<table>
<thead>
<tr>
<th>Title</th>
<th>Studies on generation of organofluorine transition-metal complexes via C–F bond activation of perfluoroarenes or trifluoromethylketones and its application toward organic synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>土井, 良平</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/55933</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/55933</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
Doctoral Dissertation

Studies on Generation of Organofluorine Transition-Metal Complexes via C—F Bond Activation of Perfluoroarenes or Trifluoromethylketones and its Application toward Organic Synthesis

Ryohei Doi

January 2016

Graduate School of Engineering

Osaka University
Contents

Preface and Acknowledgement iii
List of Abbreviations v

Chapter 1
General Introduction 1

Chapter 2
Pd-Catalyzed Coupling Reaction of Perfluoroarenes with Arylzinc Reagents 6
General statements for the experiments conducted in this thesis 16

Chapter 3
Ni/B(C₆F₅)₃ Catalyst System for Highly Selective Crossed-Dimerization 30

Chapter 4
Cu-Catalyzed Formal Reformatsky Reaction via C–F Bond Cleavage 61

Concluding Remarks 83

List of Publications 84
Preface and Acknowledgement

The study related to this doctoral dissertation has been conducted under the supervision of Professor Dr. Sensuke Ogoshi at the Department of Applied Chemistry, Faculty of Engineering, Osaka University, from April 2011 to March 2016. The thesis describes transition metal-catalyzed transformation of perfluoroarenes and trifluoromethylketones involving C−F bond cleavage as key steps.

I would like to express my deepest appreciation to Professor Dr. Sensuke Ogoshi for a number of suggestions, discussions, and encouragement. His advice both on research and on my career have been invaluable. I would like to express my gratitude to Professor Dr. Nobuaki Kambe and Professor Dr. Makoto Yasuda for their stimulating discussions. I would like to offer my special thanks to Professor Dr. Tetsuro Murahashi (Tokyo Institute of Technology), Associate Professor Dr. Masato Ohashi, Assistant Professor Dr. Yoichi Hoshimoto, Assistant Professor Dr. Tsubasa Hatanaka (Graduate School of Science, Osaka University), Project Assistant Professor Dr. Kotaro Kikushima, and Project Assistant Professor Dr. Kumar Ravindra for their continuous guidance, advice and assistance.

I would like to deeply acknowledge Professor Dr. Brian M. Stoltz (California Institute of Technology) for accepting me as a visiting student researcher and a number of great advices. I am also grateful for the Stoltz group members including my mentor Ms. Seo-Jung Han for their kind assistance and encouragement.

I would like to express my heartfelt appreciation to Mrs. Noriko Fujimoto for her total support with infinite tenderness.

It was really my pleasure to be a comrade of Mr. Ryohei Kamura, Mr. Yuki Tachibana and Mr. Hiromu Tokura during the master thesis study. I am deeply indebted to my senior alumni of Ogoshi group, Dr. Takashi Tamaki, Dr. Akira Nishimura, Mr. Tadashi Kambara, Mr. Tomoaki Taniguchi, Mr. Kentaro Usui, Dr. Hiroki Saijo, Ms. Haruka Suzuki, Mr. Ippei Takeda and Mr. Kohei Takase for their kind advices. I would like to express my thanks to the other colleagues in Ogoshi group, Mr. Kazuto Kinoshita, Mr. Hayato Hamada, Ms. Yukari Hayashi, Mr. Mitsutoshi Shibata, Mr. Atsushi Tanaka, Mr. Tomoya
Ohata, Mr. Seita Kimura, Mr. Hironobu Sakaguchi, Mr. Hayato Yabuki, Ms. Eri Tamai, Mr. Hiroaki Saito, Mr. Hiroshi Shirataki, Ms. Yukari Sasaoka, Mr. Takuya Kinoshita, Mr. Takuya Kawashima, Mr. Takuya Adachi, Mr. Yuta Ueda, Mr. Kyogo Maeda, Mr. Takahiro Shirataki, Mr. Akira Ohnishi, Mr. Ryohei Suzuki, Mr. Keita Ashida, Mr. Takaya Hinogami, Mr. Naoyoshi Ishida, and Mr. Yasuhiro Yamauchi, for their helpful assistance and dedication.

I would like to thank Dr. Nobuko Kanehisa for her helpful assistance for X-ray crystallographic analysis. I owe a very important debt to the committee of Instrumental Analysis Center, Graduate School of Engineering, Osaka University for the measurement of spectral and analytical data.

I would like to fully acknowledge scholarships from Hasegawa Shorai Foundation and Japan Student Service Organization, and Research Fellowship for Young Scientists from Japan Society for the Promotion of Science.

Finally, I would like to express my utmost gratitude to my parents, Mr. Ryosuke Doi and Mrs. Sayuri Doi as well as my brother Mr. Yusuke Doi for their affectionate support and warm encouragement.

Osaka, Japan
January 2016

Ryohei Doi
List of Abbreviations

aq. aqueous
Ar aryl
br broad
Bu butyl
cat. catalyst
Cl chemical ionization
cod 1,5-cyclooctadiene
Cy cyclohexyl
°C degrees Celsius
calcd calculated
d doublet
δ chemical shift of NMR signal in ppm
dba dibenzylideneacetone
El electron ionization
equiv equivalent
Et ethyl
GC gas chromatography
h hour(s)
HPLC high-performance liquid chromatography
HRMS high-resolution mass spectra
Hz hertz
i iso
IPr 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene
J coupling constant in NMR
L ligand
M Transition-metal
m multiplet
Me methyl
min minute(s)
mL milliliter
μL microliter
MS mass spectrometry
n normal
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>o</td>
<td>ortho</td>
</tr>
<tr>
<td>ORTEP</td>
<td>Oak Ridge thermal ellipsoid plot</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Phen</td>
<td>1,10-phenanthroline</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>sec</td>
<td>secondary</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>t</td>
<td>tertiary</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
</tbody>
</table>
Chapter 1

General Introduction

Transition-metal catalysts have been opened up novel pathways to synthesize a number of organic molecules by providing unique and efficient bond-forming methodologies. Organic iodides, bromides, and chlorides have been frequently employed as a precursor for preparation or in situ generation of organotransition-metal complexes by facile and/or regioselective cleavage of carbon-halogen bond except for C–F bond which is one of the most stable bond that a carbon forms. Thus, numerous transition-metal catalyzed reactions have been reported to prepare desired organic compounds from organic halides via carbon-halogen bond cleavage. However, synthesis of organofluorine compounds via carbon-halogen bond cleavage by use of transition-metal catalysts requires the corresponding organofluorine building blocks containing other halogens, namely iodine, bromine, or chlorine which are not always readily available (Scheme 1.1). Therefore, catalytic C–F bond cleavage enables us to access abundant poly- or perfluorinated building blocks to construct partially fluorinated compounds which are important synthetic targets as medicines, agrochemicals, and organic semiconductors.

Substitution of C–F bond into C–C bond catalyzed by transition-metal complexes was first reported by Kumada et al. in 1973 who disclosed Ni-catalyzed cross-coupling reaction of alkyl Grignard reagent with aryl fluoride to afford alkyl benzenes (Scheme 1.2a). Since then, several nickel-catalyzed cross-coupling reactions have been developed. For instance, Radius et al. developed Ni(0)-NHC complex that is an efficient catalyst for Suzuki-Miyaura cross-coupling reaction of perfluoroarenes (Scheme 1.2b).
Scheme 1.2 Ni-catalyzed cross-coupling reaction of fluoroarenes with organometallic reagents

Contrary to the reactions using nickel catalyst, in 2011, our group has reported palladium-catalyzed coupling reaction of arylzinc reagent with tetrafluoroethylene which is a bulk organofluorine feedstock as a monomer of poly(tetrafluoroethylene) (Scheme 1.3a). Addition of lithium iodide (LiI) drastically improved yields of the product, α,β,β-trifluorostyrene derivatives. The role of LiI is the promotion of C−F bond cleavage step. Indeed, stoichiometric reaction of palladium-tetrafluoroethylene complex with LiI afforded a novel trifluorovinylpalladium complex of which structure was determined by X-ray crystallography. This is a rare example of cross-coupling via C−F bond cleavage catalyzed by palladium. Therefore, this methodology has been applied to cross-coupling reaction of perfluoroarenes (Scheme 1.3b). The details of the reactions and the discussions are described in chapter 2.

Scheme 1.3 Pd-catalyzed cross-coupling reaction of tetrafluoroethylene and perfluoroarenes with arylzinc reagents promoted by addition of LiI

Although transition metal-catalyzed or -mediated transformation via aromatic or vinylic C−F bond fission is well known, examples of aliphatic C−F bond cleavage by use
of transition-metal complexes are quite rare. A pioneering work of cross-coupling reaction of alkyl fluoride with Grignard reagent has been developed by Kambe et al. in which combination of copper catalyst and 1,3-butadiene as an additive revealed to be efficient to afford cross-coupling product (Scheme 1.4). However, only few examples that construct C–C bond via aliphatic C–F bond fission has been known yet. Our group has found that stoichiometric aliphatic C–F bond activation of hexafluoropropene coordinated on Pd(0) was promoted by addition of tris(pentafluorophenyl)borane (B(C₆F₅)₃) (Scheme 1.5a). In chapter 3, this strategy was expanded to the C–F bond activation of α,α,α-trifluoroacetophenone by using Ni(0)/B(C₆F₅)₃ system (Scheme 1.5b). Furthermore, the resulting novel nickel difluoro-enolate was fully characterized and its reactivity was investigated.

![Scheme 1.4](image)

Scheme 1.4 Cu-catalyzed cross-coupling reaction of alkyl fluoride with Grignard reagents

![Scheme 1.5](image)

Scheme 1.5 Aliphatic C–F bond activation of hexafluoropropene on Pd(0) or trifluoroacetophenone on Ni(0) accelerated by addition of B(C₆F₅)₃

Another approach toward C–F bond cleavage is β-fluorine elimination. This process is known to proceed relatively under mild conditions. For example, Ichikawa et al. developed Ni(0)-mediated cycloaddition of 2-trifluoromethyl-1-alkenes with alkynes through double C–F bond activation via β-fluorine elimination to afford monofluorocyclopentadiene (Scheme 1.6). However, transition-metal catalyzed C–C bond-forming reaction via β-fluorine elimination still remains elusive. In chapter 4, reaction of borylcopper complex with α,α,α-trifluoroacetophenone to generate copper difluoro-enolate *in situ* via 1,2-addition followed by β-fluorine elimination is described. In addition,
copper-catalyzed formal Reformatsky reaction via C−F bond cleavage has been developed to give difluoro-compound from easily accessible trifluoromethylketone (Scheme 1.7).

Scheme 1.6 Ni-mediated cycloaddition of trifluoroalkene with alkyne along with a plausible reaction mechanism

Scheme 1.7 Cu-catalyzed formal Reformatsky reaction via C−F bond cleavage

Transformation of C−F bond is potentially an important technology to synthesize organofluorine compounds from inexpensive or abundant polyfluorinated precursors. On the other hand, C−F bond has been known as a very stable bond. Therefore, C−F bond activation still remains to be an academic challenge. In this thesis, reactions of abundant perfluoroarenes and trifluoromethylketones involving C−F bond cleavage by transition-metal complexes as key steps to give corresponding organofluorine compounds are described. These studies would contribute to development of synthetic chemistry of organofluorine compounds as well as organometallic chemistry by providing novel examples of stoichiometric C−F bond cleavage.

References and Notes

Chapter 2

Pd-Catalyzed Coupling Reaction of Perfluoroarenes with Arylzinc Reagents

2.1 Introduction

Perfluoroarenes are unique functional groups featuring highly electron withdrawing nature, planar structure and high thermal stability derived from strong C–F bond. One of the most typical building blocks to install perfluoroarenes is a mixed halogen compound which is not readily available. Therefore, commercially available perfluoroarenes are fascinating alternative building blocks. Some cross-coupling reaction of perfluoroarenes with organometallic reagents to afford corresponding biaryls has been reported.[1-3] Our group demonstrated the reaction of perfluoroarenes with an aryl boronate catalyzed by Ni complex 1 developed by Radius et al. that proceeded even in the absence of additional base (Scheme 2.1a).[1m] Yoshikai and Nakamura et al. reported cross-coupling reactions of polyfluoroarenes with arylzinc reagents catalyzed by nickel ligated with alkoxydiphosphane 2 (Scheme 2.1b).[11]

Contrary to these reports based on nickel catalyst, palladium-based catalyst system is quite rare.[2] Sandford et al. disclosed coupling reaction of perfluorinitrobenzene with aryl boronic acid in the presence of Pd(PPh₃)₄ under microwave irradiation (Scheme 2.2).[2d,e] However, the substrate scope is limited to the perfluoroarenes bearing nitro

\[\text{Scheme 2.1} \text{ Ni-catalyzed coupling reaction of perfluoroarenes with organometallic reagents} \]
group as highly electron withdrawing group to activate C–F bond and as directing group for ortho selective activation.

Scheme 2.2 Pd-catalyzed cross-coupling reaction of pentafluoronitrobenzene with aryl boronic acid

Herein, coupling reaction of perfluoroarenes with diarylzinc compounds catalyzed by Pd(0) in the presence of LiI is described. In addition, a possible reaction pathway based on mechanistic study using novel perfluoroaryl palladium complexes is discussed.

2.2 Result and Discussion

The reaction condition of coupling reaction of tetrafluoroethylene with arylzinc reagents were applied to the reaction of hexafluorobenzene (C₆F₆) with diphenylzinc (ZnPh₂) generated in situ by treatment of zinc chloride (ZnCl₂) with 2 equiv of phenylmagnesium bromide (PhMgBr)⁴. In the presence of 5 mol% of tris(dibenzylideneacetone)palladium(0) (Pd₂(dba)₃), 20 mol% of triphenylphosphine (PPh₃) and 2.4 equiv of LiI, the reaction of C₆F₆ with ZnPh₂ gave trace amount of pentafluorophenyl benzene (3a) and C₆F₆ remained intact (Table 1, entry 1). The desired product 3a was obtained in a 70% yield by using Pd(PCy₃)₂ (PCy₃ = tricyclohexylphosphine) as a catalyst precursor for the coupling reaction (entry 2). In the absence of a palladium catalyst, 3a was not obtained at all (entry 3). An increase in the amount of LiI improved the yield of 3a to 75%, while in the absence of LiI, the desired product 3a was observed only 5% even after a prolonged reaction time (entry 4, 5). This result indicates that the addition of LiI is crucial for the occurrence of the coupling reaction. In the presence of PCy₃, palladium (II) acetate (Pd(OAc)₂) was also found to be an effective catalyst for the coupling reaction (entry 6). A mixture of 5 mol% of Pd₂(dba)₃ and 20 mol% of PCy₃ showed similar catalytic activity to give 3a in 77% yield, whereas a greater palladium catalyst loading was required for smooth progress in the coupling reaction (entry 7). When either 1,2-bis(dicyclohexylphosphino)ethane (DCPE) or 1,4-bis(dicyclohexylphosphino)butane (DCPB) were employed, the coupling reaction retarded (entry 8, 9).
Table 2.1 Optimization of the reaction condition

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (mol%)</th>
<th>Additive</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(dba)$_2$ (5) / PPh$_3$ (20)</td>
<td>LiI (2.4 equiv)</td>
<td>10</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>Pd(PCy)$_3$ (5)</td>
<td>LiI (2.4 equiv)</td>
<td>4</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>none</td>
<td>LiI (2.4 equiv)</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Pd(PCy)$_3$ (5)</td>
<td>LiI (3.6 equiv)</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>Pd(PCy)$_3$ (5)</td>
<td>none</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>6[b]</td>
<td>Pd(OAc)$_2$ (5) / PCy$_3$ (10)</td>
<td>LiI (2.4 equiv)</td>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>Pd(dba)$_2$ (5) / PCy$_3$ (20)</td>
<td>LiI (3.6 equiv)</td>
<td>4</td>
<td>77</td>
</tr>
<tr>
<td>8[b]</td>
<td>Pd(OAc)$_2$ (5) / DCPE (5)</td>
<td>LiI (2.4 equiv)</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>9[b]</td>
<td>Pd(OAc)$_2$ (5) / DCPB (5)</td>
<td>LiI (2.4 equiv)</td>
<td>15</td>
<td>trace</td>
</tr>
</tbody>
</table>

[a] GC yield estimated by use of tetradecane as an internal standard. [b] ZnPh$_2$ (0.7 equiv) was employed.

The substrate scope of the cross-coupling reaction of perfluoroarenes with arylzinc reagents in the presence of catalytic amount of Pd(PCy)$_3$ and LiI based on the result of optimization (Table 2.2). Both (4-MeC$_6$H$_5$)$_2$Zn and (3-MeC$_6$H$_5$)$_2$Zn reacted with C$_6$F$_6$ to give coupling products 3b and 3c in 70 and 53% yield, respectively. However, no coupling product was observed from the reaction of C$_6$F$_6$ with (2-MeC$_6$H$_5$)$_2$Zn. The arylzinc compounds bearing electron-donating groups such as (4-Me$_2$NC$_6$H$_4$)$_2$Zn and (4-MeOC$_6$H$_4$)$_2$Zn afforded the coupling compounds 3e and 3f in 74 and 76% yield, respectively. The reactions of aryl zinc reagents with electron-withdrawing groups, (4-FC$_6$H$_4$)$_2$Zn and (3,5-F$_2$C$_6$H$_3$)$_2$Zn, also yielded the corresponding coupling products (3g and 3h) in 66 and 49% yield, respectively. The reaction of C$_6$F$_6$ with (2-C$_{10}$H$_9$)$_2$Zn under the same reaction conditions produced 2-pentafluorophenynaphthalene (3i) in 65% yield after 8 h. When a thienyl group was introduced, the reaction gave 2-pentaphenylthiophene (3j) in 55% yield. Other functionalized aryl zinc species prepared according to Knochel’s procedure, LiCl·(p-EtCOOC$_6$H$_4$)ZnI and LiCl·(p-NCC$_6$H$_4$)ZnI, were successfully applied to the coupling reaction with C$_6$F$_6$ to give 3k and 3l, respectively, in moderate isolated yields.[5]
Table 2.2 Pd-catalyzed coupling reaction of perfluoroarenes with arylzinc reagents in the presence of LiI\(^{[a]}\)

<table>
<thead>
<tr>
<th>Ar(_{F}) - F</th>
<th>Ar(_{F}) - Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mol% Pd(PCys(_3))(_2)</td>
<td>THF, 60 °C, 6 h</td>
</tr>
<tr>
<td>3.6 equiv LiI</td>
<td>(ZnCl(_2) + 2 ArMgBr)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ar(_{F}) - F</th>
<th>Ar(_{F}) - Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar(_{F}) - F</td>
<td>Ar(_{F}) - Ar</td>
</tr>
</tbody>
</table>

Next, the reaction was applied to other perfluoroarenes. The coupling reaction of octafluorotoluene (C\(_7\)F\(_8\)) with (4-MeOC\(_6\)H\(_4\))\(_2\)Zn, or (2-MeC\(_6\)H\(_4\))\(_2\)Zn occurred at the 4-position of C\(_7\)F\(_8\) to give the corresponding products \(3m\) and \(3n\) in good-to-excellent yields. The reaction of C\(_7\)F\(_8\) with (4-MeOC\(_6\)H\(_4\))\(_2\)Zn proceeded very smoothly, which allowed the confirmation of a background reaction. In the absence of Pd(PCys\(_3\))\(_2\), \(3m\) was obtained in 30% yield at 60 °C for 6 h, which indicates that the palladium-catalyzed coupling reaction proceeds much faster than the background reaction. Perfluorobiphenyl and Perfluoronaphthalene reacted with (4-MeOC\(_6\)H\(_4\))\(_2\)Zn to give corresponding products \(3o\) and \(3p\) in 32 and 53% yield, respectively. In contrast, the reaction of pentafluoropyridine...
(C₅F₅N) with ZnPh₂ gave a mixture of tetrafluoro-4-phenylpyridine (3q) and tetrafluoro-2-phenylpyridine (3q¹) in 65 and 17% yield, respectively. Pentafluorobenzene also participated in the coupling reaction with ZnPh₂, however, the reaction product was obtained as a mixture of two regioisomers, 2,3,5,6-tetrafluorobiphenyl (3r) and 2,3,4,5-tetrafluorobiphenyl (3r¹), and the combined yield of the isomers was only 38%. Pentafluorobiphenyl was also reactive to afford terphenyl 3s in moderate yield with 10 mol% catalyst loading.

To gain deeper insight into the reaction pathway, stoichiometric reactions of C₆F₆ with palladium(0) complexes were tested. In a previous report by Grushin et al., the reaction of C₆F₆ with Pd(PCy₃)₂ in THF at 70 °C for 24 h occurred very slowly to give a pentafluorophenylpalladium(II) fluoride, trans-Pd(C₆F₅)F(PCy₃)₂, in a 3% yield (Scheme 2.3a).[6] Braun and Perutz et al. also reported a reaction of Pd(PCy₃)₂ with highly reactive C₅F₅N to afford trans-Pd(C₆F₅N)F(PCy₃)₂ in 30% isolated yield (Scheme 2.3b).[7]

\[\text{(a) Report by Grushin} \]

\[
\begin{align*}
\text{C}_6\text{F}_6 + \text{Pd(PCy}_3\text{)}_2 & \rightarrow \text{Pd(C}_6\text{F}_5\text{)F(PCy}_3\text{)}_2 \\
\text{THF-d₆, 70 °C, 24 h} & \rightarrow \text{C}_6\text{F}_6 + \text{Pd(PCy}_3\text{)}_2 \\
1.3 \text{ equiv} & \rightarrow \text{3%}
\end{align*}
\]

\[\text{(b) Report by Braun, Perutz} \]

\[
\begin{align*}
\text{C}_6\text{F}_6 + \text{Pd(PCy}_3\text{)}_2 & \rightarrow \text{Pd(C}_6\text{F}_5\text{)I(PCy}_3\text{)}_2 \\
\text{toluene, 100 °C, 6 h} & \rightarrow \text{C}_6\text{F}_6 + \text{Pd(PCy}_3\text{)}_2 \\
1 \text{ equiv} & \rightarrow \text{30%}
\end{align*}
\]

Scheme 2.3 C–F bond activation of perfluoroarenes with Pd(0)

On the other hand, in the presence of LiI the oxidative addition proceeded much faster to give a pentafluorophenylpalladium(II) iodide, trans-Pd(C₆F₅)I(PCy₃)₂ (4), which indicates that acceleration of the oxidative addition is an important role of LiI (Scheme 2.4). Addition of lithium bromide or chloride also promoted the reaction, although the yield decreased to 55% and 11% respectively. In contrast, even in the presence of LiI, the oxidative addition of C₆F₆ to Pd(PPh₃)₂ did not take place, which is consistent with the fact that PPh₃ is not a suitable auxiliary ligand for the catalytic reaction (Table 1, entry 1).
The ORTEP diagram of 4 unambiguously demonstrates that the palladium center in 4 adopts a square-planar coordination geometry and is coordinated by two PCy₃ ligands in a trans manner (Figure 2.1a). A similar coordination geometry was found in structurally well-defined Pd(II) complexes, such as trans-Pd(C₆F₅)Cl(PPh₃)₂ and trans-Pd(C₆F₅)I(PCy₂Fc)₂ (Fc= ferrocenyl). [8]

Similar oxidative-addition products, trans-Pd(4-CF₃C₆F₄)I(PCy₃)₂ (5) and trans-Pd(2-C₁₀F₇)I(PCy₃)₂ (6), can be isolated by treatment of either C₇F₈ or perfluoronaphthalene with Pd(PCy₃)₂ in the presence of LiI (Scheme 2.5). In the former reaction, the C–F bond at the 4-position of C₇F₈ was exclusively cleaved, whereas the C–F bond at the 2-position of perfluoronaphthalene was exclusively activated in the latter reaction. These regioselectivities of C–F bond fission were consistent with those observed in the corresponding catalytic process (Scheme 1). The ORTEP drawings of 5 and 6 are represented in Figure 2.1b and 2.1c, and definitely show that the palladium center in both 5 and 6 has the same coordination geometry as in 4.
To confirm whether or not 4 is an intermediate in the Pd-catalyzed cross-coupling reaction of C₆F₆ with diarylzinc compounds, a stoichiometric reaction of 4 with ZnPh₂ was examined. As a result, a yield of only 5% of 3a was obtained from a stoichiometric reaction conducted at 60 °C for 7 h in the presence of an excess amount of LiI (Scheme 2.6), whereas 3a was obtained in 69% yield under the catalytic reaction conditions mentioned above (60 °C, 6 h; Table 2.2). This result suggest that 4 is unlikely to be a reaction intermediate. The space filling model of the complex 4 based on the X-ray diffraction study implies the steric congestion around the palladium center caused by the two bulky PCy₃ ligands. Thus, it is assumed that oxidative addition of C₆F₆ to Pd(PCy₃)₂ in the presence of LiI might involve dissociation of a PCy₃ ligand to give a transient Pd(C₆F₅)I(PCy₃) species (Figure 2.2). The resultant three-coordinate transient intermediate would undergo re-coordination of a PCy₃ ligand in the absence of ZnPh₂ to yield the thermodynamically favored, and unreactive, species 4. On the other hand, in the presence of ZnPh₂, transmetalation between the transient iodopalladium(II) species and ZnPh₂ would occur smoothly to yield the coupling product 3a. These assumptions are consistent with the results from kinetic studies performed by Hartwig and co-workers: the oxidative addition of chlorobenzene to Pd(PCy₃)₂, to give trans-PdCl(PCy₃)₂(Ph) involved the dissociation of a PCy₃ ligand at the initial stage of the reaction.\(^9\) Therefore, Pd(C₆F₅)I(PCy₃)(py)] (7), in which pyridine acts as a labile ligand to generate a tentative three-coordinate Pd(C₆F₅)I(PCy₃) species, was prepared as an alternative catalytic precursor.

\[
\text{ArF} - F + \text{Pd(PCy₃)₂} \xrightarrow{\text{1.1 equiv LiI}} \text{C₆F₅Pd(PCy₃)} \]

\[
\text{PdPCy₃} + 5 \text{equiv ZnPh₂} \xrightarrow{\text{THF-d₆, 60 °C, 7 h}} 3a, 5% \]

Scheme 2.5 Preparation of perfluoroaryl palladium complexes

Scheme 2.6 (Left) Reaction of complex 4 with ZnPh₂ in the presence of LiI.

(Right) Space filling model of the complex 4.
Pd(C₆F₅)₂(py)₂ (py = pyridine) was chosen as a starting material. In accordance with the literature, treatment of PdCl₂(py)₂ with pentafluorophenyllithium (3 equiv), generated in situ by reaction of chloropentafluorobenzene with nBuLi at −78 °C, afforded Pd(C₆F₅)₂(py)₂ in 72% yield (Figure 2.3a). X-ray diffraction study of Pd(C₆F₅)₂(py)₂ revealed that Pd(II) center had a square-planar geometry and was coordinated by two pentafluorophenyl group in the cis configuration, although a trans configuration was proposed in the original literature (Figure 2.3b). The transmetallation between Pd(C₆F₅)₂(py)₂ and PdCl₂ in acetone followed by treatment with pyridine gave Pd(C₆F₅)Cl(py)₂ (Figure 2.3c).

Substitution of an iodide for the chloride in 8 was accomplished by reaction of 8 with excess sodium iodide to afford the desired Pd(II) iodide 7 in 55% yield. Pentafluorophenylpalladium halides 7 and 8 were characterized by NMR spectroscopy and combustion analysis as well as by X-ray diffraction analysis (Figure 2.4). The ¹H NMR spectra of these complexes clearly showed that both the pyridine and PCy₃ ligands
were coordinated to the Pd(II) center in a ratio of 1:1. In addition, auxiliary ligands in 7 and 8 were situated in a mutual cis position with a square-planar geometry of Pd(II) as shown by X-ray diffraction study.

![Scheme 2.7](image)

Scheme 2.7 Formation of complex 8 followed by treatment with NaI

![Figure 2.4](image)

Figure 2.4 ORTEP drawings of 8 and 7 with thermal ellipsoids at the 50% probability level. Hydrogen atoms and solvated molecules (acetone for 8 and THF for 9) were removed for clarity.

The Pd–N bond lengths of 2.032(10) Å in 7 and 2.0407(13) Å in 8 were slightly shorter than those observed in Pd(C₆F₅)₂(py)₂ (2.093(2) and 2.105(3) Å), which reflects the difference in the trans influence between halides and a pentafluorophenyl ligand. On the other hand, the Pd–C₆F₅ bond lengths showed only slight differences (2.015(5) Å for 4, 2.069(12) Å for 7, 2.001(3) and 2.025(3) Å for Pd(C₆F₅)₂(py)₂, and 2.0519(16) Å for 8). In addition, the bond lengths between the palladium and phosphorus atoms in 7 and 8 (2.359(3) and 2.3604(4) Å, respectively) were close in value to those observed in 4 (2.3691(16) and 2.3839(16) Å).

The reactivity of 7 toward ZnPh₂ in the presence or absence of LiI was evaluated (Scheme 2.8). In the presence of LiI (1.5 equiv), 8 reacted smoothly with ZnPh₂ in THF at room temperature to give the desired coupling product 3a as the sole product in 63%
In the presence of LiI, the reaction of 8 with ZnPh₂ under the same reaction conditions afforded a pentafluorophenylzinc species, C₆F₅ZnX (X=I or C₆F₅), as the major product (54%) and 3a as the minor product (27%). These observations suggest that a transient Pd(C₆F₅)I(PCy₃) species, generated by dissociation of the labile pyridine ligand of 8, could be crucial for the smooth occurrence of transmetalation between the palladium(II) species and ZnPh₂, and the existence of LiI is essential for selective transmetalation to generate 3a.

Scheme 2.8 Reactivity of complex 7

Based on these results, a plausible reaction mechanism was proposed in Figure 2.5. In the presence of LiI, oxidative addition of a C–F bond in C₆F₆ to Pd(0) would occur initiated by dissociation of a PCy₃ ligand to form a Pd(C₆F₅)I(PCy₃) intermediate (A). Transmetalation between A and the arylzinc reagent in the presence of LiI would take place to give a bisaryl palladium(II) intermediate (B). The transmetalation step would progress in preference to the re-coordination of a PCy₃ ligand to give unreactive 4. The role of LiI in this step might be rationalized by the formation of a reactive zincate, such as Li[ArZnXI] (X=Ar or I), which would enable the efficient formation of B. Then, reductive elimination from B, followed by the re-coordination of a PCy₃ ligand would produce the coupling product 3, along with regeneration of the Pd(0) species.

Figure 2.5 A plausible reaction mechanism
2.3 Conclusion

In chapter 2, Pd(0)/PCy$_3$-catalyzed cross-coupling reaction of perfluoroarenes with a variety of arylzinc reagents to afford the corresponding polyfluorobiaryls in good-to-excellent yields. Mechanistic investigation in which trans-Pd(C$_6$F$_5$I)(PCy$_3$)$_2$ and Pd(C$_6$F$_5$I)(PCy$_3$)(py) were reacted with ZnPh$_2$ revealed both the catalytic reaction pathway and the role of LiI in the catalytic reaction. The key intermediate in this catalytic cycle is a transient, three-coordinated monophosphine palladium species Pd(C$_6$F$_5$I)(PCy$_3$)$_2$ which was generated by oxidative addition of C−F bond of C$_6$F$_5$I to Pd(PCy$_3$)$_2$ along with dissociation of a PCy$_3$ ligand. The role of LiI in this catalytic reaction was not only to accelerate the oxidative addition step, but also to activate an arylzinc reagent by formation of a zincate such as Li[ArZnXI] (X = Ar or I), which would enable an efficient transmetalation with the key intermediate.

2.4 Experimental Section

General statements for the experiments conducted in this thesis: All manipulations were conducted under a nitrogen atmosphere using standard Schlenk or dry box techniques. 1H, 11B, 19F, 31P, and 13C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 or on a Bruker Avance III 600. The chemical shifts in 1H and 13C NMR spectra were recorded relative to residual protonated solvent. The chemical shifts in the 31P NMR spectra were recorded using 85% H$_3$PO$_4$ as an external standard. The chemical shifts in 19F NMR spectra were referenced with respect to an external standard of CFC$_1$. Recycling Preparative High Performance Liquid Chromatography (HPLC) was performed on Japan Analytical Industry LC9225NEXT equipped with JAIGEL-1H and JAIGEL-2H. Elemental analyses were performed at Instrumental Analysis Center, Faculty of Engineering, Osaka University. X-ray crystal data were collected by a Rigaku RAXIS-RAPID Imaging Plate diffractometer or Mercury 375R/M CCD (XtaL LAB mini) diffractometer.

Materials: The degassed and distilled solvents (toluene, hexane and pentane) used in this work were commercially available. THF, THF-d_8 and C$_6$D$_6$ were distilled from sodium benzophenone ketyl. All the Grignard reagents used in this work were purchased from Aldrich as THF solutions and their concentrations were determined by titration with absolute m-xylene solution of sec-BuOH in the presence of 1,10-phenanthroline as an indicator. Trans-bis(pyridine)dichloropalladium(II),$^{[11]}$ Pd(PCy$_3$)$_2$,$^{[14]}$ THF solution of LiCl•(p-cyanophenyl)zinc iodide,$^{[5]}$ and LiCl•(p-EtCOOPh)zinc iodide$^{[5]}$ were prepared by published procedures. ZnCl$_2$ (3N) was purchased from WAKO Pure Chemicals, and dried under vacuum with heating until melting. Other commercially available reagents were distilled and degassed prior to use.
Experimental Details

General Procedure for Optimization of Catalytic Reaction: In a dry box, to a vial equipped with a stirring bar was placed ZnCl₂ (9.54 mg, 0.07 mmol), PhMgBr (1 M solution in THF, 140 μL, 0.14 mmol), LiI (32.1 mg, 0.24 mmol), and THF (160 μL). To the resulting mixture was added a THF solution of Pd(OAc)₂ (1.1 mg, 0.005 mmol) and PCy₃ (2.8 mg, 0.010 mmol), 1 (11.5 μL, 0.1 mmol), and tetradecane (26 μL, 0.1 mmol) as an internal standard. The vial was sealed, and heated with preheated sand bath with stirring. After the reaction, the solution was quenched with methanol and analyzed by GC. The yield was estimated by comparing peak areas of pentafluorobiphenyl with tetradecane with a sensitivity ratio determined by GC spectrum of isolated samples. The results are summarized in Table 2.1.

General Procedure for Pd-Catalyzed Coupling Reaction of Perfluoroarenes with Diarylzinc in the Presence of LiI: In a dry box, to a vial equipped with a stirring bar were added a THF solution of arylmagnesium halide (1.2 mmol) and ZnCl₂ (81.8 mg, 0.6 mmol). The mixture was diluted with THF to make the volume 5 mL and vigorously stirred until ZnCl₂ dissolve completely. To the solution were added Pd(PCy₃)₂ (33.3 mg, 0.05 mmol), LiI (321 mg, 2.4 mmol), and perfluoroarenes (0.1 mmol). The reaction mixture was heated with stirring, and then quenched with 15 mL of 1M HCl aq. The water layer was separated and extracted with ether (5 mL × 4). The combined organic layer was dried over MgSO₄, filtered, and evaporated to dryness. The resulting solid was purified by flash column chromatography to give pure product. The results are summarized in Table 2.2. Characterization of the products are described below.

3a: By following the general procedure, a coupling reaction of phenylmagnesium bromide with C₆F₆ gave a white solid (168.5 mg, 69%). ′H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.39 – 7.44 (m, 2H), 7.46 – 7.52 (m, 3H). ′F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −143.3 (dd, J = 7.8, 22.7 Hz, 2F), −155.7 (t, J = 20.6 Hz, 1F), −162.3 (dt, 7.8, 21.5 Hz, 2F). ′C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 116.0 (dt, J = 4, 17 Hz), 126.5, 128.8, 129.4, 130.2, 138.0 (dm, J = 258 Hz), 142.0 (dm, J = 256 Hz), 144.3 (J = 249 Hz). HRMS: m/z calc. 244.0311 (C₁₂H₅F₅), found 244.0311. Spectral data of 3a were identical to that of previously reported.¹⁵
3b: By following the general procedure in 0.3 mmol scale, a coupling reaction of 4-tolylmagnesium bromide with C₆F₆ gave a white solid purified by preparative thin layer chromatography (55 mg, 70%). ¹H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 2.42 (s, 3H), 7.31 (s, 4H). ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −143.4 (dd, 8.3 Hz, 21.2 Hz, 2F), −156.3 (t, 21.2 Hz, 1F), −162.6 (dt, 8.3 Hz, 21.2 Hz, 2F). ¹³C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 21.4, 116.1 (dt, 4 Hz, 17 Hz), 123.5, 129.6, 130.1, 138.0 (dm, 243 Hz), 138.6, 140.1 (dm, 254 Hz), 144.2 (dm, 246 Hz). HRMS: m/z calc. 258.0468 (C₁₃H₇F₅), found 258.0466. Spectral Data of 3b were identical to that of previously reported.[15]

3c: By following the general procedure in 0.3 mmol scale, a coupling reaction of 3-tolylmagnesium bromide with C₆F₆ gave white solid purified by preparative thin layer chromatography (41 mg, 53%). ¹H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 2.42 (s, 3H), 7.20 - 7.22 (m, 2H), 7.27 (d, 7.4 Hz, 1H), 7.38 (t, 7.4 Hz, 1H). ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −143.1 (dd, 8.2 Hz, 22.4 Hz, 2F), −155.9 (t, 22.4 Hz, 1F), −162.4 (dt, 8.23 Hz, 22.4 Hz). ¹³C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 21.5, 116.2, 126.4, 127.3, 128.7, 130.2, 130.8, 137.9 (dm, 243 Hz), 138.6, 140.4 (dm, 254 Hz), 144.3 (dm, 251 Hz). HRMS: m/z calc. 258.0468 (C₁₃H₇F₅), found 258.0466. Spectral Data of 3c were identical to that of previously reported.[15]

3e: By following the general procedure, a coupling reaction of 4-N,N-dimethylaminophenylmagnesium bromide with C₆F₆ gave a white solid (211.2 mg, 74%). ¹H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 3.02 (s, 6H), 6.79 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3, 2H). ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −144.1 (dd, J = 7.7, 22.2 Hz, 2F), −158.1 (t, J = 22.2 Hz, 1F), −163.1 (dt, J = 7.7, 22.2 Hz, 2F). ¹³C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 40.3, 112.0, 113.4, 116.4 (t, J₁=₂ = 3, 16 Hz), 131.0, 137.5 (dm, J₁=₂ = 249 Hz), 139.5 (dm, J₁=₂ = 255 Hz), 144.3 (dm, J₁=₂ = 245 Hz), 150.8. HRMS: m/z calc. 287.0733 (C₁₄H₁₄F₅N), found 287.0732. Spectral Data of 3d were identical to that of previously reported.[16]
3f: By following general procedure, a coupling reaction of 4-anisylmagnesium bromide with C₆F₆ gave a white solid (209.5 mg, 76%). \(^1\)H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 3.86 (s, 3H), 7.01 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 8.8 Hz, 2H). \(^19\)F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −143.7 (dd, J = 8.2, 23.2 Hz, 2F), −156.6 (t, J = 21.2 Hz, 1F), −162.6 (dt, 7.7, 23.0 Hz, 2F). \(^{13}\)C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 55.4, 114.3, 115.8 (m), 118.5, 131.5, 137.9 (dm, J = 251 Hz), 139.0 (dm, J = 253 Hz), 144.2 (dm, J = 246 Hz), 160.4. HRMS: m/z calc. 274.0417 (C₁₃H₇F₅O), found 274.0419. Spectral Data of 3f were identical to that of previously reported.\(^{[15]}\)

3g: By following the general procedure, a coupling reaction of 4-fluorophenylmagnesium bromide with C₆F₆ gave a white solid (172.6 mg, 66%). \(^1\)H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.19 (m, 2H), 7.40 (m, 2H). \(^19\)F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −111.3 (m, 1F), −143.4 (dd, J = 8.2, 22.7 Hz, 2F), −155.3 (t, J = 21.1 Hz, 1F), −162.1 (dt, J = 8.4, 21.8 Hz, 2F). \(^{13}\)C NMR (100 MHz, in CDCl₃, rt, δ/ppm, except for C₆F₆): 163.2 (d, J₇-F = 251 Hz), 132.1 (d, J₇-F = 8.8 Hz), 122.3, 116.0 (d, J₇-F = 22 Hz), 115.0 (d, J₇-F = 4 Hz). HRMS: m/z calc. 262.0217 (C₁₂H₄F₆), found 262.0223. Spectral Data of 3g were identical to that of previously reported.\(^{[15]}\)

3h: By following the general procedure, a coupling reaction of 3,5-difluorophenylmagnesium bromide with C₆F₆ gave a white solid (136.0 mg, 49%). \(^1\)H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 6.90-7.10 (m). \(^19\)F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −161.34 (dt, 7.4 Hz, 21.6 Hz, 2F), −153.51 (t, 21.6 Hz, 1F), −142.66 (dd, 7.4 Hz, 21.6 Hz, 2F), −108.65 (t, 7.8 Hz, 2F). \(^{13}\)C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 105.2 (t, 24 Hz), 113.5, 113.8, 129.2 (t, 10 Hz), 138.1 (dm, 253 Hz), 141.2 (dm, 255 Hz), 144.3 (dm, 253 Hz), 163.1 (dd, 250 Hz, 13 Hz). HRMS: m/z calc. 280.0123 (C₁₃H₂F₇), found 280.0125. Spectral Data of 3h were identical to that of previously reported.\(^{[17]}\)
3i: By following the general procedure, a coupling reaction of 2-naphthylmagneisum bromide with C₆F₆ gave white solid (192.5 mg, 65%). ^1H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.49 (dd, J = 1.5, 8.5 Hz, 1H), 7.56 (m, 2H), 7.88 – 7.97 (m, 4H). ^19F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −144.4 (dd, J = 8.1, 22.7 Hz, 2F), −156.8 (t, J = 22.7 Hz, 1F), −163.5 (dt, J = 8.1, 22.7 Hz, 2F). ^13C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 116.1 (dt, J = 4, 17 Hz), 123.9, 126.9, 127.2, 127.3, 127.9, 128.4, 128.5, 130.3, 133.2, 133.4, 138.1 (dm, J = 253 Hz), 140.6 (dm, J = 255 Hz), 144.5 (dm, J = 248 Hz). HRMS: m/z calc. 294.0468 (C₁₆H₇F₅), found 294.0465. Spectral Data of 3i were identical to that of previously reported.¹¹⁵

3j: Following the general procedure, a coupling reaction of 2-thienylmagnesium bromide with C₆F₆ gave a white solid purified by preparative thin layer chromatography (138.4 mg, 55%). ^1H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.19 (tm, 4.3 Hz, 1H), 7.52 (m, 1H), 7.55 (dd, 1.0 Hz, 5.2 Hz). ^19F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −140.0 (dd, 6.6 Hz, 21.3 Hz, 2F), −156.0 (t, 20.9 Hz, 1F), −162.2 (dt, 6.3 Hz, 21.4 Hz, 2F), ^13C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 111.1 (dt, J = 4 Hz, 15 Hz), 126.4, 127.4, 128.4 (t, 4 Hz), 130.2 (t, 5 Hz), 138.2 (dm, 253 Hz), 140.0 (dm, 257 Hz), 144.1 (dm, 246 Hz). HRMS: m/z calc. 249.9876 (C₁₀H₃F₅S), found 249.9880. Spectral Data of 3j were identical to that of previously reported.¹¹⁸

3k: To a reaction vessel equipped with a stirring bar was added LiCl·IZnC₆H₄CN (0.71 M THF solution, 1.7 mL, 1.2 mmol), LiI (481 mg, 3.6 mmol), and THF (3.3 mL). To the resulting solution was added Pd(PCy₃)₂ (33.3 mg, 0.05 mmol) and C₆F₆ (115 μL, 1.0 mmol). The reaction vessel was capped, and stirred at 60°C for 6 h. The reaction was quenched with 5 mL of sat. NH₄Cl aq. The water layer was separated and extracted with 5 mL of ether 3 times. The combined organic layer was filtered off, washed with 10 mL of brine, and dried over MgSO₄. The solution was concentrated in vacuo and purified by HPLC to give white crystalline powder (132.2 mg, 49%). ^1H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.79 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 7.3 Hz, 2H). ^19F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −143.1 (m, 2F), −153.1 (m, 1F), −161.2 (m, 2F). ^13C NMR (100 MHz, in CDCl₃, rt, δ/ppm):
144.0 (dm, $J = 255$ Hz), 141.2 (dm, $J = 251$ Hz), 137.9 (dm, $J = 255$ Hz), 132.5, 131.1, 131.0, 118.1, 114.0 (m), 113.4. **HRMS**: m/z calc. 269.0264 (C$_{13}$H$_4$F$_5$N), found 269.0263. Spectral Data of 3k were identical to that of previously reported.$^{[18]}$

![Chemical Structure](image)

3l: To a reaction vessel equipped with a stirring bar was added LiCl•I ZnC$_6$H$_4$COOEt (0.68 M THF solution, 1.8 mL, 1.2 mmol), LiI (481 mg, 3.6 mmol), and THF (3.2 mL). To the resulting solution was added Pd(PCy$_3$)$_2$ (33.3 mg, 0.05 mmol) and C$_6$F$_6$ (115 μL, 1.0 mmol). The reaction vessel was capped, and stirred at 60 °C for 6 h. The reaction was quenched with 5 mL of sat. NH$_4$Cl aq. The water layer was separated and extracted with 5 mL of ether 3 times. The combined organic layer was filtered off, washed with 10 mL of brine, and dried over MgSO$_4$. The solution was concentrated in vacuo and purified by flash column chromatography (eluent Hexane : EtOAc = 95 : 5) to give white crystalline powder (180.5 mg, 57%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.09 (m, 2H), 7.49 (m, 2H), 4.37 (m, 2H), 1.38 (m, 3H). 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −142.9 (dd, 8.2 Hz, 23.1 Hz, 2F), −154.2 (t, 20.5 Hz, 1F), −161.6 (dt, 8.0 Hz, 22.6 Hz, 2F). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 166.0, 144.3 (dm, 247 Hz), 141.0 (dm, 253 Hz), 138.1 (dm, 239 Hz), 131.5, 130.9, 130.3, 130.0, 115.2 (m), 61.42, 14.44. **HRMS**: m/z calc. 316.0523 (C$_{15}$H$_9$F$_5$O$_2$), found 316.0523. Spectral Data of 3l were identical to that of previously reported.$^{[15]}$

![Chemical Structure](image)

3m: By following the general procedure, a coupling reaction of 4-methoxyphenylmagnesium bromide and C$_7$F$_8$ gave a white solid (299.5 mg, 92%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 3.88 (s, 3H), 7.04 (dm, 8.9 Hz, 2H), 7.41 (dt, 8.9 Hz, 1.44 Hz, 2H). 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −56.2 (t, 21.6 Hz, 3F), −141.2 (m, 2F), −142.1 (m, 2F). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 55.5, 107.8 (m), 114.4, 118.2, 123.0 (q, 274 Hz), 124.8 (t, 16 Hz), 131.6, 144.2 (dm, 247 Hz), 144.7 (dm, 260 Hz), 161.0. **HRMS**: m/z calc. 324.0385 (C$_{14}$H$_7$F$_7$O), found 324.0383. Spectral Data of 3m were identical to that of previously reported.$^{[16]}$
3n: By following the general procedure, a coupling reaction of 2-tolylmagnesium bromide and C\textsubscript{7}F\textsubscript{8} gave a white solid (185.3 mg, 60%). 1H NMR (400 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 2.11 (s, 3H), 7.11 (d, 7.6 Hz, 2H), 7.20-7.34 (m, 3H). 19F NMR (376 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): -56.3 (t, 21.7 Hz, 3F), -138.7 (m, 2F), -140.8 (m, 2F). 13C NMR (100 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 19.6, 108.9 (m), 120.9 (q, 274 Hz), 124.8, 125.6, 126.1, 130.0, 130.0, 130.7, 137.0, 144.1 (dm, 250 Hz). HRMS: m/z calc. 308.0436 (C\textsubscript{14}H\textsubscript{7}F\textsubscript{7}), found 308.0431.

3o: By following the general procedure, a coupling reaction of 4-methoxyphenylmagnesium bromide with C\textsubscript{12}F\textsubscript{10} gave a white solid purified by HPLC (136.9 mg, 32%). 1H NMR (400 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 7.45 (d, 8.8 Hz, 2H), 7.03 (d, 8.8 Hz, 2H), 3.86 (s, 3H). 19F NMR (376 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): -137.4 (m, 2F), -139.1 (m, 2F), -143.1 (m, 2F), -150.6 (t, 21.0 Hz, 1F), -160.7 (m, 2F). 13C NMR (100 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 160.7, 144.8 (dm, 252 Hz), 144.2 (dm, 248 Hz), 142.5 (dm, 258 Hz), 138.0 (dm, 253), 131.6 (t, 2 Hz), 122.9 (t, 16 Hz), 118.9, 114.3 (d, 6 Hz), 104.4 (t, 18 Hz), 102.7 (19 Hz), 55.6 (d, 39 Hz). HRMS: m/z calc. 422.0353 (C\textsubscript{19}H\textsubscript{7}F\textsubscript{9}O), found 422.0350. Spectral Data of 3o were identical to that of previously reported.[1h]

3p: By following the general procedure in 0.3 mmol scale, a coupling reaction of 4-methoxyphenylmagnesium bromide and C\textsubscript{10}F\textsubscript{8} gave a white solid (57.5 mg, 56%). 1H NMR (400 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 3.88 (s, 3H), 7.06 (d, 9.3 Hz), 7.46 (d, 9.3 Hz). 19F NMR (376 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): -155.9 (m, 1F), -154.0 (t, 19.3 Hz, 1F), -149.0 (dtt, 57.8 Hz, 18.5 Hz, 3.7 Hz, 1F), -146.4 (dtt, 56.9 Hz, 17.7 Hz, 3.7 Hz, 1F), -144.0 (dtt, 70.2 Hz, 16.7 Hz, 1F), -137.0 (m, 1F), -122.1 (dtt, 70.2 Hz, 19.2 Hz, 3.7 Hz, 1F). 13C NMR (100 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 55.5, 108.2 (t, 16 Hz), 110.6 (m), 119.4 (t, 18 Hz), 144.3, 119.2 (m), 131.8 (t, 2 Hz), 137.5-150.5, 160.5. HRMS: m/z calc. 360.0385 (C\textsubscript{17}H\textsubscript{7}F\textsubscript{5}O), found 360.0382.
3q, 3q' : By following the general procedure in 0.5 mmol, a coupling reaction of phenylmagnesium bromide with C₅F₅N gave a white solid (92.8 mg, 82%). H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.92 (m), 7.57-7.46(m). F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −82.6 (m, 1F), −90.6 (m, 2F), −138.4 (m, 1F), −145.1 (m), −158.6 (m). HRMS: m/z calc. 227.0358 (C₁₁H₅F₄N), found 227.0356, 227.0351.

3r, 3r' : By following the general procedure in 0.5 mmol, a coupling reaction of phenylmagnesium bromide with pentafluorobenzene gave a white solid (42.5 mg, 38%). H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.46 (m), 7.03 (m). F NMR (376 MHz, in CDCl₃, rt, δ/ppm): For 2,3,4,5-tetrafluorobiphenyl: −140.3 (m, 2F), −145.0 (m, 2F). For 2,3,5,6-tetrafluorobiphenyl: −140.7 (m, 1F), −144.9 (m, 1F), −156.3 (m ,1F), −158.2 (m, 1F). HRMS: m/z calc. 226.0406 (C₁₂H₆F₄), found 226.0398, 226.0405. Spectral Data of 3r and 3r' were identical to that of previously reported.[16]

3s: Following the general procedure in 0.5 mmol, 4-tolylmagnesium bromide and 3a gave white solid purified by HPLC (82.0 mg, 52%). H NMR (400.0 MHz, in CDCl₃, rt, δ/ppm): 7.52-7.28 (m, 9H), 1.54 (s, 3H). F NMR (372 MHz, in CDCl₃, rt, δ/ppm): −144.6 (m). HRMS: m/z calc. 316.0875 (C₁₉H₁₂F₄), found 316.0875.

Isolation of 4: In a dry box, to a reaction vial equipped with stirring bar were added Pd(PCy₃)₂ (202 mg, 0.3 mmol), LiI (41 mg, 0.3 mmol), C₆F₆ (34.5 μL, 0.3 mmol) and 5 mL portion of THF. The reaction mixture was stirred at 60 °C for 5 h in a metal bath. Volatiles were removed in vacuo, and the resulting solid was extracted with Et₂O, filtered, and dried in vacuo yielding yellow solid of desired product (197 mg, 68%). Recrystallization from Et₂O at −35 °C afforded good crystals, which was analyzed by X-ray diffraction. H NMR (400 MHz, C₆D₆, rt): δ = 1.0–2.4 (m, 66 H; Cy group); F
NMR (376 MHz, C$_6$D$_6$, rt): $\delta = -111.2$ (d, $J = 27.4$ Hz, 2 F), -164.7 (t, $J = 20.1$ Hz, 1 F), -166.0 (m, 2 F); 31P NMR (162 MHz, C$_6$D$_6$, rt): $\delta = 29.3$ (s); 13C NMR (100 MHz, C$_6$D$_6$, rt): $\delta = 37.1$ (t, $J = 9.7$ Hz), 30.8, 28.0 (t, $J = 5.2$ Hz), 26.7. The 13C signals assignable to the C$_6$F$_5$ moiety could not be detected due to multiple 13C-19F couplings. Elemental Analysis: calcld (%) for C$_{42}$H$_{66}$F$_5$IP$_2$Pd: C, 52.48, H, 6.92; found: C, 52.45, H, 7.10.

X-ray data: $M = 961.19$; colorless; monoclinic; $P2_1/c$ (no. 14); $a = 16.474(11)$ Å, $b = 16.227(10)$ Å, $c = 17.847(12)$ Å, $\beta = 116.358(6)$ °; $V = 4275(5)$ Å3; $Z = 4$; $D_{calcld} = 1.493$ g cm$^{-3}$; $T = -120(0)$ °C; $R_1 (wR_2) = 0.0551$ (0.1086).

Complex 5: In a dry box, to a vial equipped with a stirring bar were added Pd(PCy$_3$)$_2$ (334 mg, 0.5 mmol) and LiI (74 mg, 0.55 mmol) and the solid was dissolved in THF (8 mL). To the resulting solution was added C$_{10}$F$_8$ (77.5 μL, 0.55 mmol). The vial was sealed and the reaction mixture was heated at 60 °C for 1 h with stirring. All volatiles were removed by evaporation and the resulting solid was extracted with hexane and filtered off. The hexane solution was dried out to yield 20 as yellow solid (515 mg, 102 % (Such an over 100% yield was due to the contamination by a small amount of hexane)). Purification was conducted by recrystallization from hot hexane to form yellow crystal. 1H NMR (400 MHz, in C$_6$D$_6$, rt, δ/ppm): 1.04-2.39 (Cy Group); 19F NMR (372 MHz, in C$_6$D$_6$, rt, δ/ppm): −58.7 (t, 21.0 Hz, 3F), −110.4 (m, 2F), −146.2 (m, 2F); 31P NMR (162 MHz, in C$_6$D$_6$, rt, δ/ppm): 29.6 (s). 13C NMR (100 MHz, in C$_6$D$_6$, rt, δ/ppm): 37.0 (t, 9.9 Hz), 30.6, 27.8 (t, 5.3 Hz), 26.5. The 13C signals assignable to the p-CF$_3$-C$_6$F$_4$ moiety could not be detected due to multiple 13C-19F couplings. Elemental Analysis: calcld: C, 51.07; H, 6.58, found: C, 51.29; H, 6.70.

Complex 6: In a dry box, to a vial equipped with a stirring bar were added Pd(PCy$_3$)$_2$ (334 mg, 0.5 mmol) and LiI (74 mg, 0.55 mmol) and the solid was dissolved in THF (8 mL). To the resulting solution was added C$_{10}$F$_8$ (150 mg, 0.55 mmol). The vial was capped and the reaction mixture was heated at 60 °C for 5 h with stirring. All volatiles were removed by evaporation and the resulting solid was extracted with toluene and filtered off. The toluene solution was dried in vacuo and washed with small amount of hexane. The solid was dried out to yield 21 as yellow solid (414 mg, 79 %). Recrystallization from toluene/hexane gave yellow crystals. 1H NMR (400 MHz, in C$_6$D$_6$, rt, δ/ppm): 0.99-2.40 (Cy Group); 19F NMR (372 MHz, in C$_6$D$_6$, rt, δ/ppm): −90.3 (dd, 16.6 Hz, 66.7 Hz, 1F),
−104.57 (d, 27.9 Hz, 1F), −149.8 (dt, 66.3 Hz, 16.0 Hz, 1F), −150.8 (dt, 16.6 Hz, 55.1 Hz, 1F), −155.0 (m, 1F), −160.8 (t, 19.0 Hz, 1F), −161.0 (t, 18.1 Hz, 1F). 31P NMR (162 MHz, in CdCl$_3$, rt, δ/ppm): 28.98 (s). 13C NMR (100 MHz, in CdCl$_3$, rt, δ/ppm): 37.2 (t, 9.9 Hz), 30.8, 27.9 (t, 5.3 Hz), 26.7. The 13C signals assignable to the 2-C$_{10}$F$_7$ moiety could not be detected due to multiple 13C-19F couplings.

Elemental Analysis: calc. C, 52.76; H, 6.35, found: C, 53.15; H, 6.81.

Preparation of Pd(C$_6$F$_5$)$_2$(py)$_2$:

To a two-necked round-bottomed flask equipped with a stirring bar were added absolute ether (20 mL, dried over benzophenon ketyl) and chloropentafluorobenzene (740 μL, 6.0 mmol). The solution was cooled to −78 °C. To the solution was added Hexane solution of nBuLi (1.6 M, 3.8 mL, 6.0 mmol) dropwise with stirring (Caution! Pentafluorophenyllithium is very thermally unstable and in order to avoid explosion it must be prepared and reacted at low temperatures). The colorless solution was stirred for 30 min at this temperature. Then, to the solution was added Pd(py)$_2$Cl$_2$ (670 mg, 2.0 mmol). The resulting yellow suspension was stirred at this temperature for 1 h, and then warmed to room temperature and stirred for 2 h. The resulting white suspension was quenched with 5 mL of ether (containing a small amount of water) and evaporated to dryness. The residue was extracted with boiling acetone, and the acetone solution was filtered through a pad of celite and dried out. Recrystallization from hot acetone/ethanol at −30 °C overnight afforded 862 mg of white needle crystal (72%). 1H NMR (400 MHz, CDCl$_3$, rt): δ = 8.74 (m, 4 H), 7.64 (tt, $J = 7.8$ Hz, 1.5 Hz, 2 H), 7.23 (m, 4 H); 19F NMR (376 MHz, CDCl$_3$, rt): δ = −122.4 (m, 4 F), −160.4 (t, $J = 19.5$ Hz, 2 F), −162.5 (m, 4 F); 13C NMR (100 MHz, CDCl$_3$, rt): δ = 153.4, 137.8, 125.4. The 13C signals assignable to the C$_6$F$_5$ moiety could not be detected due to multiple 13C-19F couplings.

Elemental Analysis: calcld (%) for C$_{22}$H$_{10}$F$_{10}$N$_2$Pd: C, 44.13, H, 1.68, N, 4.68; found C, 44.11, H, 1.89, N, 4.74.

X-ray data: $M = 598.72$; yellow; monoclinic; $P2_1/c$ (# 14); $a = 9.8891(10)$ Å, $b = 16.9318(13)$ Å, $c = 13.0111(12)$ Å, $β = 109.524(3)$ °; $V = 2053.3(3)$ Å3; $Z = 4$; $D_{calc} = 1.937$ g cm$^{-3}$; $T = −150(0)$ °C; R_I (wR_2) = 0.0355 (0.0786).

Preparation of Pd(C$_6$F$_5$)Cl(py)$_2$: To a round-bottomed flask equipped with a stirring bar were added Pd(C$_6$F$_5$)$_2$(py)$_2$ (599 mg, 1.0 mmol), PdCl$_2$ (195 mg, 1.1 mmol), and acetone (35 mL). The resulting
reddish brown suspension was heated at reflux temperature for 3 h with vigorous stirring. After the reddish brown suspension of PdCl₂ disappeared, pyridine (1 mL) was added. After additional 30 min of reflux, volatiles were removed by evaporation. The resulting solid was extracted with Et₂O. The solution was evaporated to dryness and recrystallization from acetone afforded white needle crystal of Pd(C₆F₅)Cl(py)₂ (541 mg, 58%). ¹H NMR (400 MHz, C₆D₆, rt): δ = 8.60 (m, 4 H), 6.44 (tt, J = 7.8 Hz, 1.5 Hz, 2 H), 6.13 (m, 4 H); ¹⁹F NMR (376 MHz, C₆D₆, rt): δ = −125.1 (m, 2 F), −162.0 (t, J = 20.2 Hz, 1 F), −164.9 (m, 2 F); ¹³C NMR (100 MHz, C₆D₆, rt): δ = 153.4, 137.6, 124.7. The ¹³C signals assignable to the C₆F₅ moiety could not be detected due to multiple ¹³C-¹⁹F couplings. Elemental Analysis: calcd (%) for C₁₆H₁₀ClF₅N₂Pd: C, 41.14, H, 2.16, N, 6.00; found: C, 41.29, H, 2.38, N, 6.09.

In the ¹H and ¹³C NMR spectra, two pyridine rings were observed equivalently, indicating that two pyridine rings would occupy the trans positions of the square-planar Pd(II) geometry. The configuration of the product, however, was not mentioned in the original literature.²²

Preparation of 8: In a dry box, to a solution of Pd(C₆F₅)Cl(py)₂ (434 mg, 0.93 mmol) in 7 mL of pyridine was added PCy₃ (287 mg, 1.02 mmol). To the resulting yellow solution was added hexane to give yellowish white precipitate. The suspension was filtered off and washed with hexane to give yellowish white powder. This crude material was recrystallized from acetone by cooling to −35 ºC to yield yellow block crystal of 24·Acetone (320 mg, 52%). ¹H NMR (400 MHz, THF-d₈, rt): δ = 8.88 (m, 2 H), 7.85 (tt, J = 7.6 Hz, 1.5 Hz, 1 H), 7.45 (m, 2 H), 2.1−1.0 (m, 33 H, Cy group); ¹⁹F NMR (376 MHz, THF-d₈, rt): δ = −127.5 (m, 2 F), −169.3 (t, J = 19.6 Hz, 1 F), −170.5 (m, 2 F); ³¹P NMR (162 MHz, THF-d₈, rt): δ = 17.7 (m); ¹³C NMR (100 MHz, THF-d₈, rt): δ = 154.5, 139.2, 126.8, 33.6 (d, Jc-P = 17 Hz), 30.4, 28.3 (d, Jc-P = 11 Hz), 27.0. The ¹³C signals assignable to the C₆F₅ moiety could not be detected due to multiple ¹³C-¹⁹F couplings. Elemental Analysis: calcd (%) for C₂₉H₃₈ClF₅NPPd-(C₃H₆O): C, 52.90, H, 6.10, N, 1.93; found: C, 53.03, H, 6.29, N, 2.09. X-ray data: M = 726.50; colorless; monoclinic; P2₁/c (n. 14); a = 9.8563(4) Å, b = 16.1075(7) Å, c = 20.7981(10) Å, β = 100.527(2) º, V = 3246.3(3) Å³; Z = 4; Dcalc = 1.486 g cm⁻³; T = −120(0) ºC; R1 (wrR2) = 0.0241 (0.0281).
Preparation of 7: In a dry box, to a solution of 8 (145 mg, 0.2 mmol) in 10 mL of acetone was added NaI (300 mg, 2.0 mmol). The resulting orange solution was stirred for 3 h. The solution turned to be orange suspension. Toluene (30 mL) was added, and resulting precipitates were removed by filtration. All volatiles were removed in vacuo, and the resulting solid was taken out of dry box. The solid was washed with ethanol until no yellow color was observed in washings, then washed with small amount of water and ethanol. The resulting solid was dissolved in acetone and dried in vacuo to give yellow powder (83 mg, 55%). The complex was recrystallized from THF/Hexane. 1H NMR (400 MHz, Acetone- d_6, rt): δ = 8.86 (d, J = 5.2 Hz, 2 H), 7.98 (tt, J = 7.6 Hz, 1.5 Hz, 1 H), 7.62 (m, 2 H), 2.1–1.0 (m, 33 H, Cy group); 19F NMR (376 MHz, Acetone- d_6, rt): δ = −123.2 (m, 2 F), −167.3 (t, J = 18.6 Hz, 1 F), −168.7 (m, 2 F); 31P NMR (162 MHz, Acetone- d_6, rt): δ = 21.0 (m); 13C NMR (100 MHz, Acetone- d_6, rt): δ = 154.0, 140.0, 127.5, 35.1 (d, J_{C-P} = 18 Hz), 31.1, 28.5 (d, J_{C-P} = 10 Hz), 27.1. The 13C signals assignable to the C$_6$F$_5$ moiety could not be detected due to multiple 13C-19F couplings.

Elemental Analysis: calc (%) for C$_{29}$H$_{38}$F$_5$INPPd: C, 45.84, H, 5.04, N, 1.84; found: C, 45.92, H, 5.65, N, 2.39.

X-ray data: M = 831.98; colorless; monoclinic; $P2_1/n$ (no. 14); a = 9.9348(4) Å, b = 16.3295(7) Å, c = 21.2257(9) Å, β = 105.0560(10) º; V = 3325.2(2) Å3; Z = 4; D_{calc} = 1.646 g cm$^{-3}$; T = −150(0) ºC; R_1 (wR_2) = 0.1348 (0.3479).

Reaction of 4 with ZnPh$_2$: In a dry box, the mixture of 4 (9.6 mg, 0.01 mmol), ZnPh$_2$ (11.0 mg, 0.05 mmol), and LiI (13.4 mg, 0.10 mmol) was dissolved in THF-d_8 (500 μL). To the reaction mixture was added PhCF$_3$ (10 μL) as an internal standard. The solution was transferred to a J-Young Tube, heated at 60 ºC and analyzed by NMR spectroscopy.

Reaction of 7 with ZnPh$_2$: In a dry box, to a vial charged with 7 (7.6 mg, 0.01 mmol) was added THF-d_8 solution of ZnPh$_2$ (2.6 mg, 0.01 mmol), PCy$_3$ (2.80 mg, 0.01 mmol), and LiI (1.3 mg, 0.01 mmol). To the reaction mixture was added PhCF$_3$ (10 μL) as an internal standard. The solution was analyzed by 19F NMR spectroscopy.

2.5 References and Notes

Chapter 3

Ni/B(C₆F₅)₃ Catalyst System for Highly Selective Crossed-Dimerization

3.1 Introduction

Transition metal-enolates continue to garner interest due to their important roles in various organic transformations.¹ Many transition metal-enolates have been prepared via the nucleophilic displacement of carbonyl compounds bearing a leaving group at the α-position, via the transmetallation of a transition-metal salt with the enolate of a main group element, and via the oxidative cyclization of α,β-unsaturated carbonyl compounds on Ni(0).²⁻⁴ These reactions result in the formation of transition-metal enolates of which coordination modes are classified as O-bound or C-bound or η³-oxallyl (Figure 3.1a). Despite numerous studies on their chemistry, only a few examples of transition-metal difluoro-enolates have been reported due to a lack of readily-accessible synthetic routes. To date, the oxidative addition of a C–Cl bond to Pt(0) is the only method that has been used to successfully obtain the fluorinated analogues of transition metal-enolates 9 of which reactivity remained elusive (Figure 3.1b).⁵ Moreover, α-halogenated fluoroketones are neither easy to prepare nor commercially available. Therefore, trifluoromethylketones could be an ideal candidate for a precursor of transition-metal difluoro-enolates when using the well-established preparative procedure making use of inexpensive trifluoroacetic acid derivatives as starting materials.⁶ Amii and Uneyama have reported a pioneering work that demonstrates an efficient synthetic method to synthesize silyl difluoro-enolates via the treatment of α,α,α-trifluoroacetophenone (10a) with magnesium metal and chlorotrimethylsilane via C–F bond activation (Figure 3.1c).⁷

![Scheme 3.1](image)

Scheme 3.1 (a) Coordination modes of transition-metal enolates. (b) Preparation of platinum difluoro-enolate 9 obtained via C–Cl bond cleavage. (c) Synthesis and reactivity of silyl difluoro-enolate from readily available trifluoroacetophenone.
There is no precedence for the synthesis of transition-metal difluoro-enolates from trifluoromethylketones. Herein, C−F bond activation of \(a,a,a \)-trifluoroacetophenone coordinated to Ni(0) promoted by the addition of B(C\(_6\)F\(_5\))\(_3\), which gives the first example of Ni(II) difluoro-enolate, is described. Furthermore, a unique catalytic activity of the nickel difluoro-enolate has been demonstrated for the crossed-dimerization of aldehydes with \(\alpha \)-fluorinated ketones.

3.2 Result and Discussion

Our group reported the selective C−F bond activation of a CF\(_3\) group of hexafluoropropylene on Pd(0) by the addition of B(C\(_6\)F\(_5\))\(_3\).\(^8\) Thus, the C−F bond cleavage of trifluoroacetophenone 10a was also expected by the combination of B(C\(_6\)F\(_5\))\(_3\) and low valent transition-metals. There are some reports dealing with \(\eta^2 \)-ketone complexes of Ni(0), including the ones bearing 10a.\(^9,10\) For instance, Yamamoto et al. have described the synthesis of \(\eta^2 \)-PhCOCF\(_3\)Ni(dppe)\(^{10g}\) (11a, DPPE = 1,2-bis(diphenylphosphino)ethane). However, complex 11a led to decomposition by treatment with B(C\(_6\)F\(_5\))\(_3\). Therefore, we decided to use a more electron-rich bidentate phosphine ligand DCPE that would make the nickel center more suitable for C−F bond activation by enhancing the electron density,\(^{11}\) along with stabilization of the resultant Ni(II) complex. The reaction of Ni(cod)\(_2\), DCPE and 10a in toluene resulted in the formation of \(\eta^2 \)-PhCOCF\(_3\)Ni(dcpe) (11b) in an 85% isolated yield. The \(^{13}\)C NMR signal attributable to the carbonyl carbon in 11b (73.8 ppm) was observed in the upfield region relative to that of 11a (79.4 ppm).\(^{10g}\) This upfield-shift would be invoked by the stronger electron-donating nature of the DCPE ligand that would enhance \(d\rightarrow\pi^* \) back donation. Treatment of 11b with B(C\(_6\)F\(_5\))\(_3\) in C\(_6\)D\(_6\) afforded [(PhCOCF\(_2\)Ni(dcpe)][FB(C\(_6\)F\(_5\))\(_3\)] (12) in a quantitative yield (Scheme 3.2). It is noteworthy that in the absence of B(C\(_6\)F\(_5\))\(_3\), complex 11b was thermally stable and no decomposition was observed after heating the C\(_6\)D\(_6\) solution of 3b at 100 °C in a sealed NMR tube for a period of several days.

![Scheme 3.2](image-url)
Scheme 3.2 Formation of 11b followed by treatment with B(C\(_6\)F\(_5\))\(_3\) to yield the nickel difluoro-enolate 12.
Nickel complex 12 was fully characterized by NMR, combustion analysis and X-ray crystallography. The 19F NMR spectrum of 12 exhibited a signal that was attributable to CF$_2$ at $\delta = -100$ ppm (2F, dd, $J_{PF} = 7$, 18 Hz) as well as a set of resonances for the [FB(C$_6$F$_3$)$_3$]-counteranion. The signal of CF$_2$ resembled that of previously reported analogous platinum complex 9 (Scheme 3.1a). Two sets of doublet of triplets with the same intensity were observed at $\delta = 80$ ($J_{PF} = 7$ Hz, $J_{PP} = 11$ Hz) and 82 ppm ($J_{PF} = 18$ Hz, $J_{PP} = 11$ Hz) in the 31P NMR spectrum. The existence of two 31P resonances was probably due to a weak interaction between the carbonyl oxygen atom and the nickel center preventing a fluxional rotation around the Ni–C bond. Resonances derived from carbonyl and CF$_2$ moiety in 13C NMR spectrum were not assigned. No signals were observed around 200 ppm probably due to a significant upfield shift of resonance of carbonyl carbon caused by the interaction of carbonyl group with nickel center. Signals derived from CF$_2$ were not observable because of weak intensity.

Fine crystals of 12 were obtained from the toluene/pentane layer at -35 °C. The ORTEP diagram of the cationic portion of 12 shows a difluoro-enolate complex of Ni(II) coordinated in an η^3-oxallyl fashion (Figure 3.1). The C–O bond distance of 1.313(3) Å was an intermediate between a typical C–O double bond (ca. 1.22 Å) and a single bond (ca. 1.44 Å). The bond length of the C1–C2 bond of 1.426(5) Å was within the range of standard C–C (ca. 1.54 Å) and C=C (ca. 1.34 Å) bond lengths. These bond distances were characteristic to those of η^3-oxallyl motif.

The reaction of 12 with ‘BuNC resulted in the coordination of isocyanide to the Ni(II) center to afford η^1-C-enolate 13 in an 87% yield (Scheme 3.3). 19F NMR showed a signal of CF$_2$ at $\delta = -79$ ppm (dd, $J_{PF} = 22$, 30 Hz). In the 31P NMR spectrum, two signals were observed at $\delta = 79$ (dt, $J_{PP} = 29$ Hz, $J_{PF} = 22$ Hz) and 78 ppm (dt, $J_{PP} = 29$ Hz, $J_{PF} = 30$ Hz). The 13C NMR spectrum exhibited a resonance derived from carbonyl carbon at $\delta = 194.1$ ppm as a triplet ($^2J_{CF} = 22.3$ Hz). This characterization was unambiguously supported by X-ray analysis (Figure 3.2a).
Scheme 3.3 Treatment of tBuNC with 12.

Figure 3.2 ORTEP diagram of cationic part of (a) complex 13 (b) complex 15b with thermal ellipsoids at the 50% probability level. H atoms except for H3 of 15b were omitted for clarity.

The solid-state structure of 13 showed the square planar geometry of the Ni(II) C-bound enolate. The C2–O bond distance of 1.219(10) Å and C1–C2 of 1.495(9) Å were typical values of a C–O double bond and a C–C single bond, respectively.

Scheme 3.4 Insertion of aldehyde 14a and 14b into Ni–C bond of 12.

Transition-metal enolates are known as nucleophiles toward aldehydes. For instance, a C-bound nickel enolate reacted with an aldehyde to give aldol products according to a report of Bergman and Heathcock.[13] The complex 12 containing electron withdrawing fluorine atoms on an enolate moiety smoothly reacted with 1 equiv of p-tolualdehyde (14a) to allow the migratory insertion of the carbonyl group into the Ni–C bond in a
quantitative yield (Scheme 3.4). This was in sharp contrast to the reactions of silyl difluoro-enolates with aldehydes that required the addition of Lewis acids and/or an excess amount of substrates and suffered from low yields.\footnote{14} This C–C bond formation might involve the Zimmerman-Traxler-type six membered transition-state initiated by coordination of an aldehyde giving an O-bound enolate intermediate C (Scheme 3.5). This is partly supported by the report of Cámpora et al. in which they concluded that only the O-bound enolate is sufficiently nucleophilic to afford the aldol product by a reaction with an aldehyde, based on observation of the difference of the reactivities between the O-bound Ni(II) enolate and its C-bound counterpart.\footnote{13c} The reaction, however, was too fast to observe any intermediates when the reaction of 12 with 14a was monitored by means of NMR at –50 °C.

![Scheme 3.5 A possible reaction pathway to give nickel alkoxide complex 15.](image)

The 19F NMR spectrum of the resultant complex 15a showed two signals that could be attributable to a diastereotopic CF$_2$ group at $\delta = -103$ (dd, $J_{HF} = 9$ Hz, $J_{FF} = 270$ Hz) and -118 ppm (dd, $J_{HF} = 12$ Hz, $J_{FF} = 270$ Hz). Small coupling of 9 and 12 Hz were attributable to the $^3J_{HF}$ coupling, and suggested a C–C bond formation between an enolate and an aldehyde. Furthermore, a signal derived from a formyl group to 4.9 ppm in 1H NMR that was observed as a broad triplet with a coupling constant of ca. 10 Hz that resulted from the coupling of two fluorine atoms at 9 and 12 Hz. A large coupling constant of 270 Hz for $^2J_{FF}$ in the 19F NMR is characteristic geminal coupling between two fluorine atoms bound to an sp3-hybridized carbon. In the 31P NMR spectrum, two signals derived from inequivalent phosphorus atoms were observed that indicated coordination of the carbonyl and newly formed carbinol oxygen atoms to the nickel center. The 13C NMR spectrum of 7a in CD$_2$Cl$_2$ gave signals attributable to CF$_2$ at 118.7 ppm as doublet of doublet bearing characteristic $^1J_{CF}$ coupling constants, 251 and 265 Hz, and α-carbons at 202.2 (t, $^2J_{CF} = 28.5$ Hz, carbonyl group) and 73.5 ppm (t, $^2J_{CF} = 23.0$ Hz, carbinol carbon). Although a single crystal of 7a was not obtained, an analogous complex 7b, generated by the reaction of 12 with 9-anthracenecarboxaldehyde (14b), was isolated and its single crystal was obtained. The molecular structure of 14b was determined by X-ray
crystallography to be consistent with that deduced by NMR spectroscopy (Figure 3.2b).

The reaction of \textbf{12} with 2 equiv of \textbf{14a} also resulted in the formation of \textbf{15a} and a homo-coupled ester \textbf{16a}, which was unexpectedly formed from the residual aldehyde (Scheme 3.6).

The reaction of 12 with 2 equiv of 14a also resulted in the formation of 15a and a homo-coupled ester 16a, which was unexpectedly formed from the residual aldehyde (Scheme 3.6).
high yields. Furthermore, acetaldehyde (14r) was also transformed into ethyl acetate (16r) catalytically in moderate yield. Complex 12 proved to be an efficient catalyst for the Tishchenko reaction that is applicable toward both aromatic and aliphatic aldehydes.[16]

Table 3.1 Substrate scope of homo-esterification of aldehydes

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Isolated Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>16a, 85%</td>
<td></td>
</tr>
<tr>
<td>16c, 98%</td>
<td></td>
</tr>
<tr>
<td>16d, 94%</td>
<td></td>
</tr>
<tr>
<td>16e, 93%</td>
<td></td>
</tr>
<tr>
<td>16f, 79%</td>
<td></td>
</tr>
<tr>
<td>16g, quant</td>
<td></td>
</tr>
<tr>
<td>16h, 87%</td>
<td></td>
</tr>
<tr>
<td>16i, 98%</td>
<td></td>
</tr>
<tr>
<td>16j, 84%</td>
<td></td>
</tr>
<tr>
<td>16k, quant</td>
<td></td>
</tr>
<tr>
<td>16l, 95%</td>
<td></td>
</tr>
<tr>
<td>16m, 76%</td>
<td></td>
</tr>
<tr>
<td>16n, 79%</td>
<td></td>
</tr>
<tr>
<td>16o, 98%</td>
<td></td>
</tr>
<tr>
<td>16p, 98%</td>
<td></td>
</tr>
<tr>
<td>16q, 97%</td>
<td></td>
</tr>
<tr>
<td>16r, 63%</td>
<td></td>
</tr>
</tbody>
</table>

[a] Isolated Yields. [b] Reactions conducted at 60 °C. [c] 2 mol% catalyst loading. [d] NMR yield.

Although the reaction mechanism is ambiguous at this point, the nickel alkoxide complex 15 might be involved as an active catalyst. The reaction of 15a with 2 equiv of aldehyde 14p produced homo-esterification product 16p quantitatively (Scheme 3.7). Note that ester products bearing a p-tolyl group derived from 15a were not detected from
the reaction mixture and complex 15a was recovered. We also tested the reaction of 15a with formyl proton deuterated 14k-d1, to afford the 16k-d2 and no significant scrambling was confirmed. This result exclude the possibility of nickel-hydride species as an active catalyst, although other metal hydrides often catalyze the Tishchenko reaction. To gain deeper insight into the mechanism, the reaction of 12 with 2 equiv of 14a were monitored in toluene-d8 by means of a variable temperature NMR from –50 to 25 °C. Formation of a nickel alkoxide complex 15a was quite fast even at –50 °C and complete conversion of the starting complex 12 was confirmed by 19F NMR. However, at this temperature, starting aldehyde 14a was observed along with only trace amount of homo-Tishchenko product 16a. Although the Tishchenko reaction mostly didn’t proceed below –10 °C, the broadening of the signal derived from the formyl proton of 14a was observed by raising the temperature.

\[\text{Scheme 3.7 Treatment of 15a with 2 eq of 14p.} \]

A possible reaction mechanism is depicted in Scheme 3.8. Firstly, the reaction of 12 with an aldehyde generates the active catalyst 15. Insertion of aldehyde into the Ni–O bond in 15 gives an intermediate D. The carbonyl group coordinated to the nickel center in an intermediate D is replaced by another aldehyde to generate an intermediate E which isomerize to F by β-hydrogen elimination-insertion sequence. Nucleophilic substitution of ester by alkoxide yields the homo-coupling product with regeneration of the active catalyst 15.
Next, the cross-dimerization of a ketone with an aldehyde were attempted (Scheme 3.9). In the presence of a catalytic amount of 12, the reaction of acetophenone with aldehyde 14k gave no coupling product and both starting materials were recovered. However, reaction of 10a with 14k gave the desired product 17a in high yield. The cross-dimerization of 10a with aldehydes was reported by Connon’s group utilizing thiophenoxide or selenoxide as catalysts.[17b,18] The reaction also proceeded with difluoroacetophenone (10b) to give the ester compound 17b in a 92% yield. The reactions of 4’-methoxy-2,2,2-trifluoroacetophenone (10c) and 2,2,2,3,3-pentafluoropropiophenone (10d) were also successful. Note that no coupling product derived from nickel catalyst 12, i.e. 17a, was observed from these reaction mixtures by GCMS. The reaction of α-fluoroacetophenone resulted in recovery of starting material along with formation of some unidentified products that were not isolable.

Scheme 3.9 Crossed-dimerization of ketones with aldehyde 14k
Scheme 3.10 Insertion of ketone 10c into Ni–C bond of 12.

Figure 3.3 A reaction profile of ketone 10a with aldehyde 14k in the presence of a catalytic amount of nickel enolate 12. The vertical axis shows intensities of 19F resonance of ketone 10a and ester 17a relative to α,α,α-trifluorotoluene added as an internal standard, while the horizontal axis shows time in second.

In this crossed-dimerization reaction, a nickel alkoxide complex generated by insertion of a fluorinated ketone 10 to a nickel difluoro-enolate 12 would be involved as a resting state of the catalyst. The reaction of 10c with 12 afforded a nickel alkoxide complex 18 that was characterized by NMR spectroscopy (Scheme 3.10). It is noteworthy that the complex 18 had no catalytic activity for Tishchenko reaction of aldehyde 14a at room temperature, probably because the insertion of aldehyde to complex 18, a possible initial step involved in the homo-Tishchenko reaction, might not occur. The difference of catalytic activities between alkoxide complexes 18 and 15a might be rationalized by lower nucleophilicity of 18 bearing a highly electron withdrawing CF$_3$ group than that of complex 15a. To gain further insight, the reaction of trifluoroacetophenone 10a with aldehyde 14k in the presence of catalytic amount of nickel enolate 12 was monitored by
use of variable-temperature NMR at 95 °C (Figure 3.3). As a result, interestingly, an induction period that indicate formation of an active catalyst from nickel alkoxide species under the reaction condition was observed. Although the phenomenon is not fully understood at this point, the catalytic reaction might proceed in similar way of hom-esterification involving some active catalyst species.

These results indicated a possibility to develop a more practical catalyst system for the crossed-dimerization of a trifluoromethylketone with an aldehyde in which an active nickel catalyst was generated in situ from the reaction of Ni(0), trifluoromethylketone 10, and B(C₆F₅)₃. In the presence of 10 mol% of Ni(cod)₂, DCPE, and B(C₆F₅)₃, the reaction of 10a with 14a in toluene at 100 °C resulted in the formation of the desired cross-coupled ester 17e in an 88% yield (Table 3.2, run 1). The reaction did not work at all in the absence of Ni(cod)₂, DCPE, or B(C₆F₅)₃ (runs 2-4). Reactions with other ligands (DPPE, 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene (IPr), as well as 20 mol% of PCy₃) gave no desired product. The use of THF as a solvent allowed the reaction to proceed at lower temperature than that of the reaction conducted in toluene (runs 5, 6). The amount of catalyst loadings could be reduced to 2 mol%, and with this optimized reaction condition, the desired product was successfully isolated in an 88% yield (run 7).

Table 3.2 Optimization of the reaction condition of crossed-dimerization of a trifluoroacetophenone 10a with an aldehyde

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst Loadings</th>
<th>Conditions</th>
<th>Yield (%) [a,b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 mol%</td>
<td>Toluene, 100 °C, 4 h</td>
<td>88%</td>
</tr>
<tr>
<td>2</td>
<td>10 mol% [c]</td>
<td>Toluene, 100 °C, 4 h</td>
<td>ND</td>
</tr>
<tr>
<td>3</td>
<td>10 mol% [d]</td>
<td>Toluene, 100 °C, 4 h</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>10 mol% [e]</td>
<td>Toluene, 100 °C, 4 h</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>10 mol%</td>
<td>Toluene, 100 °C, 4 h</td>
<td>64%</td>
</tr>
<tr>
<td>6</td>
<td>10 mol%</td>
<td>THF, 60 °C, 4 h</td>
<td>87%</td>
</tr>
<tr>
<td>7</td>
<td>2 mol%</td>
<td>THF, 60 °C, 24 h</td>
<td>88% [f]</td>
</tr>
</tbody>
</table>

With the optimized reaction conditions in hand, substrate scope was studied (Table 3.3). The reactions of 10a with dimethylbenzaldehyde 14q and 14e gave corresponding cross-coupled esters 17f and 17g in 84 and 94% yields, respectively. A bulky aldehyde 14h reacted to give ester 17h in a high yield after an elongated reaction time. The reaction
of 14d was also successful, and the structure of the product 17i was confirmed by X-ray crystallography (Figure 3.4). The ester and acetal groups on the aldehydes survived under these reaction conditions and gave the corresponding esters 17j and 17k. The reaction of p-formylbenzonitrile 14r was unsuccessful under the optimized conditions listed above, and the starting materials were recovered. The reaction conducted in toluene at 100 °C, however, yielded the corresponding ester 17l in a moderate yield. In the same manner, the reaction of 10a with 14f afforded a quantitative product 17m in toluene at 100 °C. Naphthaldehydes 14k and 14l reacted with 10a to give the corresponding esters 17e and 17n in THF at 60 °C for 24 h. Using an aldehyde bearing the phenanthrene structure 14s required a much longer time to yield the ester product 17o. The reaction of p-phthalaldehyde with 2 eq of 10a resulted in the conversion of both aldehyde moieties to afford diester 17p in a 40% yield. The reactions of 10a with aliphatic aldehydes such as 14n and 14m were unsuccessful in delivering the required products 17q and 17r. The reaction of 10a with 14q, however, gave the corresponding ester 17s in a 75% yield. Both trifluoroacetophenone bearing electron donating methoxy group 10c and withdrawing CF₃ group 10e reacted cleanly to give the desired product in high yields. The reaction of alkylketone 10f with 14k gave no coupling product. Difluorinated ketone 10b reacted with 14k to give the corresponding ester 17b in a good yield. This result implies formation of an active nickel catalyst from a,a-difluorinated ketone. The reaction of 10d conducted in THF resulted in a low conversion of starting materials. Therefore, the reaction in toluene at an elevated temperature (100 °C) was attempted to afford the desired ester 17d in a 66% yield.

Figure 3.4 Molecular structure of 17i.
Table 3.3 Substrate scope of crossed-dimerization of trifluoroacetophenone 10 with aldehydes 14 by using in situ generated catalyst. [a]

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>2 mol% Ni(cod)2</th>
<th>2 mol% DCPE</th>
<th>2 mol% B(C6F5)3</th>
<th>THF, 60 °C, 24 h</th>
<th>R1O-R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>14</td>
<td>1.2 equiv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] Isolated Yields. ND = not detected. [b] 50 h. [c] Reactions conducted at 100 °C in toluene. [d] Reactions conducted at 100 °C in toluene for 48 h. [e] 4 mol% catalyst loading.

3.3 Conclusion

In chapter 3, a fluorinated analogue of nickel enolate 12 was synthesized via the C−F bond activation of trifluoroacetophenone, which was drastically accelerated by the addition of B(C6F5)3. The combination of Ni(0) with an highly electron-donating DCPE ligand might be the key to successful activation of the C−F bond. The reaction of 12 with tBuNC resulted in coordination to give nickel C-bound enolate 13. The complex 12 was reactive to aldehydes and the resultant complexes 15 were fully characterized. Furthermore, complex 12 had unique catalytic activities toward either the dimerization of aldehydes or the crossed-dimerization of trifluoroacetophenone with aldehydes. The established method was further improved in a practical sense by the in situ generation of a nickel difluoro-enolate catalyst. Thus, efficient Ni(cod)2/DCPE/B(C6F5)3 catalyst
system for the highly selective crossed-dimerization of trifluoroacetophenones with aldehydes were developed.

3.4 Experimental Section

Materials: Toluene, THF, THF-d8 and C6D6 were distilled from sodium benzophenone ketyl. CD2Cl2 was dried over CaH2 and purified by bulb to bulb distillation. Difluoroacetophenone19, fluoroacetophenone20, 4-trifluoromethyl trifluoroacetophenone21, cyclohexyl trifluoromethyl ketone21 and 2,2,2,3,3-pentafluoropropiophenone22 were prepared by following the previously reported procedures. Other commercially available reagents were distilled and degassed prior to use.

Experimental Details

Preparation of 11b: To the Schlenk flask containing Ni(cod)2 (275 mg, 1.0 mmol) and stirring bar was added solution of DCPE (422.6 mg, 1.0 mmol) dissolved in toluene (10 mL), followed by addition of α,α,α-trifluoroacetophenone (163 μL, 1.2 mmol) to give a brown solution. The flask was sealed, and the reaction mixture was stirred at 60 ºC for 3 h. The color of the solution turned orange. The solution was cooled to −35 ºC to cause yellow precipitate, which was collected by filtration, washed with pentane, and extracted with THF. The extract was evaporated to dryness to give a yellow solid of title compound (557.1 mg, 85%). 1H NMR (400 MHz, in C6D6, rt, δ/ppm): 0.74-2.10 (m, 51H), 7.07 (t, 7.2 Hz, 1H), 7.22 (t, 7.6 Hz, 2H), 8.09 (d, 7.8 Hz, 2H). 13C NMR (151 MHz, in C6D6, rt, δ/ppm): 144.5, 127.8, 127.0 (q, 1JCF = 279 Hz), 124.4, 124.2, 73.8 (dq, J = 29.2, 32.7 Hz), 34.4 (m), 33.7 (dd, J = 16.3, 36.1 Hz), 29.6-25.5 (m), 22.2 (dd, J = 17.7, 25.3 Hz), 19.3 (dd, J = 11.4, 22.8 Hz). 19F NMR (376 MHz, in C6D6, rt, δ/ppm): −64.9 (d, 12.8 Hz). 31P NMR (162 MHz, in C6D6, rt, δ/ppm): 64.6 (d, 49.4 Hz, 1P), 65.9 (dq, 49.4 Hz, 13.0 Hz, 1P). 13C NMR (151 MHz, in C6D6, rt, δ/ppm): 144.5, 127.8, 126.9 (q, J = 279.2 Hz), 124.4, 124.1, 73.8 (dq, J = 3.5 Hz, 29.2 Hz), 34.4 (dd, J = 2.6 Hz, 21.3 Hz), 34.2 (dd, J = 3.1 Hz, 22.3 Hz), 33.8, 33.7, 33.6, 33.5, 29.7-29.4 (m), 29.1, 29.0 (m), 28.4, 28.3, 27.6-26.6 (m), 26.3, 26.2, 25.5, 22.2 (dd, J = 17.7 Hz, 25.3 Hz), 19.3 (dd, J = 11.4 Hz, 22.8 Hz).

Elemental Analysis: calc. C, 62.31; H, 8.15; F, 8.70; Ni, 8.96; O, 2.44; P, 9.45, found C, 62.07; H, 8.36.

Preparation of 12: To a vial equipped with a stirring bar was placed (η5-PhCOCF3)Ni(dcpe) (11b) (197 mg, 0.30 mmol) and B(C6F5)3 (168 mg, 0.33 mmol). To the solid was added 8 mL of toluene and the
mixture was vigorously stirred for 10 min to give a red solution. The reaction mixture was poured into stirring cold pentane (100 mL, −35 °C) to cause yellow precipitate. Solvent was removed by decantation and the resulting solid was washed with pentane three times. The residue was dried in vacuo to give yellow powder of the title compound (309.2 mg, 88%). Recrystallization from toluene/pentane at −35 °C afforded yellow crystals suitable for X-ray crystallography. 1H NMR (400 MHz, in CsD$_6$, rt, δ/ppm): 7.70 (d, 7.6 Hz, 2H), 7.08 (t, 7.6 Hz, 1H), 6.98 (t, 7.6 Hz, 1H), 2.1-0.8 (m, 48H). 13C NMR (151 MHz, in CsD$_6$, rt, δ/ppm): 148.6 (dm, 1J$_{CF}$ = 242 Hz), 139.1 (dm, 1J$_{CF}$ = 245 Hz), 137.1 (dm, 1J$_{CF}$ = 260 Hz), 134.5, 129.7 (d, 1J$_{CP}$ = 4.6 Hz), 127.9, 124.6 (br), 34.8 (d, 1J$_{CP}$ = 26.2 Hz), 34.2 (d, 1J$_{CP}$ = 21.5 Hz), 28.9-28.3 (m), 26.3-26.1 (m), 25.4, 25.3, 23.4 (dd, 1J$_{CP}$ = 10.9, 31.1 Hz), 18.5 (dd, 1J$_{CP}$ = 5.1, 29.3 Hz). 19F NMR (376 MHz, in CsD$_6$, rt, δ/ppm): −100.2 (dd, 7.3 Hz, 17.8 Hz, 2F), −137.4 (m, 6F), −164.4 (t, 20.4 Hz, 3F), −169.0 (m, 6F), −190.8 (s, 1F). 31P NMR (162 MHz, in CDCl$_3$, rt, δ/ppm): 83.2 (m, 1P), 80.0 (m, 1P). Elemental Analysis: calc. C, 53.50; H, 4.58; B, 0.93; F, 29.29; Ni, 5.03; O, 1.37; found C, 53.21; H, 4.64. X-ray data: M = 1167.42, yellow, triclinic, P-1 (#2), a = 11.6106(7) Å, b = 14.4297(8) Å, c = 15.6884(8) Å, α = 86.394(2) °, β = 88.475(3) °, γ = 72.090(2) °, V = 2496.0(2) Å3, Z = 2, $D$$_{calc}$ = 1.553 g/cm3, T = −150 °C, R_1 (wR$_2$) = 0.0468 (0.1160).

Preparation of 13: To a suspension of [(PhCOCF$_2$)Ni(dcpe)][FB(C$_6$F$_5$)$_3$] (12) (58.5 mg, 0.05 mmol) in 1.5 mL of PhCF$_3$ in a round-bottomed flask was added t-BuNC (5.5 μL, 0.05 mmol) to give yellow solution. The reaction mixture was concentrated in vacuo and 2 mL of pentane was added to cause a yellow viscous precipitate. Solvent was removed by decantation and the residue was washed with 2 mL of pentane four times to yield yellow powder (49 mg, 78%). Crystals suitable for X-ray analysis were grown in CH$_2$Cl$_2$/pentane mixture. 1H NMR (400 MHz, in CD$_2$Cl$_2$, rt, δ/ppm): 8.00 (d, 1J$_{CF}$ = 7.6 Hz, 2H), 7.55 (m, 1H), 7.43 (m, 2H), 2.2-1.2 (m, dcpe and t-Bu group). 13C NMR (151 MHz, in CD$_2$Cl$_2$, rt, δ/ppm): 194.1 (t, 2J$_{CF}$ = 22.3 Hz), 147.9 (dm, 1J$_{CF}$ = 238 Hz), 138.6 (dm, 1J$_{CF}$ = 245 Hz), 136.6 (dm, 1J$_{CF}$ = 247 Hz), 133.8, 133.7, 129.7, 128.7, 123.7 (br), 60.0 (CNC(CH$_3$)$_3$), 36.7 (d, 1J$_{CF}$ = 22.2 Hz, PCH), 35.2 (d, 1J$_{CF}$ = 21.4 Hz, PCH), 30.6, 29.9, 29.2 (CNC(CH$_3$)$_3$), 28.99, 28.96, 28.92, 28.90, 27.27, 27.18, 27.00, 26.91, 26.90, 26.84, 26.66, 26.59, 25.71, 25.49, 21.2 (dd, 1J$_{CF}$ = 15.0, 29.0 Hz), 20.2 (dd, 1J$_{CF}$ = 9.5, 25.7 Hz). The signals may comprise four singlets and six doublets due to methylene groups of DEPE deduced by comparison of the spectra with DEPT135. However, it was impossible to attribute each signals fully and correctly. Resonances derived from carbons bound to nickel were not detected probably due to low intensity of these signals as well as complicated coupling pattern with fluorine and phosphorus atoms. 19F-13C HSQC spectrum indicated existence of a signal of CF$_2$ at around 138
ppm in 13C NMR spectrum, however it was overlapped with signals derived from FB(C$_6$F$_5$)$_3$. 19F NMR (376 MHz, in CD$_2$Cl$_2$, rt, δ/ppm): −80.9 (dd, $J = 24.0, 29.3$ Hz, 2F), −138.6 (m, 6F), −165.8 (m, 3F), −170.1 (m, 6F), −193.9 (br, 1F). 31P NMR (162 MHz, in CD$_2$Cl$_2$, rt, δ/ppm): 79.1 (dt, $J = 28.6, 22.0$ Hz), 77.7 (dt, $J = 29.6, 29.9$ Hz). Elemental Analysis: calc. for C$_{60}$H$_{61}$BF$_{18}$NiO$_2$P$_2$, C, 55.97; H, 4.78; B, 0.84; F, 26.56; Ni, 4.56; O, 4.29; P, 4.81, found C, 55.70; H, 4.74.

Preparation of 15a: To a solution of [(PhCOCF_2)Ni(dcepe)][FB(C$_6$F$_5$)$_3$] (12) prepared in situ from (PhCOCF_3)Ni(dcepe) (11b) (163 mg, 0.25 mmol) with B(C$_6$F$_5$)$_3$ (128 mg, 0.25 mmol) in 4 mL of toluene was added 4-tolualdehyde (30 μL, 0.25 mmol) and the reaction mixture was stirred for 15 min. to give red solution. All volatiles were evaporated in vacuo and the residue was thoroughly washed with hexane followed by dry out in vacuo to yield red powder of title compound (218 mg, 68%).
mixture with vigorous stirring gave deep red solution. After 30 min, yellow precipitate occurred which was collected by filtration after cooling the mixture to −35 °C, washed with Et₂O, and dried in vacuo (92.5 mg, 67%). The compound was recrystallized from CH₂Cl₂/pentane to afford red platelet crystals suitable for X-ray crystallography. ¹H NMR (400 MHz, in CD₂Cl₂, rt, δ/ppm): 0.24-2.51 (m, 48H), 6.63 (d, J_HF = 32.0 Hz, 1H), 7.30-7.54 (m, 6H), 7.78-8.16 (m, 6H), 8.43 (s, 1H), 9.13 (m, 1H). ¹³C NMR (151 MHz, in CD₂Cl₂, rt, δ/ppm): 201.4 (t, J_CF = 33.6 Hz), 147.9 (dm, J_CF = 238 Hz), 138.8, 138.7 (dm, J_CF = 242 Hz), 136.6 (dm, J_CF = 257 Hz), 132.3, 132.2, 131.0, 130.7, 130.6, 129.8, 129.6, 129.4, 129.3, 128.9, 128.4, 128.0, 126.6, 124.9, 124.5, 125.4, 123.9 (br), 122.8, 116.1 (dd, J_CF = 258.2, 267.4 Hz), 69.8 (t, J_CF = 23.3 Hz), 35.9 (d, J_CF = 26.4 Hz), 34.3 (d, J_CF = 21.3 Hz), 33.8 (t, J = 22.2 Hz), 30.3, 29.9, 29.2, 28.9, 28.8, 27.7, 27.1-25.0 (m), 21.1 (m), 19.7 (m). ¹⁹F NMR (376 MHz, in CD₂Cl₂, rt, δ/ppm): −194.2 (br, 1F), −170.1 (m, 6F), −165.8 (m, 3F), −138.7 (m, 6F), −110.5 (ddd, J_HF = 5.2 Hz, 31.6 Hz, J_FF = 316.6 Hz, 1F), −100.0 (d, J_FF = 316.6 Hz, 1F). ³¹P NMR (162 MHz, in CD₂Cl₂, rt, δ/ppm): 75.9 (d, J_PP = 55.7 Hz, 1P), 86.0 (d, J_PP = 55.7 Hz, 1P). Elemental Analysis: calc. for C₆₇H₆₃BF₁₈NiO₂P₂; C, 58.58; H, 4.62; B, 0.79; F, 24.89; Ni, 4.27; O, 2.33; P, 4.51, found C, 58.34; H, 4.52.

General Procedure for Homo-Esterification of Aldehydes: In a glove box, to a reaction vessel equipped with a stirring bar was placed [[η₃-PhCOCF₂]Ni(dcpe)][FB(C₆F₅)₃] (11.7 mg, 0.01 mmol). The solid was dissolved in 0.5 mL of toluene. To the solution was added an aldehyde (1.0 mmol). The reaction mixture was stirred at ambient temperature for 1 h. The results are summarized in Table 3.1 and identification of the products are as follows.

![16a](image1)

16a: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (101.6 mg, 85%). ¹H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 2.36 (s, 3H), 2.40 (s, 3H), 5.31 (s, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.95 (d, J = 8.2 Hz, 2H). ¹³C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 21.3, 21.8, 66.6, 127.6, 128.4, 129.1, 129.3, 129.8, 133.3, 138.1, 143.7, 166.6.

![16c](image2)

16c: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (104.3 mg, 98%). ¹H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 5.39 (s, 2H), 7.35-7.50 (m, 7H), 7.59 (m, 1H), 8.10-8.12 (m, 2H). ¹³C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 66.7, 128.2, 128.3, 128.4, 128.7, 129.8, 130.2, 133.1, 136.1, 166.5.
16d[25]: The product was obtained by following the general procedure and purified by short silica column (eluent; Hexane : EtOAc = 80 : 20) to give white solid (171.7 mg, 94%). 1H NMR (400 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 5.35 (s, 2H), 7.28-7.60 (m, 16H), 8.10 (m, 2H). 13C NMR (100 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 66.6, 127.1, 127.2, 127.3, 127.4, 127.5, 128.3, 128.8, 128.9, 129.0, 130.4, 135.2, 140.0, 140.8, 141.3, 145.9, 166.4.

16e[26]: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (124.6 mg, 93%). 1H NMR (400 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 2.34 (s, 6H), 2.36 (s, 6H), 5.28 (s, 2H), 6.98 (s, 1H), 7.06 (s, 2H), 7.19 (s, 1H), 7.70 (s, 2H). 13C NMR (100 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 21.2, 21.3, 66.7, 126.2, 127.5, 129.9, 130.1, 134.7, 136.0, 138.0, 138.2, 166.9.

16f[26]: The product was obtained by following the general procedure and purified by silica gel column chromatography (eluent; Hexane : EtOAc = 90 : 10) to give colorless oil. 1H NMR (400 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 3.80 (s, 3H), 3.84 (s, 3H), 5.27 (s, 2H), 6.90 (m, 4H), 7.38 (m, 2H), 8.01 (m, 2H). 13C NMR (100 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 55.3, 55.4, 66.3, 113.6, 113.9, 122.7, 128.5, 130.0, 131.7, 159.6, 163.4, 166.3.

16g[23]: The product was obtained by following the general procedure (reaction was conducted at 60 °C) and purified by kugelrohr distillation to give colorless liquid (120.2 mg, 100%). 1H NMR (400 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 2.49 (s, 3H), 2.68 (s, 3H), 5.42 (s, 2H), 7.26-7.50 (m, 7H), 8.00 (d, J = 6.8 Hz). 13C NMR (100 MHz, in CDCl\textsubscript{3}, rt, δ/ppm): 19.1, 21.9, 65.0, 125.8, 126.1, 128.6, 129.3, 129.5, 130.4, 130.7, 131.8, 132.1, 134.1, 137.0, 140.5, 167.4.
16h\[16a]\: The product was obtained by following the general procedure (reaction was conducted at 60 °C) and purified by kugelrohr distillation to give colorless liquid (128.5 mg, 87%). \(^1H\) NMR (400 MHz, in CDCl\(_3\), rt, δ/ppm): 2.14-2.32 (m, 18H), 5.29 (s, 2H), 6.73 (m, 4H). \(^13C\) NMR (100 MHz, in CDCl\(_3\), rt, δ/ppm): 19.6, 19.7, 21.0, 21.1, 61.4, 128.3, 128.8, 129.1, 131.2, 134.9, 138.2, 138.5, 139.1, 170.5.

16i\[23\]: The product was obtained by following the general procedure and purified by passing through a short silica column (eluent; hexane : EtOAc = 80 : 20) to give white solid (161.4 mg, 98%). \(^1H\) NMR (400 MHz, in CDCl\(_3\), rt, δ/ppm): 3.93 (s, 3H), 3.95 (s, 3H), 5.43 (s, 2H), 7.51 (m, 2H), 8.07 (m, 2H), 8.12 (m, 4H). \(^13C\) NMR (100 MHz, in CDCl\(_3\), rt, δ/ppm): 52.2, 52.5, 66.4, 127.8, 129.6, 129.7, 130.0, 130.2, 133.6, 134.2, 140.7, 165.5, 166.2, 166.7.

16j: The product was obtained by following the general procedure and purified by silica gel column chromatography (eluent; hexane : EtOAc = 90 : 10) to give colorless oil (174.5 mg, 84%). \(^1H\) NMR (400 MHz, in CDCl\(_3\), rt, δ/ppm): 1.21 (t, J = 7.0 Hz, 6H), 1.22 (t, J = 7.1 Hz, 6H), 3.56 (m, 8H), 5.34 (s, 2H), 5.49 (s, 1H), 5.52 (s, 1H), 7.41-7.54 (m, 6H), 8.04 (m, 2H). \(^13C\) NMR (100 MHz, in CDCl\(_3\), rt, δ/ppm): 15.1, 15.2, 61.1, 66.4, 100.8, 101.3, 126.8, 127.0, 128.0, 129.7, 130.0, 136.1, 139.2, 144.2, 166.2. HRMS (FAB+): m/z calc. 416.2199 (C\(_{24}\)H\(_{32}\)O\(_6\)), found 439.2100 (C\(_{24}\)H\(_{32}\)O\(_6\)Na\(_1\)).

16k\[26\]: The product was obtained by following the general procedure and the crude mixture was purified by short silica column with toluene as eluent to afford title compound as white solid in quantitative yield (156.5 mg, 100%). \(^1H\) NMR (400 MHz, in CDCl\(_3\), rt, δ/ppm): 5.62 (s, 2H), 7.52-7.64 (m, 5H), 7.89-7.98 (m, 7H), 7.15 (d, J = 8.6 Hz, 1H), 8.70 (s, 1H). \(^13C\) NMR (100 MHz, in CDCl\(_3\), rt, δ/ppm): 67.1, 125.4, 126.1, 126.3, 126.4, 126.7, 127.4, 127.5, 127.8, 128.1, 128.2, 128.3, 128.6, 129.5, 131.3, 132.6, 133.2, 133.3, 133.6, 135.7, 166.7.
16i[28]: The product was obtained by following the general procedure (reaction was conducted at 60 °C) and purified by column chromatography (eluent: Hexane : EtOAc = 90 : 10) to give colorless oil (148.7 mg, 95%). ^1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 5.81 (s, 2H), 7.07-8.10 (m, 13H), 8.9 (d, $J = 8.8$ Hz, 1H). ^13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 65.2, 123.7, 124.5, 125.3, 125.4, 128.9, 126.0, 126.3, 126.7, 126.9, 127.7, 127.9, 128.3, 128.6, 128.8, 129.1, 129.4, 130.6, 131.5, 131.6, 131.8, 133.6, 133.8, 167.4.

16m[29]: The product was obtained by following the general procedure (2 mol% of nickel catalyst was used) and purified by kugelrohr distillation to give white solid (51.0 mg, 76%). ^1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 5.35 (s, 2H), 7.55 (m, 2H), 7.71 (dt, $J = 1$ Hz, 7.5 Hz, 1H), 7.92 (d, 7.6 Hz, 1H). ^13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 69.7, 122.2, 125.7, 129.1, 134.1, 146.6, 171.1.

16n[30]: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (92.6 mg, 81%). ^1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 0.91 (m, 6H), 1.32, (m, 14H), 1.64 (m, 4H), 2.32 (t, $J = 7.6$ Hz, 2H), 4.09 (t, $J = 6.8$ Hz, 2H). ^13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 14.02, 14.06, 22.50, 22.59, 25.00, 25.90, 28.67, 28.84, 28.93, 31.48, 31.74, 34.43, 64.40, 174.02.

16o[17b]: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (98.1 mg, 98%). ^1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 0.92 (dt, $J = 2.5$ Hz, 7.4 Hz, 12H), 1.40 (dt, $J = 14.8$ Hz, 7.5 Hz, 4H), 1.49-1.77 (m, 5H), 2.24 (m, 1H), 4.03 (d, $J = 5.7$ Hz, 2H). ^13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 11.0, 11.8, 23.4, 25.1, 40.3, 49.2, 66.0, 176.5.
The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (109.4 mg, 98%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 0.97 (m, 2H), 1.13-1.36 (m, 6H), 1.46 (m, 2H), 1.59-1.80 (m, 9H), 1.92 (m, 2H), 2.30 (tt, $J = 3.6$ Hz, 11.3 Hz, 1H), 3.88 (d, $J = 6.5$ Hz, 2H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 25.5, 25.7, 25.8, 26.4, 29.1, 29.7, 37.2, 43.3, 69.3, 176.2.

The product was obtained by following the general procedure (CH$_2$Cl$_2$ was used as solvent instead of toluene) and purified by distillation to give colorless liquid (19.3 mg, 22%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 0.88 (s, 9H), 1.15 (s, 9H), 3.68, (s, 2H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 26.5, 27.3, 31.5, 39.0, 73.6, 178.6. The low isolated yield was due to relatively high volatility of the product. The reaction also proceed in C$_6$D$_6$, and after the reaction, bis(trimethylsilyl)benzene (12.92 mg, 0.0582 mmol) was added as an internal standard, and the NMR yield was estimated to be 97% by comparison of peak areas.

Crossed-Dimerization Catalyzed by Ni Complex 12: To a vial equipped with a stirring bar was placed 12 (11.7 mg, 0.01 mmol). The solid was dissolved in 0.5 mL of toluene and to the solution was added 0.5 mmol of ketone followed by addition of 2-naphthaldehyde (93.7 mg, 0.6 mmol). The reaction mixture was stirred for 24 h at 100 °C. The product was obtained by kugelrohr distillation. The results are summarized in Scheme 3.9 and the characterization of the products are as follows.

19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.7 (d, $J = 6.8$ Hz). HRMS: m/z calc. 330.0868 (C19H13F3O2), found 330.0870.
17b: The product was obtained by following the general procedure to afford colorless liquid (144.2 mg, 92%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.71 (s, 1H), 8.12 (m, 1H), 8.00 (m, 1H), 7.90 (m, 2H), 7.68-7.53 (m, 4H), 7.47-7.37 (m, 3H), 6.25 (dt, $J_{IH} = 3.6$, $J_{HF} = 11.4$ Hz, 1H), 6.13 (dt, $J_{IH} = 3.6$ Hz, $J_{HF} = 55.1$ Hz, 1H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 165.1, 135.9, 132.8 (m), 132.47, 131.7, 129.5, 129.4, 128.8, 128.7, 128.4, 127.8, 126.9, 126.4, 125.2, 114.0 (t, $J_{CF} = 244.0$ Hz), 74.1 (t, $J_{CF} = 25.5$ Hz). 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −126.3 (m, 1F), −127.8 (m, 1F). HRMS: m/z calc. 312.0962 (C19H14F2O2), found 312.0959.

17c: The product was obtained by following the general procedure and further purified by HPLC to give colorless liquid (167.7 mg, 93%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.60 (s, 1H), 8.02-7.79 (m, 4H), 7.54-7.44 (m, 4H), 6.86 (m, 2H), 6.30 (q, $J_{HF} = 6.8$ Hz), 3.86 (s, 3H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 164.6, 160.8, 135.9, 132.4, 131.9, 129.6, 129.5, 128.8, 128.5, 127.9, 126.9, 126.0, 125.2, 123.5 (q, $J_{CF} = 278.7$ Hz), 123.4, 114.2, 72.3 (q, $J_{CF} = 124.8$ Hz), 55.3. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.8 (d, $J_{HF} = 6.8$ Hz). HRMS: m/z calc. 360.0973 (C20H15F3O3), found 360.0971.

17d: The product was obtained by following the general procedure to afford colorless liquid (168.6 mg, 89%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.69 (s, 1H), 8.10 (m, 1H), 8.00 (m, 1H), 7.91 (m, 2H), 7.60 (m, 4H), 7.44 (m, 3H), 6.54 (dd, $J = 7.0$ Hz, 17.5 Hz, 1H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm, except for CF$_2$CF$_3$): 164.3, 136.0, 132.9, 132.5, 131.9, 130.1, 129.6, 128.9, 128.7, 128.6, 128.4, 127.9, 127.0, 125.8, 125.1, 71.6 (dd, $J = 22.0$ Hz, 30.5 Hz). 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −81.6 (s, 3F), −119.8 (dd, $J = 7.0$ Hz, 278.2 Hz, 1F), −126.1 (dd, $J = 17.5$ Hz, 278.2 Hz, 1F). HRMS: m/z calc. 380.0836 (C20H13F5O2), found 380.0835.

Preparation of 18: To a round bottomed flask was placed nickel complex 12 (58.4 mg, 0.05 mmol) and
toluene (1.5 mL) was added. To the resulting suspension was added p-anisyltrifluoromethylketone (8.5 μL, 0.05 mmol) to give a red solution. All volatiles were evaporated in vacuo, and resulting reddish oil was washed successively with pentane and dried out to yield orange powder of title compound (64.6 mg, 94%).

1H NMR (400 MHz, in C₆D₆, rt, δ/ppm): 0.85-2.17 (m, 48H), 3.06 (s, 3H), 6.58 (d, J = 8.8 Hz, 2H), 6.68 (t, J = 7.6 Hz, 2H), 6.86 (t, J = 7.6 Hz, 1H), 7.39 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H). **13C NMR** (151 MHz, in C₆D₆, rt, δ/ppm): 201.5 (dd, J_CF = 24.2, 26.7 Hz), 160.8, 148.6 (d, J_CF = 234.1 Hz), 139.1 (d, J_CF = 246.5 Hz), 137.2 (d, J_CF = 246.1 Hz), 131.2, 130.5, 130.4, 129.2, 128.9, 125.8, 118.9 (dd, J_CF = 262.6, 227.1 Hz), 113.6, 54.3, 35.8 (d, J_CP = 22.6 Hz), 34.1 (m), 29.4-25.4 (m), 20.8 (dd, J_CP = 23.3, 31.5 Hz), 20.3 (dd, J_CP = 6.4, 33.5 Hz). The sample for 13C NMR was contaminated with small amount of toluene. Signals attributable to CF₃ and its α-carbon were not attributable.

19F NMR (376 MHz, in C₆D₆, rt, δ/ppm): −190.8 (br, 1F), −169.1 (m, 6F), −164.4 (t, J = 20.4 Hz, 3F), −137.6 (m, 6F), −121.1 (br, 1F), −108.7 (d, J_FF = 256.1 Hz, 1F), −75.7 (t, J = 10.1 Hz, 3F). **31P NMR** (162 MHz, in C₆D₆, rt, δ/ppm): 80.9 (d, J_PP = 61.9 Hz, 1P), 88.6 (d, J_PP = 61.9 Hz, 1P).

Elemental Analysis: calc. for C₆₁H₆₀BF₂₁NiO₃P₂: C, 53.42; H, 4.41; B, 0.79; F, 29.09; Ni, 4.28; O, 3.50; P, 4.52; found C, 53.36; H, 4.14.

Optimization of the Reaction Condition for Crossed-Dimerization: To a vial equipped with a stirring bar was placed Ni(cod)₂ (2.75 mg, 0.01 mmol), DCPE (4.22 mg, 0.01 mmol), and B(C₆F₅)₃ (5.12 mg, 0.01 mmol). To the solid was added Toluene (500 μL), 2,2,2-trifluoroacetophenone (13.6 μL, 0.1 mmol), and p-tolualdehyde (14.2 μL, 0.12 mmol). The mixture was stirred for 4 h at 100 ºC. The reaction mixture was diluted with Et₂O and analyzed by gas chromatography using tetradecane as an internal standard. The results are summarized in Table 3.2.

General Procedure for Crossed-Dimerization of ketone with aldehyde: In a dry box, to a vial equipped with a stirring bar was placed Ni(cod)₂ (5.50 mg, 0.02 mmol), 1,2-bis(dicyclohexylphosphino)ethane (8.44 mg, 0.02 mmol) and tris(pentafluorophenyl)borane (10.24 mg, 0.02 mmol). The solids were dissolved in 1 mL of THF. To the solution were added ketone (1.0 mmol) followed by aldehyde (1.2 mmol). The reaction mixture was stirred for 24 h at 60 ºC. The results are summarized in Table 3.3 and the characterization of the products are described below.

![17a](28) The product was obtained by following the general procedure and purified by column chromatography (eluent: Hexane : EtOAc = 90 : 10) followed by kugelrohr distillation to give colorless liquid (260.3 mg, 88%). **1H NMR** (400 MHz, in CDCl₃, rt, δ/ppm): 2.43 (s, 3H), 6.36 (q, J = 6.9 Hz, 1H), 7.28 (m, 2H), 7.41 (m, 3H), 7.55 (m, 2H), 8.02 (m, 2H). **13C NMR** (100 MHz, in CDCl₃, rt, ...
δ/ppm): 21.8, 72.4 (q, J = 33 Hz), 123.5 (q, J = 280 Hz), 126.1, 128.1, 128.8, 129.5, 130.0, 130.2, 131.6, 144.9, 164.5. 19F NMR (376 MHz, in CDCl3, rt, δ/ppm): −75.8 (d, J = 6.9 Hz). HRMS: m/z calc. 294.0868 (C16H13F3O2), found 294.0869.

17f: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (259.3 mg, 84%). 1H NMR (400 MHz, in CDCl3, rt, δ/ppm): 2.38 (s, 3H), 2.59 (s, 3H), 6.34 (q, J = 7.0 Hz), 7.09-7.12 (m, 2H), 7.42 (m, 3H), 7.54 (m, 2H), 8.00 (d, J = 7.8 Hz, 1H). 13C NMR (100 MHz, in CDCl3, rt, δ/ppm): 21.5, 22.0, 72.1 (q, J = 32.8 Hz), 123.5 (q, J = 279 Hz), 124.9, 126.8, 128.2, 128.8, 129.9, 131.4, 131.6, 132.8, 141.4, 143.8, 164.9. 19F NMR (376 MHz, in CDCl3, rt, δ/ppm): −75.7 (d, J = 6.9 Hz). HRMS: m/z calc. 308.1024 (C17H15F3O2), found 308.1025.

17g: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (289.2 mg, 94%). 1H NMR (400 MHz, in CDCl3, rt, δ/ppm): 2.39 (s, 6H), 6.36 (q, J = 6.9 Hz, 1H), 7.25 (s, 1H), 7.43 (m, 3H), 7.56 (m, 2H), 7.74 (s, 2H). 13C NMR (100 MHz, in CDCl3, rt, δ/ppm): 21.4, 72.4 (q, J = 32.9 Hz), 123.6 (q, J = 279 Hz), 127.7, 127.9, 127.2, 128.7, 128.9, 130.0, 131.6, 135.7, 138.6, 164.9. 19F NMR (376 MHz, in CDCl3, rt, δ/ppm): −75.7 (d, J = 6.9 Hz). HRMS: m/z calc. 308.1024 (C17H15F3O2), found 308.1023.

17h: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (287.2 mg, 89%). 1H NMR (400 MHz, in CDCl3, rt, δ/ppm): 2.23 (s, 6H), 2.30 (s, 3H), 6.40 (q, J = 7.0 Hz, 1H), 6.88 (s, 2H), 7.43 (m, 3H), 7.53 (m, 2H). 13C NMR (100 MHz, in CDCl3, rt, δ/ppm): 19.7, 21.1, 72.2 (q, J = 33.0 Hz), 120.5 (q, J = 279 Hz), 128.3, 128.5, 128.7, 129.0, 129.9, 131.1, 135.6, 140.1, 167.8. 19F NMR (376 MHz, in CDCl3, rt, δ/ppm): −75.3 (d, J = 6.8 Hz). HRMS: m/z calc. 322.1181 (C18H17F3O2), found 322.1183.
17i: The product was obtained by following the general procedure and purified by column chromatography (eluent; Hexane : EtOAc = 90 : 10) followed by kugelrohr distillation to give white solid (313.6 mg, 88%). The compound was recrystallized from toluene. 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 6.38 (q, J = 6.8 Hz, 1H), 7.38-7.43 (m, 4H), 7.47 (m, 2H), 7.56 (m, 2H), 7.61 (m, 2H), 7.69 (m, 2H), 8.18 (m, 2H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 72.5 (q, J = 33.0 Hz), 123.4 (q, J = 279 Hz), 127.3, 127.3, 128.0, 128.4, 128.8, 129.0, 130.0, 130.6, 131.4, 139.8, 146.7, 164.3. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.7 (d, J = 6.8 Hz). HRMS: m/z calc. 356.1024 (C$_{21}$H$_{15}$F$_3$O$_2$), found 356.1021.

X-ray data: M = 356.34, colorless, monoclinic, P2$_1$/c (#14), a = 20.0039(7) Å, b = 5.7737(2) Å, c = 15.3278(7) Å, β = 106.523(2) º, V = 1697.2(2) Å3, Z = 4, D_{calc} = 1.394 g/cm3, T = −150 ºC, R_f(wR$_2$) = 0.0604 (0.1755).

17j: The product was obtained by following the general procedure and purified by preparative thin layer chromatography followed by kugelrohr distillation to give colorless oil (218.7 mg, 65%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 3.96 (s, 3H), 6.37 (q, J = 6.8 Hz, 1H), 7.42 (m, 3H), 7.56 (m, 2H), 8.16 (m, 4H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 52.6, 72.8 (q, J = 33.0 Hz), 123.2 (q, J = 279 Hz), 128.0, 128.9, 129.8, 130.3, 130.1, 131.0, 132.4, 134.8, 163.7, 166.1. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.7 (d, J = 6.8 Hz). HRMS: m/z calc. 338.0766 (C$_{17}$H$_{13}$F$_3$O$_4$), found 338.0768.

17k: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (353.9 mg, 93%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 1.24 (t, J = 7.0 Hz, 6H), 3.58 (m, 4H), 5.55 (s, 1H), 6.35 (q, J = 6.8 Hz, 1H), 7.42 (m, 3H), 7.53 (m, 2H), 7.60 (m, 2H), 8.12 (m, 2H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 15.2, 61.2, 72.5 (q, J = 33.0 Hz), 123.3 (q, J = 279 Hz), 127.0, 128.0, 128.6, 128.8, 129.9, 130.0, 131.3, 145.1, 164.2. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.8 (d, J = 6.8 Hz). HRMS (Cl+): m/z calc. 383.1470 (C$_{20}$H$_{22}$F$_3$O$_4$), found 383.1471.
17l: The product was obtained by following the general procedure (reaction conducted in toluene at 100 °C) and purified by kugelrohr distillation to give colorless viscous oil (207.6 mg, 68%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 6.36 (q, $J = 6.8$ Hz, 1H), 7.42-7.48 (m, 3H), 7.55 (m, 2H), 7.80 (m, 2H), 8.22 (m, 2H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 73.2 (q, $J = 33.4$ Hz), 117.4, 117.7, 123.1 (q, $J = 279$ Hz), 128.0, 128.9, 130.3, 130.5, 130.7, 132.5, 162.9. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.7 (d, $J = 6.8$ Hz). HRMS: m/z calc. 305.0664 (C$_{16}$H$_{10}$F$_3$NO$_2$), found 305.0665.

17m: The product was obtained by following the general procedure (reaction conducted in toluene at 100 °C) and purified by kugelrohr distillation to give pale green oil (307.8 mg, 99%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 3.88 (s, 3H), 6.35 (q, $J = 6.9$ Hz, 1H), 6.96 (m, 2H), 7.42 (m, 3H), 7.54 (m, 2H), 8.08 (m, 2H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 55.5, 72.2 (q, $J = 32.8$ Hz), 113.9, 121.0, 123.4 (q, $J = 279$ Hz), 127.6, 128.0, 128.7, 129.9, 131.6, 132.2, 164.0, 164.1. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.8 (d, $J = 6.8$ Hz). HRMS: m/z calc. 310.0817 (C$_{16}$H$_{13}$F$_3$O$_3$), found 310.0815.

17e: The product was obtained by following the general procedure and purified by kugelrohr distillation to give white solid (328.6 mg, 99%).

17n: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless oil (276.5 mg, 84%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 6.51 (q, $J = 6.9$ Hz, 1H), 7.45 (m, 3H), 7.53-7.67 (m, 5H), 7.91 (d, $J = 7.7$ Hz, 1H), 8.10 (d, $J = 8.2$ Hz, 1H), 8.40 (dd, $J = 1.2$ Hz, 7.3 Hz, 1H), 8.92 (d, $J = 8.8$ Hz, 1H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 164.9, 134.5, 133.9, 131.6, 131.5, 131.1, 130.0, 128.8, 128.7, 128.3, 128.2, 126.5, 125.6, 125.2, 124.5, 123.6 (q, $J = 279$ Hz), 72.5 (q, $J = 32.9$ Hz). 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.5 (d, $J = 6.8$ Hz). HRMS: m/z calc. 330.0868 (C$_{19}$H$_{13}$F$_3$O$_2$), found 330.0869.
17o: The reaction was conducted by following the general procedure. The reaction mixture was passed through a short silica column (eluent; Hexane : EtOAc = 90 : 10), and purified by HPLC followed by kugelrohr distillation to give white solid (194.2 mg, 51%).

1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm):
6.52 (q, $J = 6.9$ Hz, 1H), 7.46 (m, 3H), 7.61-7.74 (m, 5H), 7.80 (m, 1H), 8.05 (m, 1H), 8.73 (m, 2H), 8.89 (m, 1H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 72.6 (q, $J = 33.0$ Hz), 122.7, 122.9, 123.5 (q, $J = 279$ Hz), 124.4, 126.4, 127.2, 127.2, 127.7, 128.2, 128.9, 129.6, 129.8, 130.0, 130.4, 130.7, 131.4, 132.6, 133.6, 165.0. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.5 (d, $J = 7.0$ Hz). HRMS: m/z calc. 380.1024 (C$_{23}$H$_{15}$F$_3$O$_2$), found 380.1026.

17p: The reaction was conducted in the presence of excess amount of trifluoroacetophenone (1.2 mmol) and 4 mol% of catalyst system and crude material was purified by column chromatography followed by HPLC to give colorless oil (97 mg, 40%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 6.29 (q, $J_{HF} = 6.8$ Hz), 7.34 (m, 6H), 7.47 (m, 4H), 8.14 (s, 4H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 73.0 (q, $J_{CF} = 33.3$ Hz), 123.2 (q, $J_{CF} = 278.9$ Hz), 128.0, 128.9, 130.1, 130.2, 131.0, 133.3, 163.4. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −75.8 (d, $J_{HF} = 6.5$ Hz). HRMS: m/z calc. 482.0953 (C$_{24}$H$_{16}$F$_6$O$_4$), found 482.0956.

17s: The product was obtained by following the general procedure and purified by kugelrohr distillation to give colorless liquid (194.4 mg, 75%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 1.32 (s, 9H), 6.17 (q, $J_{HF} = 6.9$ Hz, 1H), 7.45-7.50 (m, 5H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 26.9, 38.9, 71.7 (q, $J_{CF} = 32.8$ Hz), 123.3 (q, $J_{CF} = 278.8$ Hz), 127.5, 128.7, 129.8, 131.5, 176.1. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −76.2 (d, $J_{HF} = 6.8$ Hz). HRMS: m/z calc. 260.1024 (C$_{13}$H$_{15}$F$_3$O$_2$), found 260.1026.

17c: The product was obtained by following the general procedure and purified by kugelrohr...
distillation to give colorless oil (359.5 mg, 100%).

17t: The product was obtained by following the general procedure and purified by kugelrohr distillation to afford white solid (369.4 mg, 93%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.70 (s, 1H), 8.11 (m, 1H), 8.00 (m, 1H), 7.92 (m, 2H), 7.72 (m, 4H), 7.61 (m, 2H), 6.47 (q, $J = 6.7$ Hz, 1H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 164.4, 136.1, 135.3, 132.4, 132.3, 132.0, 129.6, 129.0, 128.7, 128.5, 127.9, 127.1, 125.8 (q, $J = 3.7$ Hz), 125.5, 125.1, 123.7 (q, $J = 270.2$ Hz), 123.1 (q, $J = 279.1$ Hz), 72.1 (q, $J = 33.4$ Hz). 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −62.9 (s, 3F), −75.5 (d, $J = 6.7$ Hz, 3F). HRMS: m/z calc. 398.0741 (C$_{20}$H$_{12}$F$_6$O$_2$), found 398.0740.

17b: The product was obtained by following the general procedure and purified by kugelrohr distillation to afford colorless liquid (240.3 mg, 77%).

17d: The product was obtained by following the general procedure with 0.5 mmol of 1,1,1,2,2-pentafluoropropiophenone in toluene at 100 °C and purified by kugelrohr distillation to afford colorless liquid (124.8 mg, 66%).

3.5 References and Notes

Itami and Yamaguchi *et al.* have demonstrated nickel-catalyzed C−H/C−O biaryl coupling in which...

Chapter 4

Cu-Catalyzed Formal Reformatsky Reaction via C−F Bond Cleavage

4.1 Introduction

The Reformatsky reaction is an efficient C–C bond-forming reaction where an enolate is generated from an α-halocarbonyl compound by use of a reductant such as Zn(0) or Sm(II). Since the first report by Sergey Reformatsky in 1887, a plethora of improved methods has been developed and widely applied in organic synthesis. One of the most important applications of the Reformatsky reaction is the synthesis of difluoromethylene compounds that are important intermediates or products in medicinal chemistry as a bioisostere for an oxygen atom. However, a classic Reformatsky reaction via a zinc difluoro-enolate requires the use of relatively expensive α-bromo-α,α-difluorocarbonyl compounds as starting materials (Figure 1, path a). Other synthetic methods to obtain difluoromethylene compounds require the utilization of hazardous and expensive fluorination reagents. Amii and Uneyama have developed a method to generate silyl difluoro-enolate by the reaction of magnesium, trimethylsilyl chloride and α,α,α-trifluoroacetophenones (Figure 1, path c). However, the protocol requires multi-step reactions to afford a difluoromethylene compound, and the addition of a Lewis acid is indispensable for the C–C bond-forming step due to low reactivity of the silyl enolates. Herein, Cu-catalyzed formal Reformatsky reaction via a C−F bond cleavage is discussed that enables the direct conversion of α,α,α-trifluoromethyketones into difluoromethylene compounds by using a copper catalyst and less-toxic diboron as a reductant (Figure 1, path b). A possible reaction mechanism concerning the reactivity and equilibrium of difluoro-enolate is also discussed based on the mechanistic studies.

![Figure 4.1](image-url) (a) Reformatsky reaction of α-bromo-α,α-difluorocarbonyl compounds. (b) This work: copper-catalyzed formal Reformatsky reaction via C−F bond cleavage. (c) Generation of silyl difluoro-enolate followed by Mukaiyama-aldol reaction (LA = Lewis Acid).
4.2 Result and Discussion

As an efficient method for cleaving a C–F bond, β-fluorine elimination is known to proceed under relatively mild reaction conditions. With this strategy in mind, the retrosynthetic analysis suggested α-metallated alkoxide H as a synthon of a difluoro-enolate G (Figure 4.2). Sadighi et al. reported that the 1,2-addition of (IPr)CuBpin (pin = 2,3-dimethyl-2,3-butanediolate) to an aldehyde generates an α-borylated copper alkoxide in situ. Inspired by this reaction, the reaction of (IPr)CuBpin with trifluoromethylketone 10a was conducted to observe the copper alkoxide 18 in a 32% yield (Scheme 4.1). The molecular structure of 18 was confirmed by X-ray crystallography. This result suggests the formation of the copper difluoro-enolate J via the intermediate I. Motivated by this outcome, copper-catalyzed formal Reformatsky reaction via C–F bond cleavage has been developed. The reaction of trifluoromethylketone 10a with aldehyde 14a in the presence of a catalytic amount of CuCl, IPr and NaOtBu and 1.5 equiv. of bis(pinacolato)diboron (B2pin2) that afforded a trace amount of borate ester of cross-adduct 19 along with a 4% yield of that of homo-adduct 20 (Table 4.1, entry 1). The yield of 19 was improved to 32 and 56%, respectively by increasing the amount of NaOtBu to 0.6 and 1.5 equiv. Several auxiliary ligands were screened. Various phosphine ligands were tested, however the yields were compatible to that obtained in the absence of a ligand (entry 4-9). Contrary to these results, nitrogen based ligands such as 1,10-phenanthroline (Phen), 2,2’-bipyridine and 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline, BPhen) delivered the desired product 19 in 81-82% yields (entry 10-12). The choice of an inorganic base was also
crucial; a reaction using LiO\textsubscript{t}Bu resulted in 62% yield and KO\textsubscript{t}Bu gave only trace amount of the product 19 (entry 10, 13-14). The reaction even proceeded at 30 °C, and no reaction occurred in the absence of copper catalyst (entry 15-16).

Table 4.1. Optimization of the Reaction Conditions

<table>
<thead>
<tr>
<th>Run</th>
<th>Ligand</th>
<th>Base</th>
<th>Yield[a]</th>
<th>Yield[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IPr</td>
<td>NaO\textsubscript{t}Bu (0.1 eq)</td>
<td>trace</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>IPr</td>
<td>NaO\textsubscript{t}Bu (0.6 eq)</td>
<td>32</td>
<td>ND</td>
</tr>
<tr>
<td>3</td>
<td>IPr</td>
<td>NaO\textsubscript{t}Bu</td>
<td>56</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>PPh\textsubscript{3}[b]</td>
<td>NaO\textsubscript{t}Bu</td>
<td>56</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>DCPPE</td>
<td>NaO\textsubscript{t}Bu</td>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>DPPE</td>
<td>NaO\textsubscript{t}Bu</td>
<td>62</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>rac-BINAP</td>
<td>NaO\textsubscript{t}Bu</td>
<td>61</td>
<td>ND</td>
</tr>
<tr>
<td>8</td>
<td>Xanthos</td>
<td>NaO\textsubscript{t}Bu</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>NaO\textsubscript{t}Bu</td>
<td>63</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>Phen</td>
<td>NaO\textsubscript{t}Bu</td>
<td>82</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>Bpy</td>
<td>NaO\textsubscript{t}Bu</td>
<td>81</td>
<td>ND</td>
</tr>
<tr>
<td>12</td>
<td>BPhen</td>
<td>NaO\textsubscript{t}Bu</td>
<td>82</td>
<td>trace</td>
</tr>
<tr>
<td>13</td>
<td>Phen</td>
<td>LiO\textsubscript{t}Bu</td>
<td>62</td>
<td>ND</td>
</tr>
<tr>
<td>14</td>
<td>Phen</td>
<td>KO\textsubscript{t}Bu</td>
<td>trace</td>
<td>ND</td>
</tr>
<tr>
<td>15[c]</td>
<td>Phen</td>
<td>NaO\textsubscript{t}Bu</td>
<td>83</td>
<td>5</td>
</tr>
<tr>
<td>16[c,d]</td>
<td>Phen</td>
<td>NaO\textsubscript{t}Bu</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

[a] Yields based on aldehyde were estimated by comparison of peak areas in 19F NMR with PhCF\textsubscript{3} added as an internal standard. ND = not detected. [b] Reaction conducted with a 20 mol% ligand loading. [c] Reaction conducted at 30 °C. [d] CuCl was not added.

The catalyst loadings could be reduced to 1 mol%, and with these reaction conditions the corresponding alcohol product 21a was isolated in an 82% yield after aqueous work up (Table 4.2). With this optimized condition in hand, the substrate scope of this reaction was investigated. The reaction was affected by the steric hinderance of benzaldehydes (21b, 21c, 21d). The reactions of benzaldehydes bearing an electron-donating methoxy (14f) and an N,N-dimethylamino group (14l) gave the corresponding products 21e and 21f in 56 and 64% yields, respectively. Functional groups such as ester (21g), fluorne and bromine attached to the aromatic ring (21h, 21i), Bpin (21j) and acetal (21k) survived under the reaction conditions. 2-Thiophenecarboxaldehyde and 1-naphthaldehyde also
gave the desired products \(\text{21f} \) and \(\text{21m} \), respectively. Contrary to aromatic aldehydes, aliphatic aldehydes such as \(\text{21n} \) and \(\text{21o} \) could not be applied to these reaction conditions. The scope of trifluoromethyl ketone was also examined. The reactions of trifluoroacetophenones bearing an electron-donating methoxy, N,N-dimethylamino group and an electron-withdrawing CF\(_3\) group afforded the desired products \(\text{21p}, \text{21q} \) and \(\text{21r} \) in moderate yields. The reaction of \(\text{14m} \) bearing chlorine at the 4-position of the benzene ring afforded the product \(\text{21s} \), and the C–Cl bond was not reduced under the same reaction conditions. Bulky ketone \(\text{10g} \) afforded the corresponding product \(\text{21t} \) in a 37\% yield even at 60 °C. Cyclohexyl trifluoromethyl ketone reacted with \(\text{14a} \) to yield coupling product \(\text{21u} \) in an 85\% yield. Although NMR analysis of crude samples indicated full conversions of aldehydes, the formation of some unidentified by-products was observed, which might decrease the yields. Ethyl trifluoroacetate could not be applied under the reaction conditions.

Table 4.2 Substrate Scope

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Isolated yields of purified products. ND = not detected.</th>
<th>[a] Reaction was conducted at 60 °C.</th>
<th>[b] Reaction time was 24 h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{21a}) 82%</td>
<td>(\text{21b}) 81%</td>
<td>(\text{21c}) 62%</td>
<td>(\text{21d}) 58% (\text{b})</td>
</tr>
<tr>
<td>(\text{21e}) 56% (\text{b})</td>
<td>(\text{21f}) 64%</td>
<td>(\text{21g}) 54%</td>
<td>(\text{21h}) 73%</td>
</tr>
<tr>
<td>(\text{21i}) 55%</td>
<td>(\text{21j}) 72%</td>
<td>(\text{21k}) 72%</td>
<td>(\text{21l}) 40%</td>
</tr>
<tr>
<td>(\text{21m}) 27%</td>
<td>(\text{21n}) ND</td>
<td>(\text{21o}) ND</td>
<td>(\text{21p}) 55%</td>
</tr>
<tr>
<td>(\text{21q}) 31% (\text{b})</td>
<td>(\text{21r}) 54%</td>
<td>(\text{21s}) 65%</td>
<td>(\text{21t}) 37% (\text{b,c})</td>
</tr>
<tr>
<td>(\text{21u}) 85%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 64 -
Figure 4.3 (a) Formation of complexes 22 by reaction of CuCl, NaO^tBu and ligand. (b) Crystal structure of complex 22a with 50% thermal ellipsoids. Proton atoms and unidentified solvated molecule (probably toluene) were omitted for clarity. The ‘Bu groups were described as wires for clarity. (c) The crystal structure of complex 22b depicted with 50% thermal ellipsoids. Hydrogen atoms were omitted for clarity.

To gain deeper insights into the reaction mechanism, a mixture of CuCl and Phen was treated with excess NaO^tBu in THF-d8. NMR analysis of the reaction mixture indicated the formation of a complex bearing two ‘BuO groups relative to Phen. In fact, [(L)Na][Cu(O^tBu)_2] (22, where L = Phen or BPhen) was successfully isolated by the reaction of CuCl, ligand and 2 equiv. of NaO^tBu (Figure 4.3a).[13] The crystal structures of complexes 22 were determined by X-ray crystallography (Figure 4.3b,c). The complexes formed dimers via coordination of ‘BuO groups to sodium atoms. The copper atoms adopted a two-coordinate linear structure while the conformation of the sodium atoms could be described as a distorted tetrahedral coordinated by Phen or BPhen and two ‘BuO groups. It is noteworthy that complex 22a acts as a catalyst for the formal Reformatsky reaction via C–F bond cleavage (Scheme 4.2).

Scheme 4.2 Reaction of 10a with 14a catalyzed by 22a
Scheme 4.3 Generation, reactivity and equilibrium of 23. Conditions: (a) 5 mol% CuCl/Phen, 1 equiv. B$_2$pin$_2$, 1 equiv. NaO'Bu, THF-d_8, rt, 30 min. (b) 0.27 mmol aldehyde 14a, rt, 12 h. Yield is based on 14a. (c) 0.2 mmol imine 24, rt 5 h, then NaOHaq. Isolated yield is described. (d) Excess iPrOH, rt, 5 min. Yield is based on 10a. (e) 0.2 mmol benzoyl chloride, rt, 9 h. Yield is based on benzoyl chloride.

In the catalytic reaction, the addition of a difluoro-enolate to either trifluoromethylketone 10 or aldehyde 14 could occur. The reaction in the absence of an aldehyde was monitored by NMR to observe formation of the sodium alkoxide of homo-adduct 23 in a 55% NMR yield along with some unidentified products (Scheme 4.3a). It merits note that homo-adduct borate ester 20 was not detected even though 11B NMR analysis revealed the existence of an enough amount of residual B$_2$pin$_2$. These observations indicate the sluggish transmetallation of 23 with B$_2$pin$_2$ under the catalytic reaction conditions. The addition of aldehyde 14a resulted in the formation of cross-adduct 19 in a high yield even at room temperature (Scheme 4.3b). An analogous reaction with N-(4-methylbenzylidene)-4-methylbenzenesulfonamide (24) afforded the corresponding product 25 (Scheme 4.3c). On the other hand, protonolysis of the reaction mixture did not afford PhCOCF$_2$H, but did afford the alcohol 26 (Scheme 4.3d). The alkoxide 23 was also trapped by the addition of benzoyl chloride to deliver ester 27 (Scheme 4.3e). These observations indicate that in the presence of anionic copper species like 22a, 23 is in equilibrium with an anionic copper difluoro-enolate K that produces cross-adduct 19 via a reaction with aldehyde 14a. In fact, in the presence of a catalytic amount of anionic copper complex 22a and a stoichiometric amount of B$_2$pin$_2$, the reaction of aldehyde 14a with homo-adduct 23 that was generated by treatment of corresponding alcohol 26 with NaH yielded cross-adduct 19 quantitatively (Scheme 4.4). In this case, the formation of trifluoromethylketone 10a was confirmed by means of 19F NMR analysis. The reaction also proceeded in the presence of 10 mol% of CuCl/Phen or CuCl, whereas the product was not obtained at all in the absence of CuCl.
Scheme 4.4 Copper-catalyzed reaction of alkoxide 23 with aldehyde 14a in the presence of B₂pin₂

A plausible reaction mechanism is depicted in Figure 4.4. First, the reaction of CuCl, Phen and NaO'Bu gives the cuprate 22a. Reaction of 22a with B₂pin₂ affords an anionic borylcopper species L which reacts with 10 to give intermediate M. β-Fluorine elimination of an intermediate M affords copper difluoro-enolate N. In this step, NaO'Bu would act as a promoter of β-fluorine elimination since the β-fluorine elimination of a fluoroalkyl copper complex is promoted by the addition of sodium salt. The reaction of the enolate N with aldehyde 14 gives alkoxide O that reacts with B₂pin₂ to generate thermodynamically favored borate ester of cross-adduct P along with regeneration of borylcopper catalyst. The enolate N also can react with trifluoromethylketone 10 to form an alkoxide Q which is in equilibrium between R and 22a in the presence of NaO'Bu. The selective formation of cross-adduct P could be rationalized by the equilibrium and the difference of basicity between copper alkoxide intermediates O and Q. The alkoxide O is sufficiently basic to give a thermodynamically stable borate ester of cross-adduct P, while the reaction of the alkoxide Q with B₂pin₂ is much slower probably due to electron withdrawing nature of five fluorine atoms attached to the β-carbons.

Figure 4.4 A plausible reaction mechanism
4.3 Conclusion

In chapter 4, the copper-catalyzed formal Reformatsky reaction of trifluoromethylketone with aldehyde via C–F bond cleavage using B$_2$pin$_2$ as a reductant in the presence of NaO'Bu. This novel methodology is a potential alternative to the known procedures for synthesis of difluoro-compounds by circumventing the use of expensive mixed-halogen compounds and lengthy procedures, although further exploration on improvement of yields, scopes, and extension to an asymmetric version is desired. The catalytic reaction was highly selective to give the cross-adducts, although the copper difluoro-enolate generated in situ reacts with either trifluromethylketone to give the homo-adducts or aldehyde to give the cross-adducts. The high selectivity was rationalized by mechanistic investigation that revealed the existence of an equilibrium between alkoxides of homo-adducts and those of cross-adducts of which much more facile transformation occurs to give thermodynamically stable borate esters than those of homo-adducts.

4.4 Experimental Detail

Materials: The degassed and distilled solvents (hexane, pentane) used in this work were commercially available. THF and THF-d_8 were distilled from sodium benzophenone ketyl. C$_6$D$_6$ was degassed and stored over activated molecular sieves (3A) in a glove box. IPrCuBpin$^{[14]}$ and IPrCuO'Bu$^{[14]}$ were obtained by the literature procedures. CuCl (purity: \geq99.995%) was purchased from Sigma-Aldrich and stored in a glove box without further purification. B$_2$pin$_2$ was obtained from Matrix Scientific and recrystallized from dry pentane or hexane in a glove box. Other commercially available reagents were distilled and degassed prior to use.

Experimental Details

Reaction of (IPr)CuBpin with 10a: To a solution of IPrCuBpin (17.4 mg, 0.03 mmol) in THF-d_8 (500 μL) was added 10a (4.5 μL, 0.033 mmol) and PhCF$_3$ (5 μL as an internal standard). The resulting solution was transferred into a J. Young tube and analyzed by NMR. It is noteworthy that a signal derived from FBpin was observed at –150.3 ppm.$^{[16]}$

Preparation and Characterization of 18: A screw-capped test tube equipped with a stirring bar was
placed IPrCuO\textsubscript{Bu} (31.4 mg, 0.06 mmol) and alcohol 26 (29.7 mg, 0.09 mmol). The mixture was dissolved in 1.5 mL of THF and stirred for 10 min at ambient temperature. Then, the solution was concentrated in vacuo. The resulting oily material was treated with pentane to give white precipitate that was washed with pentane three times and dried in vacuo (30.3 mg, 65%). Fine crystals were obtained by diffusion of pentane into the THF solution of the complex. 1H NMR (400 MHz, in THF-\textsubscript{d8}, rt, δ/ppm): 7.92 (d, J = 7.6 Hz, 2H), 7.50-7.28 (m, 11H), 7.15 (m, 2H), 7.07 (m, 1H), 6.97 (m, 2H), 2.53 (m, 4H), 1.18-1.06 (m, 24H).

19F NMR (376 MHz, in THF-\textsubscript{d8}, rt, δ/ppm): –79.2 (dd, J = 6.5, 13.0 Hz, 3F), 107.3 (dd, J = 6.1, 244.0 Hz, 1F), –113.0 (dq, J = 243.7, 12.9 Hz, 1F).

13C NMR (151 MHz, in THF-\textsubscript{d8}, rt, δ/ppm): 191.4 (t, J = 29.0 Hz), 181.6, 146.5, 145.4, 140.4, 136.3, 135.9, 132.5, 131.9, 130.9, 128.5, 127.9, 127.8, 127.4, 126.6 (q, J = 291.4 Hz), 124.8, 124.7, 124.5, 118.9 (dd, J = 268.5, 271.0 Hz), 82.7 (m), 29.52, 29.51, 24.7, 24.6, 24.1, 24.0. Elemental Analysis: calc. C, 66.10; H, 5.93; Cu, 8.13; F, 12.16; N, 3.59; O, 4.10, found C, 66.09; H, 5.97; N, 3.61.

X-ray data: M = 781.39, colorless, block, monoclinic, P2\textsubscript{1}1/c (#14), a = 12.2792(3) Å, b = 15.7535(4) Å, c = 20.5477(4) Å, β = 98.126(2)°, V = 3934.9(2) Å3, Z = 4, D\textsubscript{calc} = 1.319 g/cm3, T = −150 ºC, R\textsubscript{1}(wR\textsubscript{2}) = 0.0941 (0.3135).

Optimization of the reaction conditions: A screw-capped test tube equipped with a stirrer bar was charged with CuCl (1.5 mg, 0.015 mmol), ligand (0.015 mmol), and NaO\textsubscript{t}Bu (0.1 eq: 1.4 mg, 0.6 eq: 8.7 mg, 1.5 eq: 21.6 mg) and B\textsubscript{2}pin\textsubscript{2} (57.1 mg, 0.225 mmol). The solids were suspended in 300 μL of THF and then 1a (30 μL, 0.225 mmol), 2b (18 μL, 0.15 mmol) and PhCF\textsubscript{3} (5 μL, an internal standard) was added. The tube was capped and heated at 60 °C for 3 h. The reaction mixture was diluted with 500 μL of C\textsubscript{6}D\textsubscript{6} in a dry box, transferred into a NMR tube which was capped, sealed and analyzed by 19F NMR. The results are summarized in Table 4.1.

General procedure for substrate scope: A screw-capped test tube equipped with a stirrer bar was charged with CuCl (1.0 mg, 0.01 mmol), Phen (1.8 mg, 0.01 mmol), NaO\textsubscript{t}Bu (144.2 mg, 1.5 mmol) and B\textsubscript{2}pin\textsubscript{2} (381.3 mg, 1.5 mmol). The solids were suspended in 2 mL of THF and then trifluoromethylketone (1.5 mmol) and aldehyde (1.0 mmol) were added. The tube was capped and heated at 30 °C with stirring for 3 h. Aqueous work-up and purification delivers desired alcohol. The results are summarized in Table 4.2 and the characterization of the products are mentioned below.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{image.png}
\caption{21a17: A screw-capped test tube equipped with a stirrer bar was charged with CuCl (1.0 mg, 0.01 mmol), Phen (1.8 mg, 0.01 mmol), NaO\textsubscript{t}Bu (144.2 mg, 1.5 mmol) and B\textsubscript{2}pin\textsubscript{2} (381.3 mg, 1.5 mmol). The solids were suspended in 2 mL of THF and then 10a (261 mg, 1.5 mmol), 14a (120 mg, 1.0 mmol) and PhCF\textsubscript{3} (30 μL, an internal standard) were added. The tube was capped and heated at 30 °C with

17A screw-capped test tube equipped with a stirrer bar was charged with CuCl (1.0 mg, 0.01 mmol), Phen (1.8 mg, 0.01 mmol), NaO\textsubscript{t}Bu (144.2 mg, 1.5 mmol) and B\textsubscript{2}pin\textsubscript{2} (381.3 mg, 1.5 mmol). The solids were suspended in 2 mL of THF and then 10a (261 mg, 1.5 mmol), 14a (120 mg, 1.0 mmol) and PhCF\textsubscript{3} (30 μL, an internal standard) were added. The tube was capped and heated at 30 °C with
stirring for 3 h. A portion of the reaction mixture was diluted with 500 μL of C₆D₆ in a dry box, transferred into a NMR tube which was capped, sealed and analyzed by ¹⁹F NMR. The yield was estimated to be 88% by comparison of the peak area of the internal standard with that of the product. The NMR sample was combined with the reaction mixture and then, the whole mixture was quenched with 0.5 mL of ¹PrOH. The solution was evaporated to dryness, and then the resulting brown oil was extracted with hexane. The extract was filtered off, concentrated in vacuo and purified by column chromatography (hexane : EtOAc = 96 : 4) to afford colorless oil (227.0 mg, 82%). ¹H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 8.06 (d, J = 7.5 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 5.34 (dd, J = 5.6 Hz, 18.6 Hz, 1H), 3.06 (br, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 191.0 (dd, J = 28.8 Hz, 31.7 Hz), 138.9, 134.5, 132.6, 131.8, 130.3 (t, J = 3.2 Hz), 129.1, 128.7, 128.0, 115.8 (dd, J = 254.9 Hz, 262.9 Hz), 73.4 (dd, J = 23.0 Hz, 28.4 Hz), 21.3. ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −104.9 (dd, J_HF = 5.6 Hz, J_FF = 289.7 Hz, 1F), −116.4 (dd, J_HF = 18.6 Hz, J_FF = 289.7 Hz, 1F). HRMS: m/z calc. 276.0962 (C₁₆H₁₄F₂O₂), found 276.0964.

21b: A screw-capped test tube equipped with a stirrer bar was charged with CuCl (1.0 mg, 0.01 mmol), Phen (1.8 mg, 0.01 mmol), NaO'Bu (144.2 mg, 1.5 mmol) and B₂pin₂ (381.3 mg, 1.5 mmol). The solids were suspended in 2 mL of THF and then 10a (261 mg, 1.5 mmol), 14b (134 mg, 1.0 mmol) were added. The tube was capped and heated at 30 °C with stirring for 3 h. The reaction mixture was quenched with ¹PrOH (1 mL). The solution was evaporated to dryness, and then the resulting brown oil was extracted with hexane. The extract was filtered off, concentrated in vacuo. Crude material was purified by column chromatography (Hexane : EtOAc = 96 : 4) followed by HPLC to afford the alcohol 21b (234.7 mg, 81%). ¹H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 8.04 (d, J = 7.5 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 6.90 (m, 2H), 5.30 (dd, J = 2.8, 18.3 Hz, 1H), 3.80 (s, 3H), 3.15 (br, 1H). ¹³C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 191.0 (dd, J = 28.8 Hz, 31.7 Hz), 137.9, 134.6, 134.5, 132.6, 130.8, 130.3 (dd, J = 3.2 Hz), 128.7, 125.9, 115.9 (dd, J = 254.8 Hz, 262.9 Hz), 73.4 (dd, J = 23.1 Hz, 28.6 Hz), 21.3. ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ/ppm): −104.6 (dd, J = 5.3 Hz, 288.7 Hz, 1F), −116.6 (dd, J = 19.0 Hz, 288.8 Hz, 1F). HRMS (EI+): m/z calc. 290.1118 (C₁₇H₁₆F₂O₂), found 290.1118.
21c: By following the general procedure, the reaction of 10a with 14d resulted in formation of desired alcohol 21c (90.4 mg, 62%) after column chromatography (Hexane : EtOAc = 96 : 4) followed by HPLC. ¹H NMR (400 MHz, in CDCl₃, δ/ppm): 8.07 (d, J = 7.7 Hz, 2H), 7.64-7.46 (m, 4H), 7.08 (d, J = 7.8 Hz, 1H), 7.02 (s, 1H), 5.64 (d, J = 20.1 Hz, 1H), 2.91 (m, 1H), 2.35 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, in CDCl₃, δ/ppm): 191.1 (dd, J = 29.0, 31.9 Hz), 138.6, 136.6, 134.5, 132.5, 131.2, 130.4, 130.3 (t, J = 3.0 Hz), 128.6, 128.0, 126.9, 116.5 (dd, J = 253.7, 263.5 Hz), 69.0 (dd, J = 22.5, 30.0 Hz), 21.1, 19.5 (d, J = 2.7 Hz). ¹⁹F NMR (376 MHz, in CDCl₃, δ/ppm): –104.2 (d, J = 291.7 Hz, 1F), –117.0 (dd, J = 20.0, 291.7, 1F). HRMS (EI⁺): m/z calc. 290.118 (C₁₇H₁₆F₂O₂), found 290.1123.

21d: The reaction of 10a with 14e conducted at 60 °C resulted in formation of desired alcohol 21d (88.9 mg, 58%) after column chromatography (Hexane : EtOAc = 96 : 4) followed HPLC. ¹H NMR (400 MHz, in CDCl₃, δ/ppm): 8.01 (d, J = 7.6 Hz, 2H), 7.54 (m, 1H), 7.40 (m, 2H), 6.80 (s, 2H), 5.82 (ddd, J = 3.1, 3.8, 26.3 Hz, 1H), 2.80 (d, J = 4.8 Hz, 1H), 2.39 (br, 6H), 2.19 (s, 3H). ¹³C NMR (100 MHz, in CDCl₃, δ/ppm): 191.7 (dd, J = 28.5, 32.9 Hz), 138.2, 134.6, 132.6, 130.3 (dd, J = 2.5, 3.8 Hz), 128.7, 127.7, 117.7 (dd, J = 251.6, 266.7 Hz), 70.6 (dd, J = 22.9, 30.7 Hz), 21.3, 20.9. ¹⁹F NMR (376 MHz, in CDCl₃, δ/ppm): –102.0 (dd, J = 1.8, 279.9 Hz, 1F), –114.7 (dd, J = 26.1, 291.2 Hz, 1F). HRMS (EI⁺): m/z calc. 304.1275 (C₁₈H₁₈F₂O₂), found 304.1276.

21e: The reaction of 10a with 14f was conducted at 60 °C and quenched by 5% NaOHaq. After stirring the mixture for several minutes, the organic layer was separated. The water layer was washed with ether three times, and the combined organic layer was dried over MgSO₄. The alcohol 14f (82.4 mg, 56%) was obtained after column chromatography (Hexane : EtOAc = 96 : 4) followed by HPLC. ¹H NMR (600 MHz, in CDCl₃, δ/ppm): 8.05 (d, J = 8.2 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 6.90 (m, 2H), 5.28 (dt, J = 19.0 Hz, 5.1 Hz, 1H), 3.80 (s, 3H), 3.15 (d, J = 4.7 Hz, 1H). ¹³C NMR (100 MHz, in CDCl₃, δ/ppm): 191.0 (dd, J = 28.8 Hz, 30.6 Hz), 160.1, 134.5, 132.5, 130.3 (dd, J = 3.1 Hz), 129.3, 128.6, 126.8, 115.9 (dd, J = 254.5 Hz, 262.3 Hz), 113.7, 73.0 (dd, J = 22.8 Hz, 28.2 Hz), 55.4. ¹⁹F NMR (565 MHz, in CDCl₃, δ/ppm): –105.0 (dd, J = 5.6 Hz, 288.4 Hz, 1F), –116.2 (dd, J = 18.4 Hz, 288.4 Hz, 1F). HRMS(EI⁺): m/z calc. 292.0911 (C₁₆H₁₄F₂O₂), found 292.0913.
The reaction of 10a with 14g was conducted at 60 °C and quenched by 5% NaOHaq. After aqueous work up, the alcohol 21f (97.5 mg, 64%) was obtained after HPLC. 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.05 (d, $J = 7.4$ Hz, 2H), 7.61 (m, 1H), 7.46 (m, 2H), 7.34 (d, $J = 8.4$ Hz, 2H), 6.71 (d, $J = 8.9$ Hz, 2H), 5.25 (d, $J = 18.0$ Hz, 1H), 2.96 (s, 6H), 2.81 (s, 1H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 191.3 (dd, $J = 28.7, 31.1$ Hz), 151.1, 134.4, 132.8, 130.2 (t, $J = 2.9$ Hz), 129.0, 128.6, 122.1, 116.2 (dd, $J = 253.9, 262.5$ Hz), 112.1, 73.4 (dd, $J = 22.9, 28.6$ Hz), 40.4. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −105.4 (dd, $J = 5.3, 85.3$ Hz, 1F), −116.4 (dd, $J = 18.2, 2851, 1F$). HRMS (EI+): m/z calc. 305.1227 (C$_{17}$H$_{17}$F$_2$NO$_2$), found 305.1234.

The reaction of 10a with 14h was quenched by 5% NaOHaq. After aqueous work up, the alcohol 21g (86.4 mg, 54%) was obtained after column chromatography (Hexane : EtOAc = 95 : 5). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.03 (m, 4H), 7.65-7.45 (m, 5H), 5.43 (d, $J = 17.8$ Hz, 1H), 3.90 (s, 3H), 3.35 (s, 1H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 190.6 (dd, $J = 29.0, 30.8$ Hz), 166.8, 139.7, 134.8, 132.2, 130.6, 130.3 (t, $J = 3.0$ Hz), 129.5, 128.8, 128.2, 115.5 (dd, $J = 255.7, 263.1$ Hz), 72.8 (dd, $J = 25.2, 30.7$ Hz), 52.3, 52.2. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −104.0 (dd, $J = 3.6, 295.3$ Hz, 1F), −116.5 (dd, $J = 19.0, 295.3, 1F$). HRMS (Cl+): m/z calc. 321.0938 (C$_{17}$H$_{14}$F$_2$O$_4$+H), found 321.0936.

The reaction of 10a with 14i was quenched by 5% NaOHaq. After aqueous work up, the alcohol 21h (102.0 mg, 73%) was obtained after column chromatography (Hexane : EtOAc = 95 : 4) followed by HPLC. 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.04 (d, $J = 8.0$ Hz, 2H), 7.63 (m, 1H), 7.47 (m, 4H), 7.07 (m, 2H), 5.36 (dt, $J = 18.8, 4.5$ Hz, 1H), 3.15 (d, $J = 4.3$ Hz, 1H). 13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 190.9 (dd, $J = 29.0, 31.0$ Hz), 163.1 (d, $J = 246.0$ Hz), 134.8, 132.3 (m), 130.5, 130.3 (t, $J = 3.2$ Hz), 130.0 (d, $J = 8.4$ Hz), 128.7, 115.5 (dd, $J = 256.2, 263.3$ Hz), 115.3 (d, $J = 21.6$ Hz), 72.6 (dd, $J = 23.0, 28.6$ Hz). 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): −104.6 (dd, $J = 5.0, 294.4$ Hz, 1F), −112.8 (m, 1F), −116.8 (dd, $J = 18.7, 294.6, 1F$). HRMS (Cl+): m/z calc. 281.0789 (C$_{15}$H$_{11}$F$_3$O$_2$+H), found 281.0790.
21i: By following the general procedure, the reaction of 10a with 14j afforded the desired alcohol 21i (94.4 mg, 55%) after HPLC. 1H NMR (400 MHz, in CDCl3, rt, δ/ppm): 8.05 (d, J = 7.4 Hz, 2H), 7.66–7.35 (m, 7H), 5.34 (d, J = 4.1 Hz, 1H). 13C NMR (100 MHz, in CDCl3, rt, δ/ppm): 190.7 (dd, J = 29.3, 31.4 Hz), 134.9, 133.7, 132.2, 131.5, 130.3 (t, J = 3.1 Hz), 129.9, 128.8, 123.2, 115.4 (dd, J = 255.4, 263.9 Hz), 72.6 (dd, J = 23.0, 28.5 Hz). 19F NMR (376 MHz, in CDCl3, rt, δ/ppm): –104.2 (dd, J = 295.4, 3.2 Hz, 1F), –116.7 (dd, J = 18.8, 295.4, 1F). HRMS (Cl+): m/z calc. 340.9989 (C15H11BrF2O2+H), found 340.9996.

21j: The reaction of 10a with 14k was quenched by 5% NaOHaq. After standard aqueous workup, purification of crude product by column chromatography (Hexane : EtOAc = 95 : 5) afforded the desired product 21j as a white solid (93.8 mg, 72%). 1H NMR (400 MHz, in CDCl3, rt, δ/ppm): 8.05 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 7.52 Hz, 1H), 7.62 (m, 1H), 7.47 (m, 4H), 5.36 (d, J = 18.8 Hz, 1H), 3.29 (d, J = 3.2 Hz, 1H), 1.33 (s, 12 H). 13B NMR (128 MHz, in CDCl3, rt, δ/ppm): 30.2 (br). 13C NMR (151 MHz, in CDCl3, rt, δ/ppm): 190.9 (dd, J = 28.9, 31.3 Hz), 137.8, 134.7, 134.5, 132.5, 130.3, 130.2, 128.7, 127.4, 115.8 (dd, J = 256.7, 264.9 Hz), 84.0, 73.3 (dd, J = 23.1, 28.6 Hz), 24.8. 19F NMR (376 MHz, in CDCl3, rt, δ/ppm): –104.4 (dd, J = 4.4, 290.0 Hz, 1F), –116.5 (dd, J = 18.8, 290.1, 1F). HRMS (FAB+): m/z calc. 389.1736 (C21H23BF2O4+H), found 389.1742.

21k: By following the general procedure, the reaction of 10a with 14l afforded the desired product 21k (130.3 mg, 72%) after HPLC. 1H NMR (400 MHz, in CDCl3, rt, δ/ppm): 8.02 (d, J = 7.7 Hz, 2H), 7.59 (m, 1H), 7.45 (m, 6H), 5.47 (s, 1H), 5.32 (d, J = 14.0 Hz, 1H), 3.51 (m, 4H), 1.20 (t, J = 7.0 Hz). 13C NMR (100 MHz, in CDCl3, rt, δ/ppm): 191.1 (dd, J = 28.6, 31.3 Hz), 139.7, 135.1, 134.5, 132.6, 130.2 (m), 128.6, 128.0, 126.6, 116.0 (dd, J = 256.6, 264.4 Hz), 101.2, 73.0 (dd, J = 23.1, 28.6 Hz), 61.12, 61.11, 15.1. 19F NMR (376 MHz, in CDCl3, rt, δ/ppm): –104.9 (dd, J = 5.3, 286.5 Hz, 1F), –116.3 (dd, J = 18.5, 286.5, 1F). HRMS (FAB+): m/z calc. 387.1384 (C20H22F2O4+Na), found 387.1388.
By following the general procedure, the reaction of 10a with 14m afforded the desired product 21l (53.1 mg, 40%) after purification by column chromatography (Hexane : EtOAc = 95 : 5). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.07 (d, $J = 7.7$ Hz, 2H), 7.63 (m, 1H), 7.47 (m, 2H), 7.36 (d, $J = 4.9$ Hz, 1H), 7.17 (m, 1H), 7.02 (m, 1H), 5.63 (dt, $J = 5.1$, 17.0 Hz, 1H), 3.25 (d, $J = 5.0$ Hz).

13C NMR (151 MHz, in CDCl$_3$, rt, δ/ppm): 190.5 (dd, $J = 29.1$, 31.2 Hz), 137.2, 134.7, 132.3, 130.2 (t, $J = 2.8$ Hz), 128.7, 127.5, 126.81, 126.80, 115.1 (dd, $J = 257.9$, 264.9 Hz), 70.2 (dd, $J = 24.3$, 29.1 Hz).

19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): –104.0 (dd, $J = 5.5$, 291.3 Hz, 1F), –115.6 (dd, $J = 17.1$, 291.3, 1F).

HRMS (EI+): m/z calc. 268.0370 (C$_{13}$H$_{10}$F$_2$O$_2$S), found 268.0372.

By following the general procedure, the reaction of 10a with 14n afforded the desired product 21m (42.1 mg, 27%) after purification by HPLC. 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.05 (m, 3H), 7.87 (m, 3H), 7.63-7.43 (m, 6H), 6.29 (dm, $J = 19.7$ Hz, 1H), 3.23 (m, 1H).

13C NMR (151 MHz, in CDCl$_3$, rt, δ/ppm): 191.2 (dd, $J = 29.0$, 31.8 Hz), 134.7, 133.7, 132.5, 131.7, 131.0, 130.4 (t, $J = 3.3$ Hz), 129.8, 128.9, 128.8, 126.8, 126.6, 125.8, 125.3, 123.5, 116.5 (dd, $J = 256.7$, 266.0 Hz), 69.1 (dd, $J = 23.1$, 29.6 Hz).

19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): –102.6 (d, $J = 291.3$, 1F), –116.6 (d, $J = 17.1$, 291.3, 1F). HRMS (EI+): m/z calc. 312.0962 (C$_{19}$H$_{14}$F$_2$O$_2$), found 312.0968.

The reaction time of 2',2',2'-trifluoro-4-methoxyacetophenone with 14a was elongated to 5 h. The reaction was quenched by 5% NaOHaq. After standard aqueous workup, purification of crude product by HPLC afforded the desired product 21p as a white solid (84.1 mg, 55%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.06 (d, $J = 8.7$ Hz, 2H), 7.38 (d, $J = 7.7$ Hz, 2H), 7.19 (d, $J = 7.7$ Hz, 2H), 6.92 (d, $J = 9.0$ Hz, 2H), 5.31 (dt, $J = 19.0$, 4.5 Hz, 1H), 3.87 (s, 3H), 3.20 (d, $J = 4.5$ Hz, 1H), 2.36 (s, 3H).

13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 189.2 (dd, $J = 28.9$, 30.6 Hz), 164.8, 138.8, 132.9 (t, $J = 3.4$ Hz), 131.9, 129.0, 128.1, 125.2, 115.9 (dd, $J = 254.8$, 262.9 Hz), 114.0, 73.2 (dd, $J = 23.1$, 28.5 Hz), 55.6, 21.2. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): –103.9 (dd, $J = 4.6$, 291.6 Hz, 1F), –115.9 (dd, $J = 19.0$, 291.6, 1F). HRMS (EI+): m/z calc. 306.1068 (C$_{17}$H$_{16}$F$_2$O$_3$), found 306.1071.
21q: The reaction of 2',2',2'-trifluoro-4-(N,N-dimethylamino)acetophenone with 14a was conducted at 60 °C. The reaction was quenched by 5% NaOHaq. After standard aqueous workup, purification of crude product by HPLC afforded the desired product 21q as a yellow oil (50.0 mg, 31%). 1H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.90 (m, 2H), 7.29 (d, J = 7.9 Hz, 2H), 7.09 (d, J = 7.9 Hz, 2H), 6.51 (m, 2H), 5.21 (dt, J = 19.7, 4.3 Hz, 1H), 3.41 (d, J = 4.2 Hz, 1H), 2.98 (s, 6H), 2.26 (s, 3H). 13C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 188.1 (t, J = 29.6 Hz), 154.4, 138.6, 133.0 (t, J = 2.9 Hz), 132.2, 128.9, 128.2, 119.7 (t, J = 2.8 Hz), 116.0 (dd, J = 255.7, 263.8 Hz), 110.8, 73.5 (t, J = 23.6 Hz), 40.0 (d, J = 1.6 Hz), 21.3 (d, J = 3.1 Hz). 19F NMR (376 MHz, in CDCl₃, rt, δ/ppm): –102.8 (dd, J = 4.4, 293.5 Hz, 1F), –115.5 (dd, J = 19.7, 293.5 Hz, 1F). HRMS (El+): m/z calc. 319.1384 (C₁₈H₁₉F₂NO₂), found 319.1389.

21r: The reaction of 2',2',2'-trifluoro-4-trifluoromethylacetophenone with 14a was conducted at 60 °C and quenched by 5% NaOHaq. After standard aqueous workup, purification of crude product by HPLC afforded the desired product 21r as a white solid (93.0 mg, 54%). 1H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 8.12 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 7.20 (d, J = 7.8 Hz, 2H), 5.32 (dt, J = 18.2, 4.8 Hz, 1H), 2.92 (d, J = 4.3 Hz, 1H), 2.37 (s, 3H). 13C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 190.5 (dd, J = 28.7, 32.5 Hz), 139.3, 135.5, 135.3 (m), 131.5, 130.5 (t, J = 3.0 Hz), 129.2, 127.9, 125.6 (q, J = 3.6 Hz), 123.4 (q, J = 271.3 Hz), 115.9 (dd, J = 254.2, 262.3 Hz), 114.0, 73.2 (dd, J = 23.2, 28.8 Hz), 21.2. 19F NMR (376 MHz, in CDCl₃, rt, δ/ppm): –63.4 (s, 3F), –105.4 (dd, J = 5.6, 286.0 Hz, 1F), –116.8 (dd, J = 18.3, 286.2, 1F). HRMS (El+): m/z calc. 344.0836 (C₁₇H₁₃F₅O₂), found 344.0831.

21s: The reaction of 4-chloro-2',2',2'-trifluorobenzoic acid with 14a was quenched by 5% NaOHaq. After standard aqueous workup, purification of crude product by HPLC afforded the desired product 21s as a white solid (101.6 mg, 65%). 1H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.98 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 5.30 (dt, J = 4.9, 18.4 Hz, 1H), 3.00 (d, J = 4.5 Hz, 1H), 2.37 (s, 3H). 13C NMR (100 MHz, in CDCl₃, rt, δ/ppm): 190.0 (dd,
$J = 29.0, 31.7 \text{ Hz}$), 141.4, 139.2, 131.8 (t, $J = 3.1 \text{ Hz}$), 131.0 (m), 129.2, 129.1, 128.1, 115.9 (dd, $J = 254.3, 262.2 \text{ Hz}$), 73.3 (dd, $J = 23.2, 28.4 \text{ Hz}$), 21.3. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): -104.9 (dd, $J = 5.7, 288.3 \text{ Hz}$, 1F), -116.4 (dd, $J = 18.4, 288.3 \text{ Hz}$, 1F). HRMS (EI+): m/z calc. 306.1068 (C17H16F2O3), found 306.1071.

21t: The reaction of 10g with 14a was conducted at 60 °C for 24 h. Then, the reaction was quenched by 5% NaOHaq. After standard aqueous workup, purification of crude product by HPLC afforded the desired product 21t as a yellow solid (43.8 mg, 23%). 1H NMR (400 MHz, in CDCl$_3$, rt, δ/ppm): 8.55 (s, 1H), 8.01 (d, $J = 8.2 \text{ Hz}$, 2H), 7.81 (br, 2H), 7.48 - 4.40 (m, 6H), 7.19 (d, $J = 7.5 \text{ Hz}$, 2H), 5.62 (dt, $J = 18.4, 4.9 \text{ Hz}$, 1H), 2.80 (d, $J = 4.6 \text{ Hz}$, 1H), 2.37 (s, 3H).

13C NMR (100 MHz, in CDCl$_3$, rt, δ/ppm): 201.4 (dd, $J = 28.9, 35.9 \text{ Hz}$), 139.3, 132.1, 130.8, 130.3, 129.9, 129.3, 129.0, 128.7, 128.2, 127.0, 125.6, 124.9, 114.9 (dd, $J = 254.2, 263.2 \text{ Hz}$), 73.2 (dd, $J = 22.7, 29.7 \text{ Hz}$), 21.3. 19F NMR (376 MHz, in CDCl$_3$, rt, δ/ppm): -106.1 (dd, $J = 3.5, 278.9 \text{ Hz}$, 1F), -120.9 (dd, $J = 18.4, 278.9 \text{ Hz}$, 1F). HRMS (EI+): m/z calc. 306.1275 (C24H18F2O2), found 306.1273.

21u: The reaction of Cyclohexyl trifluoromethyl ketone with 14a was quenched by 5% NaOHaq. After standard aqueous workup, purification of crude product by HPLC afforded the desired product 3ob as a white solid (120.1 mg, 85%). 1H NMR (600 MHz, in CDCl$_3$, rt, δ/ppm): 7.30 (dd, $J = 8.0 \text{ Hz}$, 2H), 7.19 (dd, $J = 8.0 \text{ Hz}$, 2H), 5.11 (ddd, $J = 4.9, 7.6, 16.8 \text{ Hz}$, 1H), 2.80 (d, $J = 4.9 \text{ Hz}$, 1H), 2.76 (m, 1H), 2.36 (s, 3H), 1.84-1.66 (m, 6H), 1.36-1.27 (m, 2H), 1.24-1.15 (m, 2H). 13C NMR (151 MHz, in CDCl$_3$, rt, δ/ppm): 205.6 (dd, $J = 26.5, 30.2 \text{ Hz}$), 138.9, 131.9, 129.1, 127.7, 115.1 (dd, $J = 256.7, 263.4 \text{ Hz}$), 72.9 (dd, $J = 24.1, 28.5 \text{ Hz}$), 45.8, 27.9, 27.7, 25.6, 25.4, 25.3, 21.2. 19F NMR (564 MHz, in CDCl$_3$, rt, δ/ppm): -112.2 (dd, $J = 7.0, 271.0 \text{ Hz}$, 1F), -122.7 (dd, $J = 16.8, 271.0 \text{ Hz}$, 1F). HRMS (EI+): m/z calc. 282.1431 (C16H20F2O2), found 282.1428.

Preparation of [(Phen)Na][Cu(O'Bu)$_2$] (22a): To a round-bottomed flask equipped with a stirring bar was placed 1,10-phenanthroline (0.54 g, 3.0 mmol), CuCl (0.30 g, 3.0 mmol) and NaO'Bu (0.58 g, 6.0 mmol). To the mixture was added 30 mL of THF and the reaction mixture was stirred for 2 h. The resulting yellow suspension was passed through a pad of Celite and concentrated in vacuo to yield off-white powder of 22a (1.19 g, 96%). Recrystallization from toluene/pentane afforded pale-yellow needle crystals. 1H NMR (600 MHz, in THF-d$_8$, rt, δ/ppm): 9.38 (s, 2H), 8.35 (d, $J = 7.6 \text{ Hz}$, 2H), 7.85
\(\text{H NMR (400 MHz, in THF-}d_8, \text{ rt, } \delta/\text{ppm})\): 9.47 (s, 2H), 7.86 (s, 2H), 7.64 (s, 2H), 7.5 (m, 10 H), 1.22 (s, 18H).

\(\text{C NMR (100 MHz, in THF-}d_8, \text{ rt, } \delta/\text{ppm})\): 151.2, 149.5, 147.4, 138.8, 130.5, 129.4, 129.3, 127.1, 124.7, 124.4, 68.8, 36.9.

Elemental Analysis: C, 68.01; H, 6.06; Cu, 11.24; N, 4.96; Na, 4.07; O, 5.66, found C, 68.23; H, 6.11; N, 5.17. X-ray data: \(M = 12.6477(4) \text{ Å}, b = 19.3207(5) \text{ Å}, c = 24.0282(7) \text{ Å}, \beta = 90.474(2)^\circ, V = 5871.4(3) \text{ Å}^3, Z = 4, D_{\text{calc}} = 1.279 \text{ g/cm}^3, T = 30 \text{ °C}, R_1(wR_2) = 0.0516 (0.1609).

Reaction of \(10a\) with \(14a\) catalyzed by \(22a\): A screw-capped test tube equipped with a stirrer bar was charged with complex \(5a\) (6.2 mg, 0.015 mmol), NaO\(\text{Bu}\) (22.0 mg, 0.225 mmol) and B\(_2\)pin\(_2\) (57.1 mg, 0.225 mmol). The solids were suspended in 300 \(\mu\text{L}\) of THF and then \(1a\) (30 \(\mu\text{L}\), 0.225 mmol), \(2b\) (18 \(\mu\text{L}\), 0.15 mmol) and PhCF\(_3\) (5 \(\mu\text{L}\), an internal standard) was added. The tube was capped and heated at 30 °C for 3 h. The reaction mixture was diluted with 500 \(\mu\text{L}\) of C\(_6\)D\(_6\) in a dry box, transferred into a NMR tube which was capped, sealed and analyzed by \(^{19}\text{F NMR}. The desired product \(19\) was estimated to be formed in 71%.

Generation, reactivity and equilibrium of \(23\): (a, d) A screw-capped test tube equipped with a stirring bar was placed CuCl (2.0 mg, 0.02 mmol), 1,10-phenanthroline (3.6 mg, 0.02 mmol), B\(_2\)pin\(_2\) (101.5 mg, 0.4 mmol) and NaO\(\text{Bu}\) (38.4 mg, 0.4 mmol). The solids were suspended in 0.5 mL of THF/THF-\(d_8\) (1:4) and stirred well. To the resulting suspension was added \(10a\) (70 mg, 0.4 mmol) and PhCF\(_3\) (10 \(\mu\text{L}\) as an internal standard). The brown viscous mixture was stirred for 30 min. to give a dark brown solution that was transferred into a J. Young tube and analyzed by NMR. Then, to the tube was added 0.1 mL of \(^3\text{PrOH}\) and well shaken before additional NMR analysis.
Isolation and characterization of 26: To a vial equipped with a stirring bar was placed CuCl (1.0 mg, 0.01 mmol), Phen (1.8 mg, 0.01 mmol), B2pin2 (253.9 mg, 1.0 mmol) and NaO’Bu (96.1 mg, 1.0 mmol). The solids were suspended in 1.5 mL of THF and then, 1a (272 μL, 2 mmol) was added. The reaction mixture was stirred at 30 °C for 3 h and then, quenched by addition of iPrOH (1 mL). The resulting brown solution was concentrated. Hexane was added to the brown oil and filtered off to give colorless crude material that was purified by flash column chromatography (hexane : EtOAc = 96 : 4) to afford colorless liquid (167.2 mg, 51%). The product was solidified on standing or scratching by use of a spatula. 1H NMR (400 MHz, in CDCl3, rt, δ/ppm): 7.91 (d, J = 7.6 Hz, 2H), 7.72 (m, 2H), 7.63 (m, 1H), 7.46-7.39 (m, 5H), 4.84 (s, 1H).

19F NMR (376 MHz, in CDCl3, rt, δ/ppm): –73.2 (m, 3F), –105.3 (dq, 294.9, 9.1 Hz, 1F), –106.0 (dq, J = 294.9 Hz, 15.0 Hz, 1F). 13C NMR (100 MHz, in CDCl3, δ/ppm): 190.8 (d, J = 30.7 Hz), 135.0, 132.3, 131.5, 130.2 (t, J = 3.6 Hz), 129.8, 128.7, 128.5, 127.0. Signals derived from CF3, COH, CF2 were not able to be assigned due to low intensities. HRMS (EI+): m/z calc. 330.0679 (C16H11F5O2), found 330.0676.

(b) A screw-capped test tube equipped with a stirring bar was placed CuCl (2.0 mg, 0.02 mmol), 1,10-phenanthroline (3.6 mg, 0.02 mmol), B2pin2 (101.5 mg, 0.4 mmol) and NaO’Bu (38.4 mg, 0.4 mmol). The solids were suspended in 0.5 mL of THF-d8 and stirred well. To the resulting suspension was added 10a (70 mg, 0.4 mmol) and PhCF3 (10 μL as an internal standard). The brown viscous mixture was stirred for 30 min. to give a dark brown solution that was transferred into a J. Young tube and analyzed by NMR. Then, to the solution was added 14a (31.8 μL, 0.27 mmol).

(c) A screw-capped test tube equipped with a stirring bar was placed CuCl (2.0 mg, 0.02 mmol), 1,10-phenanthroline (3.6 mg, 0.02 mmol), B2pin2 (101.5 mg, 0.4 mmol) and NaO’Bu (38.4 mg, 0.4 mmol). The solids were suspended in 0.5 mL of THF-d8 and stirred well. To the resulting suspension was added 10a (70 mg, 0.4 mmol) and PhCF3 (10 μL as an internal standard). The brown viscous mixture was stirred for 30 min. to give a dark brown solution. To the solution was added imine 24 (54.6 mg, 0.2 mmol) and then, the solution was transferred into a J. Young tube. After 5 h, white precipitation was observed. The reaction mixture was treated with NaOHaq. Water layer was separated and extracted with ether three times. Then, the combined organic layer was dried over MgSO4 and then purified by HPLC to afford white solid of compound 25 (48.3 mg, 56%). 1H NMR (400 MHz, in CDCl3, δ/ppm): 7.86 (d, J = 7.6 Hz, 2H), 7.61-7.52 (m, 3H), 7.41 (t, J = 7.7 Hz, 2H), 7.06 (m, 4H), 6.98 (m, 2H), 5.73 (d, J = 9.7 Hz), 5.17 (m , 1H), 2.32 (s, 3H), 2.26 (s, 3H). 19F NMR (376 MHz, in...
CDCl$_3$, rt, δ/ppm): –104.7 (dd, $J = 279.2$, 12.2 Hz, 1F), –105.9 (dd, $J = 279.1$, 13.1 Hz, 1F). 13C NMR (151 MHz, in CDCl$_3$, rt, δ/ppm): 188.9 (dd, $J = 28.9$ Hz), 143.5, 138.8, 137.4, 132.3, 130.0 (t, $J = 3.0$ Hz), 129.7, 129.4, 129.3, 128.8, 128.5, 127.2, 116.3 (t, $J = 261.6$ Hz), 59.9 (t, $J = 24.8$ Hz), 21.6, 21.2.

HRMS (CI+): m/z calc. 430.1288 (C$_{23}$H$_{21}$F$_2$NO$_3$S+H), found 430.1285.

(e) A screw-capped test tube equipped with a stirring bar was placed CuCl (2.0 mg, 0.02 mmol), 1,10-phenanthroline (3.6 mg, 0.02 mmol), B$_2$pin$_2$ (101.5 mg, 0.4 mmol) and NaOtBu (38.4 mg, 0.4 mmol). The solids were suspended in 0.5 mL of THF-d_8 and stirred well. To the resulting suspension was added 10a (70 mg, 0.4 mmol) and PhCF$_3$ (10 μL as an internal standard). The brown viscous mixture was stirred for 30 min. to give a dark brown solution that was transferred into a J. Young tube and analyzed by NMR. Then, benzyol chloride (23 μL, 0.2 mmol) was added. After 9 h, the mixture was concentrated in vacuo and then extracted with hexane. The extract was filtered off and then purified by preparative thin layer chromatography followed by HPLC to afford white solid of 27 (50.1 mg, 58%). 1H NMR (600 MHz, in CDCl$_3$, rt, δ/ppm): 7.91 (d, $J = 7.3$ Hz, 2H), 7.81 (d, $J = 8.0$ Hz, 2H), 7.61 (t, $J = 7.5$ Hz, 1H), 7.57 (t, $J = 7.4$ Hz, 1H), 7.43-7.33 (m, 9H). 19F NMR (565 MHz, in CDCl$_3$, rt, δ/ppm): –63.3 (t, $J = 12.7$ Hz, 3F), –103.5 (dq, $J = 268.0$, 11.2 Hz, 1F), –107.2 (dq, $J = 268.0$, 14.9 Hz, 1F). 13C NMR (151 MHz, in CDCl$_3$, rt, δ/ppm): 186.8 (t, $J = 27.7$ Hz), 162.5, 134.3, 134.1, 133.9, 130.4, 130.2 (t, $J = 4.3$ Hz), 129.9, 128.8, 128.7, 128.3, 128.2, 128.0, 127.4, 122.8 (q, $J = 291.1$ Hz), 115.2 (dd, $J = 267.7$, 273.2 Hz), 85.6 (m). HRMS (EI+): m/z calc. 434.0941 (C$_{23}$H$_{15}$F$_5$O$_3$), found 434.0932.

Copper-catalyzed reaction of alkoxide 23 with aldehyde 14a: To a vial equipped with a stirring bar was placed NaH (4.8 mg, 0.2 mmol). The vial was cooled to −78 °C. To the solid was added THF-d_8 solution of alcohol 4a (66 mg, 0.2 mmol, 0.4 M) that was cooled to −78 °C in advance. The reaction mixture was stirred for 1 h at the temperature, and then gradually warmed to room temperature overnight. Then, the resulting solution was added into a test tube containing CuCl (2.0 mg, 0.02 mmol), Phen (3.6 mg, 0.02 mmol), B$_2$pin$_2$ (50.8 mg, 0.2 mmol) and PhCF$_3$ (5 μL as an internal standard). The reaction mixture turned brown that was transferred to a J. Young tube and analyzed by NMR. Other related experiments were conducted analogously.

4.5 References and Notes

Concluding Remarks

In this thesis, transformation reactions of abundant perfluoroarenes and trifluoromethylketones were developed by use of palladium, nickel, and copper catalysts involving cleavage of C–F bond as key steps. Related fluorine containing organotransition-metal complexes were synthesized along with full characterization and evaluation of their reactivity.

In chapter 2, Pd-catalyzed coupling reaction of perfluoroarenes with arylzinc reagents promoted by addition of LiI was described. One of the roles of LiI in this catalytic reaction was to promote the oxidative addition of C–F bond of perfluoroarenes to palladium, and the other was to enhance reactivity of arylzinc reagent by forming ate complex to facilitate transmetallation step. A transient three coordinate palladium complex was proposed as a key intermediate that was supported by comparison of the reactivity of bisphosphine and monophosphine palladium complexes.

In chapter 3, a well-defined nickel difluoro-enolate complex was synthesized via C–F bond activation of trifluoromethyl group of trifluoroacetophenone coordinated to Ni(0) accelerated by addition of B(C₆F₅)₃. The nickel difluoro-enolate showed unique catalytic activity toward dimerization of aldehydes as well as highly selective crossed-dimerization of trifluoroacetophenones with aldehydes to afford a variety of esters.

In chapter 4, Cu-catalyzed formal Reformatsky reaction via C–F bond cleavage of trifluoromethylketones with aldehydes was developed. The key process of the reaction is the formation of a copper difluoro-enolate via 1,2-addition of a borylcopper intermediate to trifluoromethylketones followed by β-fluorine elimination. The catalytic reaction was highly selective to give the cross-adducts and showed wide functional group compatibility. Mechanistic studies including the isolation and characterization of a possible anionic copper alkoxide intermediate suggested existence of unique equilibrium of copper difluoro-enolate species that is a key phenomenon to observe high selectivity of the catalytic reaction to afford cross-adduct.

The studies in this thesis will provide a new strategy toward synthesis of organofluorine compounds from relatively inexpensive and abundant starting materials. Mechanistic investigation conducted in this study would be a unique approach toward understanding reaction mechanism involving fluorinated or even non-fluorinated organotransition-metal catalyst.
List of Publications

1. “Copper-Catalyzed Reaction of Trifluoromethylketones with Aldehydes via Copper Difluoro-Enolate”

3. “Palladium-Catalyzed Coupling Reaction of Perfluoroarenes with Diarylzinc Compounds”

Supplementary Publications

4. “Ni-Catalyzed Intramolecular C–O Bond Formation”
S.-J. Han, R. Doi, B. M. Stoltz, Submitted.

5. “Preparation of Trifluorovinyl Compounds by Lithium Salt-Promoted Monoalkylation of Tetrafluoroethene”

6. “Palladium-Catalyzed Coupling Reactions of Tetrafluoroethylene with Arylzinc Compounds”