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第１章 序論 

1-1 酸化物半導体の現状と課題 

酸化物の材料としての歴史は極めて古く、二百万年前の旧石器時代に人類が初めて作っ

た道具、すなわち打製石器にまで遡ることができる。さらに、約一万年ほど前に発明され

た土器は、人類が初めて化学反応を用いることで作製した道具であり、定住生活の確立を

決定づけるブレークスルーであった。人類の最初期における材料が酸化物であったのは、

酸素が地球上で極めて豊富な元素であり[1]、それゆえに地球上で酸化物が安定に存在できる

からにほかならない。 

現代におけるファインセラミックスとしての酸化物の研究は、その高い絶縁性を利用し

た機能の探索にはじまった。酸素の電気陰性度はフッ素についで二番目に高いため、金属

元素との化合物は強いイオン性を示す。イオン性の強い化合物は、結合性軌道と反結合性

軌道の間のギャップ、すなわち価電子帯と伝導帯の間に存在する禁制帯の幅（バンドギャ

ップ）が大きくなるため、絶縁体になりやすい。酸化物の絶縁体としての利用は、1940-1950

年代の TiO2コンデンサ
[2-6]やフェライトコンデンサ[7,8]、BaTiO3

[9-13]に代表される酸化物誘電

体に端を発する。現在でも、強誘電体酸化物は、不揮発メモリーの誘電体層などとして活

発に研究されており[14-19]、エレクトロニクスの広い分野に利用されている。 

酸化物は典型的な絶縁体ではあるものの、伝導帯の直下にドナーレベルを形成してキャ

リア電子を注入することで、電子伝導性を賦活することができるという“半導体”としての側

面も持っている。バンドギャップが約 3 eV 以上の半導体は可視光に対して透明であるため、

多くの酸化物半導体が、透明導電体として機能することが知られている。In2O3:Sn（ITO）[20-24]

や SnO2:F
[25-29]に代表される酸化物透明電極は、1990 年以降に急速に発展した LCD などの各

種ディスプレイや太陽電池に必要不可欠であり、酸化物をベースとした半導体の有用性が

大きくクローズアップされることになった。近年では、アモルファス InGaZnO4（a-IGZO）
[30-32]などの酸化物をベースとした透明 TFT の研究開発も活発で、既にいくつかのメーカー

の LCD に搭載されている。 

近年、環境負荷や有害性・有毒性の低い材料や製造プロセスが環境適合材料（Materials for 

Environment）や環境適合設計（Design for Environment）として、重要視されるようになって

きている[33,34]。酸化物半導体は、GaAs や CdTe といったニクタイドやカルコゲナイドの化

合物半導体とは違い、アニオンである酸素の資源が豊富であり、酸素は安全な元素である

ために、環境負荷が低い材料である。また、酸化物は大気中で安定であるため、素子化に

おいて大規模な真空装置を使用しない低コストの製造プロセスを目指すことができる。酸

化物半導体は、環境適合材料に対する需要が増している現代において、今後ますます注目

を集めていくに違いない。 

さきに挙げた酸化物の応用例、すなわち誘電体や透明電極、透明 TFT は、いずれも光学

的にはパッシヴな機能である。酸化物半導体が、LED や太陽電池のように光エネルギーと
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電気エネルギーを直接相互変換する光電変換素子に用いられる例は極めて少ない。その最

大の理由は、光電変換素子への応用に適した、直接許容遷移型の酸化物半導体のバンドギ

ャップのバリエーションが極めて少ないことにある。 

直接許容遷移型の半導体の代表的な結晶構造は、閃亜鉛鉱型（Figure 1-1(a)）やウルツ鉱

型（Figure 1-1(b)）といったダイヤモンド関連型構造であるが、この構造を有する二元系の

酸化物半導体は ZnO と発癌性物質の BeO のみである。ZnO は近年の薄膜結晶成長技術の進

歩により、レーザー発振[35-38]や LED
[39-44]としての動作が報告されているものの、そのバン

ドギャップが紫外領域の 3.37 eV である[45]ことから、カバーできる波長は近紫外領域に限定

される。可視・赤外領域における光電変換素子は、そのバンドギャップのバリエーション

の豊かさから、カルコゲナイドやニクタイドの独壇場となっている。可視・赤外領域にお

いて、環境適合性の高い酸化物の長所を活かした光電変換素子を実現するためには、より

狭いバンドギャップを有する新しい直接許容遷移型の酸化物半導体の登場が望まれる。 

1-2 三元系酸化物半導体のもつポテンシャル 

立方晶系の閃亜鉛鉱型構造は、直接遷移型の化合物半導体の代表的な構造である（Figure 

1-1(a)）。この構造は、ダイヤモンド構造における IV 族元素を、III族と V 族元素、もしくは

II 族と VI 族元素に、すなわち、平均価電子数が４となる元素の組で規則的に置換した構造

である。閃亜鉛鉱型構造の III-V 族のニクタイドと II-VI 族のカルコゲナイドは、物質のバ

リエーションが非常に豊かであり、それらがカバーするバンドギャップのエネルギー領域

はそれぞれ InAs（Eg = 0.42 eV）～AlP（Eg = 2.52 eV）[46]と CdTe（Eg = 1.50 eV）～ZnS（Eg = 

3.5 eV）[47,48]と幅広い。また、二元系化合物から三元系化合物へと拡張することで、物質の

バリエーションはさらに豊かとなる。三元系への拡張は、化学量論組成を達成するための

組成制御が難しくなるものの、二元系の化合物半導体が抱える問題を解決できる場合があ

るため、古くからとられてきた材料戦略である。例えば、CdTe や GaAs、InAs における有

毒なカドミウムや砒素、希少なインジウムなどの使用を回避することのできる三元系カル

コパイライト型構造（Figure 1-1(a)）の CuInSe2
[49,50]や ZnSnP2

[51]は活発に研究されている。 

閃亜鉛鉱型構造と同様に、直接遷移型の化合物半導体の代表的な構造である六方晶系の

ウルツ鉱型構造においても、それを三元系へと拡張した、β-NaFeO2 型構造が知られている
[52,53]（Figure 1-1(b)）。β-NaFeO2型構造は、II-VI 族ウルツ鉱型化合物の II 族元素を、I 族と

III 族元素で規則的に置換したウルツ鉱型構造の派生構造である。六方晶系におけるウルツ

鉱型構造と β-NaFeO2型構造の関係は、立方晶系における閃亜鉛鉱型構造とカルコパイライ

ト型構造と同等の関係と言える。二元系の酸化物半導体のバンドギャップがカバーできる

波長領域が狭いという前述の課題は、二元系酸化物から三元系酸化物へと拡張することで

解決できる可能性がある。 

β-NaFeO2型構造を有する酸化物半導体として、β-LiGaO2（Eg = 5.7 eV）[54,55]、β-AgGaO2 （Eg 

= 2.1-2.2 eV）[56-58]、β-AgAlO2（Eg = 2.6 eV）[56,58]が知られており、三元系へと拡張すること

で酸化物半導体のバンドギャップ可視光領域をもカバーすることができる。しかし、前記
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の三元系酸化物半導体のうち可視光にバンドギャップを有する β-AgGaO2や β-AgAlO2は間

接遷移型である[57-60]ため、光電変換素子への応用には適さない。可視～赤外域で応用可能

な酸化物半導体をベースとした光電変換素子を実現するには、ウルツ鉱型もしくはその派

生構造を有する新たな直接遷移型酸化物半導体を開発しなければならない。 

 

Figure 1-1. Schematic illustrations of diamond related crystal structures of simple, binary and 

ternary compounds in (a) cubic system and (b) hexagonal system. The blue dashed lines in 

lonsdaleite and wurtzite show their unit cells. 

(a) Cubic (b) Hexagonal

Lonsdaleite

Wurtzite

β-NaFeO2-type

Diamond

Zincblend

Chalcopyrite

: IV

IV

II-VI

I-III-VI2

IV

III-V

II-IV-V2

: II / III :VI / V

: I II/ :   III IV/ :VI / V
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1-3 本研究の目的 

これまで述べてきた酸化物半導体を取り巻く状況のなか、本研究は以下を目的に遂行し

た。 

(1) 直接遷移型の酸化物半導体のカバーする波長領域を広げるため、既存の β-NaFeO2型酸

化物を直接遷移型半導体に固溶させる、もしくは、直接許容遷移型ギャップを有する

新たな β-NaFeO2型酸化物を見出すこと。 

(2) 第一原理計算によって、新しい β-NaFeO2型酸化物の基礎物性を明らかにすること、お

よびその物性の起源を見出すこと。 

 

1-4 本論文の構成 

本論文は、以下の第１章から第６章により構成されている。 

第１章では、二元系ウルツ鉱型酸化物半導体の現状と課題を整理し、可視～赤外域にバ

ンドギャップを有する酸化物半導体を探索する意義と本研究の目的を述べた。 

第２章では、バンドギャップが 2.2 eV の三元系ウルツ鉱型酸化物 β-AgGaO2と ZnO との

固溶体をスパッタリング法により作製し、その光学的性質を研究した。β-AgGaO2の固溶に

より ZnO のバンドギャップを青色域の 2.55 eV まで小さくできることを見出した。

ZnO-AgGaO2固溶体は、従来の ZnO-CdO 固溶体と異なり有害元素を含まないため、ZnO を

ベースとした半導体の可視光領域での応用を可能とする実用的な酸化物半導体となりうる

ことを提案した。 

第３章では、赤外域にバンドギャップを有する新しい酸化物半導体の候補物質である

β-NaFeO2型構造の β-CuGaO2を作製し、その光学的・電気的性質を研究した。β-CuGaO2は、

単接合太陽電池の理論限界変換効率が最大となる 1.47 eV のバンドギャップを有すること、

p 型伝導性を有すること、ZnO との格子整合性が優れていることを明らかにし、薄膜化にも

成功した。これらの知見をもとに、β-CuGaO2は n型 ZnO などとの p/n 接合により変換効率

の高い全酸化物薄膜太陽電池を実現しうる、有望な光吸収層材料であると提案した。 

第４章では、第一原理計算により β-CuGaO2の電子構造を計算し、その光学的・電気的性

質を研究した。局在電子系における自己相互作用を補正した局所密度近似法（LDA+U）に

より、β-CuGaO2 の結晶構造と価電子帯の電子構造の実測値をよく再現する、信頼性の高い

計算結果を得た。計算結果に基づき、β-CuGaO2 が直接遷移型半導体であること、バンドギ

ャップ直上で光吸収係数は 1.0×10
5
 cm

-1に達し、CdTe や CuInSe2などの薄膜太陽電池材料と

同程度であることを示し、β-CuGaO2 が光学特性の観点から薄膜太陽電池に適した材料であ

ることを明らかにした。 

第５章では、第一原理計算により β-CuGaO2の多形であるデラフォサイト型 α-CuGaO2、
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および同形の β-AgGaO2の電子構造を計算し、β-CuGaO2中の Cu周囲の局所構造や結晶構造

が電子構造や物性に及ぼす影響を研究した。β-CuGaO2のバンドギャップ近傍が Cu と Gaの

各原子軌道が混成したバンドから構成されるのは、Cu 原子と Ga原子が混合した β-CuGaO2

の結晶構造に由来すること、β-CuGaO2 の強い光吸収やホールの大きな有効質量をもたらす

価電子帯の上端近傍の大きな状態密度は、酸素に四面体４配位する Cu原子の局所構造に由

来することなどを明らかにした。また、β-AgGaO2 の価電子帯の分散が β-CuGaO2 よりも大

きいことを、イオン半径の小さな Ga
3+が結晶格子の大きさを規定するために、隣接する Ag

原子間の距離が短くなっていることによって説明した。この理解に基づき、β-CuGaO2のGa
3+

の一部を Al
3+で置換することで、β-CuGaO2のホールの有効質量を小さくし、移動度を向上

する方法を提案した。 

第６章では、多元系ウルツ鉱型酸化物により、酸化物半導体のエネルギーバンドギャッ

プは赤外～紫外域の広い波長範囲をカバーすること述べ、それらを各種の素子へと応用す

る際に必須となるバンドエンジニアリングの方法を議論し、本研究を総括した。 
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第２章 β-AgGaO2の固溶によるZnOのバンドギャップナローイング 

2-1 緒言  

化合物半導体のバンドギャップ制御は、半導体が応用可能な光の波長範囲の拡大や、量

子井戸構造の作製に必須の技術であり、通常は同じ結晶構造の半導体の固溶（混晶化）に

より行われる。ウルツ鉱型の GaN（Eg = 3.39 eV
[1,2]）に同じくウルツ鉱型の InN（Eg = 0.7 eV

[3,4]）

を固溶させることで青色や緑色および黄色発光が実現されたこと[5-7]や、太陽電池材料のカ

ルコパイライト型 CuInSe2（Eg = 1.04 eV
[8]）に CuGaSe2（Eg = 1.67 eV

[9]）を固溶させること

で、そのバンドギャップを太陽電池に最適な値に制御されていること[10-12]、AlN（Eg = 6.10 

eV
[13,14]）に GaN（Eg = 3.39 eV）を固溶した AlGaN を発光層に用いることで AlGaN/AlN 量

子井戸構造の紫外光 LED が実現されたこと[15-17]など、化合物半導体のバンドギャップ制御

によって達成される機能は枚挙に暇がない。 

ウルツ鉱型構造を有し、直接遷移型半導体である ZnO も、そのバンドギャップ（3.37 eV）

を制御することで、応用可能な光のエネルギー範囲を広げることは可能である。しかし、

ウルツ鉱型の ZnO の場合、同じ構造を有する単純酸化物は BeO（Eg = 10.6 eV
[18,19]）しかな

い。MBE 法で作製した BexZn1-x O 薄膜では、BeO と ZnO は全域でウルツ鉱型の固溶体を生

成し、バンドギャップは 3.37~10.6 eV で制御できることが報告されている[19]が、BeO は発

癌性が高いため実用には適していない。このため、ZnO のワイドバンドギャップ化は、次

善の策として、通常は岩塩型 MgO との固溶により行われている[20-25]。例えば、パルスレー

ザー成膜法（Pulsed Laser Deposition, PLD）で作製した MgxZn1-xO 固溶体薄膜では x < 0.33の

範囲でウルツ鉱型の固溶体が得られ、3.37～3.87.eV の範囲でバンドギャップが制御されて

おり[23]、ZnO をベースとした LED における量子井戸の形成に用いられている[26-32]。 

一方、ZnO のナローバンドギャップ化の研究は非常にすくない。ZnO のナローバンドギ

ャップ化については、岩塩型構造の CdO（Eg = 2.2 eV
[33]）との固溶体が報告されており[34-37]、

水熱合成法で作製した Zn1-xCdxO は、x < 0.17 の範囲でウルツ鉱型の固溶体が得られ、バン

ドギャップは 3.37～2.58 eV の範囲で制御できること[37]、また PLD 法による成膜では、x < 

0.08 の範囲で固溶体薄膜が得られ、バンドギャップが 3.37～2.9 eV の範囲で制御できること

が報告されている[35]。しかし、カドミウムは有害元素であり、応用に向けた研究は行われ

ていない。また、閃亜鉛鉱型の ZnSe との固溶による ZnO のナローバンドギャップ化も報告

されている[38]が、結晶構造の違いから固溶領域が極めて狭いだけでなく、化学量論組成を

達成するためのアニオンの組成制御が極めて難しいという課題がある。このような状況か

ら、ZnO の可視光領域での応用は、半ば諦められた研究課題となっている。 

三元系 β-NaFeO2型酸化物と ZnO の固溶体は、ZnO のバンドギャップを制御する新しい方

法のひとつである。β-NaFeO2 型構造はウルツ鉱型構造の超構造であるため、幅広い組成領

域にて固溶することが期待できる。実際に、5.6 eV のバンドギャップを持つ β-LiGaO2との
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固溶により、ZnO のバンドギャップを 4.0 eV まで広げることができる[39-43]。β-AgGaO2は、

β-LiGaO2と同じく β-NaFeO2型構造を有し、バンドギャップが 2.1－2.2 eV
[44,45]の酸化物半導

体である。β-AgGaO2は間接遷移型半導体であるため
[44-46]、それ自体を光電変換素子へと応

用することはできないが、直接遷移型半導体の ZnO に固溶することで、可視光領域にバン

ドギャップを有する直接遷移型の酸化物半導体となることが期待できる。 

β-AgGaO2は酸素雰囲気では、610 oC 以上において金属 Agと Ga2O3に分解する
[47]ため、

ZnO との高温固相反応による固溶体の作製は望めない。そこで、本章では、スパッタリン

グ法を用いた非平衡反応によって(1-x)ZnO-x(AgGaO2)1/2固溶体薄膜の作製を試みた。本章の

前半では、β-AgGaO2を堆積するための最適なスパッタリング条件を探索した。スパッタガ

スの組成や圧力、基板温度などを成膜時の実験パラメーターとし、得られた薄膜の結晶相

や光学特性、モルフォロジーを研究した。後半では、得られた β-AgGaO2薄膜の作製条件に

もとづいて、(1-x)ZnO-x(AgGaO2)1/2薄膜を作製し、ウルツ鉱型化合物の生成範囲と、光学的

性質を研究した。 

 

2-2 実験方法 

2-2-1 実験に使用した試薬 

下記の市販の試薬を使用した。 

Na2CO3（99.8%、和光純薬工業）、Ga2O3（99.99%、高純度化学）、AgNO3（99.9%、和光純

薬工業）、KNO3（99.9%、和光純薬工業）、ZnO（99.99%、シグマアルドリッチ）、Ag2O（99%、

和光純薬工業）。 

2-2-2 β-AgGaO2ターゲットの作製 

β-AgGaO2は Ag2O と Ga2O3の高温固相反応では合成できないため、前駆体 β-NaGaO2の Na
+

を Ag
+へイオン交換する方法[48,49,44]により合成した。前駆体 β-NaGaO2は次のように合成し

た。反応中の Na の揮発を考慮し、モル比 Na2CO3:Ga2O3 = 1.06:1で秤量した計 10~15 g の試

料を、エタノール 15 ml と φ5 mmの安定化ジルコニア製ボールとともに 80 cm
3のナイロン

製ポッドにいれ、遊星ボールミルを使用し、回転数 250 rpmで 1 時間混合した。混合後のス

ラリーは、テフロン製シートを敷いた金属製バットにのせ、150 oC に加熱したホットプレ

ート上でエタノールを蒸発させ乾燥した。得られた粉末を φ17.2 mmのダイスに充填し、100 

MPa で 1 分間一軸プレスして圧粉体とした。圧粉体の側面に付着したダイスからのコンタ

ミネーションをエメリー紙（#1000）で取り除いた。白金箔を敷いたボートに圧粉体を載せ、

電気炉にて大気中で 900 oCで 20時間焼成した。β-NaGaO2は吸湿性が極めて高いため
[50,51]、

焼成後は 200 oC に保持して、試料を取り出した後、直ちに真空中にて空冷した。また、作

製した β-NaGaO2は直ちにイオン交換反応処理に供するか、または真空中で保管後にイオン
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交換処理に供した。 

 イオン交換は次のように行った。モル比 β-NaGaO2:AgNO3:KNO3 = 1:1.2:1 で秤量した

AgNO3と KNO3を乳鉢にて粉砕混合した後、β-NaGaO2とガラス製のバイアルに入れ、振と

うして混合した。混合粉をアルミナ製るつぼ（ニッカトー製、SSA-S B2 型）に移し、暗所

にて 200 oCで 12時間保持した後、室温まで自然放冷した。反応後の余剰なAgNO3とKNO3、

副生成物の NaNO3を超純水で 3 回洗浄し除去し、乾燥時間を短縮するため、3 回目の洗浄

後にエタノールで最終洗浄し、室温、真空中で乾燥して β-AgGaO2 を得た。β-AgGaO2 は水

中で安定相のデラフォサイト型 α-AgGaO2に相転移することが報告されている
[47,52]ため、前

述の洗浄操作は 15分以内を目安とし、出来る限り手早く完了した。 

2-2-3 β-AgGaO2薄膜の作製とキャラクタリゼーション 

β-AgGaO2薄膜は、RF マグネトロンスパッタ（EIKO 製、2 インチ粉末スパッタ）にて作

製した。スパッタリングのターゲットには、β-AgGaO2粉末を 2 インチのアルミ製ホルダー

に広げ、薬包紙の上から指で押し固めたものを用いた。基板は、薄板ガラス切断装置（ア

ステラテック製、ファインガラスカッターII・EG-100II）にて 15 mm×15 mmに切断した φ2

インチ、厚さ 0.33 mmの(0001)-Al2O3単結晶（京セラ製、TS-11005、両面鏡面研磨）を用い

た。切断した基板は、アルカリ性基板洗浄剤（セミコクリーン 56、フルウチ化学製）、超純

水、アセトン、エタノールの順にそれぞれ 5 分ずつ超音波洗浄し、圧縮空気を基板表面に

垂直に吹き付けて表面のエタノールを除去し、大気中にて 1000 oCで 30 分以上加熱してか

ら使用した。Table 2-1 に示すように、スパッタリングにおけるガスの組成や圧力、基板温

度を成膜時の実験パラメーターとし、それらの影響を調べた。 

 

 

Table 2-1. Sputtering conditions used to deposition of each β-AgGaO2 thin film. 

Sample No. Substrate temp. Pressure 
Atmosphere; 

O2/(Ar+O2) 

Sample A1 Without intentional heating 0.25 Pa 0% (pure Ar) 

Sample A2 Without intentional heating 0.25 Pa 10% 

Sample A3 Without intentional heating 0.25 Pa 50% 

Sample A4 Without intentional heating 0.25 Pa 100% (pure O2) 

Sample B1 200 oC 0.25 Pa 10% 

Sample B2 200 oC 0.25 Pa 15% 

Sample B3 200 oC 0.25 Pa 20% 

Sample B4 200 oC 0.25 Pa 25% 

Sample C 300 oC 0.25 Pa 15% 

Sample D 200 oC 0.50 Pa 15% 
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作製した薄膜中の生成相は、X 線回折装置（リガク製、RINT2500; Cu Kα 線）による θ-2θ

測定で同定した。薄膜の化学組成はエネルギー分散型 X 線分析（Energy-dispersive X-ray 

spectroscopy; EDAX 製、CDU-S; JEOL製 走査型電子顕微鏡(SEM) JSM-5600に装着）によっ

て決定した。表面のモルフォロジーは SEM（JEOL製 JSM-5600）にて観察した。 

薄膜の透過スペクトルは、分光光度計（日立ハイテク製、U4000）にて近赤外～紫外の領

域（180-3300 nm）にて測定した。薄膜の光電流は、ピコアンメーター（Keithley Instruments

製、Model 487 picoammeter）と、直流電源（Advantest 製、TR6143）を用いて二端子法で測

定した。イオンコーター（JEOL製、オートファインコーター JFC-1600）で薄膜表面に Au

を堆積し電極とした。Au電極は膜厚が200 nmで、幅と電極間距離はそれぞれ2 mmと0.5 mm

とした。直流 50 V を電極間に印加し、キセノンランプ（分光計器製、SM-30）の単色光の

照射下での電流の変化を観測した。 

薄膜の膜厚は、光干渉膜厚計（WYKO 製、HD-2000）を用いて、基板との段差高を数ヶ

所測定し、その平均値から決定した。測定モードは PSI、対物レンズ（Objective lens）は×5.0、

FOV (Field of View)は×0.5 とした。 

2-2-4 (1-x)ZnO-x(AgGaO2)1/2薄膜の作製とキャラクタリゼーション 

(1-x)ZnO-x(AgGaO2)1/2固溶体薄膜は、(0001)-Al2O3単結晶基板上に RFマグネトロンスパッ

タリング装置で成膜した。あらかじめ決定した比率にて混合した ZnO 粉末と β-AgGaO2粉

末を 2 インチのアルミ皿に広げて指で押し固めて、ターゲットとして用いた。混合比は

(1-x)ZnO-x(AgGaO2)1/2の表記において、x = 0 (ZnO), 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 

0.5, 0.625, 0.75, 0.875, 1 (β-AgGaO2)とした。(1-x)ZnO-x(AgGaO2)1/2薄膜のスパッタリング条件

は、β-AgGaO2 薄膜の堆積条件を踏まえて、Table 2-2 に記載のとおりとした。作製した

(1-x)ZnO-x(AgGaO2)1/2固溶体薄膜中の生成相や光学特性、化学組成、膜厚などは、β-AgGaO2

薄膜（2-2-3 にて前述）と同様の方法で評価した。 

また、Ag2O と Ga2O3、ZnO の混合粉末をモル比 Ag2O:Ga2O3:ZnO = 0.04:0.04:0.92 で混合

した粉末をターゲットとして、上記と同様の方法でスパッタリングし、薄膜を作製した。 

 

Table 2-2. Sputtering conditions used to deposition of (1-x)ZnO-x(AgGaO2)1/2 thin film. 

Substrate (0001)-Al2O3 

Gas flow rate 8 sccm 

RF power 50 W 

Deposition time 5 h 

Substrate temperature 200 oC 

Sputtering atmosphere 15%O2-85%Ar 

Pressure 0.5 Pa 
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2-3 実験結果 

2-3-1 種々のスパッタリング条件にて作製した β-AgGaO2薄膜の性状 

基板を加熱せずに、種々のスパッタ雰囲気にて堆積した薄膜（Sample A1~A4）の XRD パ

ターンを Figure 2-1 に示す。100% Ar でスパッタリングした薄膜（Sample A1）の XRD パタ

ーン（Figure 2-1(a)）では、金属 Ag の回折線のみが現れ、β-AgGaO2の堆積膜からの回折線

は見られなかった。 

10% O2雰囲気で堆積した薄膜（Sample A2, Figure 2-1(b)）は、β-AgGaO2の(002)回折線の

みが現れた。このことは、この薄膜が(002)配向した β-AgGaO2で構成されていること示して

いる。 (0001)-Al2O3単結晶基板上に堆積したウルツ鉱型 ZnO は、 (0001)-Al2O3 と ZnO の

間で大きな格子不整合(18%)がある[53]にも関わらず、(001)配向することがよく知られている
[54-56]。β-AgGaO2と(0001)-Al2O3との格子不整合は大きい(23.7%)ものの、β-AgGaO2はウルツ

鉱型派生構造であるため、ZnO と同様に(001)配向したと推察される。50% O2と 100% O2で

作製した薄膜（Sample A3, A4; Figure 2-1(a), (b)）は、それぞれ β-AgGaO2の(002)と(121)の回

Figure 2-1. XRD patterns of films deposited under various sputtering atmosphere at 0.25 Pa. 

Substrates were not intentionally heated during deposition. (a) Sample A1 with pure Ar, (b) 

Sample A2 with 10% O
2
, (c) Sample A3 with 50% O

2
, (d) Sample A4 with pure O

2
 and (e) 

β-AgGaO
2
 powder. The peak exists at 2θ = 40.5－43.5
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折線に加えて、2θ≈ 37
oに β-AgGaO2では同定できない弱くブロードなピークが現れた。この

回折線が金属 Agへの還元であるならば、薄膜の透過率が低下するはずであるが、膜の光透

過性は良好であり、金属 Agの析出によるものではない。このピークがどのような相に由来

するかは明らかとなっていない。 

上記の結果を踏まえると、薄膜の堆積速度の観点からは、10% O2 雰囲気における堆積

（Sample A2）が 3.0 nm/min であり最も速かった。これは、薄膜の堆積速度はスパッタ雰囲

気の酸素濃度の増加とともに遅くなるためである。10 % O2雰囲気のスパッタ雰囲気で作製

した薄膜（Sample A2）は、XRD から β-AgGaO2単相であることが示され、また堆積速度も

比較的速いことから、基板を加熱しない条件下（Sample A1－A4）の中では、最適であると

結論づけた。 

基板加熱なしで作製した薄膜（Sample A2; Figure 2-1）は、XRD ピークが極めてブロード

だった。これは、薄膜の結晶性の低さに起因しているので、β-AgGaO2薄膜の結晶性を向上

させることを狙って、基板を加熱した上で成膜した。酸化物の成膜では、数百 oC以上に基

板を加熱して成膜することが一般的である。しかし、β-AgGaO2は 600 oC以上で Ag と Ga2O3

に分解してしまうため、β-AgGaO2の分解を抑制するために、200 oCと 300 oCでの成膜を試

みた。 

200 oCにおいて種々のスパッタ雰囲気で作製した薄膜の XRD パターンを Figure 2-2 に示

す。10% O2で堆積した薄膜（Sample B1, Figure 2-2(a)）では、β-AgGaO2に加えて金属 Agが

生成した。O2濃度が 15%以上の雰囲気で堆積した薄膜（Sample B2-B4; Figures 2-2(a)-(d))で

は、金属 Ag の生成は見られず、(001)配向した β-AgGaO2薄膜が得られた。観測された(002)

の回折線は、基板加熱をせず堆積した薄膜のそれよりも明らかにシャープであり、基板加熱

によって期待通り β-AgGaO2 相の結晶性が向上した。得られた薄膜中の Ag と Ga の比 

（NAg/NGa）は、O2が 15%から 20%雰囲気で堆積した薄膜（Sample B2, B3; Figure 2-2(b)-(c)）

で、おおよそ１となった。O2 25%雰囲気で堆積した薄膜（Sample B4; Figure 2-2(d)）では、化

学量論組成から外れ、Gaリッチだった。Gaリッチ組成の薄膜においても、Ga2O3の回折線が

観測できなかったことから、過剰なGa2O3はアモルファスを形成していると推察される
[57,58]。 

さらに高い結晶性を有する β-AgGaO2薄膜を得るために、基板温度を 300 oC として堆積

した。 Figure 2-3(a), (b)は、基板温度 300 oC で堆積した薄膜（Sample C）の XRD パターン

と SEM 像を示す。得られた β-AgGaO2薄膜の(002)回折線は、200 oCでの堆積のそれよりも

わずかにシャープになっていたものの、35－40
o に β-AgGaO2 では同定できないブロードな

回折が現れた。薄膜表面のモルフォロジーは極めて不均一であり、その組成も、例えば point 

A では NAg/NGa = 1.85 で point B は NAg/NGa = 0.62 であるなど場所によって大きく変化した。

このことは、300 oC での成膜では、組成が均一な薄膜が得られないことを示している。こ

れらの検討から、β-AgGaO2の成膜には基板温度 200 oC が最適であると判断した。 

β-AgGaO2薄膜の透過スペクトルを Figure 2-4 に示す。基板温度 200 oC、15% O2雰囲気で

堆積した薄膜（Sample B2）の透過率は、基板加熱なし、10% O2雰囲気で堆積した薄膜（Sample 
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A2）のそれよりも低かった。このことは、200 oCで堆積した β-AgGaO2薄膜中に存在するカ

ラーセンターとなる欠陥の濃度が、基板加熱なしのそれよりも高いことを示している。

β-AgGaO2中の Ag
+は高温では金属 Agに還元されやすいことから、欠陥種は酸素空孔に関

連したものだと推察される。 

Figure 2-5(a)に、基板温度 200 oC で 0.5 Pa の圧力下で堆積した β-AgGaO2薄膜（Sample D）

の XRD パターンを示す。この薄膜も(001)配向しており、また(002)回折線は 0.25 Pa で成膜

した薄膜（Sample B2, Figure 2-2(b)）と比較してわずかにシャープだった。薄膜の組成 NAg/NGa

は 1.15 であり、おおよそ化学量論組成だった。Figure 2-5(b)に示すように、その表面モルフ

ォロジーは均一であった。Figure 2-4 に示すように、β-AgGaO2薄膜の透過率は、スパッタ圧

力の上昇にともなって向上した。これらの結果をふまえて、β-AgGaO2薄膜の作製に最適な

条件は、スパッタ雰囲気は 15% O2、圧力 0.5 Pa、基板温度は 200 oC であると決定した。 

β-AgGaO2薄膜のバンドギャップを決定した。Figure 2-4 に示すように、β-AgGaO2薄膜中

に存在する欠陥による光吸収が、バンド間遷移による吸収端の長波長側に現れ、Tauc’s プロ

Figure 2-2. XRD patterns of films deposited at 200 °C under various sputtering atmospheres 

at a pressure of 0.25 Pa. (a) Sample B1 with 10% O
2
, (b) Sample B2 with 15%O

2
, (c) 

Sample B3 with 20% O
2
, (d) Sample B4 with 25% O

2
 and (e) β-AgGaO

2
 powder. N

Ag
/N

Ga
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the atomic ratio of silver to gallium in the films determined by EDX analysis. 
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ットによる決定されるバンドギャップの精度を著しく低下させている（2.0 ± 0.4 eV）。より

高い精度でバンドギャップを決定するため、光電流スペクトルを測定した。 

Figure 2-6 に示すように、2.2 ± 0.05 eV において急激な電流の増大が明瞭に観察され、光

学バンドギャップは 2.2 eV であると決定した。この値は、バルクの β-AgGaO2の光学ギャッ

プの報告値（2.1
[44]－2.2 eV

[45]）と良く一致する。
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Figure 2-3. (a) XRD pattern and (b) SEM image of the film deposited at 300 °C under 

15% O2 atmosphere at 0.25 Pa (Sample C). The atomic ratio of NAg/NGa determined by 

EDX analysis was 1.85 for point A and 0.62 for point B. 
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Figure 2-4. Optical transmission spectra of β-AgGaO2 films deposited under various 

conditions; Sample A2 (10% O2 atmosphere at a pressure of 0.25 Pa without 

intentional substrate heating), Sample B2 (at 200 °C under 15% O2 atmosphere at 0.25 

Pa) and Sample D (at 200 °C under 15% O2 atmosphere at 0.5 Pa). 
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2-3-2 (1-x)ZnO-x(AgGaO2)1/2薄膜の化学組成と生成相 

Table 2-3 に、ZnO と β-AgGaO2を種々の比率で混合したターゲットから作製した薄膜の化

学組成を示す。x = 0.0625 と 0.5 < x < 0.75のターゲットを用いて堆積した薄膜では、NAg/NGa

が大きく１から逸脱したものの、0.125 < x < 0.375と、0.875 < xにおいては Agと Ga の濃度

はおおよそ一致し、得られた薄膜を ZnO と β-AgGaO2の固溶体として記述して良さそうで

ある。これを踏まえ、以降は、得られた薄膜を Table 2-3 に示すように、 (1-x)ZnO-x(AgGaO2)1/2

の組成式における xで示すこととする。 

 

 

(a) (b)

30 40 50 60

Diffraction angle , 2 / degree

 

 

 

 

 

3
2
1

3
2
1

2
1
2

1
3
0
 /
 0

3
1

-AgGaO
2
 powder

2
0
0 0

0
2

1
2
0

1
2
1

2
0
1

2
0
2

1
2
2

0
4
0

1
3
2
 /
 3

1
1

1
2
3

1
1
2

2
1
1

 
S

u
b

s
tr

a
te

Sample D

In
te

n
s
it
y
 /

 a
.u

.

Thickness = 390 nm

N
Ag

/N
Ga

 = 1.15

0
0

2

 

 

 

20 μm

Figure 2-5. (a) XRD pattern and (b) SEM image of the film deposited at 200 °C under 

15% O2 atmosphere at 0.5 Pa (Sample D).  
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 film deposited at 200 °C 

under 15% O
2
 atmosphere at 0.5 Pa (Sample D). 
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Table 2-3. Chemical composition of alloy films fabricated using targets with various 

β-AgGaO2 concentrations. Composition parameter x donates alloying level in 

(1-x)ZnO-x(AgGaO2)1/2. 

Target composition, x 

Film composition 

Atomic ratio 

NAg:NGa:NZn 
Nominal composition, x 

0 0:0:1 0 

0.0625 6:2:92 0.08 

0.125 10:7:83 0.17 

0.1875 15:13:72 0.28 

0.25 16:17:67 0.33 

0.3125 22:20:58 0.42 

0.375 26:22:52 0.48 

0.5 22:34:44 0.56 

0.625 31:39:30 0.70 

0.75 35:41:24 0.76 

0.875 41:45:14 0.86 

1.0 53:47:0 1.0 

 

Figure 2-7 に、得られた薄膜の XRD パターンを示す。2θ が 28
o
 から 38

o
 の低角度側では、

ZnO 薄膜の(002)回折線の強度が他の回折線よりも極めて強く、このスパッタ条件下では強

く(001)配向した ZnO 薄膜が得られることを示している。β-AgGaO2の濃度が増加するにつれ

て、(001)配向は弱くなり、(002)回折線がブロードになった。また、x < 0.33の領域において

はすべての回折線が六方晶系ウルツ鉱型構造で指数付けができ、β-AgGaO2濃度の増加に伴

う(002)回折線の低角度側へのシフトが明瞭に観察された。これらの結果は、x < 0.33 におい

て β-AgGaO2が ZnO 中に固溶した薄膜が得られたことを示している。x = 0.42 と 0.48 の薄膜

については、(002)回折線が二本に分裂した。その高角度側のピーク位置は、x = 0.33 の(002)

回折線のそれとおおよそ一致し、また低角度側のピーク位置は x = 0.56 の(002)回折線のそれ

とおおよそ一致した。このことは、x = 0.42と 0.48の薄膜が少なくとも２つ以上の相の混合

物であることを示している。また、Figure 2-7(b)に示すように、x = 0.56, 0.70, 0.76, 0.86の薄

膜の XRD パターンでは、2θ = 36
oにウルツ鉱型およびその関連構造では指数付けができな

い回折線が現れた。よって、0.35 < x < 0.875 は ZnO と β-AgGaO2が固溶しない組成領域であ

る。(1-x)ZnO-x(AgGaO2)1/2薄膜は(002)配向ではあるものの、2θ = 55
oにおいて（Figure 2-8）、

弱いながらも明瞭な(110)回折線が見られた。(110)回折線の位置は薄膜の組成に依存せずほ

ぼ一定であり、β-AgGaO2の固溶による ZnO の格子定数変化には異方性があることを示して

いる。 

Figure 2-9に、ウルツ鉱型(1-x)ZnO-x(AgGaO2)1/2の格子定数と格子体積の組成依存性を示す。

格子定数a0とc0は、それぞれ(110)および(200)の回折線から求めた。格子定数a0は組成によら
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ず一定であったが、c0はx < 0.33の組成で増加し、x > 0.33では一定となった。このことは、

ウルツ鉱型の固溶体の生成範囲がx < 0.33であるというXRDパターンから得た結論を支持し

ている。Ag
+とGa

3+のイオン半径の平均はそれぞれ 1,000 pmと470 pmであり[59]、その平均

（735 pm）は、Zn
2+のイオン半径（600pm）よりも大きい。Figure 2-9に示したβ-AgGaO2の

固溶による格子定数c0および格子体積の増加は、Zn
2+がそれより大きなイオン（Ag

+とGa
3+）

によって置換されたという機構で十分理解できる。 

 

Figure 2-7. (a) XRD patterns of (1-x)ZnO- x(AgGaO2)1/2 thin films in the 2θ between 28
o
 

and 38
o
. The composition levels x of the respective films were determined from EDX 

analysis. The red triangles indicate the diffraction attributed to the ZnO-AgGaO2 alloys, and 

the blue indicate the diffraction from the β-AgGaO2 or unidentified β-AgGaO2 rich phase. 

(b) XRD patterns in the immiscible region. Closed triangles indicate diffractions from an 

unidentified phase. 
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2-3-3 β-AgGaO2の固溶による ZnO のバンドギャップ変化  

Figure 2-10 に、(1-x)ZnO-x(AgGaO2)1/2固溶体薄膜の、紫外～近赤外における透過スペクト

ルを示す。Table 2-3 に示した化学組成に基づくと、単相のウルツ鉱型構造を持つ固溶体薄

膜（x < 0.33）は、化学量論組成である NAg:NGa:NZn = y:y:(1-y) からわずかにずれている。こ

の化学量論組成からのずれによって形成された欠陥の光吸収は、350~450 nm に見られる

β-AgGaO2 薄膜および(1-x)ZnO-x(AgGaO2)1/2 固溶体薄膜の基礎吸収端と重なっており、精度

の高いバンドギャップを決定するには至らなかった。したがって、β-AgGaO2と同様に、光

電流スペクトルによるバンドギャップの決定を試みた。 

Figure 2-11 に、(1-x)ZnO-x(AgGaO2)1/2固溶体薄膜の光電流スペクトルを示す。いずれの組

成においても、急峻な立ち上がりが観察され、ベースラインとの交点から光学バンドギャ

ップを決定することができた。Figure 2-12 に、(1-x)ZnO-x(AgGaO2)1/2固溶体薄膜の AgGaO2

固溶量 x に対する光学バンドギャップの変化を、(1-x)ZnO-xCdO についての報告値[37]と共に

示す。β-AgGaO2濃度が増えるとバンドギャップは減少し、x = 0.33 において 2.55 eV（緑が

かった青色の光に対応するエネルギー）まで到達した。ZnO-AgGaO2 系の固溶領域は

ZnO-CdO 系のそれよりも広かったが、到達できる最小のバンドギャップは ZnO-CdO 系のそ

れ(2.58 eV)とおおよそ同じであった。バンドギャップ変化のボーイング（加成性からのずれ）

は、ZnO-CdO 系のそれよりも小さく、これは ZnO と β-AgGaO2の結晶構造の類似性に起因

すると推察される。 
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Figure 2-13 に、格子定数 c0とバンドギャップの変化の関係を示す。バンドギャップは x = 

0 の c0 = 525.9 pmから x = 0.17の c0 = 527.1 pm まで急激に減少し、x = 0.17の c0 = 527.1 pm

から x = 0.33の c0 = 531.8 pmまでゆるやかに減少した。β-AgGaO2の ZnO への固溶の初期に
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Figure 2-12. Variation of the optical band gap of the (1-x)ZnO-x(AgGaO2)1/2 

alloys as a function of alloying level x (red open-circles). The blue open-circles 

indicate the optical band gap of the (1-x)ZnO-xCdO in Ref. 37 for comparison. 
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おけるバンドギャップの急激な減少は、価電子帯の状態近傍への Ag 4d 軌道の寄与が主な原

因であると推察される。ZnO の価電子帯は主に O 2p 軌道が構成しているため、O 2p に比べ

て原子軌道エネルギーの高い Ag 4d 軌道がわずかでも寄与すれば、価電子帯の電子状態は強

く変調され、おそらく価電子帯トップのエネルギーは急激に上昇する。そのため、固溶の

初期においては、ZnO と β-AgGaO2の結晶構造の類似性によって格子定数の変化が比較的小

さいが、バンドギャップは大きく減少したと推察される。 

 

2-4 考察 

2-4-1 (1-x)ZnO-x(AgGaO2)1/2の固溶領域 

ZnOとβ-AgGaO2の結晶構造の類似性から期待されていた通り、(1-x)ZnO-x(AgGaO2)1/2系の

固溶領域は x < 0.35であり、(1-x)ZnO-xCdO系の固溶領域 x < 0.17
[37]よりも広かった。しか

し、 (1-x)ZnO-x(LiGaO2)1/2のそれ（x < 0.5
[39-43]）よりもわずかに狭かった。これには次の２

つが原因となっていると考察した。第一は、擬ウルツ鉱型構造とした際のβ-AgGaO2とZnO

の間の格子不整合が、a0軸とc0軸でそれぞれ4.6％と5.2%であり、ZnOとβ-LiGaO2の格子不整

合（a0軸で3.0%、c0軸で3.8%）よりも大きいことである。第二に、β-LiGaO2ではLi
+のイオン

半径（590 pm
[59]）とGa

3+のイオン半径（470 pm）が近いために、ウルツ鉱型ZnOからの結晶

構造のひずみが小さいが、β-AgGaO2ではAg
+のイオン半径（1,000 pm）はGaのそれ（470 pm）

よりも大きいために、ウルツ鉱型からのひずみが大きい。このことは、Figure 2-14に示すよ

うに、β-LiGaO2ではカチオンを中心とした四面体の連結がスムーズで、ZnOに近い構造をし

ているが、β-AgGaO2ではその連結がZnOから大きくひずんでいることからわかる。これら

の因子によって、 β-AgGaO2とZnOの固溶性が β-LiGaO2とZnOのそれより低下し、

ZnO-AgGaO2系でのウルツ鉱型相の生成域を狭めたと推察する。 

Figure 2-13. Variation of the optical band gap of the (1-x)ZnO-x(AgGaO
2
)
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2-4-2 Ag2O と Ga2O3をターゲットとしたスパッタリング 

β-AgGaO2の多形であるデラフォサイト型 α-AgGaO2については、α-AgGaO2をターゲッ

トとした PLD による薄膜の作製が報告されている[52,63]。PLD による成膜は、成膜中に

RHEED 振動が観察できることからもわかるように、原子レベルで進行する。そのため、

β-AgGaO2相よりも熱力学的に安定な α-AgGaO2相が堆積したことは、合理的な結果といえ

る。本研究では、β-AgGaO2をターゲットとしてスパッタリングすることで、α-AgGaO2相

ではなく β-AgGaO2 相の薄膜を得ることができた。熱力学的に準安定な β-AgGaO2 がスパ

ッタリング法によって堆積できたのは、ターゲットの β-AgGaO2が原子レベルにバラバラ

になった粒子としてスパッタリングされたのではなく、数分子サイズの β-AgGaO2クラス

ターとしてスパッタリングされたからだと考察される。 

 以上のことに基づくと、Ag2O と Ga2O3 をターゲットとして用いた反応性スパッタでは

β-AgGaO2は得られないと推測される。ただし、β-AgGaO2の濃度が薄い(1-x)ZnO-x(AgGaO2)1/2

固溶薄膜を作製する際には、固溶体中の Ag と Ga原子は、ZnO へ共ドープされた Ag と Ga

と見ることができ、ZnO と Ag2O および Ga2O3の混合粉末をターゲットとしたスパッタリン

グにおいても、ウルツ鉱型相が得られる可能性がある。ZnO-Ag2O-Ga2O3混合粉末を用いて

成膜した薄膜の XRD パターンと光透過スペクトルを Figure 2-15(a), (b)に示す。ターゲット

は、0.85ZnO-0.075AgO1/2-0.075GaO3/2の組成比で混合した粉末（化学式(1-x)ZnO-x(AgGaO2)1/2

においては、x = 0.15に対応する）を用いた。これらは、ZnO と β-AgGaO2の混合粉末をタ

ーゲットとして作製した x = 0.08 の薄膜の XRD パターンおよび光透過スペクトルとおおよ

そ一致した。これらの結果は、少なくとも β-AgGaO2の濃度が低い領域においては、β-AgGaO2

と ZnO の混合粉末をターゲットとして用いるのは必須ではなく、Ag2O-Ga2O3-ZnO の混合粉 

Figure 2-14. Schematic illustrations of the crystal structures of wurtzite ZnO and 

β-LiGaO2, β-AgGaO2. These structural data were cited from Ref. 60-62. 
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末をターゲットとして用いても、(1-x)ZnO-x(AgGaO2)1/2固溶体薄膜を作製できることを示し

ている。 

 

2-5 結言 

本章では、β-AgGaO2の固溶により ZnO のバンドギャップを可視光まで制御することを目

的として、結晶性の良好な β-AgGaO2 薄膜を作製できる条件の探索と、それを踏まえた 

(1-x)ZnO-x(AgGaO2)1/2固溶体薄膜の作製を行った。 

結晶性の良好な β-AgGaO2薄膜が作製できる条件を、スパッタガスの組成や圧力、基板温

度などを成膜時の実験パラメーターとして探索した。基板を加熱せずに、スパッタガスの

組成を変えてスパッタリングした場合、10% O2および 50% O2雰囲気において、(001)配向

した単相の β-AgGaO2薄膜が得られた。また、基板を加熱して堆積すると β-AgGaO2相の結

晶性が向上したが、基板温度 300
 oC で堆積した薄膜は相分離の傾向がみられたため、

β-AgGaO2は基板温度 200 oC で作製するのが最適であると結論付けた。また、スパッタガス

の圧力を 0.25 Pa から 0.5 Pa に変更すると、透過率が上昇したため、透過率の低下は酸素欠

陥に由来していると示唆される。15% O2 雰囲気で、200 oC に加熱した基板上に堆積した

β-AgGaO2 は、ほぼ化学量論組成で均一な表面モルフォロジーを有していた。得られた

β-AgGaO2薄膜のバンドギャップは光電流スペクトルから 2.2 eV と決定され、バルクのバン

ドギャップと良く一致した。β-AgGaO2 薄膜を作製するのに最適な堆積条件を用いて、

β-AgGaO2と ZnO の混合粉末をターゲットとしてスパッタリングすると、ターゲット組成に

おける β-AgGaO2濃度（x）が x = 0.0625 と 0.5 < x < 0.75 の場合のみ薄膜の組成 NAg/NGaが 1

から逸脱したが、0.125 < x < 0.375と 0.875 < xにおいては、NAg/NGaがおおよそ 1 の組成の薄

膜が得られた。(1-x)ZnO-x(AgGaO2)1/2の XRD パターンは x < 0.33 の領域でウルツ鉱型と一
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Figure 2-15. (a) Optical transmission spectra and (b) XRD patterns of films fabricated 

using ZnO-AgGaO2 and ZnO-Ag2O-Ga2O3 target. 
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致した。また、格子定数 c0は x < 0.35の領域で β-AgGaO2の濃度が高くなるにつれて連続的

に膨張した。以上から、(1-x)ZnO-x(AgGaO2)1/2の固溶領域は x < 0.35 であると結論付けた。

ZnO のバンドギャップは、β-AgGaO2 の濃度が高くなるにつれて連続的に減少し、x = 0.33

において 2.55 eV（緑青色の光に対応するエネルギー）まで到達し、ZnO-CdO 系と同程度ま

でナローギャップ化することができた。ZnO-AgGaO2 系は、CdO-ZnO 系におけるカドミウ

ムのような有害元素を含まないため、ZnO をベースとした可視光で応用可能な酸化物半導

体の発展に貢献することが期待できる。 

 

2-6 参考文献 

[1] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett., 15, 327 (1969). 

[2] S. Strite and H. Morkoç, J. Vac. Sci. Technol. B, 10, 1237 (1992). 

[3] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Y. 

Saito and Y. Nanishi, Appl. Phys. Lett., 80, 3967 (2002). 

[4] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima and E. Kurimoto, Appl. Phys. Lett., 81, 1246 

(2002). 

[5] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys., 34, 797 (1995). 

[6] C. Wetzel, T. Salagaj, T. Detchprohm, P. Li and J. S. Nelson, Appl. Phys. Lett., 85, 866 (2004). 

[7] M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi and T. Mukai, Jpn. 

J. Appl. Phys., 45, 659 (2006). 

[8] P. Migliorato, J. L. Shay, H. M. Kasper and Sigurd Wagner, J. Appl. Phys., 46, 1777 (1975). 

[9] H. Neumann, W. Hörig, E. Reccius, W. Möller and G. Kühn, Solid State Commun., 27, 449 

(1978). 

[10] C. Heske, R. Fink, E. Umbach, W. Riedl and F. Karg, Appl. Phys. Lett., 68, 3431 (1996). 

[11] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and R. Noufi, 

Prog. Photovoltaics, 7, 311 (1999). 

[12] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. 

Powalla, Prog. Photovoltaics, 19, 894 (2011). 

[13] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg and S. L. Gilbert, Appl. 

Phys. Lett., 44, 292 (1973). 

[14] Q. Guo and A. Yoshida, Jpn. J. Appl. Phys., 33, 2453 (1994). 

[15] Y. Kuga , T. Shirai, M. Haruyama, H. Kawanishi and Y. Suematsu, Jpn. J. Appl. Phys., 34, 4085, 

(1995). 

[16] J. Han, M. H. Crawford, R. J. Shul, J. J. Figureiel, M. Banas, L. Zhang, Y. K. Song, H. Zhou 

and A. V. Nurmikko, Appl. Phys. Lett., 73, 1688 (1998). 

[17] H. Hirayama, N. Noguchi and N. Kamata, Appl. Phys. Express, 3, 032102 (2010). 



第２章 β-AgGaO2の固溶による ZnO のバンドギャップナローイング 

  

29 

 

[18] D.M. Roessler, W.C. Walker and E. Loh, J. Phys. Chem. Solids, 30, 157 (1969). 

[19] Y. R. Ryu, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. 

Park, C. J. Youn and W. J. Kim, Appl. Phys. Lett., 88, 052103 (2006). 

[20] H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Niki, T. Tainaka, Y. 

Chiba and H. Kanie, Appl. Phys. Lett., 91, 261907 (2007). 

[21] C. H. Choi and S. H. Kim, J. Cryst. Growth, 283, 170 (2005). 

[22] J. Zhang, F. Pan, W. Hao and T. Wang, Mater. Sci. Eng. B, 93, 129, (2006). 

[23] Y. I. Kim, K. Page and R. Seshadri, Appl. Phys. Lett., 90, 101904, (2007). 

[24] B. Wang, M. J. Callahan and L. O. Bouthillette, Cryst. Growth Des., 6, 1256 (2006). 

[25] H. Che, J. Huso, J. L. Morrison, D. Thapa, M. Huso, W. J. Yeh, M. C. Tarun, M. D. McCluskey 

and L. Bergman, J. Nanomater., 2012, 7, (2012). 

[26] T. Gruber, C. Kirchner, R. Kling, F. Reuss and A. Waag, Appl. Phys. Lett., 84, 5359 (2004). 

[27] W. I. Park, G. C. Yi, M. Kim and S. J. Pennycook, Adv. Mater., 15, 526 (2003). 

[28] S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schäfer, Yu. G. Sadofyev and F. 

Henneberger, Appl. Phys. Lett., 87, 091903 (2005). 

[29] J. M. Chauveau, M. Laügt, P. Venneguès, M. Teisseire, B. Lo, C. Deparis, C. Morhain and B. 

Vinter, Semicond. Sci. Tech., 23, 035005 (2008). 

[30] A. Bakin, A. El-Shaer, A. C. Mofor, M. Al-Suleiman, E. Schlenker and A. Waag, Phys. Status 

Solidi C, 4. 158 (2007). 

[31] C. Morhain, X. Tang, M. Teisseire-Doninelli, B. Lo, M. Laügt, J.-M. Chauveau, B. Vinter, O. 

Tottereau, P. Vennéguès, C. Deparis and G. Neu, Superlattice. Microst., 38, 445 (2005). 

[32] H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, J. 

Appl. Phys., 91, 1993 (2002). 

[33] S. K. V. Farahani, V. Muñoz-Sanjosé, J. Zúñiga-Pérez, C. F. McConville and T. D. Veal, Appl. 

Phys. Lett., 102, 022102 (2013). 

[34] S. Shigemori, A. Nakamura, J. Ishihara, T. Aoki and J. Temmyo, Jpn. J. Appl. Phys., 43, 1088 

(2004). 

[35] Misra, P. K. Sahoo, P. Tripathi, V. N. Kulkarni, R. V. Nandedkar and L. M. Kukreja, Appl. Phys. 

A, 78, 37 (2004). 

[36] X. J. Wang, I. A. Buyanova, W. M. Chen, M. Izadifard, S. Rawal, D. P. Norton, S. J. Pearton, A. 

Osinsky, J. W. Dong and A. Dabiran, Appl. Phys. Lett., 89, 151909 (2006). 

[37] S. Anandan, N. Ohashi and M. Miyauchi, Appl. Catal. B, 100, 502 (2010). 

[38] M. A. Mayer, D. T. Speaks, K. M. Yu, S. S. Mao, E. E. Haller and Wladek Walukiewicz, Appl. 

Phys. Lett., 97, 022104 (2010). 

[39] T. Omata, K. Tanaka, A. Tazuke, K. Nose and S. Otsuka-Yao-Matsuo, J. Appl. Phys., 103, 

083706 (2008). 



第２章 β-AgGaO2の固溶による ZnO のバンドギャップナローイング 

  

30 

 

[40] T. Omata, M. Kita, K. Nose, K. Tachibana and S. Otsuka-Yao-Matsuo, Jpn. J. Appl. Phys., 50, 

031102 (2011). 

[41] T. Omata, K. Tanaka and S. Otsuka-Yao-Matsuo, Jpn. J. Appl. Phys., 50, 061102 (2011). 

[42] T. Omata, M. Kita, K. Tachibana and S. Otsuka-Yao-Matsuo, J. Solid State Chem., 188, 92 

(2012). 

[43] Q. F. Li and J. L. Kuo, J. Appl. Phys., 114, 063715 (2013). 

[44] Y. Maruyama, H. Irie and K. Hashimoto, J. Phys. Chem. B, 110, 23274 (2006). 

[45] S. Ouyang and J. Ye, J. Am. Chem. Soc., 133, 7757 (2011). 

[46] L. Guo, S. Zhu, S. Zhang and W. Feng, Comp. Mat. Sci., 92, 92 (2014). 

[47] S. Ouyang, D. Chen, D. Wang, Z. Li, J. Ye and Z. Zou, Cryst. Growth Des., 10, 2921 (2010). 

[48] G. A. Korteweg, J. Magn. Reson., 42, 181 (1981). 

[49] S. Ouyang, N. Kikugawa, D. Chen, Z. Zou and J. Ye, J. Phys. Chem. C, 113, 1560 (2009). 

[50] K. Wang, Z. Kou, H. Ma, Y. Wang, S. Wang, C. Xu, J. Guan and D. He, Solid State Commun., 

152, 540, (2012). 

[51] H. Sobotta, H. Neumann, B. Schumann, G. Kühn and V. Riede, Cryst. Res. Technol., 26, 753 

(1991). 

[52] K. A. Vanaja, R. S. Ajimsha, A. S. Asha, and M. K. Jayaraj, Appl. Phys. Lett., 88, 212103 

(2006) 

[53] Y. Chen, S. Hong, H. Ko, V. Kirshner, H. Wenisch, T. Yao, K. Inaba and Y. Segawa, Appl. Phys. 

Lett., 3352, 78 (2001). 

[54] H. F. Liu, S. J. Chua, G. X. Hu, H. Gong and N. Xiang, J. Appl. Phys., 102, 083529 (2007) 

[55] J. Narayan, K. Dovidenko, A. K. Sharma and S. Oktyabrsky, J. Appl. Phys., 84, 2597 (1998). 

[56] H. B. Kang, K. Nakamura, K. Yoshida and K. Ishikawa, Jpn. J. Appl. Phys., 36, 933, (1997). 

[57] J. H. Kim and Y. H. Yoon, J. Mater. Sci. Mater. Electron., 20, 879 (2009). 

[58] G. A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello and F. Caccavale, Thin Solid Films, 279 

115 (1996). 

[59] R. D. Shannon, Acta Crystallogr., A 32, 751(1976). 

[60] S. C. Abrahams and J. L. Bernstein, Acta. Cryst., B25, 1233 (1969). 

[61] H. Nagatani, I. Suzuki, M. Kita, M. Tanaka and Y. Katsuya, J. Solid State Chem., 222, 66 

(2015). 

[62] M. Marezio, Acta. Cryst., 18, 481 (1965). 

[63] K. A. Vanaja, R. S. Ajimsha, A. S. Asha, K. RajeevKumar and M. K. Jayaraj, Thin Solid Films, 

516, 1426 (2008). 

 

  



第３章 新規ナローギャップ半導体 β-CuGaO2の合成 

  

31 

 

第３章 新規ナローギャップ半導体 β-CuGaO2の合成 

3-1 緒言 

第２章では、β-AgGaO2を ZnO に固溶することで、直接許容遷移型で可視光領域に応用可

能な酸化物半導体を探索したが、そのバンドギャップは最小でも 2.55 eV（485 nmの光に対

応するエネルギー）までしか到達しなかった。酸化物半導体をさらに広い波長範囲に応用

するためには、より小さなバンドギャップを有する新規な半導体を開発する必要がある。

本章では、近赤外領域にバンドギャップを有する直接許容型酸化物半導体の候補として、

新規化合物 β-CuGaO2を挙げ、その合成を試みた。得られた β-CuGaO2の化学組成や結晶構

造を解析し、その光学的・電気的性質を研究した。 

 

3-2 ナローギャップ三元系ウルツ鉱型酸化物半導体の探索の作業仮説 

三元系ウルツ鉱型構造を有し、赤外領域に直接許容ギャップを有する新規酸化物を探索

するにあたって、電子構造と結晶構造の観点から作業仮説を設定し、候補となる化合物を

検討した。 

直接許容型のギャップを有する酸化物半導体は、一般的に、例えば ZnO や CdO、Cu2O の

ように、d軌道に空位を持たない典型元素のカチオン、すなわち(n-1)p
6
ns

0（主量子数 n > 2）、

もしくは(n-1)d
10

ns
0（n > 3）電子配置のカチオンから構成される。一方、空位の d 軌道を持

つ遷移金属のカチオンからなる酸化物は、完全には満たされていない d 軌道によってバン

ドギャップが形成される。d-d 遷移はラポルテ則により通常は禁制遷移であるため、遷移金

属を含む酸化物は許容型のバンドギャップを有さない。したがって、直接許容型のバンド

ギャップを有する三元系ウルツ鉱型酸化物の構成元素は、A
Iイオンは IA 族（Li

+
, Na

+
, K

+な

ど）、もしくは IB 族（Cu
+
, Ag

+
, Au

+など）、B
IIIイオンは IIIB 族（Al

3+
, Ga

3+
, In

3+など）に限定

される。 

 また、三元系ウルツ鉱型構造（β-NaFeO2 型構造）はすべての原子が４配位であるため、

イオン半径の大きな元素は適さない。例えば、K
+や In

3+は４配位における O
2-との限界イオ

ン半径比[1,2]を大きく超えているため、４配位構造をとりづらい。したがって、A
I イオンは

Li
+
, Na

+
, Cu

+
, Ag

+に、B
IIIイオンは Al

3+
, Ga

3+に限定される。 

上記の条件を満たす三元系ウルツ鉱型酸化物で、いまだにその存在が報告がされていな

いのは、β-CuGaO2と β-CuAlO2のみである。Cu
+を含む化合物は、通常 Ag

+を含む化合物と

同じ結晶構造を有する――例えば、赤銅鉱型 Ag2O に対応して Cu2O が存在し[3]、デラフォ

サイト型 α-AgGaO2と α-AgAlO2および α-AgInO2に対応して α-CuGaO2と α-CuAlO2および

α-CuInO2 が存在する
[4-7]

 ――ので、β-AgGaO2 と β-AgAlO2 が存在することを考慮すると、

β-CuGaO2と β-CuAlO2は十分に存在しうると期待される。 



第３章 新規ナローギャップ半導体 β-CuGaO2の合成 

  

32 

 

 β-CuGaO2のバンド構造は、β-AgGaO2のそれに基づき、次のように推察される。Figure 3-1

に示すように、β-AgGaO2では、Ag 4d軌道のエネルギーが、O 2p よりも高いため[8]、価電

子帯の上端近傍に Ag 4d 軌道が強く寄与する。これにより β-AgGaO2は、ZnO や In2O3等の、

価電子帯が O 2p 軌道から主に構成される酸化物よりも小さいバンドギャップとなっている。

このような β-AgGaO2の電子構造に基づくと、β-CuGaO2の価電子帯の上端近傍は、Cu 3d軌

道が主に寄与するバンドから構成されると推測される。Cu 3d 軌道のエネルギーは、Ag 4d

軌道のそれよりも高いため、β-CuGaO2 の価電子帯上端のエネルギーは β-AgGaO2 よりも高

くなる。よって、β-CuGaO2のバンドギャップは、β-AgGaO2（Eg = 2.1-2.2 eV）[9,10]よりも小

さくなり、赤外領域に到達すると推察される。 

 酸化物は一般的に n 型半導体であり、p 型伝導の実現は難しい。この理由は、(i) 価電子

帯の上端近傍が酸素原子の 2p軌道の寄与が大きいバンドから構成されることにより、価電

子帯上端のエネルギーが低くなり、ホールの注入が可能なエネルギーを占有するアクセプ

タを形成するのが難しいためであり、また (ii)仮にホールが注入できたとしても、価電子帯

の上端近傍の O 2p 軌道に由来するバンドは、局在性が高く分散が小さく、ホールの移動度

が小さいためである。一方、Cu
+や Ag

+を含む酸化物では、Agや Cu の閉殻 d 軌道が価電子

帯への寄与することにより価電子帯上端のエネルギーが上がり、さらに d軌道と O 2p軌道

の混成により分散が大きくなるため p 型伝導を生じやすい。実際、Cu2O
[11,12]や α-CuAlO2

[13,14]、

α-CuGaO2
[15,16]、α-CuInO2

[17,18]、Ag2O
[19-21]、α-AgGaO2

[22,23]は p 型伝導性を有することが知ら

れている。したがって、Cu
+を含む β-CuGaO2は p型伝導性を示すことも期待できる。 

 

 

 

 

Figure 3-1. Schematic illustration of the chemical bonds between an oxide ion and 

monovalent silver or copper ion in (a) β-AgGaO2 and (b) β-CuGaO2. The energies of 

atomic orbitals were cited from Ref. 8. 
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3-3 実験方法 

3-3-1 実験に使用した試薬 

下記の市販の試薬を使用した。 

Na2CO3（99.8%、和光純薬工業）、Ga2O3（99.99%、高純度化学）、CuCl（99.9%、和光純薬

工業）。 

3-3-2 β-CuGaO2の合成 

Cu2O と Ga2O3との高温固相反応では、デラフォサイト型 α-CuGaO2が生成する
[24]ため、

β-CuGaO2は存在したとしても準安定相であると推測される。そこで、本研究では、β-NaFeO2

型の β-NaGaO2を前駆体とし、β-NaGaO2中のNa
+をCu

+へとイオン交換することで、β-CuGaO2

の合成を試みた。 

2-2-2 と同様の方法で作製した β-NaGaO2と CuCl を、モル比が β-NaGaO2:CuCl = 1:1 とな

るようにグローブボックス内で秤量し、乳鉢で混合した。得られた粉末を φ17.2 mmのダイ

スで、100 MPa で 1 分間一軸プレスし、圧粉体とした。圧粉体の側面に付着したダイスから

のコンタミネーションをエメリー紙（#800~1200）で取り除いた後、アルミナ製ボートに載

せ、ロータリーポンプを接続して真空にした管状炉内で、250 
o
C で 48 時間加熱した。昇温

中および加熱処理中の真空度は < 1 Pa だった。イオン交換後の試料中の副生成物の NaCl

を超純水で洗浄し、室温にて真空中で乾燥した。 

3-3-3 β-CuGaO2のキャラクタリゼーション 

粉末試料の化学組成は、ICP 発光分析（セイコーインスツル製、SPS7800）を使用した。

Cu 標準溶液（原子吸光度用、1000 ppm、Merck）と Ga標準溶液（原子吸光度用、1000 ppm、

キシダ化学）、Na標準溶液（原子吸光度用、1000 ppm、Merck）を希釈した標準溶液を用い

て検量線を引いた。 

粉末試料の生成相は、X 線回折装置（リガク製、RINT2500; Cu Kα 線）による θ-2θ 測定

で同定した。制限視野電子回折像は、透過電子顕微鏡（JEOL製、JEL-2100）で、200 kV で

50 μmの制限視野絞りにて観察した。 

結晶構造は RIETAN-FP
[25]をコードとしたリートベルト法によって解析した。プロファイ

ル関数には擬フォークト関数を用いた。リートベルト解析の精密化の信頼度の指標となる

Rp は式（１）、Rwp は式（２）、S値は式（３）からそれぞれ求めた。ただし、Reは式（４）

から求め、yioは実測強度、yicは計算強度、wiは重み付け因子、N は yioの全データ数、P は

変数の数を示す。 
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𝑅p = {
∑ |𝑦𝑖o − 𝑦𝑖c|𝑁

𝑖=1

∑ 𝑦𝑖o
𝑁
𝑖=1

}        ⋯ (1) 

𝑅wp = {
∑ 𝑤𝑖(𝑦𝑖o − 𝑦𝑖c)2𝑁

𝑖=1

∑ 𝑤𝑖(𝑦𝑖o)2𝑁
𝑖=1

}

1
2

     ⋯ (2) 

𝑆 =
𝑅wp

𝑅e
       ⋯ (3) 

𝑅e = {
𝑁 − 𝑃

∑ 𝑤𝑖(𝑦𝑖o)2𝑁
𝑖=1

}

1
2

     ⋯ (4) 

 

粉末試料の拡散反射率は、近赤外～紫外分光光度計（日立ハイテク製、U4000）にて波長

範囲 180-3300 nmで、反射率のリファレンスとして MgO を用いて測定した。 

β-CuGaO2の電気的特性の評価に用いた焼結体は、放電プラズマ焼結装置（SPS Sintech、

SPS 511S）で作製した。φ5 mmの超硬ダイスに β-CuGaO2を 0.5 g 詰め、1 GPa で一軸プレス

しながら 400 
o
C で 5 分間加熱した。得られた焼結体の密度は理論密度の 80%だった。

β-CuGaO2の電気伝導度は、室温にて二端子法で測定した。Pt電極は、ロッド型の試料（3.0 

mm×4.5 mm×4.5 mm）の両端に、イオンコーター（JEOL製、JFC-1600）にてスパッタした。

直流電源（Advantest 製、TR6143）で、電極間に-40～40 V の直流電圧を印加し、電流をピ

コアンメーター（Keithley 製、487 型）で測定した。β-CuGaO2の熱起電力は、デジタルマル

チメーター（Keithley製、2100型）にて室温で測定した。棒状のサンプルの一端を半田ゴテ

で温め、10 
o
C の温度差をつけた電極間の起電力を測定した。 

3-3-4 β-CuGaO2の薄膜化  

3-3-2 で述べたバルク β-CuGaO2の作製法に倣い、前駆体として β-NaGaO2薄膜を用意し、

そのイオン交換による β-CuGaO2の薄膜の作製を試みた。前駆体 β-NaGaO2薄膜は、RFマグ

ネトロンスパッタ（EIKO 製、２インチ粉末スパッタ）を用いて作製した。スパッタリング

のターゲットには、2-2-2 と同様の方法で作製した β-NaGaO2 粉末を２インチのアルミ製ホ

ルダーに広げ、薬包紙の上から指で押し固めたものを用いた。基板には、2-2-3 と同様の方

法で切断・洗浄した(0001)-Al2O3単結晶を用いた。成膜条件は Table 3-1 の通りとした。 

 

Table 3-1. Sputtering conditions used to deposition of β-NaGaO2 thin film. 

Substrate (0001)-Al2O3 

Gas flow rate 8 sccm 

RF power 100 W 

Deposition time 4 h 

Substrate temperature 550 oC 

Sputtering atmosphere 100% Ar 

Pressure 0.5 Pa 
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β-NaGaO2薄膜のイオン交換は、次の２つの方法で試みた。 

(i). β-NaGaO2薄膜を CuCl粉末と直接接触させる方法 

 Figure 3-2(a)に示すように、β-NaGaO2薄膜を CuCl ペレット上に、薄膜部分がペレ

ットに接触するように重ね静置し、ロータリーポンプを接続して真空にした管状炉

内で加熱した。β-NaGaO2薄膜や CuCl の吸着している水分を蒸発させるため、150 oC

で 15 分保持してから 300 oC に昇温して 8 時間保持した。CuCl ペレットは、1 g の

CuCl（99.9%、和光純薬工業）を φ17.2 mmのダイスに充填し、100 MPa で 1 分間一

軸プレスして作製した。昇温中および加熱処理中の真空度は 0.1~ 1 Paだった。 

(ii). β-NaGaO2薄膜を CuCl蒸気に曝す方法 

Figure 3-2(b)に示すように、φ20 mm、長さ 100 mm の一端閉じのガラス管内に

β-NaGaO2薄膜と 0.25 g の CuCl 粉末を入れてロータリーポンプで真空に引いた。ガ

ラス管を挿入できる開口部を有する電気炉（日陶科学製、小型電気炉 Mini-I）に、ガ

ラス管内の薄膜とCuCl粉末が静置された部分が十分加熱される位置までガラス管を

炉内に挿入した。β-NaGaO2薄膜や CuCl の吸着している水分を蒸発させるため、150 

oC で 15 分保持してから 300 oC に昇温して 8 時間保持した。昇温中および加熱処理

中の真空度は 0.1~1 Pa だった。CuCl は気相ではほぼすべてが Cu3Cl3として存在する

ことが報告されており[26]、300 oC における Cu3Cl3の平衡蒸気圧は Figure 3-3 に示す

通り 0.2 Pa程度である[27]。 

イオン交換後の薄膜の表面に蒸着した CuCl を除去するため、60 oC に加熱したアセトニ

Figure 3-2. (a) Schematic illustration of ion-exchange reaction by direct contact between 

β-NaGaO2 thin film and powder CuCl and (b) cross-sectional and frontal schematic illustration 

of the apparatus for ion-exchange reaction by exposing β-NaGaO2 thin film to CuCl vapor. 
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トリル（99.5+%、和光純薬工業）に浸け、振とう機で 300～500 rpm 程度で 15 分以上洗浄

した。その後、表面に付着した NaCl を除去するため、メタノール（99.8+%、和光純薬工業）

に浸けて、１分ほど手でゆっくりと振って洗浄した。アセトニトリルとメタノールでの洗

浄を、交互に三回ずつ繰り返した。 

作製した薄膜中の生成相は、X 線回折装置（リガク製、RINT2500; Cu Kα 線）による θ-2θ

測定で同定した。薄膜の表面モルフォロジーは電界放出型走査型電子顕微鏡（FE-SEM、JEOL

製、JSM-6335F）で観察し、化学組成は FE-SEM に搭載のエネルギー分散型 X 線分析装置

（EDX, JEOL製、JED-2300）を用いて分析した。 

薄膜の透過スペクトルは、分光光度計（日立ハイテク製、U4100）にて近赤外～紫外の領

域（180-3300 nm）にて測定した。 

薄膜の膜厚は、光干渉膜厚計（WYKO 製、HD-2000）を用いて、基板との段差高を数ヶ

所測定し、その平均値から決定した。測定モードは PSI、対物レンズ（Objective lens）は×5.0、

FOV（Field of View）は×0.5 とした。 

 

 

 

3-4 実験結果 

3-4-1 イオン交換後の化学組成と生成相 

 Table 3-2 に、イオン交換処理後の試料の ICP 分析の結果を示す。極めて微量の Na が検出

されたものの、前駆体 β-NaGaO2中の Na
+がほぼ完全に Cu

+へと交換されていた。イオン交

換後の試料からは、その他の不純物は検出されなかった。 

 

Figure 3-3. Calculated equilibrium vapor pressure of Cu3Cl3 as a function of temperature. 

This figure was modified from Ref. 27. 
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Table 3-2. Chemical composition of the sample after ion-exchage 

reaction determined by ICP analysis. 

Element Substrate temp. 

Cu 1.00656 

Ga 1 

Na 0.0015 

 

Figure 3-4 にイオン交換後の試料の XRD パターンを示す。イオン交換後の試料の XRD パ

ターン（Figure 3-4(b)）は、β-NaGaO2のそれ（Figure 3-4(a)）とは全く異なっていた。また、

2θ ≈ 36
oと 43

oにわずかに見られる Cu2O に由来する回折ピークを除いて、すべての回折ピ

ークが、ウルツ鉱型派生構造の斜方晶 β-NaFeO2型構造で指数付けできた。また、Figure 3-5

に示した制限視野電子回折像には、[001]方向においてウルツ型構造の回折に加えて、明瞭

な超格子回折が現れた。以上の結果から、β-NaFeO2型構造の β-CuGaO2の合成に成功したと

結論付けた。 

 Figure 3-6に、β-CuGaO2のリートベルト解析結果を示す。不純物の Cu2Oからの回折がみら

れた 36.3
o
~36.8

oおよび 41.5
o
~42.5

oは解析対象としなかった。黒点で示す実測値は、橙色の計

算パターンと非常によく一致した。またこの解析の信頼度因子は Rp = 1.48%、Rwp = 2.28%、S 

= 1.29 と十分に低かったことから、精密な解析に成功したと言える。得られた結晶構造パラ

メーターを Table 3-3に示し、これに基づいた結晶構造の模式図を、Figure 3-7に示す。 

 

Figure 3-4. XRD patterns of (a) β-NaGaO2 powder and (b) ion-exchanged sample together 

with (c) calculated XRD pattern of β-NaFeO2-type β-CuGaO2  
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[101][010] [011]

Figure 3-5. Selected area electron diffraction in the [010], [101], and [011] zone axes. 

The arrows indicate double diffraction. No superlattice diffraction appears in the [010] 

and [101] zone axes, and all diffraction spots correspond to the fundamental diffraction 

of wurtzite. For the [011] zone axis, the diffraction spots, as indicated by the triangles, 

correspond to the fundamental diffraction spots of wurtzite, and superlattice diffractions 

are observed. 

Figure 3-6. Powder XRD pattern of β-CuGaO2 experimentally obtained (black dots) and 

calculated profiles by Rietveld analysis (orange line). 
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Table 3-3. Structural parameters of β-CuGaO2 obtained by Rietveld analysis. 

Lattice parameter (Å) 

a0 b0 c0 

5.46338(4) 6.61522(5) 5.27728(4) 

Atomic parameters 

Atom site x y z B 

Cu 4a 0.4268(2) 0.1306(5) 0.4766(4) 1.04 

Ga 4a 0.0665(2) 0.1204(5) 0 1.04 

O(1) 4a 0.4020(8) 0.1339(18) 0.8867(7) 0.49 

O(2) 4a 0.0694(9) 0.1104(15) 0.3341(6) 0.49 

Bond length (Å) 

Cu-O(1) 2.172 Ga-O(1) 1.949 

Cu-O(1)’ 1.999 Ga-O(1)’ 1.940 

Cu-O(2) 2.042 Ga-O(2) 1.791 

Cu-O(2)’ 2.073 Ga-O(2)’ 1.912 

Bond angle (deg) 

O1-Cu-O2 110.32 O1-Ga-O2 109.94 

O1-Cu-O1’ 106.72 O1-Ga-O1’ 107.49 

O1-Cu-O2’ 106.93 O1-Ga-O2’ 110.94 

O2-Cu-O1’ 117.68 O2-Ga-O1’ 107.43 

O2-Cu-O2’ 105.76 O2-Ga-O2’ 115.12 

O1’ -Cu-O2’ 108.98 O1’-Ga-O2’ 105.51 

 

 

 

 

  

Figure 3-7. Schematic illustration of the crystal structures of ZnO, β-CuGaO2 and β-AgGaO2.  
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β-CuGaO2の Cu-O と Ga-O の結合長はそれぞれ 2.00~2.17 Å と 1.79~1.95 Å であり、O-Ga-O

と O-Cu-O の結合角は正四面体角 109.5
oに近かった。β-CuGaO2が含む Cu

+のイオン半径は

600 pmであり、Ga
3+のそれ（470 pm）と近いため、CuO4と GaO4四面体のサイズが同程度

となり、ウルツ鉱型 ZnO からのひずみは小さい。このことは、AgO4と GaO4四面体のサイ

ズが大きく異なる β-AgGaO2の結晶構造がウルツ鉱型 ZnO から大きく歪むのと対照的であ

る[28]。β-NaFeO2型構造はウルツ鉱型構造の超格子構造であるため、β-NaFeO2型構造の化合

物の格子定数は、Figure 3-8 に示すように、擬似的なウルツ鉱型構造（擬ウルツ鉱型構造）

の格子定数 awに換算することができる。Cu
+と Ga

3+の平均イオン半径（540 pm）が Zn のイ

オン半径（600 pm）と近いことから、β-CuGaO2の擬ウルツ鉱型構造の格子定数は、aw = 3.231 

Å、c0 = 5.277 Å であり、ZnO（a0 = 3.249 Å、c0 = 5.206 Å
[29]）との格子不整合は ab 面内で 0.6%、

c 軸方向で 1.4%と小さかった。このような小さな格子不整合は、ZnO 基板や ZnO バッファ

ー層上での β-CuGaO2のエピタキシャル成長に有利となろう。 

 

 

 

 

3-4-2 β-CuGaO2の光学的性質 

 Figure 3-9 に、β-NaGaO2と β-CuGaO2の写真を示す。β-NaGaO2は白色であるが、イオン交

換後の β-CuGaO2は黒色だった。黒色であることは、β-CuGaO2のバンドギャップが 2 eV 以

下の赤外領域にあることを示唆している。 

Figure 3-10(a)に、β-CuGaO2の吸収スペクトルを示す。1.47 eV よりも高エネルギー側で強

い吸収が見られた。また、吸収の強い領域のスペクトル形状を観察するため、Ga2O3粉末で

希釈した β-CuGaO2の吸収スペクトルを測定した（Figure 3-10(b)）。2 eV 以上のエネルギー

の領域において、1.47 eV 近傍以外には吸収が見られなかった。もし、1.47 eV にて始まる吸

Figure 3-8. Schematic illustration of conversion relationship between 

β-NaFeO2-type lattice and pseudo wurtzite-type lattice. 
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収が不純物や欠陥準位によるものであれば、その吸収係数はそれほど大きなものとはなら

ない。したがって、Ga2O3で希釈すれば、2 eV 以上にあるはずのバンドギャップが検出でき

るはずである。Figure 3-10(b)に示すように、2 eV 以上に新たな吸収は見られなかったこと

から、1.47 eV で始まる吸収は、不純物や欠陥準位によるものではなく、バンド間遷移によ

る吸収であると言える。よって、β-CuGaO2のバンドギャップは 1.47 eV であると結論づけ

た。 

 

3-4-3 β-CuGaO2の電気的性質 

Figure 3-11 に、室温における二端子法での電気伝導度測定による β-CuGaO2の電流-電圧特

性を示す。電流-電圧特性は直線的に変化し、傾きから電気伝導度は 1×10
-6

 Scm
-1と決定され

た。ただし、この伝導度は、理論密度比が 80%の焼結体に対する値であるため、真の電気

伝導度はこれよりも高いものと期待できる。β-CuGaO2の熱起電力は 400 μVK
-1だった。こ

れは、β-CuGaO2が積極的なドーピングをしない状態で p型（Native p-type）であることを示

している。 

Figure 3-9. Photographs of (a) β-NaGaO2 and (b) β-CuGaO2. 

(a) β-NaGaO2 (b) β-CuGaO2

Figure 3-10. Optical absorption spectrum obtained using diffuse reflection spectroscopy of (a) 

β-CuGaO2 powder and (b) β-CuGaO2 powder diluted with β-Ga2O3 powder. 
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3-4-4 β-CuGaO2の薄膜化 

 Figure 3-12 (b)に、スパッタリングにより作製したβ-NaGaO2薄膜のXRDパターンを示す。

すべての回折線が β-NaGaO2 で指数付けでき、β-NaGaO2 薄膜が得られたことがわかった。

また、200 と 320 の回折線の強度が、他の回折線よりも大きいことから、この薄膜は(100)

および(320)配向していることが示された。ウルツ鉱型 ZnO は(0001)-Al2O3 単結晶基板上に

(001)配向で堆積する傾向があることが知られており [30-32]、ウルツ鉱型派生構造である

β-NaFeO2型構造の β-AgGaO2が 同様に(0001)-Al2O3単結晶基板上で(001)配向で堆積する[33]

一方で、同形の β-NaFeO2型 β-NaGaO2が(100)および(320)に配向をした理由はいまのところ

不明である。得られたβ-NaGaO2薄膜の化学組成は、EDXによってNNa/NGa = 0.9と決定され、

わずかに Naが欠損した組成となっていた。 

β-NaGaO2 薄膜と CuCl ペレットを直接接触させることでイオン交換処理をしたのち洗浄

した試料の XRD パターンを Figure 3-12(c)に示す。この XRD パターンでは、同定できない

ピークのみが現れ、β-NaGaO2を CuCl ペレットと接触させる方法では、β-CuGaO2薄膜が得

られないことがわかった。この理由については、β-NaGaO2 薄膜と CuCl 粉末とのイオン交

換反応が完了した後にも表面に大過剰の粉末CuClが存在するため β-CuGaO2とCuClの間で

化学反応が起きたからだと推察した。 

一方、β-NaGaO2 薄膜を CuCl 蒸気に曝すことでイオン交換したのち洗浄した試料の場合

は、すべての回折線が β-CuGaO2で指数付けできたことから、イオン交換によって β-CuGaO2

薄膜が生成したことが示された（Figure 3-12(d)）。β-CuGaO2薄膜の XRD パターンでは、200

と 320 の回折線の強度が高いことから、前駆体薄膜と同様に(100)および(320)配向をしてい

ることが明らかとなった。このことは、Na
+と Cu

+の交換反応が結晶の基本骨格を維持しな

がら進行していたこと、すなわちこのイオン交換反応がトポタクティックな反応であるこ

とを示している。 

得られた β-CuGaO2薄膜の化学組成は、EDX によって NCu/NGa = 0.9 と決定され、Naは検

Figure 3-11. I-V curve of sintered β-CuGaO2 sample measured by two-probe method. 

-40 -20 20 40

-20

20

Voltage / V

C
u
rr

e
n

t 
/ 

A

 

 

 

 



第３章 新規ナローギャップ半導体 β-CuGaO2の合成 

  

43 

 

出されなかった。イオン交換後の薄膜の膜厚は 500 nmだったことから、少なくとも 500 nm

の厚さまでは Cuが拡散し、イオン交換が進行することが示された。イオン交換によって挿

入される Cu
+イオンの量は薄膜中に存在する Na

+イオンの量で決定されるので、Na 欠損の

組成の β-NaGaO2薄膜をイオン交換することによって得た β-CuGaO2薄膜がCu欠損の組成で

あったのは、当然の結果と言える。 

Figure 3-13 に、前駆体 β-NaGaO2薄膜と、β-CuGaO2薄膜の写真を示す。透明な前駆体薄膜

は、イオン交換後に黒色に変化しており、β-CuGaO2 が生成していることを示唆している。

Figure 3-14に、β-CuGaO2薄膜の透過スペクトルを示す。β-CuGaO2薄膜の透過スペクトルは、

700-800 nm付近で透過率が急激に低下し、バンド間遷移による基礎吸収がみられた。 

 

Figure 3-12. XRD patterns of (a) β-NaGaO
2
 powder calculated based on Ref. 34, (b) β-NaGaO

2
 

film, (c) washed ion-exchanged film reacted by direct contant to CuCl powder, (d) washed 

ion-exchanged film reacted by exposure to CuCl vapor and (e) β-CuGaO2 powder。 
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このスペクトルを基に Tauc’s プロットをし、β-CuGaO2 薄膜のバンドギャップを決定した

（Figure 3-15）。Taucのバンド間遷移の理論では、次の（１）式が成り立つことが示されて

いる[34]。 

(𝛼ℎ𝜈) = A(ℎ𝜈 − 𝐸g)
n

⋯ (1) 

𝛼:吸収係数、ℎ:プランク定数、𝜈:振動数、Eg:バンドギャップ、A:定数であり、得られた

β-CuGaO2薄膜の光学遷移が直接許容であると仮定して n = 1/2 とした。その結果、β-CuGaO2

薄膜のバンドギャップは 1.46 eV と決定でき、この値は β-CuGaO2粉末の拡散反射スペクト

ルから求めたバンドギャップ（1.47 eV）（Figure 3-7）と良く一致した。 

 

 

 

Figure 3-13. Photographs of (a) β-NaGaO2 precursor thin film and (b) β-CuGaO2 thin film. 

(a) β-NaGaO2 precursor film (b) β-CuGaO2 film

Figure 3-14. Optical transmission spectrum of β-CuGaO2 thin film. 
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Figure 3-16 (a)に β-NaGaO2薄膜の表面 SEM像を示す。β-NaGaO2薄膜の表面には、長さ数

μm～十数 μm程度の多くの亀裂がランダムな方向で全面に入っていた。この β-NaGaO2薄膜

を基に作製した β-CuGaO2 薄膜にも同様の亀裂が入っており（Figure 3-16(b)）、イオン交換

前の亀裂がイオン交換後にもそのまま残ったと推察される。β-NaGaO2 は吸湿性が極めて高

く[36,37]、成膜直後の透明な β-NaGaO2薄膜は夏季の湿度の高い大気に曝すと数分～数十分で

失透する。したがって、β-NaGaO2 薄膜の表面にみられた亀裂は、吸湿による体積膨張と、

その後の真空中での取り扱いに伴う乾燥による体積収縮によって生成したと推察される。 

成膜直後の β-NaGaO2 薄膜を直ちに SEM 観察すると、亀裂は認められなかった（Figure 

3-17(a)）。この亀裂のない β-NaGaO2薄膜を基に作製した β-CuGaO2薄膜においても、微細な

亀裂が見られた（Figure 3-17(b)）。Table 3-4 に、β-NaGaO2
[34]および β-CuGaO2の格子定数と、

それらの差を示す。a および c 軸方向の収縮率は 1%以下であったが、b 軸方向の収縮率は

8.2%であり極めて大きい。本研究にて得られた β-NaGaO2薄膜は(100)配向であり、この配向

においては b 軸は面内方向を向いているため（Figure 3-18(a)）、イオン交換後に形成された

亀裂は、β-NaGaO2から β-CuGaO2への相変態にともなう b 軸方向の収縮に起因すると推察

される。したがって、b 軸が膜厚方向を向いた β-NaGaO2 薄膜、すなわち(010)配向した

β-NaGaO2 薄膜が得られれば、それをイオン交換する場合の面内方向の体積収縮は小さく、

亀裂がない β-CuGaO2薄膜が得られる可能性が高い（Figure 3-18(b)）。 

 

 

 

 

Figure 3-15. Tauc’s plot of β-CuGaO2 thin film. 
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Table 3-4. Lattice parameter of β-NaGaO2 and β-CuGaO2, and their difference. 

Direction β-NaGaO2
a
 β-CuGaO2 Difference 

a0 5.498 5.463 -0.64% 

b0 7.206 6.615 -8.20% 

c0 5.298 5.277 -0.40% 

 

 

Figure 3-16. SEM images of surface of (a) β-NaGaO2 thin film after exposure to 

the air and (b) β-CuGaO2 thin film obtained by ion-exchange of β-NaGaO2 thin 

film which was exposed to the air. 

(a) β-NaGaO2 thin film
(After exposure to the air)

2 μm 2 μm

(b) β-CuGaO2 thin film
(Obtained from β-NaGaO2 film 

which was exposed to the air)

Figure 3-17. SEM images of surface of (a) β-NaGaO2 thin film which was not 

exposed to the air and (b) β-CuGaO2 thin film obtained by ion-exchange of 

β-NaGaO2 thin film which was not exposed to the air. 

(b) β-CuGaO2 thin film
(Ion-exchanged without exposed to the air)

2 μm

(a) β-NaGaO2 thin film
(As deposited)
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Cracks
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3-5 考察 

3-5-1 薄膜太陽電池の光吸収材料としての可能性 

Figure 3-19 に、半導体のバンドギャップと単接合太陽電池の理論限界変換効率の関係

（Shockley-Queisser limit
[38]）を示す。本研究にて得られた β-CuGaO2のバンドギャップは 1.47 

eV であり、これは理論限界変換効率が最大となるバンドギャップに対応する。従来の酸化

物では、Cu2O（Eg = 2.1 eV）が最も大きな理論限界変換効率を達成できる物質として知られ

ていたが、β-CuGaO2 はこれを大きく超え、単接合太陽電池に最適なバンドギャップを有す

る唯一の酸化物半導体である。光電変換素子を実現するには、p/n 接合が必要不可欠である

が、酸化物半導体の多くは n 型伝導体であり、p 型伝導を示す物質は極めて少ない。β-CuGaO2

Figure 3-18. Schematic illustration of oriented β-CuGaO2 films. 

a

b
c

b

a
c

Crack formation No crack formation

(a) (100) oriented (b) (010) oriented

Figure 3-19. Conversion efficiency of a solar cell as a function of the band gap 

energy based on a semiconductor in the Shockley−Queisser limit
 
(Ref. 38) using 

an AM1.5G spectrum as the illumination source. 
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の p型伝導性は、酸化物のみの組み合わせで p/n接合を形成する上でアドバンテージとなる。 

β-CuGaO2 が光電変換素子への応用に適しているかどうかを決定する重要なポイントは、

それが直接遷移型であるかどうかである。また、もし β-CuGaO2が直接遷移型であれば、そ

のバンド端近傍での吸収係数が大きくなるため、薄膜太陽電池の光吸収層として用いるこ

とができる。β-CuGaO2と同じ β-NaFeO2型の β-AgGaO2や β-AgAlO2は間接遷移型と報告さ

れている[9,39-41]が、β-LiGaO2は直接遷移型といわれており
[42-44]、空間群など結晶の対称性が

光学遷移の型を決定しているわけではないようだ。今のところ、β-CuGaO2 の光学遷移の型

を決定する実験的な証拠は無いため、これに関しては次章で詳細に検討する。 

 

3-6 結言 

本章では、ウルツ鉱型派生構造の三元系酸化物のバンドギャップのカバーする波長範囲

を赤外領域へと広げることを目的として、β-NaGaO2 を前駆体としたイオン交換反応によっ

て β-CuGaO2 の合成を試みた。イオン交換により試料中の Na
+は Cu

+と完全に交換され、

β-NaFeO2型構造の β-CuGaO2を得ることに成功した。β-CuGaO2のバンドギャップは近赤外

領域の 1.47 eV であり、期待通りバンドギャップが近赤外領域にあるナローバンドギャップ

酸化物半導体を作製できた。 

バルクの β-CuGaO2と同様に、β-NaGaO2薄膜のイオン交換により β-CuGaO2薄膜を得るこ

とができた。組成が NNa/NGa = 0.9 の Na 欠損組成の β-NaGaO2薄膜をイオン交換に用いたこ

とから、β-CuGaO2薄膜の組成は NCu/NGa = 0.9と Cu欠損組成であり、またその表面には前駆

体の β-NaGaO2 薄膜が大気中の水分を吸湿したことによる亀裂があった。化学量論組成で、

良好な表面状態の β-CuGaO2薄膜を得るためには、化学量論組成の β-NaGaO2薄膜を前駆体

として用い、大気に曝さずにイオン交換することが必要だとわかった。 

従来、酸化物半導体における薄膜太陽電池研究は、バンドギャップ 2.1 eV の直接遷移型

半導体 Cu2O を用いて推進されてきた[45-48]。しかし、2.1 eV のバンドギャップに対する理論

限界変換効率は約 20%であり、CdTe や CuInSe2などのカルコゲナイド半導体に対する変換

効率での優位性はない。これまで報告されている Cu2O 太陽電池の最大の変換効率は 4%で

あり[48]、酸化物半導体を光吸収層とした薄膜太陽電池の研究はこれまで活発であったとは

いえない。β-CuGaO2 のバンドギャップは理論限界変換効率が最大となる値であり、変換効

率の点では、CdTe や CuInSe2などと十分競争できるポテンシャルを有する。β-CuGaO2は p

型伝導性を示し、酸化物半導体の多くが n 型伝導体であることから、酸化物のみの組み合

わせでの p/n接合が実現できる。特に、ZnO は β-CuGaO2との格子不整合が極めて小さいた

め（ab 面内で 0.6%、c 軸方向で 1.4%）、p型 β-CuGaO2と n型 ZnO との間でのヘテロエピタ

キシャルな p/n 接合による全酸化物太陽電池の実現が期待できる。β-CuGaO2を薄膜全酸化

物太陽電池に応用するためには、β-CuGaO2 が直接許容遷移型で、強い光吸収を生じること

が必須の条件となる。これらの実験的な判断には、良質な薄膜あるいは単結晶試料の作製
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技術の開発をしなければならない。これと並行した、理論的なアプローチも今後必要な検

討であろう。 
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第４章 第一原理計算による β-CuGaO2の電子構造と物性の評価 

4-1 緒言 

第３章では、新物質 β-CuGaO2を発見し、それは単接合太陽電池における理論限界変換効

率が最大となる 1.47 eV のバンドギャップを有しており、また p 型伝導性を示すことから、

ZnO などの n 型酸化物と p/n 接合を形成することで、全酸化物太陽電池の実現が期待できる

ことを論じた。このような、新しい化合物半導体の光学的・電気的な基礎物性を知ること

は、物質科学という学術的な側面での重要性だけでなく、各種のデバイスへと応用した際

の性能をあらかじめ推し量るという工学的な側面でも大きな意味をもつ。特に β-CuGaO2の

場合は、太陽電池の光吸収層としての応用が期待されることから、その光学遷移が直接許

容遷移であるかどうか、吸収係数の大きさ、電子・ホールの有効質量を知ることは重要で

ある。現在のところ、そのような物性を実験的に測定可能な β-CuGaO2の単結晶や高品質の

薄膜は得られていない。従って本章では、第一原理計算に基づいて電子構造を計算し、そ

れらの物性を評価した。 

完全結晶の電子構造を計算する手法の１つに、密度汎関数法（Density Functional Theory, 

DFT 法）がある。DFT 理論は、式（１）に示すように、外部ポテンシャル𝜐(𝒓)のなかで、

電子ガス系の基底状態のエネルギーが電荷密度𝜌(𝒓)で一義的に決定されることと、正しい基

底状態の𝜌(𝒓)に対して𝐸が最小値をとるようなる汎関数𝐹[𝜌(𝒓)]が存在すること[1]を根拠と

している。 

E ≡ ∫ 𝜐 (𝒓)𝜌(𝒓) 𝑑𝜐 + F[𝜌(𝒓)]          ⋯ (1) 

 

多電子系の計算においては、𝜌(𝒓) に対するEの厳密な依存性を求めることは出来ないため、

何らかの近似を導入する必要がある。これまでに、種々の近似法が提案されており、電子

密度が局所的に一様であるとみなす局所密度近似法（Local Density Approximation, LDA
[2]）

や、電子密度の勾配を補正した一般化勾配近似法（Generalized Gradient Approximation, GGA
[3]）

が広く用いられてきた。これらの汎関数を用いた場合に半導体のバンドギャップが著しく

小さく計算されるという欠点を克服するため、 sX-LDA 法（Screened-exchange LDA, 

sX-LDA
[4,5]）や Heyd-Scuseria-Ernzerhof 法（HSE

[6]）などが提案されている。また、強相関

電子系の計算には、自己相互作用を補正する項（U）を導入した LDA+U 法や GGA+U 法が

提案されている[7]。第一原理計算は現在も発展途上の研究領域であり、計算結果が汎関数に

依存するため、適切な汎関数は物質に依存する。計算結果の信頼性は、計算値と実験値と

の一致の程度により評価するという方法が広く用いられている。 

 本章では、種々の汎関数と擬ポテンシャルを用いて β-CuGaO2の電子構造を計算し、結晶

構造と価電子帯の電子構造、バンドギャップを実験値と比較し、その一致の程度から計算
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の信頼性を評価し、最適な計算条件を検討した。最も実験値をよく再現した計算結果に基

づいて、β-CuGaO2 の光学遷移の型、光吸収係数、電子とホールの有効質量など、太陽電池

の光吸収体層に使用する半導体として重要な物性を議論した。 

 

4-2 計算および実験方法 

4-2-1 第一原理計算 

すべての計算には、計算コード CASTEP
[8]を用いた。GGA（PBE for solid

[3,9]）と HSE06
[6,10]、

sX-LDA
[4,5]、LDA+U

[7]の４つの汎関数を使用し、計算を実行した。擬ポテンシャルは、

OPIUM
[11]で生成したノルム保存擬ポテンシャル[12]と、CASTEP に内蔵されているウルトラ

ソフト擬ポテンシャルとウルトラソフト擬ポテンシャル（On-the-fly）[13]を使用した。汎関

数にGGAを使用したときのみノルム保存擬ポテンシャルに加え前記の 2種類のウルトラソ

フト擬ポテンシャルを用いた計算を行い、その他の汎関数を使用した場合はノルム保存擬

ポテンシャルのみを用いて計算を行った。Table 4-1 に、各汎関数を使用した計算における

擬ポテンシャル（Pseudo potential）とカットオフエネルギー、Monkhost-Packグリッド（MP 

grid）の大きさ、結晶構造を緩和した際の収束条件を示す。原子位置は空間群 Pna21で拘束

をかけて緩和した。すべての計算において、Cu 3d, 4s, 4p、Ga 3d, 4s, 4pおよび O 2s, 2p 電子

を価電子とした。汎関数に LDA+U を用いた計算では、U は Cu 3d 軌道に導入し、その値は

0～12 eV の範囲で 1 eV 刻みで変化させた。 

4-2-2 光電子分光 

3-3-3 で述べた方法で作製した β-CuGaO2焼結体をサンプルとして、価電子帯の X 線光電

子分光（X-ray Photoelectron Spectroscopy; XPS）スペクトルを、静電半球型電子エネルギー

分析器を搭載した光電子分光装置（Kratos Analytical 製、Axis Ultra DLD）を使用して室温で

測定した。励起光にはα-石英結晶により単色化した AgLα 線（hν = 2984.2 eV）を使用した。

運動エネルギーが3 keVの電子のβ-CuGaO2中での平均自由行程は5 nm程度であるので[14]、

表面から 10 nm程度の深さからの光電子は検出されていると考えてよい。従って AgLα 線を

励起光とした XPS スペクトルは、バルクの情報を十分に反映しているものとして扱える。

サンプル表面の一部に Au 薄膜をスパッタリングにより製膜し、その 4f7/2電子の束縛エネル

ギーを 84.0 eV となるよう[15]、束縛エネルギーの値を補正した。また、Au薄膜のフェルミ

端から見積もった装置のエネルギー分解能は、前述の測定条件において約 0.5 eVであった。 
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Table 4-1. Detailed conditions of each calculation using various functionals and pseudo potentials. 

 

Functionals Pseudo potential 
Cut off 

(eV) 
MP grid 

Convergence conditions for the geometry optimization 

Energy convergence 

(eV atom
-1

) 

Maximum ionic 

displacement (Å) 

Maximum force 

 (eV Å
-1

) 

Maximum stress 

(GPa) 

GGA 

Norm-conserving 

(based on GGA) 
840 5×4×5 5.0×10

−6
 5.0×10

−4
 1.0 × 10

-2
 2.0×10

−2
 

Ultrasoft 440 5×4×5 5.0×10
−6

 5.0×10
−4

 1.0 × 10
-2

 2.0×10
−2

 

Ultrasoft 

(on-the-fly generation) 
610 5×4×5 5.0×10

−6
 5.0×10

−4
 1.0 × 10

-2
 2.0×10

−2
 

LDA+U 
Norm-conserving 

(based on LDA) 
880 5×4×5 5.0×10

−6
 5.0×10

−4
 1.0 × 10

-2
 2.0×10

−2
 

sX-LDA 
Norm-conserving 

(based on Hartee-Fock) 
806 3×2×3 1.0×10

−5
 1.0×10

−3
 3.0 × 10

-2
 5.0×10

−2
 

HSE 
Norm-conserving 

(based on Hartee-Fock) 
726 2×2×2 2.0×10

−5
 2.0×10

−3
 5.0 × 10

-2
 1.0×10

−1
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4-2-3 計算結果の妥当性の評価方法 

種々の汎関数を用いた β-CuGaO2の第一原理計算により得られた結果は、以下の観点から

その妥当性を評価した。 

(i). 実験的に決定されている結晶構造の再現 

 閃亜鉛鉱型構造やウルツ鉱型構造など二元系化合物半導体の結晶構造は、対称性が

高いため多くの原子が特殊等価位置を占有する。例えば、閃亜鉛鉱型構造では格子定

数 a0 のほかには自由になるパラメーターは存在せず、ウルツ鉱型構造やデラフォサイ

ト型構造では、格子定数 a0および c0と酸素の z 座標以外に自由になるパラメーターは

ない[16]。このような化合物の場合、各原子の位置を空間群で拘束してやれば、結晶構

造の緩和によって各原子間の距離や角度があるべき値から大きく逸脱することはない。

これに対し β-CuGaO2 は、すべての原子が一般等価位置を占有するので
[16]、格子定数

a0, b0および c0と４つの原子の x, yおよび z座標の全てが自由なパラメーターとなる。

そのため、構造緩和によって得られた構造が、空間群 Pna21の対称性を満足していたと

しても、各原子間の距離や角度があるべき値の範囲から大きく逸脱する可能性を孕む。

また、β-CuGaO2 は準安定相であり、本質的に全電子エネルギーが最小となる結晶構造

ではないので、使用する汎関数や擬ポテンシャルによっては構造緩和によって再現で

きない可能性もある。β-CuGaO2の結晶構造は放射光を使用した粉末X線回折のRietveld

解析によって既に決定されているので、構造緩和によって得られた結晶構造が、実験

的に決定されている結晶構造を合理的な範囲で再現するか否かにより、計算の妥当性

を評価した。 

(ii). 価電子帯の XPS の再現 

 価電子帯最上部（Valence band maximum; VBM）近傍の電子構造は、ホールの移動度、

光吸収係数などの多くの基礎的な物性を決定する。そのため、計算された価電子帯の

電子構造を実測した XPS スペクトルと比較し、計算結果の妥当性を評価した。特に、

β-CuGaO2では、価電子帯の上部が主に Cu 3d 軌道から構成されるので、Cu 3d バンドの

エネルギーや分散が β-CuGaO2のナローバンドギャップや p型伝導性の発現に大いに寄

与していると推察される。このような観点から、価電子帯の XPS スペクトルを計算に

よって再現できるか否かは、計算結果の妥当性の評価において特に重要だと言える。 

(iii). バンドギャップの再現性 

 GGA や LDA を汎関数として用いた計算ではバンドギャップが実測よりも小さく計

算されることが良く知られており[17-20]、β-CuGaO2 のような狭いバンドギャップ半導体

では、バンドギャップが開かない（マイナスとなる）可能性が大いにある。バンドギ

ャップが開かなければ半導体としての特徴を議論することは全くできない。ただし、

現在の第一原理計算は、バンドギャップの大きさを議論できる段階には至っていない

ので、バンドギャップが実測と比べて多少の大小があったとしても、それは十分に許
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容できる結果として良いだろう。 

4-3 計算および実験結果と考察 

4-3-1 種々の汎関数により求めた β-CuGaO2の結晶構造と電子構造 

4-3-1-1 緩和構造 

 汎関数に GGA と LDA+U（U = 0, 2, 3, 4, 5, 6, 7, 9, 11, 12 eV）、sX-LDA を使用し構造緩和

した際に得られた結晶構造のパラメーター――格子定数と Cu-O, Ga-O 距離、O-Cu-O, 

O-Ga-O, Cu-O-Cu, Ga-O-Ga および Cu-O-Ga 結合角――と、それらと実測値[21]との差をそれ

ぞれ Tables 4-2~4-10 に示す（ただし、LDA+U を使用した場合については、U = 0, 3, 6, 9, 12 eV

での計算結果のみを掲載した）。また、構造緩和により得られた格子定数、結合距離および

結合角と実測値との差を、汎関数の種類と U の値に対して整理した図を Figures 4-1, 4-2, 4-3

および 4-4 に示す。 

GGA を汎関数として使用し、ウルトラソフト擬ポテンシャルとウルトラソフト擬ポテン

シャル（On-the-fly）を用いて緩和した結晶構造の格子定数は、実測との差（Figure 4-1）が

3.5 %以下であり、おおむね実測値を再現していた。しかし、Cu-O 距離（Figure 4-2）の一

部は 8%以上も実測値から外れていた。特に、最も長い Cu-O 距離は 2.4 Å にも及び、Cu
+と

O
2-のイオン半径がそれぞれ 0.60 Å と 1.38 Å である[22]ことを考慮すると、実質的にこれらの

原子が結合しているとは考えにくく、Cu
+は３配位もしくは３+１配位構造となっていた。

Cu-O 距離が実測値から大きく外れるのと同様に、O-Cu-O, Cu-O-Cu および Cu-O-Ga 結合角

もそれぞれ 15%以上実測値からずれており（Figures 4-3, 4-4）、この緩和構造中の CuO4と

OGa2Cu2四面体の形状は、実験的に決定した β-CuGaO2中のそれとは大きく異なった。これ

らの結果は、ウルトラソフト擬ポテンシャルを用いた GGA での計算では β-CuGaO2の構造

は再現できないことを示している。前述したように、β-CuGaO2 の価電子帯の電子構造には

Cu 3d 軌道の寄与が大きい。すなわち、Cu原子周辺の局所構造は Cu 3d 軌道の広がりに強

く影響するものと思われるので、ウルトラソフト擬ポテンシャルを用いた GGA 汎関数によ

る計算結果を基にして、電子構造の詳細を議論することはできないと結論した。  

汎関数に GGA（ノルム保存型擬ポテンシャル）と LDA（LDA+U (U = 0 eV)）を用いた計

算によって得られた緩和構造では、格子定数 a0と b0の実測構造からのずれは 3%以下であ

った（Figure 4-1）。汎関数に LDA を用いた計算では GGA を用いた場合より格子定数が小さ

く計算されることが知られており[23]、本計算においても a0, b0, c0のいずれにおいても LDA

を使用した計算結果の方が小さかった。Figure 4-2 に示すように、緩和構造の Cu-O 距離は、

GGA で最大 5.2%、LDA で最大 7.3%実測構造のそれからずれていたが、四本の Cu-O 距離

はいずれの場合も 2.0~2.2 Å の範囲内にあり、Cu 原子は 4 配位といえる。しかしながら、

O-Cu-O、Cu-O-Cu、Cu-O-Ga 結合角は実測構造中のそれから 10%程度ずれるものも見られ
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た（Figures 4-3, 4-4）。したがって、ノルム保存型擬ポテンシャルを用い汎関数を GGA と LDA

とした計算では、Cu 原子の４配位構造は再現できるものの実験的に決定した β-CuGaO2 の

結晶構造を完全に再現しているとはいえなかった。 

LDA+U を用いて計算した緩和構造では、格子定数 a0, b0, c0のいずれも U < 3 eV の範囲で

は U 値の増大に伴い急速に実測値に近づき、U > 4 eV では実測値に近い値（実測値との差

は最大でも 1.2%）でほぼ一定であった（Figure 4-1）。また、Cu-O 距離や O-Cu-O、Cu-O-Cu、

Cu-O-Ga 結合角も、U の導入により格子定数とほぼ同様に実測値へと近づいていった

（Figures 4-2, 4-3, 4-4）。例えば、U = 6 eV の LDA+U の計算では、O-Cu-O 結合角は最も実

測構造とずれた結合でも差は 4.7％であり、4 eV 以上の U を導入することで実験的に決定さ

れた結晶構造がよく再現されることが明らかとなった。 

汎関数に sX-LDA を使用し計算した緩和構造は、格子定数 a0および b0と Cu-O 距離にお

いて実測構造との差が大きい点で LDA+U（U > 4 eV）のそれには及ばなかったものの

（Figures 4-1, 4-2）、実験的に決定された構造を概ね再現したと言える。 

 

 

 

 

 

Figure 4-1. Difference in lattice parameters a0, b0, and c0 of β-CuGaO2 between the 

experimentally observed and calculated results for GGA with ultrasoft pseudo-potential (GGA 

US), GGA with ultrasoft pseudo-potential (on-the-fly) (GGA US-OF), GGA with 

norm-conserving pseudo-potential (GGA NC), sX-LDA and LDA+U. The observed lattice 

parameters (Ref. 21) are set as the zero axis. 
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Figure 4-2. Difference in Cu-O and Ga-O bond angles of β-CuGaO2 between the 

experimentally observed and calculated results with various functionals. The observed bond 

lengths (Ref. 21) are set as the zero axis. 
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Figure 4-3. Difference in O-Cu-O and O-Ga-O bond lengths of β-CuGaO2 between the 

experimentally observed and calculated results with various functionals. The observed 

bond angles (Ref. 21) are set as the zero axis. 
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汎関数に HSE06 を使用した緩和構造は、Figure 4-5 に示すように、すべての原子が 6配位

となり岩塩型に類似した構造であった。すなわち、HSE06 では β-NaFeO2型構造の β-CuGaO2

を全く再現できなかった。 

Figures 4-2, 4-3, 4-4 からわかるように、いずれの汎関数を用いた場合でも Ga-O 距離や

O-Ga-O および Ga-O-Ga 結合角は実測構造のそれと非常によく一致している。汎関数の違い

が現れるのは Cu-O 距離や O-Cu-O, Cu-O-Cu および Cu-O-Ga結合角、すなわち Cu 原子の関

わる結合についてである。このことは、GaO4四面体は Ga の 4s 軌道と O の 2p 軌道による

sp
3混成軌道から構成される一方で、CuO4四面体は Cu 3d 軌道と O 2p 軌道による異方性の

Figure 4-4. Difference in M-O-M bond angles of β-CuGaO2 between the 

experimentally observed and calculated results with various functionals. The 

observed bond angles (Ref. 21) are set as the zero axis. 
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Figure 4-5. Schematic illustration of crystal structure of β-CuGaO2 obtained by 

structural optimization with HSE06. 
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強い d-p 結合によって構成されていることと関連があると思われる。U の導入により Cu原

子の関わる結合の距離や角度が実測値に近づいたことは、Cu 3d軌道と O 2p軌道の d-p 結合

を再現するために Cu 3d 軌道の自己相互作用を補正することが必要だったことを示してい

る。 
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Table 4-2. Lattice parameters, atomic parameters, bond lengths and angles of β-CuGaO2 obtained by 

structural optimization for the GGA calculation (Calc.) with ultrasoft-pseudopotential and differences 

(Diff.) from experimentally observed results (Obs.). Large differences (> 5%) are emphasized with bold. 

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.354 5.460 -1.9% 

b0 6.453 6.610 -2.4% 

c0 5.440 5.274 +3.1% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.456 0.441 +1.5% 

y 0.173 0.129 +4.4% 

z 0.558 0.505 +5.3% 

Ga 4a 

x 0.086 0.078 +0.8% 

y 0.12 0.123 -0.3% 

z 0 0 +0.0% 

O(1) 4a 

x 0.424 0.407 1.7% 

y 0.129 0.141 -1.2% 

z 0.912 0.909 +0.3% 

O(2) 4a 

x 0.439 0.442 -0.3% 

y 0.606 0.6 +0.6% 

z 0.842 0.849 -0.7% 

Bond length 

Cu-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Cu-O(1) 1.951 2.144 -9.0% Ga-O(1) 1.877 1.862 +0.8% 

Cu-O(1)’ 2.197 2.026 +8.4% Ga-O(1)’ 1.897 1.879 +1.0% 

Cu-O(2) 2.462 2.256 +9.1% Ga-O(2) 1.865 1.848 +0.9% 

Cu-O(2)’ 1.934 2.074 -6.8% Ga-O(2)’ 1.869 1.837 +1.7% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Cu-O(1)’ 104.8 108.4 -3.4% Cu-O(1)-Cu’ 117.5 100.3 +17.1% 

O(1)-Cu-O(2) 111.8 106.6 +4.9% Cu-O(1)-Ga 94.9 104.0 -8.7% 

O(1)-Cu-O(2)’ 137.2 112.9 +21.5% Cu-O(1)-Ga’ 110.0 109.7 +0.3% 

O(1)’-Cu-O(2) 85.5 102.4 -16.5% Cu’-O(1)-Ga 122.1 118.0 +3.5% 

O(1)’-Cu-O(2)’ 110.4 122.4 -9.8% Cu’-O(1)-Ga’ 99.4 106.0 -6.2% 

O(2)-Cu-O(2)’ 94.9 102.2 -7.2% Ga-O(1)-Ga’ 113.5 117.8 -3.7% 

O(1)-Ga-O(1)’ 110.5 111.3 -0.7% Cu-O(2)-Cu’ 80.1 93.9 -14.7% 

O(1)-Ga-O(2) 109.0 108.5 +0.5% Cu-O(2)-Ga 126.3 110.0 +14.8% 

O(1)-Ga-O(2)’ 108.0 109.2 -1.1% Cu-O(2)-Ga’ 100.1 113.5 -11.8% 

O(1)’-Ga-O(2) 105.2 107.0 -1.7% Cu’-O(2)-Ga 114.0 107.6 +6.0% 

O(1)’-Ga-O(2)’ 111.1 110.8 +0.3% Cu’-O(2)-Ga’ 106.0 106.5 -0.5% 

O(2)-Ga-O(2)’ 113.0 110.0 +2.7% Ga-O(2)-Ga’ 121.9 121.5 +0.3% 
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Table 4-3. Lattice parameters, atomic parameters, bond lengths and angles of β-CuGaO2 obtained by 

structural optimization for the GGA calculation with ultrasoft-pseudopotential (On-the-fly) and the 

experimentally observed results. Large differences (> 5%) are emphasized with bold. 

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.344 5.460 -2.1% 

b0 6.452 6.610 -2.4% 

c0 5.427 5.274 +2.9% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.454 0.441 +1.3% 

y 0.171 0.129 +4.2% 

z 0.556 0.505 5.1% 

Ga 4a 

x 0.085 0.078 +0.7% 

y 0.121 0.123 -0.2% 

z 0 0 +0.0% 

O(1) 4a 

x 0.423 0.407 +1.6% 

y 0.13 0.141 -1.1% 

z 0.912 0.909 +0.3% 

O(2) 4a 

x 0.44 0.442 -0.2% 

y 0.605 0.6 +0.5% 

z 0.841 0.849 -0.8% 

Bond length 

Cu-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Cu-O(1) 1.956 2.144 -8.8% Ga-O(1) 1.870 1.862 +0.4% 

Cu-O(1)’ 2.195 2.026 +8.3% Ga-O(1)’ 1.889 1.879 +0.5% 

Cu-O(2) 2.443 2.256 +8.3% Ga-O(2) 1.859 1.848 +0.6% 

Cu-O(2)’ 1.940 2.074 -6.5% Ga-O(2)’ 1.862 1.837 +1.4% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Cu-O(1)’ 104.9 108.4 -3.2% Cu-O(1)-Cu’ 116.5 100.3 +16.2% 

O(1)-Cu-O(2) 112.0 106.6 +5.0% Cu-O(1)-Ga 95.6 104.0 -8.1% 

O(1)-Cu-O(2)’ 135.9 112.9 +20.4% Cu-O(1)-Ga’ 109.8 109.7 +0.1% 

O(1)’-Cu-O(2) 86.2 102.4 -15.8% Cu’-O(1)-Ga 121.7 118.0 +3.1% 

O(1)’-Cu-O(2)’ 110.9 122.4 -9.4% Cu’-O(1)-Ga’ 99.8 106.0 -5.8% 

O(2)-Cu-O(2)’ 95.5 102.2 -6.6% Ga-O(1)-Ga’ 113.9 117.8 -3.3% 

O(1)-Ga-O(1)’ 110.5 111.3 -0.7% Cu-O(2)-Cu’ 80.6 93.9 -14.2% 

O(1)-Ga-O(2) 109.1 108.5 +0.5% Cu-O(2)-Ga 125.4 110.0 +14.0% 

O(1)-Ga-O(2)’ 108.0 109.2 -1.1% Cu-O(2)-Ga’ 100.5 113.5 -11.4% 

O(1)’-Ga-O(2) 105.4 107.0 -1.5% Cu’-O(2)-Ga 113.8 107.6 +5.8% 

O(1)’-Ga-O(2)’ 111.0 110.8 +0.2% Cu’-O(2)-Ga’ 105.9 106.5 -0.5% 

O(2)-Ga-O(2)’ 112.9 110.0 +2.6% Ga-O(2)-Ga’ 122.2 121.5 +0.6% 
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Table 4-4. Lattice parameters, atomic parameters, bond lengths and angles of β-CuGaO2 obtained by 

structural optimization for the GGA calculation with norm-conserving pseudopotential and the 

experimentally observed results. Large differences (> 5%) are emphasized with bold. 

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.470 5.460 +0.2% 

b0 6.584 6.610 -0.4% 

c0 5.457 5.274 +3.5% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.425 0.441 -1.6% 

y 0.143 0.129 +1.4% 

z 0.524 0.505 +1.9% 

Ga 4a 

x 0.086 0.078 +0.8% 

y 0.121 0.123 -0.2% 

z 0 0 +0.0% 

O(1) 4a 

x 0.421 0.407 +1.4% 

y 0.134 0.141 -0.7% 

z 0.897 0.909 -1.2% 

O(2) 4a 

x 0.428 0.442 -1.4% 

y 0.609 0.6 +0.9% 

z 0.851 0.849 +0.2% 

Bond length 

Cu-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Cu-O(1) 2.033 2.144 -5.2% Ga-O(1) 1.918 1.862 +3.0% 

Cu-O(1)’ 2.126 2.026 +4.9% Ga-O(1)’ 1.934 1.879 +2.9% 

Cu-O(2) 2.160 2.256 -4.3% Ga-O(2) 1.921 1.848 +4.0% 

Cu-O(2)’ 2.053 2.074 -1.0% Ga-O(2)’ 1.919 1.837 +4.5% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Cu-O(1)’ 107.9 108.4 -0.5% Cu-O(1)-Cu’ 110.3 100.3 +10.0% 

O(1)-Cu-O(2) 115.2 106.6 +8.1% Cu-O(1)-Ga 105.3 104.0 +1.3% 

O(1)-Cu-O(2)’ 119.0 112.9 +5.4% Cu-O(1)-Ga’ 107.7 109.7 -1.8% 

O(1)’-Cu-O(2) 97.1 102.4 -5.2% Cu’-O(1)-Ga 115.8 118.0 -1.9% 

O(1)’-Cu-O(2)’ 112.2 122.4 -8.3% Cu’-O(1)-Ga’ 104.1 106.0 -1.8% 

O(2)-Cu-O(2)’ 103.4 102.2 +1.2% Ga-O(1)-Ga’ 113.5 117.8 -3.7% 

O(1)-Ga-O(1)’ 108.8 111.3 -2.3% Cu-O(2)-Cu’ 94.0 93.9 +0.1% 

O(1)-Ga-O(2) 109.6 108.5 +1.0% Cu-O(2)-Ga 116.3 110.0 +5.7% 

O(1)-Ga-O(2)’ 110.0 109.2 +0.8% Cu-O(2)-Ga’ 104.9 113.5 -7.6% 

O(1)’-Ga-O(2) 107.8 107.0 +0.7% Cu’-O(2)-Ga 113.2 107.6 +5.2% 

O(1)’-Ga-O(2)’ 108.8 110.8 -1.8% Cu’-O(2)-Ga’ 107.4 106.5 +0.9% 

O(2)-Ga-O(2)’ 111.8 110.0 +1.6% Ga-O(2)-Ga’ 118.2 121.5 -2.7% 
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Table 4-5. Lattice parameters, atomic parameters, bond lengths and angles of β-CuGaO2 obtained by 

structural optimization for the LDA (U = 0) calculation with norm-conserving pseudopotential and 

the experimentally observed results. Large differences (> 5%) are emphasized with bold. 

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.414 5.460 -0.8% 

b0 6.520 6.610 -1.4% 

c0 5.400 5.274 2.4% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.421 0.441 -2.0% 

y 0.142 0.129 +1.3% 

z 0.523 0.505 +1.8% 

Ga 4a 

x 0.087 0.078 0.9% 

y 0.121 0.123 -0.2% 

z 0 0 0.0% 

O(1) 4a 

x 0.422 0.407 +1.5% 

y 0.135 0.141 -0.6% 

z 0.897 0.909 -1.2% 

O(2) 4a 

x 0.43 0.442 -1.2% 

y 0.608 0.6 +0.8% 

z 0.851 0.849 +0.2% 

Bond length 

Cu-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Cu-O(1) 1.988 2.144 -7.3% Ga-O(1) 1.902 1.862 +2.1% 

Cu-O(1)’ 2.098 2.026 3.6% Ga-O(1)’ 1.921 1.879 +2.2% 

Cu-O(2) 2.114 2.256 -6.3% Ga-O(2) 1.906 1.848 +3.1% 

Cu-O(2)’ 2.020 2.074 -2.6% Ga-O(2)’ 1.905 1.837 +3.7% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Cu-O(1)’ 107.6 108.4 -0.7% Cu-O(1)-Cu’ 110.0 100.3 +9.7% 

O(1)-Cu-O(2) 117.2 106.6 +9.9% Cu-O(1)-Ga 105.7 104.0 +1.7% 

O(1)-Cu-O(2)’ 120.5 112.9 +6.7% Cu-O(1)-Ga’ 107.0 109.7 -2.4% 

O(1)’-Cu-O(2) 95.9 102.4 -6.3% Cu’-O(1)-Ga 115.6 118.0 -2.1% 

O(1)’-Cu-O(2)’ 109.7 122.4 -10.4% Cu’-O(1)-Ga’ 104.6 106.0 -1.4% 

O(2)-Cu-O(2)’ 103.1 102.2 +0.9% Ga-O(1)-Ga’ 113.7 117.8 -3.5% 

O(1)-Ga-O(1)’ 108.4 111.3 -2.7% Cu-O(2)-Cu’ 93.6 93.9 -0.4% 

O(1)-Ga-O(2) 109.7 108.5 +1.1% Cu-O(2)-Ga 118.0 110.0 +7.2% 

O(1)-Ga-O(2)’ 110.1 109.2 +0.8% Cu-O(2)-Ga’ 102.6 113.5 -9.6% 

O(1)’-Ga-O(2) 107.6 107.0 +0.6% Cu’-O(2)-Ga 114.7 107.6 +6.6% 

O(1)’-Ga-O(2)’ 108.5 110.8 -2.1% Cu’-O(2)-Ga’ 107.3 106.5 +0.7% 

O(2)-Ga-O(2)’ 112.5 110.0 +2.3% Ga-O(2)-Ga’ 117.6 121.5 -3.2% 
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Table 4-6. Lattice parameters, atomic parameters, bond lengths and angles of β-CuGaO2 obtained by 

structural optimization for the LDA+U for U = 3 eV calculation with norm-conserving 

pseudopotential and the experimentally observed results. Large differences (> 5%) are emphasized 

with bold. 

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.483 5.460 0.4% 

b0 6.586 6.610 -0.4% 

c0 5.329 5.274 1.0% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.426 0.441 -1.5% 

y 0.129 0.129 +0.0% 

z 0.506 0.505 +0.1% 

Ga 4a 

x 0.082 0.078 +0.4% 

y 0.123 0.123 +0.0% 

z 0 0 +0.0% 

O(1) 4a 

x 0.41 0.407 +0.3% 

y 0.142 0.141 +0.1% 

z 0.894 0.909 -1.5% 

O(2) 4a 

x 0.434 0.442 -0.8% 

y 0.608 0.6 +0.8% 

z 0.854 0.849 +0.5% 

Bond length 

Cu-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Cu-O(1) 2.069 2.144 -3.5% Ga-O(1) 1.890 1.862 +1.5% 

Cu-O(1)’ 2.083 2.026 +2.8% Ga-O(1)’ 1.900 1.879 +1.1% 

Cu-O(2) 2.137 2.256 -5.3% Ga-O(2) 1.893 1.848 +2.4% 

Cu-O(2)’ 2.062 2.074 -0.6% Ga-O(2)’ 1.890 1.837 +2.9% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Cu-O(1)’ 109.6 108.4 +1.1% Cu-O(1)-Cu’ 103.6 100.3 +3.2% 

O(1)-Cu-O(2) 109.9 106.6 +3.1% Cu-O(1)-Ga 108.0 104.0 +3.9% 

O(1)-Cu-O(2)’ 111.9 112.9 -0.9% Cu-O(1)-Ga’ 109.7 109.7 +0.0% 

O(1)’-Cu-O(2) 103.5 102.4 +1.1% Cu’-O(1)-Ga 113.4 118.0 -3.9% 

O(1)’-Cu-O(2)’ 116.5 122.4 -4.8% Cu’-O(1)-Ga’ 105.7 106.0 -0.3% 

O(2)-Cu-O(2)’ 104.6 102.2 +2.3% Ga-O(1)-Ga’ 115.7 117.8 -1.7% 

O(1)-Ga-O(1)’ 109.3 111.3 -1.8% Cu-O(2)-Cu’ 98.1 93.9 +4.5% 

O(1)-Ga-O(2) 110.3 108.5 +1.7% Cu-O(2)-Ga 111.2 110.0 +1.1% 

O(1)-Ga-O(2)’ 109.7 109.2 +0.4% Cu-O(2)-Ga’ 110.9 113.5 -2.3% 

O(1)’-Ga-O(2) 108.7 107.0 +1.6% Cu’-O(2)-Ga 109.3 107.6 +1.6% 

O(1)’-Ga-O(2)’ 108.7 110.8 -1.9% Cu’-O(2)-Ga’ 107.1 106.5 +0.6% 

O(2)-Ga-O(2)’ 110.2 110.0 +0.2% Ga-O(2)-Ga’ 118.3 121.5 -2.6% 
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Table 4-7. Lattice parameters, atomic parameters, bond lengths and angles of β-CuGaO2 obtained by 

structural optimization for the LDA+U for U = 6 eV calculation with norm-conserving 

pseudopotential and the experimentally observed results. Large differences (> 5%) are emphasized 

with bold. 

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.495 5.460 +0.6% 

b0 6.607 6.610 -0.1% 

c0 5.327 5.274 +1.0% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.423 0.441 -1.8% 

y 0.13 0.129 +0.1% 

z 0.506 0.505 +0.1% 

Ga 4a 

x 0.082 0.078 +0.4% 

y 0.124 0.123 +0.1% 

z 0 0 +0.0% 

O(1) 4a 

x 0.41 0.407 +0.3% 

y 0.142 0.141 +0.1% 

z 0.896 0.909 -1.3% 

O(2) 4a 

x 0.436 0.442 -0.6% 

y 0.606 0.6 +0.6% 

z 0.854 0.849 +0.5% 

Bond length 

Cu-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Cu-O(1) 2.083 2.144 -2.8% Ga-O(1) 1.886 1.862 +1.3% 

Cu-O(1)’ 2.100 2.026 +3.7% Ga-O(1)’ 1.896 1.879 +0.9% 

Cu-O(2) 2.140 2.256 -5.1% Ga-O(2) 1.890 1.848 +2.3% 

Cu-O(2)’ 2.075 2.074 0% Ga-O(2)’ 1.887 1.837 +2.7% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Cu-O(1)’ 109.0 108.4 +0.6% Cu-O(1)-Cu’ 103.2 100.3 +2.9% 

O(1)-Cu-O(2) 110.4 106.6 +3.6% Cu-O(1)-Ga 107.7 104.0 +3.6% 

O(1)-Cu-O(2)’ 111.8 112.9 -1.0% Cu-O(1)-Ga’ 109.0 109.7 -0.7% 

O(1)’-Cu-O(2) 103.5 102.4 +1.1% Cu’-O(1)-Ga 113.5 118.0 -3.8% 

O(1)’-Cu-O(2)’ 116.7 122.4 -4.7% Cu’-O(1)-Ga’ 106.3 106.0 +0.3% 

O(2)-Cu-O(2)’ 105.0 102.2 +2.7% Ga-O(1)-Ga’ 116.3 117.8 -1.3% 

O(1)-Ga-O(1)’ 109.9 111.3 -1.3% Cu-O(2)-Cu’ 97.7 93.9 +4.0% 

O(1)-Ga-O(2) 110.3 108.5 +1.7% Cu-O(2)-Ga 110.8 110.0 +0.7% 

O(1)-Ga-O(2)’ 109.7 109.2 +0.5% Cu-O(2)-Ga’ 110.9 113.5 -2.3% 

O(1)’-Ga-O(2) 108.4 107.0 +1.3% Cu’-O(2)-Ga 108.9 107.6 +1.2% 

O(1)’-Ga-O(2)’ 108.8 110.8 -1.8% Cu’-O(2)-Ga’ 107.3 106.5 +0.8% 

O(2)-Ga-O(2)’ 109.8 110.0 -0.2% Ga-O(2)-Ga’ 119.1 121.5 -2.0% 



第４章 第一原理計算による β-CuGaO2の電子構造と物性の評価 

  

66 

 

Table 4-8. Lattice parameters, atomic parameters, bond lengths and angles of β-CuGaO2 obtained by 

structural optimization for the LDA+U for U = 9 eV calculation with norm-conserving 

pseudopotential and the experimentally observed results. Large differences (> 5%) are emphasized 

with bold. 

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.520 5.460 +1.1% 

b0 6.624 6.610 +0.2% 

c0 5.316 5.274 +0.8% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.422 0.441 -1.9% 

y 0.127 0.129 -0.2% 

z 0.502 0.505 -0.3% 

Ga 4a 

x 0.081 0.078 +0.3% 

y 0.124 0.123 +0.1% 

z 0 0 +0.0% 

O(1) 4a 

x 0.406 0.407 -0.1% 

y 0.144 0.141 +0.3% 

z 0.896 0.909 -1.3% 

O(2) 4a 

x 0.437 0.442 -0.5% 

y 0.606 0.6 +0.6% 

z 0.854 0.849 +0.5% 

Bond length 

Cu-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Cu-O(1) 2.098 2.144 -2.1% Ga-O(1) 1.884 1.862 +1.2% 

Cu-O(1)’ 2.104 2.026 +3.8% Ga-O(1)’ 1.894 1.879 +0.8% 

Cu-O(2) 2.140 2.256 -5.1% Ga-O(2) 1.889 1.848 +2.2% 

Cu-O(2)’ 2.088 2.074 +0.7% Ga-O(2)’ 1.885 1.837 +2.6% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Cu-O(1)’ 109.5 108.4 +1.0% Cu-O(1)-Cu’ 101.7 100.3 1.4% 

O(1)-Cu-O(2) 109.4 106.6 +2.6% Cu-O(1)-Ga 108.3 104.0 4.2% 

O(1)-Cu-O(2)’ 110.2 112.9 -2.4% Cu-O(1)-Ga’ 109.2 109.7 -0.5% 

O(1)’-Cu-O(2) 105.3 102.4 +2.8% Cu’-O(1)-Ga 112.6 118.0 -4.6% 

O(1)’-Cu-O(2)’ 117.0 122.4 -4.4% Cu’-O(1)-Ga’ 106.9 106.0 0.8% 

O(2)-Cu-O(2)’ 105.0 102.2 +2.8% Ga-O(1)-Ga’ 117.1 117.8 -0.6% 

O(1)-Ga-O(1)’ 110.1 111.3 -1.1% Cu-O(2)-Cu’ 98.7 93.9 +5.1% 

O(1)-Ga-O(2) 110.3 108.5 +1.7% Cu-O(2)-Ga 110.0 110.0 +0.0% 

O(1)-Ga-O(2)’ 109.7 109.2 +0.4% Cu-O(2)-Ga’ 112.0 113.5 -1.3% 

O(1)’-Ga-O(2) 108.4 107.0 +1.3% Cu’-O(2)-Ga 108.3 107.6 +0.6% 

O(1)’-Ga-O(2)’ 108.8 110.8 -1.8% Cu’-O(2)-Ga’ 106.9 106.5 +0.3% 

O(2)-Ga-O(2)’ 109.6 110.0 -0.3% Ga-O(2)-Ga’ 119.0 121.5 -2.1% 
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Table 4-9. Lattice parameters, atomic parameters, bond lengths and angles of β-CuGaO2 obtained by 

structural optimization for the LDA+U for U = 12 eV calculation with norm-conserving 

pseudopotential and the experimentally observed results. 

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.528 5.460 +1.2% 

b0 6.642 6.610 +0.5% 

c0 5.316 5.274 +0.8% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.423 0.441 -1.8% 

y 0.126 0.129 -0.3% 

z 0.502 0.505 -0.3% 

Ga 4a 

x 0.08 0.078 +0.2% 

y 0.125 0.123 +0.2% 

z 0 0 +0.0% 

O(1) 4a 

x 0.405 0.407 -0.2% 

y 0.145 0.141 +0.4% 

z 0.897 0.909 -1.2% 

O(2) 4a 

x 0.438 0.442 -0.4% 

y 0.605 0.6 +0.5% 

z 0.854 0.849 +0.5% 

Bond length 

Cu-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Cu-O(1) 2.105 2.144 -1.8% Ga-O(1) 1.884 1.862 +1.2% 

Cu-O(1)’ 2.111 2.026 4.2% Ga-O(1)’ 1.893 1.879 +0.7% 

Cu-O(2) 2.147 2.256 -4.8% Ga-O(2) 1.888 1.848 +2.2% 

Cu-O(2)’ 2.095 2.074 +1.0% Ga-O(2)’ 1.884 1.837 +2.6% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Cu-O(1)’ 109.5 108.4 +1.0% Cu-O(1)-Cu’ 101.2 100.3 +0.9% 

O(1)-Cu-O(2) 109.0 106.6 +2.3% Cu-O(1)-Ga 108.2 104.0 +4.0% 

O(1)-Cu-O(2)’ 110.0 112.9 -2.5% Cu-O(1)-Ga’ 109.3 109.7 -0.4% 

O(1)’-Cu-O(2) 105.3 102.4 +2.9% Cu’-O(1)-Ga 112.6 118.0 -4.6% 

O(1)’-Cu-O(2)’ 117.5 122.4 -4.0% Cu’-O(1)-Ga’ 107.0 106.0 +0.9% 

O(2)-Cu-O(2)’ 105.1 102.2 +2.8% Ga-O(1)-Ga’ 117.4 117.8 -0.3% 

O(1)-Ga-O(1)’ 110.2 111.3 -1.0% Cu-O(2)-Cu’ 98.5 93.9 +4.9% 

O(1)-Ga-O(2) 110.1 108.5 +1.5% Cu-O(2)-Ga 109.6 110.0 -0.4% 

O(1)-Ga-O(2)’ 109.6 109.2 +0.4% Cu-O(2)-Ga’ 112.4 113.5 -1.0% 

O(1)’-Ga-O(2) 108.5 107.0 +1.4% Cu’-O(2)-Ga 108.2 107.6 +0.6% 

O(1)’-Ga-O(2)’ 108.8 110.8 -1.8% Cu’-O(2)-Ga’ 106.9 106.5 +0.4% 

O(2)-Ga-O(2)’ 109.5 110.0 -0.5% Ga-O(2)-Ga’ 119.2 121.5 -1.9% 
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Table 4-10. Lattice parameters, atomic parameters, bond lengths and angles of β-CuGaO2 obtained by 

structural optimization for the sX-LDA calculation with norm-conserving pseudopotential and the 

experimentally observed results. Large differences (> 5%) are emphasized with bold. 

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.569 5.460 +2.0% 

b0 6.811 6.610 +3.0% 

c0 5.296 5.274 +0.4% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.425 0.441 -1.6% 

y 0.124 0.129 -0.5% 

z 0.495 0.505 -1.0% 

Ga 4a 

x 0.076 0.078 -0.2% 

y 0.126 0.123 +0.3% 

z 0 0 +0.0% 

O(1) 4a 

x 0.398 0.407 -0.9% 

y 0.152 0.141 +1.1% 

z 0.906 0.909 -0.3% 

O(2) 4a 

x 0.445 0.442 +0.3% 

y 0.599 0.6 -0.1% 

z 0.852 0.849 +0.3% 

Bond length 

Cu-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Cu-O(1) 2.187 2.144 +2.0% Ga-O(1) 1.871 1.862 +0.5% 

Cu-O(1)’ 2.175 2.026 +7.4% Ga-O(1)’ 1.877 1.879 -0.1% 

Cu-O(2) 2.200 2.256 -2.5% Ga-O(2) 1.875 1.848 +1.5% 

Cu-O(2)’ 2.161 2.074 +4.2% Ga-O(2)’ 1.869 1.837 +1.7% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Cu-O(1)’ 108.8 108.4 +0.4% Cu-O(1)-Cu’ 96.4 100.3 -3.9% 

O(1)-Cu-O(2) 106.7 106.6 +0.1% Cu-O(1)-Ga 107.4 104.0 +3.3% 

O(1)-Cu-O(2)’ 107.2 112.9 -5.0% Cu-O(1)-Ga’ 108.8 109.7 -0.8% 

O(1)’-Cu-O(2) 106.4 102.4 +3.9% Cu’-O(1)-Ga 113.5 118.0 -3.8% 

O(1)’-Cu-O(2)’ 121.7 122.4 -0.6% Cu’-O(1)-Ga’ 107.1 106.0 +1.0% 

O(2)-Cu-O(2)’ 105.1 102.2 +2.8% Ga-O(1)-Ga’ 120.8 117.8 +2.5% 

O(1)-Ga-O(1)’ 111.0 111.3 -0.3% Cu-O(2)-Cu’ 97.2 93.9 +3.5% 

O(1)-Ga-O(2) 109.5 108.5 +0.9% Cu-O(2)-Ga 106.6 110.0 -3.1% 

O(1)-Ga-O(2)’ 109.9 109.2 +0.6% Cu-O(2)-Ga’ 115.8 113.5 +2.0% 

O(1)’-Ga-O(2) 108.1 107.0 +1.0% Cu’-O(2)-Ga 106.1 107.6 -1.4% 

O(1)’-Ga-O(2)’ 110.0 110.8 -0.7% Cu’-O(2)-Ga’ 106.5 106.5 0% 

O(2)-Ga-O(2)’ 108.3 110.0 -1.5% Ga-O(2)-Ga’ 121.5 121.5 0% 
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4-3-1-2 価電子帯の電子構造  

 種々の汎関数を用いて計算した部分状態密度（Projected Partial Density of States; PDOS）を、

Ag Lα 線に対する各原子軌道の光イオン化断面積[24]で重み付けをした上で、装置のエネル

ギー分解能である 0.5 eV でブロードニングすることで、価電子帯の XPS をシミュレートし

た。Figure 4-6 に、GGA（ノルム保存型擬ポテンシャル）と sX-LDA、LDA+U（U = 0, 3, 6, 9 

eV）を汎関数に用いた場合の XPS スペクトルのシミュレーションと、実測の XPS スペクト

ルとを示す。また、汎関数に HSE を用いて、Rietveld 解析によって決定した結晶構造[21]を

緩和せずに、計算した電子構造からシミュレートした XPS スペクトルも、参考のために併

Figure 4-6. XPS spectra of β-CuGaO2 calculated for GGA with norm-conserving 

pseudo-potential, sX-LDA and LDA+U with U = 0, 3, 5, 6, 7 and 9 eV, together with observed 

one. The XPS spectrum based on HSE calculation was shown for the purpose of reference 

because the structural optimization was not performed in this calculation. 
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せて示す。GGA や LDA（U = 0 eV）による計算では、Cu 3d 軌道で構成される価電子帯上

部のピークが約−1.7 eV に位置し、実測スペクトルの約−2.7 eV より 1 eV ほど高エネルギー

に現れた。また、このピークを構成する Cu 3d バンドの幅は約 3.5 eV であり、実測スペク

トルの 4~5 eV に比べると狭く、実測 XPS を再現しているとは言えない。GGA や LDA を汎

関数とした計算は、電子の自己相互作用による誤差を含んでいるため、局在性の強い状態

のエネルギーを過大評価することが知られており、Cu(I)を含む Cu2O や α-CuAlO2、α-CuCrO2

などの計算においても価電子帯上部の局在性の強い Cu 3d バンドが高エネルギーに現れる

ことが報告されている[25-27]。sX-LDA や HSE では Hartree-Fock 項の導入によって、自己相互

作用による誤差が補正されるが、それでも価電子帯上部の Cu 3d バンドは実測 XPS よりも

0.5~1 eV 程度高エネルギーに現れている。これに対し LDA+U を用いた計算では、U の導入

により自己相互作用による誤差が補正され、U が増大するにつれて Cu 3dバンドのピークエ

ネルギーは低エネルギー側へと移り、バンドの幅も広がった。U = 5~7 eV の XPS のシミュ

レーションは実測の XPS スペクトルをよく再現していた。さらに U 値を増大した U = 9 eV

では、Cu 3d バンドのピークは実測スペクトルのそれより低エネルギーに位置し、バンド幅

も広がり過ぎ実測の XPS を再現していない。すなわち Figure 4-6 に示した計算の中では、U 

= 5~7 eV とした LDA+U による計算が、実測した XPS スペクトルを最もよく再現し、合理

的な価電子帯の電子構造を与えると言える。それらの価電子帯の全体のバンド幅は 9-9.5 eV

であり、実測 XPS の 10-11 eV に比べわずかに小さいが、ホールの有効質量や基礎吸収端な

どの物性に大きく影響するのは VBM近傍の電子構造であることを考慮すると、バンド幅の

僅かな過小評価は物性の議論において大きな問題とはならないと思われる。 

4-3-1-3 バンドギャップ 

Figure 4-7 に GGA および LDA+U を汎関数とした計算により求められたバンドギャップ

Figure 4-7. Variation of the band gap of β-CuGaO2 calculated with GGA with 

norm-conserving pseudo-potentials (open triangles) and LDA+U (open circles) functionals. 
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を示す。LDA や GGA を用いた DFT 計算では、前述したようにバンドギャップは過小評価

される傾向がある。β-CuGaO2の場合においても、GGA や LDA（U = 0 eV）ではバンドギャ

ップは開かなかった。U を導入した計算では、U > 5 eV でバンドギャップが開き、U 値が増

えるにつれてバンドギャップは増大した。U の増大に伴ってバンドギャップが増大するのは、

Cu(I)と同族元素のAg(I)を含むAg2OやAg3PO4などの LDA+Uでの計算[28]と同様の傾向であ

る。β-CuGaO2はバンドギャップ 1.47 eV の半導体でありバンドギャップの開かない計算結

果を用いることできない。従って、U > 5 eV を用いた LDA+U による計算が、バンドギャッ

プの観点からは妥当な結果を与えると結論できる。 

 一方で、sX-LDA を汎関数とした計算では、バンドギャップは 2.74 eV となり、実測値を

大幅に過大評価していた。sX-LDA は、Hatree-Fock 近似を含む汎関数であるため、ワイド

バンドギャップ半導体のバンドギャップはよく再現するものの、バンドギャップが 2 eV 以

下の半導体についてはバンドギャップを大幅に過大評価する傾向が報告されている[29]。本

研究での計算結果もこのような傾向が現れている。 

4-3-1-4 適切な汎関数 

 Table 4-11に、種々の汎関数を用いた計算により得られた結晶構造、価電子帯の電子構造、

バンドギャップが、実測されたそれらをどの程度再現しているかをまとめて示す。LDA+U

（U = 5~7 eV）を汎関数とした計算は、それらのいずれの実測データもよく再現しており、

信頼性の高い計算結果を与えることが明らかである。従って、次項からは LDA+U（U = 6 eV）

を汎関数として計算し、β-CuGaO2の物性を議論する。 

 

 

Table 4-11. Reproducibility of crystal structure, electronic structure of valence band and energy band 

gap calculated with various functionals. 

Functional 
Reproducibility of 

crystal structure 

Reproducibility of electronic 

structure of valence band 

Reproducibility of 

energy band gap 

GGA (Ultrasoft) × ― ― 

GGA (Ultrasoft 

on-the-fly) 
× ― ― 

GGA (Norm-conserving) △ × × 

LDA (U = 0 eV) △ × × 

LDA+U 
◎ 

(U > 4 eV) 

◎ 

(U = 5~7 eV) 

△ 

(U > 5 eV) 

sX-LDA ◯ △ △ 

HSE × △a ― 

a
Calculated without structural optimization 
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4-3-2 第一原理計算により求めた β-CuGaO2の電子構造 

Figure 4-8(a)に、LDA+U（U = 6 eV）で計算した β-CuGaO2の E-k 図を示す。この図におい

て、β-CuGaO2の伝導帯最下部（Conduction band minimum; CBM）と VBM はともに Γ 点に

あり、β-CuGaO2 が直接遷移型であることを示している。この結果は、間接遷移型であると

報告されている同じ β-NaFeO2 型構造の β-AgGaO2
[30,31]や β-AgAlO2

[31,32]とは異なる。同じ

β-NaFeO2 型構造の酸化物半導体であるにも関わらず、このように光学遷移の型が異なる理

由については、次章の 5-3-3 にて詳しく述べる。全状態密度（Density of States; DOS）と PDOS

を Figure 4-8(b)に示す。CBM 近傍は主に Cu 4s と Ga 4s 軌道、および O 2p と Cu 4p 軌道が

良く混成した状態からなり、わずかに O 2s と Ga 4p 軌道の寄与もみうけられた。主として

カチオンの s 軌道が CBM 近傍を構成するのは、例えば ZnO や SnO2のような d
10

s
0電子配置

のカチオンを含む酸化物においては一般的な特徴であり[33,34]、β-CuGaO2 もそれらと同一グ

ループの物質であることによる。 

価電子帯は、バンド I（0–2 eV）とバンド II（3.5–6 eV）およびバンド III（6–7.5 eV）の

特徴的な３つの領域から構成されており（Figure 4-8(b)）、バンド Iと IIは、Cu 3d と O 2p

軌道が主な成分となっている。バンド IIには Cu 3d と O 2p 軌道に加え、Cu 4s と 4p軌道、

Ga 4p 軌道も寄与しているが、Cu 3d と比べるとその寄与は非常に小さい。Cu 3d バンドの

Figure 4-8. Electronic band structure of β-CuGaO2 calculated with LDA+U for U = 6 eV. 

(a) Band structures along the symmetry line and (b) corresponding total and partial density 

of states. 
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幅がおよそ 5.5 eV と広く、Cu 3d軌道の DOS が極めて大きいことから、β-CuGaO2の価電子

帯の電子構造は Cu 3d軌道に支配されていると言って良い。バンド IIIは、主に Ga 4sと O 2p

軌道が構成しており、Ga と O の s-p 結合性軌道に対応するバンドであると言える。 

 

4-3-3 β-CuGaO2の光学的・電気的性質 

Figure 4-9(a)に、LDA+U（U = 6 eV）で計算した β-CuGaO2の CBM近傍における二次元電

子密度マップを示す。Figure 4-8(b)に示した PDOS に基づくと、Cuと Ga 周辺にある電子密

度の高い領域は、各原子の s 軌道と p 軌道に対応する。これらの電子雲の異方性は、おそら

く p 軌道の寄与に起因していると推察される。電子密度マップでは、Cu 原子と酸素原子お

よび Ga原子と酸素原子の間に極端に電子密度の小さい領域（節）が見られる。このことは、

CBM 近傍は Cuおよび Ga 原子の 4sおよび 4p軌道と、O 2p軌道の反結合性軌道で構成され

Figure 4-9. Two-dimensional electron-density contour plot of the calculation with LDA+U 

for U = 6 eV corresponding to (a) the lower part of the conduction band within the energy 

range of E–ECBM = 0–4.09 eV and (b) the upper valence band region (band I) within the 

energy range of E–EVBM = −2.16–0 eV. The left and center panels show the ab-plane 

located at z = 0.5109. The right panels show the bc-plane located at x = 0.8680 and the 

ac-plane located at y = 0.8760. 
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ていることを示している。Ga周辺の電子密度の高い領域は、Cu周辺のそれよりも広がって

おり、また Cu周辺の電子密度の高い領域とつながっている。このことは、Cu と Gaの空の

s 軌道で構成される経路が空間的につながっていることを示しており、伝導帯への電子ドー

プに成功できれば、非局在性の高い伝導電子となることが期待される。 

 Figure 4-9(b)に、VBM 近傍の二次元電子密度マップを示す。Figure 4-8(b)に示した PDOS

から推測されるように、Cu 原子と酸素の周囲には、Cu 3d および O 2p 軌道に対応する電子

密度の高い領域があった。Cu 原子周囲の電子密度の高い領域は酸素周囲のそれに比べかな

り大きく広がっている。しかし、Cu 原子周囲の電子密度は、Cuの中心から約 0.9 Å 離れる

と急激に小さくなり、隣接する Cu 原子間で電子密度の高い領域が繋がるまでには至ってい

ない。このことは、Cu 3d 軌道からなる空間的に連続した電子雲が形成されるには、隣接

Cu 間距離が長すぎることを示している。この Cu 3d 軌道の局在性は、ホールの有効質量に

大きく影響するはずである。実際、β-CuGaO2の隣接 Cu 原子間距離（3.17 Å）は、高い伝導

性の p型酸化物として知られる Cu2O（3.02 Å
[35]）や α-CuGaO2（2.98 Å

[36]）よりも遠い。こ

のことは、β-CuGaO2 のホールの移動度が Cu2O やα-CuGaO2 より小さいことを示唆してい

る。  

式（2）の放物線近似を用いて算出した β-CuGaO2の電子とホールの有効質量を、Table 4-12

に示す。 

E = (
ℏ2

2𝑚∗
) 𝐤2           ⋯ (2) 

 

β-CuGaO2の電子の有効質量（単位は自由電子質量、me*/m0）は 0.21であった。U = 6 eV を

用いた計算においては、価電子帯の計算結果と実測の XPS が一致したが、伝導帯について

は光電子分光測定を実施していないため、その分散が正しいかどうかを評価することはで

きない。ただし、β-CuGaO2の電子の有効質量（me*/m0 = 0.21）は、d
10

s
0電子配置のカチオ

ンで構成される典型的な酸化物半導体の値、例えば ZnO（me*/m0 = 0.28）[37]や SnO2（me*/m0 

= 0.2）[38]と同程度であり、合理的な結果だといえる。したがって、キャリア電子を β-CuGaO2

に注入することに成功すれば、β-CuGaO2は高い n 型伝導性を示すと期待される。一方、ホ

ールの有効質量（mh*/m0）は 1.7~5.1 であり、デラフォサイト型 α-CuGaO2（mh*/m0 = 0.58~2.04）
[39]の 2~3 倍大きな値である。したがって、β-CuGaO2 のホールの移動度は、p 型伝導性の

α-CuGaO2よりも小さいに違いない。 
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Table 4-12. Effective masses (in units of free electron mass, m0) of electrons 

and holes for β-CuGaO2 calculated using LDA+U for U = 6 eV 

 

 

 

 

 

 

 

 

 

 

 

β-CuGaO2 が薄膜太陽電池の光吸収層として利用可能であるかをはかるため、その光吸収係

数を計算した。多結晶 β-CuGaO2について LDA+U（U = 6 eV）で計算した光吸収係数の光エ

ネルギー依存性を Figure 4-10 に示す。図中のバンドギャップは、実測値 1.47 eV へシフトし

てある。また、図中の β-CuGaO2以外の吸収スペクトルは Ref. 40 から引用した実験値であ

る。β-CuGaO2の吸収係数（α）は、バンドギャップ直上で急峻に増大し、1.7 eV において 1×10
-5

 

cm
-1 に到達した。この値は、薄膜太陽電池の光吸収材料として既に実用化されている

Hole Electron 

Direction
a
 mh*/m0 Direction

a
 me*/m0 

Γ→X 5.1 Γ→X 0.21 

Γ→Y 1.7 Γ→Y 0.21 

Γ→Z 4.9 Γ→Z 0.21 

Γ→R 2.7 Γ→R 0.21 

a
The k-vectors of Γ→X, Γ→Y, Γ→Z and Γ→R in β-CuGaO2 

corresponds to the (010), (100), (001) and (111) directions in the real 

space, respectively. 
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Figure 4-10. Absorption coefficient of polycrystalline β-CuGaO2 calculated with LDA+U for U = 

6 eV together with experimentally observed spectra of other representative absorber materials 

(cited from Ref. 40). The energy band gap of β-CuGaO2 was rigidly shifted to the experimental 

band gap (1.47 eV).  
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CuInSe2
[41]や CdTe

[42]と同じ桁である。このような大きな吸収係数は、β-CuGaO2の直接許容

型バンドギャップと、VBM 近傍の大きな DOS に由来しており、β-CuGaO2を薄膜太陽電池

に応用する上で大きなアドバンテージとなるだろう。 

 

4-4 結言 

本章では、β-CuGaO2 の電子構造を第一原理計算により求め、それに基づき β-CuGaO2 の

基礎的な物性を議論した。第一原理計算においては GGA，LDA，LDA+U, sX-LDA, HSE の

各種汎関数を使用し、β-CuGaO2 の結晶構造、価電子帯の電子構造、バンドギャップを再現

する汎関数を検討し、U = 5~7 eV とした LDA+U を用いることで実験的に決定したそれらが

よく再現されることを明らかにした。 

U = 5~7 eV とした LDA+U を汎関数とした計算により、β-CuGaO2の CBMと VBM は、共

に Γ 点にあり、β-CuGaO2が直接遷移型半導体であることが明らかとなった。このことは、

β-CuGaO2 を太陽電池や発光素子等の光電変換素子に応用する上で大きな優位性をもたらす。

CBM の近傍は、Ga 4sと Cu 4s軌道の混成による非局在性の強いバンドで構成され、電子の

有効質量（mh
*
/m0）は 0.21 と計算された。この値は ZnO など d

10
s

0電子配置のカチオンを含

む n 型酸化物半導体のそれと同程度であり、高い電子の移動度が期待される。一方、VBM

近傍は局在性の強い Cu 3d と O2p軌道によって構成されおり、ホールの有効質量（mh
*
/m0）

は 1.7-5.1 であり高いホールの移動度はあまり期待できない。 

光学遷移が直接許容遷移であることと VBM 近傍の DOS が大きいことにより、吸収端近

傍の光吸収係数は CdTe や CuInSe2と同等の 1×10
5
 cm

-1となると計算された。この強い光吸

収と単接合太陽電池の理論限界変換効率が最大となる 1.47 eV のバンドギャップは、

β-CuGaO2を光吸収層とした薄膜太陽電池を期待させる大きな特徴と言えるだろう。 
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第５章 第一原理計算による α-CuGaO2、α-AgGaO2 および

β-AgGaO2 の電子構造の評価 

5-1 緒言 

第３章では、1.47 eV のバンドギャップを有する p 型伝導性のナローギャップ半導体

β-NaFeO2 型 β-CuGaO2 を見出し、続く第４章では第一原理計算からその電子構造を計算し

β-CuGaO2が直接遷移型半導体であること、電子およびホールの有効質量（me
*
/m0, mh

*
/m0）

がそれぞれ 0.21 および 1.7~5.1 であること、バンド端近傍での光吸収係数が 1.0×10
5
 cm

-1で

あり光吸収係数が大きい CdTe や CuInSe2など薄膜太陽電池の光吸収層に用いられる化合物

半導体と同等であることなどを明らかにした。イオン性の強い酸化物半導体の多くはワイ

ドバンドギャップかつ n 型伝導体であり、β-CuGaO2のようなナローギャップで p 型伝導性

を呈する酸化物はまれである。例えば、同じ組成のデラフォサイト型 α-CuGaO2
[1]は、

β-CuGaO2と同様に p 型伝導性を示すが、黒色の β-CuGaO2とは対照的に可視光に対して透

明である[2-5]。このように、同一の組成であるにもかかわらずその物性が大きく異なるのは、

物性の起源がそれらの結晶構造と密接に関係していることを意味している。 

本章では、第一原理計算によって β-CuGaO2の多形であるデラフォサイト型 α-CuGaO2お

よび同形の β-NaFeO2型 β-AgGaO2の電子構造を計算し、β-CuGaO2の中の Cu(I)や結晶構造が

電子構造や物性に及ぼす影響を議論した。 

 

5-2 計算および実験方法 

5-2-1 LDA+U による第一原理計算 

α-CuGaO2と β-AgGaO2および α-AgGaO2の第一原理計算は、計算コード CASTEP を用い

て行った。４章で β-CuGaO2 の実測データを最も良く再現した LDA+U を汎関数とし、

OPIUM
[6]で生成したノルム保存型擬ポテンシャルを用いた。α-CuGaO2の計算では Cu 3d 電

子に U を導入し、β-AgGaO2と α-AgGaO2の計算では Ag 4d 電子に導入した。U の値は 0～

12 eVの範囲で 1 eVごとに計算し、得られた価電子帯の電子構造を実測した価電子帯のXPS

スペクトルと比較し、あわせて緩和構造を実験的に決定されている結晶構造[7,8,9]と比較して、

実測データを最も良く再現する U 値を決定した。α-CuGaO2と β-AgGaO2および α-AgGaO2

の Monkhost-Pack グリッド（MP grid）の大きさは、それぞれ 10×10×10 と 5×4×5、10×10×10

とした。結晶構造を緩和した際の収束条件は、４章の Table 4-1 に記載の LDA+U の条件と

同じとした。α-CuGaO2 と α-AgGaO2 の原子位置は空間群 R3̅𝑚で、β-AgGaO2 の原子位置は

Pna21で拘束をかけ緩和した。β-CuGaO2の第一原理計算は、４章で最適と判断された U = 6 

eV とした LDA+U を汎関数に、擬ポテンシャルにはノルム保存型を用いて行った。詳細は
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４章の 4-2-1 に記載のとおりである。 

5-2-2 光電子分光測定用の試料作製 

XPS の測定に用いた α-CuGaO2、α-AgGaO2および β-AgGaO2の各試料は、以下の方法によ

り作製した。 

[α-CuGaO2] Cu2O（99.5%、和光純薬工業）と Ga2O3（99.99%、高純度化学）を遊星ボール

にて１時間混合し、φ17.2 mmのダイスで 100 MPaで 1 分間一軸プレスし、N2雰囲気下で 24

時間 1100 
o
C で焼成することで作製した[2]。得られた α-CuGaO2粉末は、放電プラズマ焼結

装置（SPS Sintech、SPS 511S）で焼結した。φ10 mmのカーボン製ダイスに α-CuGaO2を 1 g

充填し、Ar 雰囲気下で、100 MPaで一軸プレスしながら 900 
o
C で 5 分間加熱した。得られ

た焼結体の密度は理論密度の 80%であった。 

[α-AgGaO2]  2-2-2と同様の方法で作製した β-AgGaO2粉末を 60 
o
Cに加熱した水の中で振

とう機にて 18時間振とうすることで作製した α-AgGaO2
[10]を、φ10 mmのダイスで 100 MPa

で一軸プレスし圧粉体にしてから、O2雰囲気の管状炉にて 500 
o
C で 12 時間焼結することで

作製した。得られた焼結体の密度は理論密度の 50%だった。 

[β-AgGaO2]  2-2-2と同様の方法で作製した β-AgGaO2粉末をSPSで焼結することで作製し

た。β-AgGaO2粉末を、φ20mmのカーボン製ダイスに約 2 g 充填し、Ar雰囲気中で、10 MPa

で一軸プレスしながら 550 oC で 15 分間加熱した。得られた焼結体の密度は理論密度の 47%

だった。  

5-2-3 光電子分光 

α-CuGaO2と α-AgGaO2のXPSスペクトルは、励起光に α-石英結晶により単色化したAgLα

線（hν = 2984.2 eV）を用いて測定した。XPS スペクトルの測定に使用した装置および条件

等は、4-2-2 に記載のとおりである。運動エネルギー3 keV の光電子の、α-CuGaO2 および

α-AgGaO2中での平均自由行程は、β-CuGaO2中と同様に 5 nm程度であるので[11]、表面から

10 nm 程度の深さからの光電子は検出されていると考えてよい。したがって、α-CuGaO2と

α-AgGaO2においても、得られた XPS スペクトルはバルクの情報を十分に反映しているもの

として扱える。Au 薄膜のフェルミ端から見積もった装置のエネルギー分解能は、この測定

条件において約 0.5 eV であった。 

β-AgGaO2の硬 X 線励起光電子分光（Hard X-ray photoelectron spectroscopy, HXPES）スペ

クトルは、SPring-8 のビームライン BL15XU にて室温で測定した。X 線のエネルギーは、

5949.8 eV に固定した。運動エネルギーが 6 keV の電子の β-AgGaO2中での平均自由行程は

およそ 10 nmであるので[11]、HXPES 測定によって得られたスペクトルは、バルクの情報を

十分に反映していると考えてよい。サンプル表面のコンタミネーション（炭化水素）層か

らの C 1s電子の束縛エネルギーを 284.8 eVとなるよう[12]、束縛エネルギーの値を補正した。

また、Au 薄膜のフェルミ端から見積もった装置のエネルギー分解能は、この測定条件にお
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いて 0.2~0.3 eV であった。 

 

5-3 実験結果 

5-3-1 最適な U 値の決定 

5-3-1-1 価電子帯の電子構造 

Figure 5-1 に、LDA+U を用いた計算からシミュレートした α-CuGaO2と α-AgGaO2の XPS

スペクトル、β-AgGaO2の HXPES スペクトルを、それぞれの実測のスペクトルと共に示す。

XPS スペクトルは、計算した PDOS に Ag Lα X 線または 6 keV の X 線に対する各原子の光

イオン化断面積[13,14]をかけ、装置のエネルギー分解能である 0.5 eV または 0.3 eV でブロー

ドニングすることで求めた。 

α-CuGaO2のU = 0 eVの計算では、価電子帯上部に位置するCu 3dバンドのピークは約-1.9 

eV となり、実測スペクトルでの位置（約-2.7 eV）より 0.8 eV ほど高エネルギーに現れた

（Figure 5-1(a)）。また、Cu 3dバンドの幅は約 3.5 eV であり、実測スペクトルの 4 eV と比

べるとやや狭く、実測 XPS を再現しているとは言えない。これは、4-3-1-3 でも述べたよう

に、LDA での計算は電子の自己相互作用による誤差を含むため、局在性の強い Cu 3d バン

ドのエネルギーを過大評価しているからである。U の値が大きくなるにつれて、Cu 3d バン

ドのピークは低エネルギー側に移り、バンドの幅も広がった。このような変化は、4-3-1-3

にて述べた β-CuGaO2の Cu 3d バンドの U 値に対する変化と同様である。U = 3~4 eV とした

とき、XPS のシミュレーションは実測の XPS の Cu 3d バンドのピーク位置やスペクトル形

状をよく再現していた。さらに U 値を増大した U = 5 eV では、Cu 3d バンドのピークは実

測スペクトルのそれより低エネルギーに位置し、Cu 3d バンドのピーク形状も実測とは離れ、

実測のXPSを再現していない。したがって、α-CuGaO2においては、U = 3~4 eVとしたLDA+U

による計算が、実測の XPS スペクトルを最もよく再現することが明らかとなった。 

α-AgGaO2の U = 0 eV の計算では、価電子帯上部に位置する Ag 4dバンドのピークは約-4 

eV となり、実測スペクトル（約-5 eV）より 1 eV ほど高エネルギーに現れた（Figure 5-1(b)）。

これは Ag 4d軌道が Cu 3d 軌道と同様に局在性が高く、U = 0 eV での計算では自己相互作用

の誤差によってエネルギーが過大評価されているからである。U の値が大きくなるにつれて、

Ag 4d バンドは低エネルギー側に移った。U = 2~3 eV とした計算での Ag 4dバンドのピーク

位置は、実測をよく再現したが、U = 4 eV とした計算では実測より低エネルギー側に位置し

ていた。したがって、α-AgGaO2においては、U = 2~3 eV とした LDA+U での計算が、その

XPS スペクトルを最もよく再現することが明らかとなった。 

β-AgGaO2の U = 0 eV での計算では、Ag 4dバンドのピークが約-2.4 eV に位置し、実測の

スペクトルのピーク位置である-3~-4 eVより約 1 eV高エネルギーに現れた（Figure 5-1(c)）。
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また、Ga 4s で構成されるピークは約-7.8 eV に位置し、実測スペクトルの約-7.5 eV より、

わずかに低エネルギー側に現れた。U = 2~3 eV としたとき、XPS のシミュレーションは実

測の XPS の Ag 4d バンドのピーク位置やスペクトル形状をよく再現していたが、U = 4 eV

とした計算ではAg 4dバンドが実測より低エネルギー側に位置していた。よって、U = 2~3 eV

とした LDA+U による計算が、実測の XPS スペクトルを最もよく再現することが明らかと

なった。 

5-3-1-2 緩和構造 

Figures 5-2(a), (b)に α-CuGaO2と α-AgGaO2の緩和構造の格子定数を、U 値の関数としてプ

ロットしたものを示す。図から明らかなように、格子定数は U 値にほとんど依存せずほぼ

一定であった。第４章で述べた β-CuGaO2の場合では、格子定数が U 値に大きく依存したの

Figure 5-1. (a) Ag Lα XPS spectra of α-CuGaO2 and (b) α-AgGaO2, and (c) HXPES spectra of 

β-AgGaO2 calculated with LDA+U for various U and experimentally obtained. The green, blue 

and red lines indicate the contribution of the Cu 3d or Ag 4d, Ga 4s, and O 2p orbitals, 

respectively. Calculated spectra were generated from cross-section weighted density of states 

and spectral broadening of the instrumental resolution of 0.5 eV for α-CuGaO2 and α-AgGaO2, 

and 0.3 eV for β-AgGaO2. 
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とは対照的である（４章 Figure 4-1）。このことは、デラフォサイト型構造中のすべての原子

が特殊等価位置に存在するため[15]、構造緩和における可変パラメーターが格子定数と酸素

原子の z 座標のみであることに由来するものと推察する。α-CuGaO2と α-AgGaO2共に、構

造緩和後の格子定数は、U = 0-12 eV のすべての範囲で、実測値との差が a0, c0 ともに 1%前

後であり、U 値に関わらず実測値がよく再現されていた。 

Figure 5-2(c)に、β-AgGaO2の緩和構造の格子定数を、U 値をパラメーターとして示す。LDA

（U = 0 eV）での計算では、a0と b0をそれぞれ 2.5%と 1.4%過小評価しており、c0を 2.3 %

過大評価していた。β-CuGaO2の緩和構造の格子定数が、U < 3 eV まで U 値が増大するにつ

れて急速に実測値に近づいていき、U > 4 eV で実測に近い値でほぼ一定となった（４章

Figure 4-1）のとは異なり、β-AgGaO2では U が大きくなるにつれて徐々に実測に近づいてい

った。U = 0~12 eV のすべての範囲で、a0, b0, c0のいずれも実測値との差は 3%以下であり、

よく実測値を再現した。 

α-CuGaO2、α-AgGaO2および β-AgGaO2の緩和構造の U 値に対する変化は、４章で述べた

β-CuGaO2 の場合とは異なり、計算で求めた緩和構造と実験的に決められた結晶構造との比

Figure 5-2. Difference in lattice 

parameters of α-CuGaO
2
 and α-AgGaO2, 

β-AgGaO2 between the experimentally 

observed and calculated results with 

LDA+U. The observed lattice parameters 

cited from Ref. 7, 9 and 8 are set as the 

zero axis. 
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較から U 値を決定できるほど大きな変化をもたらさなかった。Tables 5-1, 5-2, 5-3 に、

α-CuGaO2、α-AgGaO2 および β-AgGaO2 の実験的に決定された結晶構造
[7,9,8]と、実測された

価電子帯の電子構造をよく再現した U 値（α-CuGaO2；U = 4 eV、α-AgGaO2；U = 2 eV およ

び β-AgGaO2；U = 2 eV）で計算した緩和構造の格子定数や結合長、結合角などの構造パラ

メーター、およびそれらと実測との差を示す。いずれの緩和構造においても実測値からの

差は小さく、実験的に決定された結晶構造をよく再現していた。 

 以上から、α-CuGaO2、α-AgGaO2および β-AgGaO2の LDA+U での計算における最適な U

値は、実験的に決定された価電子帯の電子構造と結晶構造をよく再現することから、それ

ぞれ U = 3~4 eV、U = 2~3 eV および U = 2~3 eV と決定した。これらの値は、４章において

β-CuGaO2の計算に最適だと決定した U = 5~7 eV と比較すると小さく、特に Ag(I)を含む酸

化物ではより小さくなる傾向があった。これらの値の妥当性については、次項にて詳しく

検討する。 

 

 

Table 5-1. Structural parameters of α-CuGaO2 obtained by structural optimization for the LDA+U 

calculation with U = 4 eV and the experimentally observed results sited from Ref. 7. 

 

Parameter Calculated Observed Difference 

a0 (Å) 3.010 2.977 +1.1 % 

c0 (Å) 17.362 17.171 +1.1 % 

Volume (Å
3
) 136.2 131.8 + 3.3 % 

Cu-Cu (Å) 2.977 3.010 +1.1% 

Cu-O (Å) 1.871 1.848 + 1.2 % 

Ga-O (Å) 2.016 1.996 + 1.0 % 

 

 

Table 5-2. Structural parameters of α-AgGaO2 obtained by structural optimization for the LDA+U 

calculation with U = 2 eV and the experimentally observed results cited from Ref. 9. 

Parameter Calculated Observed Difference 

a0 (Å) 3.014 2.989 +0.8% 

c0 (Å) 18.456 18.534 -0.4% 

Volume (Å
3
) 145.15 143.39 +1.2% 

Ag-Ag (Å) 3.014 2.989 +0.8% 

Ag-O (Å) 2.054 N/A
a
 – 

Ga-O (Å) 2.018 N/A
a
 – 

a
 This structural data was not reported. 
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Table 5-3. Lattice parameters, atomic parameters, bond lengths and angles of β-AgGaO2 obtained by 

structural optimization for the LDA+U calculation with U = 2 eV (Calc.) and the experimentally 

observed results (Obs.) cited from Ref. 8 and differences (Diff.) between them.  

Lattice parameter 

Direction Calc. (Å) Obs. (Å) Diff. 

a0 5.471 5.562 -1.6% 

b0 7.063 7.148 -1.2% 

c0 5.575 5.469 +1.9% 

Atomic Parameter 

Element Site Direction Calc. Obs. Diff. 

Cu 4a 

x 0.437 0.450 -1.3% 

y 0.144 0.125 1.9% 

z 0.512 0.499 1.3% 

Ga 4a 

x 0.076 0.062 1.4% 

y 0.124 0.124 0% 

z 0 0 0% 

O(1) 4a 

x 0.591 0.622 -3.1% 

y 0.850 0.827 2.3% 

z 0.420 0.430 -1.0% 

O(2) 4a 

x 0.549 0.542 0.7% 

y 0.414 0.417 -0.3% 

z 0.333 0.336 -0.2% 

Bond length 

Ag-O Calc. (Å) Obs. (Å) Diff. Ga-O Calc. (Å) Obs. (Å) Diff. 

Ag-O(1) 2.280 2.418 -5.7% Ga-O(1) 1.887 1.836 +2.8% 

Ag-O(1)’ 2.300 2.364 -2.7% Ga-O(1)’ 1.888 1.811 +4.3% 

Ag-O(2) 2.377 2.453 -3.1% Ga-O(2) 1.884 1.862 +1.2% 

Ag-O(2)’ 2.241 2.328 -3.7% Ga-O(2)’ 1.879 1.828 +2.8% 

Bond angles 

O-M-O Calc.(deg) Obs.(deg) Diff. M-O-M Calc.(deg) Obs.(deg) Diff. 

O(1)-Ag-O(1)’ 105.4 110.6 -4.7% Ag-O(1)-Ag’ 100.3 87.6 +14.5% 

O(1)-Ag-O(2) 111.2 102.7 +8.3% Ag-O(1)-Ga 102.8 103.2 -0.4% 

O(1)-Ag-O(2)’ 116.3 106.3 +9.4% Ag-O(1)-Ga’ 107.3 109.5 -2.0% 

O(1)’-Ag-O(2) 94.5 102.0 -7.4% Ag’-O(1)-Ga 122.2 117.3 +4.1% 

O(1)’-Ag-O(2)’ 124.8 131.1 -4.8% Ag’-O(1)-Ga’ 102.3 100.5 +1.7% 

O(2)-Ag-O(2)’ 101.9 100.0 +1.9% Ga-O(1)-Ga’ 119.6 130.5 -8.3% 

O(1)-Ga-O(1)’ 109.2 110.1 -0.8% Ag-O(2)-Ag’ 85.0 87.5 -2.9% 

O(1)-Ga-O(2) 108.8 106.9 +1.8% Ag-O(2)-Ga 104.4 109.7 -4.8% 

O(1)-Ga-O(2)’ 108.3 110.8 -2.3% Ag-O(2)-Ga’ 110.7 118.0 -6.2% 

O(1)’-Ga-O(2) 108.5 107.5 +0.9% Ag’-O(2)-Ga 108.7 106.6 +1.9% 

O(1)’-Ga-O(2)’ 111.9 111.5 +0.3% Ag’-O(2)-Ga’ 104.7 102.2 +2.5% 

O(2)-Ga-O(2)’ 110.3 109.8 +0.4% Ga-O(2)-Ga’ 129.0 129.1 -0.1% 
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5-3-1-3  U 値の妥当性 

α-CuGaO2の計算における最適な U 値は 3~4 eV であり、β-CuGaO2でのそれ（U = 5~7 eV）

より少し小さい。また、β-AgGaO2と α-AgGaO2の LDA+U における最適な U 値は、ともに

U = 2~3 eV であり、上記の Cu(I)を含む酸化物よりも小さかった。これが真に妥当であるか

を、同じく Cu(I)および Ag(I)からなる単純酸化物である Cu2O と Ag2O についての LDA+U

を汎関数とした第一原理計算から検討した。 

Figure 5-3(a), (b)に、Cu2O の実測の XPS および UPS スペクトル[16,17]と、LDA+U による計

算からシミュレートした XPS および UPS スペクトルを示す。図より、U = 3~4 eV において

シミュレートしたスペクトルが実測のXPSおよびUPSスペクトルをよく再現していること

がわかる。また構造緩和後の格子定数は U = 3 eV のとき a0 = 4.275 Å で、U = 4 eV のとき a0 

= 4.280 Å であり、実測値の 4.269 Å
[18]との差はいずれも 0.3 %以下となり、結晶構造も良く

再現されていた。したがって、Cu2O の場合の最適な U 値は U = 3~4 eV であり、これは

α-CuGaO2のそれと一致する。Cu2O と α-CuGaO2中の Cu 原子は共に酸素と直線２配位結合

している。Cu 3d 電子の自己相互作用が計算結果に与える誤差は、Cu-O の結合距離や配位

多面体の形状などの Cu 周囲の局所構造に強く依存すると推察されるため、Cu 周囲の局所

構造が同じ α-CuGaO2と Cu2O とでは最適な U 値が一致したと理解できる。一方、β-CuGaO2

Figure 5-3. (a) XPS and (b) UPS spectra of Cu2O and (c) XPS spectra of Ag2O calculated with 

LDA and LDA+U together with experimentally obtained spectra cited from Ref. 17 and 19. 

Calculated spectra were generated from cross-section weighted density of states and spectral 

broadening of the instrumental resolution of 0.3 eV. 
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中の Cu原子は酸素と四面体４配位しており、α-CuGaO2や Cu2O 中の直線２配位構造とは異

なる。このことが、β-CuGaO2における最適な U 値が α-CuGaO2と Cu2O のそれとは異なる

ことの主因と推察する。 

Ag2O の LDA+U での計算における最適な U 値は、XPS のシミュレーションが U = 2~3 eV

において、実測の XPS スペクトル[19]をよく再現したこと（Figure 5-3(c)）、および緩和構造

の格子定数が a0 = 4.646 Å（U = 2 eV）と a0 = 4.654 Å（U = 3 eV）であり、実験値（4.723 Å
[20]）

とのずれがいずれも 2%以下であったことから、U = 2~3 eV と決定できた。したがって、Ag(I)

を含む β-AgGaO2と α-AgGaO2およびAg2Oにおける最適な U値はいずれもU = 2~3 eVで一

致した。この値は Cu(I)を含む β-CuGaO2（U = 5~7 eV）や α-CuGaO2（U = 3~4 eV）および

Cu2O（U = 3~4 eV）よりも小さかった。Ag
+のイオン半径（４配位と２配位でそれぞれ 1.0 Å、

0.67 Å
[21]）は、Cu

+のそれ（0.60 Å、0.46 Å）よりも大きい。このため Ag 4d 軌道は、Cu 3d

軌道よりも空間的に広がり局在性は小さくなる。これにより、Ag 4d 軌道の電子の自己相互

作用による誤差は Cu 3d 軌道におけるそれよりも小さくなり、その誤差を補正するのに必要

な U も小さい値となったと推察される。Ag 4d 軌道の自己相互作用を補正するために必要な

U 値が Cu 3d軌道における U 値より小さいことは、自由イオンの Ag
+と Cu

+や、金属 Cuと

金属 Agについても同様の傾向が報告されており[22,23]、本計算はそれらと矛盾しない。 

以上より、価電子帯の電子構造と結晶構造の実測値と、計算結果との一致の程度に基づ

いて決定した前述の U 値は妥当な範囲にあると判断できる。したがって、次項以降では、

各物質の電子構造を、α-CuGaO2では U = 4 eV、α-AgGaO2では U = 2 eV、β-AgGaO2では U = 

2 eV とした LDA+U によって計算した。また。β-CuGaO2の場合は、４章で述べたように U = 

6 eV として計算した。 

5-3-2 α-CuGaO2および α-AgGaO2の電子構造 

Figure 5-4 に、U = 4 eV で計算した α-CuGaO2、および U = 6 eV で計算した α-AgGaO2の

E-k 図を示す。α-CuGaO2と α-AgGaO2は共に、既報と同様に間接遷移型半導体であった
[24,25]

 

[10,26-30]。α-CuGaO2と α-AgGaO2の、最小間接ギャップ（F-Γ 遷移）と最小直接禁制ギャップ

（Γ-Γ 遷移[25]）および直接許容ギャップ（光学ギャップ、L-L遷移[25]）の計算値と実験値を

まとめたものを Table 5-4に示す。α-CuGaO2と α-AgGaO2の計算ギャップは、それぞれ 0.3~1.3 

eV および 1.0~1.7 eV ほど実測値を過小評価していたが、直接ギャップと間接ギャップの大

小関係は再現していた。 
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Figure 5-4. Electronic band structure of (a) α-CuGaO2 calculated with LDA+U for U = 4 

eV and (b) α-AgGaO2 for U = 2 eV. (left) The band structures along the symmetry line 

whose horizontal axis were standardized with the length of each k vectors; (center) 

corresponding total and partial density of states; (right) enlarged PDOS. 
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Table 5-4. Calculated and experimentally observed band gaps of α-CuGaO2 and α-AgGaO2. 

Materials Transition Type Calc. (eV) Exp. (eV) 

α-CuGaO2 

F-Γ Allowed indirect 1.20 2.55
b
 

Γ-Γ Forbidden direct
a
 2.02 － 

L-L 
Allowed direct

a
 

3.49 
3.75

b
 

F-F 3.77 

α-AgGaO2 

F-Γ Allowed indirect 0.74 2.38
c
-2.4

d, 
 

Γ-Γ Forbidden direct
a
 2.57 － 

L-L 
Allowed direct

a
 

3.44 
4.12

e
-4.4

f
 

F-F 3.33 
a
Ref. 25, 

b
Ref. 31, 

c
Ref. 10, 

d
Ref. 26, 

e
Ref. 32, 

f
Ref. 33. 

 

5-3-3 β-AgGaO2の電子構造 

Figure 5-5 に、LDA+U（U = 2 eV）で計算した、β-AgGaO2の E-k 図を示す。CBM は Γ 点

にあったが、VBMはΓ点とS点の中間にあり（Figure 5-6(a)にバンド端近傍の拡大図を示す）、

β-AgGaO2が間接遷移型半導体であることを示した。最小の間接ギャップと直接ギャップの

計算値は、それぞれ 0.27 eV と 0.30 eV であり、実測の光学ギャップの 2.1－2.2 eV
[10,34]と比

Figure 5-5. Electronic band structure of β-AgGaO2 calculated with LDA+U for U = 2 eV. 

(left) The band structures along the symmetry line; (center) corresponding total and partial 

density of states; (right) enlarged PDOS. 
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べると大幅に小さい値となった。 

β-AgGaO2の電子構造は、既報では汎関数に GGA や LDA を、擬ポテンシャルにウルトラ

ソフトを用いて計算されており[35,26,34]、それらの報告においても β-AgGaO2が間接遷移型で

あることが示されている。しかし、それらの報告でのバンド計算は、S 点について計算して

おらず、VBM が U 点にあるとされている。そこで β-AgGaO2の電子構造を、汎関数に GGA

や LDA、LDA+U を、擬ポテンシャルにノルム保存型およびウルトラソフトを用いて計算し、

β-AgGaO2の VBM の位置が、汎関数や擬ポテンシャルに依存するかどうかを調べた（Figure 

5-6(a)~(e)）。ウルトラソフト擬ポテンシャルを用いて GGA で計算した場合のみ、VBM が U

点にあったが、その他のすべての計算は、VBMが Γ 点と S 点の中間にあり、LDA+U（U = 

2 eV）での計算と一致した。また、LDA+U で計算した VBM の位置は、U の値によって Γ-S

間をわずかに動くものの、U = 0~12 eV の全範囲で VBM は U 点ではなく Γ 点と S 点の中間

Figure 5-6. Electronic band structure of β-AgGaO2 calculated for (a) LDA+U (U = 2 eV) with 

norm-conserving pseudo-potential, (b) LDA+U (U = 2 eV) with ultrasoft pseudo-potential, (c) 

GGA with norm-conserving pseudo-potential, (d) LDA with norm-conserving pseudo-potential 

and (d) GGA with ultrasoft pseudo-potential. VBM were indicated by red arrows. 
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部分が VBM となった。VBM 近傍の分散が極めて小さいため、すべての計算において、U

点と、Γ 点と S 点の中間部分のピークとのエネルギー差はほとんどない（< 0.07 eV）（Table 

5-5）。したがって、VBM が存在する k 点については議論の余地があるものの、LDA+U（U = 

2 eV）の計算が実測の価電子帯 XPS を再現したことから、その結果――すなわち、Γ 点と S

点の中間が VBMであること――は、信頼するに足ると思われる。 

既報を含め、すべての条件下での β-AgGaO2の計算結果は、それが間接遷移型であること

を示しており、同じ β-NaFeO2型の β-CuGaO2が LDA+U や sX-LDA を汎関数に用いたすべて

の計算で直接遷移型と示された[36]のとは状況が全く異なっていた。このように、β-NaFeO2

型酸化物には直接遷移型半導体と間接遷移型半導体の両者が存在する。β-NaFeO2 型酸化物

の光学遷移の決定機構については、その結晶構造内の MO4と OM4四面体（M = Ag, Ga）の

正四面体からのずれの大きさと関連があるという議論がある[38]。この仮説においては、

β-AgGaO2は Ag
+のイオン半径が Ga

3+それよりもかなり大きいために、結晶内の原子で作ら

れる四面体のひずみが大きく、間接遷移型となり、β-CuGaO2は Cu
+のイオン半径が Ga

3+の

それと近いため四面体のひずみが小さく、直接遷移型になったと現象論的に説明されてい

る。 

 

Table 5-5. Energetic differences between several k points of β-AgGaO2 calculation with various 

functionals and pseudo-potentials.  

Functionals and 

pseudo-potentials 

Energy of 

Γ point 

(eV) 

Energy of the 

maximum point 

between Γ and S (eV) 

Energy of  

U point 

(eV) 

Reference 

LDA+U U = 2 eV 

Norm-conserving 
-0.0321 VBM -0.0456 

This work 

Figures 5-5 & 5-6(a) 

LDA+U U = 2 eV 

Ultrasoft 
-0.0465 VBM -0.0062 

This work 

Figure 5-6(b) 

GGA 

Norm-conserving 
-0.0903 VBM -0.0493 

This work 

Figure 5-6(c) 

LDA 

Norm-conserving 
-0.0936 VBM -0.0630 

This work 

 Figure 5-6(d) 

GGA 

Ultrasoft 
–0.0653 –0.0095 eV VBM 

This work 

Figure 5-6(e) 

GGA 

Ultrasoft 
≈ -0.05 Not Calculated VBM Ref. 35 

LDA 

Ultrasoft 
≈ -0.05 Not Calculated VBM Ref. 26, 34 
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5-3-4 電子・ホールの有効質量 

式（1）の放物線近似を用いて算出した α-CuGaO2と α-AgGaO2、β-AgGaO2の電子とホー

ルの有効質量を、４章にて求めた β-CuGaO2のそれらと共に Table 5-6 に示す。 

E = (
ℏ2

2𝑚∗
) 𝐤2           ⋯ (1) 

電子の有効質量はいずれも、0.14~0.44 の範囲にあり同程度であった。一方、ホールの有

効質量は CuGaO2および AgGaO2いずれの化合物においても、β 相の方が α 相よりも大きか

った。この理由については、5-4-2 と 5-4-4 にて詳しく考察する。 

 

 

Table 5-6.  The effective mass (in units of free electron mass, m0) of electrons and holes for 

β-CuGaO2, α-CuGaO2, β-AgGaO2, α-AgGaO2. 

Material 
Electron Hole 

Direction
a
 me*/m0 Direction

a
 mh*/m0 

β-CuGaO2

 

(U = 6 eV) 

Γ→X 0.21 Γ→X 5.1 

Γ→Y 0.21 Γ→Y 1.7 

Γ→Z 0.21 Γ→Z 4.9 

Γ→R 0.21 Γ→R 2.7 

α-CuGaO2 

(U = 4 eV) 

Γ→F 0.44 F→Γ 0.41 

Γ→Z 0.34 F→L 1.7 

Γ→L 0.44 F→Z 0.49 

β-AgGaO2 

(U = 2 eV) 

Γ→X 0.33 
VBM→S －b

 
Γ→Y 0.14 

Γ→Z 0.21 
VBM→Γ 4.0 

Γ→R 0.21 

α-AgGaO2 

(U = 2 eV) 

Γ→F 0.40 F→Γ 0.28 

Γ→Z 0.27 F→L 1.1 

Γ→L 0.42 F→Z 0.36 
a 
The k-vectors of Γ→X, Γ→Y, Γ→Z and Γ→R in β-CuGaO2 and β-AgGaO2 corresponds 

to the (010), (100), (001) and (111) directions in the real space, respectively. The k-vectors of 

Γ→F, Γ→Z , Γ→L, F→L and F→Z in α-CuGaO2 and α-AgGaO2 corresponds to the (110), 

(111), (010), (100) and (001) directions of the primitive cell (rhombohedral unit cell) in the real 

space, respectively. 
b 
This effective mass could not be calculated due to the significant flat band. 
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5-3-5 β-CuGaO2および α-CuGaO2の光学的性質 

Figure 5-7に第一原理計算により求めた β-CuGaO2と α-CuGaO2の電子構造から計算した多

結晶試料の光吸収スペクトルを示す。この図では、β-CuGaO2の直接許容ギャップの Γ-Γ 遷

移（計算値 0.23 eV）をシフトし、実測値の 1.47 eV に合わせてある。また、α-CuGaO2の直

接許容ギャップの L-L遷移（計算値 3.49 eV）は実測値の 3.75 eV
[31]に合うようシフトし、

それにともなって、直接禁制ギャップ（Γ-Γ 遷移）は 2.40 eV にある。 

β-CuGaO2は直接遷移型半導体であり、かつ、VBM 近傍の DOS が大きいため、光吸収係

数はバンドギャップ以上のエネルギーで急激に上昇し、直接許容ギャップ（1.47 eV）の 0.2 

eV 上の 1.67 eV では 1.1×10
5
 cm

-1に達している。一方、α-CuGaO2は間接遷移型半導体であ

るため、光吸収係数は直接禁制ギャップの 2.40 eV 以上で徐々に大きくなり、直接許容ギャ

ップ（3.75 eV）の 0.2 eV 上の 3.95 eV では、5×10
4
 cm

-1に達している。α-CuGaO2の直接許

容ギャップ近傍の吸収係数は 5×10
4
 cm

-1であり、β-CuGaO2の 1.1×10
5
 cm

-1よりも小さいのは、

5-4-2 にて議論するように、α-CuGaO2の VBM近傍の DOS が β-CuGaO2のそれより小さいこ

とによるのであろう。 

 

 

 

 

 

Figure 5-7. Calculated absorption coefficient of polycrystalline β-CuGaO2 (U = 6 eV) and 

α-CuGaO2 (U = 4 eV). The calculated direct and allowed energy band gap of α-CuGaO2 and 

β-CuGaO2 was rigidly shifted to the experimentally obtained direct band gap. 
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5-4 考察 

5-4-1 α 相と β 相の相安定性 

Figure 5-8(a)に構造緩和後の β-CuGaO2と α-CuGaO2の全エネルギーを、横軸に U 値をとり

整理したものを示す。U = 0~12 eV の範囲において、β-CuGaO2の全エネルギーは α-CuGaO2

のそれよりも大きく、β-CuGaO2 が α-CuGaO2 よりも不安定な相であることを示している。

β-CuGaO2は Ar 雰囲気下で 460 
o
C 以上で α-CuGaO2に不可逆的な相変態することや、示差走

査熱量（Differential Scanning Calorimetry, DSC）によって求めた相変態時の発熱量が 31.97 

kJmol
-1であることが、長谷らにより報告されている[37]。DSC により測定される相変態に伴

う熱量変化は、活性化エネルギーを含んだ値であるため純粋な相変態に伴うエンタルピー

変化とは対応しない。このことを考慮しても、Figure 5-8(a)に示した β 相と α 相の全エネル

ギーの差は、U = 4 eV では 43.9 kJmol
-1、U = 6 eV では 37.3 kJmol

-1であり、DSC 測定による

発熱量（31.97 kJmol
-1）と概ね一致していた。 

β-CuGaO2 の全エネルギーが α-CuGaO2 よりも大きかったのと同様に、β-AgGaO2 と

α-AgGaO2の全エネルギーにおいても、すべての U（0-12 eV）において β 相が α 相よりも不

安定な相であることを示していた（Figure 5-8(b)）。その差は U = 2 eV では 59.2 kJmol
-1、U = 

3 eV では 55.7 kJmol
-1であり、β-CuGaO2と α-CuGaO2との差（U = 4 eV で 42.2 kJmol

-1
、U = 6 

eV で 36.0 kJmol
-1）より大きかった。β-AgGaO2と α-AgGaO2の相安定性に関する実験的な報

告はないものの、β-AgGaO2 を水に浸けると数時間で α-AgGaO2 に相変態すること
[32,39]や、

水熱合成法や高圧合成法にて Ag2O と Ga2O3から α-AgGaO2が直接合成できること
[32,38]は、

Figure 5-8. Calculated relative total energies of (a) β-CuGaO2 and α-CuGaO2, and (b) β-AgGaO2 

and α-AgGaO2. Total energies of α-CuGaO2 and α-AgGaO2 calculated for LDA without U (U = 

0 eV) were set as zero. 
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この組成の安定相が α-AgGaO2であって、β-AgGaO2は準安定相であることを示唆しており、

計算結果はそれを支持していた。 

5-4-2 Cu 周囲の局所構造と価電子帯の電子構造 

β-CuGaO2とα-CuGaO2のE-k図およびPDOSを比較したものをFigure 5-9に示す。β-CuGaO2

と α-CuGaO2の価電子帯の DOS を比較すると、そのエネルギーに対する分布、すなわちバ

ンドの分散が大きく異なる。価電子帯上部（0~-6 eV）を形成する Cu 3d 軌道の寄与の大き

なバンドは、β-CuGaO2では分散が小さくバンド I（0~-2 eV）とバンド II（-3.5~-6 eV）の２

つのバンドに分裂し、それらの間には DOS の無いエネルギー域（-2.5~-3.5 eV、Figure 5-8(a)

にて淡黄色で示す）がみられる。一方で、α-CuGaO2では分散が大きくバンド I’と記したひ

とつの幅の広いバンド（0~-6 eV）を形成している。Figure 5-10(a)に β-CuGaO2のバンド Iと

バンド II の二次元電子密度マップを示す。バンド I の電子密度マップでは、Cu 原子と酸素

の間に節が存在し、バンド Iが Cu 3d と O 2p 軌道の反結合性軌道に相当することを示して

いる。一方、バンド IIの電子密度マップでは、Cu原子と酸素の周りの電子密度の高い領域

が繋がっており、バンド II がCu 3dとO 2p軌道の結合性軌道に相当することを示している。

したがって、前述した β-CuGaO2の価電子帯のバンド I とバンド II の間に存在する DOS の

Figure 5-9. E-k diagram and PDOS of (a) 

β-CuGaO2 calculated with U = 6 eV, (b) 

α-CuGaO2 with U = 4 eV and (c) Cu2O with 

U = 4 eV. The horizontal axis of E-k 

diagrams were standardized with the length 

of each k vectors 
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無いエネルギー域は、反結合性軌道と結合性軌道の間のエネルギーに相当するものと理解

できる。α-CuGaO2においてもバンド I’の上部（Upper band I’）と下部（Lower band I’）は、

Cu 3d と O 2p 軌道の反結合性軌道と結合性軌道にそれぞれ相当することが Figure 5-10(b)で

はみてとれる。しかし、それらは連続したバンドを形成していることから、反結合性軌道

と結合性軌道は一部のエネルギー領域で重なっていることになる。 

このような Cu 3dバンドの違いは、Cu原子の周囲の配位構造により理解できる。β-CuGaO2

中の Cu 原子は酸素と四面体４配位しているので、配位子場理論によれば Cu 3d 軌道は、

Figure 5-11 に示すように、t2（+0.18 Δ’）と e（-0.27 Δ’）に分裂する[40]。一方、α-CuGaO2中

の Cu 原子は酸素と直線２配位しており、配位子場理論によれば σg
+（+1.03 Δ）と πg（+0.11 

Δ）、δg（-0.63 Δ）の３つの準位に分裂する[40]。このような Cu 3d 軌道の分裂に、O 2p軌道

と結合を生成する際の結合性軌道と反結合性軌道の分裂を加えると、Figure 5-12 のような模

式図で表される。β-CuGaO2の-2.5~-3.5 eV の DOSの無いエネルギー域は、配位子場による

分裂よりも結合性軌道と反結合性軌道のエネルギー差の方が大きいために現れたと考えら

れ、結合性の t2 軌道と反結合性の e 軌道のエネルギー差に対応するものと言える（Figure 

5-12(a)）。これに対して α-CuGaO2では、Cu 3d 軌道が σg
+
, πg, δgの３つの状態に分裂するた

め幅広いエネルギー領域に広がり、結合性の σg
+が反結合性の δg*と重なる、もしくは、エ

ネルギーが逆転し（Figure 5-12(b)）、β-CuGaO2のような DOS のないエネルギー域が現れな

かったものと推察される。α-CuGaO2 と同じく直線２配位構造を持つ Cu2O の価電子帯にお        

Figure 5-10. Two dimensional electron-density contour plot of the LDA+U calculation of (a) 

α-CuGaO2 with U = 4 eV corresponding to the higher energy region of valence band (E-EVBM = 

-2.45–0 eV) and the lower energy region of valence band (E-EVBM = -6.82–-2.81 eV) and (b) 

β-CuGaO2 with U = 6 eV corresponding to the higher enegy region of valence band (band I; 

energy range of E-EVBM = -2.16–0 eV) and the lower energy region of valence band (band II; 

E-EVBM = -5.66–-2.96 eV). 
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いても、価電子帯の DOS はひとつのバンドとなっているので（Figure 5-9(c)）、このような

Cu 3d バンドの分散は Cu(I)の直線２配位構造の特徴であると理解される。 

β-CuGaO2の VBM 近傍の DOS は~20 states eV
-1

 unit cell
-1であり、β-CuGaO2のブリルアンゾ

ーンが α-CuGaO2 のそれよりも約４倍大きく、Cu2O のそれと同程度であることを考慮する

と、α-CuGaO2のそれ（~2 states eV
-1）や Cu2O のそれ（~7 states eV

-1）よりも明らかに大き

い。これについては、β 相の VBM近傍は 3重縮重した t2*状態に由来し、α相や Cu2O の VBM

近傍は縮重していない σg
+
*状態に由来している[41]ことと良く対応する。このような VBM 近

傍でのバンドの分散の違いが、α-CuGaO2 では mh
*
/m0 = 0.41~1.7、β-CuGaO2 では mh

*
/m0＝

1.7~5.1というホールの有効質量の違いとして現れる（Table 5-6）。すなわち、このような有

効質量の違いは、Cu(I)の配位構造に由来するものと推察される。 

 ここまで述べてきたような Cuの周囲の局所構造が VBM近傍の Cu 3d 軌道の分散を決定

Figure 5-12. Schematic illustration of splitting 

of antibonding and bonding state between O 2p 

and Cu 3d state (a) in β-CuGaO2 involving 

tetrahedral four-fold coordination and (b) in 

α-CuGaO2 involving linear two-fold 

coordination between Cu and O atoms. 

Figure 5-11. Schematic illustration of the 

crystal field splitting of 3d orbital of Cu 

atoms with two-fold and linear 

coordination and (b) four-fold and 

tetrahedral coordination. 
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するという理解が正しければ、これらと同じ結晶構造を有し、Cu 3d軌道と同様にエネルギ

ーの高い Ag 4d 軌道が価電子帯を構成する β-AgGaO2と α-AgGaO2においても同様のことが

成り立つはずである。β-AgGaO2と α-AgGaO2の E-k図および PDOSをまとめたものを Figure 

5-13 に示す。価電子帯上部（0~-6 eV）を主に構成する Ag 4d の DOS は、β-AgGaO2では特

に 0~-4 eV で大きかった一方で、α-AgGaO2では 0~-6 eV になだらかに広がり、特に 0~-2 eV

は小さかったことから、β-AgGaO2の Ag 4dバンドの価電子帯での分散は、α-AgGaO2のそれ

よりも小さいことがわかる。この分散の差はホールの有効質量にも表れており、β-AgGaO2

のホールの有効質量（mh
*
/m0 > 4.0）は α-AgGaO2のそれ（mh

*
/m0 = 0.28~1.1）より大きかっ

た（Table 5-6）。β-CuGaO2でみられた Cu 3d と O 2p 軌道の反結合性軌道と結合性軌道に対

応する分裂は、β-AgGaO2での Ag 4dと O 2p軌道においても見られ（Figure 5-13(a)にて淡黄

色で示す）、β-AgGaO2と α-AgGaO2においても、その価電子帯の分散は Ag 原子の配位構造

に起因する Ag 4d軌道の分裂を反映していることがわかった。以上より、β 相と α 相の一価

のカチオンの配位構造が価電子帯の分散に大きな影響を与えるという理解は、β-CuGaO2 と

α-CuGaO2だけでなく、β-AgGaO2と α-AgGaO2においても成り立つことがわかった。 

5-4-3 α-CuGaO2および β-CuGaO2の原子配列と電子構造 

β-CuGaO2 は、ウルツ鉱型構造の２価のカチオンを１価と３価のカチオンで規則的に置換

したウルツ鉱型構造の派生構造を有する（Figure5-14(a)）。Cu 原子と Ga 原子は規則的に配

列しているものの、いずれも酸素に四面体４配位したサイトを占有し、かつ、交互に並ん

でいるので、マクロに見れば Cu 原子と Ga 原子は良く混合した状態であるとみなせる。一

方、デラフォサイト型 α-CuGaO2は、Cu2O 層と Ga2O3層が c 軸方向に交互に積層した層状
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Figure 5-13. E-k diagram and PDOS of (a) β-AgGaO
2 
calculated with U = 2 eV, (b) α-AgGaO2 

with U = 2 eV. The horizontal axis of E-k diagrams were standardized with the length of each k 

vectors. 
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構造（Figure 5-14(b)）であり、自然超格子構造の一種である。この構造中では、Cu原子は

直線２配位構造を、Ga 原子は八面体６配位構造をとりそれらの局所構造は全く異なる。か

つ、これらが層状構造を形成しているために、α-CuGaO2中の Cu原子と Ga原子は、β-CuGaO2

でのように混合した状態とはみなせない。このような原子配列における違いが、それぞれ

の電子構造に次のよう現れている。Figure 5-15 に β-CuGaO2と α-CuGaO2のバンドギャップ

近傍の PDOS の拡大図を示す。β-CuGaO2では、伝導帯の底部は Cu 4s と Ga 4s で主に構成

Figure 5-14. Schematic illustration of the crystal structures of (a) 

β-NaFeO2-type β-A
I
B

III
O2 and delafossite-type α-A

I
B

III
O2 

(b) Delafossite-type

α-AIBIIIO2

(a) β-NaFeO2-type

β-AIBIIIO2

a

c

a

a
c

b

:AI :BIII :O

Figure 5-15. (Left) Enlarged Partial DOS and (right) schematic illustrations of electronic 

sates at the band edge of (a) β-CuGaO2 and (b) α-CuGaO2. 
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されている。これらはよく混成しており、その寄与はほぼ同程度である（Figure 5-15(a) 左）。

VBM は、エネルギーの高い Cu 3dと O 2p軌道が構成しているが、上端から 0.05 eV 下では

Cuと Ga の 4s, 4p軌道の寄与が同程度のバンドが現れている（Figure 5-15(b)左）。このよう

な Cu と Ga の原子軌道の混成は、β-CuGaO2中で Cu 原子と Ga の原子がよく混ざっている

ことにより生じたものと理解できる。α-CuGaO2 では、伝導帯の底部、すなわち伝導帯下端

は Cu 4s軌道のみで構成されており、Ga 4s 軌道の寄与はその約 0.04 eV 高エネルギー側か

ら現れる。VBMは Cu 3d と O 2p軌道により構成され、上端から 0.03 eV 低エネルギー側に

Cu 4s と 4p 軌道から構成されるバンドが現れ、Ga 4s と 4p 軌道が寄与するバンドはそれよ

りさらに 0.13 eV 低エネルギーから現れはじめる。すなわち、伝導帯下端と価電子帯上端の

バンドは Cu 原子と酸素の各原子軌道から構成され、Ga 原子の原子軌道の寄与するバンド

はそれらより離れたエネルギーから現れる（Figure 5-15(b)右）。このように α-CuGaO2 の電

子構造は、バンドギャップの小さい Cu2O
[42]とワイドバンドギャップの Ga2O3

[43,44]の電子構

造を単純に重ね合わせたものである、と理解することができる。このことは、α-CuGaO2 中

では Cu 原子と Ga 原子が β-CuGaO2中のような混合した状態ではなく、Cu2O 層と Ga2O3層

から構成される層状構造であることに由来するに違いない。 

 β-CuGaO2と α-CuGaO2の原子配列に起因するバンド端近傍の電子構造の違いは、Cu と同

族元素の Agを含む β-AgGaO2と α-AgGaO2においてもみられる。すなわち、β-AgGaO2では

バンド端近傍は Ag と Ga の原子軌道がよく混成したバンドにより構成されるが（Figure 

5-16(a)）、Ag2O 層と Ga2O3層から構成される層状構造の α-AgGaO2では、そのバンド端近傍

は、バンドギャップが小さい Ag2O
[22,45-47]とワイドバンドギャップの Ga2O3の電子構造を単

純に重ね合わせたものとして理解できる（Figure 5-16(b)）。 

 以上より、β-CuGaO2と β-AgGaO2の CBM 近傍は、良く混成した Cu 4sと Ga 4s 軌道もし
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Figure 5-16. (Left) Enlarged Partial DOS and (right) schematic illustrations of electronic 

sates at the band edge of (a) β-AgGaO2 and (b) α-AgGaO2. 
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くは Ag 5s と Ga 4s 軌道が主に構成し、α-CuGaO2と α-AgGaO2の CBM 近傍は Cu 4s 軌道も

しくは Ag の 5s 軌道が主に構成していた。それぞれの E-k 図（Figures 5-8, 5-12）を比較する

と、いずれにおいても CBM 近傍の分散はおおよそ同じである（Figures 5-8 と 5-12 における

E-k 図の横軸は、k ベクトルの大きさで規格化してあるので、これらのバンド分散は見た目

で比較することができる）。これらの酸化物中の電子の有効質量（me*/m0）はほぼ同程度で

あり（Table 5-6）、前述のような CBM 近傍の原子軌道の混成の程度にはほとんど依存しな

い。 

5-4-4 Cu 3d, Ag 4d バンドの分散を律する因子 

β-CuGaO2と β-AgGaO2の E-k 図および PDOS を比較したものを Figure 5-17(a), (b)に示す。

Figure 5-17. Electronic band structure of (a) β-CuGaO
2
 calculated with LDA+U for U = 6 eV, 

(b) β-AgGaO
2
 for U = 2 eV, (c) α-CuGaO

2
 for U = 4 eV and (d) α-AgGaO

2
 for U = 2 eV. (left) 

The band structures along the symmetry line whose horizontal axes were standardized with the 

length of each k vectors; (right) corresponding total DOS and PDOS. 
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β-CuGaO2と β-AgGaO2の価電子帯の電子構造には、次のような違いがみられた。β-CuGaO2

の DOS は 0~-2 eV と-3.5~-4.5 eV で大きくなっていたが、β-AgGaO2の DOSは 0~-4.5 eV の

領域でなだらかに広がっていた。特に Cu 3d/Ag 4d 軌道と O 2p 軌道の結合性軌道と反結合

性軌道の間にある DOS の無いエネルギー域（Figure 5-17(a), (b)の PDOS 図において淡黄色

で示す）の幅が顕著に異なっており、β-CuGaO2では幅が約 1.5 eV（-2~-3.5 eV）だったが、

β-AgGaO2ではそれよりかなり狭い約 0.2 eV（-2.5~-2.7 eV）だった。したがって、β-CuGaO2

の価電子帯の分散は、β-AgGaO2のそれよりも小さかった。両者のGaとOの価電子帯のPDOS

がほぼ一致することから、β-CuGaO2と β-AgGaO2の価電子帯における分散の違いは、Cu 3d

軌道と Ag 4d軌道の分散の違いに起因している。 

α-CuGaO2と α-AgGaO2の価電子帯の電子構造にも、DOS の分布に違いがみられた。すな

わち、α-CuGaO2の価電子帯における Ag 4d軌道の PDOS は-0~-5 eV において大きく、その

中でも-1.5~-3.5 eV で大きかった一方、α-AgGaO2では-0~-6 eV の領域で幅の広いバンドを形

成し DOS が特に大きい領域は見られなかった（Figure 5-17(c), (d)）。両者の Gaと O の価電

子帯での PDOS はほぼ一致することから、α-CuGaO2との価電子帯の分散が α-AgGaO2のそ

れよりも小さいことは、Cu 3d 軌道の分散が Ag 4d軌道のそれよりも小さいことに起因して

いる。 

上で述べた β 相および α相の AgGaO2と CuGaO2との差異は、Ag 4d軌道と Cu 3d 軌道の

差異に由来すると思われるが、Agと Cu の単純酸化物 Ag2O と Cu2O の価電子帯の電子構造

では、そのような明確な差異は見られなかった（Figure 5-18）。すなわち、Ag2O と Cu2O の

Figure 5-18. Electronic band structure of (a) Cu
2
O calculated with LDA+U for U = 4 eV and (b) 

Ag
2
O calculated with LDA+U for U = 2 eV. (left) The band structures along the symmetry line 

whose horizontal axis were standardized with the length of each k vectors; (right) corresponding 

total and partial density of states. 
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価電子帯での Ag 4d と Cu 3d の PDOS を比較すると、それらの原子軌道のエネルギー[48]を

反映して PDOS の最も大きくなるエネルギーに違いはあるものの、DOS のエネルギー分布

や分散について大きな違いがみられなかった。このように、β 相、α 相のいずれでも AgGaO2

と CuGaO2で現れた分散の違いが、Ag2O と Cu2O では現れない理由について、結晶化学的

な視点から次のように説明できる。 

Table 5-7 に、これまで計算してきた酸化物の緩和構造における再近接 Ag-Ag 距離および

Cu-Cu 距離を示す。Cu2O や Ag2O などの単純酸化物では、その格子定数が金属原子のイオ

ン半径に応じてある程度自由に伸縮することができる。したがって、Ag
+のイオン半径（２

配位 670 pm）が Cu
+のそれ（２配位 460 pm）より大きいことから、Ag2O 中の Ag-Ag 距離

（3.29 Å）は、Cu2O 中の Cu-Cu 距離（3.02 Å）よりも 0.27 Å（8.9 %）も広がっている。一

方で、β-AgGaO2と β-CuGaO2の場合、Ag
+のイオン半径（４配位 1000 pm）は Cu

+のそれ（４

配位 600 pm）よりもかなり大きいにもかかわらず、Ag-Ag 距離（3.32 Å）と Cu-Cu 距離（3.23 

Å）の差はわずか 0.09 Å（2.8%）しかない。このことは、β-NaFeO2 型酸化物では、二種類

のカチオンによって格子定数が決定されるために、Ag
+よりもイオン半径の小さな Ga

3+（４

配位 470 pm）によって、Ag-Ag 距離が近づく方向に拘束されていることを示している。

α-AgGaO2と α-CuGaO2の場合も同様に、デラフォサイト型構造の ab面内の格子定数は三価

のカチオンによって決定され[49]、Ag-Ag 距離（3.01 Å）は Cu-Cu 距離（3.01 Å）と全く同じ

となる。したがって α-AgGaO2においても、β-AgGaO2の場合と同様に、Ag-Ag 距離が近づ

く方向に拘束されている。このように、β 相および α 相の AgGaO2の Ag-Ag 距離は、単純酸

化物の場合よりも近づいており、それによって Ag 4d 軌道の分散が Cu 3d軌道のそれよりも

大きくなったという仮説が立てられる。 

 

Table 5-7. The closest distance of monovalent atoms (A
I
-A

I
, A

I
 = Cu, Ag) in crystal 

structures of several oxides obtained by geometry optimization with LDA+U. Shannon’s 

ionic radii of monovalent atoms cited from Ref. 21. 

Material A
I
-A

I
 (Å)

 
Ionic radius of A

I 
(Å) 

Cu2O 3.02 0.46 

α-CuGaO2 3.01 0.46 

β-CuGaO2 Ave. 3.23 0.60 

Ag2O 3.29 0.67 

α-AgGaO2 3.01 0.67 

β-AgGaO2 Ave. 3.32 1.00 

 

これらの酸化物の Cu-Cu間および Ag-Ag間における Cu 3d 軌道および Ag 4d 軌道の電子

雲の広がりと、それらの電子雲間の距離を比較するため、Cu2O と Ag2O、β-CuGaO2、β-AgGaO2、

α-CuGaO2および α-AgGaO2について、価電子帯の二次元電子密度マップを Figure 5-19 に示

す。前述のように、Ag
+の方が Cu

+よりもイオン半径が大きいことから、いずれの電子密度
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Figure 5-19. Two-dimensional electron-density contour plot of the valence band region of (a) 

Ag2O within the energy range of E－EVBM = −7.89－0 eV of (111) plane, (b) Cu2O within the 

energy of E－EVBM = −7.50－0 eV of (111) plane, (c) β-AgGaO2 within the energy range of E

－EVBM = −2.55－0 eV located at z = 0.5120, (b), β-CuGaO2 within the energy range of E－

EVBM = −2.16－0 eV located at z = 0.5057 (c) α-AgGaO2 with in the energy range of E－EVBM 

= −7.01－0 eV located at z = 0 and (d) α-CuGaO2 with in the energy range of E－EVBM = −6.82

－0 eV located at z = 0 . 
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マップにおいても、Ag 4d 軌道に由来する電子密度の高い領域は、Cu 3d 軌道のそれよりも

半径で約 0.1 Å長い領域に広がっている。Ag2OにおけるAg-Ag距離は、Cu2OにおけるCu-Cu

距離よりも 9%ほど長いので、Ag-Ag間における電子密度の小さい領域の幅（1.47 Å）は、

Cu-Cu 間におけるそれ（1.38 Å）よりもわずかに（0.09 Å）長かった。一方で、β-AgGaO2

においては、Ag-Ag 距離と Cu-Cu 距離がほとんど変わらないため、Ag-Ag 間における電子

密度の小さい領域の幅（0.98 Å）は、Cu-Cu 間におけるそれ（1.28 Å）よりも 0.30 Å も近づ

いていた。同様に、α-AgGaO2と α-CuGaO2においても Ag-Ag 間における電子密度の小さい

領域の幅は、Cu-Cu間のそれよりも 0.23 Åも近づいていた。以上より、β-AgGaO2と α-AgGaO2

においては、イオン半径の小さな Ga
3+が結晶のフレームワークを決定することにより、隣

接する Ag 原子が近づく方向に拘束されて、Ag 4d 軌道の電子密度が高い領域が近接したと

理解でき、前述の仮説と矛盾は生じなかった。 

 ここまでの考察から、β-NaGaO2 型酸化物の価電子帯の分散と、それを構成するイオンの

半径に、次のような関係があると推察される。 

(i).   三価のイオンの半径が小さければ、結晶のフレームワークが小さくなり、一価のカ

チオンが近づく。すなわち、Cu 3d 軌道や Ag 4d 軌道が近づくため、価電子帯の分散が

大きくなると推察される。一方で、三価のイオンの半径が大きくなればフレームワー

クもそれに伴って大きくなり、価電子帯の分散は小さくなると推察される。実際に、

デラフォサイト型 α-CuB
III

O2（B
III

 = Al, Ga, In）においては、それを構成する三価のカチ

Figure 5-20. The relationship between inter-atomic distances of monovalent metallic 

atoms and hole effective masses of delafossite α-CuB
III

O2 (B
III

 = Al, Ga, In) and 

β-CuGaO2. The values of hole effective masses are cited from a; Ref. 50, b; this work, c; 

Ref. 24. The interatomic distances of monovalent metallic atoms are based on the crystal 

structure obtained by geometry optimization in each reference. 
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オンのイオン半径に応じて Cu-Cu 距離が既定され、価電子帯の分散が決定されている

（Figure 5-20）。したがって、β-CuGaO2の Ga
3+をイオン半径の小さな Al

3+に置換するこ

とで、価電子帯の分散は大きくなると推察される。 

(ii). 一価のイオンの半径が大きい場合には、結晶のフレームワークは三価のイオンに

よってほぼ決定されており、一価のカチオンの原子軌道は近づく。Cu と Ag をいずれ

も含む化合物である AgCuO2や CuxAg1-xO2において、Cu 3d と Ag 4d軌道が非常によく

混成している[51,52]ことを考慮すると、β-CuGaO2 の Cu
+をイオン半径の大きな Ag

+に置

換することで、Cu 3d と Ag 4d 軌道の混成軌道同士が近づき、それにともなって価電子

帯の分散が大きくなると推測される。 

以上より、β-NaFeO2型酸化物においては、一価と三価のカチオンのイオン半径比 rA(I)/rB(III)

が大きくなればなるほど、価電子帯の分散が大きくなる傾向があると推測される。一方、

5-3-3 で前述したように、β-NaFeO2型酸化物の rA(I)/rB(III)が 1 に近ければ直接遷移型に、１か

ら大きく外れると間接遷移型になるという仮説が提唱されている[37]。したがって、Cu
+の一

部をイオン半径の大きな Ag
+で置換した β-(Cu1-xAgx)GaO2や、Ga

3+の一部をイオン半径の小

さな Al
3+で置換した β-Cu(Ga1-xAlx)O2においては、直接遷移型であることを保ちながら、か

つ、β-CuGaO2よりもホールの有効質量が小さい半導体となることが期待できる。 

 

5-5 結言 

本章では、β-CuGaO2 の多形であるデラフォサイト型 α-CuGaO2 および同形の β-AgGaO2

の電子構造を計算し、β-CuGaO2中の Cu(I)や結晶構造が電子構造や物性に及ぼす影響につい

て議論し、次のような知見を得た。 

β-CuGaO2 と α-CuGaO2 の電子構造には、両者の結晶構造における以下の２つの相異点が

大きな影響を与えていた。 

(i). Cuと Ga の原子配列 

 β-CuGaO2中では、Cu原子と Ga原子は実質的に混合されているが、α-CuGaO2中では

Cu原子はCu2O層を、Ga原子はGa2O3層を形成しそれらが積層した構造となっており、

Cu 原子と Ga 原子は実質的に分離している。そのため β-CuGaO2のバンド端近傍の電子

構造は Cu と Gaの原子軌道がよく混成したバンドから構成されるが、α-CuGaO2の電子

構造はバンドギャップの小さいCu2OとワイドバンドギャップなGa2O3の電子構造の重

ねあわせとなっている。 

(ii). Cu 原子周囲の局所構造 

 β-CuGaO2中の Cu 原子は酸素と四面体４配位で結合し、α-CuGaO2中の Cu 原子は酸

素と直線２配位結合する。Cu 原子がこのような配位構造を取る場合、β 相における Cu 

3d 軌道の配位子場分裂は、α 相におけるそれよりも狭くなる。このため、β-CuGaO2の

VBM 近傍でのバンドの分散は α-CuGaO2よりも小さくなり、結果として β-CuGaO2では
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バンド端近傍での DOS が大きくなり、バンド端近傍で強い光吸収を示すとともに、ホ

ールの有効質量は大きくなった。 

このような β-CuGaO2 と α-CuGaO2 における結晶構造に関連した電子構造の特徴は、

β-AgGaO2 と α-AgGaO2 においても観察された。したがって、これらの結晶構造と電子構造

の相関は、Cu 3d や Ag 4d などのエネルギーの高い閉殻 d
10軌道で構成される酸化物に共通

した特徴であると言える。 

Cu
+よりもイオン半径の大きな Ag

+を含む β-AgGaO2では、イオン半径の小さな Ga
3+が格

子のサイズを決めるため、Ag-Ag距離は単純酸化物である Ag2O 中のそれより近くなる。そ

の結果、Ag 4d に由来する電子密度が高い領域は、β-CuGaO2中の Cu 3d に由来する電子密

度が高い領域よりもはるかに近接する。これにより、β-AgGaO2 の価電子帯の分散は

β-CuGaO2よりも大きくなる。４章で述べたように、β-CuGaO2ではホールの有効質量が大き

く、高い p 型伝導性が発現しそうにないと危惧されるが、Cu の一部をイオン半径の大きな

Ag で置換した β-(Cu1-xAgx)GaO2 や、Ga の一部をイオン半径の小さな Al で置換した

β-Cu(Ga1-xAlx)O2 では、β-CuGaO2 と同様に直接遷移型で、かつ、β-CuGaO2 よりもホールの

有効質量は小さくなり、高い p型伝導性が発現するものと期待される。 
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第６章 総括 

 

本研究では、酸化物半導体のバンドギャップがカバーする波長領域を広げることを目指

し、可視および赤外域にバンドギャップを有する多元系ウルツ鉱型酸化物半導体を探索し

た。また、本研究で得られた新規の酸化物半導体と、その多形およびそれと同形の酸化物

の物性を第一原理計算から評価し、新規酸化物半導体の物性の起源を結晶化学的視点から

議論した。本章では、これまでの研究で得られた成果や知見を述べ、それに基づいて酸化

物半導体の今後の展望を示すことで、本論文を総括する。 

第２章では、3.37 eV の直接許容ギャップを有するウルツ鉱型 ZnO と、2.2 eV の間接ギャ

ップを有するβ-NaFeO2型β-AgGaO2とを固溶した(1-x)ZnO-x(AgGaO2)1/2固溶体薄膜を作製し

た。x < 0.35 の幅広い組成領域でウルツ鉱型化合物が生成し、その最小のバンドギャップは

2.55 eV に到達することを見出し、多元系ウルツ鉱型酸化物半導体を用いることで、酸化物

半導体のカバーする波長領域を可視域へと広げることが可能であることを示した。 

第３章では、β-NaFeO2型構造の新規酸化物半導体 β-CuGaO2を合成し、そのバンドギャッ

プは赤外域の 1.47 eV であること、ドーピングをしない状態で p 型伝導を示すこと、ZnO と

の格子整合性に優れることなどを明らかにした。また、β-CuGaO2 薄膜の作製も可能である

ことを示した。β-CuGaO2 は単接合太陽電池の変換効率が最大となるバンドギャップを有す

ることから、ZnO などの n 型酸化物半導体と p/n 接合を形成することで、β-CuGaO2が変換

効率の高い全酸化物薄膜太陽電池を実現しうる、有望な光吸収層材料となることを提案し

た。 

第４章では、第一原理計算によって β-CuGaO2の電子構造を計算し、その光学的・電気的

性質を推定した。LDA+U を汎関数とした第一原理計算により、β-CuGaO2の結晶構造と価電

子帯の電子構造の実測値を良く再現する信頼性の高い計算結果を得た。計算結果に基づき、

β-CuGaO2が直接遷移型半導体であること、バンドギャップ直上で光吸収係数は 1.0×10
5 
cm

-1

に達し、CdTeや CuInSe2などの薄膜太陽電池材料と同程度であることを示し、β-CuGaO2が

光学特性の観点から薄膜太陽電池の光吸収層に適した材料であることを明らかにした。ま

た、β-CuGaO2の電子の有効質量は me
*
/m0 = 0.21 であり、ZnO をはじめとする多くの n型酸

化物半導体と同程度であるが、ホールの有効質量は mh
*
/m0 = 1.7~5.1 と大きく、あまり高い

ホール移動度は期待できないことを示した。 

第５章では、第一原理計算により β-CuGaO2の多形であるデラフォサイト型 α-CuGaO2、

および同形の β-AgGaO2の電子構造を計算し、β-CuGaO2中の Cu周囲の局所構造や結晶構造

が電子構造や物性に及ぼす影響を研究した。β-CuGaO2のバンドギャップ近傍は Cu と Gaの

各原子軌道がよく混成したバンドから構成されている、マクロに見れば Cu 原子と Ga 原子

がよく混合した β-CuGaO2 の結晶構造に由来していること、β-CuGaO2 の強い光吸収やホー

ルの大きな有効質量をもたらす VBM 近傍の大きな状態密度は、酸素に四面体４配位する
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Cu 原子の局所構造とそれがもたらす Cu 3d 軌道の分裂に由来していることなどを明らかに

した。また、β-AgGaO2の価電子帯の分散が β-CuGaO2よりも大きいことを、小さい Ga
3+が

結晶格子の大きさを規定し、隣接する Ag原子間の距離が短くなっていることにより説明し

た。この理解に基づき、β-CuGaO2の Ga
3+の一部を Al

3+で置換することで、β-CuGaO2のホー

ルの有効質量を小さくし、移動度を向上する方法を提案した。このように、一価と三価の

カチオンのイオン半径比 rA(I)/rB(III)は、β-NaFeO2 型構造の酸化物半導体の価電子帯の分散の

大きさを推測する指標となることを提案した。 

本研究で見出した ZnO-AgGaO2固溶体と β-CuGaO2によって、酸化物半導体のバンドギャ

ップがカバーする波長領域は Figure 6-1 に示すように近赤外～紫外域へと広げられ、当初の

目的を達成した。これらを光電変換素子に応用するにあたっては、不純物ドーピングによ

るキャリアの注入、光励起キャリアの分離と輸送や電子-正孔対の再結合発光を達成する p/n

接合の形成などが当面の課題となろう。p/n 接合や量子井戸の設計に欠かせないバンドアラ

インメントに関する情報を、これらの多元系酸化物半導体について明らかにしていく研究

が今後必要となるだろう。 

一方 Figure 6-1 は、可視光域を中心とした広いエネルギー領域で、それをカバーする酸化

物半導体が得られていないことも同時に示している。そのような領域においてバンドギャ

ップ制御が可能だと期待される(1-x)ZnO-x(β-CuGaO2)1/2固溶体や、β-(CuxLi1-x)GaO2固溶体も、

全酸化物 LED などを視野に入れると開発が望まれる技術であろう。 

本研究で得られた成果が、上記したような今後の研究の起点となり、酸化物半導体をベ

ースとした光電変換素子が広い波長域へ展開されることを期待しつつ、本論文を閉じるこ

ととする。 

 

Figure 6-1. Band gap versus lattice parameter of ZnO, ternary β-NaFeO2-type oxides and 

their alloys. 
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撻を賜りました大阪大学大学院 工学研究科 小俣孝久准教授に、厚く御礼申し上げます。

本研究を遂行する上では、進むべき方向を思い悩むことが幾度となくありましたが、その

たびに時間を惜しむことなく、ディスカッションの場を設けていただきましたことに、心

から感謝いたします。 

 本論文の執筆にあたり、副査として査読をしていただきました九州大学大学院 総合理工

学府および物質・材料研究機構 環境・エネルギー材料部門 部門長 大橋直樹教授に厚く御

礼申し上げます。また、本論文の多くを占める第一原理計算に関する研究（４章、５章）

は、大橋先生との共同研究によってもたらされたものです。新物質についての第一原理計

算を遂行するうえでの多くの障壁をクリアするために、並々ならぬ量と質のバックアップ

を賜りました。心から感謝いたします。 

 本論文の執筆にあたり、副査として査読をしていただきました、大阪大学大学院 工学研

究科 掛下知行教授に厚くお礼申し上げます。本論文に対して、丁寧なご指導をいただきま

した。心から感謝いたします。 

 本論文の執筆にあたり、同じく副査として査読をしていただきました、大阪大学大学院 

工学研究科 藤原康文教授に厚くお礼申し上げます。本論文に対して、丁寧なご指導をいた

だきました。心から感謝いたします。 

 本論文の執筆にあたり、同じく副査として査読をしていただきました、大阪大学大学院 

工学研究科 佐藤和則准教授に厚くお礼申し上げます。本論文の原稿に対して、適切なご指

摘をいただきました。また、佐藤先生には、本研究の、特に第一原理計算に関する内容に

ついてのディスカッションの場をもうけていただきました。研究内容についての活発な議

論を交わすことができ、本論文の質を高めることが出来ました。心から感謝いたます。 

 本研究の全般にわたりご協力とご助言を賜りました、山梨大学大学院 医学工学総合研究

部 柳 博准教授に厚くお礼申し上げます。柳先生には、特に新物質を発見するために不可

欠であったイオン交換方法についてご教授いただきました。また、光電子分光スペクトル

の測定へのご協力を賜り、本論文の質を高めることが出来ました。心から感謝いたします。 

 本研究における試料の合成方法の最適化に関して協力してくださいました富山高等専門

学校 機械システム工学科 喜多正雄准教授に厚くお礼申し上げます。 

 本研究における第一原理計算に関するディスカッションの場をもうけてくださり、また

貴重なご助言を賜りました、東京工業大学 応用セラミックス研究所 大場史康教授に厚く

お礼申し上げます。 
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本研究における光電子分光測定に関してご協力を賜りました パナソニック坂井全弘様、

浅野 洋様に厚くお礼申し上げます。坂井様には本研究の特許申請に関してもご協力いただ

きました。浅野様には実験方法や試料の取り扱いについて日常的に相談にのっていただき

ました。心から感謝いたします。 

 本研究の光電子分光測定に関してご協力を賜りました、山梨大学大学院 医学工学総合研

究部 佐藤千由紀さんと井口雄喜氏に厚くお礼申し上げます。 

本研究のスパークプラズマ焼結による試料作製に関してご協力を賜りました、大阪大学 

工学研究科 常深浩氏に厚くお礼申し上げます。 

本研究、および関連する研究に関して、同じ研究グループとして共に立ち向かってくれ

た長谷拓氏、水野裕貴氏、柿沼綾子さん、種村柾俊氏に厚くお礼申し上げます。皆さんの

ご協力があって日々の研究活動を送ることができました。心から感謝いたします。また、

本研究の端緒となる成果を残し、後輩へ引き継いでくださいました有馬優太氏に心から感

謝します。そして、日頃の実験の補助をして下さいました、大阪大学大学院工学研究科マ

テリアル生産専攻材料精製工学領域研究室の皆様に心から感謝いたします。 

最後に、私の学生生活をいつも遠くから応援してくれた両親と、私の研究生活を陰なが

ら支えてくれた妻 早耶香に心から感謝し、謝辞といたします。 

 

 

なお、本研究は以下の科学研究費助成事業からの援助のもとに遂行しました。感謝いた

します。 

 

 挑戦的萌芽研究 （研究課題番号 23656402） 

“酸化亜鉛半導体に可視光域での活性を賦与する新たな混晶系の創製とその原理” 

 挑戦的萌芽研究 （研究課題番号 25630283） 

“p/n 制御が可能な酸化物系 I-III-VI2化合物半導体の物質・機能開拓” 

 基盤研究(B) （研究課題番号 26289239） 

“三元系ウルツ鉱型ナローギャップ酸化物半導体；薄膜化・薄膜太陽電池素子への展開” 

 特別研究員 科学研究費助成事業 （研究課題番号 14J00763） 

“三元系酸化物群の基礎物性の解明” 
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（本研究に関する投稿論文） 

1. Issei Suzuki, Hiraku Nagatani, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki 

Ohashi and Takahisa Omata, “First principles study of CuGaO2 polymorphs: Delafossite 

α-CuGaO2 and wurtzite β-CuGaO2.”, Phys. Chem. Chem. Phys., (Submitted, 2016). 

2. Issei Suzuki, Hiraku Nagatani, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki 

Ohashi and Takahisa Omata, “First principles calculations of ternary wurtzite β-CuGaO2”, J. 

Appl. Phys., (Submitted, 2015) 

3. Takahisa Omata, Hiraku Nagatani, Issei Suzuki, Masao Kita, Hiroshi Yanagi and Naoki Ohashi, 

“Wurtzite CuGaO2: A New Direct and Narrow Band Gap Oxide Semiconductor Applicable as a 

Solar Cell Absorber”, J. Am. Chem. Soc., 136, 3378 (2014). 

4. Issei Suzuki, Hiraku Nagatani, Yuta Arima, Masao Kita, Takahisa Omata, “Fabrication of 

β-AgGaO2 thin films by radio frequency magnetron sputtering”, Thin Solid Films, 559, 112 

(2014). 

5. Issei Suzuki, Hiraku Nagatani, Yuta Arima, Masao Kita and Takahisa Omata, “Pseudo-binary 

alloying system of ZnO-AgGaO2 reducing the energy band gap of zinc oxide”, Appl. Phys. Lett., 

103, 222107 (2013). 

（その他の投稿論文） 

1. Hiroshi Yanagi, Chiyuki Sato, Yota Kimura, Issei Suzuki, Takahisa Omata, Toshio Kamiya, and 

Hideo Hosono, “Widely bandgap tunable amorphous Cd-Ga-O oxide semiconductors exhibiting 

electron mobilities ≥10 cm
2
V

−1
s

−1
”, Appl. Phys. Lett., 106, 082106 (2015) 

2. Hiraku Nagatani, Issei Suzuki, Masao Kita, Masahiko Tanaka, Yoshio Katsuya, Osami Sakata, 

Shogo Miyoshi, Shu Yamaguchi, and Takahisa Omata, “Structural and Thermal Properties of 

Ternary Narrow-Gap Oxide Semiconductor; Wurtzite-Derived β‑CuGaO2”, Inorg. Chem., 54, 

1698 (2015) 

3. Hiraku Nagatani, Issei Suzuki, Masao Kita, MasahikoTanaka, Yoshio Katsuya, Osami Sakata, 

Takahisa Omata, “Structure of β-AgGaO2; ternary I-III-VI2 oxide semiconductor with a 

wurtzite-derived structure”, J. Solid State Chem., 222, 66 (2015) 

4. Issei Suzuki, Takahisa Omata, Yu Shiratsuchi, Ryoichi Nakatani, Naoyuki Kitamura, Shinya 

Otsuka-Yao-Matsuo, “Fabrication of ZnF2 Thin Films and Their Vacuum Ultraviolet 

Transparency”, Thin Solid Films, 534, 508 (2013). 
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（総説） 

1. Takahisa Omata, Hiraku Nagatani, Issei Suzuki, Masao Kita, “Wurtzite-derived ternary I-III-O2 

semiconductors”, Sci. Technol. Adv. Mater., 16, 024902 (2015) 

（本研究に関する登録前特許） 

1. 小俣孝久、有馬優太、鈴木一誓（発明の名称）半導体材料、（出願番号・出願日）特願

2012-265431・2012 年 12 月 4 日（公開番号・公開日）特開 2014-108917・2014 年 6 月

12 日 

2. 小俣孝久、鈴木一誓、長谷拓（発明の名称）半導体用材料およびその製造方法、（出願

番号・出願日）特願 2013-66037・2013年 3月 27日（公開番号・公開日）特開 2014-192306・

2014年 10月 6日 

 

研究発表リスト 

（本研究に関する国際会議での発表） 

1. Issei Suzuki, Hiraku Nagatani, Masao Kita and Takahisa Omata, “Fabrication of β-CuGaO2 thin 

films; An Oxide Thin-Film Solar Cell Absorber”, 2015 MRS Fall Meeting & Exhibit, Boston, 

USA, December 2 2015 (ORAL). 

2. Issei Suzuki, Hiraku Nagatani, Masao Kita and Takahisa Omata, “Fabrication of β-CuGaO2 

Thin Films; An Oxide Thin-Film Solar Cell Absorber”, The 9
th

 Symposium on Transparent 

Oxide and Related Materials for Electronics and Optics (TOEO-9), Tsukuba, Japan, October 20 

2015 (POSTER). 

3. Issei Suzuki, Hiraku Nagatani, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, 

“Novel Ternary Wurtzite Semiconductor β-CuGaO2”, 17
th

 International Conference on II-VI 

Compounds and Related Materials, Paris, France, September 15 2015 (ORAL). 

4. Issei Suzuki, Hiraku Nagatani, Masao Kita and Takahisa Omata, “Fabrication of β-CuGaO2 

Thin Films”, 17
th

 International Conference on II-VI Compounds and Related Materials, Paris, 

France, September 15 2015 (POSTER). 

5. Issei Suzuki, Hiraku Nagatani, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, 

“Novel Ternary Wurtzite-type Semiconductor β-CuGaO2”, 2014 MRS Fall Meeting & Exhibit, 

Boston, USA, December 1 2014 (ORAL). 

6. Issei Suzuki, Hiraku Nagatani, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki 

Ohashi and Takahisa Omata, “First Principle Calculations of Wurtzite β-CuGaO2 and 

β-AgGaO2”, 2014 MRS Fall Meeting & Exhibit, Boston, USA, December 1 2014 (POSTER). 
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7. Issei Suzuki, Yuta Arima, Masao Kita and Takahisa Omata, “Band Gap Narrowing of ZnO by 

Alloying with β-AgGaO2”, 8
th

 International Workshop on Zinc Oxide and Related Materials, 

Niagara Falls, Canada, September 9 2014 (POSTER). 

8. Issei Suzuki, Hiraku Nagatani, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki 

Ohashi and Takahisa Omata, “First Principle Calculation of Electronic Band Structure of 

Wurtzite β-CuGaO2 and β-AgGaO2”, 8
th

 International Workshop on Zinc Oxide and Related 

Materials, Niagara Falls, Canada, September 8 2014 (POSTER). 

9. Issei Suzuki, Hiraku Nagatani, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki 

Ohashi and Takahisa Omata 

“First Principle Calculation of Electronic Band Structures of Wurtzite β-CuGaO2 and 

β-AgGaO2”, The 3rd International Seminar: International Workshop on Green Energy 

Conversion, Yamanashi, Japan, August 25 2014 (POSTER). 

10. Issei Suzuki, Hiraku Nagatani, Masao Kita, Yuki Iguchi, Chiyuki Sato, Hiroshi Yanagi, Naoki 

Ohashi and Takahisa Omata 

“First Principle Calculations of Electronic Band Structures of Wurtzite β-CuGaO2 and 

β-AgGaO2”, The 8
th

 International Conference on the Science and Technology for Advanced 

Ceramics (STAC8), Yokohama, Japan, June 26 2014 (POSTER). 

11. Issei Suzuki, Hiraku Nagatani, Yuta Arima, Masao Kita and Takahisa Omata 

“Band Gap Engineering of ZnO by Alloying with β-AgGaO2”, The 2nd International Seminar: 

International Workshop on Green Energy Conversion, Nagano, Japan, September 2 2013 

(POSTER). 

12. Issei Suzuki, Yuta Arima, Masao Kita and Takahisa Omata, “Band Gap Narrowing of ZnO by 

Alloying with β-AgGaO2”, 8
th

 International Symposium on Transparent Oxide and Related 

Materials for Electronics and Optics (TOEO8), Tokyo, Japan, May 15 2013 (ORAL). 

13. Issei Suzuki, Yuta Arima, Masao Kita and Takahisa Omata, “New Pseudo-Binary Alloy System 

of x(AgGaO2)1/2-(1-x)ZnO for Band Gap Narrowing of ZnO”, 2013 MRS Spring Meeting & 

Exhibit, California, USA, April 2 2013 (POSTER). 

（本研究に関する国内学会での発表） 

1. 鈴木一誓、長谷拓、喜多正雄、小俣孝久、『酸化物薄膜太陽電池材料 β-CuGaO2 の薄膜

作製』、資源素材学会 平成 27年度資源・素材関係学協会合同秋季大会、松山、2015 年

9 月 8日（ポスター） 

2. 鈴木一誓、長谷拓、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『新

規酸化物半導体：ウルツ鉱型 β-CuGaO2』、日本セラミックス協会 2015年・年会、岡山、

2015年 3月 20日（口頭） 

3. 鈴木一誓、長谷拓、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『ウ

ルツ鉱型 β-CuGaO2の第一原理計算』、日本セラミックス協会 2015年・年会、岡山、2015
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年 3月 20日（口頭） 

4. 鈴木一誓、長谷拓、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『ウ

ルツ鉱型 β-CuGaO2、β-AgGaO2の第一原理計算』、第 75 回 応用物理学会秋季学術講演

会、札幌、2014 年 9 月 19 日（口頭） 

5. 鈴木一誓、長谷拓、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『ウ

ルツ鉱型 β-CuGaO2、β-AgGaO2の第一原理計算』、第 9 回日本セラミックス協会関西支

部学術講演会、堺、2014年 7月 25日（ポスター） 

6. 鈴木一誓、長谷拓、喜多正雄、井口雄喜、佐藤千友紀、柳博、大橋直樹、小俣孝久、『第

一原理計算によるウルツ鉱型 β-CuGaO2、β-AgGaO2の電子構造解析』、2014年応用物理

学会春季学術講演会、相模原、2014 年 3 月 17 日（口頭） 

7. 鈴木一誓、長谷拓、有馬優太、喜多正雄、小俣孝久、『AgGaO2 との混晶化による ZnO

のバンドギャップナローイング』、2014 年応用物理学会春季学術講演会、相模原、2014

年 3月 17日（口頭） 

8. 小俣孝久、鈴木一誓、長谷拓、喜多正雄、『新規酸化物半導体材料の探索；ウルツ鉱型

I-III-O2化合物半導体』、2014 年応用物理学会春季学術講演会、相模原、2014 年 3 月 17

日（口頭） 

9. 鈴木一誓、有馬優太、喜多正雄、小俣孝久、『β-AgGaO2の固溶による ZnO のバンドギ

ャップナローイング』、資源素材学会・平成 24年度春季大会、千葉、2013年 3 月 29 日

（口頭） 

10. 鈴木一誓、有馬優太、喜多正雄、小俣孝久、『β-AgGaO2の固溶による ZnO のバンドギ

ャップナローイング』、日本セラミックス協会 2013 年・年会、東京、2013 年 3 月 18 日

（口頭） 

（セミナー） 

1. 鈴木一誓『新しいナローギャップ酸化物半導体の探索：多元系ウルツ鉱型化合物』、日

本学術振興会 透明酸化物 光・電子材料 第 166 委員会 第 70回研究会、東京、2016 年

1 月 29 日 

（その他の国際会議での発表） 

1. Yuki Mizuno, Hiraku Nagatani, Issei Suzuki, Masao Kita and Takahisa Omata, “Band Gap 

Engineering of Wurtzite-type Narrow Band Gap Semiconductor β-CuGaO2”, The 9
th
 

International Conference on the Science and Technology for Advanced Ceramics (STAC-9) 

(POSTER). 

2. Ayako Kakinuma, Issei Suzuki, Masato Ueda and Takahisa Omata, “Flux Growth of β-NaGaO2 

Single Crystals and their Ion-Exchange to Fabricate β-CuGaO2 and β-AgGaO2”, The 9
th
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International Conference on the Science and Technology for Advanced Ceramics (STAC-9) 

(POSTER). 

3. Hiraku Nagatani, Issei Suzuki, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, 

“A New Ternary Oxide Semiconductor; Wurtzite CuGaO2”, 8
th

 International Workshop on Zinc 

Oxide and Related Materials, Niagara Falls, Canada, September 8 2014 (POSTER). 

4. Yuki Mizuno, Hiraku Nagatani, Issei Suzuki, Masao Kita and Takahisa Omata, “Band Gap 

Engineering of Wurtzite-Derived CuGaO2 with CuAlO2”, The 3rd International Seminar: 

International Workshop on Green Energy Conversion, Yamanashi, Japan, August 25 2014 

(POSTER). 

5. Hiraku Nagatani, Issei Suzuki, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, 

“A New Direct and Narrow Band Gap Oxide Semiconductor; Wurtzite CuGaO2”, The 3rd 

International Seminar: International Workshop on Green Energy Conversion, Yamanashi, 

Japan, August 25 2014 (POSTER). 

6. Hiraku Nagatani, Issei Suzuki, Masao Kita, Hiroshi Yanagi, Naoki Ohashi and Takahisa Omata, 

A New Direct and Narrow Band Gap Oxide Semiconductor; Wurtzite CuGaO2”, The 8
th
 

International Conference on the Science and Technology for Advanced Ceramics (STAC8), 

Yokohama, Japan, June 26 2014 (POSTER). 

7. Chiyuki Sato, Hiroshi Yanagi, Issei Suzuki, Takahisa Omata, Toshio Kamiya and Hideo Hosono, 

“Band-Gap Engineering of High Mobility Amorphous Oxide Semiconductor, a-Cd-Ga-O”, The 

2nd International Seminar: International Workshop on Green Energy Conversion, Nagano, 

Japan, September 2 2013 (POSTER). 

8. Chiyuki Sato, Hiroshi Yanagi, Issei Suzuki, Takahisa Omata, Toshio Kamiya and Hideo Hosono, 

“Band-gap Control in Amorphous Oxide Semiconductor Cd-Ga-O Thin Films”, 2013 MRS 

Spring Meeting & Exhibit, California, USA, April 2 2013 (ORAL). 

9. Issei Suzuki, Takahisa Omata, Yu Shiratsuchi, Ryoichi Nakatani and S. Otsuka-Yao-Matsuo, 

“Fabrication of ZnF2 Thin Film and Their Transparency in Vacuum Ultraviolet”, 2011 

IUMRS-ICA 12
th

 International Conference in Asia, Taipei, Taiwan, September 11 2011 

(POSTER). 

（その他の国内学会での発表） 

1. 喜多正雄、鈴木一誓、長谷拓、水野裕貴、小俣孝久、『ウルツ鉱型関連構造の四元系ナ

ローギャップ酸化物半導体 Cu2ZnGeO4の合成』、日本セラミックス協会 第 28 回秋季シ

ンポジウム、富山、2014年 9月 18日（口頭） 

2. 長谷拓、鈴木一誓、小俣孝久、喜多正雄、『ウルツ鉱型酸化物半導体 β-CuGaO2, β-AgGaO2 

への不純物ドーピング』、日本セラミックス協会 第 28回秋季シンポジウム、富山、2014

年 9月 18日（口頭） 

3. 水野裕貴、長谷拓、鈴木一誓、喜多正雄、小俣孝久、『ウルツ鉱型ナローバンドギャッ
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プ半導体 β-CuGaO2 のバンドエンジニアリング』、日本セラミックス協会 第 28 回秋季

シンポジウム、富山、2014 年 9月 18 日（口頭） 

4. 柿沼綾子、鈴木一誓、上田正人、小俣孝久、『フラックス 法による β-NaGaO2単結晶の

育成とそのイオン交換』、資源素材学会 平成 27 年度資源・素材関係学協会合同秋季大

会、松山、2015 年 9 月 8日（ポスター） 

5. 長谷拓、鈴木一誓、喜多正雄、小俣孝久、『ウルツ鉱型酸化物半導体 β-CuGaO2, β-AgGaO2
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会、松山、2015 年 9 月 8日（ポスター） 
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