y)

∫y

0
P∗(0 | y− x)dx. (3.89)

Because D ≥ 0 and D ̸= 0, (3.89) implies R ≥ 0 and R ̸= 0. It then follows from
Theorem 3 in [Gan59, Page 66] that R has the maximum modulus real eigenvalue
µ≥ 0 and a non-negative right eigenvector v ̸= 0 associated with µ.

With (3.14) and (3.31), we have πR < π. Post-multiplying both sides of this
inequality by v yields

πRv =µπv<πv.
Because πv> 0, we have µ< 1, from which Lemma 3.8 follows.

3.I Proof of Theorem 3.2
Using (3.27), we have

u∗(s)=
∞∑

n=0
(1−ν)κ[R∗(s)]n, Re(s)> 0. (3.90)

Because R ≥ 0, the (i, j)th (i, j ∈M ) element of R∗(s) satisfies

|[R∗(s)]i, j|≤ [R]i, j, Re(s)> 0, i, j ∈M .

Furthermore, Lemma 3.8 implies that
∑∞

n=0 Rn converges. Therefore
∑∞

n=0[R∗(s)]n

(Re(s) > 0) also converges, so that I −R∗(s) (Re(s) > 0) is non-singular. (3.33) then
follows from (3.90).
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3.J Proof of Theorem 3.3
By definition, wN,k(x) and wN,k(x) are given by

wN,k(x) = 1
πDke

∫x

0
du(y)Dk exp

[
(C+D)y

]
,

wN,k(x) = 1
πDke

∫x

0
du(y)

∫x−y

0
dDk(v)exp

[
(C+D)(y+v)

]
,

respectively. Taking the LST on both sides of these equations, we have (3.39) and
(3.40). Similarly, wD,k(x) and wD,k(x) are given by

wD,k(x) = 1
πDke

∫x

0
dt

∫∞

t
du(y)Dk exp

[
(C+D)t

]
Γ, (3.91)

wD,k(x) = 1
πDke

∫x

0
dt

[∫∞

0
du(y)

∫∞

0
dDk(v)exp

[
(C+D)t

]
Γ

−
∫t

0
du(y)

∫t−y

0
dDk(v)exp

[
(C+D)t

]
Γ

]
, (3.92)

respectively. Taking the LST on both sides of (3.91), we obtain

w∗
D,k(s) = 1

πDke

∫∞

0
dx

∫∞

x
du(y)Dk exp

[
(C+D− sI)x

]
Γ

= 1
πDke

∫∞

0
du(y)Dk

∫y

0
exp

[
(C+D− sI)x

]
Γdx

= 1
πDke

∫∞

0
du(y)Dk

[
I −exp

[
(C+D− sI)y

]]
[sI − (C+D)]−1Γ,

from which and (3.39), (3.41) follows. Also, taking the LST on both sides of (3.92)
yields

w∗
D,k(s) = 1

πDke

∫∞

0
dx

[∫∞

0
du(y)

∫∞

0
dDk(v)exp

[
(C+D− sI)x

]
Γ

−
∫x

0
du(y)

∫x−y

0
dDk(v)exp

[
(C+D− sI)x

]
Γ

]

= 1
πDke

[
πDk

∫∞

0
exp

[
(C+D− sI)x

]
Γdx

−
∫∞

0
du(y)

∫∞

y
dx

∫x−y

0
dDk(v)exp

[
(C+D− sI)x

]
Γ

]

= 1
πDke

[
πDk[sI − (C+D)]−1Γ

−
∫∞

0
du(y)

∫∞

0
dDk(v)

∫∞

v
dx′exp

[
(C+D− sI)(y+ x′)

]
Γ

]

= 1
πDke

[
πDk −

∫∞

0
du(y)

∫∞

0
dDk(v)exp

[
(C+D− sI)(y+v)

]]
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· [sI − (C+D)]−1Γ,

where x′ = x− y. (3.42) now follows from (3.40).

3.K Proof of Lemma 3.9
By definition, we have for m = 0,1, . . . and n = 1,2, . . .,

∂n

∂sn
[
u(m)(s,θ)

]
=

∫∞

0
(−x)n exp

[
−(s+θ)x

] (θx)m

m!
du(x)

= (−1)n
∫∞

0
exp

[
−(s+θ)x

] (θx)n+m

(n+m)!
· (n+m)!

m!θn du(x).

We thus obtain (3.50) by taking the limit s → 0+. (3.51) can be derived in the same
way, so that we omit the proof.

3.L Proof of Lemma 3.10
Because Lemma 3.10 can be proved in the same way as the proof of Lemma 3 in
[Tak01], we provide only the outline of the proof. By definition, u(m)(θ) (m = 0,1, . . .)
satisfies

u∗(θ−θz)=
∞∑

m=0
u(m)(θ)zm, |z| < 1.

On the other hand, it follows from (3.25) that

u∗(θ−θz)[(θ−θz)+C+D∗(θ−θz)]= (θ−θz)(1−ν)κ−πΓ, |z| < 1.

Comparing the coefficient of zm (m = 0,1, . . .) on both sides of this equation, we
obtain

u(0)(θ) = u(0)(θ)(A0 + A1)+u(1)(θ)A0+
∞∑

i=0
u(i)(θ)F,

u(m)(θ) =
m+1∑

i=0
u(i)(θ)Am−i+1,

from which (3.55) follows. Note that T is stochastic because
[

E+
∞∑

m=0
Am

]

e = θ−1(C+D+Γ)e+ e = e.

Furthermore, (3.56) immediately follows from
∑∞

m=0 u(m)(θ)=π.
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3.M Proof of Lemma 3.11
It follows from (3.59) that

u(0)(θ)= (1− ν̂)κ̂,

where ν̂=∑∞
m=1 u(m)(θ)e. Substituting s = θ in (3.25), we have

u(0)(θ)(θI +C+D(0)(θ))= θ(1−ν)κ−πΓ.

Therefore we obtain
(1− ν̂)κ̂A0 = (1−ν)κ−πE,

or equivalently,

1− ν̂= 1−ν−πEe
κ̂A0e

,

from which Lemma 3.11 follows.

3.N Proof of Theorem 3.5
Because the proof for w(n)

D,k is almost the same as that for w(n)
D,k, we provide the proof

only for w(n)
D,k. It follows from Theorem 3.3 that

w∗
D,k(s)=β∗

D,k(s)Γ,

where

β∗
D,k(s)=

(
πDk

πDke
−w∗

N,k(s)
)
[sI − (C+D)]−1.

We thus have

β∗
D,k(s)[sI − (C+D)]= πDk

πDke
−w∗

N,k(s). (3.93)

We then define β(n)
D,k (k ∈K , n = 0,1, . . .) as

β(0)
D,k = lim

s→0+
β∗

D,k(s), β(n)
D,k = lim

s→0+

dn

dsnβ
∗
D,k(s), n = 1,2, . . . .

The result for w(0)
D,k is immediate. For n = 1,2, . . ., differentiating both sides of (3.93),

taking the limit s → +0, and rearranging terms, we obtain the recursion for β(n)
D,k,

which completes the proof.
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3.O Proof of Theorem 3.6
We prove Theorem 3.6 with an observation similar to the proof of Lemma 3.7. Let
E[Tk, j(n)] (k ∈ K , j ∈ M , n ∈ N ) denote the mean length of time in which a ran-
domly chosen class k customer is served, the numbers of waiting customers of class
i is equal to ni for each i ∈K , and the underlying Markov chain is in state j. Note
that all waiting customers arrived in the waiting time and the elapsed service time
of the customer being served because of the FCFS service discipline. We thus obtain

∑

n∈N

E[Tk, j(n)]zn1
1 zn2

2 · · · znK
K

=
[∫∞

0

du(x)
πDke

∫∞

0
dDk(y)

∫y

0
exp

[(
C+

∑

l∈K

zlD l

)
(x+ t)

]
dt

]

j
,

k ∈K , j ∈M , z ∈Z . (3.94)

On the other hand, by definition, the j-th ( j ∈ M ) element of xk(n) (k ∈ K ,
n ∈ N ) represents the time-average joint probability that a class k customer is
being served, the numbers of waiting customers of class i is equal to ni for each
i ∈K , and the underlying Markov chain is in state j. Note also that πDke (k ∈K )
represents the arrival rate of class k customers. Owing to the relation H = λG
between time and customer averages [HS80, Tak02], we have

[xk(n)] j =πDke ·E[Tk, j(n)], k ∈K , j ∈M ,n ∈N ,

from which and (3.94), (3.68) follows.

3.P Proof of Lemma 3.12
By definition, D̃(m)

k (θ) (k ∈K , m = 0,1, . . .) satisfies

∞∑

m=0
D̃(m)

k (θ)zm =
Dk −D∗

k(θ−θz)
θ−θz

= 1
θ

∞∑

m=0

[
Dk −

m∑

i=0
D(i)

k (θ)
]
zm, |z| < 1, (3.95)

where we used D∗
k(θ−θz)=∑∞

m=0 D(m)
k (θ)zm. (3.70) now follows from (3.95).



4 M/G/1-Type Markov Processes
with Reducible Generators
for Busy Periods

4.1 Introduction
We consider a bivariate Markov process {(U(t),S(t)); t ≥ 0}, where U(t) and S(t)
are referred to as the level and the phase, respectively, at time t. U(t) (t ≥ 0) takes
values in [0,∞) and S(t) (t ≥ 0) takes values in a finite set M = {1,2, . . . , M}. {U(t); t ≥
0} either decreases at rate one or has upward jump discontinuities, so that {U(t); t ≥
0} is skip-free to the left. We assume that when (U(t−),S(t−))= (x, i) (x > 0, i ∈M ),
an upward jump (possibly with size zero) occurs at a rate σ[i] (σ[i] > 0) and the
phase S(t) becomes j ( j ∈ M ) with probability p[i, j]. On the other hand, when
(U(t−),S(t−)) = (0, i) (i ∈ M ), an upward jump occurs with probability one and the
phase S(t) becomes j ( j ∈M ) with probability p[i, j]. Note here that for i ∈M ,

∑

j∈M

p[i, j] = 1,
∑

j∈M

p[i, j] = 1.

When U(t) > 0 (resp. U(t) = 0), the sizes of upward jumps with phase transitions
from S(t−) = i to S(t) = j are i.i.d. according to a general distribution function
B[i, j](x) (x ≥ 0) (resp. B

[i, j]
(x) (x ≥ 0)). To avoid trivialities, we assume B[i,i](0) = 0

(i ∈M ) and B
[i, j]

(0)= 0 (i, j ∈M ).
We introduce M ×M matrices C, D(x) (x ≥ 0), and B(x) (x ≥ 0) to deal with this

Markov process.

[C]i, j =
{
−σ[i], i = j,

σ[i] p[i, j]B[i, j](0), i ̸= j,

[D(0)]i, j = 0, [D(x)]i, j =σ[i] p[i, j]B[i, j](x), x > 0,

[B(x)]i, j = p[i, j]B
[i, j]

(x).

81
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We define D∗(s) (Re(s) > 0) and B∗
(s) (Re(s) > 0) as the LSTs of D(x) and B(x),

respectively.

D∗(s)=
∫∞

0
exp[−sx]dD(x), B∗

(s)=
∫∞

0
exp[−sx]dB(x).

Further we define M×M matrices D and B as

D = lim
x→∞

D(x)= lim
s→0+

D∗(s), B = lim
x→∞

B(x)= lim
s→0+

B∗
(s).

By definition, C + D represents the infinitesimal generator of a continuous-time
Markov chain defined on finite state-space M . Also, B represents the transition
probability matrix of a discrete-time Markov chain defined on finite state-space M .
Therefore, C+D and B satisfy

(C+D)e = 0, Be = e,

respectively, where e denotes an M×1 vector whose elements are all equal to one.
As mentioned in Chapter 1, this Markov process was first introduced in [Tak96]

as a continuous analog of Markov chains of the M/G/1 type [Neu89]. We thus refer
to this Markov process as the M/G/1-type Markov process. In [Tak96], the M/G/1-
type Markov process is regarded as a generalization of the workload process in
the queueing model with customer arrivals of MAP, and the LST of the stationary
distribution is derived under the assumption that C +D is irreducible. This as-
sumption is appropriate when we consider the stationary behavior of the ordinary
MAP/G/1 queues, because it is equivalent to assume that the underlying Markov
chain governing the arrival process is irreducible. However, the irreducibility of
C+D is not necessary for the irreducibility of {(U(t),S(t)); t ≥ 0}. This assumption
is thus too strong and restricts its applicability to queueing models.

In this chapter, we assume that an M×M infinitesimal generator

C+D+B− I

is irreducible, where I denotes an M × M unit matrix. It is readily verified that
{(U(t),S(t)); t ≥ 0} is irreducible if and only if C+D+B− I is irreducible. Therefore,
even when C +D is reducible, {(U(t),S(t)); t ≥ 0} is irreducible if all states in M
can be reached from each other with transitions governed by C +D and B. With
this extension, the M/G/1-type Markov process become applicable to a wider class
of queueing models including our fundamental model of the first kind introduced in
Chapter 1. Note that for discrete-time M/G/1 type Markov chains, analytical results
for the case corresponding to reducible C+D is found in [Neu89, Section 3.5]. To
the best of our knowledge, however, a continuous analog of such results have not
been reported in the literature.
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The rest of this chapter is organized as follows. In Section 4.2, we explain the
application of the M/G/1-type Markov process to the analysis of queueing models.
We show through some examples that its applicability is extended allowing C+D
to be reducible. In Section 4.3 we briefly review known results for the M/G/1-type
Markov process with irreducible C+D [Tak96]. In Section 4.4, we first show that
results in [Tak96] are not applicable directly to reducible C +D, and then derive
a formula applicable to the reducible case. In addition, we provide a recursion
to compute the moments of the stationary distribution, and consider an efficient
computational procedure of a fundamental matrix for reducible C+D. Finally, we
conclude this chapter in Section 4.5.

4.2 Applications of the M/G/1-type Markov
process to queueing models

In this section, we shortly explain applications of the M/G/1-type Markov process
to the analysis of queueing models. We first make an explanation about queueing
models formulated to be the M/G/1-type Markov process with irreducible C +D.
Next, we show that our fundamental model of the first kind is formulated as the
M/G/1-type Markov process with reducible C+D. We also present some other exam-
ples of queueing models that are formulated as this extended version of M/G/1-type
Markov process.

The M/G/1-type Markov process was first introduced as a continuous analog of
the M/G/1 type Markov chain. As mentioned in Section 1.2.1, the embedded queue
length process at the departure instants in the MAP/G/1 queue can be described by
the M/G/1-type Markov chain. On the other hand, the censored workload process
in the MAP/G/1 queue obtained by observing only busy periods can be described by
the M/G/1-type Markov process. Specifically, the censored workload process in the
MAP/G/1 queue characterized by a MAP (CMAP,DMAP) and a service time distribu-
tion H(x) (x ≥ 0) corresponds to the M/G/1-type Markov process with

C =CMAP, D(x)= H(x)DMAP, B(x)= H(x)(−CMAP)−1DMAP.

As mentioned in Section 1.2.2, analysis of the workload process is important
when we consider the multi-class FCFS MAP/G/1 queue. Consider a multi-class
MAP/G/1 queue characterized by (CMAP,DMAP,k(x)) (k ∈ K , x ≥ 0), where K =
{1,2, . . . ,K} denotes the set of customer classes. For this model, the censored work-
load process obtained by observing only busy periods is described by the M/G/1-type
Markov process with

C =CMAP, D(x)=
∑

k∈K

DMAP,k(x), B(x)= (−CMAP)−1 ∑

k∈K

DMAP,k(x). (4.1)
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In the analysis of the ordinary single-class and multi-class MAP/G/1 queues, it
is usually assumed that the underlying Markov chain is irreducible because the
existence of transient states has no effect on performance measures of the queues
in steady state. In accordance with this convention, the analytical results for the
M/G/1-type Markov process reported in [Tak96] are derived under an assumption
that C+D is irreducible.

As shown in examples below, however, by allowing C +D to be reducible, the
M/G/1-type Markov process become applicable to a wider class of queueing models
including our fundamental model of the first kind.

Example 4.1. Consider a multi-class MAP/G/1 queue with a transient underly-
ing Markov chain, whose state gets reset when the system becomes empty. The cen-
sored workload process obtained by observing only busy periods is formulated as an
M/G/1-type Markov process with

C =
(
CT CT,N
O CN

)
, D(x)=

(
DT(x) DT,N(x)

O DN(x)

)
, B(x)=

(
BT,T(x) O
BN,T(x) O

)

,

where “T” and “N” represent “transient” and “normal”, respectively.

Example 4.2. Consider the multi-class MAP/G/1 queue with working vacations.
This model can be regarded as a modified version of Example 4.1, where the pro-
cessing rate is given by γ > 0 during the transient periods. By means of the change
of time scale, the censored workload process of this model can be converted to an
M/G/1-type Markov process with [Tak05]

C =
(
CT/γ CT,N/γ

O CN

)
, D(x)=

(
DT(x)/γ DT,N(x)/γ

O DN(x)

)
, B(x)=

(
BT,T(x) O
BN,T(x) O

)

.

Therefore, our fundamental model of the first kind can be dealt with as a special
case of this Markov process with reducible C +D. Note here that the multi-class
M/G/1 queue with exponential working vacations analyzed in Chapter 2 is a very
special case of the queuing model in Example 4.2. Note also that the multi-class
MAP/G/1 queue with disasters analyzed in Chapter 3 corresponds to a censored
process of the model in Example 4.1, obtained by observing the system only in
transient periods.

In addition, there are also some other queueing models formulated as the M/G/1-
type Markov process with reducible C+D, which are of independent interest.

Example 4.3. Consider a MAP/G/1 queue with two types of busy periods {1,2},
where the customer arrival process is governed by (C(i)

MAP,D(i)
MAP(x)) during busy pe-

riods of type i (i = 1,2). Transitions of busy-period type occur only when the system
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is empty. The censored workload process obtained by observing only busy periods is
formulated as an M/G/1-type Markov process with

C =
(
C(1)

MAP O
O C(2)

MAP

)

, D(x)=
(
D(1)

MAP(x) O
O D(2)

MAP(x)

)

, B(x)=
(
B(11)

(x) B(12)
(x)

B(21)
(x) B(22)

(x)

)

.

An example of a queueing system with two (or more) types of busy periods is a
host machine in a distributed server system with dedicated task assignment policy
[Bal03]. Each host is dedicated to either “short” or “long” jobs during a busy period
so that variability of job sizes to be processed at each host becomes low. Furthermore,
when a host becomes idle, its role may be changed to the other one, which improves
the utilization of the system.

Example 4.4. Consider a MAP/G/1 queue with multiple vacations and exhaus-
tive service discipline [LMN90]. For queueing models with vacations, lengths of
vacations are usually assumed to be i.i.d. random variables. Using the M/G/1-
type Markov process with reducible C+D, we can describe a MAP/G/1 queue with
semi-Markovian vacation times, where a sequence of vacation lengths forms a semi-
Markov process. For example, consider a 2-state semi-Markov process {SV(t); t ≥ 0},
where SV(t) takes value in {1,2}. Let V [i, j](x) (x ≥ 0, i, j = 1,2) denote the joint prob-
ability that a state transition from state i to state j occurs when the sojourn time in
state i is elapsed, and the sojourn time in state i is not greater than x. The workload
process in a MAP/G/1 queue with vacations whose lengths are governed by this
semi-Markov process is then represented by the M/G/1-type Markov process with

C =
(
CMAP O

O CMAP

)
, D(x)=

(
DMAP(x) O

O DMAP(x)

)
,

B(x) =
(
V [1,1](x)IMAP V [1,2](x)IMAP
V [2,1](x)IMAP V [2,2](x)IMAP

)
,

where IMAP denotes a unit matrix with the same size as CMAP. Note that in this
case, vacations can be regarded as service times of virtual customers who arrive im-
mediately after the system becomes empty, so that this M/G/1-type Markov process
represents the original workload process in the exhaustive-service MAP/G/1 vaca-
tion queue with semi-Markovian vacation times.

In Section 4.4, we develop analytical methods for the M/G/1-type Markov pro-
cesses with reducible C+D. The results in Section 4.4 enable us to obtain perfor-
mance measures in varieties of queueing models including those described in the
examples above.
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4.3 Known results for irreducible C+D [Tak96]
In this section, we review known results in [Tak96], assuming that C +D is irre-
ducible. Owing to this assumption, C +D has its invariant probability vector π,
which is uniquely determined by

π(C+D)= 0, πe = 1.

Let β and β denote M×1 vectors given by

β=
∫∞

0
xdD(x)e, β=

∫∞

0
xdB(x)e. (4.2)

Throughout this section, we assume that

β<∞, πβ< 1,

which ensures the irreducible Markov process {(U(t),S(t)); t ≥ 0} being positive re-
current [Tak96, Theorem 1]. Let u(x) (x > 0) denote a 1× M vector whose j-th
( j ∈ M ) element represents the joint probability that the level is not greater than
x and the phase is equal to j in steady state and we define u∗(s) (Re(s) > 0) as the
LST of u(x).

[u(x)] j = lim
t→∞

Pr(U(t)≤ x,S(t)= j), j ∈M ,

u∗(s) =
∫∞

0
exp[−sx]du(x).

We can derive the following lemma from the balance equation for steady state.

Lemma 4.1. (Theorem 2 in [Tak96]) u∗(s) (Re(s)> 0) satisfies

u∗(s)[sI +C+D∗(s)]= ú(0)[I −B∗
(s)], Re(s)> 0, (4.3)

where ú(0) denotes the right derivative of u(x) at x = 0.

ú(0)= lim
x→0+

u(x)−u(0)
x

.

Let c denote the reciprocal of the mean recurrence time of the set of states
{(0, i); i ∈ M }. Further let ηE denote the stationary probability vector of the phase
just before the level becomes 0. ú(0) is then given by

ú(0)= cηE. (4.4)
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In order to determine c and ηE, we consider the first passage time to level 0. Let
TE denote the first passage time to level 0 after time 0.

TE =
{

0, U(0)= 0,

inf{t; U(t)= 0, t > 0}, otherwise.

We define P(t | x) (t ≥ 0, x ≥ 0) as an M×M matrix whose (i, j)th element (i, j ∈M )
represents the joint probability that the first passage time is not greater than t and
the phase is equal to j at the end of the first passage time, given that the level is
equal to x and the phase is equal to i at time 0.

[P(t | x)]i, j =Pr(TE ≤ t,S(TE−)= j |U(0)= x,S(0)= i).

Let P∗(s | x) (Re(s)> 0, x ≥ 0) denote the LST of P(t | x) with respect to t.

P∗(s | x)=
∫∞

t=0
exp[−st]dP(t | x).

Using
P∗(s | x+ y)= P∗(s | x)P∗(s | y), x ≥ 0, y≥ 0,

[TH94] shows that P∗(s | x) (x ≥ 0) is given by

P∗(s | x)= exp[Q∗(s)x], (4.5)

where Q∗(s) (Re(s)> 0) denotes an M×M matrix that satisfies

Q∗(s)=−sI +C+
∫∞

0
dD(y)exp[Q∗(s)y]. (4.6)

Let P(x) (x ≥ 0) denote an M×M transition probability matrix whose (i, j)th element
(i, j ∈M ) is given by

[P(x)]i, j =Pr(S(TE−)= j |U(0)= x,S(0)= i).

By definition, we have

P(x)= lim
s→0+

P∗(s | x)= exp[Qx], x ≥ 0, (4.7)

where
Q = lim

s→0+
Q∗(s).

Because of (4.6), Q satisfies

Q =C+
∫∞

0
dD(y)exp[Q y]. (4.8)
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Remark 4.1. As shown in [TH94], Q is given by the limit limn→∞Q(n) of an elemen-
twise increasing sequence of matrices {Q(n)}n=0,1,... given by the following recursion.

Q(0) =C, Q(n) =C+
∫∞

0
dD(y)exp

[
Q(n−1) y

]
, n = 1,2, . . . . (4.9)

Because the integral on the right-side of this equation can be computed with uni-
formization [Tij94, Page 154], we can numerically obtain Q = limn→∞Q(n) with an
adequate stopping criterion. More specifically, for a given allowable error ϵ > 0, we
may stop the iteration at n∗ satisfying maxi∈M

∣∣[Q(n∗)e]i
∣∣< ϵ.

Q is known to be an infinitesimal generator of a Markov chain on M , and it
is irreducible if C +D is irreducible [Tak02, TH94]. Therefore, because of the as-
sumption of the irreducible C+D, Q has its invariant probability vector κ, which
is uniquely determined by

κQ = 0, κe = 1. (4.10)

We define f (x) (x ≥ 0) as an M×1 vector whose i-th (i ∈M ) element represents the
mean first passage time to level 0, given that the level is equal to x and the phase
is equal to i at time 0.

[f (x)]i =E[TE |U(0)= x,S(0)= i].

Noting (4.5) and (4.6), we obtain f (x) through a straightforward calculation.

f (x) = (−1) · lim
s→0+

∂

∂s
P∗(s | x)e

=
(

∞∑

n=1

xnQn−1

n!

)(
(−1) · lim

s→0+

∂

∂s
Q∗(s)e

)
(4.11)

= [xeκ−exp[Qx]+ I][(e−β)κ−C−D]−1e, (4.12)

because
(

∞∑

n=1

xnQn−1

n!

)

= [xeκ−exp[Qx]+ I](eκ−Q)−1, (4.13)

(−1) · lim
s→0+

∂

∂s
Q∗(s)e = (eκ−Q)[(e−β)κ−C−D]−1e. (4.14)

It is known that both of eκ−Q and (e−β)κ−C−D are non-singular when C+D is
irreducible.

c and ηE on the right-hand side of (4.4) is then given by the following lemma.

Lemma 4.2. (Theorem 3 in [Tak96]) ηE is uniquely determined by

ηE
∫∞

0
dB(x)exp[Qx]=ηE, ηEe = 1, (4.15)
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and c is given by

c = 1

ηE
∫∞

0
dB(x)f (x)

= 1
ηE(βκ+B− I)[(e−β)κ−C−D]−1e

. (4.16)

Before closing this section, we derive an alternative formula for u∗(s), which is
similar to that given in [Tak02]. We define M × M matrices R∗(s) (Re(s) > 0) and
R∗

(s) (Re(s)> 0) as

R∗(s) =
∫∞

0
exp[−sx]dx

∫∞

x
dD(y)exp[Q(y− x)],

R∗
(s) =

∫∞

0
exp[−sx]dx

∫∞

x
dB(y)exp

[
Q(y− x)

]
.

By definition, R∗(s) and R∗
(s) satisfy

[I −R∗(s)](sI +Q) = sI +C+D∗(s), Re(s)> 0, (4.17)

R∗
(s)(sI +Q) =

∫∞

0
dB(y)exp[Q y]−B∗

(s), Re(s)> 0. (4.18)

It follows from (4.4), (4.15), and (4.18) that

ú(0)R∗
(s)(sI +Q)= ú(0)[I −B∗

(s)], Re(s)> 0.

With (4.17), (4.3) is then rewritten to be

u∗(s)[I −R∗(s)](sI +Q)= ú(0)R∗
(s)(sI +Q), Re(s)> 0. (4.19)

In the same way as in Section 3.4, it can be shown that (4.19) implies

u∗(s)[I −R∗(s)]= ú(0)R∗
(s), Re(s)> 0.

We thus obtain the following theorem.

Theorem 4.1. u∗(s) is given by

u∗(s)= ú(0)R∗
(s)[I −R∗(s)]−1, Re(s)> 0. (4.20)

Remark 4.2. [Tak02] shows that I −R∗(s) (Re(s) > 0) is non-singular when C+D
is irreducible.
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4.4 Results for reducible C+D
In this section, we generalize the results in Section 4.3 to the case of reducible C+D.
More specifically, we assume that the infinitesimal generator C+D is reducible and
it has H closed irreducible classes of states. We define H = {1,2, . . . ,H} as the set of
such irreducible classes. C and D are then written in the following form.

C =

⎛

⎜⎜⎜⎜⎜⎝

CT CT,1 CT,2 · · · CT,H
O C1 O · · · O
O O C2 · · · O
...

...
... . . . ...

O O O · · · CH

⎞

⎟⎟⎟⎟⎟⎠
, D =

⎛

⎜⎜⎜⎜⎜⎝

DT DT,1 DT,2 · · · DT,H
O D1 O · · · O
O O D2 · · · O
...

...
... . . . ...

O O O · · · DH

⎞

⎟⎟⎟⎟⎟⎠
,

(4.21)

where CT denotes an MT×MT defective infinitesimal generator, Ch (h ∈ H) denotes
an Mh×Mh defective infinitesimal generator, and CT,h (h ∈ H) denotes an MT×Mh
transition rate matrix. Also, DT denotes an MT × MT transition rate matrix, Dh
(h ∈ H) denotes an Mh × Mh transition rate matrix, and DT,h (h ∈ H) denotes an
MT×Mh transition rate matrix. Because Ch+Dh (h ∈ H) represents an irreducible
infinitesimal generator, it has its invariant probability vector πh, which is uniquely
determined by

πh(Ch +Dh)= 0, πheh = 1,

where eh (h ∈H ) denotes an Mh ×1 vector whose elements are all equal to one.
Throughout this chapter, for any M ×M block upper-triangular matrix similar

to C and D in (4.21), we denote the (0,0)th block by the subscript “T”, the (0,h)th
block (h ∈H ) by the subscript “T,h”, and the (h,h)th block (h ∈H ) by the subscript
“h”. We define MT ×1 vector βT and Mh ×1 vector βh (h ∈H ) as

βh =
∫∞

0
xdDh(x)eh, βT =

∫∞

0
xdDT(x)eT +

∑

h∈H

∫∞

0
xdDT,h(x)eh,

respectively, where eT denotes an MT × 1 vector whose elements are all equal to
one (cf. (4.2)). We assume that an M × M infinitesimal generator C +D +B− I is
irreducible, which is a necessary and sufficient condition for {(U(t),S(t)); t ≥ 0} to be
irreducible as noted in Section 4.1. We also assume that

β<∞, βT <∞, πhβh < 1, h ∈H . (4.22)

With Theorem 1 in [Tak96], it is easy to see that {(U(t),S(t)); t ≥ 0} is positive recur-
rent if and only if (4.22) holds.

As mentioned in Section 4.3, the assumption of the irreducible C+D is a suffi-
cient condition for the followings to hold:
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(i) The matrix Q is irreducible, so that it has the invariant probability vector κ

which is uniquely determined by (4.10).

(ii) Both eκ−Q and (e−β)κ−C−D are non-singular, and therefore f (x) (x ≥ 0)
is given by (4.12).

(iii) I −R∗(s) on the right-hand side of (4.20) is non-singular for Re(s)> 0.

Note that these are the only things in the discussion of Section 4.3, which are re-
lated to the irreducibility of C+D.

We can prove that (iii) still holds for reducible C+D. We provide an outline of
its proof in Appendix 4.A. As shown below, on the other hand, neither of (i) and
(ii) above is valid when C+D is reducible with more than one irreducible classes of
states (i.e., H ≥ 2).

Noting that Q is given by the limit of the sequence of matrices {Q(n)}n=0,1,...
defined as (4.9), it is easy to see that Q takes the form

Q =

⎛

⎜⎜⎜⎜⎜⎝

QT QT,1 QT,2 · · · QT,H
O Q1 O · · · O
O O Q2 · · · O
...

...
... . . . ...

O O O · · · QH

⎞

⎟⎟⎟⎟⎟⎠
, (4.23)

where QT denotes a defective infinitesimal generator, QT,h (h ∈H ) denotes a tran-
sition rate matrix, and Qh (h ∈ H ) denotes an irreducible infinitesimal generator.
Q is thus no longer irreducible. Furthermore, when H ≥ 2, there are infinitely many
invariant probability vectors of Q, which are given by linear combinations of the in-
variant probability vectors of Q1, Q2, . . . , and QH . The following lemma shows that
eκ−Q and (e−β)κ−C−D are no longer non-singular for any invariant probability
vector κ of Q if H ≥ 2.

Lemma 4.3. Consider an M×M reducible infinitesimal generator Y with H closed
irreducible classes of states.

Y =

⎛

⎜⎜⎜⎜⎜⎝

Y T Y T,1 Y T,2 · · · Y T,H
O Y 1 O · · · O
O O Y 2 · · · O
...

...
... . . . ...

O O O · · · Y H

⎞

⎟⎟⎟⎟⎟⎠
.

Let γh (h ∈H ) denote the invariant probability vector of Y h.

γhY h = 0, γheh = 1, h ∈H .
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If H ≥ 2, vα−Y is singular for any 1×M real vector α and any M ×1 real vector v
satisfying

v=

⎛

⎜⎜⎜⎜⎜⎝

vT
v1
v2
...

vH

⎞

⎟⎟⎟⎟⎟⎠
, γhvh ̸= 0 for some h ∈H , (4.24)

where vT and vh (h ∈H ) denote MT ×1 and Mh ×1 vectors, respectively.

We prove Lemma 4.3 in Appendix 4.B.
When H ≥ 2, we can verify that eκ−Q (resp. (e−β)κ−C −D) is singular for

any invariant probability vector κ of Q, by letting α=κ, v= e (resp. v= e−β), and
Y = Q (resp. Y = C+D) in Lemma 4.3. The formulas (4.12) and (4.16) in Section
4.3 is thus not applicable to reducible C+D with more than one irreducible classes
of states.

Remark 4.3. If C+D has transient states and only one irreducible class of states,
i.e., H = 1, Q has the unique invariant probability vector κ even though it is re-
ducible. In this case, we can prove that both of eκ−Q and (e−β)κ−C −D are
non-singular.

Remark 4.4. Although analytical results for the M/G/1-type Markov chain corre-
sponding to the case of reducible C+D is obtained in [Neu89, Section 3.5], it consid-
ers only the case of H = 1 with transient states. As shown for the continuous version,
however, the case of H ≥ 2 is essentially different from that of H = 1.

The rest of this section consists of three subsections. In Section 4.4.1, we con-
sider the LST of the stationary distribution u∗(s) (Re(s) > 0), and derive a formula
applicable to reducible C +D. In Section 4.4.2, we provide an efficient computa-
tional procedure of reducible Q with the block structure (4.23). Finally, in Section
4.4.3, we consider the moments of the stationary distribution. We show that some
modification from the irreducible case is necessary to obtain the moments.

4.4.1 LST of stationary distribution
In this subsection, we derive a formula for the LST of the stationary distribution
u∗(s) (Re(s) > 0) applicable to reducible C+D. Note that (4.3) and (4.20) are still
valid for reducible C + D. The difference from the irreducible case is that ú(0)
cannot be obtained from Lemma 4.2 because (4.12) and (4.16) does not hold for
reducible C+D with H ≥ 2 as shown above.

Therefore, we first derive a formula for the mean first passage time f (x) (x ≥
0) applicable to reducible C + D with the general structure (4.21). Let κh (h ∈
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H ) denote the invariant probability vector of Qh (see (4.23)), which is uniquely
determined by

κhQh = 0, κheh = 1. (4.25)

We then define M×M matrix Q̌ as

Q̌ =

⎛

⎜⎜⎜⎜⎜⎜⎝

O Q̌T,1 Q̌T,2 · · · Q̌T,H
O e1κ1 O · · · O
O O e2κ2 · · · O
...

...
... . . . ...

O O O · · · eHκH

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.26)

where
Q̌T,h = (−QT)−1QT,hehκh, h ∈H .

Lemma 4.4. f (x) (x ≥ 0) is given by

f (x)= [I −exp[Qx]+ xQ̌](∆−C−D)−1e, (4.27)

where ∆ is defined as

∆ = Q̌−
∫∞

0
xdD(x)Q̌ =

⎛

⎜⎜⎜⎜⎜⎝

O ∆T,1 ∆T,2 · · · ∆T,H
O (e1−β1)κ1 O · · · O
O O (e2 −β2)κ2 · · · O
...

...
... . . . O

O O O · · · (eH −βH)κH

⎞

⎟⎟⎟⎟⎟⎠
,

∆T,h = Q̌T,h −
∫∞

0
xdDT(x)Q̌T,h −

∫∞

0
xdDT,h(x)ehκh, h ∈H .

Remark 4.5. (∆−C−D)−1 is given by

(∆−C−D)−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

[−(CT +DT)]−1 JT,1 JT,2 · · · JT,H

O ∆̂
−1
1 O · · · O

O O ∆̂
−1
2 · · · O

...
...

... . . . ...
O O O · · · ∆̂

−1
H

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (4.28)

where

∆̂h = (eh −βh)κh −Ch −Dh, h ∈H ,

JT,h = (−1) · [−(CT +DT)]−1(∆T,h −CT,h −DT,h)∆̂−1
h , h ∈H .
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Proof. Because we can prove Lemma 4.4 in almost the same way as the irreducible
case in [TH94], we provide only an outline of the proof. By definition of Q̌, it follows
that

QQ̌ =O,

from which we obtain a similar result to (4.13).
∞∑

n=1

xn

n!
Qn−1 =

[
I −exp[Qx]+ xQ̌

]
(Q̌−Q)−1.

Note here that the block upper-triangular matrix Q̌−Q is non-singular because its
diagonal block matrices −QT and ehκh −Qh (h ∈H ) are non-singular. Noting that
∆−C−D is non-singular by the same reasoning as the non-singularity of Q̌−Q, we
also obtain

(−1) · lim
s→0+

d
ds

Q∗(s)e = (Q̌−Q)(∆−C−D)−1e,

which corresponds to (4.14). We then obtain (4.27) from (4.11).

We then obtain u∗(s) (Re(s)> 0) for reducible C+D using (4.3), (4.15), and (4.20).

Theorem 4.2. u∗(s) (Re(s)> 0) satisfies

u∗(s)[sI +C+D∗(s)]= cηE[I −B∗
(s)], Re(s)> 0, (4.29)

and it is given by

u∗(s)= cηER∗
(s)[I −R∗(s)]−1, Re(s)> 0,

where ηE denotes a 1×M probability vector which is uniquely determined by

ηE =ηE
∫∞

0
dB(x)exp[Qx], ηEe = 1, (4.30)

and c is given by

c = 1
ηE(∆+B− I)(∆−C−D)−1e

, (4.31)

∆ =
∫∞

0
xdB(x)Q̌.

Remark 4.6. Let Φ denote an M×M matrix given by

Φ=
∫∞

0
dB(x)exp[Qx].

Since {(U(t),S(t)); t ≥ 0} is irreducible and positive recurrent, Φ represents an ir-
reducible transition probability matrix. Therefore, Φ has its invariant probability
vector, so that ηE is uniquely determined by (4.30)
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Remark 4.7. When we apply Theorem 4.2 to the case that C+D has no transient
states, it is necessary to rewrite (4.26) and (4.28) as

Q̌ =

⎛

⎜⎜⎜⎝

e1κ1 O · · · O
O e2κ2 · · · O
...

... . . . ...
O O · · · eHκH

⎞

⎟⎟⎟⎠ , (∆−C−D)−1 =

⎛

⎜⎜⎜⎜⎝

∆̂
−1
1 O · · · O

O ∆̂
−1
2 · · · O

...
... . . . ...

O O · · · ∆̂−1
H

⎞

⎟⎟⎟⎟⎠
.

4.4.2 Computation of reducible Q
In this subsection, we consider the computation of Q for reducible C+D. As men-
tioned in Remark 4.1, Q can be computed based on the recursion (4.9). However, a
straightforward implementation of the computational procedure given in Remark
4.1 is not efficient for reducible C +D because Q(n) is a sparse block matrix and
the number of iterations required is determined by the most slowly convergent se-
quence among non-zero blocks. Therefore, we can avoid unnecessary calculations
by computing Q blockwise as follows.

It is readily to see from (4.9) that Qh (h ∈ H ) is given by the limit limn→∞Q(n)
h

of the elementwise increasing sequence of matrices Q(n)
h (n = 0,1, . . .) defined as

Q(0)
h =Ch, Q(n)

h =Ch +
∫∞

0
dDh(y)exp

[
Q(n−1)

h y
]
, n = 1,2, . . . . (4.32)

Because Qh (h ∈ H ) represents an infinitesimal generator and Qheh = 0 holds, it
can be computed individually with an adequate stopping criterion in the same way
as the computation of Q with (4.9).

Similarly, QT is given by the limit limn→∞Q(n)
T of the elementwise increasing

sequence of matrices Q(n)
T (n = 0,1, . . .) defined as

Q(0)
T =CT, Q(n)

T =CT +
∫∞

0
dDT(y)exp

[
Q(n−1)

T y
]
, n = 1,2, . . . .

However, because QT represents a defective infinitesimal generator, the stopping
criterion of Q(n)

T is not clear. We thus need to compute QT along with QT,h (h ∈H ).

Let Q̂(n)
T,h (n = 0,1, . . .) denote a sequence of matrices defined as

Q̂(0)
T,h = CT,h,

Q̂(n)
T,h = CT,h +

∫∞

0
dDT,h(y)exp

[
Qh y

]

+
∫∞

0
dDT(y)

∫y

0
exp

[
Q(n−1)

T t
]
Q̂(n−1)

T,h exp
[
Qh(y− t)

]
dt, n = 1,2, . . . . (4.33)
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Note that Q(n)
T has the same structure as Q(n)

N in the multi-class MAP/G/1 queue
with disasters discussed in Chapter 3 (see (3.15)). According to the probabilistic
interpretation of Q(n)

N , it can be verified that

lim
n→∞

Q̂(n)
T,h =QT,h, h ∈H .

Therefore, we first compute Qh (h ∈ H ) with (4.32), and then we compute QT and
QT,h with an adequate stopping criterion. More specifically, for a given allowable
error ϵ> 0, we may stop the iteration at n∗ satisfying

max
i∈MT

∣∣∣
[
Q(n∗)

T eT +
∑

h∈H

Q̂(n∗)
T,h eh

]
i

∣∣∣< ϵ.

Remark 4.8. The second integral on the right-hand side of (4.33) can be computed
with uniformization as follows. Let θ denote the maximum absolute value of the
diagonal elements of the matrix C. We then have

∫∞

0
dDT(y)

∫y

0
exp[Q(n)

T t]Q̂(n)
T,h exp

[
Qh(y− t)

]
dt

=
∞∑

m=0
D(m+1)

T (θ)
m∑

j=0
[IT +θ−1Q(n)

T ]m− jθ−1Q̂(n)
T,h[Ih +θ−1Qh] j, (4.34)

where
D(m)

T (θ)=
∫∞

0
exp[−θx]

(θx)m

m!
dDT(x).

The derivation of (4.34) is given in Appendix 4.C.

Remark 4.9. If C+D has no transient states, Q is given by
⎛

⎜⎜⎜⎝

Q1 O · · · O
O Q2 · · · O
...

... . . . ...
O O · · · QH

⎞

⎟⎟⎟⎠ ,

so that we only need to compute Qh (h ∈H ) based on (4.32).

4.4.3 Moments of the stationary distribution
In this subsection, we derive a recursive formula for the moments of the stationary
distribution. For this purpose, we introduce some notations. We first rewrite (4.29)
to be

u∗(s)[sI +C+D∗(s)]=−η∗(s) Re(s)> 0, (4.35)

where η∗(s) is given by
η∗(s)= cηE[B∗

(s)− I].
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Let u(m) (m = 0,1, . . .) and η(m) (m = 0,1, . . .) denote 1×M vectors given by

u(0) = lim
s→0+

u∗(s), u(m) = lim
s→0+

(−1)m

m!
· dm

dsm
[
u∗(s)

]
, m = 1,2, . . . ,

η(0) = lim
s→0+

η∗(s), η(m) = lim
s→0+

(−1)m

m!
· dm

dsm
[
η∗(s)

]
, m = 1,2, . . . .

Note that the j-th ( j ∈M ) element of u(0) represents the stationary probability that
the phase is equal to j.

We develop a recursion to compute u(m) (m = 0,1, . . .) utilizing the fact that C and
D∗(s) are sparse block matrices. We thus partition u∗(s), η∗(s), u(m) (m = 0,1, . . .),
and η(m) (m = 0,1, . . .) as follows.

u∗(s)= (u∗
T(s),u∗

1(s),u∗
2(s), . . . ,u∗

H(s)), η∗(s)= (η∗
T(s),η∗

1(s),η∗
2(s), . . . ,η∗

H(s)),

u(m) = (u(m)
T ,u(m)

1 ,u(m)
2 , . . . ,u(m)

H ), η(m) = (η(m)
T ,η(m)

1 ,η(m)
2 , . . . ,η(m)

H ),

where u∗
T(s), η∗

T(s), u(m)
T , and η(m)

T denote 1×MT vectors and u∗
h(s), η∗

h(s), u(m)
h , and

η(m)
h (h ∈H ) denote 1×Mh vectors.

Note that (4.35) is equivalent to

u∗
T(s)[sIT +CT +D∗

T(s)]=−η∗
T(s), (4.36)

u∗
h(s)[sIh +Ch +D∗

h(s)]=−φ∗
h(s), h ∈H , (4.37)

where
φ∗

h(s)=η∗
h(s)+u∗

T(s)[CT,h +D∗
T,h(s)], h ∈H .

We define φ(m)
h (h ∈H , m = 0,1, . . .) as

φ(0)
h = lim

s→0+
φ∗

h(s)=η(0)
h +u(0)

T (CT,h +DT,h),

φ(m)
h = lim

s→0+

(−1)m

m!
· dm

dsm
[
φ∗

h(s)
]
=η(m)

h +u(m)
T CT,h +

m∑

l=0
u(l)

T D(m−l)
T,h , m = 1,2, . . . ,

where for h ∈H ,

D(0)
T,h = DT,h, D(m)

T,h = lim
s→0+

(−1)m

m!
· dm

dsm
[
D∗

T,h(s)
]
, m = 1,2, . . . .

We also define D(m)
T (m = 0,1, . . .) and D(m)

h (h ∈H , m = 0,1, . . .) as

D(0)
T = DT, D(m)

T = lim
s→0+

(−1)m

m!
· dm

dsm
[
D∗

T(s)
]
, m = 1,2, . . . ,

D(0)
h = Dh, D(m)

h = lim
s→0+

(−1)m

m!
· dm

dsm
[
D∗

h(s)
]
, m = 1,2, . . . .
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Theorem 4.3. u(m) = (u(m)
T ,u(m)

1 ,u(m)
2 , . . . ,u(m)

H ) (m = 0,1, . . .) is given recursively by

u(0)
T = η(0)

T [−(CT +DT)]−1,

u(m)
T =

[

η(m)
T −u(m−1)

T +
m−1∑

l=0
u(l)

T D(m−l)
T

]

[−(CT +DT)]−1, m = 1,2, . . . ,

and for h ∈H ,

u(0)
h eh = 1

1−πhβh

[
φ(1)

h eh +φ(0)
h (ehπh −Ch −Dh)−1βh

]
, (4.38)

u(0)
h = u(0)

h ehπh +φ(0)
h (ehπh −Ch −Dh)−1, (4.39)

ψ(m)
h =

(
m−1∑

l=0
u(l)

h D(m−l)
h −u(m−1)

h +φ(m)
h

)

(ehπh −Ch −Dh)−1,

m = 1,2, . . . , (4.40)

u(m)
h eh = 1

1−πhβh

[
m−1∑

l=0
u(l)

h D(m+1−l)
h eh +φ(m+1)

h eh +ψ(m)
h βh

]

,

m = 1,2, . . . , (4.41)
u(m)

h = u(m)
h ehπh +ψ(m)

h , m = 1,2, . . . . (4.42)

Proof. We first consider u(m)
T (m = 0,1, . . .). It follows from (4.36) that

u(0)
T (CT +DT)=−η(0)

T ,

u(m)
T (CT +DT)−u(m−1)

T +
m−1∑

l=0
u(l)

T D(m−l)
T =−η(m)

T , m = 1,2, . . . .

Since CT +DT is a defective infinitesimal generator, it is non-singular. We thus
obtain the recursion for u(m)

T (m = 0,1, . . .) from the above equations.
Next we consider u(m)

h (h ∈ H , m = 0,1, . . .) based on (4.37). Since Ch + Dh

(h ∈ H ) is an irreducible infinitesimal generator, the recursion for u(m)
h (h ∈ H ,

m = 0,1, . . .) can be obtained by standard manipulations in matrix-analytic methods
(e.g., [TH94]), and therefore we omit the proof.

Remark 4.10. By definition of φh (h ∈ H ), we need to compute u(m+1)
T before com-

puting u(m)
h by (4.38)–(4.42). When C+D has no transient states, on the other hand,

u(m)
h (h ∈H ) can be immediately obtained from (4.38)–(4.42) noting

φ(m)
h =η(m)

h , m = 0,1, . . . .
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4.5 Conclusion
We extended the matrix analytic methods for the continuous-time bivariate Markov
process {(U(t),S(t)); t ≥ 0} introduced in [Tak96] to the case of reducible C+D. We
first proved Lemma 4.3, which implies that some known results for the boundary
vector ú(0) of the stationary distribution is not valid for reducible C+D, when there
exist more than one irreducible classes of states. We then derived a formula for the
LST of the stationary distribution applicable to the reducible C+D in Section 4.4.1.
Furthermore, we provided an efficient computational procedure of the fundamental
matrix Q and the moments of the stationary distribution.

Recall that the Markov process considered in this chapter corresponds to the
(censored) workload processes in MAP/G/1 queues with various features including
our fundamental model of the first kind (see examples in Section 4.2). Based on the
results in this chapter, we can obtain performance measures of the corresponding
queueing model such as the waiting time distribution and the queue length dis-
tribution in a straightforward manner by following the discussion in [Tak96] and
[Tak01] for an ordinary multi-class MAP/G/1 queue.

Appendices

4.A Non-singularity of I −R∗(s) for reducible C+D
In this appendix we provide a brief proof that I −R∗(s) (Re(s) > 0) is non-singular
for reducible C+D, as is the case of irreducible C+D. Note first that R∗(s) takes
the form

R∗(s)=

⎛

⎜⎜⎜⎜⎜⎜⎝

R∗
T(s) R∗

T,1(s) R∗
T,2(s) · · · R∗

T,H(s)
O R∗

1(s) O · · · O
O O R∗

2(s) · · · O
...

...
... . . . ...

O O O · · · R∗
H(s)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and its diagonal block matrices are given by

R∗
T(s) =

∫∞

0
exp[−sx]

∫∞

x
dDT(y)exp[QT(y− x)],

R∗
h(s) =

∫∞

0
exp[−sx]

∫∞

x
dDh(y)exp[Qh(y− x)], h ∈H .

Since Ch +Dh (h ∈ H ) is irreducible, we can verify that Ih −R∗
h(s) (Re(s) > 0) is

non-singular in the same way as in [Tak02]. Furthermore, noting that CT +DT
denotes a defective infinitesimal generator, we can prove that IT−R∗

T(s) (Re(s)> 0)
is non-singular in the same way as in Appendix 3.I. Therefore, I −R∗(s) (Re(s)> 0)
is non-singular because its diagonal block matrices are all non-singular.
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4.B Proof of Lemma 4.3
We first consider the case that Y has two irreducible classes of states and no tran-
sient states, i.e.,

Y =
(
Y 1 O
O Y 2

)
,

where Y 1 and Y 2 denote irreducible infinitesimal generators. (4.24) is then rewrit-
ten to be

v=
(
v1
v2

)
, γhvh ̸= 0 for some h ∈ {1,2}.

Without loss of generality, we assume that γ2v2 ̸= 0. We then define a 1×M vector
y as

y=
(
γ1,

−γ1v1

γ2v2
·γ2

)

It then follows that
yv =γ1v1−

γ1v1

γ2v2
·γ2v2 = 0.

Therefore we have

y(vα−Y )= 0.

Since y ̸= 0, vα−Y is singular.
In the exactly same way, we can easily verify that vα−Y is still singular for the

general case that Y has transient states and more than two irreducible classes.

4.C Derivation of (4.34)
With uniformization at rate θ, we have

∫∞

0
dDT(y)

∫y

0
exp[Q(n)

T t]Q(n)
T,h exp

[
Qh(y− t)

]
dt

=
∫∞

0
dDT(y)

∫y

0
exp[−θt]exp

[
θ(IT +θ−1Q(n)

T )t
]
Q(n)

T,h

·exp[−θ(y− t)]exp
[
θ(Ih +θ−1Qh)(y− t)

]
dt

=
∫∞

0
exp[−θy]dDT(y)

∫y

0

∞∑

i=0

θi ti

i!
[IT +θ−1Q(n)

T ]iQ(n)
T,h

·
∞∑

j=0

θ j(y− t) j

j!
[Ih +θ−1Qh] jdt

=
∞∑

m=0

m∑

j=0

∫∞

0
exp[−θy]dDT(y)

∫y

0

θm− j tm− j

(m− j)!
· θ

j(y− t) j

j!
dt

· [IT +θ−1Q(n)
T ]m− jQ(n)

T,h[Ih +θ−1Qh] j,
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where m = i+ j. Furthermore, calculating the integral with respect to t using
∫y

0
tm− j(y− t) jdt = j!(m− j)!

(m+1)!
· ym+1,

we obtain
∫∞

0
dDT(y)

∫y

0
exp[Q(n)

T t]Q(n)
T,h exp

[
Qh(y− t)

]
dt

=
∞∑

m=0

m∑

j=0

∫∞

0
exp[−θy]

(θy)m+1

(m+1)!
dDT(y) · [IT +θ−1Q(n)

T ]m− jθ−1Q(n)
T,h[Ih +θ−1Qh] j.

(4.34) now follows immediately.





5 Workload Distribution in the
M/G/1+G Queue

5.1 Introduction
In this chapter, we consider a stationary M/G/1 queue with general impatient cus-
tomers. We assume that customers arrive according to a Poisson process with rate
λ (λ> 0) and service times of customers are i.i.d. according to a general distribution
with the PDF H(x) (x ≥ 0). Customers are served on the FCFS basis, unless oth-
erwise stated. Each customer has his/her own maximum allowable waiting time,
which is referred to as the impatience time hereafter. If elapsed waiting times of
customers reach their impatience times, they leave the system immediately without
receiving their services. Note that once the service of a customer starts, this cus-
tomer remains in the system until his/her service completion, even if the impatience
time expires. We assume that impatience times of customers are i.i.d. according to
a general distribution with the PDF G(x) (x ≥ 0). Customers may have no waiting
time limit and impatience times of such customers are defined as infinity. Therefore
G(x) (x ≥ 0) may be defective, i.e.,

lim
x→∞

G(x)= 1− g∞,

where g∞ (0 ≤ g∞ < 1) denotes the probability that a randomly chosen customer
has no waiting time limit. Usually, this model is denoted by M/G/1+G, where the
last symbol represents the impatience time distribution. Let E[H] denote the mean
service time, and let ρ denote the traffic intensity.

ρ =λE[H]. (5.1)

Throughout this dissertation (i.e., in Chapters 5,6, and 7), we assume

ρg∞ < 1, (5.2)

103
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which ensures the system being stable [BBH84]. In addition, we assume H(0) = 0
and G(0) = 0 for simplicity. These assumptions can be made without loss of gen-
erality because customers with zero service times or zero impatience times do not
contribute to the workload in system.

Let v(x) (x > 0) denote the p.d.f. of the workload in system, which is defined as
the workload that the server will process eventually. In other words, the work-
load in this model is regarded as the waiting time of an arriving customer without
waiting time limit. Also let π0 denote the stationary probability that the system
is empty. The following results are known for the stationary workload distribu-
tion in the M/G/1+G queue [BBH84, Kov61]. With the level-crossing argument
[BP77, Coh77], it is readily shown that the p.d.f. v(x) (x > 0) of the workload satis-
fies [BBH84, Kov61]

v(x)=λπ0H(x)+λ

∫x

0+
v(y)G(y)H(x− y)dy, (5.3)

where H(x) and G(x) (x ≥ 0) denote complementary PDFs of service times and im-
patience times, respectively.

H(x)= 1−H(x), G(x)= 1−G(x).

(5.3) is a Volterra integral equation of the second kind, whose formal series solution
is given by

v(x)=π0
∞∑

n=0
λnφn(x), x > 0, (5.4)

where {φn(x), x > 0}n=0,1,... is a sequence of functions determined recursively by

φ0(x)=λH(x), (5.5)

φn(x)=
∫x

0+
φn−1(y)G(y)H(x− y)dy, n = 1,2, . . . . (5.6)

Furthermore, using

1−π0 =
∫∞

0+
v(x)dx =π0

∞∑

n=0
λn

∫∞

0+
φn(x)dx,

we obtain

π0 =
(

1+
∞∑

n=0
λn

∫∞

0+
φn(x)dx

)−1

. (5.7)

In this chapter, we present a new perspective on the formal series solution (5.4)
of v(x). Our analysis is based on an observation that the workload process in the
M/G/1+G queue is identical sample path-wise to an LCFS-PR M/G/1 queue with



5.2. LCFS-PR M/G/1 QUEUE WITH WORKLOAD-DEPENDENT LOSS 105

workload-dependent loss. We derive the joint p.d.f. of residual service times of cus-
tomers in the LCFS-PR system. With this result, v(x) (x > 0) is interpreted as the
p.d.f. of a random sum of dependent random variables, which clarifies the proba-
bilistic meanings of the formal series solution (5.4). As a by-product, our formula-
tion provides a unified understanding of special cases of the M/G/1+G queue, where
the expression v(x) (x > 0) is simplified dramatically owing to specific distributions
of service times/impatience times.

The rest of this chapter is organized as follows. In Section 5.2, we consider an
LCFS-PR M/G/1 queue with workload-dependent loss, whose workload process is
equivalent to that of the M/G/1+G queue. In Section 5.3, we discuss the connection
between results in Section 5.2 and the formal series solution (5.4) of v(x) in the
M/G/1+G queue. In Section 5.4, we discuss some special cases where v(x) (x > 0)
takes much simpler form than the general M/G/1+G queue. Finally, we conclude
this chapter in Section 5.5.

5.2 LCFS-PR M/G/1 queue with
workload-dependent loss

In this section, we consider a stationary LCFS-PR M/G/1 queue with workload-
dependent loss. Suppose an arriving customer finds x (x ≥ 0) amount of workload
on arrival. This arriving customer is admitted to the system with probability G(x),
and he/she is lost with probability 1−G(x). Customers admitted to the system are
served under the LCFS-PR service discipline, so that customers start their services
immediately on arrival if they are admitted to the system. We assume that cus-
tomers arrive according to a Poisson process with rate λ, and service times are
assumed to be i.i.d. according to the PDF H(x) (x ≥ 0) with mean E[H]. We assume
that (5.2) holds.

Because the LCFS-PR service discipline is work-conserving, the workload pro-
cess in the above-mentioned model is identical to that in the second fundamental
model described in Chapter 1, which again has the identical workload process as
the FCFS M/G/1+G queue, as mentioned in Section 1.3.2.

Let L denote the number of customers in the stationary LCFS-PR system. Given
L = n (n = 1,2, . . .), let Xi (i = 1,2, . . . ,n) denote the residual service time of the i-th
oldest customer. We then define F(n; x1, x2, . . . , xn) (n = 1,2, . . ., xi ≥ 0 (i = 1,2, . . . ,n))
as

F(n; x1, x2, . . . , xn)=Pr(L = n, X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

We further define f (n; x1, x2, . . . , xn) (n = 1,2, . . ., xi > 0 (i = 1,2, . . . ,n)) as

f (n; x1, x2, . . . , xn)= ∂nF(n; x1, x2, . . . , xn)
∂x1∂x2 · · ·∂xn

.
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Let pn (n = 0,1, . . .) denote pn =Pr(L = n). Note that

p0 =π0. (5.8)

We then define f (x1, x2, . . . , xn | n) (n = 1,2, . . ., xi > 0 (i = 1,2, . . . ,n)) as the condi-
tional joint p.d.f. of residual service times given L = n.

f (x1, x2, . . . , xn | n)= f (n; x1, x2, . . . , xn)
pn

, n = 1,2, . . . . (5.9)

Let h̃(x) (x ≥ 0) denote the p.d.f. of the equilibrium random variable for service
times.

h̃(x)= H(x)
E[H]

, x ≥ 0. (5.10)

We define {H̃n}n=1,2,... as a sequence of i.i.d. random variables with p.d.f. h̃(x).

Theorem 5.1. In the stationary LCFS-PR system described above,

(i) π0 is given by

π0 =
(

1+
∞∑

n=1
cn

)−1

, (5.11)

where cn (n = 1,2, . . .) is defined as

cn =

⎧
⎪⎪⎨

⎪⎪⎩

ρ, n = 1,

ρnE

[
n−1∏

i=1
G(

i∑

j=1
H̃ j)

]

, n = 2,3, . . . .
(5.12)

Furthermore f (n; x1, x2, . . . , xn) (n = 1,2, . . ., xi > 0 (i = 1,2, . . . ,n)) is given in
terms of π0:

f (n; x1, x2, . . . , xn)=π0ρ
nh̃(x1)

n∏

i=2
G(

i−1∑

j=1
xj)h̃(xi). (5.13)

(ii) pn (n = 1,2, . . .) is given by

pn =π0cn, n = 1,2, . . . . (5.14)

(iii) f (x1, x2, . . . , xn | n) (n = 1,2, . . ., xi > 0 (i = 1,2, . . . ,n)) is given by

f (x1, x2, . . . , xn | n)= h̃(x1)
n∏

i=2
G(

i−1∑

j=1
xj)h̃(xi)

/

E

[
n−1∏

i=1
G(

i∑

j=1
H̃i)

]

, (5.15)

which is independent of the arrival rate λ.
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Remark 5.1. When all customers have no waiting time limit, i.e., G(x) = 1 (x ≥ 0),
(5.13) is reduced to

f (n; x1, x2, . . . , xn)= (1−ρ)ρn ·
n∏

i=1
h̃(xi),

which agrees with the classical result for the ordinary LCFS-PR M/G/1 queue
[Kel79, Theorem 3.10].

Proof. We first prove (5.13) by induction. Let A0 denote a set of admitted customers
who arrive when the system is empty. Note that every customer in A0 is served only
when L = 1 because of the LCFS-PR service discipline. Let T1(x1) (x1 ≥ 0) denote
the mean length of time in which customers in A0 receive their service and X1 ≤ x1.

T1(x1)=
∫x1

0
H(t)dt. (5.16)

Note that T1(x1) is a customer-average quantity. Owing to the relation between
time- and customer-averages [HS80], we obtain

F(1; x1)=λπ0T1(x1).

Note here that the arrival rate of customers in A0 is given by λπ0. Substituting
(5.1), (5.10), and (5.16) into the above equation and taking the derivative with re-
spect to x1, we have (5.13) for n = 1.

We then assume that (5.13) holds for some n = m (m = 1,2, . . .). Let Am denote a
set of admitted customers who arrive when L = m. Note that every customer in Am
is served only when L = m+1. We define Padmit(m) (m = 1,2, . . .) as

Padmit(m)=
∫∞

x1=0+

∫∞

x2=0+
· · ·

∫∞

xm=0+
f (x1, x2, . . . , xm | m)G(

m∑

j=1
xj)dxmdxm−1 · · ·dx1.

(5.17)
Owing to conditional PASTA [DR88], Padmit(m) (m = 1,2, . . .) is interpreted as the
conditional probability that a randomly chosen customer is admitted to the system
given that he/she arrives when L = m.

Let f̂ (x1, x2, . . . , xm | m) denote the joint p.d.f. of (X1, X2, . . . , Xm) seen by cus-
tomers in Am on arrival. It then follows from conditional PASTA [DR88] and (5.9)
that

f̂ (x1, x2, . . . , xm | m) = 1
Padmit(m)

· f (x1, x2, . . . , xm | m)G(
m∑

j=1
xj)

= 1
pmPadmit(m)

· f (m; x1, x2, . . . , xm)G(
m∑

j=1
xj). (5.18)
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We define Tm+1(x1, x2, . . . , xm+1) (xi ≥ 0 (i = 1,2, . . . ,m+ 1)) as the mean length of
time in which customers in Am receive their service, X1 ≤ x1, X2 ≤ x2, . . ., and
Xm+1 ≤ xm+1.

Tm+1(x1, x2, . . . , xm+1)

=
∫x1

y1=0+

∫x2

y2=0+
· · ·

∫xm

ym=0+
f̂ (y1, y2, . . . , ym | m)dymdym−1 · · ·dy1

∫xm+1

t=0
H(t)dt. (5.19)

Owing to the relation between time- and customer-averages [HS80], we obtain

F(m+1; x1, x2, . . . , xm+1)=λpmPadmit(m)Tm+1(x1, x2, . . . , xm+1),

because the arrival rate of customers in Am is given by λpmPadmit(m) owing to
PASTA. Substituting (5.1), (5.10), (5.18), and (5.19) into the above equation, taking
the partial derivative with respect to x1, x2, . . . , xm+1, we have

f (m+1; x1, x2, . . . , xm+1)= f (m; x1, x2, . . . , xm) ·ρG(
m∑

j=1
xj)h̃(xm+1). (5.20)

Therefore, if (5.13) holds for some n = m, we can verify that it also holds for n =
m+1. We thus obtain (5.13) for n = 1,2, . . .. Furthermore, by definition, we have

1−π0

=
∞∑

n=1

∫∞

x1=0+

∫∞

x2=0+
· · ·

∫∞

xn=0+
f (n; x1, x2, . . . , xn)dxndxn−1 · · ·dx1

= π0
∞∑

n=1

∫∞

x1=0+

∫∞

x2=0+
· · ·

∫∞

xn=0+
ρnh̃(x1)

{
n∏

i=2
G(

i−1∑

j=1
xj)h̃(xi)

}

dxndxn−1 · · ·dx1

= π0
∞∑

n=1
cn, (5.21)

from which (5.11) follows.
The remaining is to prove (ii) and (iii). Note that pn (n = 1,2, . . .) is given by

pn =
∫∞

x1=0+

∫∞

x2=0+
· · ·

∫∞

xn=0+
f (n; x1, x2, . . . , xn)dxndxn−1 · · ·dx1.

We then obtain (5.14) with the same manipulation as in (5.21). We further obtain
(5.15) substituting (5.12), (5.13), and (5.14) into (5.9).

Remark 5.2. The recursion (5.20) is helpful in understanding the structure of the
product-form solution (5.13) of the joint p.d.f. f (n; x1, x2, . . . , xn) (n = 1,2, . . ., xi > 0
(i = 1,2, . . . ,n)). Intuitively, h̃(xm+1) on the right-hand side of (5.20) corresponds to
the residual service time of the newest customer, and G(

∑m
j=1 xj) corresponds to the

probability of admittance at the arrival instant of this newest customer. Note that in
the ordinary LCFS-PR M/G/1 queue, (5.20) is reduced to be (cf. Remark 5.1)

f (m+1; x1, x2, . . . , xm+1)= f (m; x1, x2, . . . , xm) ·ρh̃(xm+1).
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5.3 Stationary workload in the M/G/1+G queue
We now relate the result in Theorem 5.1 to the workload in the M/G/1+G queue
described in Section 5.1. We define V as the workload in the stationary M/G/1+G
queue. Recall that the total workload process in the LCFS-PR M/G/1 queue with
workload-dependent loss is identical to the workload process in the M/G/1+G queue.
Therefore the following corollary is immediate from Theorem 5.1.

Corollary 5.1. Let L denote a non-negative, integer-valued random variable whose
probability function pn (n = 0,1, . . .) is given by (5.8) and (5.14). The stationary
workload V is then given by the sum of L dependent, non-negative random variables
Xi’s.

V = X1+ X2 +·· ·+ XL. (5.22)

Let Vn (n = 1,2, . . .) denote a conditional workload given L = n and let v(x | n)
(x > 0, n = 1,2, . . .) denote the p.d.f. of Vn. We then have

v(x | 1) = f (x | 1), (5.23)

v(x | n) =
∫

D+(x|n−1)
f (x[n−1], x−

n−1∑

m=1
xm | n)dx[n−1], n = 2,3, . . . , (5.24)

where x[n] (n = 1,2, . . .) denotes a 1×n vector given by

x[n] = (x1 x2 · · · xn),

and D+(x | n) (x > 0, n = 1,2, . . .) is defined as a subspace of the n-dimensional Eu-
clidean space given by

D+(x | n)=
{
x[n]; x[n] > 0,

n∑

m=1
xm < x

}
.

Note that by definition,

Pr(Vn = 0)= 0, Pr(Vn ≤ x)=
∫x

0+
v(y | n)dy (x > 0), n = 1,2, . . . ,

and ∫∞

0+
v(x | n)= 1, n = 1,2, . . . . (5.25)

The p.d.f. v(x) (x > 0) of the workload is then given by

v(x)=
∞∑

n=1
pnv(x | n), (5.26)

where from Theorem 5.1, (5.23) and (5.24),

p1v(x | 1) = π0ρh̃(x), (5.27)
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pnv(x | n) = π0ρ
n
∫

D+(x|n−1)
h̃(x1)

{
n−1∏

i=2
G(

i−1∑

j=1
xj)h̃(xi)

}

·G(
n−1∑

m=1
xm)h̃(x−

n−1∑

m=1
xm)dx[n−1], n = 2,3, . . . . (5.28)

With a straightforward calculation based on these equations, we can verify that

pnv(x | n)= ρ

∫x

0+
pn−1v(y | n−1)G(y)h̃(x− y)dy, x > 0,n = 2,3, . . . , (5.29)

from which the following corollary follows immediately.

Corollary 5.2. φn(x) in (5.6) and pnv(x | n) on the right hand side of (5.26) are
related by

π0λ
n−1φn−1(x)= pnv(x | n), n = 1,2, . . . . (5.30)

Therefore the (n−1)st (n = 1,2, . . .) term in the formal series solution (5.4) represents
the p.d.f. of V in (5.22) when L = n. It can also be shown that

cn =λn−1
∫∞

0+
φn−1(x)dx,

so that (5.11) is equivalent to (5.7).

Before closing this section, we take a look at some additional results, which
will be used in Chapters 6 and 7. Recall that Padmit(n) (n = 1,2, . . .) is defined as
(5.17) and it denotes the probability that a randomly chosen customer is admitted
to the system given that the customer finds L = n on arrival. By definition, (5.17) is
rewritten to be

Padmit(n) =
∫∞

0+
v(x | n)G(x)dx (5.31)

= E[G(Vn)], n = 1,2, . . . . (5.32)

Taking the integral over x ∈ (0,∞) on both sides of (5.27) and (5.29), and using
(5.14), (5.25), and (5.31), we can verify that cn (n = 1,2, . . .) satisfies the following
recursion.

c1 = ρ, cn = cn−1 ·ρPadmit(n−1), n = 2,3, . . . . (5.33)

Remark 5.3. Using (5.12) and (5.33), we obtain an explicit formula for Padmit(n)
(n = 1,2, . . .).

Padmit(1) = G(H̃1), Padmit(n)=E

[
n∏

i=1
G(

i∑

j=1
H̃ j)

]/

E

[
n−1∏

i=1
G(

i∑

j=1
H̃ j)

]

,

n = 2,3, . . . . (5.34)

Note that Padmit(n) (n = 1,2, . . .) is independent of the arrival rate λ.
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It follows from (5.14), (5.27), (5.29), and (5.33) that v(x | n) (n = 1,2, . . .) satisfies

v(x | 1) = h̃(x), x > 0, (5.35)

v(x | n) = 1
Padmit(n−1)

∫x

0+
v(y | n−1)G(y)h̃(x− y)dy, x > 0, n = 2,3, . . . . (5.36)

Vn is then characterized by recursively determined random variables as follows.

Corollary 5.3. Let V̂n denote the workload in system seen by a randomly chosen
admitted customer who finds L = n on arrival.

V̂n = [Vn |Vn ≤Gn], n = 1,2, . . . , (5.37)

where {Gn}n=1,2,... denotes a sequence of i.i.d. random variables distributed according
to the impatience time distribution. Vn then satisfies

V1 = H̃1, (5.38)
Vn+1 = V̂n + H̃n+1, n = 1,2, . . . . (5.39)

Proof. Note that the p.d.f. v̂(x | n) (x > 0, n = 1,2, . . .) of V̂n is given by

v̂(x | n)= v(x | n)G(x)
Padmit(n)

. (5.40)

Therefore, Corollary 5.3 immediately follows from (5.35) and (5.36).

5.4 Special cases
In this section, we discuss three special cases: Exponential impatience times (M/G/
1+M), constant impatience times (M/G/1+D), and exponential service times (M/M/
1+G). Note that these three cases include most of known results in the literature,
where the p.d.f. v(x) of the stationary workload becomes much simpler than the
general case. Using the explicit formulas (5.11) for π0 and (5.26) for the workload
v(x), we can clarify the reason why the stationary workload distributions in those
queues take much simpler forms than the general case.

Recall that π0 is given in terms of cn in (5.12) and v(x) (x > 0) is given by the sum
of pnv(x | n) (n = 1,2, . . .) in (5.27) and (5.28). To simplify those, we have to calculate
multiple integrals involving G(x1+x2+·· ·+xi) (i = 1,2, . . . ,n−1). In what follows, we
demonstrate how those integrals are calculated by assuming specific distributions
of service times/impatience times.
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5.4.1 Exponential impatience times (M/G/1+M)
Consider the case that impatience times are i.i.d. according to an exponential dis-
tribution with parameter θ > 0. We then have

G(x)= exp[−θx], x ≥ 0.

Note that G(x) has a semi-group property.

G(x1+ x2)=G(x1)G(x2), x1 ≥ 0, x2 ≥ 0. (5.41)

The exponential distribution is the only distribution satisfying (5.41). (5.12) for
n ≥ 2 is then rewritten to be

cn = ρnE

[
n−1∏

i=1
G(

i∑

j=1
H̃ j)

]

= ρnE

[
n−1∏

i=1

i∏

j=1
G(H̃ j)

]

= ρn
n−1∏

i=1
E

[{
G(Hi)

}n−i]
. (5.42)

Note here that

E
[{

G(Hi)
}n−i]

=
∫∞

0
exp[−(n− i)θxi]h̃(xi)dxi.

We thus define h̃∗(s) (Re(s) > 0) as the LST of the equilibrium random variable for
service times.

h̃∗(s)=
∫∞

0
exp[−sx]h̃(x)dx = 1−h∗(s)

sE[H]
, Re(s)> 0,

where h∗(s) (Re(s)> 0) denotes the LST of the service time distribution.

h∗(s)=
∫∞

0
exp[−sx]dH(x), Re(s)> 0.

It then follows from (5.42) that

cn = ρn
n−1∏

i=1
h̃∗(iθ), n = 1,2, . . . , (5.43)

and therefore π0 is given by

π0 =
(

1+
∞∑

n=1
ρn

n−1∏

i=1
h̃∗(iθ)

)−1

. (5.44)

Similarly, (5.28) is rewritten to be

pnv(x | n)=π0ρ
n
∫

D+(x|n−1)

{
n−1∏

i=1
h̃(xi)

[
G(xi)

]n−i
}

h̃(x−
n−1∑

m=1
xm)dx[n−1].
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It then follows from (5.12), (5.14), and (5.43) that for n = 1,2, . . .

pnv(x | n)= pn · ĥ0∗ ĥ1 ∗ · · ·∗ ĥn−1(x),

where ĥm(x) (x ≥ 0, m = 0,1, . . .) is defined as the p.d.f. of residual service times
twisted by exp[−mθx].

ĥm(x)=
h̃(x)

[
G(x)

]m

∫∞

0+
h̃(y)

[
G(y)

]m
dy

= h̃(x)exp[−mθx]
h̃∗(mθ)

,

and ∗ stands for the convolution operator. Therefore, from (5.26), we obtain

v(x)=π0
∞∑

n=1
cn · ĥ0 ∗ ĥ1 ∗ · · ·∗ ĥn−1(x), x > 0. (5.45)

Note that (5.44) and (5.45) are consistent with Equations (43) and (44) in [Dal65].

Remark 5.4. It is interesting to observe that in the M/G/1+M queue, the workload
V is given by a random sum of independent random variables Xi (i = 1,2, . . .), where
Xi (i = 1,2, . . .) has the p.d.f. ĥi−1(x).

5.4.2 Constant impatience times (M/G/1+D)
In this subsection, impatience times are assumed to be constant and equal to τ. By
definition,

G(x)=
{

1, x < τ,
0, x ≥ τ.

Note here that G(x) (x ≥ 0) has the following property: For any x1, x2 ≥ 0,

(i) if G(x1)= 0, then G(x1 + x2)= 0, and

(ii) if G(x1 + x2)= 1, then G(x1)= 1.

(5.12) is then rewritten to be

cn = ρn
∫∞

x1=0+

∫∞

x2=0+
· · ·

∫∞

xn−1=0+

{
n−1∏

i=1
h̃(xi)G(

i∑

j=1
xj)

}

dxn−1dxn−2 · · ·dx1

= ρn
∫

D+(τ|n−1)

{
n−1∏

i=1
h̃(xi)

}

dx[n−1]. (5.46)

Let H̃i (i = 1,2, . . .) denote a sequence of i.i.d. random variables whose p.d.f. is
given by h̃(x) (x ≥ 0). We then define H̃(n) =∑n

i=1 H̃i, and denote its p.d.f. (resp. PDF)
by h̃(n)(x) (resp. H̃(n)(x)).

h̃(n)(x)= h̃∗ h̃∗ · · ·∗ h̃︸ ︷︷ ︸
n

(x), H̃(n)(x)=
∫x

0
h̃(n)(y)dy, x ≥ 0.
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It then follows from (5.46) that

cn = ρnH̃(n−1)(τ), n = 2,3, . . . .

Therefore, from (5.11), we obtain

π0 =
(

1+ρ
∞∑

n=0
ρnH̃(n)(τ)

)−1

,

where H̃(0)(x)= 1 for all x ≥ 0.
Similarly, it follows from (5.28) that for n = 2,3, . . .,

pnv(x | n)=π0ρ
n
∫

D+(x|n−1)
h̃(x1)

{
n−1∏

i=2
G(

i−1∑

j=1
xj)h̃(xi)

}

G(
n−1∑

m=1
xm)h̃(x−

n−1∑

m=1
xm)dx[n−1]

=

⎧
⎪⎪⎨

⎪⎪⎩

π0ρ
nh̃(n)(x), x ≤ τ,

π0ρ
n
∫

D+(τ|n−1)

{
n−1∏

i=1
h̃(xi)

}

h̃(x−
n−1∑

i=1
xi)dx[n−1], x > τ.

Therefore, using (5.26), we obtain

v(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π0
∞∑

n=1
ρnh̃(n)(x), x ≤ τ,

π0c1h̃(x)+π0
∞∑

n=2
cn · h̃(n−1)

[τ] ∗ h̃(x), x > τ,
(5.47)

where h̃(n)
[τ] (x) (n = 1,2, . . ., x ≥ 0) is defined as the conditional p.d.f. of H̃(n) given

H̃(n) ≤ τ.

h̃(n)
[τ] (x)= d

dx

[
Pr(H̃(n) ≤ x | H̃(n) ≤ τ)

]
=

{
h̃(n)(x)/H̃(n)(τ), x ≤ τ,
0, x > τ.

With a straightforward calculation, we can verify that (5.47) is equivalent to the
result in [BKL01, Section 4].

Remark 5.5. (5.47) implies that the conditional workload distribution given V ≤ τ

is identical to that in the ordinary M/G/1 queue. This observation is almost obvious
because the censored workload process in the M/G/1+D queue is stochastically iden-
tical to that in the ordinary M/G/1 queue if we consider censored processes obtained
by observing only periods with V ≤ τ.
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5.4.3 Exponential service times (M/M/1+G)
Finally, we consider the case that service times are i.i.d. according to an exponential
distribution with parameter µ.

H(x)= exp[−µx], x ≥ 0.

Because of the memoryless property of the exponential distribution, residual ser-
vice times are also exponentially distributed with parameter µ.

h̃(x)=µexp[−µx], x > 0.

Therefore, for any x1, x2 ≥ 0, h̃(x) satisfies

h̃(x1)h̃(x2)=µ · h̃(x1 + x2). (5.48)

Using (5.48), we rewrite (5.28) to be

pnv(x | n)=π0ρ
nµn−1h̃(x)

∫

D+(x|n−1)

{
n∏

i=2
G(

i−1∑

j=1
xj)

}

dx[n−1]. (5.49)

The integral on the right-hand side of (5.49) can be interpreted probabilistically
as follows. We define {G̃♯

i}i=1,2,... as a sequence of i.i.d. random variables whose PDF
G̃♯(x)=Pr(G̃♯

i ≤ x) is given by

G̃♯(x)=

⎧
⎪⎨

⎪⎩

1
E[G♯]

∫x

0
G(y)dy, x < x♯,

1, x ≥ x♯,

where x♯ denotes a sufficiently large real number and E[G♯] is given by

E[G♯]=
∫x♯

0
G(y)dy+ x♯G(x♯).

Remark 5.6. Note that G̃♯
i represents an equilibrium random variable for impa-

tience times truncated at x♯. If E[G]<∞, we simply set x♯ =∞, so that E[G♯]=E[G]
and {G̃♯

i}i=1,2,... is an i.i.d. sequence of equilibrium impatience times.

We then rewrite (5.49) to be

pnv(x | n)=π0ρ(λE[G♯])n−1h̃(x)
∫

D+(x|n−1)

{
n∏

i=2
G(

i−1∑

j=1
xj)/E[G♯]

}

dx[n−1].
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Note here that for x < x♯, the p.d.f. of G̃♯
i is given by G(x)/E[G♯]. We then have for

x < x♯,
∫

D+(x|n−1)

{
n∏

i=2
G(

i−1∑

j=1
xj)/E[G♯]

}

dx[n−1] =Pr(G̃♯
1 < G̃♯

2 < ·· · < G̃♯
n−1 < x)= [G̃♯(x)]n−1

(n−1)!
,

(5.50)
where the second equality in (5.50) follows from that G̃♯

i (i = 1,2, . . . ,n−1) are i.i.d.
and there are equally likely (n−1)! permutations of them. We thus have

pnv(x | n)=π0ρh̃(x) · (λE[G♯]G̃♯(x))n−1

(n−1)!
=π0ρh̃(x) · 1

(n−1)!
·
(
λ

∫x

0
G(y)dy

)n−1
. (5.51)

Note that (5.51) holds for all x > 0 by setting x♯ appropriately. Therefore, from (5.26)
and (5.51), we obtain

v(x) =
∞∑

n=1
pnv(x | n)

= π0ρh̃(x)exp
[
λ

∫x

0
G(y)dy

]

= π0λexp
[
−µx+λ

∫x

0
G(y)dy

]
, x > 0.

This is identical to Equation (49) in [Sta79].
Furthermore, π0 is determined by

π0 +
∫∞

0+
v(x)dx = 1,

i.e.,

π0 =
(
1+λ

∫∞

0+
exp

[
−µx+λ

∫x

0
G(y)dy

]
dx

)−1
. (5.52)

Alternatively, integrating both sides of (5.51) over x ∈ (0,∞) and noting (5.12), we
have

cn = ρ

(n−1)!

∫∞

0
µexp[−µx]

(
λ

∫x

0
G(y)dy

)n−1
dx, n = 1,2, . . . .

Although π0 can be obtained from the above equation and (5.11), it is the same as
taking the power series expansion of the exponential function on the right-hand
side of (5.52) and calculating the integral term by term.

5.5 Conclusion
We considered the stationary workload distribution in the M/G/1+G queue. We an-
alyzed the LCFS-PR M/G/1 queue with workload-dependent loss, whose workload
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process is identical to that in the M/G/1+G queue, and we derived the joint p.d.f.
of the residual service times of customers in the system. This result reveals that
the workload in the M/G/1+G queue is given by a random sum of dependent ran-
dom variables. This observation enables us to clarify the reason why the workload
distribution in the M/G/1+M, M/G/1+D, and M/M/1+G queues are simplified dra-
matically, as shown in Section 5.4.

Based on this characterization, we explore various properties of the stationary
loss probability Ploss in the M/G/1+G queue in Chapter 6, and develop an efficient
computational algorithm for Ploss in Chapter 7.





6 Analysis of the Loss Probability in
the M/G/1+G Queue

6.1 Introduction
In this chapter, we analyze the stationary loss probability Ploss in the M/G/1+G
queue described in Section 5.1. Ploss is defined as the probability that a randomly
chosen customer leaves the system without receiving his/her service, and it is the
most fundamental quantity of interest in queues with impatient customers. Recall
that π0 denotes the stationary probability that the system is empty. Owing to Lit-
tle’s law, the mean number of customers being served is given by λ(1−Ploss)E[H]=
1× (1−π0), and therefore we obtain [Dal65]

Ploss =
ρ− (1−π0)

ρ
. (6.1)

Ploss is thus given in terms of π0.
With the results of [Kov61, BBH84] on the stationary virtual waiting time, Ploss

in the M/G/1+G queue is given by (5.7) and (6.1). Note that (6.1) is equivalent to

Ploss =
∫∞

0+
v(x)G(x)dx.

To the best of our knowledge, however, any further results for Ploss in the M/G/1+G
queue are not found in the literature. Because Ploss is given in terms of the se-
quence of recursively determined functions, it is not easy to evaluate the impacts
of the arrival rate and service time/impatience time distributions on Ploss in this
formulation.

The purpose of this chapter is to explore various properties of Ploss and related
quantities in the M/G/1+G queue, based on the new perspective on the station-
ary workload shown in Chapter 5. In particular, we provide formal proofs of some
intuition about impacts of the arrival rate and service time/impatience time distri-
butions on Ploss in the M/G/1+G queue. Furthermore, using these results, we show

119
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a theoretically interesting result that Ploss in the M/D/1+D queue is smallest among
all M/G/1+G queues with the same and finite arrival rate, mean service time, and
mean impatience time.

The rest of this chapter is organized as follows. In Section 6.2, we introduce
some known results for stochastic orders, and also derive some new results as pre-
liminaries to the analysis. In Section 6.3, we derive some properties of the station-
ary workload and related quantities in the M/G/1+G using stochastic orders. In
Section 6.4, we analyze the loss probability based on the results in Sections 6.3 and
6.4. Finally, we conclude this chapter in Section 6.5.

6.2 Stochastic orders

6.2.1 Some known results for stochastic orders
We start with the usual stochastic order, which is commonly used to compare the
magnitude of random variables.

Definition 6.1 ([SS07, Eq. (1.A.1)]). Let X and Y denote non-negative random vari-
ables with complementary PDFs F X (x) and FY (x) (x ≥ 0), respectively. X is said to
be smaller than or equal to Y in the usual stochastic order (denoted by X ≤st Y ) if
and only if

F X (x)≤ FY (x) for all x ≥ 0.

The usual stochastic order has the following basic properties.

Lemma 6.1 ([SS07, Eq. (1.A.7), Theorem 1.A.1]). Let X and Y denote non-negative
random variables. X ≤st Y if and only if any one of the following conditions hold:

(i) E[φ(X )] ≤ E[φ(Y )] holds for every non-decreasing function φ(x) (x ≥ 0) such
that E[φ(X )] and E[φ(Y )] exist, or

(ii) there exist two random variables X̂ and Ŷ defined on the same probability
space, which satisfy X̂ =st X, Ŷ =st Y , and Pr(X̂ ≤ Ŷ )= 1.

Remark 6.1. By letting φ(x)= x (x ≥ 0) in Lemma 6.1 (i), it is readily verified that

X ≤st Y ⇒ E[X ]≤E[Y ]. (6.2)

Even when X ≤st Y holds, it does not necessarily follow that [X | X ≤ y] ≤st [Y |
Y ≤ y] (y ≥ 0) for their conditional random variables. The reversed hazard rate
order is a stronger relation than the usual stochastic order, which is conserved with
respect to such a conditioning.
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Definition 6.2 ([SS07, Eq.(1.B.41)]). Let X and Y denote non-negative random
variables with PDFs FX (x) and FY (x) (x ≥ 0), respectively. X is said to be smaller
than or equal to Y in the reversed hazard rate order (denoted by X ≤rh Y ) if and only
if

FX (x)FY (y)≥ FX (y)FY (x) for all 0≤ x ≤ y. (6.3)

Remark 6.2. By letting y → ∞ in (6.3), it is readily verified that [SS07, Theo-
rem1.B.42]

X ≤rh Y ⇒ X ≤st Y . (6.4)

In addition, because the PDF FY (x) of Y satisfies FY (x) ≤ FY (y) (0≤ x ≤ y), we have
for any non-negative random variable Y ,

0≤rh Y , (6.5)

where 0 denotes a random variable which takes value 0 with probability one.

Remark 6.3 ([SS07, Eq.(1.B.43)]). It is easy to see that (6.3) is equivalent to

[X | X ≤ y]≤st [Y |Y ≤ y] for all y≥ 0.

Lemma 6.2 ([BS06, Theorem 9 (b)]). Let X and Y denote non-negative random
variables with PDFs FX (x) and FY (x) (x ≥ 0), respectively. Further let X̂ and Ŷ
denote non-negative random variables whose PDFs FX̂ (x) and FŶ (x) (x ≥ 0) are given
by

FX̂ (x)= 1
E[φ(X )]

∫x

0
φ(w)dFX (w), FŶ (x)= 1

E[φ(Y )]

∫x

0
φ(w)dFY (w),

where φ(x) (x ≥ 0) denotes a non-increasing function for which E[φ(X )] and E[φ(Y )]
exist. It then follows that

X ≤rh Y ⇒ X̂ ≤rh Ŷ .

Remark 6.4. By letting

φ(x)=
{

1, 0≤ x < t,
0, x ≥ t,

in Lemma 6.2, we can prove (cf. Remark 6.2)

X ≤rh Y ⇒ [X | X ≤ y]≤rh [Y |Y ≤ y] for all y≥ 0.

Lemma 6.3 ([SS07, Lemma 1.B.44]). Let X and Y denote non-negative random
variables. Also let Z denote a non-negative random variable independent of X and
Y . If Z has a non-increasing reversed hazard rate,

X ≤rh Y ⇒ X +Z ≤rh Y +Z.
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Remark 6.5. For the usual stochastic order, Lemma 6.3 holds under a weaker con-
dition. Specifically, X ≤st Y ⇒ X +Z ≤st Y +Z holds for any non-negative random
variable Z independent of X and Y [SS07, Theorem 1.A.3 (b)].

We next introduce stochastic orders which compare the variability of random
variables.

Definition 6.3 ([SS07, Theorem 3.A.1]). Let X and Y denote non-negative random
variables with finite equal means E[X ]=E[Y ] and complementary PDFs F X (x) and
FY (x) (x ≥ 0), respectively. X is said to be smaller than or equal to Y in the convex
order (denoted by X ≤cx Y ) if and only if

∫∞

x
F X (w)dw ≤

∫∞

x
FY (w)dw for all x ≥ 0, (6.6)

or equivalently,
X̃ ≤st Ỹ , (6.7)

where X̃ and Ỹ denote equilibrium random variables for X and Y , respectively.

Lemma 6.4 ([SS07, Eq. (3.A.1)]). Let X and Y denote non-negative random vari-
ables with finite equal means E[X ] = E[Y ]. X ≤cx Y holds if and only if E[φ(X )] ≤
E[φ(Y )] holds for every convex functions φ(x) (x ≥ 0) such that E[φ(X )] and E[φ(Y )]
exist.

Remark 6.6. It follows from Lemma 6.4 that X ≤cx Y ⇒ Cv[X ] ≤ Cv[Y ], where
Cv[Z] denotes the coefficient of variation of a non-negative random variable Z.

Lemma 6.5 ([SS07, Theorem 3.A.24]). Among all non-negative random variables
with the same finite mean, the deterministic random variable is smallest in the con-
vex order, i.e., for any non-negative random variable Z with finite mean E[Z],

E[Z]≤cx Z.

The convex order is defined as (6.6) in terms of the integrals of complementary
PDFs. The excess wealth order is defined in a similar way as follows, where the
lower limits of corresponding integrals are determined based on quantiles of ran-
dom variables.

Definition 6.4 ([SS07, Page 164]). Let X and Y denote non-negative random vari-
ables with finite means. X is said to be smaller than or equal to Y in the excess
wealth order (denoted by X ≤ew Y ) if and only if

∫∞

F−1
X (p)

F X (w)dw ≤
∫∞

F−1
Y (p)

FY (w)dw for all 0< p < 1,

where F X (x) and FY (x) (x ≥ 0) denote the complementary PDFs of X and Y , respec-
tively.
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Lemma 6.6 ([SS07, Eq. (3.C.2)]). Let X and Y denote non-negative random vari-
ables with finite means and complementary PDFs F X (x) and FY (x), respectively.
X ≤ew Y holds if and only if

Ψ−1
Y (z)−Ψ−1

X (z) is non-increasing in z > 0, (6.8)

where ΨX (x) and ΨY (x) (x ≥ 0) are given by

ΨX (x)=
∫∞

x
F X (w)dw, ΨY (x)=

∫∞

x
FY (w)dw. (6.9)

Lemma 6.7 ([SS07, Eq. (3.C.8)]). If non-negative random variables X and Y have
equal means E[X ]=E[Y ],

X ≤ew Y ⇒ X ≤cx Y .

By definition, we can readily verify that the excess wealth order is location-
independent, i.e., X ≤ew Y ⇒ X + a ≤ew Y + b for any a,b ∈ [0,∞). The dispersive
order, defined as follows, is also a location-independent order which compares the
variability of random variables.

Definition 6.5 ([SS07, Eq. (3.B.1)]). Let X and Y denote two random variables with
PDFs FX (x) and FY (x), respectively. X is said to be smaller than or equal to Y in
the dispersive order (denoted by X ≤disp Y ) if and only if

F−1
X (β)−F−1

X (α)≤ F−1
Y (β)−F−1

Y (α) for all 0<α≤β< 1. (6.10)

Lemma 6.8. [SS07, Eq. (3.B.8)] Let X and Y denote random variables with com-
plementary PDFs F X (x) and FY (x), respectively. X ≤disp Y holds if and only if

F
−1
Y (p)−F

−1
X (p) is non-increasing in p ∈ (0,1). (6.11)

For a sequence of random variables X1, X2, . . . , Xn (n = 1,2, . . .), let Xi:n (i =
1,2, . . . ,n) denote its i-th order statistic, which is defined as the i-th smallest value
of {X1, X2, . . . , Xn}.

Lemma 6.9 ([Bar86, Lemma 3]). Let {X j} j=1,2,... and {Yj} j=1,2,... denote i.i.d. random
variables whose PDFs are given by FX (x) and FY (x), respectively. For n = 1,2, . . .,
and i = 1,2, . . .n, we define Xi:n (resp. Yi:n) as the i-th order statistic of {X j} j=1,2,...,n
(resp. {Yj} j=1,2,...,n), and we define Ci:n = Xi:n−Xi−1:n (resp. Di:n =Yi:n−Yi−1:n), where
X0:n = inf{x; FX (x)> 0} (resp. Y0:n = inf{x; FY (x)> 0}). If X1 ≤disp Y1, it follows that

φ(C1:n,C2:n, . . . ,Cn:n)≤st φ(D1:n,D2:n, . . . ,Dn:n),

for every function φ : Rn →R non-decreasing in each argument.
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6.2.2 New results for the excess wealth and dispersive
orders

In this subsection, we derive some new results for the excess wealth and dispersive
orders, which are used in the next section to analyze the loss probability in the
M/G/1+G queue. Although they seem to be basic results for these stochastic orders,
we could not find them in the literature.

We first consider the relation between the excess wealth and dispersive orders.

Lemma 6.10. Let X and Y denote non-negative random variables with finite equal
means E[X ] = E[Y ], and let X̃ and Ỹ denote the equilibrium random variables for
X and Y , respectively. We then have X ≤ew Y if and only if X̃ ≤disp Ỹ .

Proof. We define F X̃ (x) and FỸ (x) (x ≥ 0) as the complementary PDFs of the equi-
librium random variables X̃ and Ỹ , respectively. By definition, it follows that

F X̃ (x)= ΨX (x)
E[X ]

, FỸ (x)= ΨY (x)
E[Y ]

, (6.12)

where ΨX (x) and ΨY (x) are defined as (6.9). Because E[X ]=E[Y ] is assumed, it is
readily verified from (6.12) and Lemmas 6.6 and 6.8 that

X ≤ew Y ⇔ Ψ−1
Y (z)−Ψ−1

X (z) is non-increasing in z > 0

⇔ F
−1
Ỹ (p)−F

−1
X̃ (p) is non-increasing in p ∈ (0,1)

⇔ X̃ ≤disp Ỹ .

With Lemma 6.10, it is shown that a similar result to Lemma 6.5 still holds
for the excess wealth order, which is a stronger relation than the convex order (see
Lemma 6.7).

Lemma 6.11. Let U(a,b) (a < b) denote a uniform random variable with support
[a,b). For any non-negative random variable Z with finite mean E[Z], let Z̃ denote
its equilibrium random variable. It then follows that

U(0,E[Z])≤disp Z̃.

Proof. If X and Y in Definition 6.5 have their p.d.f.s fX (x) and fY (y), respectively,
(6.10) is equivalent to the following inequality [SS07, Eq. (3.B.11)].

fX (F−1
X (p))≥ fY (F−1

Y (p)) for all 0< p < 1. (6.13)

Let fU(0,E[Z])(x) and F−1
U(0,E[Z])(p) denote the p.d.f. and the quantile function of the

uniform random variable U(0,E[Z]), respectively. We then have

{F−1
U(0,E[Z])(p); 0< p < 1} = {x; 0< x <E[Z]},
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fU(0,E[Z])(x) = 1
E[Z]

for all 0< x <E[Z].

Let FZ(x) (x ≥ 0) denote the complementary PDF of Z, and let fZ̃(x) = FZ(x)/E[Z]
denote the p.d.f. of Z̃. Further let F−1

Z̃ (p) (0< p < 1) denote the quantile function of
Z̃. It is readily seen that for any p (0< p < 1),

fU(0,E[Z])(F−1
U(0,E[Z])(p))= 1

E[Z]
≥

FZ(F−1
Z̃ (p))

E[Z]
= fZ̃(F−1

Z̃ (p)).

Lemma 6.11 now follows from (6.13) and the above equation.

Theorem 6.1. Among all non-negative random variables with the same finite mean,
the deterministic random variable is smallest in the excess wealth order, i.e., for any
non-negative random variable Z with finite mean E[Z],

E[Z]≤ew Z.

Proof. Theorem 6.1 follows immediately from Lemmas 6.10 and 6.11 because the
equilibrium random variable for constant E[Z] is a uniform random variable U(0,E[Z]).

6.3 Properties of workload and related quantities
As shown in Section 5.3, the stationary workload V is characterized in terms of
cn (n = 1,2, . . .) given by (5.12) and the conditional workload Vn (n = 1,2, . . .) deter-
mined by (5.37), (5.38), and (5.39). In this section, we derive some results on these
quantities, using stochastic orders presented in the previous section.

Lemma 6.12. Vn ≤rh Vn+1 holds for n = 1,2, . . ..

Proof. We prove Lemma 6.12 by induction. We define V̂0 as a random variable such
that Pr(V̂0 = 0)= 1. It follows from (5.38) and (5.39) that V1 ≤rh V2 is equivalent to

V̂0 + H̃1 ≤rh V̂1+ H̃2. (6.14)

Note that V̂0 ≤rh V̂1 follows from (6.5). On the other hand, because the p.d.f. h̃(x)
(x ≥ 0) of H̃n (n = 1,2, . . .) is given by (5.10) and it is a non-increasing function of x,
its reversed hazard rate h̃(x)/Pr(H̃n ≤ x) is also non-increasing in x > 0. Therefore,
using Lemma 6.3, we can verify that (6.14) holds, so that V1 ≤rh V2.

We then assume that Vm ≤rh Vm+1 holds for some m = 1,2, . . .. Recall that the
p.d.f. v̂(x | m) of V̂m is given by (5.40). Using (5.32), we rewrite (5.40) to be

v̂(x | m)= 1
E[G(Vn)]

·v(x | m)G(x).
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Because G(x) (x ≥ 0) is a non-increasing function, it then follows from Lemma 6.2
and the assumption Vm ≤rh Vm+1 that

V̂m ≤rh V̂m+1. (6.15)

Therefore, in the same way as (6.14), it is shown that

V̂m + H̃m+1 ≤rh V̂m+1+ H̃m+2,

which implies Vm+1 ≤rh Vm+2. We thus proved Vn ≤rh Vn+1 for n = 1,2, . . ..

Let G
+

(x) (x ≥ 0) denote the complementary PDF of a proper random variable
[G |G <∞], where G denotes a generic random variable for impatience times. Not-
ing limx→∞G(x)= g∞, we rewrite (5.31) to be

Padmit(n) =
∫∞

0
v(x | n)

[

g∞+ (1− g∞)
G(x)− g∞

1− g∞

]

dx

= g∞+ (1− g∞)
∫∞

0
v(x | n)G

+
(x)dx. (6.16)

We then have
g∞ ≤ Padmit(n)≤ 1, n = 1,2, . . . . (6.17)

Lemma 6.13. If g∞ = limx→∞G(x)> 0,

lim
n→∞

Pr(Vn > x)= 1 for every x ≥ 0.

Proof. For n = 2, we have from (5.35), (5.36), and (6.17),

v(x | 2) = 1
Padmit(1)

∫x

0
h̃(y)G(y)h̃(x− y)dy

≤ 1
g∞

∫x

0

1
E[H]

·1 · 1
E[H]

dy

= 1
E[H]

· x
g∞E[H]

.

Suppose for some n ≥ 2,

v(x | n)≤ 1
E[H]

· 1
(n−1)!

(
x

g∞E[H]

)n−1
. (6.18)

We then have from (5.36), (6.17), and (6.18),

v(x | n+1) ≤ 1
g∞

∫x

0

1
E[H]

· 1
(n−1)!

(
y

g∞E[H]

)n−1 1
E[H]

dy
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= 1
E[H]

· 1
n!

(
x

g∞E[H]

)n
,

so that (6.18) holds for n+1, and therefore it holds for all n = 2,3, . . .. Note that

lim
n→∞

1
n!

(
x

g∞E[H]

)n
= 0 for every x ≥ 0.

For an arbitrarily fixed x > 0, we consider v(y | n) for y ∈ (0, x]. It then follows from
(6.18) that v(y | n) uniformly converges to 0 in (0, x] as n →∞. We then have

lim
n→∞

Pr(Vn > x)= 1− lim
n→∞

∫x

0
v(y | n)dy= 1−

∫x

0
lim

n→∞
v(y | n)dy= 1,

which completes the proof.

Theorem 6.2. {Padmit(n)}n=1,2,... has the following properties.

(i) {Padmit(n)}n=1,2,... is a non-increasing sequence, and

(ii) lim
n→∞

Padmit(n)= g∞.

Proof. Note that −G(x) (x ≥ 0) is a non-decreasing function. Because Vn ≤st Vn+1
follows from (6.4) and Lemma 6.12, we have E[G(Vn+1)] ≥ E[G(Vn)] from Lemma
6.1 (i). We then obtain Theorem 6.2 (i) from (5.32).

Next we consider (ii). Note that limn→∞ Padmit(n) exists because of (6.17) and
Theorem 6.2 (i). We first prove (ii) for g∞ > 0. In this case, we have from (6.16),

Padmit(n) = g∞+ (1− g∞)
∫∞

0
v(x | n)G

+
(x)dx

= g∞+ (1− g∞)
∫∞

0
Pr(Vn ≤ x)dG+(x),

where G+(x)= 1−G
+

(x). Note that
∫∞

0
Pr(Vn ≤ x)dG+(x)≤

∫∞

0
dG+(x)= 1. (6.19)

It then follows from the dominated convergence theorem and Lemma 6.13 that

lim
n→∞

∫∞

0
Pr(Vn ≤ x)dG+(x)=

∫∞

0

(
lim

n→∞
Pr(Vn ≤ x)

)
dG+(x)= 0.

Therefore the theorem holds for g∞ > 0.
Next we consider the case of g∞ = 0. Suppose

lim
n→∞

Padmit(n)= a, (6.20)
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for some a > 0. Because of Theorem 6.2 (i), (6.20) implies Padmit(n) ≥ a for all n =
1,2, . . .. Using this observation, we can show limn→∞Pr(Vn > x)= 1 in the same way
as in the proof of Lemma 6.13. Furthermore, noting (6.19), we have

lim
n→∞

Padmit(n) = lim
n→∞

∫∞

0
v(x | n)G(x)dx = lim

n→∞

∫∞

0
Pr(Vn ≤ x)dG(x)

=
∫∞

0

(
lim

n→∞
Pr(Vn ≤ x)

)
dG(x)= 0,

which contradicts (6.20), so that we conclude a = 0.

Corollary 6.1. In a stable M/G/1+G queue, there exists a unique natural number
n∗ such that

ρPadmit(n) ≥ 1, n = 1,2, . . . ,n∗−1,
ρPadmit(n) < 1, n = n∗,n∗+1, . . . .

Therefore {cn}n=1,2,... is non-increasing if ρPadmit(1) = ρE[G(H̃1)] ≤ 1, and otherwise
it is unimodal, taking its maximum value at n = n∗.

Proof. Corollary 6.1 immediately follows from (5.2), (5.33), and Theorem 6.2.

Remark 6.7. As noted in Remark 5.3, Padmit(n) is independent of the arrival rate
λ. Therefore even when the stability condition (5.2) is not fulfilled, we can define
Padmit(n) (n = 1,2, . . .) and cn (n = 1,2, . . .) by (5.34) and (5.12), respectively. It is easy
to see from (5.33) and Theorem 6.2 that

∑∞
n=1 cn in (5.11) converges if and only if

(5.2) holds.

6.4 Analysis of loss probability
We now consider the stationary loss probability Ploss in the M/G/1+G queue. Re-
call that Ploss is given in terms of π0 by (6.1), and therefore Ploss is determined by
{cn}n=1,2,... in (5.12).

Theorem 6.3. In the stationary M/G/1+G queue, Ploss is bounded by
(
ρ−1
ρ

)+
< Ploss ≤

ρ

1+ρ
,

where (x)+ =max(0, x).

Proof. The lower bound is obvious because Little’s law implies λ(1−Ploss)E[H]< 1.
On the other hand, from Theorem 5.1 (i), we have

π0 =
(

1+ρ+
∞∑

n=2
cn

)−1

≤ 1
1+ρ

, (6.21)

because cn ≥ 0. The upper bound is obtained from (6.1) and (6.21).
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Remark 6.8. One may think Theorem 6.3 is trivial. However, both upper and lower
bounds are fairly strict in a sense that there exists a non-trivial M/G/1+G queue
whose loss probability can be approximated well by either bound as we will see in
Section 7.3. Note also that the upper bound is identical to the loss probability in the
ordinary M/G/1/1 queue.

Theorem 6.4. Consider two stationary M/G/1+G queues. Let G〈k〉 and H̃〈k〉 (k =
1,2) denote generic random variables for impatience times and equilibrium service
times, respectively, in the k-th queue. Also, let λ〈k〉 and P〈k〉

loss (k = 1,2) denote the
arrival rate and the loss probability, respectively, in the k-th queue.

(i) Suppose the two queues have the same equilibrium service time distribution
H̃(x) and the same impatience time distribution G(x). We then have

λ〈1〉 ≤λ〈2〉 ⇒ P〈1〉
loss ≤ P〈2〉

loss.

(ii) Suppose the two queues have the same traffic intensity ρ and the same impa-
tience time distribution G(x). We then have

H̃〈1〉 ≤st H̃〈2〉 ⇒ P〈1〉
loss ≤ P〈2〉

loss. (6.22)

(iii) Suppose the two queues have the same arrival rate λ and the same service time
distribution H(x). We then have

G〈1〉 ≤st G〈2〉 ⇒ P〈1〉
loss ≥ P〈2〉

loss.

(iv) Suppose the two queues have the same arrival rate λ, the same service time
distribution H(x), and the same finite mean impatience time E[G] < ∞. We
then have

G〈1〉 ≤ew G〈2〉 ⇒ P〈1〉
loss ≤ P〈2〉

loss.

Proof. Let c〈k〉n (k = 1,2, n = 1,2, . . .) denote cn in the k-th queue. Also let ρk (k = 1,2)
denote the traffic intensity in the k-th queue. We first consider (i). It follows from
(6.1) and Theorem 5.1 (i) that

P〈2〉
loss−P〈1〉

loss = 1
ρ1

·

∞∑

n=1
ρn

1 dn

1+
∞∑

n=1
ρn

1 dn

− 1
ρ2

·

∞∑

n=1
ρn

2 dn

1+
∞∑

n=1
ρn

2 dn

= ρ2 −ρ1

ρ1ρ2

(

1+
∞∑

n=1
ρn

1 dn

)(

1+
∞∑

n=1
ρn

2 dn

)
∞∑

m=1

∞∑

n=1
(dmdn −dm+n)ρm

1 ρn
2 ,
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(6.23)

where

d1 = 1, dn =E

[
n−1∏

i=1
G(

i∑

j=1
H̃ j)

]

, n = 2,3, . . . .

Note here that we use the following identity in the second equality of (6.23).

ρ2
∞∑

n=1
ρn

1 dn −ρ1
∞∑

n=1
ρn

2 dn =−(ρ2−ρ1)
∞∑

m=1

∞∑

n=1
dm+nρ

m
1 ρn

2 .

Therefore it suffices to prove dmdn−dm+n ≥ 0 (m,n = 1,2, . . .). From (5.34), we have
Padmit(n)= dn+1/dn (n = 1,2, . . .). It then follows from Theorem 6.2 (i) that

dm+n−1

dm+n−2
≤ dm+n−2

dm+n−3
≤ dm+n−3

dm+n−4
≤ · · ·≤ d4

d3
≤ d3

d2
≤ d2

d1
.

Because dn > 0 (n = 1,2, . . .), we have for 1≤ m ≤ n,

d1dm+n−1 ≤ d2dm+n−2 ≤ d3dm+n−3 ≤ · · ·≤ dmdn.

Furthermore, noting that {dn}n=1,2,... is a non-increasing sequence, we have

dm+n ≤ dm+n−1 = d1dm+n−1.

We thus have dmdn −dm+n ≥ 0 (m,n = 1,2,3, . . .), which proves (i).
It is easy to see from (6.1) and Theorem 5.1 (i) that when the two queues have

the same traffic intensity,

c〈1〉n ≤ (≥) c〈2〉n for all n = 1,2, . . . ⇒ P〈1〉
loss ≥ (≤) P〈2〉

loss. (6.24)

Keeping this in mind, we next consider (ii). By assumption, the two queues have
the same traffic intensity and therefore c〈1〉1 = c〈2〉1 . Let G

〈k〉
(x) = Pr(G〈k〉 > x) (k =

1,2). If G
〈1〉

(x) ≤ G
〈2〉

(x) for all x > 0, G
〈1〉

(
∑i

j=1 H̃ j) ≤ G
〈2〉

(
∑i

j=1 H̃ j) (i = 1,2, . . .) on
every sample path of {H̃n}n=1,2,.... It then follows from (5.12) that c〈1〉n ≤ c〈2〉n for all
n = 1,2, . . ., which proves (ii).

In the case of (iii), we can define {H̃〈1〉
n }n=1,2,... and {H̃〈2〉

n }n=1,2,... on the same prob-
ability space, and therefore we assume Pr(H̃〈1〉

n ≤ H̃〈2〉
n )= 1 (n = 1,2, . . .) without loss

of generality (see Lemma 6.1 (ii)). Because G(x) is non-increasing, G(
∑i

j=1 H̃〈1〉
j )

≥ G(
∑i

j=1 H̃〈2〉
j ) (i = 1,2, . . .) on every sample path of {(H̃〈1〉

n , H̃〈2〉
n )}n=1,2,.... It then fol-

lows from (5.12) that c〈1〉n ≥ c〈2〉n for all n = 1,2, . . ., which proves (iii).
Finally we consider (iv). To prove (iv), we need the following lemma, whose proof

is provided in Appendix 6.A.
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Lemma 6.14. In the M/G/1+G queue where the impatience time distribution has
finite mean E[G]<∞, cn (n = 1,2, . . .) is given by c1 = ρ and for n = 2,3, . . .,

cn = ρ(λE[G])n−1

(n−1)!
·E

[
n−1∏

i=1
H(G̃i:n−1 − G̃i−1:n−1)

]

, (6.25)

where G̃0:n = 0 (n = 1,2, . . .), and G̃i:n denotes the i-th order statistic of i.i.d. ran-
dom variables G̃1,G̃2, . . . ,G̃n distributed according to the equilibrium distribution
of impatience times.

Note that the assumption E[G]<∞ is necessary for the existence of the equilib-
rium distribution of impatience times. Let G̃〈k〉 (k = 1,2) denote a generic ran-
dom variable for equilibrium impatience times in the k-th queue. Noting that
−∏n

i=1 H(xi) (x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0) is non-decreasing in each argument, it follows
from (6.2) and Lemmas 6.9 and 6.14 that

G̃〈1〉 ≤disp G̃〈2〉 ⇒ c〈1〉n ≥ c〈2〉n .

On the other hand, we have from Lemma 6.10,

G̃〈1〉 ≤disp G̃〈2〉 ⇔ G〈1〉 ≤ew G〈2〉.

We thus obtain
G〈1〉 ≤ew G〈2〉 ⇒ c〈1〉n ≥ c〈2〉n .

(iv) now follows from (6.24).

Remark 6.9. As stated in [VVB06], if service times are exponentially distributed
(M/M/1+G queue), we can show that G〈1〉 ≤cx G〈2〉 ⇒ P〈1〉

loss ≤ P〈2〉
loss. Theorem 6.4 (iv)

holds for general service times, while the condition G〈1〉 ≤ew G〈2〉 is stronger than
G〈1〉 ≤cx G〈2〉.

Let H〈k〉 (k = 1,2) denote a generic random variable for service times in the k-th
queue of Theorem 6.4. If E[H〈1〉]=E[H〈2〉] in Theorem 6.4 (ii), (6.22) can be replaced
by (see (6.7))

H〈1〉 ≤cx H〈2〉 ⇒ P〈1〉
loss ≤ P〈2〉

loss.

The following corollary immediately follows from this result and Lemma 6.5.

Corollary 6.2. Consider a stationary M/G/1+G queue with mean service time
E[H]. The loss probability Ploss in this M/G/1+G queue is bounded below by

Ploss ≥ P (M/D/1+G)
loss ,

where P (M/D/1+G)
loss denotes the loss probability in the stationary M/D/1+G queue with

the same arrival rate λ, constant service times equal to E[H], and the same impa-
tience time distribution G(x).
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Corollary 6.2 shows that the stationary M/D/1+G queue has the minimum loss
probability among all stationary M/G/1+G queues with the same arrival rate, the
same mean service time, and the same impatience time distribution. Similarly,
using Theorem 6.1 and Theorem 6.4 (iv), we can readily verify that the M/G/1+D
queue is the minimum-loss model with respect to impatience times.

Corollary 6.3. Consider a stationary M/G/1+G queue with finite mean impatience
time E[G]<∞. The loss probability Ploss in this M/G/1+G queue is bounded below
by

Ploss ≥ P (M/G/1+D)
loss ,

where P (M/G/1+D)
loss denotes the loss probability in the stationary M/G/1+D queue with

the same arrival rate λ, the same service time distribution H(x), and constant impa-
tience times equal to E[G].

As a consequence of these results, it is shown that Ploss in the M/D/1+D queue
is smallest among all M/G/1+G queues with the same and finite arrival rate, mean
service time, and mean impatience time.

Theorem 6.5. Consider a stationary M/G/1+G queue with arrival rate λ < ∞,
mean service time E[H]<∞, and mean impatience time E[G]<∞. We then have

Ploss ≥ P (M/D/1+D)
loss ,

where P (M/D/1+D)
loss denotes the loss probability in the stationary M/D/1+D queue with

the same arrival rate λ, constant service times equal to E[H], and constant impa-
tience times equal to E[G].

Proof. Owing to Corollary 6.2, the loss probability Ploss in this M/G/1+G queue is
bounded below by Ploss in the M/D/1+G queue with the same mean service time.

Ploss ≥ P (M/D/1+G)
loss .

Furthermore, applying Corollary 6.3 to this M/D/1+G queue yields

Ploss ≥ P (M/D/1+G)
loss ≥ P (M/D/1+D)

loss .

6.5 Conclusion
We considered the loss probability Ploss in the stationary M/G/1+G queue. We in-
troduced some known results on stochastic orders in Section 6.2.1, and derived new
results on excess wealth and dispersive orders in Section 6.2.2. In Section 6.3, we
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explored properties of the stationary workload and related quantities using stochas-
tic orders and the results in Chapter 5. In Section 6.4, we analyzed the stationary
loss probability Ploss in the M/G/1+G queue and obtained bounds in Theorem 6.3
and stochastic ordering in Theorem 6.4. Furthermore, we proved that the M/D/1+D
queue achieves the minimum loss probability among all M/G/1+G queues with the
same and finite arrival rate, mean service time, and mean impatience time.

Appendix

6.A Proof of Lemma 6.14
Let g̃(x) (x ≥ 0) denote the p.d.f. of the equilibrium distribution of impatience times.
For n = 2,3, . . ., it follows that

E

[
n−1∏

i=1
G(

i∑

j=1
H̃ j)

]

=
∫∞

x1=0

∫∞

x2=0
· · ·

∫∞

xn−1=0

{
n−1∏

i=1
G(

i∑

j=1
xj)

}{
n−1∏

m=1
h̃(xm)

}

dxn−1dxn−2 · · ·dx1

= (E[G])n−1

(E[H])n−1(n−1)!

∫∞

w1=0

∫∞

w2=w1
· · ·

∫∞

wn−1=wn−2
(n−1)!

{
n−1∏

i=1
g̃(wi)

}

·H(w1−0)

{
n−1∏

m=2
H(wm −wm−1)

}

dwn−1dwn−2 · · ·dw1.

Because (n−1)!
∏n−1

i=1 g̃(wi) represents the joint p.d.f. of (G̃1:n−1,G̃2:n−1, . . . ,G̃n−1:n−1),
we obtain

E

[
n−1∏

i=1
G(

i∑

j=1
H̃ j)

]

= (E[G])n−1

(E[H])n−1(n−1)!
·E

[
n−1∏

i=1
H(G̃i:n−1 − G̃i−1:n−1)

]

, n = 2,3, . . . .

(6.25) now follows from (5.12) and the above equation.





7 Computation of the Loss Probability
in the M/G/1+PH Queue

7.1 Introduction
In this chapter we develop a computational algorithm for the loss probability Ploss
in the stationary M/G/1+PH queue, which is a special case of the M/G/1+G queue
considered in Chapters 5 and 6. We assume that impatience times of customers
are i.i.d. according to a phase-type distribution with representation (α,T), i.e., its
complementary PDF G(x) is given by

G(x)=αexp[Tx]e, x ≥ 0, (7.1)

where α denotes a probability vector, T denotes a defective infinitesimal generator,
and e denotes a column vector whose elements are all equal to one. Note that
G(0)= 0 since αe = 1. To avoid trivialities, T+(−T)eα is assumed to be irreducible.
Because λ<∞ and limx→∞G(x)= 1, the assumption E[H]<∞ ensures the stability
of the system [BBH84].

Recall that Ploss is theoretically determined by (5.11), (5.12), and (6.1). How-
ever, it is not straightforward to compute Ploss in the M/G/1+PH queue based on it,
because the assumption (7.1) of complementary phase-type PDF does not simplify
cn (n = 1,2, . . .) substantially. For example, for n = 4,

c4 = ρ4E
[
G(H̃1)G(H̃1+ H̃2)G(H̃1 + H̃2+ H̃3)

]

= ρ4E
[
αexp[TH̃1]eαexp[T(H̃1 + H̃2)]eαexp[T(H̃1+ H̃2 + H̃3]e

]

= ρ4E
[
αexp[TH̃1]eαexp[TH̃1]exp[TH̃2]eα

· exp[TH̃1]exp[TH̃2]exp[TH̃3]e
]
. (7.2)

Therefore the independence of H̃1, H̃2, . . . cannot be utilized in this form, except the
case that exp[Tx] and eα commute, which is a necessary and sufficient condition
for the impatience time distribution being exponential.

135
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To utilize the independence of H̃1, H̃2, . . ., we may rewrite (7.2) using Kronecker
product, e.g., for n = 4,

c4 = ρ4(α⊗α⊗α)E
[
exp[T ⊗T ⊗T · H̃1]

]
E

[
exp[I ⊗T ⊗T · H̃2]

]

·E
[
exp[I ⊗ I ⊗T · H̃3]

]
(e⊗ e⊗ e),

where ⊗ stands for Kronecker product and I denotes a unit matrix. It is also hard
to compute cn for a large n in the above formulation because the size of matrix
exponents increases exponentially with n.

To the best of our knowledge, the M/G/1+PH queue has been studied only in
[BB13], which considers a generalized version of the M/G/1+G queue (i.e., the M/G/1
queue with Kovalenko’s impatience mechanism [Kov61]). [BB13] derives the LSTs
of the workload and the busy period for this generalized model, and as a special
case, explicit formulas for those in the M/G/1+PH queue are obtained. The approach
taken in [BB13] is to rewrite the phase-type complementary distribution (7.1) to be
the following form.

G(x)=
M∑

m=1
pm(x)exp[−γmx], x ≥ 0. (7.3)

In [BB13], a specialized formula for π0 in the M/G/1+PH queue is derived, which
is essentially the same as the result obtained by substituting (7.3) into (5.11) and
(5.12). Unfortunately, this formula is also not suitable for numerical computation
because if we followed it, we would have to deal with the exponentially growing
number of terms. We take a look at this problem using an example of hyper-
exponential impatience times.

Example 7.1. Consider an M/G/1+H2 queue, where impatience times follow a
hyper-exponential distribution of order two.

G(x)= p1 exp[−γ1x]+ p2 exp[−γ2x], x ≥ 0, (7.4)

where p1 + p2 = 1. Obviously, (7.4) is a special case of (7.3). Let h̃∗(s) (Re(s) > 0)
denote the LST of the equilibrium distribution of service times. It then follows from
(5.12) that

c2 = ρ2E
[
p1 exp[−γ1H̃1]+ p2 exp[−γ2H̃1]

]

= ρ2 {
p1h̃∗(γ1)+ p2h̃∗(γ2)

}
,

c3 = ρ3E
[{

p1 exp[−γ1H̃1]+ p2 exp[−γ2H̃1]
}

·
{
p1 exp

[
−γ1(H̃1 + H̃2)

]
+ p2 exp

[
−γ2(H̃1 + H̃2)

]}]

= ρ3 {
p2

1h̃∗(2γ1)h̃∗(γ1)+ p1 p2h̃∗(γ1+γ2)h̃∗(γ2)
+ p1 p2h̃∗(γ1 +γ2)h̃∗(γ1)+ p2

2h̃∗(2γ2)h̃∗(γ2)
}
,

and we can readily verify that cn (n = 1,2, . . .) is given by the sum of 2n−1 different
terms. We thus have to compute the sum of at least 2n−1 terms in computing cn. On
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the other hand, in computing π0 by (5.11), we have to compute cn (n = 2,3, . . . , Ntrunc)
for a sufficiently large Ntrunc. This shows that the formulation based on (7.3) is not
suitable for numerical computation.

Remark 7.1. The LST of the workload in the M/G/1+PH queue derived in [BB13]
also consists of the exponentially growing number of terms, and therefore it is diffi-
cult to use it for numerical inversion.

To overcome this difficulty, we take another approach to compute Ploss, based
on the uniformization technique [Tij94, Page 154] and the probabilistic structure of
the workload in the M/G/1+G queue shown in Chapters 5 and 6. Note that the uni-
formization yields a discretized workload Nζ(V ) (ζ> 0), whose probability function
is given by

Pr(Nζ(V )= n)=
∫∞

0+

exp[−ζx](ζx)n

n!
·v(x)dx, n = 0,1, . . . ,

where ζ is a parameter. In the standard M/G/1 queue, Nζ(V ) is given by the sta-
tionary distribution of a Markov chain of M/G/1-type, but it is not the case in the
M/G/1+PH queue owing to the level-dependent nature of the workload process.
In this chapter, using the results in Chapters 5 and 6, we show that Nζ(V ) in
the M/G/1+PH queue has a special structure that can be utilized in computing
Ploss. With this approach, we develop a computational algorithm for Ploss in the
M/G/1+PH queue, which also outputs an upper bound of its numerical error. As
we will see, our algorithm is readily applicable to the M/D/1+PH, M/PH/1+PH, and
M/Pareto/1+PH queues.

The rest of this chapter is organized as follows. In Section 7.2, we develop a
computational algorithm for Ploss. Next, we provide some numerical examples in
Section 7.3. Finally, we conclude this chapter in Section 7.4.

7.2 Development of computational algorithm
In this section, we develop a computational algorithm for Ploss under the assump-
tion that the impatience time distribution is of phase-type, i.e., its complementary
PDF G(x) (x ≥ 0) is given by (7.1). In view of (5.33), {Padmit(n)}n=1,2,... in (5.31) is a
key quantity in computing Ploss.

7.2.1 Uniformization
In order to obtain {Padmit(n)}n=1,2,... numerically, we apply the uniformization tech-
nique [Tij94, Page 154] to rewrite (7.1), i.e.,

G(x) = αexp[−θx]exp
[
θx(I +θ−1T)

]
e
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=
∞∑

m=0

exp[−θx](θx)m

m!
· gm, x ≥ 0, (7.5)

where

θ = max
i

∣∣[T]i,i
∣∣,

gm = α[I +θ−1T]me, m = 0,1, . . . .

Note that {gm}m=0,1,... is a non-increasing sequence,

g0 = 1, (7.6)

and ∞∑

m=0
gm = θα(−T)−1e = θE[G], (7.7)

where E[G] denotes the mean impatience time. Let g⋆ denote an ∞×1 vector whose
m-th (m = 0,1, . . .) element is given by gm.

g⋆ = (g0 g1 g2 · · · )⊤,

where ⊤ stands for the transpose operator.

Remark 7.2. (7.5) implies that the phase-type distribution with representation (α,
T) is equivalent to the Coxian distribution described in Figure 7.1, which has an
infinite number of stages in general 1, the identical mean sojourn time θ−1 at stages,
and heterogeneous absorption probabilities {qn}n=0,1,... satisfying

gn =
n−1∏

i=0
(1− qi), n = 1,2, . . . .

As we will see, the structure of stages in series enables us to develop a numerically
suitable formula for {Padmit(n)}n=1,2,....

For a non-negative random variable X , let Nζ(X ) (ζ > 0) denote the number of
Poisson arrivals with rate ζ in an interval of length X . Associated with Vn, V̂n, and
H̃n (n = 1,2, . . .) in (5.38) and (5.39), we define v⋆(ζ | n) (ζ > 0, n = 1,2, . . .), v̂⋆(ζ | n)
(ζ> 0, n = 1,2, . . .), and h̃⋆(ζ) (ζ> 0) as 1×∞ vectors given by

v⋆(ζ | n) = (v[0](ζ | n) v[1](ζ | n) · · · ),
v̂⋆(ζ | n) = (v̂[0](ζ | n) v̂[1](ζ | n) · · · ),

h̃⋆(ζ) = (h̃[0](ζ) h̃[1](ζ) · · · ),
1The number of stages is finite if diagonal elements of T are identical, e.g., an Erlang distribu-

tion.
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Figure 7.1: Infinite-stage Coxian distribution equivalent to the impatience time
distribution.

respectively, where for m = 0,1, . . .,

v[m](ζ | n) = Pr(Nζ(Vn)= m)

=
∫∞

0+

exp[−ζx](ζx)m

m!
·v(x | n)dx,

v̂[m](ζ | n) = Pr(Nζ(V̂n)= m)

= 1
Padmit(n)

∫∞

0+

exp[−ζx](ζx)m

m!
·v(x | n)G(x)dx, (7.8)

h̃[m](ζ) = Pr(Nζ(H̃n)= m)

=
∫∞

0+

exp[−ζx](ζx)m

m!
· h̃(x)dx.

Using (5.38) and (5.39), we can readily verify the following relations:

Nζ(V1) = Nζ(H̃1), (7.9)
Nζ(Vn+1) = Nζ(V̂n)+Nζ(H̃n+1), n = 1,2, . . . . (7.10)

7.2.2 Main theorem for {Padmit(n)}n=1,2,...

We define H̃n (n = 1,2, . . .) and Bn (n = 1,2, . . .) as ∞×∞ stochastic and ∞×∞
substochastic matrices given by

H̃n =

⎛

⎜⎜⎜⎝

h̃[0](nθ) h̃[1](nθ) h̃[2](nθ) · · ·
0 h̃[0](nθ) h̃[1](nθ) · · ·
0 0 h̃[0](nθ) · · ·
...

...
... . . .

⎞

⎟⎟⎟⎠ , (7.11)

Bn =

⎛

⎜⎜⎜⎝

1 0 0 · · ·
bn(1,0)g1 bn(1,1) 0 · · ·
bn(2,0)g2 bn(2,1)g1 bn(2,2) · · ·

...
...

... . . .

⎞

⎟⎟⎟⎠ , (7.12)
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respectively, where bn(k,m) (n,k = 1,2, . . ., m = 0,1, . . . ,k) denotes the probability
function of a binomial distribution given by

bn(k,m)=
(

k
m

)[ n
n+1

]m
[

1
n+1

]k−m
, m = 0,1, . . . ,k. (7.13)

{Padmit(n)}n=1,2,... in the M/G/1+PH queue is then given by the following theorem,
which is the basis of our numerical algorithm.

Theorem 7.1. Let {an}n=0,1,... denote a sequence of ∞×1 vectors given recursively by

a0 = g⋆, (7.14)
an = BnH̃nan−1, n = 1,2, . . . . (7.15)

We then have [a0]0 = 1 and

[an]0 =
n∏

i=1
Padmit(i), n = 1,2, . . . . (7.16)

Padmit(n) is thus given by the ratio of the first elements of an and an−1.

Padmit(n)= [an]0

[an−1]0
, n = 1,2, . . . . (7.17)

Remark 7.3. It follows from (5.33) and (7.16) that

cn = ρn[an−1]0, n = 1,2, . . . .

Proof. It follows from (5.32) and (7.5) that

Padmit(n) =
∞∑

m=0

∫∞

0+

exp[−θx](θx)m

m!
·v(x | n)dx · gm

= v⋆(θ | n)g⋆, n = 1,2, . . . . (7.18)

To proceed further, we need the following lemma whose proof is provided in Ap-
pendix 7.A.

Lemma 7.1. The probability function of Nζ(V̂n) (ζ> 0, n = 1,2, . . .) is given by

Pr(Nζ(V̂n)= m) = 1
Padmit(n)

∞∑

k=m
Pr(Nζ+θ(Vn)= k)bζ,θ(k,m) · gk−m,

m = 0,1, . . . , (7.19)

where bζ1,ζ2(k,m) (ζ1,ζ2 > 0, k = 1,2, . . ., m = 0,1, . . . ,k) denotes the probability func-
tion of a binomial distribution given by

bζ1,ζ2(k,m)=
(

k
m

)[
ζ1

ζ1 +ζ2

]m [
ζ2

ζ1 +ζ2

]k−m
, m = 0,1, . . . ,k. (7.20)
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With straightforward calculations using (7.9), (7.10), (7.11), (7.12), and (7.19),
we obtain

v⋆( jθ | 1) = h̃⋆( jθ), j = 1,2, . . . , (7.21)
v⋆( jθ | n) = v̂⋆( jθ | n−1)H̃ j, n = 2,3, . . . , j = 1,2, . . . , (7.22)

and for n, j = 1,2, . . .,

v̂⋆( jθ | n)= 1
Padmit(n)

·v⋆(( j+1)θ | n)B j. (7.23)

Note here that from (7.13) and (7.20), we have

bn(k,m)= b(n−1)θ,θ(k,m), n = 1,2, . . . , k = 1,2, . . . , m = 0,1, . . . ,k.

It then follows from (7.21), (7.22), and (7.23) that v⋆(θ | n) (n = 2,3, . . .) is given by

v⋆(θ | n)= h̃⋆(nθ) ·Bn−1H̃n−1 ·Bn−2H̃n−2 · · · · ·B1H̃1
n−1∏

i=1
Padmit(i)

. (7.24)

Using (7.18) and (7.24), we have

n∏

i=1
Padmit(i) = h̃⋆(nθ) ·Bn−1H̃n−1 ·Bn−2H̃n−2 · · · · ·B1H̃1 · g⋆

= h̃⋆(nθ)an−1, n = 1,2, . . . . (7.25)

On the other hand, it is readily seen from (7.11) and (7.12) that the first row of
BnH̃n (n = 1,2, . . .) is equal to h̃⋆(nθ). Therefore, we have from (7.15) and (7.25),

[an]0 = [BnH̃nan−1]0 = h̃(nθ)an−1 =
n∏

i=1
Padmit(i), n = 1,2, . . . .

We then obtain Theorem 7.1 noting that (7.6) and (7.14) imply

[a0]0 = [g⋆]0 = 1.

7.2.3 Computational algorithm for Ploss

Based on Theorem 7.1, we develop a computational algorithm for an (n = 0,1, . . .),
from which Ploss is computed. Because an (n = 0,1, . . .) in (7.14) and (7.15) has
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infinitely many elements, we have to truncate it, i.e., (i) we represent an in the
form

an =
(
afinite

n

aerror
n

)

,

where afinite
n denotes a finite subvector of an, and (ii) compute an approximation

acomp
n to afinite

n assuming aerror
n ≃ 0. We thus approximate an by an ∞×1 vector

acomp
n given by

acomp
n =

(
acomp

n

0

)

. (7.26)

Throughout this chapter, finite-size approximation vectors (resp. matrices) that
we actually compute are denoted with superscript “comp,” while infinite-size vec-
tors (resp. matrices) implicitly represented by the finite-size approximation vectors
(resp. matrices) are denoted with superscript “comp.”

To ensure that an is well approximated by the truncated vector of the form
(7.26), aerror

n should be negligible when the size of afinite
n is sufficiently large. The

following lemma shows that it is indeed the case, whose proof is given in Appendix
7.B.

Lemma 7.2. For each n = 0,1, . . ., the sequence {[an]i}i=0,1,... of the elements of an
satisfies

[an]i ≥ [an]i+1, i = 0,1, . . . , (7.27)

and
lim
i→∞

[an]i = 0. (7.28)

In what follows, we show a specific procedure for computing acomp
n . For a certain

m∗
g ≥ 1, we first truncate the initial vector a0 = g⋆ at the m∗

g-th element and then
simply compute the recursion (7.15) to obtain an approximation to an (n = 1,2, . . .).
Specifically, we define an ∞×1 vector g⋆comp as

g⋆comp =
(
g⋆comp

0

)
,

where g⋆comp denotes an m∗
g ×1 vector whose elements are given by

[g⋆comp]m = gm =α[I +θ−1T]me, m = 0,1, . . . ,m∗
g −1. (7.29)

We assume that the truncation point m∗
g for g⋆ is determined such that the follow-

ing equation holds for some ϵg > 0.

∞∑

m=0

∣∣∣[g⋆− g⋆comp]m

∣∣∣≤ ϵg, (7.30)
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where from (7.7) and (7.29),

∞∑

m=0

∣∣∣[g⋆− g⋆comp]m

∣∣∣ =
∞∑

m=0
gm −

m∗
g−1∑

m=0
gm

= θα(−T)−1e−
m∗

g−1∑

m=0
[g⋆comp]m. (7.31)

Note that the truncation approximation g⋆comp is carried to Bn (n = 1,2, . . .) in
(7.12), i.e., Bn is approximated by Bcomp

n as follows.

Bcomp
n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · ·
bn(1,0)g1 bn(1,1) 0 · · ·
bn(2,0)g2 bn(2,1)g1 bn(2,2) · · ·

...
...

...
bn(m∗

g −1,0)gm∗
g−1 bn(m∗

g −1,1)gm∗
g−2 bn(m∗

g −1,2)gm∗
g−3 · · ·

0 bn(m∗
g,1)gm∗

g−1 bn(m∗
g,2)gm∗

g−2 · · ·
0 0 bn(m∗

g +1,2)gm∗
g−1 · · ·

...
...

... . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

With those, we compute the recursion (7.14) and (7.15) to obtain an approximation
acomp

n to an, i.e.,

acomp
0 = g⋆comp,

acomp
n = Bcomp

n H̃nacomp
n−1 , n = 1,2, . . . . (7.32)

As illustrated in Figure 7.2, using the structures of H̃n and Bcomp
n , we can show

by induction that acomp
n (n = 1,2, . . .) takes the form as in (7.26) and that the size

of acomp
n is equal to (n+1)(m∗

g −1)+1. Furthermore, it is easy to verify that acomp
n

(n = 0,1, . . .) is computed recursively by

acomp
0 = g⋆comp,

acomp
n = Bcomp

n H̃comp
n acomp

n−1 , n = 1,2, . . . , (7.33)

where H̃comp
n (n = 1,2, . . .) denotes an {n(m∗

g −1)+1}× {n(m∗
g −1)+1} matrix given by

H̃comp
n =

⎛

⎜⎜⎜⎜⎜⎜⎝

h̃[0](nθ) h̃[1](nθ) h̃[2](nθ) · · · h̃[n(m∗
g−1)](nθ)

0 h̃[0](nθ) h̃[1](nθ) · · · h̃[n(m∗
g−1)−1](nθ)

0 0 h̃[0](nθ) · · · h̃[n(m∗
g−1)−2](nθ)

...
...

... . . . ...
0 0 0 · · · h̃[0](nθ)

⎞

⎟⎟⎟⎟⎟⎟⎠
,
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B1

=
=
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=
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(= g        )★comp

submatrix 
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Figure 7.2: Illustration of the recursion (7.32) in the case of m∗
g = 3, where âcomp

n =
acomp

n H̃n+1.

and Bcomp
n (n = 1,2, . . .) denotes an {(n+1)(m∗

g −1)+1}× {n(m∗
g −1)+1} northwest-

corner submatrix of Bcomp
n , i.e.,

Bcomp
n =

(
Bcomp

n Brest1
n

O Brest2
n

)

. (7.34)

Note that Brest1
n and Brest2

n in (7.34) are matrices of {(n+ 1)(m∗
g − 1)+ 1}×∞ and

∞×∞, respectively (see Figure 7.3).
In this way, acomp

n can be computed in a finite number of operations for any n.
As mentioned above, the number of non-zero elements in acomp

n (the size of acomp
n )

is equal to (n+1)(m∗
g −1)+1 and it increases only linearly with n.

Finally, with (7.17), the approximation Pcomp
admit(n) to Padmit(n) is given by

Pcomp
admit(n)= [acomp

n ]0

[acomp
n−1 ]0

, n = 1,2, . . . . (7.35)
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B1

non-zero

zero

approximated

to be zero

=

O

B1
comp

B1
rest1

B1
rest2

B1
error1

B1
error2

B1
error3

O

= ＋

Figure 7.3: Partitioning of B1 for m∗
g = 3. It is readily verified that B2,B3, . . . can be

partitioned in a similar way.

Remark 7.4. In view of Remark 7.3, the approximation ccomp
n (n = 2,3, . . .) to cn is

given by
ccomp

n = ρn[acomp
n−1 ]0, (7.36)

which is numerically feasible if ρ ≤ 1.

Figure 7.4 summarizes the numerical algorithm for computing Ploss in the M/G/
1+PH queue. Note that our algorithm also outputs the error bound ∆Ploss for Pcomp

loss
using ψc(n) in Step (c), which will be discussed in the next subsection. In Figure
7.4, we adopt a simple algorithm that determines the truncation point Ntrunc for
the infinite sum of cn; for given ϵa > 0, we stop computation if either ccomp

n < ϵa
or [acomp

n−1 ]0 < ϵa holds, and output Pcomp
loss and its error bound ∆Ploss. Note that in

Step (b-1), we have to compute h̃[i](nθ) (i = 0,1, . . . ,n(m∗
g −1)). In appendix 7.D, we

provide methods of computing h̃[i](nθ) for three types of service time distributions:
(i) constant, (ii) phase-type distribution, and (iii) Pareto distribution.

7.2.4 Error bounds for Ploss

We consider error bounds for Pcomp
loss computed by the algorithm in Figure 7.4. We

define aerror
n (n = 0,1, . . .) as an ∞×1 vector given by

aerror
n = an −acomp

n .
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Input: λ, H(x) (x ≥ 0), (α,T), ϵg, and ϵa.

Output: Pcomp
loss , Ntrunc, and ∆Ploss.

(a) Compute g⋆comp by (7.29), and determine m∗
g based on (7.30) and (7.31).

(b) Let acomp
0 := g⋆comp, ccomp

1 := ρ, and n := 1.

(b-1) Compute acomp
n by (7.33).

(b-2) If ρ ≤ 1, compute ccomp
n+1 by (7.36), and otherwise by ccomp

n+1 := ccomp
n ·

ρPcomp
admit(n), where Pcomp

admit(n) is given by (7.35).

(b-3) If min(ccomp
n+1 , [acomp

n ]0)< ϵa, let Ntrunc := n+1 and go to (c). Otherwise
n := n+1 and go to (b-1).

(c) Compute ψc(n) (n = 1,2, . . . , Ntrunc) by (7.39).

(d) Compute Pcomp
loss and ∆Ploss by (7.40) and (7.47), respectively.

Figure 7.4: Algorithm for computing the loss probability in the M/G/1+PH queue.

Note that
aerror

n ≥ 0. (7.37)

We measure aerror
n by the L∞ norm, where the L∞ norm of an ∞×1 vector x is

defined as
∥x∥∞ = sup

m∈{0,1,...}

∣∣[x]m
∣∣.

Measuring the error by the L∞ norm is reasonable because we eventually use only
the first element [an]0 (n = 0,1, . . .) of an to compute cn (n = 1,2, . . .) with (5.33) and
(7.17), or with (7.36) alternatively. Note that [aerror

0 ]0 = 0 and for n = 1,2, . . .,
∣∣[aerror

n ]0
∣∣≤ ∥aerror

n ∥∞. (7.38)

Lemma 7.3. The truncation error ∥aerror
n ∥∞ (n = 0,1, . . .) is bounded above by

∥aerror
0 ∥∞ = gm∗

g
≤ ϵg,

∥aerror
n ∥∞ ≤ ∥aerror

n−1 ∥∞+ϵg[acomp
n−1 ]0, n = 1,2, . . . .

The proof of Lemma 7.3 is provided in Appendix 7.C. Lemma 7.3 implies that
the computational error of Pcomp

admit(n) (n = 1,2, . . .) caused by the truncation of g⋆ can
be small arbitrarily, by choosing sufficiently small ϵg. In what follows, we establish
error bounds for Pcomp

loss using Lemma 7.3.
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We define ψc(n) (n = 1,2, . . .) as

ψc(1)= ϵg+ gm∗
g
, ψc(n)=ψc(n−1)+ϵg[acomp

n−1 ]0, n = 2,3, . . . . (7.39)

It is readily seen from (7.37), (7.38), and Lemma 7.3 that ψc(n) (n = 1,2, . . .) satisfies

0≤ [an]0 − [acomp
n ]0 ≤ψc(n), n = 1,2, . . . .

Let πcomp
0 and Pcomp

loss denote truncation approximations to π0 and Ploss, respectively,
which are given by

π
comp
0 =

(

1+ρ+
Ntrunc∑

n=2
ccomp

n

)−1

, Pcomp
loss =

ρ− (1−π
comp
0 )

ρ
, (7.40)

respectively, where Ntrunc denotes the truncation point for the infinite sum of cn.
Noting that ccomp

n is given by (7.36), we can easily verify that πcomp
0 ≥π0, and there-

fore
Pcomp

loss ≥ Ploss, (7.41)

i.e., Pcomp
loss gives an upper bound of Ploss.

Next we obtain a lower bound of Ploss from {[acomp
n ]0}n=1,2,...,Ntrunc , which, along

with the upper bound (7.41), yields the error bound of Ploss. To this end, we first
construct an upper bound of cn (n = 1,2, . . .) using {[acomp

n ]0}n=1,2,...,Ntrunc . We define
Pupper

admit(n) (n = 0,1, . . .) as Pupper
admit(0)= 1 and

Pupper
admit(n)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min

{
[acomp

n ]0 +ψ(n)
[acomp

n−1 ]0
, Pupper

admit(n−1)

}

,

n = 1,2, . . . , Ntrunc−1,

Pupper
admit(Ntrunc−1), n = Ntrunc, Ntrunc +1, . . . .

Lemma 7.4. cn (n = 1,2, . . .) is bounded above as follows.

cn ≤ cupper
n , n = 1,2, . . . , (7.42)

where cupper
1 = ρ and for n = 1,2, . . .,

cupper
n = cupper

n−1 ·ρPupper
admit(n−1). (7.43)

Proof. It follows from (7.17), (7.35), and (7.39) that

Padmit(n)= [an]0

[an−1]0
≤ [acomp

n ]0 +ψ(n)
[acomp

n−1 ]0
.

On the other hand, it follows from Theorem 6.2 (i) that for n = 2,3, . . .,

Padmit(n−1)≤ Pupper
admit(n−1) ⇒ Padmit(k)≤ Pupper

admit(n−1) for all k = n,n+1, . . ..

We thus have Padmit(n)≤ Pupper
admit(n) (n = 0,1, . . .). (7.42) now follows from (5.33).
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We define P low
loss as

P low
loss =

ρ− (1−πlow
0 )

ρ
,

where πlow
0 denotes a lower bound of π0, which is given by

πlow
0 =

(

1+ρ+
∞∑

n=2
cupper

n

)−1

(7.44)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
1+ρ+

Ntrunc−2∑

n=2
cupper

n +
cupper

Ntrunc−1

1−ρPupper
admit(Ntrunc −1)

)−1
,

ρPupper
admit(Ntrunc −1)< 1,

0, otherwise.

Theorem 7.2. Ploss is bounded as follows.
(
ρ−1
ρ

)+
≤ P low

loss ≤ Ploss ≤ Pcomp
loss ≤ ρ

1+ρ
, (7.45)

where (x)+ =max(0, x). We thus have

0≤ Pcomp
loss −Ploss ≤∆Ploss, (7.46)

where
∆Ploss = Pcomp

loss −P low
loss. (7.47)

Proof. Because (7.46) immediately follows from (7.45), we consider (7.45). From
Lemma 7.4 and the definition of πlow

0 , we have πlow
0 ≤π0, and therefore P low

loss ≤ Ploss.
Note that Ploss ≤ Pcomp

loss is given in (7.41). Therefore the remaining is to prove the
first and the last inequalities in (7.45).

Because Pupper
admit(n)≤ Pupper

admit(0)= 1 (n = 1,2, . . .), we have from (7.43) and (7.44),

πlow
0 =

(

1+ρ+
∞∑

n=2
ρn

n−1∏

i=1
Pupper

admit(i)

)−1

≥
(

1+ρ+
∞∑

n=2
ρn

)−1

= (1−ρ)+.

We thus have
P low

loss ≥
ρ−1+ (1−ρ)+

ρ
=

(
ρ−1
ρ

)+
.

On the other hand, ccomp
n ≥ 0 (n = 2,3, . . .) implies

π
comp
0 =

(

1+ρ+
Ntrunc∑

n=2
ccomp

n

)−1

≤ 1
1+ρ

,

which completes the proof.



7.2. DEVELOPMENT OF COMPUTATIONAL ALGORITHM 149

Remark 7.5. ((ρ−1)/ρ)+ and ρ/(1+ρ) in (7.45) are identical to the theoretical upper
and lower bounds for Ploss shown in Theorem 6.3.

Remark 7.6. (7.45) implies that ∆Ploss is bounded above by

∆Ploss ≤
ρ

1+ρ
−

(
ρ−1
ρ

)+
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ

1+ρ
, ρ < 1,

1
ρ(1+ρ)

, ρ ≥ 1.

Therefore, ∆Ploss ≤ 1/2 in general, and when ρ takes a very large value, Pcomp
loss com-

puted with an arbitrary sequence {ccomp
n }n=2,3,...,Ntrunc such that 0 ≤ ccomp

n ≤ cn well
approximates Ploss; for example, ∆Ploss < 0.0091 if ρ ≥ 10.

Suppose we set a target accuracy ϵc in advance and try to choose the truncation
point Ntrunc for the infinite sum of cn so that

∆Ploss ≤ ϵc. (7.48)

In this case, there does not necessarily exist Ntrunc satisfying (7.48) when ψc(n)
(n = 1,2, . . .) is not sufficiently small. On the other hand, if ccomp

n ’s are such accurate
that ψc(n)’s are negligible, we have from (5.11), (6.1), and (7.40),

Pcomp
loss −Ploss = 1

ρ
·

Ntrunc∑

n=2
(cn − ccomp

n )+
∞∑

n=Ntrunc+1
cn

(

1+ρ+
Ntrunc∑

n=2
ccomp

n

)(

1+ρ+
∞∑

n=2
cn

)

≃ 1
ρ
·

∞∑

n=Ntrunc+1
ccomp

n

(

1+ρ+
Ntrunc∑

n=2
ccomp

n

)(

1+ρ+
∞∑

n=2
ccomp

n

)

≤ 1
ρ(1+ρ)2

∞∑

n=Ntrunc+1
ccomp

n ,

and therefore, if ρPcomp
admit(Ntrunc −1)< 1, Lemma 7.4 implies

Pcomp
loss −Ploss ≤ 1

ρ(1+ρ)2 ·
ccomp

Ntrunc+1

1−ρPcomp
admit(Ntrunc +1)

≤ 1
(1+ρ)2 ·

ccomp
Ntrunc

Pcomp
admit(Ntrunc −1)

1−ρPcomp
admit(Ntrunc−1)

.
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We can thus use a stopping criteria

ρPcomp
admit(Ntrunc−1)< 1,

Pcomp
admit(Ntrunc −1)

1−ρPcomp
admit(Ntrunc −1)

· ccomp
Ntrunc

≤ (1+ρ)2ϵc, (7.49)

to ensure ∆Ploss ≤ ϵc. Note that there exists Ntrunc satisfying (7.49) for any ϵc > 0
because limn→∞ cn = 0 (see Corollary 6.1).

7.3 Numerical examples
In this section, we present some numerical examples. Let E[G] and Cv[G] denote
the mean and the coefficient of variation of impatience times. For the impatience
time distribution, we employ the following distributions, which are determined only
by the first two moments.

(i) Mixed Erlang distribution (0<Cv[G]< 1, denoted by Erk,k+1):
The p.d.f. g(x) of impatience times is given by

g(x)= pµ · exp[−µx](µx)k−1

(k−1)!
+ (1− p)µ · exp[−µx](µx)k

k!
,

where

k = ⌊1/(Cv[G])2⌋,

p = k+1
1+ (Cv[G])2

⎛

⎝(Cv[G])2 −

√
1−k(Cv[G])2

k+1

⎞

⎠ ,

µ = pk+ (1− p)(k+1)
E[G]

,

and the phase-type representation is given by the following 1×k vector α and
k×k matrix T.

α= (1 0 . . . 0), T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−µ µ 0 · · · 0 0 0
0 −µ µ · · · 0 0 0
0 0 −µ · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · −µ µ 0
0 0 0 · · · 0 −µ (1− p)µ
0 0 0 · · · 0 0 −µ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(ii) Balanced hyper-exponential distribution (Cv[G]> 1, denoted by H2):
The p.d.f. g(x) of impatience times is given by

g(x)= pµ1 exp[−µ1x]+ (1− p)µ2 exp[−µ2x],
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where

p = 1
2

⎛

⎝1+

√
(Cv[G])2−1
(Cv[G])2+1

⎞

⎠ , µ1 =
2p

E[G]
, µ2 =

2(1− p)
E[G]

,

and the phase-type representation is given by

α= (p 1− p), T =
(
−µ1 0

0 −µ2

)
.

For the service time distribution, we consider constant and Pareto distributions,
where the latter is denoted by “Pareto”. In all numerical examples, we choose the
mean service time as a unit time (i.e., E[H]= 1) and we set the truncation criterion
ϵg for g⋆ to be 10−11 and the stopping criterion ϵa to be 10−9.

Remark 7.7. As mentioned in Example 7.1, when the impatience time distribution
is either the hyper-exponential or mixed Erlang distributions, the explicit formula
for cn consists of the exponentially growing number of terms.

Note that g⋆comp = g⋆ in all numerical examples with mixed Erlang impatience
times, because ϵa = 10−9 is small enough and the mixed Erlang distribution is rep-
resented by a finite-stage Coxian distribution. Note also that in all numerical ex-
amples with ρ ≤ 1, the error bound ∆Ploss is smaller than ϵa = 10−9. On the other
hand, in some examples with ρ > 1, the error bound ∆Ploss takes a larger value than
ϵa, and in the worst case, ∆Ploss ≃ 0.0013. In Appendix 7.E, we provide such results
for ∆Ploss as a reference.

Figures 7.5 and 7.6 show {Pcomp
admit(n)}n=0,1,...,Ntrunc−1 and {ccomp

n }n=1,2,...,Ntrunc in the
M/D/1+H2 queue, where ρ = 0.8, E[G] ∈ {1,10,100,1000,10000}, and Cv[G]= 3. The
non-increasing property of {Padmit(n)}n=1,2,... is observed in Figure 7.5 (cf. Theorem
6.2 (i)). It is also interesting to observe that Padmit(Ntrunc −1) ≫ ϵa, while the stop-
ping criterion cNtrunc ≤ ϵa is satisfied. Note that in Figure 7.6, ρn is also plotted as
a reference, which is the asymptotic value of cn when E[G] →∞ in this case. We
observe that cn approaches ρn with an increase of E[G].

Figure 7.7 shows {ccomp
n }n=1,2,...,Ntrunc in the M/D/1+H2 queue, where E[G] = 10,

Cv[G] = 3, and ρ ∈ {0.4,0.8,1.2,1.6,2,2.4}. We can see that {ccomp
n }n=1,2,...,Ntrunc is

either non-increasing or unimodal as shown in Corollary 6.1. When ρ > 1, the value
of cNtrunc is not very small because the computation is stopped when [aNtrunc−1]0 ≤ ϵa.
Even though this increases the truncation error in Pcomp

loss , the error bound ∆Ploss is
not greater than 10−6 in all cases.

Next we examine the case of less variable impatience times. Figures 7.8–7.10
show Pcomp

admit(n) and ccomp
n in the M/D/1+Erk,k+1 queue with Cv[G] = 0.3, which cor-

respond to Figures 7.5–7.7 for the M/D/1+H2 queue, respectively. Note that E[G] ∈
{1,10,30,50,100} in Figures 7.8 and 7.9, which is different from Figures 7.5 and
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7.6. While the fundamental properties of Pcomp
admit(n) and ccomp

n in the M/D/1+Erk,k+1
queue is similar to those in the M/D/1+H2 queue, we observe some differences be-
tween these two models:

(i) From Figures 7.5 and 7.8, we observe that Padmit(n) in the M/D/1+H2 queue
is convex, while Padmit(n) in the M/D/1+Erk,k+1 queue has a single inflection
point.

(ii) From Figures 7.6 and 7.9, we observe that as E[G] increases, cn in the M/D/
1+Erk,k+1 queue approaches to ρn far more rapidly than that in the M/D/1+H2
queue.

(iii) From Figures 7.7 and 7.10, we observe that if ρ > 1, the maximum value
of {cn}n=1,2,...,Ntrunc in the M/D/1+Erk,k+1 queue is far larger than that in the
M/D/1+H2 queue.

In particular, (ii) and (iii) imply that Ploss in the M/D/1+Erk,k+1 queue is smaller
than Ploss in the M/D/1+H2 queue if ρ and E[G] are identical, which can be con-
firmed in Figures 7.11 and 7.12, where we show Pcomp

loss versus ρ for these models.
In these figures, the theoretical lower bound (ρ−1)/ρ of Ploss is also plotted as a
reference (cf. Remark 7.5). In both queues, Pcomp

loss approaches the lower bound as ρ

increases, and Ploss for large E[G] and ρ is well approximated by the lower bound.
Next we examine the case of Pareto service time distribution. Figure 7.13 shows

Ploss versus ρ for the M/Pareto/1+Erk,k+1 queue with E[G] = 100, Cv[G] = 0.3 and
various values of shape parameter γ of Pareto service times. When γ≥ 2, the behav-
ior of Ploss is similar to that in the M/D/1+Erk,k+1 queue with E[G] = 100 shown in
Figure 7.12, i.e., it is well approximated by the theoretical lower bound ((ρ−1)/ρ)+.
When 1< γ< 2, on the other hand, Ploss dramatically increases with an decrease of
γ, and when γ is close to 1, Ploss is well approximated by the theoretical upper bound
ρ/(1+ρ). Therefore, the theoretical lower and upper bounds shown in Theorem 6.3
are tight in this M/Pareto/1+Erk,k+1 queue with E[G]= 100.

Finally, Figure 7.14 shows Ploss versus E[G] for the M/Pareto/1+Erk,k+1 queue
with ρ = 0.6 and Cv[G]= 0.3. We observe that the curves in the figure take various
positions between the lower bound 0 and the upper bound 0.375. We also observe
that when γ is close to 1, Ploss is almost insensitive to E[G].

7.4 Conclusion
We developed a computational algorithm for the stationary loss probability Ploss in
the M/G/1+PH queue. Using the uniformization and the results of Chapters 5 and
6, we proved that Ploss in the M/G/1+PH queue is given in terms of the sequence of
∞×1 vectors an, which can be efficiently computed. The developed algorithm for
Ploss is summarized in Figure 7.4. The particular feature of this algorithm is that it
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Figure 7.5: Pcomp
admit(n) in the M/D/1+H2 queue with ρ = 0.8 and Cv[G]= 3.0.
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Figure 7.6: ccomp
n in the M/D/1+H2 queue with ρ = 0.8 and Cv[G]= 3.0.
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Figure 7.7: ccomp
n in the M/D/1+H2 queue with E[G]= 10 and Cv[G]= 3.0.
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Figure 7.8: Pcomp
admit(n) in the M/D/1+Erk,k+1 queue with Cv[G]= 0.3.
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Figure 7.9: ccomp
n in the M/D/1+Erk,k+1 queue with ρ = 0.8 and Cv[G]= 0.3.
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Figure 7.10: ccomp
n in the M/D/1+Erk,k+1 queue with E[G]= 10 and Cv[G]= 0.3.
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Figure 7.11: Pcomp
loss in the M/D/1+H2 queue with Cv[G]= 3.0.
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Figure 7.12: Pcomp
loss in the M/D/1+Erk,k+1 queue with Cv[G]= 0.3.
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Figure 7.13: Pcomp
loss in the M/Pareto/1+Erk,k+1 queue with E[G] = 100 and Cv[G] =

0.3.
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Figure 7.14: Pcomp
loss in the M/Pareto/1+Erk,k+1 queue with ρ = 0.6 and Cv[G]= 0.3.

also outputs an upper bound of the numerical error in computed Ploss. We further
presented some numerical examples in Section 7.3, some of which are not easy to
compute if we followed previously known results.

Appendices

7.A Proof of Lemma 7.1

Straightforward calculations with (7.5) and (7.8) yield

Pr(Nζ(V̂n)= m)

= 1
Padmit(n)

∞∑

i=0
gi

∫∞

0+

exp[−θx](θx)i

i!
· exp[−ζx](ζx)m

m!
·v(x | n)dx

= 1
Padmit(n)

∞∑

i=0
gi ·

(i+m)!
i!m!

[
ζ

ζ+θ

]m [
θ

ζ+θ

]i

·
∫∞

0+

exp[−(ζ+θ)x][(ζ+θ)x]i+m

(i+m)!
·v(x | n)dx

= 1
Padmit(n)

∞∑

i=0
Pr(Nζ+θ(Vn)= i+m)bζ,θ(i+m,m) · gi,

from which (7.19) follows.
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7.B Proof of Lemma 7.2
7.B.1 Proof of (7.27)

Let F denote a set of ∞×1 non-negative vectors whose elements are in a descending
order.

F = {
(
x0 x1 · · ·

)⊤ ≥ 0; xi ≥ xi+1 (i = 0,1, . . .)}.

We will show that for n = 1,2, . . .,

(i) x ∈F ⇒ H̃nx ∈F , and

(ii) x ∈F ⇒Bnx ∈F .

Note that if (i) and (ii) hold, we can obtain (7.27) recursively, using g⋆ ∈ F , (7.14),
and (7.15).

It follows from the assumption x ∈F and the definition (7.11) of H̃n that

[H̃nx]m − [H̃nx]m+1

=
∞∑

i=0
h̃[i](nθ)[x]m+i −

∞∑

i=0
h̃[i](nθ)[x]m+i+1

=
∞∑

i=0
h̃[i](nθ)([x]m+i − [x]m+i+1)≥ 0, n = 1,2, . . . , m = 0,1, . . . ,

from which (i) follows. Next we consider (ii). By definition (7.12) of Bn, we have for
n = 1,2, . . . and m = 0,1, . . .,

[Bnx]m+1 =
m+1∑

i=0

(
m+1

i

)[ n
n+1

]i
[

1
n+1

]m+1−i
gm+1−i[x]i. (7.50)

We then have

[Bnx]1− [Bnx]0 =
([

1
n+1

]
g1[x]0 +

[ n
n+1

]
g0[x]1

)
− g0[x]0

=
[

1
n+1

]
(g1− g0)[x]0 +

[ n
n+1

]
g0([x]1 − [x]0)≤ 0.

Using (7.50) and
(
m+1

i

)
=

(
m
i

)
+

(
m

i−1

)
, m = 1,2, . . . , i = 1,2, . . . ,m,

we can obtain for m = 1,2, . . .,

[Bnx]m+1 = 1
n+1

m∑

i=0

(
m
i

)[ n
n+1

]i
[

1
n+1

]m−i
gm+1−i[x]i
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+ n
n+1

m∑

i=0

(
m
i

)[ n
n+1

]i
[

1
n+1

]m−i
gm−i[x]i+1.

Therefore, noting

[Bnx]m =
[

1
n+1

+ n
n+1

] m∑

i=0

(
m
i

)[ n
n+1

]i
[

1
n+1

]m−i
gm−i[x]i,

n = 1,2, . . . , m = 0,1, . . . ,

we have for m = 1,2, . . .,

[Bnx]m+1− [Bnx]m

= 1
n+1

m∑

i=0

(
m
i

)[ n
n+1

]i
[

1
n+1

]m−i
(gm+1−i − gm−i)[x]i

+ n
n+1

m∑

i=0

(
m
i

)[ n
n+1

]i
[

1
n+1

]m−i
gm−i([x]i+1 − [x]i).

(ii) then follows from g⋆ ∈F , x ∈F , and the above equation.

7.B.2 Proof of (7.28)

Owing to (7.27), for any n = 0,1, . . ., {[an]i}i=0,1... is a non-increase sequence bounded
below by 0, so that limi→∞[an]i exists. In what follows, we prove that

e⊤an <∞, n = 0,1, . . . , (7.51)

where e⊤ denotes a 1×∞ vector whose elements are all equal to one. Note that
(7.51) implies (7.28) because if limi→∞[an]i > 0, e⊤an diverges to infinity.

First, (7.51) holds for n = 0 because we have from (7.7) and (7.14),

e⊤a0 = e⊤g⋆ = θE[G]<∞.

We then assume that (7.51) holds for some n = m (m = 0,1, . . .). Using (7.7), (7.11),
(7.12), and (7.15), we have

e⊤am+1 = e⊤(Bm+1H̃m+1am)
= (e⊤Bm+1)H̃m+1am

≤
(

∞∑

m=0
gm

)

e⊤ · H̃m+1am

≤ θE[G](e⊤H̃m+1)am

≤ θE[G] · e⊤am

< ∞.

Therefore (7.51) also holds for n = m+1, which completes the proof.
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7.C Proof of Lemma 7.3
Because {gm}m=0,1,... is a non-increasing sequence, we have

∥aerror
0 ∥∞ = ∥g⋆− g⋆comp∥∞ = gm∗

g
≤ ϵg.

Next, we consider n = 1,2, . . .. We represent H̃n (n = 1,2, . . .) and Bn (n = 1,2, . . .)
in the following form (see Figure 7.3).

H̃n =
(
H̃comp

n H̃error1
n

O H̃error2
n

)

,

Bn =
(
Bcomp

n +Berror1
n Brest1

n

Berror2
n Brest2

n +Berror3
n

)

.

We then have

an = BnH̃n

[
acomp

n−1 +aerror
n−1

]

= Bn

(
H̃comp

n H̃error1
n

O H̃error2
n

)(
acomp

n−1
0

)
+BnH̃naerror

n−1

=
(
Bcomp

n +Berror1
n Brest1

n

Berror2
n Brest2

n +Berror3
n

)(
H̃comp

n acomp
n−1

0

)

+BnH̃naerror
n−1

= acomp
n +

(
Berror1

n H̃comp
n acomp

n−1
Berror2

n H̃comp
n acomp

n−1

)

+BnH̃naerror
n−1 . (7.52)

Note here that in exactly the same way as in the proof of Lemma 7.2, we can show
that

[acomp
n ]i ≥ [acomp

n ]i+1, i = 0,1, . . . . (7.53)

Therefore, from (7.52) and (7.53), we obtain

∥aerror
n ∥∞ =

∥∥∥∥∥∥

⎛

⎝ Berror1
n H̃comp

n acomp
n−1

Berror2
n H̃comp

n acomp
n−1

⎞

⎠+BnH̃naerror
n−1

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥

⎛

⎝ Berror1
n H̃comp

n

Berror2
n H̃comp

n

⎞

⎠ e

∥∥∥∥∥∥
∞

· [acomp
n−1 ]0 +∥BnH̃ne∥∞ ·∥aerror

n−1 ∥∞

≤

∥∥∥∥∥∥

⎛

⎝ Berror1
n

Berror2
n

⎞

⎠ e

∥∥∥∥∥∥
∞

· [acomp
n−1 ]0+∥aerror

n−1 ∥∞.
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By definition, Berror1
n e denotes an {(n+1)(m∗

g −1)+1}×1 vector whose i-th (i =
0,1, . . . , (n+1)(m∗

g −1)) element is given by

[
Berror1

n e
]

i =

⎧
⎪⎪⎨

⎪⎪⎩

0, i = 0,1, . . . ,m∗
g −1,

i∑

k=m∗
g

bn(i, i−k)gk, i = m∗
g,m∗

g +1, . . . , (n+1)(m∗
g −1),

and Berror2
n e is an ∞×1 vector whose i-th (i = 0,1, . . .) element is given by

[
Berror2

n e
]

i =
(n+1)(m∗

g−1)+i+1∑

k=m∗
g+i

bn

(
(n+1)(m∗

g −1)+ i+1,

(n+1)(m∗
g −1)+ i−k+1

)
gk.

Therefore we have
∥∥∥∥∥∥

⎛

⎝ Berror1
n

Berror2
n

⎞

⎠ e

∥∥∥∥∥∥
∞

≤
∞∑

k=m∗
g

1 · gk

≤ ϵg,

which completes the proof.

7.D Computation of h̃[m](ζ)
In this appendix, we provide computational methods of h̃[i](ζ) (ζ > 0) for three
types of service time distributions: (i) constant, (ii) phase-type distribution, and
(iii) Pareto distribution. In the case of constant service times, we have

h̃[m](ζ) = 1
E[H]

∫E[H]

0

exp[−ζx](ζx)m

m!
dx

= 1
ζE[H]

[

1−
m∑

i=0

exp[−ζE[H]](ζE[H])i

i!

]

, m = 0,1, . . . .

Next we consider the case of phase-type service times with PDF H(x) = 1−
βexp[Sx]e (x ≥ 0). Note that

h̃(x)=πexp[Sx](−S)e, x ≥ 0,

where

π= β(−S)−1

β(−S)−1e
.
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We thus have

h̃[m](ζ) =
∫∞

0

exp[−ζx](ζx)m

m!
πexp[Sx](−S)edx

= 1
ζ
·π

{[
I −ζ−1S

]−1}m+1
(−S)e.

Therefore we can compute h̃[m](ζ) (m = 0,1, . . .) by h̃[m](ζ)=πym, where

y0 =
1
ζ

[
I −ζ−1S

]−1 (−S)e, ym =
[
I −ζ−1S

]−1 ym−1, m = 1,2, . . . .

Finally, we consider the case that service times are i.i.d. according to a Pareto
distribution with shape parameter γ (γ> 1) and location parameter xmin (xmin > 0).

H(x)=
{

0, 0≤ x < xmin,
1−

( xmin

x

)γ
, x ≥ xmin.

We then have

h̃(x)=

⎧
⎪⎪⎨

⎪⎪⎩

1
E[H]

, 0≤ x < xmin,

1
E[H]

( xmin

x

)γ
, x ≥ xmin,

where E[H]= γxmin/(γ−1). It then follows that

h̃[m](ζ) =
∫xmin

0

exp[−ζx](ζx)m

m!
· dx
E[H]

+
∫∞

xmin

exp[−ζx]
(ζx)m

m!
· 1
E[H]

( xmin

x

)γ
dx

= 1
ζE[H]

[

1−
m∑

i=0
exp[−ζxmin]

(ζxmin)i

i!

]

+ xmin(ζxmin)γ−1

E[H]m!

∫∞

ζxmin

exp[−x]xm−γdx. (7.54)

The integral on the right hand side of (7.54) is an incomplete gamma function,
which can be computed with high accuracy by means of numerical libraries (see
e.g., [GSL]).

7.E Error bounds ∆Ploss for numerical examples
Figures 7.15–7.17 show ∆Ploss in some numerical examples in Section 7.3, where
∆Ploss ≥ 10−9. Note that ∆Ploss in all other examples is less than 10−9.
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Figure 7.15: ∆Ploss in the M/D/1+H2 queue with Cv[G] = 3.0, corresponding to Fig-
ure 7.11.
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Figure 7.16: ∆Ploss in the M/D/1+Erk,k+1 queue with Cv[G] = 0.3, corresponding to
Figure 7.12.
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Figure 7.17: ∆Ploss in the M/Pareto/1+Erk,k+1 queue with E[G] = 100 and Cv[G] =
0.3, corresponding to Figure 7.13.



8 Conclusion

In this dissertation, we developed analytical methods for two kinds of queueing
models interacting with underlying processes, which are regarded as fundamental
models for communication systems with adaptive resource allocation mechanisms.
In the first model, the state of the underlying process is assumed to be switched
when the system becomes empty. On the other hand, in the second model, the
state of the underlying process is assumed to change continually according to the
workload in system.

We analyzed the multi-class FCFS M/G/1 queue with exponential working va-
cations in Chapter 2. This model is a special case of our fundamental model of the
first kind, where there exists only two underlying states. We developed an analyt-
ical method of this model based on an approach that we first analyze the workload
process and then derive other performance measures using the workload distri-
bution. With this approach, we derived various performance measures including
the waiting time and sojourn time distributions, the joint distribution of the queue
lengths and the workload in system in respective classes, and the joint transform
associated to the busy cycle.

Using results in Chapter 2, we can see the difference between the queueing
model with working vacations and the queueing model embedded in a random en-
vironment, where the processing rate is assumed to change according to an inde-
pendent underlying process. To be more specific, consider a special case of our model
where the processing rate is proportional to the arrival rate, and compare it to the
corresponding queue embedded in a random environment of a two-state Markov
chain. In the latter model, the stationary number of customers in the system is
independent of the underlying Markov chain and its conditional distribution given
a specific state of the Markov chain is the same as that of the ordinary M/G/1 queue
(Section 6 in [Tak05]). On the other hand, it is verified that the model we consid-
ered does not have such a property. Therefore, the queueing model with working
vacation (and therefore queuing models interacting with underlying processes) is
essentially different from the queueing model embedded in a random environmen-
tal process.
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In Chapter 3, we considered the multi-class MAP/G/1 queue with disasters,
which corresponds to a censored process of the multi-class MAP/G/1 queue with
working vacations obtained by observing only working vacation periods. We gener-
alized the approach based on an analysis of the workload process taken in Chapter
2, and developed computational algorithms for the joint queue length distribution
and the moments of the waiting time and sojourn time distributions, which are
summarized in Figure 3.1.

In Chapter 4, we extended analytical methods for the M/G/1-type Markov pro-
cess with respect to the irreducibility of the underlying process. By allowing C+D
to be reducible, this Markov process become applicable to a wider class of queueing
models including our fundamental model of the first kind. We first proved that pre-
viously known results for the case of irreducible C +D cannot be directly applied
to that of reducible C +D. We then derived formulas for the stationary distribu-
tion applicable to reducible C+D, and further developed an efficient computational
algorithm for the fundamental matrix and the moments of the stationary distribu-
tion.

In Chapter 5, we considered the M/G/1 queue with general impatient customers
(M/G/1+G), which is equivalent to our fundamental model of the second kind. We
revisited the formal series solution of the p.d.f. of the stationary workload in sys-
tem, and provided an probabilistic interpretation to it through an analysis of the
LCFS-PR M/G/1 queue with workload dependent loss. As demonstrated for the
M/G/1+M, M/G/1+D, and M/M/1+G queues, this new perspective leads to a unified
understanding of special cases of the M/G/1+G queue.

In Chapter 6, we analyzed the stationary loss probability in the M/G/1+G queue.
We derived theoretical upper and lower bounds of the loss probability and some
stochastic ordering relations, based the results in Chapter 5. To prove stochas-
tic ordering relations, we derived new results for the excess wealth and dispersive
orders, which seem to be basic results although we could not find them in the lit-
erature. We also proved that the loss probability in the M/D/1+D queue is smallest
among all M/G/1+G queues with the same and finite arrival rate, mean service
time, and mean impatience time.

Finally in Chapter 7, we developed a computational algorithm for the loss prob-
ability in the M/G/1+PH queue, which is summarized in Figure 7.4. Our algorithm
is based on the uniformization technique and the results in Chapters 5 and 6, which
can efficiently compute the loss probability along with an upper bound of numerical
error. Using this computational algorithm, we can examine the impact of the model
parameters on the loss probability, which is the most important quantity of interest
in our fundamental model of the second kind.

This dissertation separately analyzed the two kinds of queueing models inter-
acting with underlying processes so that their mathematical structures to be well
understood. In general, communication systems may be equipped with multiple
adaptive resource allocation mechanisms, which leads to a more complicated sit-
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uation that these two kinds of models are blended together. An analysis of such
extended model is a challenging problem, and it is worth investigating as a future
work.
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