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Introduction 

Surface plays an important role in physics, chemistry and biology [1-3]. Most of 

reactions happen on the substrate surface. To further improve the surface function, such 

as effective area in chemical reactions [4], friction coefficient in mechanical 

components [5], optical or electrical properties in physics [1, 6], surface-structuring 

technology is proved to be a vital factor. In the last decade, many different kinds of 

structured surfaces were designed and studied. Compared to the typical surface 

characterization method e.g. XPS, SEM or SPM, Raman spectroscopy is a powerful 

tool to study structured surface, because the vibrational fingerprint contains unique 

information on crystallizations, surface defects, add-molecules and atoms together with 

spatial information. Moreover, the method is basically non-destructive and without 

tagging [7, 8]. In this thesis, I have designed two types of surfaces and evaluated by 

Raman spectroscopy to show the usefulness of the technique for characterization of 

structured surfaces. 

A typical challenges of structured surface is how to design effective and stable 

plasmonic sensor [9]. In this thesis, I present a rational design and fabrication of 

effective and stable metallic structures, by using laser patterning method. Combined 

with a simple metal decoration, two types of multilevel structures on reduced graphene 

oxide and black silicon were fabricated separately. Plasmonic-enhanced Raman study 

was carried out to judge their field enhancing performance. The Raman result showed 

their high electromagnetic (EM) field enhancement and stable performance as a 

chemical sensor with higher sensitivity.  

The other challenge of structured surface is how to improve the nanoscale doping 

process in integrated circuits (ICs) [10]. To achieve the goal, it is crucial to understand 

crystal structure changes during the doping process. As a demonstration, I fabricated 

nanoscale doped nanostructures by FIB doping on ZnO crystal surface, which are 



 

similar to the structures in ICs. Then Raman imaging was adopted to study the crystal 

lattice properties on the doped surface with spatial resolution ~300 nm. The Raman 

image clearly showed the distribution of crystal lattice changes at the doping area 

which can not be observed by scanning electron microscope or scanning probe 

microscope. 

Thus, studying these structures is of great importance in applied physics, chemistry and 

biology. These results indicate that Raman holds potential for the application in 

micro-fabrication and semiconductor world.  

Organization of this dissertation 

In the 1st chapter, I introduce the basic knowledge of structured surface, including its 

development and challenges. Towards two typical problems, laser fabrication and FIB 

are introduced. In the 2nd chapter, I talk about Raman spectroscopy, from the 

fundamentals to its performance on plasmonic structures and FIB-structured surfaces. 

In the 3rd chapter, I present the fabrication and Raman characterization of Ag-RGO 

structures. Including the details of the laser patterning experimental and results. The 

Raman enhancement and signal reproducibility on the structured-surface are in detail 

discussed. In the 4th chapter, I report a composite Ag-black silicon structure. The 

results on both the enhanced Raman performance and in-situ Raman detection of 

catalytic reaction are presented and discussed. In the 5th chapter, I present nanoscale 

FIB-structured ZnO surface by Ga ion doping. It was then successfully characterized by 

Raman spectroscopy. Prospect and future work of tip enhanced Raman study on the 

nanoscale ions doped semiconductors is discussed. Finally, I finish this dissertation by 

a conclusion and perspective. 
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Chapter 1.  

Structured surface 

In this chapter, structured surface is introduced, including its fundamentals, 

development and challenges. To solve two typical problems in structured surface 

science, laser fabrication is intensely introduced in section 1.2, including its fabrication 

mechanism, advantages and some configurations; while in section 1.3 FIB is in detail 

illustrated, from its basic principles and its features in tiny surface structure fabrication. 

1.1  Fundamentals of structured surface 

The concept of structured surface has emerged for several decades. It has been widely 

studied and plays a vital role in tribology, biology and medicine, chemistry and physics 

[1-4]. The notion of structured surface contains several types of meaning, such as 

surface morphology machining, surface texturing and electrical properties tuning. 

There are many famous structured surfaces were developed, such as laser textured 

micro-dimples has been applied in mechanical seals to optimize the load capacity [5]; 

nanoscale doped semiconductor surfaces in microelectronics [6]; metallic 

nanostructures have been studied as substrate for enhancing Raman and florescence 

signal [7].  

However, till now, there are still some challenges for the structured surface 

development [5, 8]. One challenge is on the metallic nanostructures, they are designed 

for generating strong and stable SPPs, so the satisfied structures should be relatively 

uniform with high level arrangement, and contain large amount of narrow metallic gaps 



 

[9]. But by using the traditional methods (such as thermal deposition, chemical 

reduction), it is hard to realize this goal [10]. Because it is well known that the normal 

deposition methods are apt to generate random structures rather than uniform ones, no 

mention the desired arrangement. So it is of great importance to design an effective 

metallic structures for strong SPPs generation. examples 

Another challenge is for the development of integrated circuits, as the feature size 

becomes smaller and smaller, it is difficult to follow moore’s law to ulteriorly reduce it 

[11]. For further IC development, it is crucial to know the crystal structure changes 

during doping process. examples 

Aimed to solve these two problems, I utilized laser patterning method and FIB for the 

surface structuring. Compared with other techniques (such as RIE, lithography, 

deposition), they could realize mask free, designable patterning with a very high 

efficiency. In the next sections, I will in detail introduce these two methods. 

1.2  Laser technology for surface structuring 

To prepare an aimed structured surface, laser fabrication technique is a remarkable one 

among various patterning method (such as lithography, electron beam, plasma etching). 

It holds many excellent features such as cost effective, easy processing, mask free and 

less material limitation. It has been applied for micro-nano structure in many aspects, 

such as design and fabrication for lithograph mask, binary optics and micro machines 

and so on [12-20].  

The main mechanism of laser fabrication is based on photon absorption, including 

single photon and multi-photon absorption. Then the absorbed energy will induce the 

material character changes by means of thermal, mechanical and chemical effects. Used 

for patterning, it can be classified by single beam and multi-beam fabrication, where 

the former one was usually called laser direct writing (LDW) and the later one was 

commonly used in a form of multi-beam laser interference (MBLI). As in this thesis, I 



 

used LDW and two beam laser interference (TBLI) patterning for the substrate 

preparation, in the next section, I will introduce these two methods in details. As for a 

SERS substrate preparation, basically a solid template is utilized, so LDW and TBLI 

processes are applied on solid materials.  Here I mainly discuss the interaction 

between laser and solid material, including the fundamental theory and experimental 

details analysis. 

Laser direct writing 

For laser direct writing (LDW) on a solid material, usually a laser ablation effect is 

dominantly employed. Here femtosecond laser was utilized, for the extreme short pulse 

width makes it easy to achieve very high peak laser intensity with low pulse energies. 

The high peak intensity can reach the ablation threshold easily [21], while the low pulse 

energy makes convenient to prevent large material ablation damage. For example, a 

laser pulse with a pulse-width of 100 fs ( s) and pulse energy of only 1 mJ ( J) 

will have a peak intensity of  when focused to a 50µm diameter spot. 

To reach the same intensity, a 10-ns-long laser pulse has to have 100 J in a pulse.  

The process of laser ablation is simple to understand. Due to the inverse 

Bremsstrahlung, when laser focused on the material, free electrons absorb the photon 

energy. Then the sorbed photon energy induces thermalization in the electron 

subsystem, consequently transfers to the system, and finally disperses as the electron 

heat pass to the target [22]. To express this process, we define the temperature of the 

electron subsystem and the lattice subsystem as  and , and suppose that the 

electron subsystem thermalization is relatively fast, the energy transport into the solid 

can be expressed by the following equations [22, 23]: 

                       (1.1) 
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,                      (1.3) 

Where z is the direction perpendicular to the solid surface,  is the heat flux,  

is the term of laser heating source,  is the laser intensity,  is the surface 

transmittivity,  is the material absorption coefficient,  and  is the heat 

capacity of the electron and lattice subsystem respectively,  is the electron-lattice 

coupling coefficient,  is the thermal conductivity of electron. In the above equations, 

as , electrons could be heated very hot. When the electron energy is still 

smaller than its Fermi energy, the electron heat capacity is given by  (here 

is a constant) and the non-equilibrium electron thermal conductivity is 

 [24, 25]. The coupling constant  is expressed in [26] and 

measured by recent measurements in [25,27,28]. 

The above equations 1.1-1.3 have 3 characteristic time scales ,  and . Here 

,  are the electron cooling time and the lattice heating time 

( ) respectively; and  is the duration of the laser pulse. As we use 

femtosecond laser for fabrication, . For , we can get , 

thus the coupling between electron and lattice could be ignored. In this situation 

Equation 1.1 can be easily solved and briefly described as follow formula: 
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Here  (  is constant), and  is the original temperature. After 

heated by a whole laser pulse, 𝑡 = 𝑇$, the system temperature is much higher than the 

original one as  , thus the electron temperature is illustrated as 

                     (1.5) 

Here  is the absorbed laser fluence. Heated by a laser pulse, the electrons 

possess large energy and will soon shift their energy to the lattice and cool down. The 

obtained lattice temperature depends on the average time of the electrons cooling 

process as 

                  (1.6) 

The system evaporation threshould is defined by , here  is the density,  is the 

specific evaporation heat. When the absorbed energy  overrun the evaporation 

threshould, the system will be evaperated. Combined with equation 1.6, the condition 

for strong evaporation can be expressed as 

                          (1.7) 

where  is the threshold laser fluence for evaporation with femtosecond 

pulses. Then the ablation depth per pulse is 
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The femtosecond pulse laser induced ablation process could be treated as a direct 

solid-vapor transition, because the process time is very short. On this condition, the 

lattice is soon heated to vapor and rapidly expands into vacuum in a picosecond time 

range. As a first assumption, thermal transmition into the bulk could be neglected 

during all these processes. With these features, fairly precise and pure laser-solid 

fabrication can be realized by femtosecond laser pulses [22]. 

The optical setup for LDW is illustrated in Figure 1.1.  

Normally, the laser souces used for LDW are in the infrared range, such as 780nm and 

800nm wavelengths. And a ND filter is used to ajust the laser intensity. Depending on 

the accuracy requirement, the objective lens NA could be selected with high or low. 

The patterning process is realized by controling the movement of the substrate through 

piezoelectric ceramic transducer (PZT). 

!!L ≈α
−1 ln Fa /Fth( )

Figure 1.1 Scheme of optical setup for LDW 



 

Two-beam Laser Interference 

Compared with LDW, TBLI is more suitable for fast, periodic and large area structures 

fabrication. Multi beam Laser interference lithography is an emerging technology that 

has the capability to produce 1D, 2D and 3D structures on a variety of substrates. SERS 

substrates also benefit from the large area periodic structures. So in this thesis, TBLI 

patterning was also applied for the template fabrication. In this section, I will introduce 

TBLI technique both on its basic principle, experimental setup and simulation result. 

In the Young’s double slit experiment, the coherent light from two slits was allowed to 

interact to form the interference fringes. To achieve the coherent light is one key issue 

for this interference process. As the development of Laser technique, viarious types of 

lasers are available which can produce single frequency light, for example, 

monochromatic light. The monochromatic light can be splitted into two beams of 

coherent light by optical components. If these two coherent ligh was ajusted 

illuminating on a same spot, they will overlap and produce the superposition of two 

light waves. Such a superposition of light will produce bright and dark fringes 

(so-called interference patterns) on the substrate similar to that of Young’s double slit 

experiment. The bright stripes and the dark stripes are formed at the places where two 

light waves interfere constructively and destructive interference produces respectively, 

as shown in Figure 1.2. A diffraction gratings pattern is formed consisting of alternate 

grooves due to the intensity distribution and phase relation of the two beams. 

  



 

The intensity  along the substrate surface in plane, at any location of the 

interference pattern is given by 

                          (1.9) 

Where,  and  are the intensities of the two beams. And  is the phase 

difference between the two beams, which is produced by the angle  and distance 

mismatch between them. If the two beams are symmetric without distortion, periodic 

diffraction gratings can be formed, which was well known as Bragg gratings. The 

periodicity  of this grating pattern is described by 

                                    (1.10) 

Here,  is the wavelength of the laser, which is hard to change in practical operation. 

Thus the period of the gratings can be tuned by adjusting the angle between the two 

laser beams.  
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Figure 1.2 Scheme of TBLI fabrication process. 



 

There are mainly two types of configurations to generate the interference patterns, 

which are so called: Wavefront Splitting Interferometers (WSI) and Amplitude 

Splitting Interferometers (ASI). 

WSI: this configuration is relatively simple and benefits from better stability and easy 

controllability. It is usually utilized for high-resolution inference patterning. In details, 

there are many different classical methods to realize WSI. Such as:  

i). Using specially designed prisms to divide a single laser beam into a number of 

beams, followed by superposition them onto a same square [29, 30]. This method is 

especially helpful for multi-beam interference pattern [31]. Normally, to get a defect 

free and symmetric interference pattern, the prism refractive index should match that of 

the substrate material.  

  

Figure 1.3 Plane geometrical scheme of WBI configuration using a symmetric glass 

pyramid prism [30].  



 

Figure 1.3 shows an example of two beams WSI system, an expanded laser beam 

passes through a symmetric glass pyramid, then divided into two sub-beams due to 

refraction. Each beam is inclined by an angle θ with respect to the optical axis. The 

resulting interference zone (shadow region) covers from 0 to 𝑍&'( ≈ 𝑊+/𝑡𝑎𝑛𝜃, where 

𝑊+ is half of the beam width. Usually a very small angle 𝜃 is preferable to have a 

sufficiently extended interference zone. 

ii). Applying diffraction gratings to cause the interference. A single beam source is first 

divided by one or two diffraction gratings. The first order-diffracted beams are then 

directed to interfere on the substrate surface [32-34]. Figure 1.4 illustrates the detail 

processes, the glass substrate contains gratings structure on both upper and bottom 

sides. Passing through the gratings structures, the coherent light will form two 

first-order and two second-order diffracted beams. These two second-order beams will 

interfere and form interference patterns on the sample when placed with a proper 

distance away from the center. 

  

Figure 1.4 Schematic diagram for WSI configuration by applying diffractive 

gratings [33]. 



 

iii). Lloyd’s mirror interferometer, which is known as the most commonly used 

wavefront splitting configuration, is illustrated in Figure 1.5. In this method a single 

expanded laser beam is used, and one part of it is reflected by a mirror and interfered 

with the other portion of the beam. The reflection mirror and substrate are mounted on 

a rotatable stage, by which the angle 𝜃 between normal plane to the substrate surface 

and the incident light can be adjusted. The period of this grating pattern is determined 

by the equation 1.10, thus by controlling the stage rotation the period of the grating 

pattern can be easily tuned. 

In Lloyd’s mirror configuration, to get satisfied patterning performance, usually the 

setup is placed on a vibration free table to avoid the vibration of the system elements 

and limit the differences in the optical path. Also the quality of the mirror surface is 

another key issue for achieving a perfect interference pattern. Recently, various 

modified configurations of Lloyd’s mirror method have been employed to fabricate 2D 

and 3D structures [35, 36]. 

Figure 1.5 Scheme of Lloyd’s mirror interferometer. The Bragg grating pattern 

is achieved by the superposition of the light reflected from the mirror surface 

(upper dotted line) and the part of light directly illuminating the surface of 
substrate (lower solid line). 



 

ASI: compared with WSI, ASI configurations are usually applied for large area 

patterning. Choosing Dual Beam Interferometer as an example, as shown in Figure 1.6, 

a single laser beam is expanded (to increase the interference area) by L1 and collimated 

by L2 before being divided into two beams by a beam splitter. Then all the resulting 

secondary beams are directed by adjusting reflection mirrors M1 and M2. As the 

intensities of the two beams are same and optical paths distances are also equal, when 

they overlap on the substrate surface, a periodic interference pattern can be obtained. 

The period of the pattern is also determined by Equation 1.10, which can be tuned by 

changing the angle  between the laser and the normal direction of the substrate. If 

one wants to make complex 2D or 3D structures, exposure of multi-beams [37-39] or 

multi-steps exposures of two beams can be used [40-42]. 

In order to achieve a uniform pattern without defects and fluctuations, the ASI setup 

should be free from airflows and vibrations. In this thesis, ASI method was utilized to 

pattern grating patterns as the template for SERS substrate fabrication, it will be 

discussed in next chapter in detail. 

 

θ

Figure 1.6 Schematic of the two-beam ASI configuration.  
 



 

1.3  FIB-structured surface 

Focused ion beam (FIB) technique has attracted more and more researchers’ interest 

since it was first introduced by Seliger and Fleming for maskless ion implantation into 

Si in 1974 [43]. For FIB has many remarkable advantages for nanostructures 

fabrication and maskless processes [44, 45], such as: scanning ion microscopy (SIM), 

maskless etching and deposition, maskless doping. It becomes a powerful technology in 

structured surface science world.  

Fundamentals of FIB 

The configuration of FIB system is 

illustrated in Figure 1.7. It contains 

ion source (usually Ga), ion extractor, 

ion beam modulation elements, 

secondary electron detector MCP. Its 

working process is as follows: the 

ions first are extracted by strong 

electric field, and then purified by 

𝐸×𝐵mass analyzer and neutral beam 

shifter, accelerated and finally 

focused on sample surface, through 

the deflection and scanning elements, 

desired structures could be patterned. 

 

      Figure 1.7 Scheme of FIB 
system 



 

The interaction between high-energy ions and substrate materials is illustrated in Figure 

1.8. High speed ions hit the sample surface and sputter a small amount of material, 

including secondary ions (i+ or i-), neutral atoms (n0) and secondary electrons (e-). The 

primary ions collide with the lattice atom and electron, gradually loose energy and 

finally stop in the substrate, this process is called ion implantation. The implantation 

depth Rp is proportional to the ions acceleration energy. Together with implant dopants, 

plenty of lattice disorder will also be introduced during ions implantation process.  

  

Figure 1.8 Scheme of interaction of focused ions with substrate 



 

FIB for doping 

FIB has been widely used for imaging, etching and deposition with nanometer 

resolution [46-47]. Actually, besides these applications, FIB is also powerful for 

nanoscale doping, compared with normal ion implantation or lithography methods, it 

has the advantages of mask-free and flexible for desired pattern. 

In order to make good doping process, we should pay more attention to several 

parameters, such as: ions voltage, current, dose, ions injecting angle with respect to the 

sample surface. The ions voltage determines the doping depth and surface damage. 

Normally in case of ions voltage Vion<40kV, the doping depth Rp is proportional to the 

voltage as: Rp ∝Vion, example for 20kV ions, the doping depth is about 20nm. It 

means the doped ions are distributed in the 20nm thick surface layer. Also, the surface 

damage also related to the ions voltage, for large voltage the surface damage will be 

bad. The dose of the dopant is calculated by: 𝑁 = 4567∙9	
;∙<

 , Here Iion is the ions current, t 

is the doping time, e is the electron charge value and S is the doped area. So by 

choosing a proper ion current and doping time, it is convenient to tune the dose on the 

surface. Here we should also notice the crystal surface direction to avoid the channel 

effect during doping, it will greatly affect the doping depth and dose. 

Summary  

In this chapter, I first introduced the basic knowledge of structured surface, including 

its development and challenges. In order to solve these challenges, laser patterning 

method and FIB were proposed for making effective structured surface. To get readers 

a well understanding on these two technologies, they are in detail illustrated, such as 

their fabrication mechanisms, setup configurations and operation specifics. 
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Chapter 2.  

Raman characterization on structured surface 

Raman spectroscopy is usually considered as a powerful complementary method of 

infrared (IR) absorbance spectroscopy to characterize molecules’ composition or 

structures [1]. Raman spectroscopy could provide molecular and structure information 

which is usually not available by IR absorbance spectroscopy or fluorescence. It has 

great potential usage on structured surface to evaluate its plasmonic properties and 

identify structure changes. In this chapter, Raman spectroscopy is introduced from 

fundamentals to performance on characterizing laser-structured plasmonic surfaces and 

FIB-structured semiconductor surface. 

2.1 Fundamentals of Raman spectroscopy 

Raman scattering was first found in a liquid sample and reported by C. V. Raman and 

K. S. Krishnan in 1928 [2], and then named this effect by the name of Raman. In the 

same year G. Landsberg and L. I. Mandelstam also reported similar phenomena in 

crystals [3]. Actually before C. V. Raman, Adolf Smekal had already theoretically 

predicted this effect earlier in 1923 [4]. Raman spectroscopy is usually used in the area 

of chemistry and biology, for it can provide rich information of molecules by observing 

their structural vibrational, rotational and other low frequency modes [5, 6].  

  



 

Principle of Raman scattering 

When light illuminates on subjects, scattering process usually happens together with 

absorptions. This process could also be considered as the interaction between photons 

and molecules. Most of the scattered light just changes the propagation direction 

without changing the frequency, this process is called Rayleigh scattering, also known 

as elastic scattering for no energy transfer (between photons and electrons) happens 

during this process [7]. While small part of the scattered light changes not only the 

propagation direction but also the frequency, for the incident photons’ energy is either 

gained or lost during the collision with the molecules. This inelastic scattering is called 

Raman scattering [2]. Figure 2.1 shows the schematic illustration of Rayleigh scattering 

and Raman scattering.  

  

Figure 2.1 Scheme of Rayleigh (left) and Raman (right) scattering. 

process 



 

When incident light illuminates a subject and interacts with the intermolecular 

electronic system, the outer-shell electrons first absorb the incident photons and go up 

from the ground energy state to a higher virtual level (not high enough to reach an 

excited level). For the virtual level is not stable, the electrons will soon go back to the 

ground state and release the absorbed photons; or go back to a vibrational state and 

emit energy-shifted photons, as shown in the left and right Figure in Figure 2.1 

respectively.  

Theoretically, light is one kind of electromagnetic wave, it can be expressed as 

equation 2.1: 

                                                     (2.1) 

In the equation, E is the electric field of the light with frequency  and amplitude E0. 

When illuminated with light, the molecules interact with the electromagnetic wave and 

would be polarized and generate a dipole, the dipole moment  could be expressed as 

below: 

                                              (1.2) 

Where  is the polarizability tensor of the molecule. It can be defined as  

                                                 (2.3) 

Where  is static or equilibrium polarizability tensor, is the vibrational modulation 

of molecular polarizability tensor at molecular vibration frequency . Then equation 

2.2 could be further written as  

            

                 (2.4) 
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From equation 2.4, it is very easy to get the point that, during the scattering process, 

there are energy transfer between the incident photons and the molecular vibration 

modes (so called phonons). Thus the scattered light contains some frequency-shifted 

part, as shown in the later expression in equation 2.4, which could be detected and 

processed as Raman shift signal 𝜐>. The unchanged frequency 𝜈 responds to Rayleigh 

scattering as shown in the center ribbon in Figure 2.2. While the 

frequency-downshifted (𝜈 − 𝜈>)  and frequency-upshifted part (𝜈 + 𝜈>)  represents 

the Stokes and anti-Stokes scattering respectively, as shown in the two sides part in 

Figure 2.2. 

As the Raman shift modes represent the molecule’s vibration modes, which directly 

related to the molecule’s composition and structure. By observing analyzing the Raman 

shifts, researchers could know the details of molecule’s information and then even 

manipulate the molecules’ properties by external forces [8, 8]. Here we choose the 

Raman spectra of single-wall carbon nanotubes (SWNTs) as an example, as shown in 

Figure 2.3 [10, 11], there are four strong Raman bands called radial breathing mode 

(RBM), D band, G+ and G-band.  

As a consensus, the SWNT columnar shape generates RBM, where each carbon atom 

vibrates along the radial direction. The SWNT (n, m) indices could be obtained under 

the resonance condition, for the RBM frequency is inversely proportional to the SWNT 

Figure 2.2 Schematic illustration of Rayleigh, Stokes Raman and anti-Stokes 

Raman scattering spectra. 



 

diameter, [12]. In the first-order Raman spectra, the G band is considered as up to 6 

C-C vibration peaks. As shown in Figure 2.3 (b), the vibrations are tangential with 

respect to the surface of the tube, 3 are along the tube axis (G+ band) with the others are 

along the tube circumference (G- band). G band directly related to the atom 

arrangement of the SWNTs, thus it could be used to evaluate the molecule quality. This 

of great importance by using Raman to determine the Fermi energy position [13-15]. 

For disorder-induced D band, it appears at ~1350cm-1. The D to G intensity ratio could 

well indicate the size of in-plane crystallite and the amount of the sample disorder [16, 

17]. 

From the above discussion, we know that each Raman mode contains special meaning 

of a molecule. However not all the vibration modes of the molecules could generate 

Raman modes, they follow the so-called selection rules, which means only those 

Raman active vibrations could be detected. In next section, I will briefly introduce the 

selection rules of the Raman scattering.  

Figure 2.3 (a) Raman spectrum of a SWNT bundle. (b) The G+ and G- band 

eigenvectors for the C-C bond-stretching mode along the tube axis (LO) and along 

the circumference (TO) respectively. (c) Scheme of the radial breathing mode (RBM 

around186 cm-1). [18] 



 

Selection rules of Raman scattering 

As we all know that for IR absorbance spectrum, the selection rules are that: 

1. Vibration must produce a change in the dipole moment of a molecule; 

2.   

3. Overtones:    

The second and third rule means that, the absorbed energy equals to the energy 

difference between two vibrational states (overtones are allowed).  

While for Raman scattering, it is governed by the polarizability of the electron cloud. 

Thus different from IR, Raman happens when the polarizability changes. Polarizability 

means how easy molecule could be polarized, or how easy a charge distribution, like the 

electron cloud of an atom or molecule, to be distorted from its normal shape by an 

external electric field. To get an obvious idea of the selection rules, I choose CS2 

molecule as an example, as shown in Figure 2.4. The upper vibration mode υ1 is Raman 

active, for the changed electron cloud is easier to be polarized, which means 

polarizability is changed. While for the lower two modes υ2 and υ3 are IR active as they 

caused the molecule’s dipole moment changes. 

υ υυ υ→ +Δ =± Δ = =11, E h hw

υΔ = ± ±2, 4...

Figure 2.4 Selection rules of CS2 molecule. υ1, υ2, υ3 is the symmetric stretching, 
asymmetric stretching and bending vibration respectively. 



 

Theoretically, the vibration modes of molecules could be expressed as  

                               （2.5） 

Where k is the energy level number, is the vibration frequency at level k, is a 

normal vibrational coordinate and  is the maximum value . Then the 

derivative of the polarizability  in equation 2.3 is: 

                      
                                   (2.6) 

The dipole  could be written in details as  

     
      (2.7) 

From equation 2.7, the Raman activity needs 

                                                           (2.8) 

It means that at the equilibrium position, the derivative of the polarizability with 
respect to the molecular vibrations should not be zero. Actually, if consider this process 
with quantum theory, the condition for Raman active is 

                       
                                (2.9) 

Here  and  is the initial and final wave function of the system,  is the 

induced dipole moment, could be expressed with the component form of  as 
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                             (2.10) 

Here, as molecular vibrations should be symmetric [19], the components ,

, , so during the process of transition from i to f, there are 6 

components, among which, only if one is not zero, Raman is active as equation 2.9 

illustrates. So we just need to consider its symmetry. Due to group theory,  is the 

molecular initial wave function, and then the simple harmonic wave is 

totally symmetric. Thus only when and  belong to the same type of symmetry, 

the transition of i to f is Raman active. The symmetric representations of a symmetric 

system are summarized in the so-called character table. By checking the character table, 

one can easily know a molecular vibration is Raman active or not. 

2.2 Plasmonic enhancement 

Plasmonic structures are designed to enhance the weak optical signal through 

generating strong localized surface plasmon polaritons (SPPs). However, it is still 

under development. To evaluate and improve the performance of the plasmonic 

properties is of great value. Compared with other methods, Raman is an advance one 

for evaluation the plasmonic structures. For it is non-destructive, tag free and easy 

sample preparation. By observing the enhanced Raman signal on the structured surface, 

the electromagnetic enhancement factor and the reproducibility can be clearly 

understood. Thus it is of great value for the improvement for the plasmonic structures 

design and fabrication. 
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Enhanced Raman on plasmonic structures 

In general, the enhancement of SERS could be attributed to two mechanisms: the 

electromagnetic enhancement mechanism (EM) and chemical enhancement 

mechanisms (CM). As the former one is normally considered as the dominating 

mechanism for high SERS enhancement, in this thesis, I mainly talk about EM.  

The EM is also called physical enhancement mechanism, which involved so-called 

localized surface plasmon polaritons (LSPPs). Plasmon can be physically considered as 

a quasi-particle, which arises from the quantization of plasma oscillations, just as that 

phonons are quantized mechanical vibrations. Plasmon can couple with photon to 

create another quasi-particle called plasmon polaritons. However, plasmon can only 

couple with photon on the surface of a bulk metal. The reason is shown in Figure 2.5.  

 

Figure 2.5 Plasmons propagating on the surface and in the bulk of a metal material. 
Especially on the surface, plasmon contains transversal wave components that can 
couple with phonon. 



 

Plasmon is longitudinal wave, while photon is transversal wave, in the bulk part of a 

metal, they won’t couple; on the surface (interface between the metal and other 

dielectric substance), there appear transversal wave components, which could couple 

with the incident photons, to form surface plasmon polaritons (SPPs). 

For SPPs on a perfectly flat surface are always nonradiative. They could not enhance 

the electromagnetic filed even possess large condensed energy. To make SPPs be 

radiative, metal NPs with size smaller than light wavelength are usually used. So when 

a light wave interacts with metal NPs, LSPPs could be consequently induced in the 

vicinity of the NPs, by means of free electrons collectively oscillating, as shown in 

Figure 2.6. The positions that have the enhanced localized electric field are also named 

hotspots. Thus when molecules approach to these hotspots, their Raman scattering 

signals can be dramatically amplified.  

As the size of the metal nanoparticle is relatively small than the incident wavelength, to 

simplify the situation, quasi-electrostatic approximation can be applied to analyze this 

system. In quasi-electrostatic approximation, the phase retardation is neglected due to 

theory of the LSPPs [20, 21]. From Mie scattering equation, the induced LSPP can be 

Figure 2.6 Illustration of the localized plasmon polaritons near metal surfaces 

induced by electromagnetic field of incident light. 



 

treated as a dipole centers at the metal nanoparticle under an external electric field. The 

dipole moment  can be illustrated as 

                                                        (2.11) 

In here,  is the relative permittivity of the surrounding material,  is the electric 

field of the incident light, and  is the polarizability of the metal nanoparticle, which 

can be expresses as： 

                  
                            (2.12) 

Where  is the radium of the metal nanoparticle ( ), and  is the 

complex permittivity of the metal at angular frequency . From equation 2.11 and 

equation 2.12, the amplitude of the dipole moment  will drastically increase, when 

the resonance of the LSPPs happens. In this case, 
 

is satisfied, where 

 is the real part of  and becomes negative ( ). 

As the strongly induced dipole moment could also greatly enhance the electric field in 

the vicinity of the metal NPs. The maximum value of the enhanced local electric field 

 is described as equation 2.13. 
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Hence the enhancement of the local E-field intensity  under LSPPs resonance 

condition can be written as 

                    
                               (2.14) 

Introducing equation 2.13 into equation 2.14, and assuming the permittivity of the 

metal in a form as , one finds 

             
                  (2.15) 

To get a higher enhancement, the smaller imaginary part of the permittivity  is 

the better. That is why silver and gold are usually selected as the material for SPPs 

generation in the visible light range. 

When Raman scattering was enhanced by such LSPPs, the scattered Raman field would 

also be enhanced by a factor  similar as , for the frequency of the scattered 

Raman signal is not so much different from the incident light frequency: . Thus 

the total Raman enhancement factor EF can be described as 

               
               (2.16)

 

Obviously, to get a high enhancement factor for a SERS measurement, enhancing the 

localized E-field is the most effective way. For example, if the LSPPs enhanced the 
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localized E-field by 10 times, the Raman signals of molecules can be increased by 

10000 times. In fact, by choosing a proper material (e.g. with a high ), 

optimizing the size, and junction features of plasmonic nanostructures, a SERS EF can 

reach or be even larger than 1010 [22]. Consequently, the cross section of SERS can be 

established by multiplying the Raman cross section with the EF of SERS, which will 

reach about 10-20. This value supports SERS being applied in various areas with its 

powerful analyzing potential. Then the key issue becomes how to design and fabricate 

effective structures as SERS substrates. 

On well understanding the mechanisms of SERS, by Raman study on the metallic 

structured surface, we know that both the frequency and magnitude of the maximum 

enhanced E-field strongly depend on the proper materials, sizes, shape and arrangement 

of the metallic nanostructures. These information is important for designing effective 

plasmonic structures for the application as chemical and biological sensors. 

2.3 High resolution Raman imaging 

From Raman spectra, one can know the molecular or crystal spices and structure 

information, which is usually called fingerprint of a sample. By taking Raman image of 

a sample, it will give us more useful information, such as the distribution of the target 

molecule, lattice structures and chemical bonds [23]. This is of great value on analyzing 

the dynamic process in physics, chemistry and biology.  

Raman imaging on doped semiconductor surface 

In ICs industry, the doping process plays a key role for reforming the surface electronic 

properties. Usually the doping property is hard to characterize by the traditional 

methods (AFM, SPM), as there is less surface morphology change on the doped 

!!ε m
' ω i( ) εm

" ω i( )



 

structures. While Raman showed its features on characterizing crystal lattice changes 

here.  

Figure 2.7 schematically illustrates the crystal lattice changes and Raman responses in 

the doped area. From a Raman spectrum of a perfect semiconductor, we can find 

several characteristic Raman peaks which relate to the special phonon modes of the 

crystal. When doped with some different ions, the Raman spectrum of the doped area 

will show some additional modes or Raman peak position shifts that related to the new 

doped atoms, such as lattice disorder or localized strain forces [24]. Thus when imaging 

at these abnormal modes, the doped area can be clearly observed; the localized 

composition and structure property can also be analyzed. This will help understanding 

the crystal changes during doping process, and improve the doping techniques in IC 

industry. 

  

Figure 2.7 Scheme comparison of Raman spectra from perfect crystal and doped 
crystal (left). Scheme of crystal structures of perfect crystal and doped crystal (right).   



 

Summary 

In this chapter, I first introduced the basic knowledge of Raman spectroscopy, 

including its principle, selection rules, and its applications in various areas. Then I 

talked about enhanced Raman on plasmonic structures, the principle of SERS 

enhancement, which is strongly dependent on the localize-enhanced electric field on 

plasmonic surfaces. The SERS enhancement can be greatly increased by choosing 

proper material, optimized size, shape and arrangement of the metal nanoparticles. 

Finally, I talked about high resolution Raman imaging on ion doped semiconductor 

surface, which can characterize the crystal structure changes and their special 

distributions. It is of great value to understand the doping process and improve IC 

technologies. 
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Chapter 3.  

Raman study on Ag coated laser-structured 
RGO stripes 

In this charpter, multilevel Ag coated laser laser-fabricated RGO structures is 

introduced. In details, two-beam laser interference (TBLI) was utilized. Through a laser 

induced ablation and photoreduction process, hierarchical graphene structures with 

microscale gratings and nanoscale folders were achieved. The hierarchical structures 

contribute to the formation of plasmonic structures after silver coating by simple 

physical vapor deposition (PVD). When applied for Raman study, the dispersed AgNPs 

gave rise to the formation of plenty of SERS “hot spots”. In the detection of 

Rhodamine B (RhB), this multilevel structures showed high SERS enhancement and 

good reproducibility, a detection limit of 10-10 M has been achieved. 

3.1 RGO micro-nanostructures fabrication for chemical 

sensor 

In recent years, 2D graphene materials has attract more and more researchers’ interest, 

for it not only posses many extraordinary properties but also has the potential for new 

device applications [1, 2]. Its derivations such as GO and RGO also became more and 

more famous, even their properties are not as perfect as pure graphene. However, GO 

or RGO materials are much easier to produce and more suitable for real application. 

Recently, they showed addition potential in SERS investigation due to the fluorescence 



 

quenching effect, an additional SERS chemical enhancing ability, high adsorption to 

target molecules, very good biocompatibility and anti-oxidation of silver nanoparticles 

[2-4]. Thus, rational combination of GO/RGO and noble metal NPs could dramatically 

improve the conventional SERS performance in various aspects. Traditional methods 

usually just simply combined GO or RGO layers with metallic particles [3, 4], the 

enhancement was relative low, the reproducibility was also not satisfied. Here, to 

improve that situation, silver coated laser-structured RGO stripes is introduced. 

The GO films were prepared by using or improved Hummers’ method [5]. The basic 

principle of Hummers’ method is illustrated in Figure 3.1. As first step, natural graphite 

is oxidized into graphite by the treatment with various oxidants in acidic media (such as 

KMnO4, H2SO4, or benzoyl peroxide [7]). Then graphite oxide is exfoliated into 

graphene oxide sheets in water by ultra-sonication, and forms a uniform turbid liquid. 

The GO material can be purified by high-speed centrifugation and dialysis to remove 

inorganic impurities such as metal ions and acids. The purified GO could finally be 

reduced through chemical reduction [8-11] or laser induced reduction [12-14]. 

Figure 3.1 Scheme of Hummers’ method for RGO preparation from graphite [6]. 



 

In this research, the high quality GO material was prepared from purified natural 

graphite (Aldrich, <150 um), then the GO film was obtained from spin coating the GO 

turbid liquid on a piece of cover glass. The detail procedurals are illustrated as follows.  

Purifying GO material: 

1. At 0!oC  (in thermostatic pot in ice water mixture), take 2g natural graphite, 2g 

sodium nitrate (NaNO3), 96ml concentrated sulfuric acid (H2SO4) and mix them in a 

beaker. 

2. Keep the system temperature at 0!oC , slowly add 12g mineral chameleon (KMnO4). 

3. Keep stirring the mixture at 0!oC  for 90min, then heat the system to 35!oC  and mix 

it for 2h. 

4. Dilute the mixture by slowly injecting 80ml-deionized water in 30min. 

5. Inject 10ml peroxide (30%) to the turbid liquid, followed by inputting 200ml 

deionized water, keep stirring for 10min and get turbid liquid of graphite oxide. 

6. Centrifuge the mixture with high speed (16000 rpm) for 10min, and separate 

graphite oxide from the turbid liquid. Continue centrifuging and cleaning the rest of the 

turbid liquid with deionized water until the PH reaches 7. 

7. Using ultrasonic wave treat the mixture, further separate the graphite oxide and get 

turbid liquid of GO. 

8. Centrifuge the mixture with high speed (16000 rpm) again for 20min, separate GO 

and dry it in the vacuum chamber at 90!oC  to get pure dry GO for further using. 

Preparation of GO film: 

1. The as-prepared GO material (in the form of small flakes) is first made into GO 

turbid liquid with a concentration of 3mg/ml by inputting deionized water and 

dispersing by ultrasonic wave. As the GO was purified, its dispersion in the liquid is 



 

uniform. The turbid liquid shows semitransparency with a color of brown yellow, and 

proves to be stable even putting still for long time. 

2. Clean cover glasses as templates for GO film. Consequently, clean the glass with 

acetone, ethanol and ultrasonic wave, finally wash them with deionized water and dry 

them. 

3.  Drop one droplet of GO turbid liquid onto one piece of cover glass, then spin coat 

it with 1000rpm for 30s, dry it in in air at room temperature. One can get the aimed 

film thickness by trying different spin-coating times. 

4. The GO films are OK for further structures fabrication and reduction. If special 

function needed, such as for microelectronic devices fabrication, pre-metal coating or 

other treatment is essential. 

Two-beam laser interference (TBLI) patterning 

The GO films are used for fabrication of graphene stripes by TBLI system. The scheme 

of the TBLI system is illustrated in Figure 3.2.  

Figure 3.2 Scheme of TBLI system used for RGO structures fabrication. 



 

In the TBLI system, a frequency-tripled, Q-switched, single-mode Nd:YAG laser 

(Spectra-Physics) was utilized. The emission wavelength was 355nm, the laser pulse 

frequency was 10 Hz and the pulse duration was 10 ns. The beam diameter was 9 mm, 

which was adjusted by the beam expander. And then it was split into two beams, which 

had the same optical path length to the sample and interfered on the surface of the GO 

film.  

To give an intuitionistic image of the interference pattern, the laser intensity 

distributions on the interference area were theoretical simulated by Matlab, as shown in 

Figure 3.3. The periodic distribution of laser intensity along x direction is obviously 

observed, while keeps same along y direction. Due to the calculation, the strongest 

intensity of the interfered pattern is 4 times of that of single laser beam and the lowest 

intensity is 0. So when interacts with laser active material substrates, large area periodic 

patterns according to the intensity distribution will be available, such as stripes. Here 

there are two important factors that will affect the pattern qualities, one is the laser 

intensity which should neither be too strong nor too weak; the other is the period of the 

stripes which could be well adjusted by tuning the intersection angle.  

  

Figure 3.3 Laser intensity distribution of the two-beam interference 
area. 



 

Multilevel plasmonic structure fabrication 

Graphene stripes could be fabricated by exposing the GO film to the laser interference 

region for several second. During this process, there were two kinds of reactions 

happened between the laser and GO film. They are laser ablation and laser induced 

reduction.  

When illuminated under the strong stripes region of the interfered laser (as shown in 

Figure 3.3), GO material would absorb the laser energy, generate heat and break 

chemical bonds. That is because the 355 pulse laser intensity was strong enough to over 

the chemicals bond energy. As this process was carried out in the atmospheric 

environment, the GO film would be thinned and generate CO2 and CO, as shown in 

Figure 3.4. This is the laser ablation process.  

While at the neighbor part of the strong interfered stripes, where the laser intensity is 

not so strong to ablate GO, but still higher enough to break the weak bond between the 

Figure 3.4 Scheme of Ag-RGO structures fabrication by TBLI treatment and Ag 
coating. The figures in red and green square illustrate the cross-section of GO film 
and TBLI treated RGO/GO structures respectively. 



 

oxygen functionalities and graphene layers. The oxygen functionalities would be 

removed in the form of CO2 or CO gas, and left so called reduced graphene oxide 

layers. This is the laser reduction process. Here we should notice that at the thinner part 

of the RGO structures in Figure 3.4, it is laser treated GO film. This part is made of less 

RGO layers, where the laser consumed much energy on ablating the upper part GO and 

left less energy to reduce the lower thin part GO.  

The scheme of side view of RGO structures is shown in Figure 3.4, the interesting 

phenomena is that at the edge part of the GO stripes (not ablated part), the RGO layer 

edges are dispersed. That was generated by the CO2/CO gas expansion force during the 

GO reduction process [15, 16]. And the dispersed RGO layers would play an important 

role for guiding the AgNPs growth. 

To fabricate a sensitive SERS substrates based on the graphene stripes, silver was 

coated using thermal evaporation system DM-300B. The procedure is shown in Figure 

3.4. The Figures in red and green square show the cross-section of GO film and TBLI 

fabricated RGO/GO structures. During TBLI treatment, the strong laser stripes interact 

with GO film, both laser ablation and reduction will happen. Due to the ablation 

process, part of GO film would be incinerated; while part of GO would be reduced and 

generate RGO layers. At the edge part of GO stripes, the edges of RGO layers form 

nanoscale fine structures, which contribute to guiding AgNPs growth with uniform size 

and arrangement. This will help forming large amount of hotspots when used as SERS 

substrates. In Figure 3.4, the Ag deposition was carried out by physical vapor 

deposition (PVD) using thermal evaporation system DM-300B, in a high vacuum 

(less than 5 × 10−4 Pa), with a low deposition rate at 0.03nm/s, and the final 

thickness was about18nm.  

  



 

3.2 SERS characterization of Ag-RGO substrate 

The morphology of the multilevel structure 

During TBLI fabrication, the GO film was exposed to the interfered laser beams, after 

which GO surface was treated in a similar pattern as the intensity distributions. The 

region exposed to high laser intensity could be partially ablated and reduced to RGO 

[12-16], whereas, the region under low intensity survived. The morphology of the 

RGO/GO surface was characterized by scanning electron microscopy (SEM) by using a 

field-emission scanning electron microscope (JSM-7500F, JEOL, Japan). The optical 

and SEM images of RGO stripes are shown in Figure 3.5.  

As shown in Figure 3.5 (a), after TBLI treatment, stripes structures have been created. 

The period of stripes is about 2 µm, which could be clearly observed by optical 

microscope. Particularly, the period of ~2 µm was found to be suitable for achieving 

super-hydrophobicity, which has been confirmed in our previous works, so other 

periods have not been adopted for the fabrication of SERS substrates in this work. 

What is more, the periodic structure could be confirmed by diffraction tests. Figure 3.5 

Figure 3.5 (a) Optical image of RGO stripes fabricated by TBLI. (b) Diffraction 
pattern of the RGO stripes.  



 

(b) shows the diffraction pattern, which suggests that the periodic stripes are very 

uniform. Notably, the uniform structure is a very important character for the SERS 

substrates, since it would guarantee a high reproducibility in real SERS detection.  

To investigate the details of the surface structures of RGO stripes, scanning electron 

microscope (SEM) was carried out as shown in Figure 3.6. Figure 3.6 (a) and (b) show 

the SEM image of the RGO stripes and the magnified SEM image of the area marked 

by red square in Figure 3.6 (a), which shows the details of the RGO stripes structure. 

We noticed that, in addition to micro-scale stripes, there exist special nanofolder 

structures at the edge part of each stripe.  

The formation of nanoscale layered structure could be attributed to the laser treatment 

induced reduction and the emission of carbon species (e.g., CO and CO2). As we know 

that both the microscale stripe and the nanoscale nanofolder of the resultant RGO 

surfaces would lead to a rough surface, which is benefit the plasmonic structures 

formation. This rough surface combined with the resultant RGO nanofolders shows 

unique superhydrophobicity, which will be particularly discussed in next section.  

Figure 3.6 (a) SEM image of the RGO stripes fabricated by TBLI. (b) Magnified 
SEM image of the red square marked in (a). 



 

Using the fabricated RGO stripes as templates, sensitive SERS substrates could be 

fabricated by simply coating a thin layer of silver nanoparticles using a PVD technique. 

Figure 3.7 shows the SEM images of silver coated RGO (Ag-RGO) stripes, the 

hierarchical structures have not changed after decoration with silver. The microscale 

stripes as well as nanoscale layers could be clearly identified from the SEM image.  

To get further insight into the morphology of silver layer, the SEM image was further 

magnified. As shown in Figure 3.7 (c) and (d), we observed both the flat region (RGO 

strips) and the structured region marked by red and green squares, respectively. On the 

flat region, Ag nanoislands were uniformly deposited on the RGO surface and 

connected together; whereas on the structured region, the nanoscale layers could 

separate the Ag nanoparticles by providing large substrate contact region. Silver 

nanoparticles with smaller particle size (10-30 nm) well disperse over the entire 

Figure 3.7 (a) SEM images of Ag-RGO stripes. (b) Magnified SEM image at the 
square area marked in (a). (c) & (d) Magnified SEM images of the area marked by 
red and green squares in (b) respectively. 



 

nanofolder structures homogeneously (Figure 3.7 d). The nanoscale gaps (1~2 nm) 

between silver nanoparticles together with the AgNPs could be considered as 

plasmonic structures, which contribute to the enhancement of electromagnetic field. As 

compared with the Ag nanoislands in the flat RGO region, stripes-structured RGO 

substrate would generate plenty of SERS “hot spot” after silver coating and contribute 

to the SERS detection performance accordingly.  

To get sufficient localized “hot spot”, plenty AgNPs is crucial, which needs enough 

silver thickness during PVD process; while too much quantity silver should also be 

avoided to refrain from forming big Ag grains or continued Ag layer. Due to our 

experience, a layer thickness around 20nm is proper. The thickness of the silver layer 

was measured by atomic force microscopy (AFM, iCON, Veeko) as shown in Figure 

3.8. A thickness of 18nm silver layer on a flat substrate was confirmed. 

  

Figure 3.8 (a). AFM image of the Ag coated GO substrate. (b). AgNPs thickness 

measurement along the white line in (a). 



 

Super hydrophobicity of Ag-RGO stripe structures 

In addition to the electromagnetic field enhancement that originated from the plasmonic 

structures, the presence of graphene could also give rise to Raman enhancement by 

means of chemical interaction with the detected molecules, which is called chemical 

enhancement [17, 18]. The unique dewetting property would contribute to the 

enrichment effects, so-called condensation effect, which can also further lower the 

SERS detection limit. Recently, rough metal surface has also been prepared by coating 

silver or gold nanoparticles on rough templates, such as DVD disk, paper and even rose 

petal [19-21].  

Here, the superhydrophobicity was characterized by the contact angle of the Ag-RGO 

stripes, which was checked by dropping a drop of RhB solution on the Ag-RGO stripes 

SERS substrate. As shown in Figure 3.9 (a), the CA was measured to be ~152º. The CA 

of RGO stripes and pure AgNPs were also checked, as shown in Figure 3.9 (b) and (c) 

respectively. The slightly increased CA compared with that of RGO stripes (~150º) and 

pure Ag NPs coated cover glass substrate (~107º) could be attributed to the increased 

surface roughness after silver coating on the nanoscale RGO stripes [22]. 

 Importantly, the sphere shaped RhB droplet has a significantly decreased contact area 

with the substrate (Ag-RGO stripes). In our experiment, the RhB drop was evaporated 

naturally in ambient condition. We recorded the photographs of the droplets during the 

Figure 3.9 CA of (a) Ag-RGO stripes, (b) RGO stripe without Ag and (c) Ag 

nanoparticles coated GO film without stripe structures. 



 

evaporation process, as shown in Figure 3.10 (b-d), the droplet became smaller and 

smaller, the contact area almost keeps a consistent value. In other words, all of the RhB 

molecules in the 4 µL droplet were deposited within the contact area, about 0.9 mm2. 

For comparison, we also measured a hydrophilic glass surface that has a low CA of 

~15º, the contact area between the glass surface and a 4-µL droplet is measured to be 

12.5 mm2. Form this point of view, the superhydrophobic Ag-RGO stripes substrate 

would lower the SERS detection limit to more than one order of magnitude.  

In order to check the Raman performance of the Ag-RGO stripes structures, RhB was 

chosen as Raman probe material and the as fabricated SERS substrate-based Raman 

measurement was conducted.  

Raman spectra were recorded on a LabRAM HR Evolution from Horiba scientific 

equipped with a He-Ne laser at 633 nm as excitation source, the laser power was about 

30uW on the samples, and the average spot size was 1 µm in diameter. The objective is 

100x with a NA of 0.8. The optical setup is illustrated in Figure 3.11.  

  

Figure 3.10 (a-d) The optical images during the evaporation of the RhB droplet. In 

(a) the original CA was measured to be ~152°. The images were recorded after 

evaporation for different times. 



 

Enhanced Raman on Ag-RGO structures 

As the SERS substrate contains two different types of surface morphology, as shown in 

Figure 3.12 (b). On the flat region, it was Ag coated complanate RGO layer. The 

AgNPs there were big, not uniform and with iregular shape. These properties are not 

good for getting high enhancement and good reproducibility. While on the structured 

region, it was Ag coated RGO/GO nanofolders. The AgNPs are relative uniform with a 

size of 15nm. They closed packed along the RGO layer edges, the gaps between them 

was around 1nm. When illuminated with light, the AgNPs can generate plenty of hot 

spots. The SERS performance were confirmed on these two different places. As shown 

in Figure 3.12 (a), the Raman enhancement on the structrued region was about 5 times 

higher than that on the flat region. This result agreed well with the different plasmonic 

structures. The later SERS measurements were all conducted on the structured region. 

  

Figure 3.11 Scheme of Raman system (LabRAM HR Evolution). 



 

Polarization dependence confirmation 

To evaluate the SERS performance of Ag-RGO stripes substrate, we used RhB as a 

probe molecule for Raman detection. Since the unique stripe structure shows obvious 

anisotropic properties, we first checked the SERS performance with different laser 

polarization directions. In this test, the concentration of RhB was 10-6 M, the directions 

of the laser polarization are illustrated in Figure 3.13 (inset) with respect to the stripes 

direction, and we compared the SERS signal of linear polarized laser that parallel and 

perpendicular to the stripes, as shown in Figure 3.13 (a).  

It was obvious that when the laser polarization direction was parallel to the stripes, the 

Raman signal was almost twice stronger than that along the perpendicular direction. By 

carefully observing the AgNPs decorated on the RGO layers, it could be explained as 

that when the laser polarization is parallel to the stripes, most of the AgNPs packed in 

same layer could interact with each other and generate strong localized SPPs; while on 

the other hand, when the laser polarization is perpendicular to the stripes, the SPPs 

were mainly generated from AgNPs that separated by the RGO layers, and thus 

provided relative weaker E-field enhancement. Thus this structures would help 

Figure 3.12 (a) SERS of RhB solution (10-6 M) measured on flat (blue curve) and 
structured (red curve) region on Ag-RGO substrate. (b) SEM of flat (in blue square) 
and structured region (in red square). 



 

increasing the laser coupling efficiency. The simulation results were also conducted, 

which strongly support the experiment result, as shown Figure 3.13 (b). In this regard, 

the SERS measurements in the following experiments were all implemented with the 

laser polarization parallel to the stripes’ direction.  

To further confirm the multilevel structures contributions for SERS, we decreased the 

RhB concentration to 10-10 M, and compared the Raman spectra on Ag-RGO stripes, 

bare RGO stripes and Ag coated flat GO film, respectively. As shown in Figure 3.14, 

compared with Ag-RGO stripes substrate, both RGO stripes without Ag and Ag coated 

flat GO film show very weak Raman enhancement under the same excitation 

conditions. This result showed the unique advantages of the combined structures of 

both RGO nano-folders and the well-dispersed AgNPs. Also even for the the low 

concentration sample (10-10 M), the characteristic Raman peaks (at 611, 1360, 1507 and 

1651 cm-1) could be clearly observed. The excellent SERS performance could be 

Figure 3.13 (a) Comparison of SERS measured with two different laser polarization 
directions with respect to the stripes, red and blue curves show the SERS spectra 
measured with the polarization parallel and perpendicular to the stripes, 
respectively; inset is the SEM image of the Ag-RGO stripes. (b) Simulation result of 
the intensity distribution of AgNPs with laser polarization parallel (upper) and 
perpendicular (lower) to the RGO stripes 
. 

(a) (b) 



 

attributed to the combined structures of both RGO stripes and the well-dispersed 

AgNPs. 

Enhancement factor calculation 

To give another direct proof of SERS substrate performance, we calculated the 

enhancement factor (EF) of our SERS substrates. Here we noticed that for the same low 

concentration of RhB, the normal (non-enhanced) Raman signal was too weak to 

compare with the SERS signal, thus we use higher concentration (10-4M) RhB for 

normal Raman signal testing and lower concentration (10-10M) for SERS signal taking 

(In this paper, in order to protect the SERS substrate and the RhB molecules, we didn’t 

use high exciting power and long exposure time, for both cases the laser power was 

30µw and exposure time was 20s). The comparison of SERS signal and Raman signal 

of RhB is shown in Figure 3.15.  

Figure 3.14. Comparison of Raman spectra of 10-10 M RhB measured on the 
substrate with Ag-RGO stripes (red curve), Ag coated GO film (green curve) and 
pure RGO stripes (blue curve) 



 

We used the equation SERS SERS

vol vol

I NEF
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=
 
to calculate the enhancement factor, where 

SERSI  is the SERS peak intensity, volI  is the normal Raman peak intensity, SERSN  is 

the average number of adsorbed molecules in the scattering volume for the SERS 

measurements, volN is the average number of molecules in the Raman scattering 

volume. Here
0
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the sample concentration used for SERS and normal Raman respectively, V is RhB 

solution volume. As the sample is on solid surface, volS = SERSS , is the laser focus area 

for Raman excitation, 0S and '
0S  are the contact area between the RhB solution and 

Ag-RGO and RGO stripes substrate respectively, as the contact angle of Ag-RGO and 

RGO stripes are similar, we assumed that '
0 0S S . Finally EF can be written as:
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Figure 3.15 Comparison of SERS signal of 10-10M RhB on Ag-RGO stripes 
substrate (red curve) and normal (non-enhanced) Raman signal of 10-4M RhB on 
bare RGO stripes substrate (blue curve). 
 



 

chose the peak intensity at 611, 1360, 1507 and 1651 cm-1 (see Figure 3.14), then 

calculated ratio of SERS volI I  and got EF value, which is about  2.0×107 . In contrast 

with other researchers’ works, this value is comparable [25-27], and the high 

enhancement factor strongly supports that nice SERS performance of the Ag-RGO 

stripe structures. 

3.3 SERS Reproducibility of Ag-RGO structures 

For SERS substrates, the signal reproducibility is a very important factor that affects 

their performance and reliability. In this section, we evaluated the reproducibility of the 

SERS signals of our Ag-RGO stripes SERS substrate in the detection of RhB solution 

with concentrations of 10-10 M and 10-6 M, respectively. For each sample, we chose 7 

different positions randomly on the Ag-RGO stripes. As shown in Figure 3.16 (a) and 

(b), even at a concentration of 10-10 M, the Raman spectra also showed very high 

uniformity and low fluctuation, the case was the same in the detection of RhB solution 

at a concentration of 10-6 M, indicating the high reproducibility of our Ag-RGO stripes 

substrate. As a direct proof of the remarkable reproducibility, Figure 3.16 (c) and (d) 

show the Raman signal fluctuation at band 1360 cm-1 of RhB with 10-10 M and 10-6 M, 

respectively. It is much clearer to judge the signal stability, and we calculated the 

relative standard deviation (RSD) as 10.4% for the 10-10 M and 8.0% for the 10-6 M 

sample, respectively. The low RSD values indicate the excellent SERS signal 

reproducibility of the Ag-RGO stripes substrate.  

Here, the little differences between the RSD values of two samples were due to the low 

signal to noise (S/N) ratio of the low concentration (10-10 M) sample, where the noise 

signal float could somehow affect the signal fluctuation. The highly reproducible SERS 

signals could be attributed to the uniformity of the stripe structures. It is necessary to 

point out that we measured all the SERS signals on the structured region of the stripes.  

 



 

  

Raman spectra of RhB with a concentration of (a) 10-10 M and (b) 10-6 
M at 7 different positions, respectively. The peak intensity of the Raman mode at 
1360 cm-1 on 7 measured sites of (c) 10-10 M and (d) 10-6 M samples, respectively



 

As a complemental support, SERS signals of RhB (10-6 M) on 4 different pieces of 

substrates were also collected and compared, in which high reproducibility (RSD=8.3%) 

has been achieved (Figure 3.17).  

Additionally, it is well known that one of the major problem of using silver plasmonic 

structures is the silver oxidation, which is important since it will affect the temporal 

stability and therefore also reproducibility in time of the system. Thus to evaluate the 

stability of SERS substrate, we checked the SERS performance vs time at one fixed 

substrate position, as shown in Figure 3.18. Due to the result, even after 3 weeks, the 

SERS performance did not change much, just slightly decreased (~4.7%). In fact, this is 

not abnormal, we also checked with other papers [23, 28, 29], in which the silver 

oxidation did not affect the SERS performance much.  

Figure 3.17 Raman spectra of RhB (10-6 M) at 4 different pieces of substrates. 



 

Summary  

In this chapter, I have introduced the development of a multilevel structures by 

combining TBLI fabrication of RGO stripes with PVD coating of silver. In details, 

Hummers’ method was used for the GO material preparation. And TBLI method was 

illustrated. Finally, Raman spectroscopy was carried on the RGO stripes-based 

hierarchical micronanostructures. This multilevel surface showed high Raman 

enhancement with an enhancement factor around 2x107. The hierarchical structures not 

only contribute to the enhancement of local electromagnetic, but also lead to 

superhydrophobicity induced enrichment effect, which further lowers the detection 

limit of target analytes. By using the Ag-RGO stripes as substrate for Raman 

spectroscopy, the enhanced Raman detection limit as low as 10-10 M has been achieved, 

and the SERS signals on different positions together with the less-time dependence of 

the substrate showed both high special and temporal reproducibility. TBLI fabrication 

of RGO stripes may hold great promise for the development of highly efficient SERS 

substrates. 

Figure 3.18. Raman signal at same spot measured at different time (0, 7, 14, 21 days 
later respectively marked by different colors). Inset is the Raman intensity (at 
612cm-1) changes vs time. 
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Chapter 4.  

Raman study on Ag coated laser-structured 
black silicon 

In this chapter, AgNPs decorated laser-structured black silicon (Ag-black silicon) is 

introduced. Compared with other methods (such as RIE), laser fabrication is much 

easier to carry out, designable and convenient for large area patterning. When studied 

as a Raman substrate, they effectively enhanced the Raman signal and realized a 

detection limit about 10-8 M. Specially, these Ag-black silicon structures are 

manipulated in a microfluidic channel, they realized in-situ enhanced Raman 

monitoring of on-chip chemical interactions.  

4.1 Design and fabrication of Ag-black silicon structures 

In recent years, black silicon becomes a famous material, which can be applied in the 

areas of photodetectors [1-3], solar cells [4-6], sensors [7] and terahertz applications 

[8-10]. For it has many remarkable properties, such as large absorption range and high 

specific surface area [11-15]. When the micro/nano-roughened surface is coated with 

metal nanoparticles, black silicon could be utilized for various other applications, such 

as surface-enhanced Raman scattering (SERS) sensors [16-18]. However, in the 

previous work, the black silicon structures were fabricated through relative complicated 

methods, such as reactive ion etching (RIE) or oxygen plasma etching. These methods 

are not easy to carry out, and their performances on structuring black silicon surface are 

not stable. Thus, to overcome these obstacles, laser patterning method is introduced for 

the black silicon fabrication. 



 

Introduction of black silicon 

Basically speaking, black silicon is semiconductor material with a corn-shaped surface 

structure, where the needles (or pointed corns) are made of single-crystal silicon. Thus 

normally the black silicon surface presents very low reflectivity and relative high 

absorption in the visible and infrared light range. Interestingly, black silicon was 

discovered since the early 1980’s, when researchers found an unwanted side effect of 

reactive ion etching (RIE) [19]. Similar structures could also be formed by other methods, 

such as dry etching, laser ablation, electrochemical etching and laser-assisted chemical 

etching. Particularly, the black silicon fabrication by femtosecond laser treatment is 

effective, which is developed by Eric Mazur's group at Harvard University [20, 21]. 

Figure 4.1(a) shows an SEM image of black silicon fabricated by Mazur’s group [20]. 

  

Figure 4.1 Sharp conical spikes produced on Si (100) femtosecond laser viewed (a) 
45° from the surface normal. (b) Illustration of black silicon formation mechanism. 
[20] 

(a) (b) 



 

The morphology of black silicon usually appears needle-shaped surface structure; while 

Figure 4.1 (b) illustrates the mechanisms for laser-fabricated black silicon structures 

formation. They are formed through laser ablation and laser assist chemical etching 

(details are still under debating). The silicon wafer was usually placed in a SF6 filled 

removable chamber, when illuminated by the focused femtosecond laser, due to the 

strong pulse laser intensity, the silicon would first absorb laser energy and soon be 

melted and ablated. By the same time, the SF6 air in the focus volume would be ionized 

to chemical active F+ (and S6-). The F+ will etch the Si surface to form pointed-corn 

structures [21, 22].  

As shown in the image, the black silicon needles have a height about 10 µm and a 

diameter around 1 µm. The arrangement is relatively uniform. The main feature of this 

black silicon structure is an increased absorption in visible range light, accordingly the 

reflectivity on the black silicon surface decreased from 20–30% (quasi-normal incidence) 

to about 5%. This is because of the formation of the needle-shaped structures, where 

there is no sharp interface, but a continuous refractive index change, this greatly reduces 

Fresnel reflection [22]. Actually, most of the applications of black silicon are based on 

this property.  

Femtosecond laser direct wring for black silicon fabrication 

In this research, we used femtosecond laser direct writing (FsLDW) method for the 

black silicon fabrication, which has many remarkble advantages, such as 

nano-precision, mask-free, and noncontact [24-36]. The optical setup is illustrate by 

Figure 4.2. The FsLDW process was conducted in a sealed chamber filled with SF6 at a 

pressure of 0.07-Mpa. The 800-nm femtosecond laser pulses used here were generated by a 

Ti:sapphire regenerative amplifier laser system (Spectra Physics). The laser pulse duration was 

100 fs and the repetition rate was 1 KHz [37-44]. The laser power was 600 mW, and the 

scanning speed was 1 mm/s. The desired pattern was completed by manipulating the position of 

the substrate stage through PC controlled piezoelectric transducer.  

 



 

 

The scheme of the whole process of Ag-black silicon structures fabrication is briefly 
illustrated in Figure 4.3.  

Figure 4.2 Schematic illustration of optical setup for black silicon preparation. [37] 

Figure 4.3 Schematic illustration of the whole Ag-black silicon fabrication process. 
(I~III) Microfluidic chip fabrication on Si wafer by dry etching. (IV~V) black 
silicon fabrication by laser. (VI) HF treatment on black silicon. (VII) AgNPs growth 
on black silicon. (VIII) Catalytic reaction and SERS detection on Ag-black silicon 
substrate. 



 

As illustrated in Figure 4.3, from step I to step III, a “Y” shape microfluidic channel with a 1-cm 

long non-etched part was first fabricated on a silicon wafer using dry etching [27]. The channel 

was about 200 µm in width and 20µm in depth. Then VI -V shows the black silicon arrays 

patterning process on the non-etched part by FsLDW. The FsLDW process was conducted in a 

sealed chamber filled with SF6. Before the AgNPs growth, the black silicon surface was treated 

by HF solution to remove the oxide layer (step VI), and then immersed into AgNO3 solution. 

The silver ions were reduced into silver and attached on the surface of black silicon as shown in 

VII. Finally, catalytic reaction and SERS detection are carried out on Ag-black silicon area as 

shown in step VIII. The reduction of p-nitrosophenol (pNP) to p-aminophenol (pAP) by NaBH4 

was chosen as a model reaction for both on chip catalytic test and in-situ SERS detection[35-36]. 

NaBH4 and pNP solution were injected into two branches of the ‘‘Y’’ shape channel, 

respectively. The reduction started when the two reactants mixed together in the Ag-black 

silicon area. In-situ SERS detection was then carried out, which could evaluate the reduction 

process of pNP to pAP.  

Characterization of black silicon nano-corns 

After the FsLDW process, scanning electron microscope (SEM) was utilized to image the 

morphology of the black silicon structures. The SEM images and energy dispersive 

spectrometer (EDS) spectra were taken by field-emission scanning electron 

microscope/energy-dispersive spectrometer (FESEM/EDS, JSM-7500F, JEOL, Japan). The 

details are shown in Figure 4.4 (a-b), the surface presents a quasi-ordered arrangement of 

micro-pointed cones with a height about 18 µm and a diameter of less than 1µm. When utilized 

as catalysts template, these micro pointed cones would greatly increase the effective contact area 

between the reactants and catalysts. When combined with metal-NPs, the nanoscale-roughened 

surface would help generating localized surface plasmon polaritons (LSPPs) to enhance 

electromagnetic field. 

  



 

Silver nanoparticles grown on Black silicon  

Metal decorated black silicon system have showed great potential as SERS substrate. 

Till now most of metal-black silicon systems were prepared by physical methods such 

as magnetron sputtering or evaporation [45-47]. In this research, for the first time to our 

knowledge, a chemical growth method to grow silver NPs (AgNPs) on black silicon on 

a microfluidic chip is reported. Compared with earlier works, the chemical growth 

approach here has important advantages, including site-selectivity and probable higher 

stability via stronger affinity.  

After prepared by FsDLW treatment, the black silicon surface was treated by 2% HF 

solution for 5 min to remove the oxide layer and to passivate it by hydrogen. This process 

would greatly increase the reducing reactivity of black silicon surface [48, 49]. Then, 

the wafer was immersed into a silver nitrate solution (AgNO3) to prepare the Ag-black 

silicon micro/nano-structures(Figure 4.3 VI).. The silver ions were reduced into silver and 

attached on the surface of black silicon (Figure 4.3 VII). The parameters influencing the 

growth of AgNPs were studied. 

Figure 4.4 SEM images of the BS with (a) side view and (b) oblique view, 
respectively. 



 

The morphology of AgNPs on black silicon protrusions was studied by SEM (Figure 4.5). 

As shown in Figure 4.5, what is interesting is that AgNPs on different parts of a single black 

silicon pointed-corn show different sizes and shapes. The AgNPs on the top (Figure 4.5 (b)) 

were larger and distributed more densely. The size of the AgNPs was about 200nm, 50nm and 

10nm at the top, middle and bottom position of the protrusion respectively (Figure 4.5 (b~d)). 

The reason can be concluded as that the chemical potential on the top position was larger than 

that of the other part, so when immerged in AgNO3 solution, the top-part surface would be more 

active and reduce more AgNPs.  

It is well known that high temperature will promote the growth of the AgNPs. In order to get an 

optimized temperature for AgNPs synthesis, the AgNPs growth under 4 different temperatures 

was examined by SEM, as shown in Figure 4.6 (a~d). At 15oC, the size of the nanoparticles is 

relatively small (1~2 nm). As for the temperatures of 25oC and 50oC, the nanoparticles size 

increase to 20nm and 50nm, respectively. When the temperature reaches 75oC, the AgNPs 

become larger than 100 nm and the shape become irregular rather than spherical. Because the 

larger and irregular shape AgNPs are not beneficial for catalysis, we chose the room temperature 

(25oC) as the condition for the AgNPs growth.  

 

Figure 4.5 (a) SEM image of the AgNPs on the BS protrusions. (b), (c), 
(d) Enlarged SEM images of AgNPs on the area marked by red, green and 
blue square in (a). 



 

Another important factor that affects the growth of AgNPs is the solution concentration. In this 

section, 4 different concentrations of AgNO3 solution were used to to get an proper one for the 

AgNPs growth. As shown in Figure 4.7 (a~d), when AgNO3 concentration was down to 0.001 

M, the size of the nanoparticles was rather small (~1nm), and they spread over the surface of the 

black silicon sparsely. As the solution concentration increased to 0.01 M, 0.1 M and 1 M , both 

the nanoparticles size and density became larger. However, when the concentration reached 1M 

(Figure 4.7 (d)), the nanoparticles became too large and presented more like block-shape with 

fewer gaps, it was obviously not suitable for both catalysis and LSPPs generation. Hence, we 

chose 0.1 M as the best concentration of AgNO3 solution for AgNPs sythesis. 
 

Figure 4.6 SEM images of the AgNPs grown under (a) 15℃,(b) 25℃, (c) 50℃,(d) 
75℃. The scale bars indicate 100nm. 

Figure 4.7 SEM images of AgNPs grew by (a). 0.001M, (b) 0.01M, (c) 0.1M, (d) 
1M AgNO3 solution. The scale bars indicate 100nm. 



 

To confirm the optimized conditions (25oC, 0.1M AgNO3 solution) for AgNPs growth, besides 

SEM, EDS was also carried out. Figure 4.8 shows EDS spectra of the Ag-black silicon 

structures. The distinct energy peak of Ag can be observed under various temperature (Figure 

4.8 (a)) and different AgNO3 solution concentration (Figure 4.8 (b)), which indicates the 

existence of the silver element on the black silicon surface. As illustrated in the insets of Figure 

6a and 6b, the silver content increases with the reaction temperature and the AgNO3 solution 

concentration, which is consistent in agreement with the previous discussion. 

 

4.2 SERS characterization of Ag-black silicon structures 

By using R6G as a probe molecule, the SERS activity of the silver-black silicon substrate was 

studied. The Raman spectrum of the R6G with concentrations of 10-8 M is shown in Figure 4.9.  

Figure 4.8 EDS spectra of the Ag-BS (a) under different reaction temperatures, inset 
shows the peak intensity versus temperature; and (b) with different AgNO3 solution 
concentration, inset shows the peak intensity versus concentration. 



 

The distinct peaks (613, 776, 1362, 1510, 1576, 1653 cm-1) [52] with high S/N ratio are clearly 

observed, even for the concentration of 10-8 M. It indicated that the Ag-black silicon substrate 

has large Raman enhancement. The strong SERS enhancement can be explained by the 

dramatically enhanced electromagnetic field on the rough distributed AgNPs on the black 

silicon substrate [7]. Importantly, the catalytic reactors themselves (hierarchically 

micro/nano-structurised Ag-black silicon composite devices) worked as the SERS sensors for 

chemical reaction and analysis in the same time, which might be of great help to improve the 

chip integration. 

 

 

Figure 4.9 SERS of R6G with the concentrations of 10-8M on Ag-black silicon 
structures. 



 

The on chip catalytic reaction and in-situ SERS detection process is illustrated in Figure 4.10. 

The reduction of pNP to pAP by NaBH4 was chosen as a model reaction for both on chip 

catalytic test and in-situ SERS detection [50, 51]. pAP is a famous analytical reagent, and 

also widely used as intermediates for synthesizing pharmaceutical, dyes and other fine 

chemicals. It is usually produced from pNP reduction. Thus an in-situ monitoring is of 

great value for understanding the dynamic chemical reaction process.  

As details, The NaBH4 and pNP were injected into two branches of the ‘‘Y’’ shape channel, 

respectively. The reduction reaction started when the two reactants mixed together in the 

Ag-black silicon structures area. In-situ SERS detection was then carried out, which could 

evaluate the reduction process of pNP to pAP. The Raman spectra were recorded on a LabRAM 

HR Evolution (from Horiba scientific) equipped with a He-Ne laser at 633 nm as excitation 

source, the laser power was about 1mW, and the average spot size was 1 µm in diameter. The 

Raman spectra are shown in Figure 4.11. 

The black and red curves in Figure 4.11 represent the SERS spectra of pNP and pAP, taken 

before and after the catalytic reaction of pNP reduced to pAP, respectively. The Raman mode at 

240 cm-1 in SERS spectrum before reaction is the peak of nitro bonded to the benzene ring in 

Figure 4.10 Scheme of on chip catalytic reaction and in-situ SERS detection (left) 
and real photo of micro channels on Si chip (right). 



 

pNP molecule; while after the reaction, two distinct Raman modes at 1275 cm-1 and 1327 cm-1 

were clearly observed, which represented the peak of amino bonded to the benzene ring in pAP 

molecule (see inset of Figure 4.11). Judging by the Raman spectra changes, it is easy to monitor 

the chemical reaction process. Here the black silicon protrusions helped accomplishing the Ag 

nanoparticles packed with high surface area, which made them good candidate as catalytic 

active sites. Also the Ag-black silicon substrate presents its potential for in-situ SERS detection.  

  

Figure 4.11 SERS spectra taken before (black curve) and after (red curve) the 
catalytic reaction of pNP to pAP. Inset illustrates the chemical reaction process. 



 

Sammary 

In this chapter, I introduced a novel micro/nano-structured Ag-black silicon composite devices, 

which are in-situ constructed and integrated in microfluidic chip. This hierarchical structure 

simultaneously contribute for catalytic reaction and SERS-based monitoring. black silicon 

substrate was femtosecond-laser fabricated in the atmosphere of SF6. For templated-chemical 

growth of AgNPs , the black silicon was then etched and hydrogenated by HF solution. 

Considering high Raman enhancement, optimized AgNPs-growth parameters (25℃ and 0.1 M 

AgNO3 solution concentration) were applied to obtain ~20-nm average diameter and dense 

loading with gaps. When applied for Raman measurement, these Ag-black silicon composite 

devices showed high sensitivity with a detection limit of 10-8 M. While the Ag-black silicon 

composite structure was applied for catalytic reaction (pNP to pAP) in microfluidics channels, it 

functioned as in-situ SERS sensors to monitor the reaction processes. As a “generalist” of both 

catalytic reactors and SERS sensors, the hierarchically micro/nano-structurised Ag-black silicon 

composite devices here might open new opportunities for various applications like highly 

integrated chemical synthesis and analysis, and biomedical sensing and diagnosis.  
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Chapter 5.  

Raman study of FIB-structured ZnO 

In this chapter, FIB-designed nanoscale structures on ZnO surface are introduced. 

These structures are formed by Ga ions doping in the ZnO surface laser with less 

morphology change, which are similar to the structures in integrated circuits (IC). Thus 

it is difficult for normal methods (such as AFM, SEM) to characterize. Using Raman 

spectroscopy, the ZnO lattice changes on the doped area was detected through 

comparing Raman modes differences. The distribution of the doped structures was also 

achieved through Raman imaging. Through this work, Raman showed great potential 

for characterizing ion doped semiconductors. As a future expectation, combined with a 

metallic tip, though tip enhancing process, Raman technology will realize nanoscale 

analyze of the tiny structures in IC. It will greatly improve the technology in IC 

industry. 

5.1 Nanoscale Ga ions doped ZnO designed by FIB 

Now, our life is greatly improved by the development of the microelectronic techniques, 

such as PC, cell phone. And this useful technology is still under developing. The two 

main directions are: high integration and small feature size.  The feature size has 

already reached 14nm by the year 2014, and is estimated to reach even smaller in the 

future. So there is a need to image and analyze such tiny structures, which can promote 

its evolvement [1].  



 

As we know, the feature size of microelectronic devices is a description of the 

minimum size that can be patterned by doping. So the common used scanning 

methods such as AFM or SEM become invalid, because they can only provide 

topographic variations, but no inner composition and structure changing 

information. Raman spectroscopy may realize this goal by testing the inner 

composition and crystal lattice changes [2-3]. 

As a first step, Nanoscale ion doped semiconductor was prepared by FIB technology. 

Similar to the doping process in IC industries, Ga ions were doped into surface layer of 

ZnO single crystal. The chosen of Ga and ZnO material chosen here was based on the 

consideration of simple preparation and convinent for Raman measurement. The FIB 

system I used is FB2200 from Hitachi Company, it can realize nanoscale doping with a 

10nm resolution. The real photo of the system is shown in Figure 5.1 

  
Figure 5.1 Optical image of FB2200 (Hitachi) FIB system  



 

FIB fabrication parameters I used are as follows: 

Voltage: 20kV, current:10pA , time:6s/line, length: 30um, dose: 6.25x1016 cm-2 

The accelaration voltage chosen here was for getting shallow doped area and less 

surface damage. Normally the doping depth is proportional to the doping voltage, for 

example: for 20kV, the doping depth is in the range of 0~20nm, which is proper for 

Raman detection. When using low accelaration voltage, the surface damage became 

large with a large line width. So considering shallow doping depth, narrower line width 

and less surface damage, 20kev ions is better for my sample fabrication. After the 

doping process, both AFM and SEM were conducted to characerize the morphology of 

the doped area. As shown in Figure 5.2, after doping, the surface damage of the doped 

area is very less. We can even hardly see the 3 nanolines near the cross marks from the 

AFM and SEM images. 

  

5um 

Doped lines 

Figure 5.2 SEM image (left) and AFM image (right) of the Ga ions doped nanolines 
(marked by the white dot lines) on ZnO. 



 

5.2 Micro Raman imaging of nanoscale doped ZnO 

The optical setup for Raman mesurement is shown in Figure 5.3, it is transmission 

mode Raman system, just the doped area was put downwards to get well focus 

condition (avoid the spherical aberration). 

 

Raman spectrum of both the Ga doped ZnO and pure ZnO single crystal were measured. 

The Raman measurement conditions are: 488nm laser, 1.3mw, 10s /frame. The spectra 

are shown in Figure 5.4. By comparing with the Raman spectrum of pure ZnO single 

crystal, two abnormal Raman modes were found in the Raman spectrum of the doped 

area, one is the additional mode at 580cm-1, the other one is a broaden band center 

around 200cm-1. After checking with some papers, the origin of the 580cm-1 mode 

origins from lattice disorder during the ion implantation [4, 5] and the broadband center 

at 200cm-1 can be assigned to acoustic-phonon branch at the zone boundary [6, 7].   

Figure 5.3 Scheme of Raman system. 



 

Then by using the abnormal mode at 580cm-1, far field Raman image of the doped lines 

was taken, see Figure 5.5. For this mode is related to lattice disorder caused by ion 

implantation, so only the Ga doped area appeared clearly in the Raman image. 

Comparing with AFM image, the Raman method did show more information than 

AFM and SEM, and could realize more application in the microelectronic industries. 

For it is far field Raman image, the resolution is about 300nm that restricted by 

diffraction limit.  
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Figure 5.4 Raman spectra of Ga doped ZnO (red) and pure ZnO crystal (blue). 

Figure 5.5 AFM image (left) and Raman image (right) of doped nanolines in 
same area. 
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5.3 Prospect and future work 

The far field Raman result showed its potential for the application in semiconductor 

world. To characterize the doping property with a nanoscale resolution, TERS 

technique is crucial needed. As a prospect, by building a TERS system and applying it 

for the analysis on the nanoscale doped structures on IC chips will hold great interest 

and value for the development of IC technologies.  

For the TERS system, here we should notice that a reflection mode is a better 

choice, for the IC circuits are based on semiconductors, which are not transparent in 

visible range; and the design and preparation of metallic tips used for TERS are also 

very important, which will determine the Raman enhancement. 

Sammary 

In this chapter, I introduced the fabrication of nanoscale Ga ions doped on ZnO crystals, then 

using Raman studied the lattice property changes on the doped area. Two different Raman 

modes were observed which were related to the lattice disorder during the ion implatation 

process. Using the different Raman mode 580cm-1 Raman image of the doped lines was clearly 

achieved. The Raman result support the future work of applying TERS technology for the 

nanocale characterization of structures on IC chips, which would be very useful to improve IC 

design techniques. 
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Conclusion 

In this dissertation, aimed to solve the challenges that hinder the development of 

structured surface science towards application in plasmonic and integrated circuits, 

laser patterning technology and FIB method were introduced to prepare two kinds of 

structured surface, followed by Raman spectroscopy characterizing and evaluating their 

performance respectively.  

In details, the thesis starts with the introduction of structured surface science, including 

its fundamentals, applications, developments and challenges. As two powerful surface 
structuring methods, laser structuring technology and FIB are in detail illustrated. 

In the second chapter, Raman spectroscopy for characterizing structured surface is 

introduced, including its fundamentals, characterization of plasmonic enhancement on 

metallic structured surfaces and analyzation on ion doped semiconductor surface. 

For the research part, the fabrication and characterization of Ag coated laser-structured 

RGO plasmonic surface were first demonstrated. From Raman studying result, both 

high Raman enhancement and signal reproducibility were achieved. Using R6G as 

probe molecule, a LOD of 10-10M and an EF of 2.0x107 were got, with a good space 

reproducibility (RSD~10%) and a good time reproducibility (stable in 3 weeks). All 

these features are benefit from the uniformity of the RGO stripes template fabricated by 

TBLI and the well-dispersed AgNPs decorated on the nanoscale RGO layers, also the 

hydrophobicity of the RGO stripes further boost the enhancement by condensation 

effect. TBLI fabrication of RGO stripes holds great promise for the development of 
highly efficient plasmonic structures. 

As another type plasmonic structured surface, a composite Ag decorated laser 

structured-black silicon surface were designed and evaluated by Raman spectroscopy. 

The merit of this substrate was its multifunction, simultaneously served for catalytic 

reaction and an effective chemical reaction sensor. This technique not only opens a 



 

door to lab on chip application for SERS, but also provides an idea for lab-on-chip 

multi-functionalization. The results in chapter 3 and chapter 4 support that laser 

fabrication method holds great potential to make uniform and high sensitive templates 

for effective plasmonic structures fabrication. This method could promote SERS 

toward a powerful and stable standard detection methods in chemical, physical and 
biological area. 

In the last chapter, by Raman study of FIB-structured Ga ions doped ZnO was 

conducted. Raman detected the lattice property changes and clearly imaged doped lines 

distributions. This result strongly supports that Raman is capable for the application in 

IC industries. By Building a TERS system together with metallic tips with high EM 

enhancement, will open a gate for nanoscale Raman studying of ion doped 
semiconductors, and improve the technologies in IC industries. 

The results presented in this thesis support that Raman hold great potential for 

analyzing various types of structured surface, and laser and FIB technology are of great 
capacity for efficient surface structures design and fabrication. 
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