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Fig. 1.1.1 Sectoral energy consumption in Japan™®.
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(Zeldovich NO)
N+OH=NO+H
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F£2E
ERKRN—FITE T DIRENABE DR

2.1 INBRERKRN—F 2B+ HIRENAG

wWEREE D @@ @ 3 AT AR =TS KM a sy FET, EETRTO
AR BEEE I B W CRET D, IRINRET D &, MO TRERBEIRIZRD
000 T, GBEIC Lo UIFEFITH LWRE EF TRZEL T, KRZDHLDBIRE
HAERIT. S OITEESOBEEENPEML, BREEZEE OB S 2 WO IR EE 2
L7 5T Y BRAKEA—FTITBNT Y, N—F ke, BEEREY &L (XK
72 & DIRBESAEIT Lo T, IEEREEN AT D O LasLAan s, BRkg A A—F
(kLT IRENBRBE & [RIRET 2 HF{EIIMESL S LTV 7.

& ZCARETIE, IREMWREEZ I3 28 8) e B R KR AN —F OEHEH 2B 5N
TAHZEAEAMNE TS, IRERBEZINHIT 2121, & OEREOIRE 2§~ TERE
O TEMEND D P KEH T, P 10 mm O/NEER KK ANA—F 2 HNT
PRENIRBE D JE P E-CIRIE 2 i~ 7. MEEIR KR AN —TF 2 OB I, WX +5
NSNS, EEPRILGIRE)N T SR — NOHR 720, - FHHRE— NE
B SEIEIES) D @ O 2 ZETAMTERRNEZEZ D THD. IMRERAEN
— T CHRAET HIREWABE DT 13 L OSEEE B O BB 5 2 Mt U, IRENRE S BT
HIFRFNZOWTELE LTz, £z, N—T IR L ORBESM: &, TEIREI D58 D B
R~z

21.1 EREBL JURBRENL

¥ 2.1.1 (\ZERARN—TBIRRY v MEZRT. ERAKRAN—T IR & b
HabHonUORAT 2 TRATE L, BB E B bA OR A B IREREE I X E T
WELZYRLTE., TRAKIIMBIREZ L ELIELT2DD /Ny 7 7 22 ZiiiE L,
20y MAENLTH T ZAEICEMAND. 2 v MEIZWEZER 0.5mmx 10 mm DR
ETHY, 6 EATICRIT. N—FTKEONRIZ10mm, £ 13mm O—EMETH D
D, BRBEE LD T T AEDER XY, BRI ZEETE 5. BRITHAE 10mm
M HEE 500mm & L7z, S—F Wik dH iz 0 OREEREOKEE B, 77 A EON
BdiFNN—FLFET1I0mm ERX—FHELY HREV20mm, 30mm O 3FEFEE L=,
%] 2.1.2 (ZFEBREEE 2R T, BRBHIER T T A 13A (IRFRAHAL ; A % 88.9%, =X
¥ 6.8%, 71N 3.1%, 7 X 2 1.2%), BR{EANTZER E Lo B O R R IRE (BE
HIfEE - 2.2kPaG)) TH 5. ZEXKIFa L T Ly FICEIVHEL, L2 —ZITkoT
200 kPa & CIE L TG L7z, BB Z25d=— RV FRICTHEE O EICHHE L7z
%, XRUF 2 —IF P TRASETCN—FIMB LIz, KEORALEEH IR Z D=
D, KROAFNZNT 7 A4 N TEEEESHE X, OH* (LR 306.6 nm)
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& CH* (FFULNiR 431.1nm) OBEEEBZFHIIL7-. EbI, HEE~A7u7 x>

(PCB 14, 378B02, H &L I X > CRHAI L7, A 7 1 7 4 > D& 50 mV
IPa, JEWE)GEI1L3.15Hz-20kHz, ¥4+ v 27 L UiL16~135dB TH 5. 85
L7 —% v 77— (NEC #, Logger station 11, DL2800) % T, 50 us = & IZFEdk L7=.
EEERSERET A0, 50kHz Du— 27 4 VX2 & L. 7277 L, CH*
& OH*D B SR EIZEE LS o 72728, OH*OfE RO B io#k L7-.

Glass t% 7 WY

e o —
; fd)lO
Buffer space ' f Slit part o,
o .n:" I : /\\\
o
S M-
Premixed : :
gas : | “
- K - 1 . . \ © 8
< d)35 + N v
" 66 '
(a) Tubular flame burner (b) Slit part
Fig.2.1.1 Tubular flame burner and slit part.
Microphone Needle valve Mass flow meter
—— 1 Glass tube
— 2 HOOF—— w6
Optical fiber :
P Air compressor
) G Air
Tubuler Mixer Regulator
flame burner
CH* signal

Logger

Optical wavelength ~OH* signal

demltiplexer tl ICP® signal
conditioner

Fig. 2.1.2 Schematic diagram of experimental apparatus.
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2.1.2 AR KR /N—F DIRENABE

EARKR AN =T TOREABEIIR O 3TN HDH B2 BN D, —DITRBEC XL D
JENEE DS RIABET D 2 LI X A IRBEPEIRENABE. — 2 BITKRDIRIED AL
EMEIZ D W TIRENT 5 K RIESH), HRITEOIR TEE 2 8P LIBIRETH 5.
KB IREN IS BN Hz TRE CIRENT56 Z L TARB L OENEHTHEHRTH
5. 2L, RROENEED D, b LIIRELZIE TS 2L ChETE % ©.
BAIRKRAN—FTOFEFLPRINIAY v ML BIEE & SITEEEDE NI
ASTER, BIARITIE U CRE O B IR S D 2 L TEL B, BOFEY
YL IREN I IHEST M — R, A ME— ROBE, FERIFMICMZT, Znb60
MAGDLENFET D, 4, PR rm], BESIMOMEOMULERREEZD &,
TR A IREE f[HZ) I3k TE5 265 @,

C n ? a ?

22T, n 30 2RO, am 1T ME— RIZX L TH X b EERou#
Thd. SROLIICEIICKH L TEER DI/ WS, BIZIZ# e — R

(Organ pipe oscillation) DIRENNAEL S L S5, 512, FEALE, BILOBEM
EZBET DL, WImE— FOREE f, [HZIZTRAUER TE 5.

_(2n-1)c_ (2n-1)c
*T4(1+Al) 4(1+0.6r)

T, r[mNEERR, c[m/slixEE (FIROEA 346 m/s), AIm)IXBE DA EME (=
0.6r), niF#hFmOE— NI (EOEEEK) THD. n=1, 2, 3IFENENILK, 3
W, 5IRE—RERT. BEIIREEE |, &~ 0fHES 13mm OAFHE L
7. BRIBERE ONFE d=20, 30mm DiGHE, BEIZITN—T N E OEWEBET H0EH
DB, SENEEEO7-HR(2.1.2) % Hu .
BFOREEEHHDOTHEEL UL SPL[ABYIE, F/E & HUEfiE & Do s
FTXD.

(n=12,3,---) (2.1.2)

SPL =20 log,, [ﬂ} (2.1.3)
Po
T, FYEE po XA NE OB/ INITIESEETH Y, 20x10°Pa L HE 265N 5.

RENRIE D A B R E 2R~ 5 729, FHl L7z OH*, CH*, HIEORRIIT —X %
E T — U =5 (FFT) (& » CRHREEOIT &21To72. o7 asu 24 2L, &
>INV D AERGEMEIZ L DT —ER/MET 572, B (Hamming window)
R U= FFT 2 E0E L7=. 35 Y 7 MiZiZ MATLAB R2010b % v 7=,
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2.1.3 ERERPLUEBR

2131  RE [ IRENABEEL

FRALAIC b D 28500 B o BePEAOIZER E L, BREHT B % 2 b S8 CLERBERLPH 2 5k
DIFERAZK 213 17T, fitiha Y &by, Ml EKOMEL LTW5D. i, B
BEEF 1;=100mm, REEE OWNZE d=10mm Th 5. FLEKRTET, EIRKEIIEK
SN D REA R O Y B biZB L F¢=05, REHBRIERIIE X Z¢=1.3~1.4 O
Thoto. ZEXK e 10L/min TiX, HELOIZITEWM TIREYAIENRE L. X
TEOBEINZE, IREYREENS AT 2 Y RO 720, 2250 E 20 L/ min
EHZDE, BFAEHMITS=0.8~1.1 TIREEIT/->7-. 40L/min ZH 2 52250k
BT IREWRIEII A LehoTe. BIRARDKRENEL 2D, KK PR/ —
FTEREXIZ LN, WERME SN —RE LTRSS, ZiUE, KR TEmRAA
—F & D LR EIEINCPE 5 I ZE B O HRIE O N I S5 i E OB
Bl —%T 2 D ARBORBEAT Z N7 72 D KR T S EiROBEE T 1%, BRBEE
[ZHEET D, Flo, KREIIEBHLTBY, BEETANEET HEETLT LS —E
TRV, RIRIBARDNRBET 2 SR LRI, FiES EF- L, SRRy K
LD, ZOBRBENT ADmmENIRL 72D 2 LT, JENEBOBMAIH S D LB
2 HID. REYAEE L KRRITITEERBERIH Y, KROEIZZBEICANToA—
FRERROOND Z EAURBEIND. 5T, ZERIE 5L/min THIEEHREE 0
s, — e, RERBEOIHNCIE, MEEAMOERAAE STy @,
AREER TS FIERIS, AR A R S W CRABE AT 2 AR L 72 355 (IR ENBRIGE A Bl &
ni-.

1 g i 13A rich flammability limit
PO el $=17
16 Extinction
14
— 12 F . Combustion
E 1 r ' Oscillation
83 : | Combustion 13A lean flammability limit
' -—mﬂ— ---|4=05
83 i . Extinction .
0 10 20 30 40 50 60
Q. [L/min]

Fig. 2.1.3 Mapping of various combustion modes.
(d=10mm, Ig =100mm)
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2132  FEMREIRFDEEEA

BIRKB N —F OF B R T 570, ZBROBEEIRKEA—FITHAA L,
JER BRI A LT, o), 2 Y v MEERD AL T, Ny 7 7 ZEEN G A
U R &S TITRBEE ICZRBN AT 2568 b~z

4 214 IZEEDORRINE Z RS . Z O, BREEE R lg=200mm, JAEEE ONE d
=10mm, ZEXJitE Qa=10L/min & L7-. AR TOER IRV, HEN5O
MEESORE NS ONFHENBIEET 22 ENBLZLNDEN, AU v MEZEIY T 725
BB EE O BN EF B S D,

0.10
0.05- wi/o slit part
<
a0
o
-0.05- with slit part
_010 1 1 1 1 | 1 1 1

1 | 1 1 1 1 | 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time [ms]
Fig. 2.1.4 Effect of slit part on temporal change in sound pressure.
(Q2=10L/min, d=10 mm)

2.151%, ¥ 2.1.4 ORRYIT —2 % FFT I X o TR LR Th D, X
Uy RS2 WGE, HEEOLESER K E % 2 55 TkHz (T 8 — 7 0N FAET
BN, FOMICE R — 7 TR T E R0,

80
_
m 60 Resonance frequency
= 40
o
& 20f
0 (bl il .
0 1.0 20 3.0 40 50 6.0 7.0 80 9.0 10
80 Frequency [kHz]
—_ Organ pipe oscillation
Q 60 7th '
— 40
o
& 20

0 NJ ﬂ\i..tﬂ.lm L \l [P T ST |
0 10 20 30 40 50 6.0 7.0 80 9.0 10

Frequency [kHZz]

Fig. 2.1.5 Effects of the slit part on the frequencies of organ pipe oscillation.
(Q2=10L/min, d=10 mm)
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AV hEFRE LSS, BHOE—7 PERTE 5. FHUMEO v — 7 fE X5 7
— ROFEARF I EHERITE 55 0.8 kHz OFEE L 25720, X(Q12)%E2EET D
&, e — ROEEFHEEZLND.

WIZAY v NERZRRE L, ZZ5&E%Z 100/ min EEELRET, BE 1,221
VG E ORI EEZ T~ S BIC, BREEE ONE% d=10mm, 20mm, 30 mm &
EELEGAICLFHNEIT -7, fEREK 2.1.6 12737, BREEONRICE ST, FF
HEIZE RN 213 L, IREBEMR T T oMM Afo 2 Tk v, FHEE & EHIE
HFIE T D NS, £, NA—FHE 10 mm LV HREEE ONED K E
WA (d=20,30mm) T, I(2.1.2) THEEFALIGIRE OB A TR TE 5 2 &
WDOIND.

10.0—=
HARCES) Organ pipe oscillation by Eq.(2.1.2) | ™ 9th mode
—agl AN <~ 7th mode
T 8.0r: - 5th mode
X, 60 4 3rd mode
- 1F 1st mode
[&]
S 4.0
>
@ 20
L L= =]
0.0 1 -c=- | T T oA - == ]
0 100 200 300 400 500
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Fig. 2.1.6 Effects of the glass tube length on the frequency of organ pipe oscillation
at different tube diameters. (Q,=10L/min)
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2133  ERAEONKIRE L BEFHHEIBIRE

BRBER Quav=0.56 KW, d=10mm, I;=200 mm DA TIE, ¢=0.56 LU O A& HR
B, & L <IiXg=1.5 DL oAl CHIRENABE N BB S 7=y, ZRLISMIT TR
BRBE L Ir o7z (M 2.1.12). X 2.1.7 ([ZIRENABEA [EEECT & 72¢ = 0.56 OFERB L O
OH*DEFRANT — &, [X2.1.8 (21X 2.1.7 % A BT L5 R4 179,
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o \p ]
-0.5F ] l;!
L OH -0.10 £,
n X
- 40.05 T
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Fig. 2.1.7 Temporal change in OH* and sound pressure without oscillation combustion.
(1g=200mm, ¢=0.56, Q,=14.2 L/min)
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Fig. 2.1.8 Frequency characteristics of OH* and SPL without oscillation combustion.
(1g=200 mm, Qunyv=0.56 KW, ¢=0.56, Q,=14.2 L/ min)
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X 2.1.9 1%, IRENVRBENAE L TV DH9=1.0 DFLELB L OH*OFERIIT — X TH 5.
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Fig. 2.1.9 Temporal change in OH* and sound pressure with oscillation combustion.
(1g=200 mm, Qunyv=0.56 KW, ¢=1.0, Q,=7.9 L/min)
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Fig. 2.1.10 Frequency characteristics of OH* and SPL with oscillation combustion.
(1g=200 mm, Qurv=0.56 kW, ¢=1.0, Q.=7.9 L/ min)
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Fig. 2.1.11 Effects of the glass tube length on the frequency of flame and organ pipe oscillation
at different tube diameters. Gray zone indicates no experiment data.
(15=200mm, ¢=1.0, Qa=7.9L/min)
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211212, BEEEONRE d #EHE LT, YEE SPL ORRERRE R AR
T 15=200mm, Quuv=0.56kW & L7=. BREEEONREIMSEHI1TE, A,
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Fig. 2.1.12 Effect of glass tube diameter on SPL. ( I;=200 mm, Qv =0.56 KW)
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Fig. 2.1.13 Effect of combustion quantity on SPL. (d=20mm, ¢=1.0)
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Fig. 2.2.1 Tubular flame burner. (A: 8-inch burner, B: 12-inch burner)
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Fig. 2.2.2 Schematic of apparatus.
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Fig. 2.2.3 Appearance of flames. (8-inch burner, Q,=600m?y/h)
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Fig. 2.2.4. Mapping of various combustion modes in the 8-inch burner,
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L, ZEXEAHIN &S Q=650 miy/h O&MEIC/ % &, ¢=1.05 (T2
T, EEEOW U EERS 2L D BREEIRRE L 72 o 7. 2 O& AN ITERN, 50
WA I AT 208, RBHEE AN S e=11 LT 5 L2115, EXitRE S
SICHIINESE 5 &, ), OTHENZ&E, +72bb5, Qu=700m’/h TiX, ¢=0.95
~1.1 OFiF, Qa=750m\/h TiE, ¢=0.95~1.15 OFiPH, Q,=860 L1 890m3/h
DEETIL ¢=0.8~1.15 OHiH TH)E 5 OB L WIRENABE DI A MR I . 42
KIEOHME & B2, EIRBEORAT 2 BB OFMIL, HimRA AT E Fl
[ZIRAZHERT DA H 5.

WU, 12 A »FR—=F BT HRBERIEZ 7. X 22512, 2240 1000 m*y/
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D THRIENE— T2 EIRDOKRBIERSND Z ERbnD.
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B (4=1.0)

C (4=0.8)

Fig. 2.2.5 Appearance of flames. (12-inch burner, @, =1000m?®/h)
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Fig. 2.2.6 Mapping of various combustion modes in the 12-inch burner.
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Fig. 2.2.7 Pressure fluctuations in the 8-inch tubular flame burner. (Q.=800m?y/h)

Z 2T, ZOHEBARIBOVIREWREE (X 2.2.7 © 1 OEsy) 23 LD
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Fig. 2.2.8 Pressure fluctuations in the 8-inch tubular flame burner.
(Magnification of part I in Fig. 2.2.7)
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Fig. 2.2.9 Pressure fluctuations spectra of the 8-inch tubular flame burner.
(Q.=800m>\/h, part | in Fig. 2.2.7)
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Fig. 2.2.10 Pressure fluctuations in the 8-inch tubular flame burner.
(Magnification of partIl in Fig. 2.2.7)
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Fig. 2.2.11 Pressure fluctuations spectra of the 8-inch tubular flame burner.
(Qa=800 m3\/h, partll in Fig. 2.2.7)
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Fig. 2.2.12 Pressure fluctuations in the 12-inch tubular flame burner.
(Qa=1400m>y/h)
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TEREZDZ DD (X22140~3).

DEDZ LMt 84T, 124 FR_R—F G EDH, IFUHIZ 1000Hz iz 5,
FERZHOHRNE D 59 = B IR ENRBE S A L, RWT, [EAIRIBO R E 72, 7220, &mK
DE— REfEo IO GRS AET L2 R LN E R o T,

80p - e )
1602‘ $=1.2 CB %@ —
140F :
120f
100E
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o

- ¢=0.7
_III 1 1 IIIIIII 1 1 1 | 1
10° 10° 10°
Frequency [Hz]
Fig. 2.2.13 Pressure fluctuations spectra of the 12-inch tubular flame burner.
(Qa=1400 m®\/h, part | in Fig. 2.2.12)
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Fig. 2.2.14 Pressure fluctuations spectra of the 12-inch tubular flame burner.
(Qa=1400 m®/h, part 1I in Fig. 2.2.12)
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2.2.3 B

FHER SRR ENC X, AT — R, JBARTE— R, FRFT— ROEIHNRH
%, B — RO L0 FESRIEIRENT, AR IC BV TRAERNL L T
W 2o @EAREE B, —WEO, Mmoo REEOS & TIE, BTFOR
ThHEz 6% @ 149

_(2n-1)c_ (2n-1)c
* T 4(1+Al) 4(1+0.6r)

(n=1,23,---) (2.2.1)

TG, r[mIEE L, IMIXEE, c[m/siEEE (FIEO%E 346 m/s), Al[m]ixEd
OMEME (=0.6r ™), nidiiFmoE— Mk (E0¥E) Ths. n=1, 2, 31X
ZTNER 1R, 3, 5RE— FZ5R7T. KR2DIZ8 A FNN—F, 12 4 F—
FENZNOETT, BLY, LB PHEFHE P RO 7 PETHLAICHIE S i RS
ZIRE ZMHIE L CROZEE (8 4 > F /83— : 2130K, ¢=861m/s , 12 A »F/—
J: 2050K, c=865m/s) Z{XAT 5. RSz, 1®E—FK (h=1) T,
ZNEh, 116Hz, 94Hz, 3%kE—F (n=2) Tb, 346Hz 283Hz S{&<, &/ERE
BHRBED AR & 135 2 b e,

F 2T, FHHIME— RB LOERFRE— R2EE L7 T8 A i LB RE 2 MEt L
7. R2.2.0)THY o -l T — RISz, BFME— REBLOERFHE— R
B L R IS IRE B S, BRI W TR RENEr Th D LT D5
K& b & TIE, Tk (1), (13), (14) 228175 L, kA TROLND.

f :_E_J(9h1j2+(}§§liiki)z (2.2.2)
27 r 2(1+0.6r)

JE I DS RBERE D JE ST 16 K OREE T A MeiE T 5 Z LIS T 2D (apm /1) 2 TH
5. Xk (16), (17) ZZBIZL T am PDIEEZED, 8 A » F 3\—F DOEA IRE)E K
BAROIFERER 221 Of (F221A) 12, —7F, JEBEEMH (22211 TR
DT R IRE O E RS AR 2.2.1 4 (£ 2.2.1B) 127, R 2.21A TlE, 17124
FHE— RRE ngZ, FNPERFHE— RKE mEL->Thsd. 7ok, MHELHEA
2k D&, 1000 Hz BLETIE, (2.2.2)% “1H T, 6 HICHAIEFIT/NHNS VDT,
ZIZTIE, FEEMIC n=1 L LTRD T,

R & ERE A L9 5 &, FEBR TR S 7z 2450Hz ORENX, S HE— R
nNe=1, PRAF M m=1 OBRE EBDO TR —H L TWDZEn3bnd. T7hbb,
ZDT A YUED RS FEV 2450 Hz ORENE, Bl FRIES AL - R IO 8 T e — K
Ne=1 DRENE 72> TWNWDZ ERDLMND.

FHUITHNTT U LEDE W2 FHOE—27 D 5060Hz DIRENTH 5723, [H L m
=1 O¥FEET—RThH, AFHET— KN ng=0, £ 0, fdFMEDH 5 IEEHE— R
IZEAE—HLTWA., R m=1 D¥PRE—KTH, HAHRET—FDE W Ng=2 D
4030 Hz DIEENE, BIEEIN0.
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ZOWITHEE S D 7330Hz 1X, 300Hz FREE S W HIZ T TITW D25, Y, FHil
KHE—R (ng=1) @, LL, FRFAE— ROREIZOEDEV m=2 OIREIE
— RIZXHIE L TWD Z Enbnnd. £ LT, RICBH S5 9830Hz DRENIE, 600 Hz
FBEELS 2> TVD2, R m=2 O¥FE— FTHLEFMEDH 2 HFHE— K (ng
=0) ZEZZ50PZHO L HICE DD,

Table 2.2.1 Comparisons of radial and circumferential modes of natural frequencies
and peak frequencies of pressure fluctuations in the 8-inch burner

(A) Caluculated (B) Experimental
Radial mode
n Peak Frequency
o |0 1 2 3 (Hz)
3
= 1st 2450
= 0 [ 5050 [ 9240 (13400
= 2nd 5060
&
> 3rd 7330
b= 1 | 2430 | 7030 |11250
§ 4th 9830
O 5th | 12100
2 | 4030 | 8840 |13130
6th 14800

FERIC, 12 4 »FNN—F TR LK 222 1TR-T. 12 4 FAA—FIZBWNT
t, [X22.14 TTF U UUENR S KE UV 1680 Hz OIEENE, FEHe# (ng=1) T¥
BT — ROWHE DR BIEV m=1 OIRENHRD T L, RWTHEHISH 5 3500
Hz OIRENE, FICHEE—RFm=1 TH, #xdHOREE— N ne=0 (21T & A E—
LTW5%. 3FHEDOE— 7 JH4 5085Hz 1%, 8 A > F /3 —F L[EEE 300Hz HW\ b D
ORI AT — ROWE m=2, JHAFAE— K ng=1 O HOEREE— N, £
LT, 4AF/BHOE—7 FWHIL, 2130, 814 F 3 —F L[EEE, 400 Hz RS < 72
STWDHD, FHOEFREDH D ng=0 ODIRFET— FEL72> TN 5.

LEDZ &0 6, BRKRAN—F TEM S5 & JEF OIREABE X, EHFmE—R
EHBETME—ROD 7V 7 LI BEZHIIBIREIRE TH 2 2 L B3 B &
Tpoi-.

FRIZ,  HROE D55 RENERGE O J8 BT s R e 24 & (M 2.2.9, ¥ 22.13),
8ATFN—F, 124 F"—F L, AFMET—F ne=1, FEFMET— R :
m=1) ORENIT L OIHND Z &0 D, BRKRN—FTIL, FEfFROME J7 1€
— R (ne=1) DIREYABEDIE L BRI boTWNHEEBZLND.
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Table 2.2.2 Comparisons of radial and circumferential modes of natural frequencies
and peak frequencies of pressure fluctuations in the 12-inch burner

(A) Caluculated (B) Experimental
Radial mode Frequency
Peak
3
= 1st 1680
—= | 0 | 3450 | 6310 | 9150
= 2nd 3500
S 3rd | 5085
€1 1 | 1660 | 4800 | 7680
§ 4th 6760
o Sth | 8470
2 | 2750 | 6030 | 8970
6th 10490

ERIC KX, BT — RO BRAIRIREN Y, BRREHESED > b
D W 2 F hxr—var Wik TRAEL, F7-, REEZOBENHTIZI
BNEPTHEACRELLTVEEND O @ FHz BIRARA—F T, Y&
b1 &35 8, KERERNEMU CARNERETEEIBR S, B LWIREIBREEN
FE TS (X 223~226 &), £, BIRKEA—FTIE, BEHEOMHEE LT,
RE LAY v b AS—FAEEICESERLE S5 720, FROERDS IR X 0
Bty BEEPEOWNY (BT - k) BB —K LTk 0 5720, 61, b
HEOH, Lo T, kRERORKE WHHIEASKMNITORAKEZRESE D5
B, KREPEEMTE DAY » MEBIZ AV IAD 720 E W) WEHKI O 72, Ol
TARDHEAARNC AR S B 2700, 2D, B FROREES O RS 2 151F, JF
ST — FRORERBED LIS R >T-b D EEZ HND.

Fo, WEAHEOT & REEEORBIRBE IR IER T 2@ 5 508 (4 2.2.4,
22.6), ZHUE, MENSMZDHIEE, F/o, YELEN 1 206THDITE, KEENHY
L, —F, BHEERSIE, AS—FReh bRz L5 EY @Y, oF v, HE
DI D FIRIT A« BRI 2B < 3B Ko THED N A BRI FrENgs £ 5 = & T,
FEHIRIFAE — RORENREED B EIZ O N ST D EBZ I HND.

L7235 T, BRKRK A= 2 5 EE OWRBNAGE 2 Bl 32 o1k, #hxhFrk
(243 BLRE L 72N —F O BUESCE R A A Wit 2 FfEDIRICER S X 9 ITIRA RO &
LEMEBET D2 ZERHECTH L EEZBND.
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3=
EIRK R DR

3.1 ER KR DIFEETOEEFE

BRBEIZ X 0 G D= BE FEZEO M TRE TR 5121%, £ DIEBORMEE 5312
T O2MERH S, L LN D, EHRAKROREEREICET 208325 H 5 13
(5 1 wm2M), WRKROLBEFHEICET A2 RITERTH S, RETIE, Bk
RNX—F DREARFEEIH O N THZ L2 AN ET 5.

BIRKRAS—F OENITIE, BIRKEDTERR S35 KR FEI & RBERSHE T % ORR
B T AREIR D 2 SOIFET D KR EI CIXFE RO RRIBESKNEE L L TV D20,
BADRENITE A LR, —T7, RBED AL CIXE I TRIRORBEND A L9 57
D EMBREVEEE 2 7R T AY, FIRICWD UTHEWVEIRIE DI EE I L - TUIRBVEFE MK 9
L. IHIT, FRENOMEKT, RS M EL (R ERTFETHIAEREICE-
TEbTAHEZZLND.

Z 2 CAHEITIE, KRB X OWRBES A8 COBEVEREZ TR D . B AR
— I ZEE BRI 2 B 1, BRHER O sl M oK & B RER ORE 346, 72
DONTERBET A DR EZRE L, RTEVEERE RO, 518, FFREESICT,
SRR AUMBNZ 31T 5 RFTEMEESR H R 7.

3.1.1 EREREBES I UERAE
3111 BREEETOEREEER

BN TZE IR AR AN —FT O 2 X 3.1.1 12, —EHEENEHEGZ T ()7
FERLEE ORI 2 X 3.1.2 (23, PNEE dy=28 mm @ SUS304 Hl/ X —|ZiHF 50 mm, J&
X 2mm DAY v MROMKEER 2 JIFRIC 2 DB T AN T 72, R mIRENCH
BB AT A 13A (fRFEHAAL ; A Z > 88.9%, = # 1 6.8%, 7 11 3 3.1%, 7 # 2 1.2%)
L LD TIRAEREMET D 2 L CENICHERIEENIE 2R S 7. N—F D M%fa
RN ORED AT — S, 1231 TH D, N—FHOICE S 884mm & 5 & A EL
AR 2 B 1) 72, EE B HLER 1T, SUS304 FLOWNE (NEE 28 mm, AIJE 1 mm)
ET7 7 VVEOANE (N4 mm, AESmm) 225720, PNEWNEEBREE D 273,
g 5 mm OBRIRER 2 ¢ EIKDSREE T A &t L Tiidv 2. AKOIREE L 70 mm [# k& T 13
AR, PESMEERNEEE 1E 140 mm R T 7 RICB W T K BUEVGESHZ CHIE L 7=, $£77,
PRIGET A DR 2 K BIEVESHC CTHIE L. 20, kRoE S, “HEEXHSH
ROMRDVICHE 28mm OFHEAT 7 AE 20 FH1F, BHRIZ KXV HEE L7z, #5mE
BiE 2 13— T e S OFHEE L L7-.
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Mixture
Tubular flame 4 JFTubular flame

) Combustion gas \Combustion tube
Mixture 'Unburned mixture

Fig. 3.1.1 Tubular flame burner.

Mixture z=0mm Mixture
11
= [a—
o
I =
L RSTm —
Ej‘ Water out o} | Burner
5 28 Il -
&, ~
- 30 ] ¢ =
2y !
o 40 oo \&
= . o |ce
(¢ =
< :
5 Test section
=
Water in
O
s | Combustion gas

Fig. 3.1.2 Experimental apparatus.

31.1.2  FEMABHS TDIRREER

311 O " EERBHEOAD VT, NEIC 10 um [E0 SUS304 §E 4 150 At
725 & 453mm, WNEE28mm, BWE 2mm O 7 7 U VEZED A1), FERREESS ToOEVR
EROWELEIT-T-. WEMBUC LY 2T L ABIZEBR R 2R ESE-. HED
PNAMENZHREE 0.1 mm O K BUEVEE A B0 £, PNSMBEIR B 227 DR RBVE 2 Al iE L
B AR E W TR 2 EH L2, FERIXFIROER THD.
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3.1.2 ERERSLUER

3.1.3 ITBRBER: Quuv=4 KW, Z25tbA=1.6 TOKIE, WEBERIEE, JREEH 2D
WS AT 2T . KREF 2714mm TH Y, KRELLFITARKHEE, Ll Ei3RbE
HAGEIR L 72D 3.1.3 OKDIBEAFL S NBERIZ IS 1T 2 RPTOEG R q % F i
Lz, F£72, RELD)BLOK(B.1.2) X v e h 2R T, 25 H L.

AQ=M,c, AT, (3.1.1)
AQ
Ty =Th Ve, (3.1.2)

ZZT, AQ IHMuB\E, My IKOEEE, cow FKDEE, AT, UK AREE L 2z
FIANLE TOKIR E D, To (X TPEFHRIC L U RDTZWEK IR, Vi 13BRHEH A
Tk, ComlE T & TP TH . T LI BEN 2 OB SR H IR 1L, &
HME L 12IF— 5T 5.

: 180 .| ' o Measured value 200

£ 15000 e Calculated value{ 2

3 e ) . _ g

5 12007 4 Water | 3(531;.
2o * o Wall E
53, 900" . $100 22
= - _ =
g [3'0 600r . ® ° .. Bh 3
: e - 50 £F
S A R s

= 300 Flame Saaa, o s

3 length A

O length | T84 ae

X 0

0 200 400 600 800
Axial distance z [mm]

Fig. 3.1.3 Temperature distributions at Q, v =4 kW and 1= 1.6.

i

w7 R 2 & RATEMEiER h OBR AKX 3.1.4 RY. JMATEMAER h 1L, BERAE
PRAIREEFE LW EREL, KEBLI)L VKRBT,

== qT (3.1.3)

g w
ZIT, qIXRATOBGRR, TolI FBREET AR, Ty (3BEmIRE TH D, 2=294
mm F TOKKETIE, RFTEEESRITH 20W/m K KV, kEHETH->TH A%
D JEFITFEILDORIRAT ANZBDILTWND T2, BEH~OEGE RGO TR L 72 o 7=,
ZIUTKE U, KRGS Pl CIXBVREZER NG L, £ 0% P mnuy g4 5.
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Fig. 3.1.4 Local heat transfer coefficient at Q v=4 kW and A= 1.6.

PRIER: QLav & 3~6 kW, ZZ5tbi%s 1.4~1.8 TLLSE TRV ERZHIE L,
R R L M EONU = hdy ) A5k 7 . BRI A 13 i A C OB D & L7
FEEIEC K& 2 B R m LR 2R3 720, ERINEWGSOEELR X M
Nuo™ T Nu Z & L7 SER G & Nu /Nup &2 836 L7-. TERN WSS o & ELT X L

N Nup IFIRATERTE 5.

Nuo=0.022 Re®® pro® (3.1.2)
M d

m:;jfa (3.1.3)
b

2B Mg IFTEERETH O, MVEREAdTABE T A O A DR & B 2R &
DOIEEEZRFIEELE L L TRD 7.

[ 3.1.5 |ZHh 7 I FERE & Nu/Nuy DR Z7~"3. P oFET 1 > MIARER,
2871y MIBRBESOCHE T2 O PRBET ATEUC I D Rr X /v MIZ R L TW5.
KRFEIK T OJRFT X v MIE, 1ZITERIO 720X ML Nu & RO EE 7R
PREET AGEIL D JHAT X BV M UE, X 3.1.4 TRLZEB Y EVEZ TR, filim
FEEEDSHI NS 5 2o TR 5.

FEBRIGESS DB HNZIC LV SR 7= Nu/Nug 2 KR 7 1w b TRy, FHREES T
I% 2=420mm F T LMEMRERSA 2 HIE L TR0, BREES OBREE D A Gk L [F]
FROMEE T Nu/Nug ME T T2 0088 s 7z, TRl COBYREROMK T, FEF
MOWENFRKTHL EEZLND.
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Gas area Flame area

o ® Qv =3.0kWA=1.7, Re=2301
A A Qv =4.0kW2A=1.4, Re=2436
O B Qv =4.0kWA=1.5, Re=2633
v v Quwv =4.0kW2A=1.6, Re=2860
< ¢ Qv =4.0kW,A=1.7, Re=3048
0 *  Quuwv =4.0kWA=1.8, Re=3190
A 4 Quav =5.0kW,A=1.7, Re=3740
o " Quwv =6.0kW,\=1.7, Re=4337
. o " Un-burning conditi
5L n-burning condition
% 8 (= Re=4000
4r éﬁgg A Re=8000 -
% o Re=16000
=1 T . % 8 _
< of X g% .
> ‘ g,
Z. . &0 9
0 A A 3 %
0 - &
10— ¢ N
3 ¢ o : Ao
B . -
6 L

0 200 400 600 800
Axial distance z [mm]

Fig. 3.1.5 Local Nusselt number including the un-burning condition.

3.1.3 e

BARKRN— T2 ZEHE BB 2 B0 11, BAHRZR O#h Tz 31T DK & &
BEH OIREE AR, 72O ONTABET A DIREZHIET 2 2 & ¢, RfrMaER 2 H i
L, KGRI L OWRBE T A I CORERHEZ T ~T-. ZOFEE, LD Z & 23
%WV@OK

. RO JHPTBVMEERIE, KR Ninfhir (BREET A6k EiEs) oA

1%4 LHEARTIERWVEE 72 5.
i. KR PEmETOX 'L ML, —RRMAEGLIRO X'V MM E e TH
725,
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3.2 4 ILREERE 2RV -ERNKOEEFEDREN

ATEINC T, BIRAROIEIERIGTIZ L 0 KK T COBBDMEESI LD Z & 038 520
L0, FT—05T, BREET AN FIRICHETICON TEYRERME T 57280, I#Ek
KHIZ L - TIE, FIRAIOBAR IR OREEIC TRPAMEL SNDH T LRI,
AREITIX, ERARKE a1 VIROBL g 2 Fiofaha~EH L7l n T, %
MRS TR T 2B IRKR OB 2 iftr 5.

(43.2.11Z, REITEEH LN 74 mm OE R KRS — T2 2 KK ML A =T
728, BRBEE QuaviX 5KW, ZERIEIX 1.5 (M EHe¢=067) THDH. X3.2212i%, K
3.2.1L TR LTe IR KR N — T i gs %A 2 T2 B as DB 2 7~ 3. 280 (3K
) X, aAVIROKGETF 2—7 (A /VIRF2—7), BIY, A REASH
FROHFLZERNIHFA SR OWNEE (NEEAE) oD, BREET AL, =4
JVIRT = — 7 L NERRAE D22 2 01 L CHER S . WNERIRAE L, k&umLi#
TORAEDOIKTZ (FFHIELEHSM) Mo Z Lo e Lc. BbEk X O9EREES
TEFIZBWT, aAg /VRF = —7 L NEHEAE ~OBMBERE & fRHT L 7.

74mm

Tubular ||
flame |

| Slit_ J
2 ’ Fuel and air - \l Combustion gas
‘{:" | Tubular flame
A \ Unburned mixture
----- E——-= | . <=

"\ Fuel and air

(a) Tubular flame (b) Structure of tubular flame
Fig. 3.2.1 Tubular flame formed in 74 mm of diameter of the quartz-glass combustion

chamber with four slit injections of tubular flame burner at combustion rate
Qrrv =5KW and the air ratio 2= 1.5.
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Tubular flame
burner

Coiled tube

Tubular flame heat exchanger

Inserted tube

Water =po .
- Water

Fig. 3.2.2 Concept of the tubular-flame water-heater. Tubular-flame water-heater
consists of the tubular flame burner, the coiled tube heat exchanger and the
inserted tube as an additional heat exchanger. The combustion gas flows
through the gap between the coiled tube and the inserted tube.

728, BIRAKLETIT WA, FEREAUCK T 2 BMRERHEOBFSEIZ DUV CTlkk 4 72
RIS 5. BlZIE, 18T —7 DA @ 7 L— Rig — L offi A @ 72 LTI,
BRE A et D RIS AR VS 5. Dhir 728 @, 3 K1Y, Dhir & Chang ©
(28D, BRI D OMEGRIC LV FERRIZ TERL S B 7o B O /P s 2 ke 3 i
ENTWAD. ZRHME T, FERVENIC L AERAOEESHERINTEY, e
FERTRE D LLERN, BMREEIZE T 5 XEREE L Sz, ASioaf VvikRF = —T7 0
BV ORIER B, Dhir 3L Chang @ 12 L VR EN-HERD S OfE & b
L.

3.2.1 EEREEB L UAE

[ 3.23 12, BIRAKRA—FT O TFHRMICES g & LTaf VRF 2 —7, BRU,
PR NS 2 2 7o i ERR G e OBEIE 27”3, X 3.2.3(b)1%, EIRAK S—F Dl
BRI BRKRAN—TF (ME : SUS304) ONZRIZ7T4mm TH Y, BRELEEROT
BARE/NN—T NIRRT 272D DE X W =3mm, 18 b=25mm OFEFRAY v + &
4567 %.

A RT =2 —71F, W dip=10mm, SME doe=12mm, EZ 11.2m TH Y, ME
1L SUS304 THD. TA/NOEXIRILIIO MM THY, BXHEILX395 HATHD. AL
Hagsl LCOWNBEL 72D a A WIRF 2 —T OBRINEDIZ78 mm T, A /VIRF =
— 7RI OR S (M) 1£486mm TH 5.
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Tubular flame burner

0 ) Mixture gas
45 2 "_
L) |
100 Tubular flame
£ 200+
]
s Coiled tube
E
= 300
=
=
<<
4004 Mixture gas
Inserted tube
500 % Thermocouple
531 e

(@) Prototype of the water heater (b) Cross section of the tubular flame burner.
using the tubular flame.

Fig. 3.2.3 Experimental apparatus of the water heater. The coiled tube heat exchanger
was made from SUS304 of 12 mm in O.D. and 10 mm in 1.D. The inner
diameter of the coiled tube was D =78 mm. The inserted tube had D;=65mm
in outer diameter. Tubular flame burner had four slits of t=3 mm in thickness
and b=25mm in width.
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Inserted tube | ——op

Fig. 3.2.4 Experimental setup for the heat transfer experiments of the water heater. Water
was supplied from the bottom of the coiled tube, and flows into the inserted tube
after the coiled tube. The pre-mixed fuel and air was supplied into the burner.
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Fig. 3.2.5 Axial position of the tubular flame and the inserted tube in the coiled tube
heat-exchanger. Tubular flame length is estimated at the air ratio 2=1.5 and
diameter of combustion chamber D =78 mm by the empirical equation by
Funagoshi et al. (2008) © and Matsumoto et al. (2011)"). The coiled tube
heat-exchanger starts from z =45 mm.
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Fig. 3.2.6 Temperature distributions at Q_nv=15kW, 2=1.5 without and with inserted
tube, L =243 mm. Water flow rate was 5L /min. Underside graph shows the
water-temperature distribution in the coiled heat exchanger and the inserted
tube along the axial direction z. The local heat transfer rate can be estimated
from the temperature increase of the water. Upside graph shows the
temperature distribution of the combustion gas calculated from the local heat
transfer rate of the water.
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Fig. 3.2.7 Temperature distributions of the combustion gas at the outlet of the coiled
tube without the inserted tube. Gas temperature was measured by R-type
thermocouple with 100 um in diameter.
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Fig. 3.2.8 Heat transfer rate at 15 kW and 4= 1.5 without and with inserted tube, L =243 mm.
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Fig. 3.2.9 Effect of the installed length of the inserted tube to heat transfer rate at 5-15
kW combustion rate with 21=1.5. Three bars show the heat balances for the
different installing length L =243, 353 and 431 mm.
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Fig. 3.2.10 Thermal resistance in the coiled tube.
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Table 3.2.1 Thermal resistance of the coiled tube heat exchanger without the inserted tube.
Ry Rsus and Ry are the thermal resistances for the convective heat transfer of the
combustion gas, for the heat conduction in the tube wall, and for the convective
heat transfer of the combustion water, respectively. Total thermal resistance R was
calculated from the measured overall heat transfer coefficient h, R=2/(dou7).

Combustion rate Qv kW 15 14 12 10 8 6 5

Water flow rate L/min 5.0 3.0 3.0 3.0 2.5 2.0 2.0

Reynolds number of water 10610 6366 6366 6366 5305 4244 4244

Measured overall heat
o 40.60 41.48 38.59 35.37 33.51 27.61 26.84
transfer coefficient h W/ m?K

Heat transfer coefficient h,,

by Gnielinski Equation W/ 4402 2692 2692 2692 2230 1748 1748
m?K
0.0145 0.0236 0.0236 0.0236 0.0285 0.0364 0.0364
Ry K/Wm
(111 (1.85 (1.72 (1.58 (1.80 (1.90 (1.84
(Rw/R%)
%) %) %) %) %) %) %)
0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036
Rsus K/Wm
(0.28 (0.28 (0.26 (0.24 (0.23 (0.19 (0.18
(Rsus/R%)
%) %) %) %) %) %) %)
1.289 1.252 1.347 1.473 1.551 1.882 1.937
Ry KIWm
(98.62 (97.87 (98.02 (98.18 (97.97 (97.92 (97.97
(Ry/R%)

%) %) %) %) %) %) %)

A JVIRT 2 — T BRI Z BT 5 IERES: TOREVRHE HHIIE L7, [X3.2111Z,
FERRIGE D ZBRAEEAE K & k9. 80 ‘COKEHIRAME NS A NVF 2 — TG T 5.
PREET A DR ICHEATIRE D2ER % A NVF 2 —7 OHBENHE T 5. JERRSE:
E LB ZERIE, ) 3.2110) TRT L 9IS, BIRkER A A—F bt sns. £72,
B4 3.211(b)IZ T L 21T LT, EEIDORWRILTOER BT 72, ZZR DAL,
ZHLERAY V2 AT Y= AT VEF L. £ 3.23 18, FEREETO, FERFEN &
FEMID 72 WD EBR A2 =T, U I3 TF o — 7R BT AR PN 0D SERAT 5 [ 0l T &>
5.

[¥13.2.121Z, FEPABE L IRIBESRME T COTF o — T IREGRHAER DI X7V NMIAE R T
FERBE THEMI D 72 WAL DO XL UL, FPAE N3 EELTE & L CE) LTz Kay O
RO Y (K 3.2.12 Bk & —F L7-. Kay ORI R > 104 O THER
INTEY, X3212 P TOHEEOMIRIL, ®@IHMNERD. aANVRTF 2 —TDEX
S, Modlnzsl Sk 23720, EEIORWIRILOFEERRERIL, MR
LA JIVABIZB N TS Kay DFHRROE E GE L 72 & B 2 D . FEREE ThHERNR
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DOEYRERT, FERETIZ L > T ER L, JERlO 720 iiil & T 5.6 fFI1E Emnro Tz,

Dhir & Chang (1992) ® I%, J&3 L7z 5 i o X v b #k(a ko> 7= o gl /3
A TR D AHBN(3.2.9) A RE L /.

N. _
- mvo_ 1+1.93 Swo'ﬁPr_w exp [—m (: /D )01 (3.2.9)
4 ”fd
m=0.89S " Re*Pr " (3.2.10)

ZIT, SWlFAT— B TH D, AU —VEIL, fih5m & BT A O O EE) & o
HRTHLD. Syid, BRKEANA—=FTDRAY v FEANA=FTHATOEENREFESNLD Z
& (pnbtus= prD%u,/4) b, N—FRMFER P OLHIET 52 LN TE 5.
(pnbtu, )u, xD*/4
xD’? ] bt (3.2.11)
u_ |u

w

Yo,

N

ZIZT, nIFERAKERA=T DY » O, biZAY v FOWE, tiZA Y v FOREL
ThD.

K(3.2.9)THR T B E L dihifi o X v b K Nug 1%, Petukhov D @ % v 7=,
X 3.2.12 (28T, Petukhov O & Kays OFFEERIE, 1FIEFR UfEZ2 7. #(3.2.9)
IZEDRETO X v M EuE, Bacigs A D ORERFTIC LY @b b s s, dlyh EEEE
NELRDICONTHEBINBET 5720, ZOEEWIEDTH. a4 VikTF2—7
BAZHIRBIR TOE XL b, R(3.2.9)Tz=45mm 75 z=531mm £ TORAT
DX/ MIEEH L TR L.

FEBRBESS CHER D 3 5 AL o ZEkE Rix, X(B.2.9)DE L IFIE—E L=, WNEHEA
BRI T, BRBEE Quuv=5~15 kW TRREES B -85 8 0 XL MO\ T
HIE LZ, K 3.212 I8 ETHIRZ T, BREES TOX /L MR, JEREES & 1F
E—BT D0, LA JVAEBREMT HICONTEMER L, Zhuudk, BEEICL S
RFEZE D R OEB) A R S ed B2 bhb.

Table 3.2.2 Characteristic length d and cross-sectional flow area S of Re = Mgd/(Sxg)
and Nu=hd/ ag.

Lement Region d S
Coiled tube Combustion gas region D D4
heat exchanger Inserted tube region D 2(D*- D?)/4

Inserted tube D; 2(D?-D;%)/4
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Fig. 3.2.11 Experimental setup for the non-combustion. The hot water was supplied
from the isothermal water circulator to the coiled tube, and air of
atmospheric temperature was used instead of the combustion gas to cool the

coiled tube.

Table 3.2.3 Experimental conditions of non-combustion

Conditions Air flow rate Averaged air velocity Reynolds number Water flow rate
L/ min. at coiled tube Re L/min
u,m/s
Non-swirling
300 - 800 1.05-2.79 5.5x10°- 1.5x10* 1.0
flow
Swirling flow 100 - 800 0.35-2.79 1.8x10%- 1.5x10* 1.0-2.0
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Fig. 3.2.12 Averaged Nusselt number of the coiled tube heat-exchanger under the
non-combustion and combustion conditions without the inserted tube. Nusselt
number under the combustion conditions was measured at combustion rate
Quuv = 5-15 kW. Correlation curves of Kays et al. (2005)" and Petukhov
(1970)® were conducted for the fully developed turbulent flow in a smooth
circular tube valid for R, > 10*. Dhir and Chang (1992)® conducted the
correlation equation for the swirling flow for R, > 1.5x10%.
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Fig. 3.2.13 Averaged Nusselt number of the combustion region, the inserted tube
region and the inserted tube under the combustion condition. Correlation
curve for the swirling flow was conducted by averaging the local heat
transfer coefficient of Dhir and Chang (1992)® for the corresponding
region at L =243 mm. On the inserted tube region and the inserted tube, the
swirling number S,, was estimated as 4.37 due to the acceleration in the
axial direction by the inserted tube.
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Fig. 4.1.3 Combustion gas temperature at different intermediate cooling.
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conditionat different equivalence ratio in primary burner. (¢, =0.91)
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Fig. 4.1.5 Direct photos of two-stage combustion. (1.05kW,,,., ¢, =0.91,L
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Fig. 4.1.6 COand NO, as a function of equivalence ratio in primary burner with intermediate
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Fig. 4.1.8 Relation between equivalence ratio in primary burner and 1" flame length.
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Fig. 4.1.9 Combustion gas temperature as a function of equivalence ratio in primary burner.
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(b) (©)

Fig. 4.1.12 Direct photos of conventional combustion and two-stage combustion using tubular flame.
((@) Single-stage combustion with Bunsen flame. (b) Two-stage combustion with Bunsen
flame as primary stage, L., e = 95 MM. (c) Two-stage tubular flame burner without

intermediate cooling tube, L, |, = 145mm.)

@ (b) ©

Fig. 4.1.13 NO, concentration of conventional combustion and two-stage combustion using tubular
flame. ((a) Single-stage combustion with Bunsen flame. (b) Two-stage combustion
with Bunsen flame as primary stage, L, e = 95 mm. (c) Two-stage tubular flame
burner without intermediate cooling tube, L =145mm.)
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KIRE D35 <, HEAINE) O RN ESC, IR R O s I R S g — 5 T,
JLE ERACEE D NOERBEZIMEIT2 Z EAFE L 72> T 5. HEREIE BRSO K E B
PREBE 7 72 & DOSERIRBERTIC — R L X — B E 2K T S8 5 50T, MBS REED
RS AR D 720@ A L. 22T, NOVEREOD 720121k, FbAlofs FE IR &
PS4 B b 2 RIS 250 S B 2 st IR B e 1 12 19 7 L3 IR BE O RIS % 48
bR WHITN RSN TE T,

KRENTIX, N—FZEHOLOFEH 72 )775 T NOy 2 KgAK+ 2 Z £ 2 & LT,
BEARAR ZBIRBEE O R EACRIE S — Tl A 23R A 5. AifficH LN L L H 1L,
R KRN — I TIREE S 0 B 72 S RIC BV T B IRBE A HEEE T A 720, —RBRBERE
HICHB T D —</L NOIHI END. £72, Z23Ikakk © LREEEIC, HBREE
EHEARTEIRFIEDSIAN D5 —FHC, I@iRENME T T 5 Z &0 6 b NOY BMER S D
AREMEN D D . S BT, BIRAKRKOBAICIE, —RRBEEIRIC I 1T D NOL sk o
IZNA T, BMEEIMZ 2N & 5. ERKEITZEOIMUZ RRIESG K TEDILTHD
B8, KROFIET HEH TIXREEN A OENBE~O BN IHI S D (B 3ES
FR) . KA T CIREE T A DSRBER NBEICBE LIBD 721412, BABSMMNER I S D Z
ENG, BRAROE S Z@EUNIHIETIUE, —RIRBEREIR COMEAE IIHl LS5 .

BRI T BRBE DR R EALIREE N — T ~DHH 2 Ratd <<, LA OiEFRE
FE% 21%, 24%, 27% & (b W23 A i L7c. BEE(LERSEM T8N T,
BEARKR ZBIRBED RN T D IR A O— R Y &g 2082 L7z, £ LT, NOLHEH =
B X O —F PNl EOBREEY AR 2 5HI L 7.

421 REREBES I UERRAE

FEIEE OIS 2 X 4.2.1 |ZRT. —RANA—FE2EFRKEAA—F, ZkA—F %I
FIRE KKFERINS—F Th 5. — R N—F ONEIL 20mm, &k 3—F ONEE L 30 mm
THY, WAA—F L b, FIRAEK[ZZIEBRIEEN, EOBRITHICH DAY v b
HA—FHNEICRZIAEND. AU v FOBEFZKIZ 0.5 mmx 10 mm OHETH D,
— R AN—FIZ 8, “IRAA—FIZ4HENZENFRO SN TND,. — R N—F it
B ZkN—F Bt £ TO—RRBEFIL DR S List pumer 1% 86mm & L7z

PREHNZIX, & A 13A (IR ; A & > 88.9%, =¥ 6.8%, 7 1/ 3.1%,
TR 1.2%) BV, BREHIERG BT 2.33% 107 m3y /s (RBE R Quiny = 1.05 KWiy)
Tho. AL, 225 LIIBAEE( =R H\We., a7 vy —nofifs
THZERE R NN BT D EHE O EZ R L, BBLHI T OBRFREE 0, % 21%,
24%, 271%IZE b STz, —IkRE R E G DR & BRALA O R FEIKE 2 B 1ot
209 (—iE) L7250 X o ITbAlOMRAE B2 T L7z, B Al OfesR O &
11 5.75%10°m\ /s T—E LD, —RY B 2B SHELBEAITIE, RIEHEEY
B drom 2 0.9 (2725 X 912, “IRA—FICHEGT D LA R A2 TR L=, LIk,
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— RS —=FIHEE U7 b A E L A, RS — IS L7 b A E A Ao &
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Thermocouple

Exhaust gas
Glass tube analyzer
N e
-1 ~—"1
2" burner
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@30 ® Camera
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Fig. 4.2.1 Experimental apparatus.

FA21ICEMEOFRESRMEEZE LD, K 4221008, —RYEHg g &l N—F
(AT DA LA O ELE O BR 2R T, B2, —KRY R diq % 1.8 IZTRET N
X, WA= IS T AR LA O EIZIFIEREICR D, B, FREORHEIL, ~
A7u—ay ba—7 (Azil # MQV) ZfH L Tiro7-.

NOy I [ppm]iZ, (b7 T A 45H5 (HORIBA # PG-340) (2 X EHHIL7-.
BREUE X, —RoN—F L) 5 378 mm FiftfiE & ik N—J B L v 24mm
iR EOEE L U, HEHAREg/ KWh]~DHELL, BT 2 DR &) 5
Bt B TSRO TIRBEN AR EEZ N TITo 72, — Y B g OFIEEIC K 5 — IR BE
FEIK T OO INHIZH R & iR T 5 728, —RBRBEREIR & IR BEREI O R K&
B EBT COKROZEERBHIREE N A D5 OJitEE Qic/ Quav Z 5T 2 EERr 21T - 7.
A Qic/ Quuv 1%, F/KRE (FEFE : OVAL H LSF41C) & AN DIEEENL R
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D72 FARER 0.1 mm D R BUEVEE % 2 Tl /N — T & oLl E o S 2 FHR L 7=,
ENERI D DR 72 V2B E U IEIT T, 1 5 O R EAE & FHRIALE T ORR
BEH ARE L LTz, 7ok, —RoN—F Eiftdan & Of#EZ z[mm] TR 3. kRKIMEIL,
TV H A (Canon L PowerShotG10, 3% E: v v v ¥ —AE— K 1/87, # 1 F4.0,
ISO1600) % W\ CTHrE L7-.

Table 4.2.1 Experimental conditions

Total 13A input [KW,,,,] 1.05

Total 13A flow rate [m3/ s] 2.35%10°

¢Total ['] 0.9
Total O, flow rate [m3/ s] 5.75%10°
RS Variable

Air or oxygen-enriched air flow | quantities
rate in 15" burner : A, [m3/ s] a

0.8 AN
' \ A, rate

0.6 ™~

Alst / (Alst + Aan) [']

1 1.2 14 16 18 2 22 24
¢15t[']

Fig. 4.2.2 Relation between equivalence ratio in 1 bumner and air or
oxygen-enriched air rate supplied to 1* burner and 2™ burner,

0.91
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4.2.2 ERERSLUER
4221 EBRRKRZEBBEOBRIGEH — BRREELERICETLIERKXDBER
PRIGERR —

FR(LAIR OBEFIREE Oy &, BIRKR ZBRBEN ARSL T 5 — IR Y &g DBATR &
A7z X 4.2.3 1TEWRKR T BERBEDRASL LT EIRO— R Y Bt gy & —RN—F 1Mt
LT EAREDO R Z RS, BRIWBEZINI T2 &, BIRAR BB AT
T 5 ERO—RYEb g1 DS EH LTz, ks, BIRAR ZEBHRBEN L LRy, BTG
—RNR—F NIRRT SN2 WA, ZIRAN—T ORI KRPER S, H
BRIt L 72 5.

2.2

= 045 | Single-stage combustion
<
+ 05
< 055
5 Two-stage combustion
< 1.6 fo— T

0.6

0.65 14 ‘ : :

21 23 25 27 29

0O, [%]

Fig. 4.2.3 Rich flammability limits in 1* burner at each O, rate.

424 Y B @i & —IRKRK DWrECKRIREE DRIfR 2~ 3. WiV RIEEE 1
H AKALDS CHa, CoHg, CsHs, CaHio, Oz, Na, CO,, H,0O, CO, H,, NO, H, O,
OH 5725 H M & LM TRD =, B AR ZBBREENRALT 5 ERRO—K
LR 1 ICBWT, FERFREICHBIT 5 PR Bk RIBE 2 i+ 25 &, 1ZIER L

(81 1800K) THD Z Embmolz. —RAN—FTOKRKIEMIZ, —RKRKIBEI K
BRI s 2 RIF L TWA LD L HERI SN S.
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— 2200 r N
X =27% i Richlimitg,g in 1% burner
= =207 0 0,=21%
= 1o oaytsar b 0 0,=24%
S 2000 'Q2\21/°: S~d. A0,=27%
2 * ~ i =~ ~ : :
5 Q{i S~ Tl
= 1800 |+ R S ~
= 1 ~ I~ <
= 9\ B -
8 \ ~ < -
B 1600 f----------oeeee- T
§ \
S

1400

1.6 1.7 1.8 1.9 2 2.1

¢1st [']

Fig. 4.2.4 Relation between equivalence ratio in 1" and calculated
equilibrium gas temperature in 1" burner.

4222  NOH & U—REABEEIS TDHRER

Bl FIRE COBBEFERICIH N T, —RYELZ 2 S BT O HEE Qic/ Qunv,
—W NOy &, BEUY, A NOHEHEAZFHI L7 R A X 4.25 127 7. WIFhomg#i
BREIZBNTS, —IRNOITIZE AR SN oTz. ZhuE, ERAKEOEAIZ
L oT, NOY MAEMENARWVIEE R Y Bl giqg ZIBRBICTE 2O THDL EEZD
N5, K425 05, AARA—FIZBIT 25 NOEMRIZ ZRARIZBWNTRZ D Z L2350y
"o,

£, RGBS D EFITE B, HEE Qi / Quay TN S L7z, ZhU,
WA B g1q D EFRICE bR RAKIBENMET (M4242%) L-Z Lz
T, —RKRENEM U720 THSD. —IRKKENHEMTHE, “IRARICEDLE
TIZEIROBRBET AN BT 2 N —FREQHFEN AT 5728, MEVENMETT 5.
— 7T, BEEMETT2I1TE, NOHHH&EITHMT SN Rz 6.

JENE: Qic/ Quny 23 0.08 LU FIZHIH S 7250 CTh NOyBEHH EDR/MEZ E v 7 T
v 7D L, BRFEIREE 075 21%, 24%F LU 27% T, NOHEHZEIXZnZ4 0.047¢
/KWh, 0.065g/kWh, 3 X0 0.096g/kWh & 72 7=. ER{LAITR OERZEIERE O, DHIN
(2R, NOy FEH BT IME A 5 5 .

72, X 4.26 1THEEE Qic / Quuy 58 L72 R KD THRE T og & FEHI L=
NO, HEH B D BIR 2779 NOLHEHEDS 0.1g/kWh LL T & 722 55T, Z IR K KIREE
Tog DEKNEZE Y 7T v 7 45E, BRERIRE 028 21%, 24%FHB LTV 27%T, K
KRB Tong 1T NI 2131K, 2184K, B LT 2290K L 72~ 7=, ERLAIF OEESHE
TREE Op OHIINZAEY, ZIRAKRIRSE Tong 13 RH- L 72,
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NO, emission [g/kWh]
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3 S s
3 01 ® > 01 = 0.1 A
X . x I. x
005 o S 0.05 2005 A
0 % 006.00 0 g-—-8---0d 0 A-—-A
0.2 0.2 0.2
— 015 @ — 0.15 —0.15
S = ] > A
£ 01 @ £ 01 0.1
4 < - < A
L2 . \o o
S 0.05 .. S 0.05 - S 0.05
0 0 0
14 1.6 1.8 2 1.4 1.6 1.8 2 14 16 1.8 2
¢ [] $ie [] b [-]
1 i i i i 1 1 1 i 1 1 i i 1 1
0.65 0.6 0.55 0.5 0.45 0.65 0.6 0.55 0.5 0.45 0.65 0.6 0.55 0.5 0.45
Alst / (Alst + A2nd) ['] A1sr / (A1sr + A?nd) ['] A1 st / (Am + A?nd) [']
@ 0,=21% (b) O, =24% (©)0,=27%

Fig. 4.2.5 Relation between equivalence ratio in 1st burner and NOy
emission and intermediate cooling rate.

0.2 g 0.2 - g 0.2
0.15 —\5 0.15 %‘S 0.15
S s
0.1 ° 2 01 2 01 A
° 2 - 2
0.05 D § 005 § 005
d < [ X
; o ; o
0 ! z 0 i z
1800 1900 2000 2100 2200 2300 1800 1900 2000 2100 2200 2300 1800 1900 2000 2100 2200 2300
Calculated equilibrium T, [K] Calculated equilibrium T, [K] Calculated equilibrium T, [K]
(@) 0,=21% (b) O, = 24% () 0,=27%

Fig. 4.2.6 Relation between calculated equilibrium gas temperature at
each equivalence ratio in 1st burner and NOyemission.

4223  BEMGEEEIRNEZEMRBED LR

4.2.7 \THLEEBRIE & Bk ok T B BRBED NOLHEHH B2 /R, HEYRBEDLS, —
W Ebg g% 2.25 T TEO T, —RA—FTHNIZKRZEERIET, —RAA—FDH
TEABE S H Tz, BIRAKR ZBRBE T, B Qic/ Quuv 23 0.08 LL R & 72 25— Y &
togig ZBE LTz, 0,=21% Tldp1e=1.6, 0,=24% TlL ¢14=1.8, 0,=27% TlL ¢h14=2.0
ELTz. 427 X0, BRKR ZBIRBEITHEABEL D b NOHEHEN D702 &
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Bomd . S5, BIRKE BREE IR R EE 6T D NOHEH BN ¢, BB
PRIEIZ LT/ E . NOLHEH E1E 0,=21% T 58%, 0,=24%T 73%, 0,=27%C 79%
FNENAD LT,

05
W Single-stage
< 04 - [ Two-stage using tubular flame |8
; .
=
= 0.3 fo-mmmmmmmo - N
[
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g O
(B
o LI I P
> 0.1
0 I I

0,=21% 0O,=24% 0,=27%

Fig. 4.2.7 Comparison NO, emission of single-stage combustion and two-stage
combustion using tubular flame. (Single-stage : ¢, = 2.25, O, = 21%
two-stage: ¢, = 1.6, O, = 24% two-stage : ¢ ., = 1.8, O, = 27% two-stage :
$,,=2.0)

X 4.2.8 (23— bl B2 31T B BREED AIRE OFHIME 2R, BRSRIEE 21%5
EN 0, = 271% D5 % k9. BERBE & BRI ZEHRBEI LI, BERIRE O, DBy
Iz & baw, EiEEE ER Uiz, 20k, HEYREETIE, Wk SN—F LiiirE z=
gemm XV B SIREN EH L22%, 2, z=86mm fHITIZHERNZfE D Wit d 5
O ThDHEZEZDND. EWAKK ZBIRBETIE, REiRENHEEREEX VK, F
72, 7 FINCK L TREDOBILN/NEL otz 2, A I B KEOIRE S ©
ERBEDEBITH D, BIRAR BHRBETIE, “RAN—F TORBENFERICRY, K
GHETTH D KR & DB ELEC R E < Fe o 72 2 12 X W NOy HEH E2MEH L
TR I NG, X 4.2.9 ITHEHREE L BIRAR ZBERBEO KRBT B 573,
WAR—FIZBIT D REDFIEIL, BIRKSE ZBRBEDTT N85, KRB D b 3B
DIEER LD ICRZTOND.
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1600 SR ammm =
L\ [ S—— T —
= !
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Last bumer mm tubular flame
O — L 1 L 1 1 1
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(b) 0, = 27%

Fig. 4.2.8 Distribution of burned gas temperature of on center of combustion
tube.(Single-stage : ¢ ,,=2.25, O, =21% two-stage: ¢ = 1.6, O,=27%

two-stage: ¢, =2.0)
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Single-stage Two-stage Single-stage Two-stage

(@) 0, =21% (b) O,=27%

Fig. 4.2.9 Direct photos of single-stage combustion and two-stage combustion using
tubularflame. (Single-stage : ¢ ,, = 2.25, O, = 21% two-stage : ¢ ,, = 1.60,
0,=27% two-stage : ¢ ,,=2.0)

728, K 4.27 226X 4.2.9 OERKR ZBRBEDSRME T T, BEVE Qic/ Quuv X O2=
21%7C 0.05, 0,=27%T 0.075 |[Zff%7-N7=.

4.2.10 |ZHEE Qic / Quav & 22 LI W SEBF R TO IR K RIRE &, F2H DR
BAAREZLZRT. ok, ZIRAN—TOKRITIERAK R TH LD, Y& drom = 0.9
DFRERBEE U ORI R 21T o 7o, FMlE R TlE, BIRAAR ZBIREIT 0,=21%,
0,=27% & & IZHEHRIEE L 0 WiBVKRIEEE D 0K 1Z EIR T2 DIkt LT, Rl
B AREEIE, 0,=21%T 122K, 0,=27%T 159K, K F L7z, HEBREE & &k k&
TEURBEOIREAE RS L, FEEIEME L Y SR OHEE T AREDOFNRRKE V. 2
U, EIRKR ZBHRBED “RN— I T DREDIRIE L 2o TR, k&)
5 EBIC T BRI ER N Z LICERT D EE BN, FEEIC, BREED X
BENEL R0 B WEREELER 0,=27%D S5 A3, HEREE & &k k& —BehBED
FERFem T ARE DN R Lo T
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Fig. 4.2.10 Difference between calculated gas temperature and measured maximum
gas temperature that total equivalence ratio are 0.9.
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KRRAN—=TZRAFRAGH O L U, MEIIREERERZ BT A0 Hm T T A &
L7z, N—FHNEIT30mm TH Y, #hjis ONEE 0~30mm O CTEET5H 2 &2
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Fig. 5.1.1 Direct photograph of rapidly mixed type tubular flame burner.

E) GEJ I I Adr slit :i
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Fig. 5.1.2 Schematic illustration of the tubular flame burner.
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[ 5.1.3 [CEBREBEDROMME 2~ BREHIIFZA X V2 W, AZ 0%, =—
RSV T T EZ i LIS, BREIR Y v Mis S a &L, v~ A7 — X
— & (JUEtH, CMS0020) (2 X W iEIE Lz, BbANIZERE Lz, 251, = 7L
I MEDIERT A U HZERAY v FOFEKE L O OFREIZ o L, =
— RANLT TIREZRE LT, ZRA Y v b X OMHhRE ) DRI It s s.
MEIF~v AT —A—& (22K A Y » b LR, CMS0200, @it : (L E, CMS0020)
IZEY, ENERE L., BT A 2SR ETHHAE, s 74 CERER Y
REEHL, v A7 —A =X ZL 0 iEEZRE LT, Wi Iciin L.

Rapidly mixed type
tubular flame burner

Digital controller

Mass flow controller

Axial flow inlet

High speed camera

N, cylinder Q@
. > M< Fuel slit
Air compressor Needle valve ~ Mass flow meter j
CH, cylinder

Fig. 5.1.3 Schematic illustration of experimental apparatus.

KFEDOHFIZIL, @i CMOS 7 A7 (Vision Research £f, Phantom V12.1) & L >
A (Nikon %, Ai Nikkor50 mm /1.2S) ZAfiH U7z, @D A T 13BREEE O & FE
FHINZRRE L=, BREEE ol & TRE M SR 45 2 & Tl IC L 2 A0RE AT
WK OHEIT AR LOFEGTMOZ(EZBETE 5. EXERIHEA=1.0FB L U1=06
DRI WTIE, HREHEEE 6,000 fps, #EIEIFH 160 s, ZEXGEREIFEA= 1.5 DKIFIC
BWTCIE, o E 3,000 fps, #EGHFR 330 ps (2R E L 7=,
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i © @ 10 ab 42 @3 2 gy BV S OFEEEIE IS BURR L Tl b i WOIREE AN EHEI T
2% B (Rh6%-Pt, Rh30%-Pt) & L7=. EAERNIMRAHT AT, oo RReix
100 ym TH 5. BB L OHIELEE, T—4 1 — (GRAPHTEC £, LOGGER
GL220) TitékL7=. FoekMibEZ 100ms & LT, # 20 RoREHAI L7=. X 5.1.4 |Z8E
KO OATTArE 2 -3, ZEERHE, PR O TR A0 HEA 2R > TiRiE S
2. I ARA=FEHANT, EhoEiE (r=0mm ) OBIESE, @li5IC 2 =30~
100mm FTCBE S W7, F7-, FHAEERICR L TESL %T*%E ® i L7z

Slit
Rapidly mixed type B-type Thermocouple (B-type T.C.)
tubular tlame burner

0

Axial flow mlet

> r[mim]

Rapidly mixed type
tubular flame burner

1 Slit

Auxiliary space
Traverser

j — z[mm]
0 30 100

Fig. 5.1.4 Schematic illustration of B-type Thermocouple (T.C.) measurement.

IBEMIETH D LAV —BELER, KRR F 026 OPERELDEIRE DRI KL - T
AT HMHEEZHWCIREZET 5. BEEGICL—RERH L, ZOREDLEZ R
WA o Z ETIRENFHAITE 2720, B g LT, FHlllC X v g2l s 72
M&&®%§%%ﬁ?6gﬁﬁﬁ%k?éﬁ%@ﬁﬁTmﬁﬁinﬂ%ﬁ@%ﬂé®.

loogery
r =Rl
SReffo

(5.1.1)
ZIZT, ToldHMEL LT ADRETH D, RERTIIHEET R AR E Lz, K
W AREE To l3EVEX CHMIL, FEBRIFD To=278K ZHW 5. g3 EHEL L=V 2D
VA U —BELDETRE, | 1XFHAIRR T AD LA U —BEDERETH Y, EH L TRD
é.@ﬁthm%@ﬁx’ﬂ?éﬁﬂﬁ%ﬁx®mﬁV4)~ﬁﬁﬁﬁ%f%é
FAXxE LA U —HELBTE R 2 KD 5 720121, FHI G A Ok E £ T, R (5.1.2)
IZED LAY —EELTmfE A BT O MER D D.

Oreff — X K, 0 (5.1.2)
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ZIZT, & IXEAGE, o TR LAY —HEWRE TS H. T ALK T 5K
FROWZATE2iIE LTS, KERTIE, FHUKSRT ADOMAZ, BIEKIGRKOR
GALI)LLEBETSH. F511121%, ZRT.

CH, + 20, + =X 2N, - CO, + 2H,0 + = X 2N, (5.1.3)

KGLI)HUMND, A X OBRBERTZIZE T HHADOELVGRERER L, X(5.1.2)&
# 511 (R EELFREOBITR & 2RIk A LA U —HaELrE R Y
7> B PRBERTE DZE KUK T DRI LA U —BELWT IS Orcha / Orair & ED T2, A X
Y OBREEROSET N(6.1.3)E0), BXW, BEsn% ((6.1.3)414) To, HEtk
EZEUT T D LA U —BELm OBk 2 X 5.1.5 12”9, [ 5.1.5 2B AN L
AU —BELMmAE L, RBERTE CRERENL2WZ N5, Fl2E, H&Ek 1.0

TIE, RREER[OZEZITTT D070 VA U —8ELW g 1.122 T, BREET A
DZEKUNS T D )72 LA U —iELrmfg 1 1.107 TH D . T OZEITKI 2% TH Y,
BHLCELIZARWEEZOND. LA U —BEUEIC LD REFHIOER TIX, 4
st (BHeZEKaER=) 2 1.0 & L2 &b, FHAKRIG AT A D%V A U —BeELEr
THfE X orcha ! orair=1.107 & L 72,

Table 5.1.1 Relation of refractive index of main chemical species and relative Rayleigh
scattering cross-sectional area against air*¥

Species (n;-1) X 10° ORi/OR Air
CH,4 0.444 2.270
C,H, 0.636 4.660
C,Hg 0.776 6.940
C5Hg 1.094 13.800

N, 0.300 1.040
0, 0.273 0.859
CO, 0.450 2.330
CO 0.340 1.330
H,O 0.255 0.750
HO, 0.343 1.360
H, 0.144 0.226
OH 0.206 0.489
H 0.072 0.056
0] 0.136 0.213
He 0.038 0.017
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Fig. 5.1.5 Relation of equivalent ratio of Methane before and after combustion and
relative Rayleigh scattering cross-sectional area against air.

LAY —HELDEHREE o B X OITFERIC L R 5. BmtEe LTI A
> L—# (Spectra Physics £f;, BeamLok2080) % V>, L —# &/ S—FWNIZHG L7=.
HER 5W, HbiEIT 488nm, B — A3 1.5mm Th 5. K 5.1.6 IZL—H
BaERT., I7—E2FHLCL—PREXFIHETEY, £2TOIT7—IZB\TL—
PRI T — DG EIZ LTH 45 FEOAE TARTLEIICHELLE. L —k
IHRCENEE TH L TH Y, I 7 —CRGmE A EEIZEEE T 2 A T2HIBUH L,
TR JEIHE 23 EiE L7 WA E T2 [ S 5720, b—F ORGHIZEED F FREEE
A END. L—YITIENR Y 4 45X10%rad B L TH Y, REEE ICRET 5
IZIZE— A3 10mm &> TEY L—HFHMENMR. 22T, Flhlb X (K
JEERE 600mm) 2 AW TEHIAR TO L—I K8 E A EH S W7z,

L—HIEK 5.1.6 1R X D ICBREEE @ z fih b (Bl b)) (CBRE L7 s
ORI E— X U RERD S, E, ®inE A RAICT 5 2 L THRELEE R
Mz HREEE LTIen, AV » b OFEGEH 3 L OVRBEE O H 0555 C O B BGEL A e
BENTZ. LER-T, KERTIT, 5.1.7 OFR B D5 LTy & 15 5%t
SapEl & LT,
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B eamlok '
Art Lager (488 mm)

Axial flow inlet for

Ravleich scattering Rapidly mrxed tvpe

1 tubular flame bumer
7 Mirror

Plano-convex lens
(focal distance: GO0 mm)

Fig. 5.1.6 Schematic illustration of the laser optical path.

Slit
Axiaal tlow inlet for Photographing range
Rayleigh scattering

L

Scattering points with high intensity

Fig. 5.1.7 Schematic illustration of photographing measurement.

LAY ~%&£Lﬁ'ﬁ@%§ﬁ‘ééﬁr£mﬁu X A T 2 L, RS O z i & EE
Fir ol Lz, X 5.1.8 (VA U —HGELEIC L IR EFHREZ6E A Lfcm@f;ﬁ
ATDLY AT 4 )VEERT. Ny AT 7 4 2 (BPE, F.0JEE 487.2nm,
FEmE 3.3nm) BLWRELT 4 V& (o =a—4k,528) Z0fHir52&T, L1
—BELE LIS D & BB R & RO ELRRMR L LS O :H%HE L7z, EdEE A A ?
DOFEE, WeefflE 100 fps, #EERFRT 9900 um & L, 1000 #4y (10 #0[H) b

7.

High speed camera Polarizing filter

B.PF (487.2 nm)

Niklcor50 mum £/1.28

Fig. 5.1.8 Schematic illustration of high speed camera specifications for Rayleigh scattering.
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51914 Y —HEDLOE#ETEART. K519 XV, r=0mmiZL AV —#
ELYEMMTFEL TWD Z b d . MATLAB % W CTEIGALEE 21T\ 2 F R D4 pixel
IZXF LT LAY —HEDEERE 2 B T L ICH T 5. L LR (ZBR) TR L
TIX, z F D% pixel IZ%F LT 1000 KD D v A U —BEELEIREE 1 o 2 H M L7Z.

5.1.9(b), 1FBRBERIFETOLA Y —HBEDEDEEZEFE TH L. ¥ 5.1.9(b)2 T X
N, KRDODFBENEDVIAALTEY, TNERETHIHVLELRSH L. LA U —HEL
Jeb Uz r @& O pixel 234 (r o wfiE) & LT, r fn 6~26 pixel,
BEY, —6~—26pixel DFICTREDFER B Z KR OFRNRE L LTz, &H
BCTKRRN D ORI IREZ 2 LGIWT, FEf (1000 K), EiHh L z o4 pixel
IZBUT ARG AD LAV —8ELEHEE | ZRko7-. KGELDIZ 1 1o 20N, Ak
D &Y orcral orair=1.107 & LU TEHIXI R A DIRE %R 7=,

WIZT — 2 OFFFEIE L TRARS, X 5110 1204V —HELEIC KV EH L=
BEO—F &2 /R3 . BN z FAEEREZ &0, HERNCFHINRE 2773, FHAREE 13 5%
W% 1000 B OB & LT D, 2=T745~75.5mm OF —Z k& L=/ T 7 %
5.1.10 4 EIZRT. 2O 1mm EIiZh HIRE (833 58 OFHEE z=75mm O
T—=E L. £, BEREEZZT —N—IZLTERTD.

r[mm r[mm]|

7 [mm]| 7z |mm]

(@) Air condition (b) Combustion condition
Fig. 5.1.9 Direct photograph of Rayleigh scattering.

uuuuu

Temperatare. K

LT

=

Mean value made from 33 data

=
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Fig. 5.1.10 Conceptual diagram of a method for calculating the mean temperature.
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5.1.2
5.1.2.1

ERERPLUER
BT AN KT R AT RESEER (C R (X9 &

LG Ze K amPEl=_A = 1.0, 0.6, 1.5

Sl BIEE LTz,
(C 2B = 1.6 TO RS2 R,
bR TREXIiE% 70L/min T—E & Lz, it 2 a3 255612
Z Tl 4 0.5m/s,

F70, BIEOHGHESES 0mm, 20mm, 40mm &

/min —E & L

IR XHT.

7-. W
0.9m/s, 2.1m/s & (LI H7-.

IBWT, BRAEfE D AR
% 5.1.2 [2Z8 50 =), = 1.0, %513_I1L%$ =0.6
7R AN v N E %#G

££20mm, 15mm, 10 mm D#hRE

Hfﬁ

)/—‘—»

X, 6i 0L

Table 5.1.2 Experimental condition (Excess air ratio: A = 1.0, Axial flow inlet gas: Air)

Air slit Axial flow inlet Fuel slit
L/min m/s L/min m/s mm L/min m/s
@) 70 9.7 0.0 0.0 0
(b) 60 8.3 10.0 0.5 20 74 41
(c) 60 8.3 10.0 0.9 15
(d) 60 8.3 10.0 2.1 10

Table 5.1.3 Experimental condition (Excess air ratio: A = 0.6, Axial flow inlet gas: Air)

Air slit Axial flow inlet Fuel slit
L/min m/s L/min m/s mm L/min m/s
(e) 70 9.7 0.0 0.0 0
(f 60 8.3 10.0 0.5 20 125 6.9
(9) 60 8.3 10.0 0.9 15
(h) 60 8.3 10.0 2.1 10

Table 5.1.4 Experimental condition (Excess air ratio: A = 1.5, Axial flow inlet gas: Air)

Air slit Axial flow inlet Fuel slit
L/min m/s L/min m/s mm L/min m/s
(i) 70 9.7 0.0 0.0 0
() 60 8.3 10.0 0.5 20 5.0 28
(K) 60 8.3 10.0 0.9 15
(D 60 8.3 10.0 2.1 10
X 5.1.11 (228 5amFEERL = 1.0, [X] 5.1.12 (T 28535 =R\ = 0.6, 5.1.13 (2255t 3

FTA=151Z

20mm, 40mm & L7zfiRA LMD~ TWS. £z, ¥5.1.11, ¥51.12,

B DRRERZRT. TN ENOKIZEB W TRIZEOHT MK S 2 0mm,

93

5.1.13



@~ ()I%# 5.1.2, #£5.1.3, £514 kG LTERY, B Lo [ EOMHRRTREE
BEETHD.

AR ZE KB EIRL =10 TIX, #ROAEICED ST, RBIEND AV v M, BREEE
IZE D F TREL TEIRKEDIER S L.

AR ZE KB EIRL =06 TiX, #HIEEZ MG L2SAIS, Bk k GO RN D kK
ERE STz, &L, G S AFRATVE IR KRB SN TV DH LML
LT, RN, FEENro bR LI ICKREERNSLS 2D Z ENBIXE]
L7z, ZokETdihiks W ISnEETH B LRSS,

AR ZE XU REIFA =15 TiX, BIEZ B LAWES, BIEE2®RIT 5 2 & TREDOREF
T R RMIEESnTe. L Laens, fiiiatitisdo L, RIELZRITEEATYH,
KRR N—F EFisN G z FIIZEE LR o 72, BIITKROFE LR 28035
RN B L0, BRIXEDONRETHO DL EEZHND.

Axaal distance of auxiliary space min
20 40

(a) Air: Slit 70 L/min, Axis: 0. i ir: i .0 L/min ir: 8lit 70 L/min, Axis: 0.0 L/min
Fuel: 7.4 L/min, Excess air ratio: 1. Fuel: 7.4 in, s air ratio: 1.0 Fuel: 7.4 L/min, Excess air ratio: 1.0

0.0

(b) Air: 8lit 60 L/min, Axis: 10.0 L/min (b) Air: 8lit 60 L/min, Axis: 10.0 L/min (b) Air: Slit 60 L/min, Axis: 10.0 L/min
Fuel: 7.4 L/'min, Excess air ratio: 1.0 F .4 L/min, Excess air ratio: 1.0 Fuel: 7.4 Limin, Excess air ratio: 1.0
n
=
w;
B
R3]
=]
)

[

E (e) Air: Slit 60 L/min, Axis: 10.0 L/min (c) Air: Slit 60 L/min, Axis: 10.0 L/min (c) Air: Slit 60 L/min, Axis: 10.0 L/min
E“ Fuel: 7.4 L/min, Excess air ratio: 1.0 Fuel: 7.4 L/min, Excess air ratio: 1.0 Fuel: 7.4 L/min, Excess air ratio: 1.0
—_

<
ol o
M=

(d) Air: Slit 60 L/min, Axi i (d) Air: 8lit 60 L/min, Axis: 10.0 L/'min ir: Sli 'mi is: 10.0 L/'min
Fuel: 74 L/min, Exces 1 Fuel: 7.4 L/min, Ex ir ratio: 1.0 : r ratio: 1.0
—_
1

Fig. 5.1.11 Direct photographs of rapidly mixed type tubular flame. (A = 1.0)
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Axaal distance of auxiliary space mm

nv's

Axaal flow velocity

0.0

0.9

0 20

(e) Air: Sllt 70 L/min, Axis: 0.0 Linin

Fue Limin, Exc

(f) Air: Slit 60 L/min, Axis: 10.0 L/min
F 12.5 L/min, "Excess air ratio: 0.6

0 L/min, Axis: 10.0 L/min
L/min, Exc

(h) Air: Slit 60 L/min, Axi
F L/min, Exe

40

(e) Air: Sllt 70 L/min, Axi
Fue Limin, Exce

(P Air: Slit 60 L/min, Axis: 10.0 L/min
Fuel: 12.5 Limin, "Excess air ratio: 0.6

0 L/min, Axis: 10.0 L/nin
L/min, Exce 6

(h) Air: Sht 60 L/min, Axis: 10.0 L/min
F fmin, Exce b 6

Fig. 5.1.12 Direct photographs of rapidly mixed type tubular flame. (A = 0.6)

Axual distance of awxiliary space mm

0 20

40

m's

Axaal flow velocity

+ Slit 70 L/min, Axis: 0,0 Limin
.0 L/min, Exce 1.5

(1) Air: 81it 60 L/mmin, Axis: 10.0 L'min
Fuel Limin, Exce )

(1) Air: Slit 60 L/min, Axi.
Fu .0 L/min, Exce

lit 70 Limin, Axis: 0.0 Limin
.0 L/min, Exce 1

Fig. 5.1.13 Direct photographs of rapidly mixed type tubular flame. (A = 1.5)
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DENZ, B OMFGIZ X D KRR T RBEH O 2 L2~ T2. 7ods, AR Tl
HOWEL HOETRHIEOKE @ LT 5. £ 515 [CEBREMAEZRT. ®iko
ZeR Ut ENL 10.0 L/ min T—E & L=, N 20mm, 15 mm, 10 mm Ol E 2 v,
i OWIE A 0.5m/s, 0.9m/s, 2.A1m/s &b s®7-. £/, BIEOET D 0

mm, 20mm, 40mm &2k EX87-.

Table 5.1.5 Experimental conditions in formable range of tubular flame

Axial flow inlet gas .
component 9 ) Al
Axial floe inlet gas flow rate L/min 10
Axial flow velocity m/s 0.5 0.9 0.52.1
Diameter of axial flow inlet mm 20 15 10
Distance of auxiliary space mm 0 20 40

Ze R % 7T0L/min, 90L/min, 110L/min, 130L/min &2k &8 T, #REHEE
I S BRI BN T, BRBEE ICE IR KRNI SN D BRI L OVF RO ZE K
FIRAZWE LT, X 5.1.14 1ZF)= 0mm, [X] 5.1.15 [ZFI=E 20mm, [X] 5.1.16 |[ZF]= 40
mm TOE KR DI REHEIPH A 7~ 9. () X8 2 e L ZeWiG4A, (b)iFEhiE 10.0 L/ min
PR LI2SRMORRTH D . K OMGHRIT A & > OFE Al BRIR A F L ONERR rIR IR
RO LKL TS,

[} 5.1.14, ¥ 5.1.15, ¥ 5.1.16 LV, #EOAMEICEDL O FTREM T, RAEKE
OHIAMZ AL, BRBE A 0O KR AL FTRERH 23506/ L7z, 2, MEERNRIZ L -
T, REOREZLIAAA—TNICIERAENZDEEZLNS 1D,

i A a9, BIENH 584G (X 5.1.15(), X 5.1.16(a) Tix, KT ALHLH
AR ORREI L 0 b RIEICHR Lz, 2R, RIS TIRER & B LI 20
ICIRE ST, RIENIZ R AYREHR E DR W EINFET 270 LB 2 bbb,
TRk L, A fiad 5 & (K 5.1.15(b), X 5.1.16(b)), #liiii7e Lot L
TIRBEA AR D K R TR ERFE 36/ L7, 24U, $iliiic L v Bl N RR 0 22 K0 T
FNEL T o7 Z &0, BEIDRIENITIRA IS K R Z ENERE LTER
b,

F7o, i @REONE) 22 bS8 TH, ARATVE IR KR D KKIE R ATHE
P, BOBHAEM, ERAE DI e R Do Tz,
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. - =/ (.5 m/g (20 mm)
10 p e A=10] £10 | A=19
s T o5 el
.E 15 | .E 13 i -l e annmnanD
Z Rapidly nuxed type Z Rapidly muxed type
S10 tubular flame S10 tubular flame
25} 23
— ) ) — aro~s S S
os T s TCHE 05 [ st g it A S
Extinction Inverse diffusion like flame
O O 1 1 L 1 O O 1 1 L 1
70 80 a0 100 110 120 130 70 80 o0 100 110 120 130
Total air flow rate L/min Total air flow rate L/min
(a) Axial flow rate 0 L/min (b) Axial flow rate 10 L/min

Fig. 5.1.14 Formable range of tubular flame without auxiliary space. (Axial distance 0 mm)

3.0 30
Extimnction e 2.1 me (10 mm)
25 25 =<==0.0 mfe (15 mm)
- - =/ 0.5 M8 (20 mm)
g0 | e A=L1D 220 Bz A=19)
= Rapudly nuxed type iR I ::‘T’:f::-.n,.ﬁ;-;_-_-_;—;@
=15 F tubular flame 15 r
Z Z Rapidly mixed type
=10 | =Z10 tubular flame
=l =l
.................................. O [Niatsaae e e ff o mm mrm o v erm e
0.5 A=06 05 F . A=106
Extinction Inverse diftusion like Flame
0 O 1 1 L 1 O 0 1 1 L 1
0 80 a0 100 110 120 130 T0 850 a0 100 110 120 130
Total air flow rate L/min Total air flow rate L/min
(a) Axial flow rate 0 L/min (b) Axial flow rate 10 L/min

Fig. 5.1.15 Formable range of tubular flame with auxiliary space of axial distance 20 mm.

3.0 30
J)\ﬂfxrlllchOII =0 2.1 g (10 mum)
25 O— —{) 25 =<C==0L0 /g (15 mm)
2 2 - = 0.5m/e (20 mm)
=20 e A=13] =20 %__A_.',_j‘_‘ e A=19
= Rapidly mixed type - T SRE T e
=15 F tubular flame =15 F
Z Z Rapidly mixed type
=10 F =210 tubular tlamme
= . 5]
__________________________________________________ s e s N m e o Py s e e ]
05 § T iZ6E 0.5 Qe @'“ i=06
Extmction Inverse diffusion like tlame
0 0 1 1 L 1 0 0 1 1 L 1
0 80 o0 100 110 120 130 70 80 o0 100 110 120 130
Total air flow rate L/min Total air flow rate L/min
(a) Axial flow rate 0 L/min (b) Axial flow rate 10 L/min

Fig. 5.1.16 Formable range of tubular flame with auxiliary space of axial distance 40 mm.
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5.1.2.2  BEhfA/N—F LR #b@ﬁ%i#U(&ﬁT

HhTE 2 a9 2 &, IR ZERURFRIE N WA k*#ﬂ~fimﬁﬂ%ﬁ%
ML BENBIE I :@:&ﬂ%,A~+®mﬁ%@%*#@£E%M5k
KEPMERFTERWZ ENBREIND. T2 T, Wiz th ) BIRKEOEE L3y §F
PR T 20BN H 5 & & %, ERFEOME (AU —VHS,) &2HRARE R K
ROFE LRI HID, (M5.1.17 2/) OBREIR~. 7ok, 2 2 TSR
ST ADEZEHND

Axial flow inlet

Fig. 5.1.17 Definition of Lift-off distance (H) and burner diameter (D).

AEE) R L W HEEB RO THh D AT — /L Sy 1T (5.1.4) 7 6k 7- 19,

G, Angular Momentum
Sw = =

G.R, " Translational Motion X R,

[R mew, + R,m f}
[mf+m +m) Wz.avg Ry (5.1.4)

[PfoWf +-|DEQE E)ﬂ
" (07Q; +£a0. +£.2.)(Q; + Qo + Q)

Z 2T, RolXRBEE PEE, A lIBABEE WrmAE, mIXE&E, w i@E,m£%#
AKEREZRL, mATalZZEx AU v b, f iﬁﬁ‘ﬂ'x U b, z 138l
R4y &9, X 5.1.18 12, iy (5E3%) {JILEEXUF‘/V?&SW@EWN ,\‘é‘.
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Fig. 5.1.18 Relation of axial flow rate and Swirl number.

E, 2ERAY w Db ORI EIL 80 L/ min, BREFAZ Y v b OBRENR EIX
8.4L/min T—ELT 5. EEOWEIIIHE, AT —VE S, X3 5. 28,
#ili A HERS U722V efth D 2 U — 13503 S, = 5.2, % 10.0 L/ min TG 2 &b
AT —NVHIE Sy=42 THY, RHERAGTERKRELK T H7-DICME L EIND A
T—1%3.0% U EDETHS.

KEDOFEE LN ESE, BEED AT Ty LTmEESELLHIE Lz, JIEIC
FAN = BEBEAE D 4345 X D — il A% 5.1.19 (2779, [ 5.1.19 OFE# L 5 E o> z J71h) (il
FIE) @ pixel, HEEIRBEENEICBIT S r HE (EERITE) ORIRE OFEEE
Thod. Ik, 77 7NOMEOIRIIRE 1,13 (5.15) TRIEAIND.

L=Xme I (5.1.5)
Z 2T, EBNOEED @z, BT DFIEHRE L Ly, BREEE OmmEIZIBT 5 2 W
DK pixel & zZpax, z ST RO/ pixel & zmin, © T FIOHK pixel & e 70D
7N pixel % I'min E_TZD ‘ﬁ‘fcﬁj/)“k), Jfﬂii}%%@ %%?Eﬁﬁz@iﬁ\)ﬁ§i(zmw,rmw), (Zmax,rmin),
(ZminFmin )s @minFmax )P 4 SUCRILEIND . Fio, FIHRE I, 2 O TERAKRIZEIT
D& L0 KRB ONIE Z =T FCTREE 1, L 2 3(5.1.6) TERR L 7Z.

'{z_L-:'fr = Iz_min + D'GE[Iz_mrz:r - Iz_m:'n) (516)
ZIT, FHME LSBT B EKIEE 1y e BMEE |, i & T D, KBL19 DS T
TIRT LI, KEDOIFEE L T2 W EIR Pixel number=0~150 (2 ./ A R MFEIET

% BRKAE |y max & F/ME |y min DZED BRDNEEFE LR R ETHET/IAX
AR ST, & B KREONEIL, AS—F Fismfln GEEE LT, L
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SREE 1,03 |, g & 725 2 5O pixel & 725, [¥5.1.19 OE{R TlEz=167 23FE LY
KRILE D pixel & 72 5.
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Fig. 5.1.19 Schematic illustration of Lift-off distance measurement.

7% 5.1.6 [ZEBREMZ 7T, BREIA Y » MIIA X v, ZBRAY v MIIFZER, il
T E L2 -, BRER &4 8.4L/min, 225 Ji&% 80L/min IZF&RE L, gy
ATHDHEFROWEE 0.1~17.0L/min TELEE7=. MA T, #iE ONED 5~30
mm CTZLE87-. B0 A EREIT 50mm & Lz, KRZIRET2EEED AT
DFRENL, L% 3000fps, T Z 160us & L7z, 7288, KEKDFEZ LAY
& & LT 1000 KD i o -2l & 7z

Table 5.1.6 Experimental conditions in the Lift-off distance measurement
using several axial flow inlet of different diameter

Component Flow rate L/min

Fuel slit CH, 8.4

Air slit Air 80
Axial flow inlet N, 0.1~17.0
Diameter of axial flow inlet mm 5 10 15 20 25 30

Distance of auxiliary space mm 50

Frame rate fps 3000
Exposure us 160

5.1.20 (Z A T — )V Sy BUZKkET B KK DOFEE BNV R I OER%ERT. [X5.1.20
B FLENTEEE ONRZ R L TWED. AT — LS, D LB X W& (S, >4.7)
B WTIIARDOIERE EN 0 BRAETT, HIDp= —1.0 DOLEIC KR ILH N EE L.
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Fig. 5.1.20 Results of Lift-off distance (H/D,).

AT =N Sy PMETT D &, Su=4THEZEES, KRPIEE EDoTo. KROTF
& BNV PECTRIZAT =S, DI TICHW, 72 E BB D RS HID MY 5.
T, AU—=AH S, MET LT, AR (FR) 2N Lo ThHEH2 5
no.

£, WENEOLFIC L VR ORIREZ Z(LSETLR, ATV ERE
B RS OBMRICEELE KT S0 oo, KROTFE LD £ ST A A Ojiis
FVLMBEORBEZRZTLLEEZALND.

5123 EHRZESIERKXOEBAREESH

MMERZINENT 212H 720, RBET ADIREIIEERIEFR THH. Z 2 TlE, #hitz
PE D B R OE G LT AREZBENC L VI Lz, £, EEMETHD LA
U —HBGELIEIC X A IREEEHI S OF - TITV, BAEE XTI X 2 IR HAIRS SR o2 4 M % il
L.

7% 5.1.7 |[ZEVEXT COMRBE RN I 1T D ERRSEM 2T, #lhii & f5s L nWigE,
ZERA Y v M DOZERFEIL 70.0L/min & L7-. iz dta 52854, KA v
226 DZERREIL 60.0L/min & L, HhijRE ) Lyt & L T295% %4 10.0 L/ min {5
L7z, F72, BREIA Y » Fx6 OBRBE &% 5.0L/min, 7.3L/min, 12.5L/min |Z5%
LT, A KumREIREZL = 0.6, 1.0, 15ICHE L. Ak, BIEOETE MG L
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Table 5.1.7 Experimental conditions in the axial temperature distribution measurement

Component Flow rate L/min
Fuel shit CH, 5.0 7.3 12.5
At slit Air 70 60
Axial flow inlet Air 0.0 10.0
Diameter of axial flow inlet mm 0 20
Distance of auxiliary space mm 20
Measure point : 1 mm 0
Measure point : z mm 30 40 50 60 70 8 90 100

[X] 5.1.21 [ZEVEEXHIZ X A&l _EIEEE o GRS B A2~ 7. S 22 Kl FISEL = 1.0 T,

iR 2 fEAG 35 &, TS WER 2 IR EE DS 59 2 1 23
FRIFTH-o7-. ZnLY, iz dds L Tb, BRARFAOIED

& E iR E IXE
RT-N5BZ LN,

iz, L,

G ZE KUB TR = 0.6 TIX, B2 6 L WIGa, BREEE N o258 ¢ 1350~1400
K IZBR7=NT, FHICHm > THRSMICIEEN EH Uz, —F T, M 2 4632 &,
z=50mm &H 7=V 2B FURICIANT T, i 2 G L2 WiGE L CREN S R L.
PREEE H OALE O 2=100mm Ti, BENA=1.0 SIRFEREE CTELZ. Ficms
THRENB EFT HHERK E LT, BREEE I TR S AV IEBUR R O mIRBER T A D5
XIAH O N HZLRHERENS.

IR Ze KGR REIRA =15 TiX, BEOF I LT, BEEEH D 2=100mm TO
EEIXIZERZETHo72. LLAanD, ERMOEESAICIIERNS S, ihits
HAE LW E, REENOREIZIZE-ETHD. —FH T, Wiz 2854,
K€ ONLEN S _EFRICH - CTRENRA LTS, BEOALFNT U £ 20EIT,
FE LR KD PFET HMETHD.

BERNC L2 W ARBEFHANC K0, BREBEE SN TR S VIR R D8 2 321 %
A2 O REIHEA = 0.6 LIS TIE, BROA T, REiRE &R DMEITZT 560
, EIREIRIZERE L 2D 2 Ebho Tz,

S
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Fig. 5.1.21 Results in the axial temperature distribution measurement.
(Axial distance of auxiliary space: 20 mm, r =0 mm)

ENEE X C OB RS R DU M ZREET X<, M TH DL LA U —EELEE
WCIREEZ G U 72, R 5.1.8 ICFEBR S 2 7n 3. Bl & 2> & D22 i & % 10.0 L/ min,
28R AN v MDD ZER I E A 60.0L/min & L7=. £/, #EZeK0BREIEN/A=1.0 &
2D EDITBRELA Y v Ry B OBREHER A 7.3 1L/ min (R Lo, sEE O BRI 20
mm, FZE Ofl A EEEX 20mm ThH 5.

5.1.221Z LA U —BELEIZ X D IREEFHAGE R & BB X D IREEFHARE R A ~d.
VA U —BELVEIC K B IR EEFHIEE B & BV RHE K AR RIS RIT R < —8 Lz, 24
T 24N L CRHEAI L 721X 5.1.21 OIRFEFHRAEE R0 2 4 MR Sz,

Table 5.1.8 Experimental conditions in the Rayleigh scattering measurement

Component Flow rate L/min

Fuel slit CH, 7.3
Alir slit Air 60

Axial flow inlet Air 10.0
Diameter of axial flow inlet mm 20
Distance of auxiliary space mm 20
Frame rate fps 100

Exposure us 9900
Measure point : r mm 0

(T.C. Measure point : z) mm 50 60 70 80 90
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Fig. 5.1.22 Comparison of Rayleigh scattering measurement and thermocouple measurement.

5.1.3 e
BIRKEZ O THERELRTINET 2 Z L 2R E LT, s a0 5 Bk Lok
BERrE 2 AT U 7o, Wi 206 2 D el 7 AROBER KR N—F 2 T, flifiss
KRG ATRERAPH, KR D S —TF Il b O L0, a7 AR KIFET
WEEZRARIER, UTOZERHLNIRoT.
i BIEZRT T AERATE R AR AN—T NICENE 2 IRA S5 &, fhio 7
WA & AT, KRB S LD EROME 2 OE R ME 5. £,
HhEE OWNRZZE T LT OME 2 2 S TH, KRDBER S LA
ZE ORI RITE(L LR,
i, A LT, AT AEERTIEGA, AV—AVERHLBEE T
5L, KRPAN—F EimNnoiEE BRI TS, AT — VO FICHE
VY, FEENYESFEMT 5.
ii.  ENEEZMET D L, S A MU L WIEA LT, BREET AR EIRE &
IR BNEIIEAT DB, BREEN A DREREIZIFIEED L2,
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5.2 R T O BRENNRICK DA P INERDEE

AHITIE, W Z O SURIR TR K RIC X D R[N D SRR 2 iR 72, I
MBW) ORI, TV FTERE LT, T/ FIIRED 2050C & m <, IR
ERHANDTOOFEHE LTS & BRI, RBET ADREZ2 W) &< 572018, B
fEANINR=: & L, iz fF 5 SURIR SRR KRS — T ORRBERi M 2 R~ 7. %.:E
WY D /3= T IR K OVRBESR I 238 E L, FEAEM/N— T 2 BREES ICHD 315 T, il
it (M) &L BTG LT A I TR e B S E T, TOMIRIEREZHIE L.

5.2.1 EREESLUERAE

PRBERR D FMEL % [X] 5.2.1 12, BRBEIR ORI A X 5.2.2 |27~ 7. PRBESR O NEEIE 400 mm,
X 1987mm ThH Y, JFENMIEEITE K 350 mm OWrEES (FIBERMAX, ITM HY)
TEDLDNLTWD., BREEF B L0 BASHIEBERZRINT 572912, IFRICDDIEE
WiE L7, BIRAKR A= TR LOWRBEE 2 ABEE o FEICEY (1772, £7=, A
— T ARE ERANCIE, BAERBS X OWERA T A (BBFR) 2/ N— T WNEIE A 2 s~
AR— N2 fFHT 7.

Fig. 5.2.1 Appearance of in-flight heating furnace.
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PREHZIZHR T A A 13A (AL : A % 2 88.9%, =X 6.8%, 71,3 3.1%, 7 X
> 1.2%), PR b AN TR 2 Tz, A RANE, NOMERI OB b —lfbikFE & L,
PREHZIRA LT, SR XA %, [~ A7 —2—% (CMS, MQV, azbil
) CHREAAER, BERY > b, AR v P B XA AR — )b —
TS LT,

Particles ®1109
D400

% J Exhaust gas
Mass Q {
flowmeter

> —]
\MFHMF||MF||MF| i
> ZOO Particles
3 o

0, NG CO,

Fig. 5.2.2 Apparatus of in-flight heating furnace.

[P TIET B IEMBW ORRIL, BbT VI = A (ALO;, /T LIF) &
L7c. — 72 77V 2 F Ol sE 2050°C, &l 20°CIZ 381 2 HeE$0.80~0.84 ki / kgK,
BRERILI0OW/MK TH D, AEBRTHEH L7270 I, IS HBRICKB T DR
A RIS E ORE HIEUERL - CTH 0, RIBIIRER Th D MR DA OIEN N D
NS CTH 5. ABFFETIE, R 14um (BAERT V2 J No.d, HARBATE
Bifithe), B, FEPREE 30 um (BEAEERY /L2 ) No.5, H ARG EEINH
L) OZFHEOTNAIFTEMER L. TAITHEE~ A 70 AT ) a—T 4 —F—
(MFS-1S, B b FaRmE) 2 L Tl 7 2 (BEsR) ITRA S, ERARIC
L DRERNRFZE T LR OMB SIS, JFN FEICEREINIZHD0E0OHF~E T L
T FERY L, BRI LZEE ZEEE - BMEE (Scanning Electron
Microscope: SEM, JSM-60600V, JEOL #) #FH\W\WTHIZELT-.
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BARKR N —F OIS 2 11 5.2.3 17T, BIRKRAS—FARIEOWNEIL 46 mm ThH
B N—FARIRIZE, RGN DT AR T 5700 EIA Y > R EBRLHIA Y
v FEE 280, 90° TERHEICREL TS, WKk EEEET D720, BREHE (L
FERDOAY v M HFET 2 28RAEZ A L. AX—FTix, AU v hAES
BANTHTETH—%BHTH2LT, AU v FE2HEICEFRTE S,

2V v NOREK Case 1, 2,3 O =FEfHAE H o, 52112, TH T X —HAEZD
AUy FOFIRENIEZRT. Case L XML LC,Case 2 [LA U v hDE & (Length)
ZHMEEDZ LT, AV v M2 NS 72, Case 3 1TMREL R Y v M &R &
L, Wrmfd% Case 3 LV b H70. MEAIAY v MIWrmfE% Case 2 L[FIL &

LT, g (Width) ERIAZZHE L.

: 35 70 200 NG+CO < 50
Carrier gas port a | 2 Slit adapter 1;3 Length
Oxidizer : 5 e
= = 1] Oxidizer slit adapter

S =
e — . £ 40
i 0, = Length
o ING+CO, &

Burner main body a-a’ cross section

Combustion tube

Fuel slit adapter
center

% [ 40
= Length <
574
Fuel slit adapter
i . downstream
Fig. 5.2.3 Schematic of tubular flame burner.
Table 5.2.1 Dimensions of slits at tubular flame burner
Oxidizer slit Fuel slit
Length  Width Are Length  Width Are o
[mr%] [mm] [mmg] [mr%] [mm] [mma] Position
Case 1 20 1 20 20 0.5 10 center
Case 2 30 1 30 30 0.5 15 center
Case 3 15 2 30 2.5 2.5 6.3 downstream
BIRKFEDOENIAN—F R OV L TCEE LT, TOX VAT

(NEX-7K, SONY #, X— A1 > X : E18-55mm, SONY #i)
BRGNP ORRERE LIS, DATO

RIE I,

Z AV, S —F Rl
0 fE /20, #&HRERT 17400 £7-

1% 1/1250 ¥, 1SO A 1600 & L7=. AR EE X R RUEVE S 2 UV CEHII L 7=.

107



5.2.2 ERERSLUER
5221 #HAKPMEBETERER/ \—T OGRS

2V v FRDEORROAE, £, T AMEEZE(LIE T, kROKEL X
ORENABECIE S (BEDAERK) OFMEZBE L. £5.2212, EBREMHEZRT.

Table 5.2.2 Experimental conditions

Combustion rate Quuyv [KW] 5~20
Oxygen ratio S [-] 1.1

Oxygen concentration C [-] 0.5~1.0

Axial oxygen flow [L/min] 5~30

WesR b p & s C 1T TER L.

- on 5.2.1
/ [O2lin (5.2.1)

_ [OJ]

~ ([05]+[CO3)) (5.2.2)

Z 2T, [O]iFEAFEUAGE[L / min], [COiF bk FE UG &L / min], [O2]n ITBRJE
I T 5 HEmiE SR &L/ min] 2 2R 7.

e 3R R B & O T P b 2 D TR 2 £ 5 B IR R DL E L TR TE 5 5&4F
Z BT 72 I, BER Quuv B K OERIRE C 22 S TRRDIKRELBIZE LT,
2 v NORE % Casel, BEFELILA A= 1.1, EhHHHEENT A (BEE) WifE% 5L/ min
E LT K524 ITKRNMBOIREET %, X 5.2.5 (KRB KA LT B PR BE &
Quuv EFEEIRIE C TOARRDOIIRE 7 1 v N TRT. KKIBIROSFEIL, X 5.2.6(a)
DEIRAY v " BIRE ERSTREEZEIR KK E L, X526(0) OLHIRAY >
MIKEPFE L TWDREEEFE AR E LT, 728, 5.2.5 1Z1L, IRENREEDFE
AT DD ORL TV D, IEENAEET, FARRE C BN EMRWSETRA L
TEY, BRBEE Quav NI LY, IREWABES AT ARSI L7z, Zhug,
AU M BIAT HBEHS L OB LA O TN INT 25 &, BB B LA DR A D
RESN, LU TPIRABREECIEVIRIEEIZZ2 2 ZER—RELTEZLND. T HARK
PRFss, HEBR T2 A6 AT 22 19 i, IEEVRBEOIIHIGIE L LT, FIRAMREE
FHRED G, BB AT RE Z LRI TWD. R, BREFHEORIN
R, BEARKRDTER SN DR BIER L2, ZhuE, AU v B A S DR
BH X OBALA OV EINC D, 2D v MIME LT K RNEZE LR 72720 Th
B EHERIND.

108



Combustion rate [KW]

5 10 15 20
1.0
O
<
el
s
5
e
S | o8
o=
S
<
o
0.6

Fig. 5.2.4 Relations between combustion rate and flame appearance at f= 1.1, Axial flow
rate: 5 L/min, Slit: Case 1 (Oxy: 20x1- Fuel: 20x0.5).
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O 09 - /\ /\ /\ /\
g 08 | A\ A A\ A
® 07 ¢ AN VAN /\ O
Bos- A OO O
so05- O O\ O
3 04 ¢ Oscillating combustion
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Combustion rate [kW]

Fig. 5.2.5 Mapping of various flame appearances at f=1.1, Axial flow rate: 5L/min,
Slit: Case 1 (Oxy: 20x1- Fuel: 20x0.5).
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Attached

O Tubular flame /\ Attached flame
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Fig. 5.2.6 Tubular flame and attached flame.

Wiz, AV > NOFKEE Case 1, MRtz p=11, IEE%S Quuv=20kW & L T,
T A T A (FE3R) RER X OBHRRE C 22 b3, RiEoMFEEL —TE L
T L7, ARSI A (BE5E) REEICEY, B IR Y > Fb O PR
PMETT 5. ZHU k0, BB B EAIOIRE DSFRIEIZ2 0, IRERE S IIHI S5
EEZRT.

527 (KRB OREAER %, X 5.2.8 IZRBER Quav & FERIRIE C Ik 5k
RIERAETRT. K 528 TORBFKEL, KEBMHELIEAY » FETHHLTORL
7. 5.2.8 (Ti%, IREWRGE &R ORI A RS, W7 T A (B3R) e
YR ST, IREYABED SO K RIEIRITIT & A EZA LB 2o T2, —F5 T,
EARKRDIER S D mdki X, sl s T A (BB3R) OFEE NIV L, £
7o, BERPIEZE S 8L, ORHER L7, B T A (FRR) i BRI £
WV, AUy B ORREL & R LA OFREDEAD T 572D, IBABREICIL R o7 L HE
BINs.

529X AV v FBAOEFENS Case 1 D 1.5 %D Case 2 (3 5.2.1 &) % H -k
RTH5H. Case2 % Case 1 & AT, BB K OMALAIOFEME T L TRE D R1E
R0, IREVRBENS RIS D & B 2 T2, IREVARBEO TR/ TEL R o123,
Casel (T b~ THRENAREDS R AE T 2 5l e/ N L7z, — 05, R OF AR TR L.
BER TR Z BN 5 &, BRI AT 28N E L D720, IREMREEOI LIS
Mz T, BROEREHEZHMNSEDLERNHD.

RIS, BEEA Y » FOBRORIREZE L ESFBICEE L, O AN EZ L
FIAY > hOBONLE XY FIRANCEE S¥7- Case 3 (X523, £521 %) &K
APl BAREZHRS 52 & T, BEIOMAREEZ&EDDD, N—FHNEKE LT
TR E BR L AN DOIRE % Case 1 ° Case 2 L VARIBICTE D & 2 7. #ER 42X 5.2.10
(27”9, Case 3 TiE, HRENABENHNIE X, HRPIPAL S LD Case 2 & b,
T R E T A (BEFE) WEED RIS NS WS TIEM/ Sz, LEEn->T, &
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U v NOFRIE Cased, i AHLES APEE 5L/ min 128V T, Lk, BESK FnEE
FEIELT-.

Axial oxygen flow [L/min]
0 10 20 30

1.0

0.8

Oxygen concentration C

0.6

Fig. 5.2.7 Relations between axial flow rate and flame appearance at f=1.1,
Qunv =20 KW, Slit: Case 1 (Oxy: 20x1- Fuel: 20x0.5).

A\ Oxidizer slit: Attached Fuel slit: Attached
/\ Oxidizer slit: Tubular ~ Fuel slit: Attached
[] Oxidizer slit: Attached Fuel slit: Tubular

) (O Oxidizer slit: Tubular ~ Fuel slit: Tubular | [,uminous flame
g 10 A—A—A—A ¥
£ 09 A A A A
§ 0.8 A A A A
= AN
Q O JAN
v 0.7 O O
5 o ©
en 0.6 @) - _
o Oscillating combustion
o 05 ] ] 1 1 1
0 5 10 15 20 25 30

Axial oxygen flow rate [L/min]

Fig. 5.2.8 Mapping of various flame appearances at f=1.1, Quuy =20 kW,
Slit: Casel (Oxy: 20x1- Fuel: 20x0.5).
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Fig. 5.2.9 Mapping of various flame appearances at f=1.1, Quuv =20 kW,
Slit: Case 2 (Oxy: 30x1- Fuel: 30x0.5).
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Fig. 5.2.10 Mapping of various flame appearances at f=1.1, Quuyv =20 kW,
Slit: Case 3 (Oxy: 15x2- Fuel: 2.5x2.5 downstream).
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5222 BMAKHMRADEL

AY v b A& Case3, JABER Quav=20kW, FRIRHA=1.1, MR C=093, HI7I
B 5L/ min OSMET, Bk kK SA—FIC L 3RO FEIE 43R 7. 523
2, BRBESRATE 2T

Table 5.2.3 Experimental conditions at in-flight heating

Combustionrate  Oxygen Oxygen Oz flowrate  CO; flow rate
[KW] ratio concentration [L/min] [L/min]
Burner (Case 3) 20 1.02 0.92 60.9 5
Axial gas port - 0.08 1.0 5 -
Total 20 1.1 0.93 65.9 5

BN 2 BRI TR 14 um B L300 um 7L 2 (ALO;3 99.62%) & L7-.
74— A —IC kL E R ES 2kg/h ICHRE LT, WREHT A () TUTRA L.
5.2.11 |FTBRBEZ BRI O DIFNIREDOE L TH 5. K 5.5 RFFASE S, JFNIREE
25 1200°CIT 3 L 72 R TR o e 2 BilAq L C, 15 7 v 2 iR 2 dtka L7-.

-~ 1400

—

b

=

<
T

1000 |
800 |

600 -

=

=

=
T

Temperature of furnace [C
b
=

0 1 2 3 4 5 6
Running time [h]

o

Fig. 5.2.11 Furnace temperature record. (Slit: Case 3(Oxy: 15x2- Fuel: 2.5x2.5 downstream),
Quuv=20kW, p=1.1, C=0.93, Axial flow rate: 5L/ min)

K[IFMEGE, 2OIFNICE R L TCWET LI F42EY L, £EEIRE SEM (2 X
DEIZZ LT, [X5.2.12 I2FEEPRIEE 14 um, [X] 5.2.13 [ZFEEIRFR 30 um DINENRT#4 DO f
WLTRRZRT. REMGEIT, 40EBLO500 [ THD. REEEND, MNEk
T, 7AITHRADOEAN LD, ERIELTERFRIFET D2 ERbnsd. F
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BIRIEE 14 pm TIX, 140 5O IZ %PT P INEFTRIER DR T D 84 % FFo
K113 1001, ERRAb S 7R IR o mc BRI SN TR F 2 5D 5 & 156 {H &
5. HEBNEERORFE ﬂ#é%%%ﬁ%@ﬂ 1£0.135 TH o7z, ZHiTxfL,
SEEPRIAE 30 um T, KUTUINEARITIRIEE D TR Ok 713 250 i, BRI AL S 72 hi+-1% 120
Ed 2. HGENERORFEITKTT 2 BRI LKL DOEIG13 0.324 Th o7, FEIRIEE
30um & AT, SRR 14 um 1ZERIAL R MR o 72

KNS B L, KFOEREDHTZY OREFITEMT 5720, EHMZ T,
WREET A DTN DFEE L VBEIIZITDEEXLND. FHRIZKBWT, RO
A T/ NMEORL 71T, JFREE TEL S ol LSS D . JFREDIREITH
12000CTH Y, BRBET ABE L LERD LIKIBRTH D, D7, JFREFIT D AW E
HHEGHIIRIR & 70 5. WFEEICEER T D R0, JFREITEE O LG HIIR FE AME V22 [ 2 1
W DR OFEIGNHEIM L7 Z &2, IMERLF CERRILEDMEL o e BB & E 2 5
5. BRIRMEROUEEITIE, T T ORERMEREEZRHND & LI, FaRED
BEEPAVLETHDH I ENRBEINT-.

140-ma nlflcatlons i I
9 (b) after 500-magnifications

Fig. 5.2.12 SEM images of 14 um Alumina after in-flight heating.
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140-magnifications
g (b) after 500- magnlflcatlons

Fig. 5.2.13 SEM images of 30 um Alumina after in-flight heating.

5.2.3 wE

T 2 1 O BRI K DR O R IE D FRE AT o 1=, IRFRIEE O @ ER LAl
Z O D E R KRS —F ORBEREZ G, B RN+ 53— F OGO
Bedetb 2 W Uie. F7z, SERER/N— T 2RBEF ICHD (11 T, EBICT L TR
B U245, LR Z ENH eI Tz.

. %f%%wt%m%ﬁoﬁiﬁAﬂﬁﬁk*A~%Ti PRIBE DN 72 &

X0, BELEREFIOIRA DMEE SN D EIRERENRE LS 2 5.
i, Mﬂuﬁﬁ%ﬁwtﬁﬁkﬁgib,?w\%%m¢fm%bfﬁﬁm5
FHIENTED.
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