

Title	Theoretical investigation of ionic conduction in rare-earth oxide materials
Author(s)	Musa, Alaydrus
Citation	大阪大学, 2016, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/55951
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Musa Alaydrus)

Title	Theoretical investigation of ionic conduction in rare-earth oxide materials (希土類酸化物材料におけるイオン伝導に関する理論的研究)
<p>Among the global issues, urgent need on green and sustainable energies is alarming. This is mainly caused by carbon dioxide (CO_2) emissions and fossil fuels exploitation which is reaching its limit. One of the currently viable solutions is fuel cells (FCs) technology, where solid oxide fuel cells (SOFCs) appear as one of the most promising types of FCs generation. Currently applicable SOFCs have high operating temperature (above 1000 °C) which results in longer start-up times and mechanical and chemical compatibility issues. Therefore, designing solid electrolyte materials in the search of its applicability at lower temperature (below 600 °C) as well as maintaining its performance in terms of high oxygen ion conduction is required. The problem can be stated as <i>understanding factors governing oxygen ion conduction in rare-earth oxide materials</i>. This thesis will focus the discussion on ceria (CeO_2)-based materials, i.e. with lanthanide (Ln) doping, for solid electrolytes (SEs) as the case study.</p> <p>Throughout the course of understanding the mechanism of oxygen ion conduction in Ln-doped CeO_2, the focus is often to address that the performance of SEs through the activation energy, the energy required for moving the carriers. The oxygen ion conduction in CeO_2 takes place via vacancy diffusion mechanism. It follows Arrhenius' law where the ionic conductivity depends exponentially on the activation energy, $[\propto \exp(-\Delta E_a/k_B T)]$. ΔE_a is considered as the most crucial material quantity and directly associated with the operating temperature, T, while k_B is Boltzmann's constant. It is generally considered that small ionic radii mismatch between the host and dopant cations results in lower activation energies. However, there are cases where this consensus does not apply. Hence, fundamental understanding at atomistic level on the existing materials is of importance. In this thesis two approaches are pursued, investigation on Ln doping effect on the oxygen ion migration; and strain dependent ionic conduction, specifically, in the case of Sm-doped CeO_2. The study was conducted by means of density functional theory (DFT) calculations.</p> <p>In the first approach, we report our effort in engineering the performance of oxygen ion conduction in M-doped CeO_2 (i.e. M = La, Pr, Nd, Pm, Sm, Eu, and Gd, as part of Ln elements, as well as Y chosen from non-Ln rare-earth elements as a reference). The calculations were performed by considering two conditions, strongly localized 4f electrons, therefore, which the f electrons are kept frozen in the core (standard model for the treatment of localized f electrons) and f electrons as valence electrons which requires many-body quantum mechanical treatments. The study suggests that balancing (meta-)stable energies can be considered as a key to optimize ionic mobility in doped CeO_2. These energies are strongly associated with ionic/covalent interactions in the system. Both treatments on the 4f electrons managed to reproduce the trends in experimental activation energies. However, fundamental aspects of the ionic/covalent interactions can only be explained in terms of variable occupancy of empty 4f orbitals, which is turned off in the 4fcore model by fixing the occupancy of 4f orbitals. It is emphasized that the treatment of 4f electrons with variable occupancy is crucial, both in the host and dopant sites, for producing correct properties of formation and migration of oxygen vacancies.</p> <p>The second approach is based on the idea that in a laminated structure, at the interface, due to lattice mismatch between two materials, lattice strain is induced and therefore improves the performance of oxygen ion conduction close to the interface region. In this particular work we studied the effect of the strain in Sm-doped CeO_2 (SDC) to the ionic migration properties to understand the origin of as well as to predict the performance improvement. The strain was applied on its biaxial axes of bulk SDC to model the strain at the interface of the heterostructures in SDC layer. In this particular study, we found that the ionic conductivity at higher temperature can be attained at lower temperature under strain condition, i.e. performance at 300 °C by strain to approximate the performance of unstrained SDC at 500 °C. The mechanism is explained in terms of the change in the oxygen-cation bond-lengths</p>	

at the initial states of the individual migration.

論文審査の結果の要旨及び担当者

氏名 (Musa Alaydrus)		
論文審査担当者	(職)	氏名
	主査	准教授 Diño Wilson Agerico
	副査	教授 森川良忠
	副査	教授 掛下知行
	副査	教授 小口多美夫
	副査	招へい教授 笠井秀明 (国際交流推進センター)

論文審査の結果の要旨

近年、我々が抱える研究課題は地球規模の問題と密接に関係するようになってきた。特に、環境負荷のない再生可能なエネルギーの高効率利用技術の開発は喫緊の課題である。これは二酸化炭素(CO_2)の排出と化石燃料の資源利用がもたらす環境破壊・エネルギー源の枯渇への懸念から要請される課題である。この問題解決のための、現在有望視されている技術は燃料電池であり、その中でも効率の高い固体酸化物形燃料電池(SOFC)は最有力候補の一つと考えられている。SOFC研究において克服すべき課題は、その高い動作温度をいかにして下げるかである。低温動作SOFC開発のために、酸化物材料におけるイオン伝導の性質を決定づける因子の理解が求められている。本学位論文では、SOFCに用いる電解質としてランタノイド等をドープしたセリヤ(CeO_2)材料に着目した。

CeO_2 中のイオン伝導は酸素欠損空孔の拡散によって起こる。イオン伝導機構の研究では、材料内の空孔伝導の活性化エネルギーに焦点を当てて議論されてきた。活性化エネルギーと伝導度はアレニウス則によって結びついており、活性化エネルギーを ΔE_a とすると伝導度は $\exp(-\Delta E_a/k_B T)$ に比例する (k_B はボルツマン定数、 T は温度)。よって、活性化エネルギー ΔE_a はSOFCの動作温度に直結する重要な材料固有値である。一般に、イオン伝導度は主にドーパントのイオン半径に依存し、例えばホスト原子のイオン半径と同程度である場合にイオン伝導度が最も低くなる物質群が知られている。しかし、この経験則に当てはまらないケースが報告されている。経験則を超えて、原子レベルでのイオン伝導の基礎的な理解が必要である。本学位論文ではランタノイドのドーピング、材料結晶格子の歪みの効果に着目し、空孔伝導に与える影響を密度汎関数理論(DFT)に基づいた理論計算を援用して調べた。

ドーピングの効果を調べるために取り上げた元素は、ランタノイドLa, Pr, Nd, Pm, Sm, Eu, Gdとランタノイドに類似した性質をもつ希土類元素Yである。計算においては、4f電子について2種類の条件で取扱った。すなわち、4f電子を内殻電子とみなして擬ポテンシャルに組み込む従来のフローズンコア近似による計算に加え、4f電子を価電子として考慮した計算を行った。本研究により、ドープされた CeO_2 の空孔移動度の改善には、基底状態と励起状態のエネルギーのバランスが鍵となるという視点が提示された。4f電子に関する両計算方法において、活性化エネルギーの実験値の傾向は再現された。しかし、前者の計算方法では酸素欠陥の生成エネルギーおよび電子密度分布が正しく反映されないことが明らかになった。本研究から、この系の化学的(イオン/共有結合的)な相互作用を記述するためには、4f電子の占有数を可変にした取扱いが重要である点が理解された。

固体酸化物材料の結晶格子の歪みは、格子不整合の関係にある異種材料を積層させることで導入することができる。この積層構造の界面付近でイオン伝導の性能改善があると報告されている。本研究では特に、Smをドープした CeO_2 (SDC)に歪みを導入した際のイオン拡散への影響を調べることで、イオン伝導性能向上の起源を理解することを目指した。ヘテロ構造を有する界面における歪みを反映するために、バルク結晶の2軸方向に歪みを加えたモデルを考えた。これより、歪みのない場合では、高温条件下(500°C)でのみ得られていたイオン伝導度を、歪みの導入により低温(300°C)で得られることが分かった。本研究により、格子歪みがもたらすイオン間の結合距離の変化が空孔伝導性向上の微視的起源であることが明らかになった。

本論文は、希土類酸化物材料における、イオン伝導というマクロに観測される現象を、不純物を含んだ系の空孔拡散におけるミクロな電子論を展開して研究したものであり、高い学術的価値を有するといえる。また、本論文では環境・エネルギー問題解決に向けた具体的なアイデアとして、SOFC電解質の格子歪み効果に着目し、電解質の積

層化による空孔伝導度への効果を、より基礎的なモデルから評価した。このように、本論文は所望のイオン伝導性を有する固体電解質の設計指針を与えるものであり、今後のSOFC研究に対して重要な示唆を与えるものになっている。ここで得られた知見は、応用物理学、特に物性物理学ならびに関連分野の科学および技術の発展に大いに寄与するものである。よって、本論文は博士授与に値する論文であると認める。