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Preface

The studies presented in this thesis were carried out under the direction of Professor Tetsuro
Majima, the Institute of Scientific and Industrial Research (SANKEN), Osaka University during
October 2012 to March 2016.

The object of this thesis is the development of modified or doped TiO, mesocrystals with
versatile applications in solar energy converstion from UV to visible light range. The aim of this
research is to resolve the problems of low photocatalytic efficiency and intrinsic wide bang gap
of TiO, after facilely improved with co-catalyst, tunable anisotroptic crystal facet, and doping.
The author hopes that the results and conclusion presented in this thesis contribute to the further
improvement of the quantum efficiency with practical application, which will deepen our
understanding of the good relationship between their structure and phtocatalytic performance.

Peng Zhang

Department of Applied Chemistry
Graduate School of Engineering
Osaka University

2016
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General Introduction

Over the past decades, the rapid depletion of fossil fuels and serious environmental pollution
started to strongly affect the modern society, such as the air pollution, water pollution and even
our healthy body (PM 2.5). With concerning the deficiency of human energy usage and
alleviating the environmental pollution, solar energy as the sustainable source is becoming the
clean, cheap, renewable energy to fulfill rising global demand in our life. In this case,
photocatalysis shows great potentials among the basic science like CO, photoreduction,
environmental purification like photodegradation of organic pollutant, and fuel generation like
water splitting, and so on."® With the recent boom of nanotechnology, research interests on the
photocatalyst have been expanded to ultimate efficient mental oxide semiconductors with
intriguing physiochemical property and exciting functions in photo(electro)catalysis. Due to the
strong redox ability, high chemical stability, low toxicity, and abundant availability, titanium
dioxide (TiOy) is becoming a promising photocatalyst and applied in the wide range of solar-to-
chemical energy conversion such as environmental remediation, solar water splitting, CO,
photoreduction, and photovoltaic cells.*” As the photocatalytic materials since 1972,2 TiO, still
represents problems in widespread applications of photovoltaics and photo(electro)catalysis
inevitably due to its low quantum efficiency and wide band gap. A series of TiO, with good
structure-performance relationship have been developed to significantly improve the quantum
efficiency in photocatalysis.’ For the low quantum efficiency, the efficient charge separation may
retard the fast charge recombination from surface or volume in reaction process. The rapid and
efficient collection of photogenerated electrons and holes on the catalytic sites (reduction or
oxidation sites) from the surface is much more important to improve the reactive efficiency
(Scheme 1A). In the development of a new class of porous materials, metal oxides mesocrystals
are superstructures of assembled nanoparticles and have potentially tunable electronic, optical,
and magnetic properties for applications ranging from catalysis to optoelectronics and to energy
storage and conversion.”®™ Recently, anatase TiO, mesocrystals (TMC) consisting of
nanocrystal building blocks show significant enhancement of the charge separation and excellent

photocatalytic activity compared with nanocrystal or commercial TiO,.*? It was clearly revealed



that the long-range ordered mesocrystal superstructures significantly retard the recombination of
electron-hole pairs due to the efficient interparticle charge separation.™® Therefore, it is strongly
required to understand the relationship between the structural characteristics and the interfacial
charge transfer dynamics to optimize the composite systems with highly improved catalytic

performance.
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Scheme 1. (A) Charge separation on TiO, and (B) Activation of TiO; in visible light region.

On the other hand to resolve the problems of intrinsic wide band gap, many efforts have
attempted to study band gap engineering of TiO, to achieve its visible-light-responding in
practical application (Scheme 1B).****To date, a variety of modifications are exploited to extend
the optical response of TiO, from UV to the visible light region, such as the nonmetal
doping/codoping (N, S, C, F), metal deposition (Au, Cu, V, Cr), coupling with semiconductors
(CdS, Bi,Ss), defect engineering (Ti**), and dye sensitization (Ru complex).”>*° It is worthy
considering that for the large-scale preparation in practical application, the novel pyrolysis of
titanium-compound containing dopants elements is proposed to be the ideal candidate for
acquiring efficient doping. The ammonium oxofluorotitanate (NH,TiOF3) is a fundamental
group of titanium-compound to synthesize doped TiO,. It was inferred that the anisotropic
dissolution of NH4TiOF; can be chemically converted to TMC during the topochemical
transformation, accompanying with N and F releasing. Therefore, it is a great of significance to
introduce the dopant simultaneously from the original precursors or intermedium during the
synthesis, without affecting the nucleation and growth of TMC. However, it still remains a
challenge to facilely synthesize TMCs with higher visible-light activity instead of the instrument-
dependent and cost-effective treatment in this field.

Introduction of each chapter is shown as below.



In Chapter 1, the reaction dynamics of charge separation (photogenerated electrons or holes) in
the composites of CoPi-deposited TMC and MoS,/TMC with superior efficiency was studied
from ensemble-averaged experiment, single-particle spectroscopy, and time resolved transient
absorption. The charge transfer dynamics between the superstructure (TMC) and the active sites
(CoPi, Pt, and MoS,) were monitored from the time-resolved and spatial resolution.

In Chapter 2, a series of TMCs with tunable facet ratio of {001} to {101} was successfully
synthesized using a crystal growth inhibitor (NH4F). Their photocatalytic performances were
explored in pollutant degradation and H, evolution with anisotropic electron flow among the
dominant facet from UV to visible light, where the {101} facets prefer reduction, whereas the
{001} facets favor oxidation, because of crystal-facet-dependent surface adsorption and charge
transfer.

In Chapter 3, topotactic transformation confined doping (F doping or N and F codoping) on
TMC was facilely designed for the first time. Their comparison of charge transfer dynamics from
time-resolved transient absorption to the photocatalytic efficiency could confirm the effect of the
dopant (F dopant with improved electron conductivity or N, F codopants with improved surface
modification) induced the different charge transfer dynamics in the hydrogen generation,
photocatareductive Cr (V1), and dye degradation under the visible light or UV light irradiation.

Reference:

(1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.

(2) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891.

(3) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503.

(4) Ma,Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Chem. Rev. 2014, 114, 9987.

(5) Wang, L.; Sasaki, T. Chem. Rev. 2014, 114, 9455.

(6) Bai,Y.; Mora-Sero, I.; De Angelis, F.; Bisquert, J.; Wang, P. Chem. Rev. 2014, 114, 10095.

(7) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis,
N. S. Chem. Rev. 2010, 110, 6446.

(8) Fujishima, A.; Honda, K. Nature 1972, 238, 37.

(9) Liu, G,; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H. M. Chem. Rev. 2014, 114,
9559.

(10) Cdfen, H.; Antonietti, M. Ang. Chem. Int. Ed. 2005, 44, 5576.



(11) Zhou, L.; O'Brien, P. J. Phys. Chem. Lett. 2012, 3, 620.

(12) Bian, Z.; Tachikawa, T.; Majima, T. J. Phys. Chem. Lett. 2012, 3, 1422.

(13) Bian, Z.; Tachikawa, T.; Kim, W.; Choi, W.; Majima, T. J. Phys. Chem. C 2012, 116, 25444.

(14) Chen, X.; Liu, L.; Huang, F. Chem. Soc. Rev. 2015, 44, 1861.

(15) Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S.
M.; Hamilton, J. W. J.; Byrne, J. A.; O'Shea, K.; Entezari, M. H.; Dionysiou, D. D. Appl.
Cat. B: Environ. 2012, 125, 331.

(16) Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Chem. Rev. 2014, 114, 9824.



Charpter 1: Spatial charge separation on TMC with efficient
photocatalytic activity

The semiconductor photocatalysis research has been developed and a lot of achievements have
been made, but there remain many key problems waited to be resolved such as the low
photocatalytic efficiency. For the low quantum efficiency, the efficient charge separation may
retard the fast charge recombination from surface or volume in reaction process. Rapid and
efficient collection of photogenerated electrons and holes on the catalytic sites (reduction or
oxidation sites) from the semiconductor surface is much important to improve the reactive
efficiency. Semiconductors modified with co-catalysts strongly affect the water splitting from the
structural characteristics and interfacial charge transfer dynamics. However, there is no report on
the investigation of O, and H, evolution from the mesocrystal with such co-catalysts to improve

the water-splitting efficiency.

Part 1. Co-catalysts selective on TMC with efficient charge separation in

water splitting

1. Introduction

Semiconductors such as metal oxide have been studied extensively due to their potential
applications among the photocatalysis, photovoltaics, batteries, and sensors.® In this regard,
photocatalytic water splitting into H, and O, allows for the storage of solar energy as fuel
source.>® Rapid and efficient collection of multiple photogenerated charges of electrons (e7) and
holes (h") on the catalytic sites of the semiconductor surface to accompany the redox events and
bond formation is of paramount importance in the entire reaction sequence. In this case, co-
catalysts iridium oxides (IrOy)"° or cobalt oxides/oxyhydroxides (CoO,/CoOOH)*? have
attracted great interest in modify on semiconductors surface, since they are widely applied as
efficient photocatalysts to promote water oxidation. As we know, their photocatalytic
performances are strongly influenced by the preparation and the electronic and morphological

structures of the semiconductors and co-catalysts. It is strongly required to understand the



relationship between the structural characteristics and the interfacial charge transfer dynamics for
optimization of the composite systems with efficient performance.

Anatase TiO, is one of the most promising semiconductors for heterogeneous photocatalysis
owing to its low cost, stability, and nontoxicity.”**® As photocatalysts and electrode materials,
traditional metal oxide nanoparticles have some limitations in practical applications due to the
rapid charge recombination both in the bulk and on the surface. To resolve this point, metal
oxide mesocrystals with high surface area and highly ordered nanocrystal building blocks, have
recently been becoming a new class of porous semiconductor materials.'”*° TMC could strongly
enhance the efficiency of charge separation upon UV light irradiation, leading to remarkably
long-lived charges, higher photoconductivity and photocatalytic activity.'**° However, there are
no study on dealing with the fabrication and characterization of photoactive TMC with oxygen-
evolving co-catalysts.

The plate-like structure of TMC is composed of aligned anatase TiO, nanocrystals with
exposed dominant {001} facets in Fig. 1. Such a superstructure is beneficial for the migration of
photogenerated e between adjacent nanocrystals upon UV light irradiation. One possible way to
facilitate both charge separation and subsequent water splitting has been the deposition of cobalt
phosphate (CoPi),**?* known as an efficient oxygen-evolving catalyst, onto semiconductor
materials such as ZnO,™ TiO,,2?* Fe,03%% W0;,* and BiV0,.*® The hole-accepting states
of Co species (Co" and Co"") in CoPi are located at energy levels above the valence band (VB)
of TiO,. Therefore, upon UV light irradiation, h* in the TiO, VB can be transferred to the CoPi
catalysts and deposited on the surface.”®** The e~ in the conduction band (CB) of TiO, is
possibly transferred to the high valence Co ion, eventually inhibiting the oxidation reactions

owing to the undesired charge recombination.



In this part, the author used photochemical deposition method to modify TMC with CoPi and
platinum (Pt) nanoparticles, which are commonly used as a co-catalyst for hydrogen evolution,
and investigated the reaction dynamics of photogenerated charges in the composite by using
steady-state and time-resolved spectroscopies. The charge transfer processes in inhomogeneous
structures and environments are explored in situ single-particle fluorescence imaging techniques
with fluorescence probes. To date, direct imaging methods based on optical absorption and
fluorescence have been applied for screening and optimization of water oxidation catalysts,"*?
but the present work is the first example of exploring the photooxidation activity of

semiconductor-based composites at single-particle or single-aggregate level.
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Fig. 1 Schematic illustration of charge transfer on the surface of CoPi-Pt-TMC. TMC is
composed of aligned anatase TiO, nanocrystals. The width and thickness of TMC structures are
2-10 pm and 50-300 nm, respectively. Pt nanoparticles are deposited on the lateral surfaces of
CoPi-TMC. Active Co""" species in CoPi as well as TiO, holes (h*) oxidize 3'-p-aminophenyl
fluorescein (APF) and 3'-p-hydroxyphenyl fluorescein (HPF) substrates to generate fluorescein
as a fluorescent product and p-benzoquinone imine or p-benzoquinone as a byproduct,
respectively, via O-dearylation reaction. TiO, electrons (e') migrate to the edges of TMC

through the TiO, nanocrystal network, and they are eventually captured by Pt nanoparticles.?



2. Experimental Section

Materials. The chemicals for synthesis of catalysts were purchased from Aldrich, Wako, and
Nacalai Tesque and used without further purification. Commercial ST21 (Ishihara Sangyo) and
P25 (Nippon Aerosil) were used as received. TMC, Pt-TMC, and NanoTiO, (annealed under
19,20 3-p-

aminophenyl fluorescein (APF) and 3'-p-hydroxyphenyl fluorescein (HPF) were purchased from

oxygen atmosphere at 500<C) were synthesized according to literature procedures.

Sekisui Medical and used without further purification. Fluorescein sodium salt was purchased
from Tokyo Chemical Industry and used without further purification. p-Benzoquinone was
purchased from Aldrich and purified by sublimation before use.

Synthesis of CoPi-TiO,. In a typical synthesis of CoPi-TiO,, 3 mg TiO, was mixed with a 3
ml solution of 0.5 mM Co(NOs3); in 0.1 M sodium phosphate (NaPi) buffer at pH 7.0 forming a
homogenous suspension. The suspensions were then exposed to UV light (315-400 nm, 580 mW
cm 2) from a mercury light source (Asahi Spectra, REX-250) at room temperature. Finally, the
suspensions were centrifuged at 10000 rpm (Hitachi, himac CF16RX) to separate the solid
products. The products were subsequently washed with Milli-Q water. The amounts of loaded
Co were determined by UV-Vis absorption and EDX measurements.

Instruments. The samples were characterized using FESEM equipped with EDX analyzer
(JEOL JSM-6330FT) and TEM equipped with EDX analyzer (Hitach H-800; operated at 200
kV). The steady-state UV-Vis absorption and diffuse reflectance spectra were measured by UV-
Vis-NIR spectrophotometers (Shimadzu, UV-3100, and Jasco, V-570, respectively) at room
temperature. The steady-state fluorescence spectra were measured using a HORIBA FluoroMax-
4 fluorescence spectrophotometer at room temperature. EPR spectra were recorded on a JEOL
JES-RE2X electron spin resonance spectrometer at 77 K. The g values were calibrated using
Mn?" in MgO as standard.

Time-Resolved Diffuse Reflectance Measurements. The sample suspensions containing the
TiO, powders (20 g L™*) were sonicated for 15 min and are placed in 1-mm light path quartz
cuvettes before the measurements. The time-resolved diffuse reflectance measurements were
performed using the third harmonic generation (355 nm, 5 ns full width at half-maximum, 1.5 mJ
pulse*, 1 Hz) from a Q-switched Nd**:YAG laser (Continuum, Surelite 11-10) for the excitation
operated by temporal control using a delay generator (Stanford Research Systems, DG535). The
reflected analyzing light from a continuous wave 450 W Xe-arc lamp (Ushio, UXL-451-0) was



collected by a focusing lens and directed through a grating monochromator (Nikon, G250) to a
silicon avalanche photodiode detector (Hamamatsu Photonics, S5343). The transient signals
were amplified with a voltage amplifier (Femto, DHPVA-100) and recorded by a digitizer
(Tektronix, DPO3054). Time profiles were obtained from the average of 8 or 32 laser shots. All
experiments were carried out at room temperature. The % absorption (%Abs) is given by
equation: %Abs = (Ry — R)/Rg > 100, where R and R, represent the intensities of the diffuse
reflected monitor light with and without excitation, respectively.

Photooxidation Activity Tests. For typical runs, 3 mL of a phosphate buffer suspension
containing TiO- (0.07 g L™") and APF (2 uM) was sonicated for 20 min, and then transferred into
a quartz cuvette. The photochemical reaction was initiated upon irradiation with a mercury light
source (Asahi Spectra, REX-250) through a filter (centered at 365 nm) at room temperature. The
intensity of the UV light was measured to be 6 mW cm 2 After stopping the UV light
illumination, the sample was centrifuged at 10000 rpm (Hitachi, himac CF16RX) to separate the
solid particles. The oxidation of APF was monitored by a UV-Vis spectrophotometer and the
fluorescence from the products was analyzed by a fluorescence spectrophotometer.

Sample Preparation for Fluorescence Imaging. The cover glasses were purchased from
Matsunami glass (Japan) and cleaned by sonication in a detergent solution for 4 h, followed by
repeated washings with warm flowing water for 30 min. Finally, the cover glasses were washed
again with Milli-Q ultrapure water (Millipore). Well-dispersed buffer suspensions of TiO, were
subsequently spin-coated on the cleaned cover glasses. The cover glasses were placed in a
sample chamber. A TiO,-coated cover glass was mounted on the bottom of a holder designed for
viewing specimens on the microscope. A silicon spacer with a 9 mm pore (Invitrogen) was
placed on the TiO,-coated glass to form a chamber. The chamber was filled with a sample
solution and was then covered with a clean cover glass to prevent the solution from escaping.

Single-Particle Fluorescence Measurements with Wide-Field Microscopy. The
experimental setup included an Olympus IX81 inverted fluorescence microscope. 488-nm CW
laser (Coherent; ~3 W cm 2 at the glass surface) and 365-nm LED (Opto-Line; ~5 mW cm 2 at
the glass surface) sources were used to excite the dyes and TiO,, respectively. The optical
transmission and emission images were recorded on an EMCCD camera (Roper Scientific,

Evolve 512) at a frame rate of 20 frames s * using MetaMorph (Molecular Devices). All



experimental data were obtained at room temperature. Fluorescence images were analyzed using
the Image J software (http://rsb.info.nih.gov/ij/).

Single-Particle PL Measurements with Time-Resolved Confocal Mcroscopy. Fluorescence
lifetime images were recorded using an objective-scanning confocal microscope system
(PicoQuant) coupled with an Olympus IX71 inverted fluorescence microscope. The samples
were excited through an oil objective (Olympus, UPLSAPO 100XO; 1.40 NA, 100> with a
circular-polarized 485 nm pulsed laser (PicoQuant) controlled by a PDL-800B driver
(PicoQuant). An instrument response function (IRF) of ~110 ps was obtained by measuring the
scattered laser light in order to analyze the temporal profile. The emission was collected with the
same objective and detected by a single photon avalanche photodiode (Micro Photon Devices,
PDM 50CT) through a dichroic beam splitter (Chroma, z405/488rpc), a long-pass filter (Chroma,
HQ510LP), a band-pass filter (Semrock, FF01-531/40), and a 75-um pinhole for spatial filtering
to reject out-of-focus signals. The data collected using the PicoHarp 300 TCSPC module
(PicoQuant) were stored in the time-tagged time-resolved mode (TTTR), recording every
detected photon with its individual timing, which were used for the analysis. All the

experimental data were obtained at room temperature.

3. Results and Discussions

0.1 M phosphate (Pi) buffer suspensions (pH 7.0) containing TiO, powder and Co?* ions were
irradiated by UV light (315-400 nm, 580 mW cm ) for 3 h to deposit CoPi on the TiO, surface
without any applied bias potential. Fig. 2A shows the field-emission scanning electron
microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic mapping images of
CoPi-loaded TMC (CoPi-TMC). TMC is composed of aligned anatase TiO, nanocrystals with an
average diameter of around 40 nm, and has a plate-like structure with a width of several
micrometers and thickness of around 100 nm. Elemental mapping analysis revealed that Co and
P elements are distributed over the surface of TMC, and their concentrations are lower than 1
wt%. As shown in Fig. 2B, EDX spectrum obtained from the surface of CoPi-TMC clearly
indicates a Co Ka peak, which was not observed for the as-synthesized TMC. Transmission
electron microscope (TEM) images revealed that CoPi-TMC consists of assembled TiO,
nanoparticles and that it has many pores on its surface (the left and middle images of Fig. 2C).
The electron diffraction pattern of the selected area shows single-crystal diffraction along with
the anatase [001] zone axis (the image on the extreme right of Fig. 2C). Scanning TEM (STEM)-

10



EDX spectral measurements were selectively performed for the center and the edge of CoPi-
TMC, as demonstrated in Fig. 2D, where Ti Ka peaks have been normalized for comparison. Co
concentrations are 0.57 +=0.15 and 0.71 % 0.35 wt% near the center and the edge of TMC,
respectively (five different crystals were analyzed).

The concentrations of Co deposited on different TiO, samples were further determined by two
independent methods as follows: UV-Vis absorption measurements of residual Co®* ions (with a
peak at around 520 nm) in solutions after UV light irradiation and FESEM-EDX measurements.
The concentrations of deposited Co under the same synthesis conditions are summarized in
Table 1 along with the structural characteristics of TiO, used in this study. To facilitate the
comparison, two TiO, samples with the anatase crystal phase were used, commercial TiO, (ST21,
STO01) and synthesized TiO, (NanoTiO,) nanocrystals. NanoTiO, has the truncated bipyramidal
morphology with dominant {001} facets, analogous to the TiO, nanocrystal building blocks of
TMC.® P25 consists of anatase and rutile crystalline phases and is frequently used as a
benchmark in photocatalysis.

From Table 1, it is evident that Co species can be deposited more effectively on the surface of
TMC than on the surface of other TiO, nanocrystals. During photochemical deposition, h* in the

TiO, VB is used to oxidize Co®* ions to deposit Co""

species as an oxide or as oxyhydroxides on
the TiO, surface, while e in the TiO, CB reduces the Co"' species back to the starting Co"
material.>?* Therefore, the highest deposition ability of TMC is possibly due to the efficient
charge separation owing to the ordered structure of TiO, nanocrystals. In addition, Pt
nanoparticle-loaded TMC (Pt- TMC), with Pt nanoparticles of ~2.5 nm mostly located on the
lateral surfaces containing {101} facets of TMC.?° Pt nanoparticles loaded on TiO, could collect
e, and thus greatly improve the oxidation efficiency, enhancing significantly the photochemical

deposition of the Co species.

11
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Fig. 2 (A) FESEM and elemental mapping images of CoPi-TMC. (B) FESEM-EDX spectra of
TMC after the photodeposition of CoPi for 0, 3, and 6 h. (C) TEM images (left and middle) and
diffraction pattern (right) observed for CoPi-TMC. The middle image represents the enlarged

white square in the left image. (D) STEM-EDX spectra measured from the center and edge

(which are represented by pink and green squares in TEM image (left), respectively) of CoPi-

TMC synthesized by photodeposition for 3 h.

Table 1. Structural Characteristics and Photoactivity of CoPi-TiO,

Tio, crystalline particle size surface_area de_position Co loading Re_lative
phase ? (hm)°® (m?>gH®  time (h) (Wt%) reaction rate ®

TMC A 39 63 3 0.69°¢,0.80¢ 1.0 (15)

Pt-TMC A - — 0.5 1.1¢25¢ 36 (1.6)

P25 AR 25 55 3 0.42¢,0.35¢ 1.7 (5.1)

ST21 A 20 50 3 0.48°¢,0.29¢ 1.6 (5.1)

NanoTiO, A 25 41 3 0.49¢, 053¢ 1.0 (3.5)

& A and R mean anatase and rutile, respectively.

b Refs 19 and 20.
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¢ Calculated from the absorbance of Co ions in solution.

4 Obtained from FESEM-EDX analysis.

¢ Calculated from the temporal change of fluorescence intensity for the sample solutions before
and after the UV light irradiation. The numbers in parentheses are the enhancements in the
reaction rates after the CoPi deposition.

Fig. 3 shows the steady-state UV-Vis diffuse reflectance spectra of TMC (black solid line) and
CoPi-TMC (orange solid line). CoPi-TMC sample displayed broad absorption covering the
visible range, in addition to the strong absorption by TiO, in the UV region. Co oxides and

oxyhydroxides with Co" or Co" states are known to have light-yellow or gray color,

respectively,® which are in accordance with the observed spectra for CoPi-TMC.
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CoPi-TMC

CoPi-TMC after UV irradiation
0.6

0.4-

Kubelka-Munk function (a.u.)

0.2 1

0.0 T T T T
300 400 500 600 700 800

Wavelength (nm)

Fig. 3 Steady-state diffuse reflectance spectra of TMC (black) and CoPi-TMC (orange) in
phosphate buffer solutions (0.1 M, pH 7.0) before (solid lines) and after (broken lines) 355-nm

laser irradiation.

Time-resolved diffuse reflectance spectroscopy was employed to explore the reaction
dynamics of photogenerated e and h* in TiO,. As seen in Fig. 4A, TMC exhibits a broad
transient absorption band in the visible to near-infrared range upon 355-nm laser excitation,
which represents the overlapping of trapped h* (mainly 400-700 nm) and trapped e (mainly
500-850 nm).>*** Fig. 4C compares the transient absorption spectra observed at 1 ps in the
presence and absence of CoPi on TMC. From spectral deconvolution into individual components,
it was found that the presence of CoPi decreases the absorption intensity of trapped h* at around
500 nm (also see Fig. 4B for the spectra at different time regions). These results suggest that

photogenerated (free and trapped) h* is transferred to the Co" or Co"" species on the TiO. surface.
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Barroso et al. observed long-time-scale bleaching at 580 nm for CoPi-Fe,O3; nanoparticles by
time-resolved diffuse reflectance spectroscopy.®® They explained this phenomenon in terms of

the depletion of photogenerated h* in Fe,O3 by the transfer to Co, or losing the characteristic

optical absorption of Co" or Co"" species.
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Fig. 4 Time-resolved diffuse reflectance spectra during the 355-nm laser photolysis of TMC (A)
and CoPi-TMC (B) in phosphate buffer solutions. Comparisons of transient spectra at 1 us (C)
and time traces at 500 nm (D).

The decay profiles at 500 nm were analyzed by multi-exponential curve fitting and the
determined lifetimes are summarized in Table 2. By CoPi deposition, the lifetimes of trapped h*
shortened significantly compared with those in pure TMC, and a new long-lived component with
lifetime of >10 ms appeared. Furthermore, they noticed that the color of CoPi-TMC suspension
changed from pale yellow to dark blue upon the laser irradiation. This color change was

significantly suppressed by saturating the suspension with oxygen gas (electron scavenger)

14



before the UV light irradiation. Steady-state diffuse reflectance measurements confirmed that a
broad absorption band emerged in the 400-800 nm wavelength regions when CoPi-TMC powder
in phosphate buffer solution was exposed to 355-nm laser light (Fig. 3). This resembles a well-

37,38

known feature of e accumulated in TiOg, inferring that the observed non-decay component

can be ascribed to the prolonged lifetime of trapped e .

Table 2. Decay Time Constants of Transient Absorption at 500 nm

TiO; lifetime (ms) ?
T™MC 0.009 (39%), 0.18 (22%), 5.7 (39%),
CoPi-TMC 0.0015 (54%), 0.026 (16%), >10 (30%)

 Determined by the non-linear least squares curve fitting. The numbers in parentheses are
relative amplitudes.

The photoinduced charge transfer processes in CoPi-TMC were also confirmed by electron
paramagnetic resonance (EPR) spectroscopy. EPR spectra of the samples were taken at 77 K
before and after the UV light irradiation for 20 min at 77 K, and are given as differential EPR
spectra in Fig. 5. The spectrum of TMC exhibits intense resonance peaks at g = 2.017, 2.012, and
2.003. This spectral feature has been assigned to the trapped h*, i.e., O in TiO,, as reproduced
from the reported EPR parameters (pink solid line).***° The very weak resonance signal at g =
1.992 could be attributed to the trapped e, i.e., Ti*" in bulk.* This Ti*" signal is known to
weaken upon annealing at >250 <C in air (TMC used in this study was annealed at 500 <C during
the synthesis).*? On the other hand, the spectrum of CoPi-TMC has no assignable peaks related
to the trapped charges in TiO,. Although the EPR signals of Co species were not observed in the
magnetic field range of 80-580 mT,*® possibly due to their low concentrations, the observation
suggests that photogenerated h* is scavenged by the CoPi deposited on the TiO, surface.
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Fig. 5 Differential EPR spectra for TMC (black line) and CoPi-TMC (red line) in frozen buffer
solutions, obtained by subtracting the spectra observed before the UV light irradiation from those
after the UV light irradiation at 77 K. “Obs.” and “sim.” are the observed and simulated spectra,
respectively. To reproduce the observed spectra, simulations were performed with the following
EPR parameters: gy = 2.0205, gyy = 2.0015, g,; = 2.0035 for O and g; = 1.9915, g, = 1.9620 for
Tid*

The energy diagram for the charge transfer on CoPi-TiO; surface is illustrated in Fig. 6. The

holes transfer from excited TiO, to Co""

species is thermodynamically possible, and this
process enhances the efficiency of photoinduced charge separation, thereby ensuring substantial
enhancement in photocatalytic activity for redox reactions. The photooxidation activity of bare
TiO, and CoPi-TiO, was first evaluated by using ensemble-averaged spectroscopy. They used
two fluorescence dye probes, 3'-p-aminophenyl fluorescein (APF) and 3'-p-hydroxyphenyl
fluorescein (HPF), to selectively monitor the oxidation reaction. For instance, upon the oxidation

"WV species, APF produces fluorescein

of p-aminophenyl group of APF by TiO, h* or active Co
as a main fluorescent product and p-benzoquinone imine as a byproduct (p-benzoquinone for

HPF) via oxidative O-dearylation reactions (Figs. 1 and 6).
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Fig. 6 Energy diagram for the interfacial charge transfer on CoPi-TiO..** CB and VB are
conduction and valence bands of TiO, respectively. The band potentials are calculated from Ecg
=—0.12 — 0.059-pH and band gap energy of 3.2 eV.* “An” is aniline,”®> which is the preferable
moiety for the oxidation of APF. The redox potential (E4) of phenol, which is the preferable
moiety for the oxidation of HPF, is +0.86 \V vs. NHE.*®

In bulk experiments, TiO, powder (0.07 g L) dispersed in 3 mL of 2 uM APF phosphate
buffer solution (pH 7.0) was irradiated in a 1 cm <1 cm quartz cell by UV lamp (centered at 365
nm, 6 mW cm2). Dimethyl sulfoxide (DMSO) (100 mM) was added to the sample solution to
scavenge "OH, which is highly reactive oxygen species generated during the TiO, photocatalytic
reactions.”” As shown in Fig. 7A, after UV light irradiation of CoPi and Pt nanoparticle-loaded
TMC (CoPi-Pt-TMC) sample, the fluorescence intensity of the peak at 512 nm gradually
increased, indicating the generation of fluorescein. Fig. 7B shows the time course of the
fluorescence intensity for the TMC-based samples during UV light irradiation. In the absence of
TiO, or UV light, the increase in the fluorescence intensity due to the UV light-induced
oxidation or auto-oxidation of APF is almost negligible. It was concluded that the oxidation
reactivity followed the order CoPi-Pt-TMC > Pt-TMC> CoPi-TMC > TMC. The deposition of Pt
nanoparticles greatly enhances the activity, because part of e in TiO, is transferred to Pt before
the charge recombination, thus increasing the concentration and lifetime of h* in TiO,. The
repeated deposition of CoPi on Pt-TMC enhances the photooxidation by an order of magnitude
(Fig. 7C). Excess amount of CoPi caused a decrease in the activity, probably due to the

17



deactivation of Co""" species by capturing e”. They also compared the activity of CoPi-TMC
with those of the TiO, nanocrystal reference samples. As demonstrated in Fig. 7D, CoPi-loaded
TMC showed the highest fluorescence intensity and activity enhancement among the tested TiO,

samples, thus highlighting the importance of the ordered structure of TMC, especially when

compared with NanoTiO, (see also Table 1).
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Fig. 7 (A) Fluorescence spectra of phosphate buffer solutions (0.1 M, pH 7.0) before and after
the UV light irradiation of sample suspensions containing CoPi-Pt-TMC (0.07 g L™") and APF (2
uM) (excitation at 470 nm). TiO, powder was removed by centrifugation before the
measurements. (B) UV light irradiation time dependence of fluorescence intensities monitored at
512 nm. In the illustrated structures of the samples, TMC and CoPi-TMC are shown in gray and
ivory, respectively. Black dots indicate the Pt nanoparticles deposited on the surface. (C)
Relative reaction rates obtained for TMC-based samples. The reaction rates were determined
from the initial slopes of fluorescence intensity changes. The n of CoPi-Pt-TMCn (n = 1-5) is the
number of repetitions for the CoPi deposition ([TMC] = 1 g L%, [Co?*] = 0.5 mM, UV light
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irradiation time = 30 min). Each procedure can deposit ~1.1 wt% Co (estimated from UV-Vis
absorption measurements) on the TMC surfaces. (D) Dependence of fluorescence intensity on
the UV light irradiation time and photodeposition time for phosphate buffer solutions containing
the reaction products.

Based on the results above, they have evaluated the photooxidation activity of individual
CoPi-TMC crystals by in situ fluorescence imaging. Experiments on a single crystal provide
useful information for elucidating the inherent heterogeneity of the reaction processes on
surfaces.*®*° Figs. 8A and B show typical optical transmission and fluorescence images of a
single CoPi-TMC crystal in 2 uM HPF phosphate buffer solution (0.1 M, pH 7.0), respectively.
The crystal was illuminated by the evanescent light of 488-nm continuous wave laser
(penetration depth is ~200 nm) or 365-nm LED light to excite the fluorescence dye or TiO,,
respectively. The initial fluorescence observed prior to the UV light irradiation is ascribed to the
HPF molecules adsorbed on the surface. Under the experimental conditions, the contributions of
the scattered light from the crystal and the fluorescence from the products directly oxidized by
UV light irradiation are negligible due to the low excitation intensity (~3 W cm 2 and ~5 mW
cm 2 at the cover glass surface for 488 nm and 365 nm light, respectively).**’ Interestingly, the
area near the edge of the CoPi-TMC crystal showed higher fluorescence intensity than that near
the center (Figs. 8B and 9A, respectively). The average intensity ratio of the edge (within 1 pm
distance from the lateral faces) and the center is 1.4 0.2, which is greater than that (1.1 +0.1)
of the bare TMC. Previously, it was demonstrated by site-selective deposition of Pt nanoparticles
and single-molecule fluorescence imaging of reduction sites with a specific fluorogenic probe
that the photogenerated e in TMC can reach the lateral surfaces over a micrometer distance
through the nanocrystal network.?’ Assuming that fluorescence intensity correlated directly with
the number of adsorbed HPF molecules, the observed spatial distribution of fluorescence
intensity implies that Co species are readily deposited near the edge of TMC, and their
concentration gradually decreases towards the center. This tendency was confirmed by the
STEM-EDX analysis (Fig. 2D). Moreover, it is obvious from the transmission and fluorescence
images (Figs. 8D and E) that the well-ordered parts of TMC exhibit higher fluorescence intensity,
i.e., higher concentration of Co species, than the broken parts of TMC. Although it is difficult to
observe selectively the reaction processes on the basal and lateral surfaces of CoPi-TMC because

of the limited spatial resolution (~250 nm), the findings support the hypothesis that well-ordered
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structures of TMC can effectively deliver e to the lateral surfaces, thereby increasing the
oxidation reaction efficiency.

As predicted by the ensemble experiments, the fluorescence intensity on the crystal underwent
a substantial increase immediately after the UV light irradiation (Figs. 8C and F). Moreover, the
UV light-induced increase in fluorescence intensity around the perimeter of the crystal indicates
that the fluorescent products diffused from the crystal surface into the bulk solution. This result
supports the proposed mechanism for the oxidation of the probes (Fig. 1), and it is well
consistent with the fact that more than 90% of fluorescent products are separated from the
sample suspensions by centrifugation or filtration, possibly owing to the electrostatic repulsion
between negatively charged TiO, surface (isoelectric point ~ 5.5) and fluorescein dianion (pKa
6.4) in water at pH 7.0.%° Considering the pore size distribution of TMC (5.1 2.5 nm)*° and the
hydrodynamic radius of fluorescein (0.8 nm),>* the escape of the product fluorescein molecules
into the bulk solution should however be partially restricted, allowing us to observe the change in
fluorescence intensity over the crystal. The change in the fluorescence intensity varies strongly
from crystal to crystal, as shown in Fig. 9G. Meaningful positive correlation was observed for
the initial fluorescence intensity with UV light-induced fluorescence intensity changes on the
surface (corrected R? = 0.72) and in solution near the crystal (corrected R? = 0.51) (Fig. 8H),

again indicating the photooxidation of preadsorbed HPF molecules.

20



[
1000 15000 1000 15000 0 2000

I (counts) I (counts) Al (counts)

[ [
2000 10000 2000 10000 0 2000

| (counts) I (counts) Al (counts)

G w0 . . . H

Il TMC/on surface
TMC/in solution
CoPi-TMC/on surface

Il CoPi-TMClin solution

N
o
o
o

T T T

CoPi-TMC/on surface
® CoPi-TMC/in solution

1500 4 4

1000 4 4

500

Number of samples

Fluorescence intensity change (counts)

o
L

T T T T
0 500 1000 1500 2000 0 2000 4000
Fluorescence intensity change (counts) Fluorescence intensity before UV irradiation (counts)

Fig. 8 Optical transmission (A, D) and fluorescence (B, E) images of single CoPi-TMC crystals
before and after the UV light irradiation. (C, F) Differential fluorescence images obtained by
subtracting the image before the UV light irradiation from the image just after the UV light
irradiation. The acquisition time for one frame was 50 ms. (G) Histograms of UV light-induced
change in fluorescence intensity measured on the surface of the crystal and in solution at the
distance of 1 pum from the edge of the crystal. (H) The relationship between the initial
fluorescence intensity and UV light-induced fluorescence intensity change. The background was

subtracted from the original data.
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4. Conclusion

In summary, the author studied the reaction dynamics of photogenerated charge carriers in
CoPi-deposited TMC using ensemble-averaged and single-particle spectroscopies. The
combination of CoPi/Pt deposition and the anisotropic electron flow in the superstructure of
TMC significantly retarded the charge recombination of h* and e, resulting in remarkably
enhanced photooxidation activity. This is highly beneficial for developing novel photoactive
materials for numerous applications, including photocatalysis for water splitting and
environmental remediation. In principle, their strategy based on mesocrystal superstructures can
be applied to a variety of semiconductor materials and their composites with co-catalysts.
However, further efforts are required to assemble the structures in photoelectrochemical cells for

water splitting.
5. Reference

(1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.

(2) Hagfeldt, A.; Gr&zel, M. Chem. Rev. 1995, 95, 49.

(3) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis,
N. S. Chem. Rev. 2010, 110, 6446.

(4) Kubacka, A.; Fern&dez-Garc &, M.; Col&, G. Chem. Rev. 2012, 112, 1555.

(5) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.

(6) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503.

(7) Nakagawa, T.; Bjorge, N. S.; Murray, R. W. J. Am. Chem. Soc. 2009, 131, 15578.

(8) Tilley, S. D.; Cornuz, M,; Sivula, K.; Grézel, M. Angew. Chem., Int. Ed. 2010, 49, 6405.

(9) Abe, R.; Higashi, M.; Domen, K. J. Am. Chem. Soc. 2010, 132, 11828.

(10) Kay, A.; Cesar, I.; Grazel, M. J. Am. Chem. Soc. 2006, 128, 15714,

(11) Steinmiller, E. M. P.; Choi, K.-S. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20633.

(12) Zhong, D. K.; Sun, J.; Inumaru, H.; Gamelin, D. R. J. Am. Chem. Soc. 2009, 131, 6086.

(13) Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol., C 2000, 1, 1.

(14) Thompson, T. L.; Yates, J. T., Jr. Chem. Rev. 2006, 106, 4428.

(15) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891.

(16) Diebold, U. Surf. Sci. Rep. 2003, 48, 53.

(17) Cdfen, H.; Antonietti, M. Angew. Chem., Int. Ed. 2005, 44, 5576.

22



(18) Zhou, L.; O'Brien, P. J. Phys. Chem. Lett. 2012, 3, 620.

(19) Bian, Z.; Tachikawa, T.; Majima, T. J. Phys. Chem. Lett. 2012, 3, 1422.

(20) Bian, Z.; Tachikawa, T.; Kim, W.; Choi, W.; Majima, T. J. Phys. Chem. C 2012, 116, 25444.

(21) Kanan, M. W.; Nocera, D. G. Science 2008, 321, 1072.

(22) Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Chem. Soc. Rev. 2009, 38, 1009.

(23) Khnayzer, R. S.; Mara, M. W.; Huang, J.; Shelby, M. L.; Chen, L. X.; Castellano, F. N. ACS
Catal. 2012, 2, 2150.

(24) Liu, D.; Jing, L.; Luan, P.; Tang, J.; Fu, H. ACS Appl. Mater. Interfaces, Ahead of Print.

(25) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. J. Am. Chem.
Soc. 2012, 134, 16693.

(26) Zhong, D. K.; Gamelin, D. R. J. Am. Chem. Soc. 2010, 132, 4202.

(27) Zhong, D. K.; Cornuz, M.; Sivula, K.; Grazel, M.; Gamelin, D. R. Energy Environ. Sci.
2011, 4, 1759.

(28) McDonald, K. J.; Choi, K.-S. Chem. Mater. 2011, 23, 1686.

(29) Seabold, J. A.; Choi, K.-S. Chem. Mater. 2011, 23, 1105.

(30) Wang, D.; Li, R.; Zhu, J.; Shi, J.; Han, J.; Zong, X.; Li, C. J. Phys. Chem. C 2012, 116, 5082.

(31) Morris, N. D.; Mallouk, T. E. J. Am. Chem. Soc. 2002, 124, 11114.

(32) Gerken, J. B.; Chen, J. Y. C.; Masse, R. C.; Powell, A. B.; Stahl, S. S. Angew. Chem., Int. Ed.
2012, 51, 6676.

(33) Fonseca, C. N. P. d.; Paoli, M.-A. D.; Gorenstein, A. Sol. Energy Mater. Sol. Cells 1994, 33,
73.

(34) Yoshihara, T.; Katoh, R.; Furube, A.; Tamaki, Y.; Murai, M.; Hara, K.; Murata, S.; Arakawa,
H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 3817.

(35) Tachikawa, T.; Fujitsuka, M.; Majima, T. J. Phys. Chem. C 2007, 111, 5259.

(36) Cowan, A. J.; Barnett, C. J.; Pendlebury, S. R.; Barroso, M.; Sivula, K.; Gr&zel, M.; Durrant,
J. R.; Klug, D. R. J. Am. Chem. Soc. 2011, 133, 10134.

(37) Boschloo, G.; Fitzmaurice, D. J. Phys. Chem. B 1999, 103, 7860.

(38) Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Sekino, T.; Majima, T. J. Phys. Chem. B 2006, 110,
14055.

(39) Howe, R. F.; Grdzel, M. J. Phys. Chem. 1987, 91, 3906.

23



(40) Micic, O. I.; Zhang, Y.; Cromack, K. R.; Trifunac, A. D.; Thurnauer, M. C. J. Phys. Chem.
1993, 97, 7277.

(41) Howe, R. F.; Grdzel, M. J. Phys. Chem. 1985, 89, 4495.

(42) Kumar, C. P.; Gopal, N. O.; Wang, T. C.; Wong, M.-S.; Ke, S. C. J. Phys. Chem. B 2006,
110, 5223.

(43) McAlpin, J. G.; Surendranath, Y.; Dinca, M.; Stich, T. A.; Stoian, S. A.; Casey, W. H.;
Nocera, D. G.; Britt, R. D. J. Am. Chem. Soc. 2010, 132, 6882.

(44) Duonghong, D.; Ramsden, J.; Grazel, M. J. Am. Chem. Soc. 1982, 104, 2977.

(45) Tachikawa, T.; Yamashita, S.; Majima, T. Angew. Chem., Int. Ed. 2010, 49, 432.

(46) Harriman, A. J. Phys. Chem. 1987, 91, 6102.

(47) Naito, K.; Tachikawa, T.; Fujitsuka, M.; Majima, T. J. Am. Chem. Soc. 2009, 131, 934.

(48) Weckhuysen, B. M. Angew. Chem., Int. Ed. 2009, 48, 4910.

(49) Tachikawa, T.; Majima, T. Chem. Soc. Rev. 2010, 39, 4802.

(50) Wu, H.-P.; Cheng, T.-L.; Tseng, W.-L. Langmuir 2007, 23, 7880.

(51) Banks, D. S.; Fradin, C. Biophys. J. 2005, 89, 2960.

Part 2. Synergetic hydrogen evolution from 3D architectures of TMC with

MoS, modification

1. Introduction

With mounting concern regarding the reduction of human energy usage and alleviating
environmental issues, the efficient utilization of solar energy has become a major research
interest over the past few decades. Hydrogen as a renewable resource has been studied
extensively in this regard,"? with photocatalysis playing an important role in applications of
solar-driven hydrogen evolution since the 1970s.®> For example, TiO, photocatalysts have
attracted a great amount of research interest in terms of the hydrogen evolution reaction (HER)
because of their strong redox ability, high chemical stability, low toxicity, and abundant
availability.*® However, TiO, itself showed a poor HER activity even in the presence of
sacrificial reagents. In order to promote the HER, robust cocatalysts are usually present on
semiconductor materials as active sites.”® Among the noble metals, platinum (Pt) nanoparticles

exhibited an efficient HER due to the ideal free energy of hydrogen adsorption.***? However, the
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high price and insufficient storage of Pt limit its application in commercial production. Thus, the
development of a cocatalyst with low cost and good performance in the HER is strongly
motivated in regards to both scientific and engineering interests.

Recently, two-dimensional MoS, nanosheets have been extensively investigated and
considered as an alternative candidate for the replacement of Pt in efficient HERs.**** MoS,
forms two different crystal structures: a trigonal prismatic (2H) phase and an octahedral (1T)
phase. The increase in the number of active sulfur edge sites on 2H-MoS,, in preference to inert
basal planes, has become essential in the improvement of the reaction efficiency.”*® However,
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semiconducting 2H-MoS; is generally combined with additive photosensitizers or conductive

materials®*?

to overcome the inherent restriction of poor electrical conductivity. The metallic
1T-MoS; showed higher HER rates because of its higher conductivity; however, it was observed
that this phase was not thermally stable.?”?®® The author thus conclude that both the
photoconductivity and the photocatalytic activity of supporting semiconductor materials are
essential for achieving the desired functionality. MoS, nanosheets coupled with semiconductor
nanoparticles such as TiO;, have been synthesized and shown to exhibit higher activity in the
HER than MoS; or TiO, alone.”* However, the irregular re-stacking of MoS; layers, which
potentially reduces the number of active sites, and complicated synthetic procedures (e.g.,
introduction of graphene as a third component) are disadvantageous for their implementation in
practical applications.

In the development of a new class of porous materials, it has recently demonstrated that
anatase TiO, mesocrystals (TMCs) significantly enhance the charge separation with remarkably
long-lived charges (over 4 times), and exhibit excellent photoconductivity (over 10 times) than
nanocrystal samples, and even similar photocatalytic activities for organic degradation as
commercial P25, which is a benchmark TiO, photocatalyst.?**” TMCs consist of TiO.
nanocrystal building blocks and form a well-defined crystal shape. Herein the author reported a
new synthetic approach involving the assembly of chemically exfoliated MoS, nanosheets as
cocatalysts onto external surfaces of TMCs after mild impregnation and annealing. The
synergetic HER of MoS; supported on TMCs (MoS,/TMC) exhibited higher activity than in a
nanoparticle-based system using P25. It was further revealed by time-resolved diffuse reflectance
(TDR) spectroscopy that the higher HER efficiency was promoted by efficient interfacial
electron transfer in MoS,/TMC. The 3D architectures of MoS,/TMC with promising superiority
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are expected to become a potential competitor to earth-abundant catalysts for the HER.

2. Experimental Section

Preparation of MoS, Nanosheets. The lithium intercalation was carried out in a nitrogen-
filled glovebox ([O2] < 100 ppm).*® About 300 mg of bulk MoS, (Sigma-Aldrich) was immersed
in 3 mL of n-butylithium and stirred for 2 days. The stock solution was filtered and washed with
100 mL hexane. Then the semi-dry powder was added in 300 mL of Milli-Q water and
ultrasonicated for 1 h. The mixture was centrifugated and washed with Milli-Q water to remove
the lithium cation and unexfoliated MoS,. It was eventually collected and redispersed in Milli-Q
water (pH =~ 6.5). The concentration of MoS; in the suspension was determined by inductively
coupled plasma (ICP) analysis.

Preparation of Cubic-like TiO, Mesocrystals (TMCs). The cubic-like TMCs were
synthesized according to references with some modification.®* The samples were prepared from
precursor solutions containing TiF4 (Sigma-Aldrich), NH4sNO3; (Wako Pure Chemical Industries),
and H,O. The TiF4s:NH4sNO3:H,O molar ratios were 1:4.9:347. The precursor solutions were
placed on a silicon wafer to form a thin layer; the temperature was raised at a rate of 10 < min ™,
and the products were calcined at 500 <C for 2 h. The obtained powders were then calcined at
500 <C in an oxygen atmosphere for 8 h to remove surface residues, including fluorine species,
completely (confirmed by X-ray photoelectron spectroscopy (XPS)).

Preparation of TMCs Assembled with MoS,. The preparation method of the MoS,/TMC
composites was described as follows. 26 mg TMCs were impregnated with different
concentrations of chemically exfoliated MoS; nanosheets in 0.7 mL Milli-Q water (pH ~ 6.5).
After sonication, the suspension was dropped on a silicon wafer and annealed for 10 min on an
electric heater in the glovebox ([O2] < 100 ppm). Finally, the product was collected after cooling
to room temperature. For the preparation of other reference samples, the same modification
procedures were applied for crashed TMCs, P25 (Japan Aerosil), sheet-like TMCs,* and Al,O5
nanoparticles (Aldrich; particle size is <50 nm).

Preparation of Pt Nanoparticle-Loaded TMC (Pt/TMC). PY/TMC was synthesized
according to the literature procedure.® TMCs were stirred in water with H,PtCls (Aldrich) at
room temperature and evaporated the water at 100 <C, and calcined in air at 500 <C. The amount
of Pt was 10 wt%, which was determined by ICP.

Characterizations. The structures of the samples were examined using X-ray diffraction
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(XRD; Rigaku, Smartlab; operated at 40 kV and 200 mA, Cu Ka source). The morphologies
were investigated using field-emission scanning electron microscopy (FESEM) equipped with
EDX analyzer (JEOL, JSM-6330FT) and transmission electron microscopy (TEM) equipped
with EDX analyzer (JEOL, JEM 3000F operated at 300 kV or JEM-2100 operated at 200 kV).
The Brunauer—-Emmett-Teller (BET) surface areas were measured using nitrogen sorption (BEL
Japan, BEL-SORP max). The pore volumes and pore diameter distributions were derived from
the adsorption isotherms using the Barrett—Joyner—Halenda (BJH) model. The steady-state UV-
Vis absorption and diffuse reflectance spectra were measured by UV-Vis-NIR
spectrophotometers (Shimadzu, UV-3100 or Jasco, V-570) at room temperature. The
concentration of MoS, was determined by ICP (Shimadzu, ICPS-8100). The XPS spectral
measurements were performed with the PHI X-tool (ULVAC-PHI).

Photocatalytic H, Generation Tests. The catalyst of MoS,/TMC (1 mg) was suspended in 2
mL water with lactic acid (10 vol%) in 10 mL quartz cell and the suspension was shaken for 10
min. Then, the cell was sealed with a rubber septum and purged with Ar gas for 20 min before
initiating the irradiation. The sample was irradiated with a UV-LED source (Asahi Spectra, POT-
365; 100 mW cm?) with constant magnetic stirring at room temperature. After the reaction, 0.1
mL of gas was collected from the headspace of the reactor and analyzed using a Shimadzu GC-
8A gas chromatograph equipped with an MS-5A column and a thermal conductivity detector.
The apparent quantum efficiency (AQE) for hydrogen evolution at each centered wavelength of
the monochromatic light with width of 45 nm (Asahi Spectra, HAL-320; 0.7 mW cm?) was
calculated via the following equation: AQE = (2 < number of number of hydrogen molecules /
number of incident photons) x<100%.

Time-Resolved Diffuse Reflectance Measurements. The femtosecond diffuse reflectance
spectra were measured by the pump and probe method using a regeneratively amplified titanium
sapphire laser (Spectra-Physics, Spitfire Pro F, 1 kHz) pumped by a Nd:YLF laser (Spectra-
Physics, Empower 15). The seed pulse was generated by a titanium sapphire laser (Spectra-
Physics, Mai Tai VFSIW; fwhm 80 fs). The fourth harmonic generation (330 nm, 3 pJ pulse™)
of the optical parametric amplifier (Spectra-Physics, OPA-800CF-1) was used as the excitation
pulse. A white light continuum pulse, which was generated by focusing the residual of the
fundamental light on a sapphire crystal after the computer controlled optical delay, was divided

into two parts and used as the probe and the reference lights, of which the latter was used to
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compensate the laser fluctuation. Both probe and reference lights were directed to the sample
powder coated on the glass substrate, and the reflected lights were detected by a linear InGaAs
array detector equipped with the polychromator (Solar, MS3504). The pump pulse was chopped
by the mechanical chopper synchronized to one-half of the laser repetition rate, resulting in a pair
of spectra with and without the pump, from which the absorption change (% Abs) induced by the

pump pulse was estimated. All measurements were carried out at room temperature.

3. Results and Discussions

The general morphologies of the materials were characterized by field-emission scanning
electron microscopy (FESEM) and transmission electron microscopy (TEM). In Fig. 1A, it can
be seen that the TMCs, which were newly synthesized via topotactic conversion from precursor
NH,TiOF; crystals,®* display cubic-like morphologies. The author also observed that TMCs with
porous structures were composed of an ordered alignment of anatase TiO, nanocrystals, with
sizes of ~20 nm, as determined from the magnified FESEM image of the crystal surface (insert
in Fig. 1A).

The FESEM images of the MoS,/TMC (Figs. 1B and C) indicate that the structure of the
TMCs remains intact after the modification treatment, and the majority of MoS, nanosheets are
uniformly attached onto the external surfaces of TMCs without considerable aggregation.
Although it is not facile to distinguish the existence of MoS, nanosheets tiled on the TMCs due
to the nm thickness, the elemental mapping analysis proves the distribution of Mo (3.6 wt%) and
S (5.2 wt%) elements on the faces of the TMCs, which are consistent with the results of
inductively coupled plasma (ICP) analysis. The detailed structures of MoS;, nanosheets and 3D
architectures of MoS,/TMC were further examined. Fig. 1D shows that the chemically exfoliated
MoS, moieties are nm-thick sheets with partial overlaps. By atomic force microscopy (AFM),
the size and thickness of the MoS, monolayer were found to be ~400 nm and ~1.6 nm,
respectively.®® The SAED pattern recorded on exfoliated MoS, exhibits a diffraction pattern
corresponding to 1T-MoS; along the [001] zone axis (Fig. 1E).?"? Fig. 1F shows the TEM
image of MoS,/TMC. The high-resolution TEM (HRTEM) analysis clearly reveals that a layered
MoS; exists at the lateral surface of TMC (Fig. 1G). The lattice spacing, as indicated by two
dotted lines in Fig. 1G, was found to be approximately 0.62 nm, thus corresponding to the (002)
plane of 2H-Mo0S,.*" Furthermore, a number of folded edges exhibit multi-parallel lines

corresponding to two or three layers of MoS,.
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[001] 1T-MoS, | RS
i

Fig. 1 FESEM images of (A) TMC, (B) MoS,/TMC, and (C) magnified image of panel B. The
inset of panel (A) is the magnified image. TEM image of (D) MoS; and its (E) SAED; and (F)
MoS,/TMC and its (G) HRTEM.

The phase identities of the samples were collected using powder X-ray diffraction (XRD), as
shown in Fig. 2A. The patterns of all TMCs were comparable with the standard peaks of the
anatase phase. For stacked MoS;, nanosheets on the glass substrate, a detectable diffraction peak
was observed at 14.4°, which corresponds to the c-plane of stacking MoS,.?* The patterns of
MoS,/TMC powders were also characterized and in accordance with each component. The
intensities of (002), (100), and (110) diffraction peaks from MoS, increased gradually upon
increasing the amounts of MoS; on the TMCs from 1 wt% to 23 wt%. The nitrogen adsorption-
desorption isotherms and the corresponding pore size distribution curves were used to investigate
the textural properties of MoS,;, TMC, and MoS,/TMC. The surface areas of TMC and
MoS,/TMC were calculated to be 62 m? g™ and 43 m? g, respectively, with a similar mean pore
size of ~24 nm. After the introduction of MoS,, there was the slight decrease in surface area due

to the presence of partially covered pores on the TMCs.
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X-ray photoelectron spectroscopy (XPS) was employed to investigate the phase composition
of MoS, on TMCs at various annealing temperatures (Fig. 2B). At room temperature, the
MoS,/TMC showed binding energies of Mo 3dz,, Mo 3dsj,, S 2py2, and S 2psp, at 231.2, 228.0,
162.1, and 161.0 eV, respectively.”® Upon elevating the annealing temperature, the binding
energies of Mo 3d and S 2p shifted to higher energies, indicating a phase transition from 1T to
2H," while no difference was observed in Ti 2p and O 1s for the TMCs due to the thermal
stability at 500 <C.
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Fig. 2 (A) XRD patterns of MoS,, TMC, and MoS,/TMC (10 wt% MoS,). (B) XPS spectra of
MoS,/TMC (10 wt% MoS,) powders annealed at a range of temperatures.

The photocatalytic HER was evaluated on MoS; (exfoliated MoS, and MoS,/Al,O3; annealed
at 160 C), TMC, and a range of MoS,/TiO, with equal MoS; loadings (10 wt%), except in the
case of pure TMC. The HER was investigated under UV light irradiation, where lactic acid was
used as both a hole scavenger and as an abundant source of H* ions (Fig. 3A).%2 A negligible
amount of H, gas evolution was detected on MoS, or TMCs alone. Subsequently, a promising
and synergetic improvement in the photocatalytic HER was observed on MoS,/TMC, with the
MoS; loading being found to play a crucial role in the HER efficiency. With an increased
loading of MoS,, the HER of MoS,/TMC was enhanced due to an increase in the number of
active sites, to an optimal value of 10 wt%; however, it was also observed that excessive loading
lowered the efficiency of MoS,/TMC, possibly due to the competitive absorption of UV light,

and the stacking of MoS, monolayers.*
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They also observed that the HER over MoS,/TMC was influenced by the annealing
temperature. At lower temperatures, a poor physical contact between MoS, and TMC resulted,
which is disadvantageous to interfacial electron transfer, even though metallic 1T-MoS; has a
better electrical conductivity. The decrease in activity after annealing at 240 <C may be attributed

to the disappearance of the 1T phase and/or partial oxidation of active edge sites.
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Fig. 3 (A) Comparison of the hydrogen generation rates of different samples. (B) Steady-state
diffuse reflectance spectra (left axis, solid lines) and AQE (right axis, symbols with dashed lines)
of TMC (red) and MoS,/TMC (blue).

Under the same conditions, the optimal MoS,/TMC gives an H, evolution rate of 0.55 mmol h®
19!, which is 4 times greater than that of MoS,/P25 (0.14 mmol h™ g%), despite its larger surface
area of 51 m? g™*. To confirm the impact of mesocrystal superstructures on the HER, they
prepared two reference samples, crushed MoS,/TMC and MoS,/crushed TMC; in the latter case,
TMCs were crushed by grinding with a mortar before modification. As summarized in Fig. 3A,
these composites exhibited much lower activity than MoS,/TMC. The well-aligned nanocrystals
on the external surfaces of TMCs form a close contact with the MoS; sheets, thus facilitating the
electron transfer between the two to efficiently promote the HER. Furthermore, a unique
morphological effect was observed; MoS,/cubic-like TMC appears to be more active than
MoS,/sheet-like TMC. This is likely due to the fact that the lateral surfaces of cubic-like TMCs
are dominated by {101} facets, which are in favor of H, generation compared to the basal {001}

surfaces of sheet-like TMCs.*%4?
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The apparent quantum efficiency (AQE) at each centered wavelength of the monochromatic
light was calculated using the following equation: AQE = (2 < number of H, molecules/number
of incident photons) > 100%. Results are shown in Fig. 3B for the UV-visible steady-state
diffuse reflectance spectra of the samples tested. The pure TMCs showed negligible H,
generation in the whole wavelength region tested, due to their intrinsic limitation. On the other
hand, MoS,/TMC evolved H, gas, and the action spectrum of AQE was found to be in agreement
with the absorption spectrum of TMCs. The AQE reached up to 1.8% at 340 nm and 1.4% at 360
nm. Even though 2H-MoS; has an intrinsic visible light absorption, the MoS,/TMC combination
exhibits a poor visible performance due to insufficient charge generation from the excited MoS,.
The stability of MoS,/TMC was further tested by recycling the catalyst for five times. After 25 h,
the catalyst did not show any loss of the activity, indicating its reusability in the photocatalytic
reactions. Even though the activity of MoS,/TMC still falls behind that of Pt nanoparticle-loaded
TMC (PYTMC) (~1.4 mmol h™* g), MoS, is considered an ideal alternative to Pt owing to its
low cost, its electrochemical stability, and its environmental advantages.

To confirm the fast interfacial electron transfer dynamics within the 3D architectures of
MoS,/TMC, they employed femtosecond TDR spectroscopy. After 330-nm laser excitation of
MoS,/TMC in ambient air, as shown in Fig. 4A, a broad absorption band appeared in the near-
infrared region, which was superimposed with trapped and free (or shallowly trapped) electrons
in TMCs. Similar absorption spectra were observed for pure TMC, P25, and MoS,/P25. In the
period of 0-10 ps, the transient absorption decayed rapidly when compared with pure TMCs
(black lines in Fig. 4B). After 10 ps had passed, the transient absorption diminished gradually.
To evaluate the decay Kinetics, the time profiles of absorption, probed at 900 nm, were fitted
using multi-exponential functions (Fig. 4B), and their lifetimes summarized in Table 1. By
modifying TMCs with MoS,, the lifetimes of the electrons were found to decrease largely to 1.7
ps (49%), 33 ps (32%), and 780 ps (19%) from corresponding time scales of 4.8 ps (23%), 53 ps
(41%), and 1070 ps (36%) for pure TMCs. Considering that the transient absorption signal from
MoS,/Al,O3 is very weak and decays within 1 ps, it was obvious that interfacial electron transfer
could take place between TMCs and MoS,. The reaction time of electrons was tentatively
estimated using the diffusion coefficient of electrons in TiO,. The mean times required for
electron diffusion from a nanocrystal (21 nm x17 nm) to the neighboring MoS, were within tens

of picoseconds, which is reasonably consistent with the first (z;) and second (z;) components.
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The third component (z3) of MoS,/TMC is possibly mediated by multiple TiO, nanocrystals. The
interparticle electron transfer over several hundred nanometers, which corresponds to more than
ten nanocrystals, was expected to occur in the microsecond time scale, which is beyond the time
window measured here. It is noteworthy that MoS,/P25 exhibits similar decay times to those of
pure P25, except for the fast decay within ~1 ps (~10%), which might be indicative of electron
transfer at the interface between TiO, and MoS,. Thus, the well-ordered geometry of TMCs
facilitates electron transfer between nanocrystals, resulting in the retardation of the charge
recombination, and in efficient electron harvesting by MoS.. This is likely to be the main reason
why MoS,/TMC exhibits a higher photocatalytic activity (2~5 times) compared to other
MoS,/TiO,.
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Fig. 4 (A) Time-resolved diffuse reflectance spectra of MoS,/TMC. (B) Normalized transient
absorption traces observed at 900 nm for a range of samples. Bold lines indicate

multiexponential curves fitted to kinetic traces.

Table 1. Kinetic Parameters of Transient Absorption Decays

Sample T (ps) T2 (pS) 13 (PS)
T™MC 5.0 +0.4 (30%) 55 +3 (37%) 1100 +37 (33%)
MoS,/TMC 1.9 +0.1 (64%) 36 +2 (23%) 805 53 (13%)
P25 6.0 +0.3 (38%) 72 +4 (37%) 1024 +46 (25%)
MoS,/P25 7.6 0.6 (46%) 91 +12 (35%) 1372 +271 (19%)
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4. Conclusion

The author decorated the newly designed TMCs with the chemically exfoliated MoS,
nanosheets by a simple impregnation method. MoS,/TMC exhibits the high HER rate (0.55
mmol h™* g™), high AQE (1.8%), and good reusability (over 25 h) under UV light irradiation,
without conductive supports such as graphene. To verify the efficient charge separation in
MoS,/TMC, the electron transfer dynamics from the excited TMC to MoS, was directly
monitored by transient absorption for the first time. This strategy possesses not only a possibility
for use of noble-metal-free MoS,, but also confirms the crucial concept that the hetero-
superstructure with the synergy is beneficial for achieving a high photocatalytic activity. It is
believed that this concept can be exploited for a range of applications, such as (photo)catalysis,

optoelectronics, and energy storage.
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Chapter 2. Tunably anisotropic electron flow on specific facet-

dominated TMC with photocatalytic selectivity

1. Introduction

Surface science is a critical factor in the equilibrium crystallography and physicochemical
performances of semiconductors.** Anisotropic crystal engineering is an important strategy for
tuning and optimizing material reactivities.>® Semiconductor photocatalysts with specific
exposed facets exhibit pronounced redox behaviors because of their abundant adsorption sites,
efficient separation of photogenerated charges (electrons and holes), and synergism.'®*” TiO, has
been widely investigated as a highly active photocatalyst for environmental and energy
applications.®*** The photocatalytic activity of TiO, is dominated by its crystal phase, size,
morphology, and surface structure.?**® Surface-structure control of the atomic configuration can
induce anisotropic crystal growth because of the different surface energies. In the case of anatase
TiO,, the average surface energies of the different facets are 0.90 Jm™? for the (001) facet, 0.53
Jm™2 for (100), and 0.44 Jm 2 for (101).?’ Based on the Wulff construction, the {001} facet is the
most difficult to expose in crystal growth, because its surface energy is high compared with that
of the thermodynamically stable {101} facet." However, fluorine-ion capping, which is a
pioneering development in the synthesis of anisotropic TiO, crystals, can reduce the surface
energy and largely expose the {001} facets."® As expected, the high-energy {001} facets exhibit
higher chemical activities in the degradation of organic pollutants and water splitting.?*2
Meanwhile, some controversial results suggesting that the activity of the exposed {101} facet for
specific reactions is superior to that of the exposed {001} facet have been reported.***°
Fundamental mechanistic studies are therefore needed to gain a proper understanding of the
photochemical behavior.

Herein the author describes the novel strategies for the synthesis of a series of TiO,
mesocrystals (TMCs) with different morphologies and explore their photocatalytic performance
in pollutant degradation and H, evolution from water. Mesocrystals are superstructures with a
crystallographically ordered alignment of nanoparticles and are useful for many areas of
application owing to their unique characteristics such as a high surface area, pore accessibility,

and good electronic conductivity and thermal stability.”*° The ratio of the exposed {001} and
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{101} TMC facets was successfully controlled using a crystal growth inhibitor (NH4F). It is
suggested that the {101} facets prefer reduction, whereas the {001} facets favor oxidation,
because of crystal-facet-dependent surface adsorption and charge transfer. This work will help to
gain an in-depth understanding of charge separation within solid catalysts with specific crystal
facets, and facilitate construction of more efficient photocatalysts for environmental and energy

conversion applications.

2. Experimental Section

Preparation of TMCs with Different Morphologies. TMCs with different morphologies
were prepared from precursor solutions containing NH4F (Wako Pure Chemical Industries), TiF,
(Sigma-Aldrich), H,O, NH;NO3; (Wako Pure Chemical Industries), and P123 [amphiphilic
triblock copolymer, namely (EO)20(PO)70(EO)20; Sigma-Aldrich]. The
NH4F:TiF4:H,0:NH;NO3:P123 molar ratios were x:93:32000:453:1. The detailed synthetic
procedure and formation mechanism for TMCs have been described elsewhere.***? The obtained
samples were denoted by TMC-n, where n = 1, 2, 3, and 4, representing the TMCs synthesized
with x (NH4F) = 0, 46, 116, and 232, respectively. The precursor solutions were placed on a
silicon wafer to form a thin layer; the temperature was raised at a rate of 10 < min™*, and the
solutions were calcined at 500 <C for 2 h. The obtained powders were calcined at 500 <C in an
oxygen atmosphere for 8 h to remove surface residues, including fluorine species, completely.*®

Preparation of Pt/TMCs. A photochemical deposition method was used to load 1 wt% Pt
nanoparticles on TMCs with different morphologies.** In a typical procedure, TMCs (30 mg),
Milli-Q ultrapure water (27 mL; Millipore), methanol (3 mL), and a certain amount of H,PtClg
(Aldrich) were mixed to form a homogeneous suspension. The solution was then exposed to
ultraviolet (UV) light from a mercury light source (Asahi Spectra, REX-250) for 30 min at room
temperature. Finally, the product was collected after centrifugation and dried. The amount of
loaded Pt was determined using inductively coupled plasma atomic emission spectroscopy
(Shimadzu, ICPS-8100).

Characterization. The crystal structures of the samples were examined using X-ray
diffraction (XRD; Rigaku, Smartlab; operated at 40 kV and 200 mA, Cu Ka source). The
morphologies were investigated using field-emission scanning electron microscopy (FESEM;
JEOL, JSM-6330FT) and transmission electron microscopy (TEM; JEOL, JEM 3000F operated
at 300 kV or Hitachi, H-800 operated at 200 kV). The Brunauer-Emmett-Teller (BET) surface
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areas were measured using nitrogen sorption (BEL Japan, BEL-SORP max). The pore volumes
and pore diameter distributions were derived from the adsorption isotherms, using the Barrett—
Joyner—Halenda (BJH) model.

Photocatalytic Degradation Test. For a typical photocatalytic process, TMC dispersions (2
mL) containing 4-chlorophenol (Wako Pure Chemical Industries) (0.1 mM) or K,Cr,0O; (Wako
Pure Chemical Industries) (0.4 mM) were sonicated for 20 min and then transferred to a quartz
cuvette. The photocatalytic reaction was initiated by irradiation with a mercury light source
(Asahi Spectra, REX-250) through a filter (centered at 365 nm) at room temperature. After
stopping the UV illumination, the sample was centrifuged at 10000 rpm (Hitachi, himac
CF16RX) to separate the solid particles. The concentration of unreacted molecules, from which
the degradation vyield was calculated, was analyzed using a UV-visible-near infrared
spectrophotometer (Shimadzu, UV-3100 or UV-3600) at the characteristic wavelength.

Photocatalytic H, Generation Test. For UV-induced H; production, Pt/TMC (5 mg) was
suspended in 5 vol% methanol-water (5 mL). Ar was bubbled through the suspension for 20 min,
and then the test tube was sealed with a rubber septum. The test tube was irradiated with a
mercury light source (Asahi Spectra, REX-250) through a filter (centered at 365 nm), with
magnetic stirring, at room temperature. The intensity of the UV light was approximately 100
mW cm 2. For visible-light H, production, PUTMC (2.5 mg) was dispersed in 5 mL of an
aqueous solution (pH 10, adjusted with NaOH and HCI) of 1 mM eosin Y (EY*"; Nacalai
Tesque) and 0.7 M triethanolamine (TEOA; Sigma-Aldrich), or in 5 mL of an aqueous solution
(pH 3, adjusted with HCIO;) of 10 uM Ruthenizer 470 (Solaronix) and 10 mM
ethylenediaminetetraacetic acid (EDTA; Nacalai Tesque). The suspensions were irradiated with
visible light (Asahi Spectra, HAL-C100; 400—700 nm, 100 mW cm 2), with magnetic stirring, at
room temperature. A 430 nm cutoff filter was used to remove UV light. After the reaction, gas
(0.1 mL) was collected from the top of the reactor and analyzed using a Shimadzu GC-8A gas
chromatograph equipped with an MS-5A column and a thermal conductivity detector. The
surface concentrations of the dye sensitizers were determined from the UV-visible absorption
spectra of supernatant solutions separated by centrifugation.

Time-Resolved Diffuse Reflectance Measurements. Ar-saturated acetonitrile slurries
containing the catalyst powders (20 g L) and N719 ruthenium dye [cis-diisothiocyanato-
bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(Il) bis(tetrabutylammonium), 1 mM; Solaronix]
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were prepared. Time-resolved diffuse reflectance measurements were performed using the
second harmonic generation (532 nm, 0.2 mJ pulse }, 5 ns full-width at half-maximum) from a
Q-switched Nd**:YAG laser (Continuum, Surelite 11-10) for excitation, operated with temporal
control by a delay generator (Stanford Research Systems, DG535).* The reflected analyzing
light from a continuous-wave 450 W Xe-arc lamp (Ushio, UXL-451-0) was collected using a
focusing lens and directed through a grating monochromator (Nikon, G250) to a silicon
avalanche photodiode detector (Hamamatsu Photonics, S5343). The transient signals were
amplified with a voltage amplifier (Femto, DHPVA-100) and recorded using a digitizer
(Tektronix, DPO3054). All experiments were carried out at room temperature. The percentage
absorption (%abs) is given by the equation: %abs = [(Ro — R)/Ro] > 100, where R and Ry
represent the intensities of the diffuse reflected monitor light with and without excitation,
respectively.

3. Results and Discussion

3.1. Synthesis and Structure of Different-Shaped TMCs. The synthesis and structures of
different-shaped TMCs are shown in Fig. 1. A thin layer of an aqueous solution containing TiF,
NH4NO3, P123, and NH4F was dropped on a silicon wafer and calcined at 500 <C. Intermediate
NH,TiOF; crystals were formed during the initial annealing process (<200 <C).*** During the
self-assembly process, the amount of NH;F added was critical in controlling the size and

thickness of the crystal.**

With increasing annealing temperatures, topotactic transformation
occurred from NH4TiOF; to anatase TiO,. It has been reported that the plate-like mesocrystal
superstructures are composed of aligned anatase TiO, nanocrystals with dominant {001} facets
which lead to efficient charge separation.*?**“® When the molar ratio x of NH4F relative to that
of P123 was in the range 0-232, the growth geometry was well ordered along the [101] zone axis,
corresponding to TMC-1-4 with different {001}\/{101}w ratios, where M indicates the external
surface of a mesocrystal to distinguish it from nanocrystal facets. The TMC morphology
gradually became thinner and longer, i.e., the proportion of {001}y surfaces increased and that

of {101}y surfaces decreased.
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Fig. 1 Schematic illustration of synthesis of different-shaped TMCs.

The low-magnification FESEM images in Fig. 2 show the general morphologies of the as-
synthesized TMCs. The TMC shape was changed from cubic to plate-like by varying the molar
ratio of NH,4F, although some agglomerates were occasionally observed. As can be seen in Fig.
2A, cubic structures of average thickness ~290 nm and average size ~650 nm were formed in the
absence of NH4F. When a small amount of NH4F was introduced, the average TMC thickness
decreased to ~210 nm, and the average size increased slightly to 880 nm (Fig. 2B). When they
continued to increase the NH4F concentration, the product showed a plate-like morphology, with
a thickness of ~140 nm and a size of ~1 um (Fig. 2C). Eventually, increasing the concentration
of NH4F produced a sheet-like structure with a smaller thickness of ~120 nm and a larger size of
~1.4 um (Fig. 2D). When they further increased the NH4F concentration, the TMC sheets
merged to form irregular structures, because of the excess area of the {001} surfaces. Based on

the gradual changes in the morphology from cubic to plate-like structures, the area ratios of the

{001}y surfaces to the {101}y surfaces (S{“QOI}/S{“{'O]}) vary from 1.1 to 5.8 (Table 1). On the
other hand, the area ratios of the {001} and {101} facets of TiO, nanocrystals in TMCs (S{“gm}/

S{“l‘m}) slightly increased from 0.41 to 0.46 by increasing the amount of NH4F (Table 1),

supporting the explanation that NH4F mainly controls the shapes of the NH,TiOF; crystals.

41



Fig. 2 FESEM images of different-shaped TMCs synthesized with x (molar ratio of NH4F) = 0
(A), 46 (B), 116 (C), and 232 (D). Insets show the high-magnification FESEM images.

Table 1. Structural Characteristics of TiO, Mesocrystals (TMCs)

Surface

Pore

Pore

sample Thickniss, Lengtt;, S {"(S/(I)]} / I(om)(/: rea volume.  size. N_anocrysta:jl S {EOJ} é
(nm) (nm) Spog l 004y (g Crigd () size, (nm) Spog
TMC-1 290 650 1.1 0.22 92 0.29 11 19 (21) 0.41
TMC-2 210 880 2.1 0.24 96 0.36 11 21 (22) 0.42
TMC-3 140 1000 3.6 0.25 93 0.36 9 24 (21) 0.43
TMC-4 120 1400 5.8 0.44 96 0.36 11 23 (22) 0.46

& Face-to-face distance between {001}y TMC facets.
b Face-to-face distance between {101}y TMC facets.
¢ Obtained from powder XRD data.
¢ Obtained from TEM analysis. The numbers in parentheses are the nanocrystal size calculated

from powder XRD data using the Scherrer equation.
® Ratio of surface areas of nanocrystals in TMCs, determined from TEM analysis.
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Electron microscope analyses further confirmed the superstructures of the TMC samples. The
high-magnification FESEM and TEM images clearly show that the TMCs have a typical porous
structure with a pore size of several tens of nanometers (Fig. 3). A selected-area electron
diffraction pattern recorded on the TMC shows a diffraction pattern corresponding to single-
crystal anatase along the [001] zone axis; this indicates ordered alignment of nanocrystals (inset
in Fig. 3B). A photochemical deposition technique was used to prepare Pt-nanoparticle-loaded
TMCs.** In Figs. 3A and B, a number of Pt nanoparticles (red arrows) are clearly seen on the
TMC surfaces. It is worth noting that the Pt nanoparticles are mostly deposited on the lateral
faces of the TMCs and the pore wall surfaces; these expose the {101} facets as reductive sites.*®
The preferential deposition of Pt nanoparticles on the {101} facets has previously been observed
for anatase TiO, nanocrystals.****** The size distributions of the Pt nanoparticles deposited on

the TMCs are between 1.5 and 3.5 nm, with average diameters of ~2.5 nm.

Fig. 3 (A) High-magnification FESEM image of Pt/TMC-1. (B) TEM image of Pt/TMC-4. The
red arrows indicate the Pt nanoparticles. Inset in panel (B) indicates the electron diffraction

pattern of the selected area.

The powder XRD patterns of as-synthesized TMCs are shown in Fig. 4. All the diffraction
peaks are attributable to the anatase phase of TiO,. There are no obvious differences between the
peak positions and peak widths with and without NH4F. For anatase TiO,, the detected main
peaks at 26 values of 25.8< 37.7< and 47.8<can be assigned, respectively, to the (101), (004),
and (200) planes in the tetragonal anatase phase. The relative ratio of the (004) diffraction peak
intensity to that of the (101) peak increased as the NH4F concentration increased, implying
oriented crystal growth along the [101] axis (Table 1). This tendency is in good agreement with
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the FESEM results. In addition, the crystallite sizes of TiO, estimated from the Scherrer equation

are consistent with the TEM observations (Table 1).
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Fig. 4 Powder XRD patterns of TMCs.

Fig. 5 shows the nitrogen adsorption—desorption isotherms and the corresponding pore-size
distribution curves (inset) for the TMC samples. All the curves show type IV isotherms and
hysteresis loops at high relative pressures, supporting the presence of mesoporous structures. The
pore-size distributions in the Fig. 5 inset indicate that all the samples have mesopores with mean
sizes of around 10 nm. Furthermore, the BET specific surface areas of the samples are very

similar (~90 m? g %) (Table 1), although the sample morphologies are quite different.

44



‘_'A 250 N F"’E\ 3 %
2 1 H,; - —=—TMC-1 ‘
o 2009 2,0 @& —e—TMC-2 ot
5 1 B | AW —a—TMC3 -
= 1501 24 f- A\ TMC-4 Qg‘,ﬁﬁ‘.‘
= PSR N ‘.‘%ﬂ
i AZa m W

< 100{ 2,l¥ i S Y

) 2 o0 20 40 /}A\w

S > d /nm A

S 504 © g A

(@) ““H‘é’\‘éﬂi‘:‘aﬁ

> ?‘AAAAA‘**“‘A‘-

04

00 02 04 06 08 10
Relative pressure (P/P )

Fig. 5 Nitrogen adsorption-desorption isotherms and pore size distributions (inset) of TMCs.

3.2. Photocatalytic Degradation. The photocatalytic performances of TMCs with different
morphologies in the oxidative degradation of 4-chlorophenol, which is a commonly used test
compound for photocatalysis,* were evaluated. Fig. 6 shows the degradation of 4-chlorophenol
under UV-light irradiation, where C, and C are the concentrations of 4-chlorophenol before and
after UV-light irradiation, respectively. Negligible degradation was observed in the absence of
TMCs or UV light. The rate constants for 4-chlorophenol degradation were estimated from the
slopes of In(Cy/C) vs. irradiation time (inset in Fig. 6) to be 0.021, 0.024, 0.028, and 0.036 min*
for TMC-1-4, respectively. The degradation efficiency clearly increases in proportion to the
amount of {001}y surfaces. TMC-4 exhibited the highest activity among the samples tested.
This result indicates that the reactive {001} facets play a crucial role in the photodegradation of

4-chlorophenol, possibly because of their strong ability to form hydroxyl radicals.?
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Fig. 6 Photocatalytic degradation of 4-chlorophenol over different TMC samples under UV-light
irradiation. Co and C are the concentrations of 4-chlorophenol before and after UV-light
irradiation, respectively. The experimental conditions were [TMC] = 0.5 g L™, [4-chlorophenol]

=0.1 mM, pH =7, 2 =365 nm, lyy = 140 mW cm 2, and air saturation.

To evaluate the TMC performances further, they examined the photocatalytic reduction of Cr®*
in the aqueous phase as a probe reaction. The changes in the characteristic absorption bands were
monitored to estimate the degradation efficiency. In contrast to oxidative degradation, the
activity increased in the order TMC-4 < TMC-3 < TMC-2 < TMC-1, as shown in Fig. 7.
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Fig. 7 Photocatalytic degradation of Cr®* in aqueous phase in the presence of different TMC
powders. The experimental conditions were [TMC] = 0.4 g L%, [Cr®*] = 0.4 mM, pH =3, A =

365 nm, lyy = 100 mW cm 2, tyy = 2 h, and air saturation.

3.3. Photocatalytic H, Evolution under UV-Light Irradiation. As is well known, pure TiO,
cannot split water effectively to produce H, under UV-light irradiation. The reaction efficiency
of this process is improved when a Pt cocatalyst and sacrificial electron donor are added to the
system.*”*® The amounts of H, evolved during UV-light irradiation of the Pt/TMC powders were
measured in aqueous solutions containing methanol as a sacrificial electron donor. Fig. 8 shows

the time profiles of H, evolution over Pt/TMC samples with different morphologies.

Interestingly, the photocatalytic activity increased with decreasing S{“é'm}/ S{“l"oj}; for example, the

activity of PUTMC-1 was 2.5 times that of PUTMC-4. Pan et al.** and Gordon et al.** reported
that TiO, nanocrystals with dominant {101} facets produce more H, than {001}-faceted crystals
do; this is in agreement with the results. It is therefore proposed that following UV-light
irradiation, the photogenerated electrons in the conduction band (CB) of TiO, migrate from the
{001} facet to the {101} facet and are stored in Pt, where they reduce H* to generate H,.*
Concurrently, the photogenerated holes, which could be preferentially trapped on the {001} facet,

oxidize the methanol.
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Fig. 8 H; evolution during UV-light irradiation of Pt/TMC samples in methanol-water solution.
The experimental conditions were [PYTMC] = 0.5 g L™}, 2 = 365 nm, lyy = 100 mW cm 2, and

initial Ar saturation.

3.4. Dye-Sensitized H; Evolution under Visible-Light Irradiation. Efficient sunlight
harvesting from UV to visible regions is one of the key challenges for practical applications.
They thus examine the differences among facet-dominated reactions in dye-sensitized water-
splitting systems.**** The efficiency of H, evolution in the presence of visible-light-active dye
sensitizers is determined by the following factors: (i) surface adsorption of dyes, (ii) interfacial
electron transfer from the excited dyes (or reducing dye radical anions) to the CB of TiO,, and
(iii) charge recombination between the oxidized dyes and injected electrons. To investigate
factor (i), EY* and Ruthenizer 470* were used as dye sensitizers for photocatalytic H evolution.

Fig. 9 shows the time dependence of H;, production during visible-light irradiation of aqueous
suspensions of Pt/TMC powders in the presence of EY (its molecular structure is shown in the
inset) and TEOA, which was used as a sacrificial electron donor. It is obvious that all the

0

Pt/TMC samples evolved H, at the same level as the previously reported one,*® and their

activities increased as S} . /S

oy / Spog decreased.
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Fig.9 H; evolution during visible light irradiation of Pt/TMC powders in aqueous solution (pH
10) containing EY and TEOA. The experimental conditions were [PYTMC] =0.5g L™, [EY] =
1 mM, [TEOA] = 0.7 M, pH = 10, A = 430~700 nm, lys = 100 mW cm?, and initial Ar

saturation.

The pK, values for proton dissociation of the hydroxyl and carboxylic groups of EY in water
are 2.81 and 3.75, respectively,™ therefore EY forms a dianion (EY?") in alkaline solution at pH
10. Anatase TiO, nanoparticles have an isoelectric point in the vicinity of pH 6-7,° implying
that molecular adsorption is strongly inhibited by repulsion between negatively charged TiO, and
EY? % In fact, the concentrations of adsorbed EY molecules on the PUTMC samples were
estimated to be below 1% of the total EY.

The reaction process after photoexcitation of free EY*™ in solution is summarized as follows:

3EY*) + TEOA — EY™ + TEOA®* (1)

EY* + TiO, —» EY? + TiO4(e) (2)

where *}(EY?)" is the singlet and triplet states of EY>™ and TEOA" is the radical cation of
TEOA.*" Back electron transfer from EY**~ to TEOA** would be inhibited because of the rapid
degradation of TEOA"". EY**", which is generated from reductive quenching by TEOA, ejects an
electron to TiO, via a collision process. The one-electron reduction potential of EY?  was

reported to be —0.80 vs. normal hydrogen electrode (NHE),*® which is higher than the CB level
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(—0.71 V vs. NHE at pH 10) of TiO.>° Reaction (2) is therefore thermodynamically possible.
During this key step, electrons are probably preferentially injected into the {101} facet, which
has a CB level lower by ca. 0.05-0.1 V than that of the {001} facet.®*®* Finally, electrons are
trapped by Pt and consumed in H* reduction. This confirms the significant role of the {101}y
facets in determining the reaction efficiency and enables understanding of the activity trend.

Ruthenizer 470 (its molecular structure is shown in the inset in Fig. 10) has six carboxylic
groups, which act as efficient anchors on the TiO; surface. In the Ruthenizer-470-sensitized
Pt/TMC system (pH 3), the excited dye molecules adsorbed on the TMC surface inject electrons
into the CB of the TMC as follows:

L3(Ruthenizer 470),y + TiO, — (Ruthenizer 470)°" + TiO4(e) (3)
where “3(Ruthenizer 470).q" is the singlet and triplet states of Ruthenizer 470 adsorbed on the
TiO, surface.”® The sensitizer is regenerated by an electron donor, i.e., EDTA.

As shown in Fig. 10, the visible-light H; evolution activity of the Pt/TMC samples increased as

M
S{OOJ}

/S{“l"oj} increased, in contrast to the EY-sensitized system. The amounts of adsorbed
Ruthenizer 470 on the TMC surfaces were estimated to compare the adsorption abilities of the
catalysts. It is clearly seen from Fig.11 that the TMC samples with dominant {001}y facets

adsorb more dye molecules on their surfaces.

0.3
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—a Pt/TMC-1, —— Pt/TMC-2
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Fig. 10 H, evolution during visible-light irradiation of Pt/TMC powders suspended in aqueous

solution containing Ruthenizer 470 and EDTA. The experimental conditions were [Pt/TMC] =
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0.5 g L%, [Ruthenizer 470] = 10 pM, [EDTA] = 10 mM, pH = 3, 1 = 430~700 nm, l,;s = 100

mW cm 2, and initial Ar saturation.

0 T T T T
Pt/TMC-1 PtY/TMC-2 Pt/TMC-3 Pt/TMC-4

[Ruthenizer 470]_, (umol g™)

Fig. 11 Adsorption of Ruthenizer 470 on TMC in presence of EDTA in aqueous suspensions of
PtTMC. [PYTMC] = 0.5 g L™, [Ruthenizer 470] = 10 uM, [EDTA] = 10 mM.

Yu et al. found that the surface concentration (1.43 < 10" mol cm™?) of N719 dye [cis-
bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(Il) bis(tetrabutylammonium)]
adsorbed on TiO, nanosheets with dominant {001} facets was slightly lower than that (2.14 x
10" mol cm™?) on typical anatase nanoparticles in acetonitrile electrolyte solution.®® Laskova et
al. also reported that the surface concentration (0.4-0.5 molecules nm?) of C101 dye [cis-
bis(isothiocanate)(4,4'-bis(5-hexylthiophene-2-yl)-2,2'-bipyridine)(4-carboxylic acid-4'-
carboxylate-2,2'-bipyridine)ruthenium(ll) sodium] was lower on TiO, (001) nanosheets than that
on TiO, (101) nanoparticles (0.7-0.8 molecules nm ). Recent first-principle theoretical
calculations suggested that the observed smaller dye coverage on the {001} facets is a
consequence of a partial contact of the thiophene and alkyl bipyridine substituents of C101 with
the TiO, surface.”® Compared with those systems, Ruthenizer 470 does not have bulky
substituents, and its surface concentrations on the TMC samples are quite low (e.g., 0.023

molecules nm™2 for TMC-4). The effect of steric hindrance by TiO, and adsorbed molecules is
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therefore explicitly ruled out. According to the literature,®*®’

the anatase (001) surface has a
strong ability to adsorb hydroxyl and carboxylic groups (as well as water molecules)
dissociatively onto the undercoordinated Ti cations. It can therefore be reasonably concluded that
the percentage of exposed {001} TMC facets plays an essential role in determining the dye
adsorption capability, because the surface areas of the TMC samples are very similar.

3.5. Charge Transfer Dynamics on TMCs. To verify the superior properties of TMCs, the
author compared the photocatalytic activities of TMCs synthesized without P123, which have a
similar morphology to TMC-4, and anatase TiO, nanocrystals (TNCs) with similar surface
areas.”® The TNCs have the truncated bipyramidal morphology and the percentage of exposed
TNC {001} facets is similar to that for TMC.** As demonstrated in Fig. 12A, Ruthenizer-470-
sensitized TMCs could efficiently produce H, under visible-light irradiation than Ruthenizer-
470-sensitized TNCs did.

Factors (ii) and (iii), mentioned above, were examined. In general, the metal-to-ligand charge
transfer excited states of the adsorbed ruthenium dyes have higher energies than the CB of TiO,,
suggesting that this interfacial electron transfer is highly exergonic. The author group recently
observed, using time-resolved confocal fluorescence spectroscopy, that the average emission
lifetimes of an adsorbed ruthenium dye [cis-bis(2,2'-bipyridyl)-(2,2'-bipyridyl-4,4'-dicarboxylic
acid)ruthenium(Il) hexafluorophosphate] were very similar (~25 ns) for the {001} and {101}
facets of anatase TiO, crystals in acetonitrile.®® Based on this result, it can be assumed that the
electron injection efficiencies of the {001} and {101} facets are similar.

The injected electrons in TiO, either migrate to Pt or recombine with the oxidized dye. The
interparticle charge transfer is an important factor that affects the photocatalytic activity in dye-
sensitized water-splitting processes,®®™ because the spatial charge separation at the dye—
semiconductor interface greatly retards charge recombination between electrons and oxidized

dyes. Time-resolved diffuse reflectance spectroscopy’®"

was used to explore the dynamics of
recombination of the injected electrons in the TMCs and the dye cations. As shown in Fig.12B,
the time trace of the transient absorption signal was monitored at 827 nm during 532 nm laser
photolysis of TiO, powders sensitized with N719 ruthenium dye in Ar-saturated acetonitrile.
Electron injection was completed within the laser pulse scattering time (ca. 100 ns) and the
accompanying dye cations and injected electrons appeared in the wavelength region above 600

nm (inset in Fig. 12B).”* The TNC system showed similar spectral features and electron injection
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efficiency. The observed time traces were well reproduced using a stretched exponential
function:

%abs (t) = (Y%abs)o exp[—(t/7)“] 4)
where (%abs), is the initial absorbance of the dye cations that were generated within the laser
pulse (at t = 0), 7 is the average lifetime, and « is a heterogeneous parameter.”* The fitting
parameters are summarized in Table 2. The z of the TMC system was about three times that of
the TNC system, supporting the idea that efficient electron transport in the mesocrystal
superstructure slows down recombination. This result may explain the higher activity observed
for Ruthenizer-470-sensitized TMCs. Moreover, the higher « value for the TMC system is
possibly attributed to more dispersive recombination dynamics through multiple electron

trapping/detrapping processes.
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Fig. 12 (A) H, evolution during visible-light irradiation of Pt/TMC and Pt/TNC powders
suspended in aqueous solutions containing Ruthenizer 470 and EDTA. The experimental
conditions were [catalyst] = 0.5 g L™}, [Ruthenizer 470] = 10 uM, [EDTA] =10 mM, pH =3, 1
= 430~700 nm, lyis = 100 mW cm2, and initial Ar saturation. (B) Time traces of transient
absorption observed at 827 nm during 532 nm laser flash photolysis of acetonitrile suspensions
of TMCs and TNCs in the presence of N719 dye. The red lines were obtained using eq 4. Inset
shows the time-resolved diffuse reflectance spectra obtained for acetonitrile suspensions
containing TMCs and N719 dye.
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Table 2. Fitting Parameters for Decay Kinetics

sample 7 (us) a
TMC 27 0.37
TNC 10 0.44

3.6. Reaction Mechanisms. The proposed reaction mechanisms of charge transfer on TMCs
are illustrated in Fig. 13. In the case of UV excitation (Fig. 13A), the photogenerated electrons
are preferentially trapped on the {101} surface through the nanocrystal network in the TMCs,
and reduce substances such as Pt precursor and H*. Because of their high surface energy, the
{001} surfaces effectively adsorb water and alcoholic compounds in a dissociative manner,
facilitating their oxidation by photogenerated holes and/or hydroxyl radicals (Fig. 6). Reduction
seems to occur preferentially on the {101} facets rather than the {001} facets (Fig. 7).

Both the dye-sensitized TMC samples tested here act as visible-light-responsive photocatalysts
for H; evolution, but the reaction processes are quite different. In the EY-sensitized system (Fig.
13B), the electrons are delivered by freely diffusing EY**", which is generated by electron-
transfer reactions between “3(EY?)" and TEOA. The injected electrons are then transferred to Pt
nanoparticles deposited on the TMC {101} facets to produce H, (Fig. 9). In contrast, Ruthenizer
470 is more efficiently adsorbed on the {001} facets (Fig. 11), therefore the TMC samples with

higher Sjgog / Sgiog Values exhibit higher activities for H, production (Fig. 10). The electrons

directly injected from the excited dyes can avoid charge recombination with the dye cations
remaining on the {001} surface because of efficient migration across the assembled nanocrystals
interface and reach the Pt cocatalyst on the {101} surface (Fig. 13C). A similar strategy for
achieving efficient charge separation by site-specific modification of sensitizers and cocatalysts
was recently used to develop novel plasmonic photocatalysts, where Au and Pt nanoparticles
were loaded on the {001} and {101} surfaces of TMCs, respectively.*?
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Fig. 13 H; evolution during (A) UV-light irradiation of Pt/TMC in methanol-water solution, (B)
visible-light irradiation of Pt/TMC in aqueous solution (pH 10) containing EY and TEOA, and
(C) visible light irradiation of Pt/TMC in aqueous solution (pH 3) containing Ruthenizer 470 and
EDTA. VB is valence band of TiO,. Ru is adsorbed Ruthenizer 470. Typical time scales for

57,74-76

electron transfer are shown below the arrows.

4. Conclusiton

In summary, the author developed a novel strategy for synthesizing a series of TiO,
mesocrystals with desired crystal structures. It was found that mesocrystals with different facet
ratios showed different reactivity orders in photo-oxidation, i.e., {001}y > {101}y, and
photoreduction, i.e., {101}y > {001}y, under UV-light irradiation, similar to those observed in
conventional nanocrystal systems. Furthermore, the author examined the visible-light
photocatalytic activities of mesocrystals with different morphologies, using EY and ruthenium
dyes as sensitizers. It was confirmed that the {001}, facets are preferred for molecular
adsorption and electron injection from the photoexcited dye sensitizers to the CB of TiO,,
whereas the {101}y facets are efficient for the collection of photogenerated electrons, owing to
directional electron flow. These findings highlight that the concept of crystal-facet-dependent
photocatalytic reactions can be extended to superstructure systems with well-regulated
morphologies. The synergetic effect of crystal-facet engineering and nanocrystal arrangements

will significantly improve the efficiencies and selectivities of semiconductor photocatalysts.
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Chapter 3: In situ topotactic transformation confined doping into

TMC with visible-light activation
Part 1. n-type F-doping on TMC for efficient visible-light driven

photocatalytic hydrogen generation

1. Introduction

It is a central theme in nanoscience to develop efficient metal oxide semiconductors for
versatile applications in photocatalysis, photovoltaics, batteries, and sensors.”” Titanium dioxide
(TiOy) is one of the most intensively studied semiconductors due to its strong redox ability, high
chemical stability, low toxicity, and abundant availability.>® As photocatalytic materials since
1972,° TiO, represents limitations in widespread applications of photovoltaics and
photo(electro)catalysis inevitably due to its wide band gap and low quantum efficiency.**** The
nanomaterials based on structure-performance relationship have been developed to significantly
improve the quantum efficiency of photocatalysis. As a new class of porous materials, TiO;
mesocrystal (TMC) with the superstructure exhibits excellent photocatalytic activities than
conventional TiO, nanocrystals and commercial P25.°" It was further revealed that the long-
range ordered mesocrystal superstructures significantly retard the recombination of electron-hole
pairs due to efficient interparticle charge transfer.®*** Therefore, it is strongly required to extend
the absorption of TMCs into the visible region for effectively utilizing the solar energy with
practical functions.?# In addition, it still remains a challenge to facilely synthesize TMCs with
higher visible-light activity in research fields.

In order to activate TiO, under the visible-light irradiation, many efforts have attempted to
create a midgap energy state or to narrow the intrinsic band gap over the past decades.?*** From
the experimental and theoretical results, the incorporation of dopants to the TiO, structures
cannot show effective photoactivity, inevitably ascribed to increase the rate of undesired charge
recombination.® Even in this case, the moderate doping methods always improve their
photocatalytic activity than pure TiO,.2® The dopant incorporation often accompanies an oxygen
vacancy (V,), which is known to affect the charge transfer dynamics in photocatalysis.'®> On the
contrary, the substitution of an oxygen with a fluorine (F) atom is the alternative way as a n-type

doping with Ti** to improve the efficiency.?”?° Recently, the extended series of phase doped TiO-
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with promising performance, such as NH4F and HF doping, have attracted increasing attention of
researchers.?®% Attributed to covalent interaction between F and Ti, titanium oxydifluoride
(TiOF;) was proposed as a F-dopant source to obtain a visible-light photocatalyst for dye
degradation.** To date, many attentions have been paid to ideally fabricate the hierarchical
TiO, from the original TiOF, via in situ transformation.®*% It was found that the stability of
reactive {001}'%2 facet and crystallization can be improved after F species was introduced from
TiOF,.*® How can achieve the n-type F-doping with higher contents of F into TMC during the
topotactic transformation and understand the formation mechanisms? To the best of our
knowledge, the details of oriented transformation of TMC and its compatibility with n-type F-
doping have not been reported until now.

Herein the author reported the incorporation of TiOF, as n-type F-dopant source to TMCs
during the topotactic transformation along with efficient visible-light driven H, generation for
the first time. The oriented transformation of TMC such as crystal growth, phase transition, and
morphologic change was monitored via in situ temperature-dependent techniques. The dynamics
of charge separation and trapping were investigated by the means of time-resolved transient
absorption measurement to clarify the impact of n-type F-doping into TMC. The results are
discussed with comparison to their photocatalytic efficiency for n-type F-doped TMC. It is
suggested that surface potential and hydrophilicity are changed by the F-doping, indicating the
higher photocatalytic activity for n-type F-doped TMC. The results are discussed with
comparison to the photocatalytic efficiency for TMC and F-doped TMC.

2. Experimental Section

Materials. Titanium(IV) fluoride and chloroplatinic acid were purchased from Sigma-Aldrich.
Ammonium nitrate, ammonium fluoride, boric acid and lactic acid were purchased from Wako
Pure Chemical Industries. All of these chemicals were analytical grade and used as received.

Preparation of TMC and F-doped TMC. The samples were synthesized according to former
reports.®? A precursor solution containing TiFs, H,O, NH4NOs, and NHsF (molar ratio=
1:117:6.6:4) was prepared, and were placed on a silicon wafer to form a thin layer with the
thickness around 2~3 mm. It was calcined in air using a heating rate of 10 °C min™* at different
temperatures for 2 h. The annealed samples were collected and designed as Tx, in which the x
represents the annealing temperatures. As a controllable reference, the obtained samples (T500)

were calcined in pure oxygen atmosphere at 600 °C for 4 h to remove surface residue and control
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the F-doped amount, which was referred as T500-0..

Preparation of Pt/TMC and F-doped TMC. A loading of 1 wt % Pt nanoparticles was
photochemical deposited on TMC and F-doped TMC.? In a typical procedure, 30 mg TMC or F-
doped TMC, 27 mL of Milli-Q ultrapure water (Millipore), 3 mL methanol, and a certain amount
H,PtCls were mixed to form a homogeneous suspension. The solutions were then exposed to the
visible light from a mercury light source (Asahi Spectra, REX-250) for 30 min at room
temperature. After centrifugation and dried, the products were collected and subsequently
calcined in air at 300 °C for 30 min. The amounts of loaded Pt were determined by inductively
coupled plasma emission spectroscopy (Shimadzu, ICPS-8100).

Characterization. The structures of the samples were examined using in situ powder X-ray
diffraction (XRD; Rigaku, Smartlab; operated at 40 kV and 200 mA, Cu Ka source). The
morphologies were investigated using transmission electron microscopy (TEM) equipped with
EDX analyzer (JEOL, JEM 3000F operated at 300 kV or JEM-2100 operated at 200 kV).
Scanning TEM (STEM) and energy dispersive spectroscopy (EDS) mapping were performed
using a Cs corrected JEM-ARM200F microscope operated at 200 kV. The in situ TEM was
operated via the microscope of Hitachi H-800. TG-DTA thermogravimetry (TG) and differential
thermal analysis (DTA The steady state UV-Vis absorption and diffuse reflectance spectra were
measured by UV-Vis-NIR spectrophotometers (Shimadzu, UV-3100 or Jasco, V-570) at room
temperature. The concentration of Pt was determined by ICP (Shimadzu, ICPS-8100). The X-ray
photoelectron spectroscopy (XPS) measurements were performed with the PHI X-tool (ULVAC-
PHI).

Hydrogen Production Activity Tests. About 2 mg of catalyst was suspended with 2 mL water
solution containing lactic acid (10 vol%) in 10 mL quartz cell. The cell was sealed with a rubber
septum and purged with Ar gas for 20 min before initiating the irradiation. The sample was
irradiated via Xenon lamp (Asahi Spectra, HAL-320; 200 mW cm2) or UV-LED source (Asahi
Spectra, POT-365; 100 mW cm 2) with constant magnetic stirring at room temperature. Under
the visible-light irradiation, a 420 nm cutoff filter combined with 750 nm cooling filter were used
to remove UV and NIR. After the reaction, 0.1 mL of the gas was collected from the headspace
of the reactor and analyzed using a Shimadzu GC-8A gas chromatograph equipped with an MS-
5A column and a thermal conductivity detector.

Time-Resolved Diffuse Reflectance Transient Absorption Measurements. The
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femtosecond diffuse reflectance transient absorption spectra were measured by the pump and
probe method using a regeneratively amplified titanium sapphire laser (Spectra-Physics, Spitfire
Pro F, 1 kHz) pumped by a Nd:YLF laser (Spectra-Physics, Empower 15). The seed pulse was
generated by a titanium sapphire laser (Spectra-Physics, Mai Tai VFSIJW; fwhm 80 fs). The
fourth harmonic generation (330 or 440 nm, 3 pJ pulse™) of the optical parametric amplifier
(Spectra-Physics, OPA-800CF-1) was used as the excitation pulse. A white light continuum pulse,
which was generated by focusing the residual of the fundamental light on a sapphire crystal after
the computer controlled optical delay, was divided into two parts and used as the probe and the
reference lights, of which the latter was used to compensate the laser fluctuation. Both probe and
reference lights were directed to the sample powder coated on the glass substrate, and the
reflected lights were detected by a linear InGaAs array detector equipped with the polychromator
(Solar, MS3504). The pump pulse was chopped by the mechanical chopper synchronized to one-
half of the laser repetition rate, resulting in a pair of spectra with and without the pump, from
which the absorption change (% Abs) induced by the pump pulse was estimated. All

measurements were carried out at room temperature.

3. Results and Discussion
3.1 Synthesis and Characterization of F-doped TMC.

The synthetic process of F-doped TMC is illustrated in Fig. 1A. The precursor solution
containing of Ti**, F~, NH**, and H,0 was dropped on silicon wafer to form a thin layer with 2~3
mm thickness. The intermediate NH4TiOF; firstly formed during the initial annealing process
below 200 °C.*® With elevating annealing temperatures from 200 to 500 °C, NH,TiOF;
transforms into anatase TiO, while keeping the morphology.*®*" Actually, several intermediates
such as HTiOF; and TiOF, formed during the topotactic transformation, but the process from
NH4TiOF3 to TiO; is still unexplored up to now. The n-type F-doping into TMCs induced the
coloration from white to pale yellow after annealing in air (see below). All the annealed samples
were referred as Tx, where X represents the annealing temperatures. The analyses of
morphologies and elements were carried out using field emission scanning electron microscopy
(FESEM) and scanning transmission electron microscopy equipped with energy dispersive X-ray
spectroscopy (STEM-EDS) to confirm the structures and spatial distribution of dopants on TMCs.
Figs. 1B, C show the sheet-like structures of T500 with the width and thickness of 3~6 um and

~200 nm, respectively. The exposed pore structures are clearly seen in Figs. 1C and D,
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confirming the mesocrystal superstructure. From the high-resolution TEM (HRTEM) image in
Fig. 1E, the spaces of 0.24 nm and 0.35 nm are corresponding to the (001) and (101) facets,
respectively. The results indicate the crystal grains have a same direction along the [001] axis,
which is supported by the symmetric pattern from selective area electron diffusion (SAED) in
Fig.1F. From the top view of two stacked sheets, it was observed that F element is distributed
over TMCs together with other elements, Ti and O (Fig. 1G).

} Annealing Topotactic transformation
N — >
Y 160°C 200-500°C B
~ silicon wafer ~ Silicon wafer ~ silicon wafer

Precursor NH,TiOF; i H OF3*T|OF2* I S't}’ to.potacnc
............................ : F-doplng into TMC

R

1pm

Fig. 1 (A) Schematic diagram of the in situ topotactic F-doping into TiO, mesocrystal (TMC)
during the topotactic transformation from NH;TiOF3 to F-doped TMC via HTiO3 and TiOF,. (B)
FESEM, (C) high magnification image marked in (B), (D) dark-field STEM, (E) its HRTEM, (F)
SAED pattern, and (G) STEM-EDS elemental mapping images of the as-synthesized T500.

The optical responses of the samples annealed at different temperatures were measured using
UV-visible diffuse reflectance spectroscopy (Fig. 2A). The elevated temperatures have a

significant effect on the F-doping process. As compared to T300 and T400 as well as T160
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(initial intermediate NH4TiOF3), T500 showed much stronger visible-light absorption due to its
higher F content, which is attributed to the isolated color centers in the midgap (Fig. 2A inset).®
With a further increase of the annealing temperature (600 °C), however, the dopant concentration
seems to decrease significantly (Table 1). As shown in Fig. 2B, the TG-DTA curves indicate
three sequential stages.®® Below 250 °C, the gradual weight losses appeared mainly due to the
removal of water. From 250 °C to 420 °C, the sharp endothermic peak was related to a phase
transformation from NH,TiOF; to TiOF,. The final small endothermic peak between the 420 °C
and 470 °C is alluded to the phase conversion from TiOF, to TiO,.*® There was no additional
weight loss beyond 500 °C owing to the good thermal stability of the TMC.'® The observed

phase transitions during the in situ topotactic F-doping are further proved by powder XRD and

XPS analyses.
S 3
S 120
c A —
-% , — 71100 | § 110 T
c 4 » —T300 |7 | ®
2 \ —T400 | & 0 =
x o N, —=Ts0 | =- 102
5 i~ ——Te00 | =
= 1 Siz=o o iz O@- 20T
@ R = S
& 450 500
5 Wavelength (nm) 1-30
0] g
Q
=) 0 T T L T T T T T T T T ‘40
X 350 400 450 500 550 600 100 200 300 400 500 600

Wavelength (nm) Temperature (°C)

Fig. 2 (A) UV-visible diffuse-reflectance spectra of samples annealed at different temperatures
and the subtracted spectra by differentiating from the spectrum of T160 (inset). (B) TG-DTA
curve of NH,TiOF3; measured in air.

3.2 In situ Temperature-Dependent Measurements.

In situ temperature-dependent powder XRD measurements provide a vital capability to
monitor the evolution of phase composition and crystallization during the in situ topotactic F-
doping after thermal annealing. The XRD patterns were collected from the samples at desired
temperatures in air with the rate of 10 < min ™%, as shown in Fig. 3A. All the diffraction peaks of
T160, which was used as the starting material, are matched well with those in the standard card

of NH,TiOF3, indicating no impurity phase. It was found that a broad band centered at 20 = 25.1°
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appeared after heating to 200 °C, which is corresponding to the (101) crystallographic planes of
anatase TiO,. The crystallinity of TiO; increased from T230 to T260 along with the decreases of
all diffraction intensities of NH,TiOF3. A dissolution of NH4TiOF;3 to intermediate HTiOF3 was
not characterized due to their similar diffraction peaks.*® Coincided with the description at the
second stage of TG-DTA, an intermediate of TiOF, with (100) plane diffraction at 20 = 23.4° was
found in T290. From the peak deconvolution from T160 to T320 in the enlarged XRD patterns
(Fig. 3B), it was clarified that the dominated components changed from NH,4TiOF; (HTiOF3) to
TiOF, with increasing the temperature. The transformation of TiOF, to F-doped TiO, started at
~300 °C with the disappearance of TiOF, peaks. This result is not consistent with the TG-DTA
curve in the range of 420~470 °C, suggesting that TiOF, crystals within TiO, phase formed at
~300 °C and underwent the phase transition at higher temperatures at 420~470 °C due to the
dissolution-recrystallization.®*** Further heating treatment from 320 °C to 500 °C improves the
crystallinity of anatase TiO,, which is suggested by the stronger peak intensity and the narrower

diffraction peak.
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Fig. 3. (A) In situ heating powder XRD patterns upon variable annealing temperatures and (B)
Enlarged patterns with phase deconvolutions and simulation results of NH,TiOF3, TiOF,, and
anatase TiOs.
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The relative elemental compositions including the in situ topotactic F-doping were analyzed
via XPS (Fig. 4 and Table 1). The elements of F, O, and Ti were present in the survey scans from
the annealed samples, except the N element in T160 (Fig. 4A). Intriguingly, the T300 without N
peaks reveals the formation of intermediate HTiIOF3 from NH,TiOF; after NH; gas was released.
From the high-resolution XPS spectra of F 1s in Fig. 4B, the independent phase of TiOF;, formed
in TiO, was confirmed by its symmetric peak centered at ca. 685.3 eV among the T400 and T500,
suggesting the in situ topotactic F-doping from the intermediate source of TiOF,.%%“° The shifts
of Ti 2p3, and O 1s peaks with elevating temperatures are mainly ascribed to the formation of
TiO, (Figs. 4C, D).**" Note that the intensity at around 457 eV represents the Ti*" state, which

was formed by Ar sputtering.
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Fig.4 XPS spectra of (A) survey scans, (B) F 1s, (C) Ti 2p, and (D) O 1s in the series of the

samples annealed at various temperatures.
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Table 1. XPS Peak Positions and the F Contents of the Samples with Various Annealed

Temperatures.
Sample Ti 2ps;2 (V) O 1s (eV) F1s (eV) FITi
T160 4590.4 530.7 685.2 2.60
T300 459.3 530.4 685.1 1.11
T400 458.9 530.1 685.2 0.25
T500 458.9 530.1 685.3 0.26
T600 458.9 530.1 685.3 0.19

To gain more insights into the intermediate phase transition during the in situ topotactic F-
doping, the dynamic structural evolution of growth mechanism was monitored via in situ
temperature-dependent TEM. All TEM and SAED images are acquired and analyzed from the
same area. Starting from T160 (Fig. 5A), the sheet-like NH,TiOF3; was observed with invisible
pore structures on the surface.’® The symmetry diffraction spots along the [001] zone-axis are
derived from the ordered orthorhombic single crystal orientation (Fig. 5G).*” To observe the
growth processes with morphological changes, a series of temporal TEM images (Figs. 5B-F)
with the representative diffraction patterns (Figs. 5H-L) were obtained during further annealing
in TEM. As temperature was gradually elevated, the overall shapes from T160 to T500 are
preserved with similar thickness and edge length ascribed to the topotactic transformation from
NH4TiOF; to F doped TiO, with the similar critical parameters in {001} plane (NH4TiOF;: a =
7.5594 A, b = 75754 A, ¢ = 12.7548 A; TiOx: a=b = 3.78 A, ¢ = 9.5143 A).*’ Of particular
interest, the complex growth processes of block fusing and crystallographically ordered
assembling were clearly observed (Figs. 5B-F). From T200 and T300 (Figs. 5B, C), the small
TiO, grains were generated and grown larger with consuming the lattice-matched NH4TiOF; (Fig.
3A). As an exact intermediate of HTiOFz (a = b = 3.74 A ¢ = 12.59 A) from NH,4TiOF3, the
layered structure of TiOFs octahedral is triggering to change to TiOF, thermodynamically.*® The
F-doped TMC structure was expected to form in the temperature range of 350 °C ~ 400 °C (Figs.
5D, E) with accompanying the spaces between the adjacent nanocrystals by fusion and
shrink.®”*** The intermediate TiOF, is considered as a good template for the phase

transformation to TiO, with recrystallization from edge to center (Figs. 5D-E).**** The defective
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constructions around the center from irregular aggregates of merged nanocrystals happened
occasionally during the topotactic transformation. However, there is no significant effect on the
mesocrystal structure of TiO, from its depicted diffractions with minor distortions. The
roughening facet and visible porosity were observed in the final structure of T500 with aligned
nanocrystals (Fig. 5F), which remains the original dimension of NH,TiOF; controlled by the
facet directing agent of HF.*® Attributed to the similar arrangement of Ti atom in the {001}
planes, all materials exhibited identical diffraction patterns across the static orientation. These
real-time imaging and electron diffraction patterns directly support the temperature-dependent

phase transition.

Fig. 5 In situ temperature-dependent (A-F) TEM images and (G-I) their corresponding SAED
patterns from T160 (i.e., NH4,TiOF; as the starting material) in vacuum.

3.3 Photocatalytic H, Evolution and Charge Transfer Dynamics on F-doped TMC.

The photocatalytic hydrogen generation of pure TMC' and F-doped TMCs with Pt
modification was evaluated under the visible-light irradiation (A > 420 nm) as shown in Fig. 6A.
As compared to pure TMC with no absorption in the visible-light region, all F-doped TMC
markedly enhanced the photocatalytic efficiency because of their absorption in the visible-light
region. It was observed that T500 with the Pt modification exhibited the highest activity (1.7
umol g *h™) among them due to the strongest visible-light absorption induced by the highest F-
dopant concentration (Table 1).*> However, T600 lost about a half in the activity compared to
T500, which is attributed to the loss of F-dopants after annealing at 600 °C (Table 1). To
elucidate the significant role of F-doping into TMC, T500 was annealed in O, at 600 °C (T500-
0,) to lower the F contents and remove V, (Fig. S1).2” T500-O, has a lower concentration of F-

dopant inducing a lower visible-light photocatalytic activity than T500 (Fig. 6B). On the other
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hand, T500-O, exhibited more superior activity compared to T500 under the UV irradiation.

In order to understand the photocatalytic activity of T500 and T500-O, under the visible-light
and UV irradiation, the charge transfer dynamics in photocatalysis was examined by the time-
resolved diffuse reflectance transient absorption measurements (Fig. 6C). The kinetic parameters
were determined from the decays of transient absorption at 900 nm assigned to the trapped
electrons® as summarized in Table 2. Upon the 440-nm laser excitation, it was observed that the
decay occurred within the subpicosecond time scale for T500-O; (11, 0.6 +0.1 ps), faster than for
T500 (11, 2.4 0.3 ps). In the case of T500, more Ti*" species with good electronic conductivity
were produced in TMC after n-type F-doping.”® The longer lifetime of electrons were
attributed to their trapping/detrapping processes via Ti** (F) doping states (Fig. S1).** In the case
of T500-O, with lower F components, a large number of electrons formed at the shallow trapes
promptly recombined with neighboring holes (Fig. S1). In the period of 10~50 ps, a similar
decay of T500 (12, 50 %3 ps) and T500-O, (12, 48 =4 ps) was observed because the trapped
electrons escaped from geminate recombination and relaxed into deeper trap levels.** Over 100
ps, the trapped electrons decayed in the ns-time range for T500 and T500-O,. A little longer
lifetime for T500 (t3, 2691 107 ps) does not support four times higher photocatalytic efficiency
for H, generation than T500-O, (13, 2436 £142 ps), suggesting other important factors such as
surface potential and hydrophilicity favorable for T500 due to F-doping.** The holes were
considered to be trapped at the shallow trap sites and their spectral position is outside the
wavelength range measured here. It is noteworthy that an opposite tendency was observed under
the UV laser excitation for the decay kinetics of trapped electrons for T500-O5, 12.5 + 0.9 ps (11),
110 £ 7 ps (12), 3622 £ 162 ps (t3), and for T500, 5.7 = 0.3 ps (11), 62 + 3 ps (12), 2480 £97 ps
(t3). After excited with the 330-nm laser, conduction-band electrons in T500 are trapped in the
time scale of 5.7 ps to the inherent defects, possibly V,, and recombine the holes, which is faster
than in T500-O,. Meanwhile, the O, treatment of T500 successfully removed such undesired
recombination centers, thus resulting in the longer lifetime of 12.5 ps for the trapped electrons.
The difference of 13 (3622 ps and 2480 ps for T500-O, and T500, respectively) is roughly
consistent with two times difference of photocatalytic activity for H, generation.
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Fig. 6 (A) Hydrogen evolution for TMC and F-doped TMCs with Pt modification under the
visible-light irradiation. (B) Comparison of photocatalytic activity for T500 and T500-O, under
the visible-light and UV irradiation. (C) Normalized transient absorption traces observed at 900
nm for T500 (black) and T500-O, (red). Bold lines in (C) indicate multiexponential curves fitted
to the kinetic traces.
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Fig. S1. Schematic illustration of the spatial and energetic distribution of the electrons and holes
in T500 (left) and T500-O (right) after visible and UV light excitation.
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Table 2. Kinetic Parameters of Decays for T500 and T500-O, under the Visible (440 nm) or UV

(330 nm) Laser Excitations

Sample Excitation 71 (PS) T, (PS) 73 (PS)
T500 Visible 2.4 £0.3 (32%) 50 +3 (34%) 2691 +107 (34%)
uv 5.7 £0.3 (45%) 62 +3 (36%) 2480 +97 (19%)
T500-0 Visible 0.6 0.1 (53%) 48 +4 (22%) 2436 +142 (25%)
2 uv 12.5+0.9 (34%) 110 %7 (35%) 3622 +162 (31%)
4. Conclusion

The details of crystal growth, phase transition, and dynamic structural evolution during the
topotactic transformation from NH;TiOF; to F-doped TMC were monitored via in situ
temperature-dependent XRD and TEM techniques. It was found that intermediate TiOF, was
incorporated as F color centers to F-doped TMC without any morphological change. The
comparison of the charge transfer dynamics with the photocatalysitc efficiency for T500 and
T500-O, confirmed that n-type F-doping (T500) induces faster electronic mobility and surface
modification favorable for the efficient visible-light driven H;, generation. Although the present
F-doped TMCs are required to be improved for their performance, the in situ topotactic F-doping
into TMC for incorporation of active color centers will facilitate the development of materials
design with visible-light response and accelerate their applications in various fields including

energy and environment.
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Part 2. Nitrogen and fluorine codoping on TMC with interaction in visible-

light-induced photocatalytic activity

1. Introduction

The visible light induced photocatalyst has been widely progressed with continuous
consideration on environmental pollution and insufficient natural energy. The photoactivation of
TiO, has caused enormous interest to scientists and engineers after the photocatalytic water
splitting reported by Fujishima and Honda in 1972.' Due to the versatile physicochemical
properties of nontoxicity, high chemical stability, low cost, and easy synthesis, TiO;, is a
promising photocatalyst to be applied in the wide range of solar-to-chemical energy conversion
such as environmental remediation, solar water splitting, CO, photoreduction, and photovoltaic

cells.>® However, because of the intrinsic wide band gap, TiO, can be only excited under the UV
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light irradiation which covers less than ~5% of the solar spectrum. Aimed at the practical
utilization of visible light, a variety of modifications are undertaken to tune the band gap of the
electronic structure.®” Among the metal and non-metal doping, the N doping is the most efficient
avenues to create N 2p in the localized midgap state leading to the increase of thermal stability
and the decrease of recombination centers.®*° With the respect to synthesize N-doped TiO., a
large amount of nitrification processes, such as wet and dry process with additional N source, are
embodied in nano powders, thin films, nanotubes and nanowires.®*® However, it is still highly
required a facile synthetic craft to dope N on anatase TiO, without the instrument-dependent and
cost-ineffective treatment.

It is worthily mentioned that the large-scale preparation in practical application, the novel
pyrolysis of Ti-compound containing dopants is proposed as the ideal candidate to acquire
efficient doping.* The ammonium oxofluorotitanate is a fundamental group of Ti-compound for
the synthesis of doped TiO,.? It is inferred that the anisotropic dissolution of NH,TiOF; can
chemically convert to TiO, mesocrystal (TMC) during the topochemical transformation,
accompanying with N and F releasing.”*™® As a new class of porous building blocks oriented
assembly of nanocrystals, the obtained TMC with a well-defined crystal shape significantly
enhances the charge separation with remarkably long-lived charges and exhibits excellent
photocatalytic activities compared with TiO, nanocrystals and commercial P25.2"% It is a great
of significance to introduce the dopant simultaneously from the original precursors or
intermedium during the synthesis, without affecting the nucleation and growth on TMC. With
more positive promotion of N doping for larger photostability and photocatalytic efficiency, it is
an imperative issue to exploit the effects of the F codoping on the N-doped TMC with the visible
light activity.> ? Although fascinating performances emerged in a variety of codoping methods
have been studied, the mechanism of the interaction among versatile dopants is still inconclusive
due to the complexity of the methods.

To resolve the scientific challenge in doping field, the author reported a novel strategy for the
synthesis of TMC with the uniform distribution of N, F dopants from the direct annealing of the
intermediate NH,;TiOF3 during the topochemical transformation. The photoreductive efficiency
of Cr (V1) to Cr (111) was correlated to the optical absorption dependent on the dopant content at
various annealing temperatures. The author confirmed the doping of N in the localized midgap

state together with the surface adsorbed F enhanced the photocatalytic degradation of MB based
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on charge transfer dynamics under the visible or UV light irradiation. With the effect in
promoting the visible light absorption and facilitating the degradation efficiency, the N and F
codoping on TiO; as the prevalent photocatalyst will open a new road in the practical application
under the solar light irradiation.

2. Experimental section

Materials. The titanium (IV) fluoride was purchased from Sigma-Aldrich. The ammonium
nitrate, ammonium fluoride, and boric acid were purchased from Wako Pure Chemical Industries.
All of these chemicals were analytical grade and used as received.

Preparation of NH,TiOF3. The samples were synthesized with some modifications according
to the previous reports.?>®* A precursor solution containing TiFs, H,O, NHsNOs, and NH.F
(molar ratio= 1:503.4:4.9:2.4) was prepared, and were placed on a silicon wafer to form a thin
layer. It was calcined in air using a heating rate of 10 °C min™ at 160 °C for 2 h. The annealed
sample was collected for the further treatment.

Preparation of TiO, Mesocrystal (TMC). The as-prepared NH;TiOF3; was mixed with boric
acid (0.5 M) at 60 °C for 4 h and dried after washing by water and ethanol separately.?®
Furthermore, the obtained samples were calcined at 500 °C for 0.5 h, which was referred as
pristine TMC.

Preparation of Doped TMC. The as-prepared NH,TiOF; placed in a narrow neck vessel
(L>XR = 7.5 cm>L.75 cm) with a lid was annealed in air with a heating rate of 20 °C min™ at
different temperatures for 0.5 h. The obtained samples were designed as NFT-x, in which the x
represents the annealing temperatures. As a controllable reference, the NFT samples were treated
with NaOH aqueous solution (0.01 M) in the dark for 8 h to remove the excess fluorine impurity,
which was referred as NFT-NaOH.%

Characterization. The structures of the samples were examined using X-ray diffraction
(XRD; Rigaku, Smartlab; operated at 40 kV and 200 mA, Cu Ka source). The morphologies
were investigated using field-emission scanning electron microscopy (FESEM) equipped with
EDX analyzer (JEOL, JSM-6330FT) and transmission electron microscopy (TEM) equipped
with EDX analyzer (JEOL, JEM-2100 operated at 200 kV). Scanning TEM (STEM) and energy
dispersive spectroscopy (EDS) mapping were performed using a Cs corrected JEM-ARM200F
microscope operated at 200 kV. The Brunauer—-Emmett-Teller (BET) surface areas were

measured using nitrogen sorption (BEL Japan, BELSORP max). The pore volumes and pore
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diameter distributions were derived from the adsorption isotherms using the Barrett—Joyner—
Halenda (BJH) model. The steady state UV-Vis absorption and diffuse reflectance spectra (DRS)
were measured by UV-Vis-NIR spectrophotometers (Shimadzu, UV-3100 or Jasco, V-570) at
room temperature. The thermal analysis was performance by thermogravimetric analysis (Rigaku,
Thermo plus EVO II/TG-DTA, TG8120) in N,. The X-ray photoelectron spectroscopy (XPS)
spectral measurements were performed with the PHI X-tool (ULVAC-PHI).

Photocatalytic Test. For a typical photocatalytic process, the catalytic dispersions (2 g L™)
containing K,Cr,0O; (Wako Pure Chemical Industries, 0.05 mM, pH = 3) or methylene blue
(Wako Pure Chemical Industries, 0.03 mM) were transferred to a quartz cuvette after sonication.
The photocatalytic reaction was initiated by irradiation with UV-LED source (POT-365; 100 mW
cm %) or Xenon lamp (HAL-320; 200 mW cm?), with constant magnetic stirring at room
temperature. After stopping the light illumination, the sample was centrifuged at 10000 rpm
(Hitachi, himac CF16RX) to separate the solid particles. The concentration of unreacted
molecules, from which the degradation yield was calculated, was analyzed using a UV-visible-
near infrared spectrophotometer (Shimadzu, UV-3600) at the characteristic wavelength.

Time-resolved Diffuse Reflectance Spectral Measurements. The femtosecond diffuse
reflectance spectra (TDR) were measured by the pump and probe method using a regeneratively
amplified titanium sapphire laser (Spectra-Physics, Spitfire Pro F, 1 kHz) pumped by a Nd:YLF
laser (Spectra-Physics, Empower 15). The seed pulse was generated by a titanium sapphire laser
(Spectra-Physics, Mai Tai VFSIJW; fwhm 80 fs). The fourth harmonic generation (330 or 440 nm,
3 wd pulse ™) of the optical parametric amplifier (Spectra-Physics, OPA-800CF-1) was used as
the excitation pulse. A white light continuum pulse, which was generated by focusing the
residual of the fundamental light on a sapphire crystal after the computer controlled optical delay,
was divided into two parts and used as the probe and reference lights, of which the latter was
used to compensate the laser fluctuation. Both the probe and reference lights were directed to the
sample powder coated on the glass substrate, and the reflected lights were detected by a linear
InGaAs array detector equipped with the polychromator (Solar, MS3504). The pump pulse was
chopped by the mechanical chopper synchronized to one-half of the laser repetition rate,
resulting in a pair of spectra with and without the pump, from which the absorption change (%
Abs) induced by the pump pulse was estimated. All measurements were carried out at room

temperature.
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3. Results and Discussion

To investigate the growth mechanism during the topochemical transformation (Fig. 1), the
phase identification and the structural analysis of doped TMCs were performed from XRD, N,
adsorption—desorption isotherm with pore size distribution, and the FESEM. After the water
evaporation from the precursor (Process A), the phase of NH,TiOF; was firstly formed on silicon
wafer at 160 °C. The sheet-like NH4TiOF3; mesocrystal showed invisible pore superstructure on
the surface and low surface area (7.4 m? g*, Table 1) due to the assemble fusion.***
Subsequently, the NH,TiOF3; mesocrystal was collected from silicon wafer and annealed in a
narrow neck vessel to 200 °C (Process B). It is noted that a major part of the NH4TiOF3 was
transformed to anatase TiO, after calcined at 300 °C (Fig. 2A). Additionally, the surface structure
started to decompose and merge to be the larger particles than NH,TiOF; (Fig. 3A and Table1).™
Upon further annealing to 400 °C, the pure phase of anatase TiO, formed from NH4TiOF;
without morphology change, which is attributed to the topochemical transformation (Fig. 3B).%
More importantly during this process, the sources of N and F were released from the crystal

1.2> The clear

lattice of NH,TiOF; and doped on TMC simultaneously in a narrow neck vesse
shrinks of the crystal lattice resulted from the doping are in good agreement with the movement
of (101) diffraction peak toward to the higher angle range (Fig. 2A inset).? 2% When the
annealing temperatures increased to 500 °C, the void was formed to create the visual porous
structures between the adjacent nanocrystals (Fig. 3C). This result is consistent with decreasing
gradually the specific surface area (17.7 m? g%, Table 1) and increasing the particle size (2.08 nm,
Table 1) due to the fusion of TiO, nanoparticles.?? Continuously elevating up to 600 °C, most of
the structures are collapsed inevitably into nanoscale particles (2.08 nm, Table 1) with the
decrease of the surface area (9.8 m? g*, Table 1) in Fig. 3D. But there was no remarkable
impurity phase observed after the annealing at 600 °C due to its good thermal stability of the
anatase phase.?? It can be deduced that the TMC undergoes crystal growth during the doping
process, correlated to the strengthened crystallinity from the sharper diffraction peaks as the
elevating temperatures. The series of annealed samples were referred as NFT-X, in which x
represents the annealing temperature. As compared to the doped TMC, the pristine TMC showed
a smaller average size, due to the dissolution and disaggregation during the recrystallization by
the H3BO5 treatment (Table 1).**
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Table 1. Structural characteristics of NH4TiOFs3, pristine TMC, and doped TMC at various

annealing temperatures.

Sample SZBETl V, D N content F content
(m™g") (cm’g) (nm) (wt %) (wt %)
Pristine TMC 23 0.10 2.03 0.01 0.03
NH,TiOF; 7.4 0.03 1.34 14.20 33.16
NFT-300 16.0 0.07 2.06 5.43 20.4
NFT-400 16.1 0.07 2.07 2.30 6.1
NFT-500 17.7 0.06 2.08 3.23 4.87
NFT-600 9.79 0.05 2.08 3.03 3.78

Fig. 3 FESEM images of (A) NFT-300, (B) NFT-400, (C) NFT-500, and (D) NFT-600.

The morphology of NFT-500 was characterized by TEM in Fig. 4A. It is observed that NFT-
500 has a sheet-like structure with {001} facet dominated from the selective area electron
diffusion (SAED) in Fig. 4A inset."® Comparable to other samples with different annealing
temperatures in Table 1, the EDS analysis of NFT-500 exhibited the high concentrations of N
(3.23 wt%) and F (4.87 wt%) in Fig. 4B, showing that the N and F doping are strongly dependent
on the elevating temperature.?*=° From the elemental mapping in Fig. 4C, it is clearly observed
that both N and F are doped on TMC superstructure with homogeneous distribution. The doping
intensity increased as the elevating temperature, which is in good agreement with the optical
spectrum (see below). Their chemical composition of NFT-500 was analyzed by XPS. The XPS
spectra of F 1s with binding energy around 684 eV and 688.5 eV are ascribed to the F absorbed
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on surface and substitution.?® 3! It has been reported that the substitutional N modification is
formed due to the detected N 1s peak centered at 399 eV.% % Ti* on the surface was observed
with two peaks of Ti 2py, (465 eV) and Ti 2ps, (458 eV). In the O 1s region, a clear peak around
532 eV assigned to the surface adsorbed —OH was observed together with other peak at 520 eV
assigned to the lattice oxygen. On the other hand, the peaks of N 1s and F1s with high-noise
level were observed due to the low content of two dopants, which are consistent with the EDS

results.332

600

300

Counts

E Ti Cu

2 4 6 8
Energy (keV)

Fig. 4 (A) STEM, (B) EDX spectrum, and (C) elemental mapping images of NFT-500. The
elements of Ti, O, N, and F are shown in blue, yellow, green, and purple color.

The optical responses of NFT are variable with the calcination temperature, which is indicated
by the UV-Vis diffuse reflectance spectra (DRS) in Fig. 5A. Compared with the pristine TMC,
the absorption edge shifted to longer wavelength in the visible light region with increasing the
calcination temperature.™ It is remarkably worth that add-on shoulders for NFT-300 and NFT-
400 were imposed from 380 nm to 550 nm due to the N doping with an isolated N 2p state in the
midgap. The effective extension for light absorption of NFT-500 is mainly response to the higher
content of N dopants depending on the annealing temperature. Additionally, NFT-600 exhibited a
low optical intensity due to the loss of two dopants after the high temperature annealing (Table
1).% With increasing the calcination temperature, the thermal conversion was monitored by the
thermogravimetric analyses (TG-DTA) of NH,TiOF3 in Fig. 5B. After NH,TiOF; was formed
(equation 1), there was no obvious weight loss below 200 °C where water is adsorbed on
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hygroscopic TiO,.***® In the temperature range of 250 °C to 500 °C, a sharp endothermic peak
was arisen due to the chemical phase transformation from the intermedium to TiO, (equations 2
and 3). This implies that the major contributions of the weight loss are attributed to the
progressive release of NH; and HF. In the closed glass vessel, it can be inferred that the amount
of N and F was saturated firstly and then start to be doped on TMC gradually. Coincided with the
result of XRD, there was also no additional weight loss observed from 500 °C to 600 °C during

the topochemical transformation due to its good thermal stability with maximum doping.
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Fig. 5 (A) Steady state diffuse reflectance spectra of NFT with various temperatures (NFT-300
~ 600) compared with the pristine TMC, and (B) TG-DTA curves of the NH;TiOF3 in Na.

Ti** + 3F + NH," + H,0 2 NH,TiOF; |+ 2H" ()%
NH,TiOF; + H,0 2 TiO,|+ 2HF + NH,F  (2)*°
NH4F 2 HF1+ NH3? (3)%

The photocatalytic reductive efficiency of pristine TMC and NFT synthesized at various
temperatures was evaluated from the reduction of Cr (V1) to Cr (111) under the visible irradiation
(A > 420 nm) in Fig. 6A. The reductive rate for Cr (VI) to Cr (I11) was estimated to be 0.0011,
0.0013, 0.0017, 0.0066, and 0.0030 min* for pristine TMC and NFT-300 ~ 600, respectively
from the slopes of the linear plot between In(Co/C) and irradiation time. As compared to pristine
TMC with feeble response to visible light, N and F doped TMC, NFT-300 and NFT-400, showed
markedly improvement of the reductive efficiency due to the strengthen doping with the
elevating temperature. It was obviously shown that the NFT-500 exhibited the highest
photocatalytic efficiency due to the strongest ability of the visible light harvesting by the large

83



amount of N doped content.®* On the other hand, NFT-600 with similar optical response to NFT-
500 showed nearly half efficiency, which were resulted from the poor charge migration among
the random nanoparticles because of the collapsed mesocrystal structure.?® * The negligible
degradation was observed in the absence of NFT or visible light irradiation. It is reasonable that
the N content corresponds to the absorption ability from N in the localized midgap state,
influencing the efficiency of the photoreduction of Cr (V1).

To clarify the role of F codoping on the predominant energy sate of N, the NFT-500 was
subsequently washed by NaOH aqueous solution (NFT-NaOH) to controllably remove the
surface adsorbed F. The fraction of surface adsorbed —OH (532 eV) may be increased by
removing F in a part. Intriguingly, a die-off (20%) in Cr (V1) reduction by NFT-NaOH was
observed even it possess the similar optical absorption and surface area to NFT-500. In order to
clarify the interaction or effect of two dopants on the photocatalytic efficiency, the degradation of
methylene blue (MB) was examined under the visible (A = 420~440 nm) or UV light (A = 365
nm) irradiation (Fig. 6B).3 During the visible light irradiation, NFT-500 exhibited the highest
degradation efficiency than the pristine TMC and NFT-NaOH, while no degradation was shown
using the sole F doping TiO, under the visible light irradiation, because the atomic p level of F
(ca. —11.0 eV) exists below the O (ca. —8.5 eV) and no visible absorption exists for the sole F
doping TiO,.° On contrary, the pristine TMC with intrinsic absorption showed the superior
efficiency under the UV irradiation in spite of the negligible activity under the visible light
irradiation. The duplicated runs were carried out to average the results with the similar tendency.
It is suggested that the poor contribution of surface adsorbed F for NFT-NaOH is leading to the
lower photocatalytic efficiency under the visible or UV light case.*® From the comparison of the
redox reaction under the visible or UV light irradiation, it is suggested that the effect of N and F
dopants affects the overall reaction efficiency.

As a powerful technique, the femtosecond TDR spectroscopic measurement was performed to
clarify the charge carrier dynamics in the photocatalytic reaction under the visible or UV light
irradiation (Fig. 6C). The schematic illustration of the energy diagram is shown in Fig. 6D. After
the sufficient generation of charge carriers upon the 440-nm laser excitation of NFT-500,
electrons are excited from N 2p in the isolated midgap sate to the conduction band Ti 3d to be
directly trapped (11, 2.1 ps; Table 2) on the adjacent oxygen vacancy (V,) generated from the

codoping (red line in Fig. 6D).*" 3 On the other hand, the generated holes are separated and
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localized at the N 2p state at the same time. After the equilibrium between electrons in the
surface trap and the bulk (1, 52 ps; Table 2), the favorable reduction pathway and charge
recombination occur (t3, 2751 ps; Table 2) in NFT-500. Generally, a longer lifetime of charge
carrier enhances the photocatalytic efficiency. However, it is unusual that NFT-NaOH with the
lower efficiency exhibited longer lifetimes of two components (12, 63 ps; t3, 3086 ps) than those
for NFT-500, showing the similar photocatalytic efficiency under the UV irradiation (see below).
The shorter lifetime of NFT-NaOH (t1, 0.5 ps) observed at the first decay component corresponds
to the inequivalent oxygen atom at the deep state of Vo because F is removed in NFT-NaOH as
compared in NFT-500.%"? The time profile of the transient adsorption at 900 nm for pristine
TMC is not discussed here, because it is probably resulted from unknown impurities. Under the
UV laser excitation at 330 nm, the generated electrons and holes on pristine TMC are usually
trapped at the surface defects (t1) separately to yield reductive oxygen species (black line) with
enhancing photocatalytic efficiency (longer 1, and 13).*° In this case, NFT-500 showed three
components 5.2 ps (t1), 60 ps (12), and 2510 ps (13) in Fig. 6C and Table 2. Compared with those
for pristine TMC, 2.1 ps (t1), 36 ps (12), and 1288 ps (t3) in Table 2, it is shown that the slower
recombination process on NFT-500 corresponds to the hole localized on the N 2p state in Fig.
6D.3"8 On the other hand, the efficient charge separation of NFT-500 was observed with the
lower photocatalytic efficiency under the UV irradiation compared to that for pristine TMC,
suggesting the low vyield of hydroxyl radical because of less positive potential of N in the
localized midgap state (Fig. 6D).% Compared with NFT-500 under the same irradiation condition,
NFT-NaOH showed low photocatalytic efficiency even though the longer lifetime, 13.2 ps (11),
110 ps (t2), and 3298 ps (13). It has been reported that the surface adsorbed F~ replaces the sites
of adsorbed OH™ (=Ti-OH + F~ — =Ti—F + OH") for NF-doped TiO, **? suggesting the electron
flow occurs to O, through =Ti—F to yield superoxide anion (O,*") which changes to hydroxyl
radical (OH") via the protonation and O-O bond cleavage processes.® Therefore, the higher
amount of OH -is accomplished together with the preferential adsorption of MB on the acidic
surface for NFT-500 to show the higher photocatalytic efficiency under the visible light

irradiation.3%%2
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Fig. 6 (A) Photoreduction of Cr (V1) between pristine TMC and NFT under the visible light
irradiation. (B) Comparison of MB degradation from pristine TMC, NFT-500, and NFT-NaOH
under the visible or UV light irradiation, and (C) their corresponding normalized transient
absorption trace. (D) Schematic illustration of the spatial and energetic distribution of electrons
and holes in NFT after excitation at 440 nm (red arrow) and 330 nm (black arrow). The V,

denotes the oxygen vacancy.
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Table 2. Kinetic Parameters of Decays for Pristine TMC, NFT-500, and NFT-NaOH under the
Visible or UV Light Excitation.

Visible light UV light

Sample
71 (pS) T2 (ps) 73 (ps) 71 (ps) T2 (ps) 73 (PS)

Prisine TMC 1.1 (48%) 27 (26%) 2945 (26%)  2.1(52%) 36 (32%) 1288 (16%)
NFT-500 2.1(33%) 52(33%) 2751(34%) 5.2 (46%) 60 (33%) 2510 (21%)
NFT-NaOH 05 (34%) 63 (30%) 3086 (36%)  13.2(40%) 110 (33%) 3298 (27%)

4. Conclusion

In this present work, the author was successfully synthesized NFT with N and F codopants into
TMC during the topochemical transformation. The NFT with (001) facet exposed exhibited
uniform distribution of two dopants depending on the annealing temperature. Their reductive
photocatalytic efficiency from Cr (V1) to Cr (111) was consistent with the optical absorption by N
in the isolated midgap state, which is doped with a certain amount after the annealing. It is found
that NFT-500 exhibited the highest photocatalytic efficiency due to the highest concentration of
N with the surface modification from F coupling. Together with the charge transfer dynamics,
the poor degradation of MB for NFT-NaOH under the visible or UV light irradiation is explained
by the effect of F codoping with high yield hydroxyl radical and preferential adsorption,
accompanying with assistant role to N in the localized midgap state. TMC with N and F
codoping presents a particular interest on promising visible light driven photocatalytic efficiency

and allows us to devote the effect on developing new materials as the photocatalyst.
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General Conclusion

Throughout this thesis, the potential and versatility of TMC photocatalyst in solar energy
conversion have been studied after modification and doping.

In Chapter 1, reaction dynamics of photogenerated charge carriers in CoPi-deposited TMC and
MoS,-TMC was studied. In the case of CoPi-deposited TMC, ensemble-averaged experiment
and single-particle spectroscopy were used to confirm their superior efficiency. The in situ
single-particle fluorescence imaging technique with specific probes was used to monitor the
photooxidative reaction on individual catalysts. The combination of CoPi/Pt co-deposition and
the anisotropic electron flow in TMC significantly retarded the charge recombination.

On the other hand, it is demonstrated that 3D architectures of TMC uniformly packed with a
chemically exfoliated MoS; shell exhibited promising reactive efficiency and good stability in
synergetic hydrogen evolution. Their efficient interfacial electron transfer from the excited TiO;
moieties to the decorated ultrathin MoS; shell was effectively monitored to promote their good
photocatalytic activity in HER.

In Chapter 2, a series of TMCs with controllable {001} and {101} facets was successfully
synthesized using a crystal growth inhibitor (NH4F). Their photocatalytic performances are
explored in pollutant degradation and H, evolution. It is suggested that the {101} facets prefer
reduction, whereas the {001} facets favor oxidation, and anisotropic electrons flow in dye
system, which are attributed to crystal-facet-dependent surface adsorption and tunable electron
transfer.

In chapter 3, the author facilely designed doped TMC via topotactic transformation confined
doping. In the first part, the details of crystal growth, phase transition, and dynamic structural
evolution during the topotactic transformation from NH,TiOF; to F-doped TMC were monitored
via in situ temperature-dependent techniques. The intermediate TiOF, was incorporated as F
color centers to F-doped TMC without any morphological change. Their comparison of charge
transfer dynamics with the photocatalytic efficiency confirmed that n-type F-doping induces
faster electronic mobility and favorable surface modification for the efficient visible-light driven
H, generation.
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Secondly, the author successfully synthesized TMC with the uniform distribution of N, F
dopants from the direct annealing of the intermediate NH4TiOF; during the topochemical
transformation. The photoreductive efficiency of Cr (VI) to Cr (I11) was correlated to the optical
absorption dependent on the dopant content at various annealing temperatures. It is found that
the doping of N in the localized mid-gap state together with the surface F coupling enhanced the
photocatalytic degradation of MB based on charge transfer dynamics under the visible or UV
light irradiation.

To conclude, it is clear that this thesis introduces the development of TMC and clarify their
photochemical characteristics from UV light to visible-light region after modification or doping.
All works help us to gain an in-depth understanding of the efficient charge separation within
appropriate morphologies of materials with good structure-induced photocatalytic activity for
environmental remediation and energy conversion. With intensive study of extraordinary
performance in TMC, more expected device and superstructure will be designed to significantly
improve the limitation of low quantum efficiency and wide band gap from TiO,. The mesocrystal
is still at the early stage of development, the promising future of it will be foreseen as the basic
building block for next generation high-end materials in energy and environment.
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