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1.1 HARE=
1.1.1 EREDOEETAY

EVREICEHESTRD, D0, ERAMOEEEDRD D NEPT OV TITFTE I F % i
ELUTWL ETCOFRELREMDO—D2TH Y, FMENFZOHREIZEL R >THIPSEELD
BTN TE 2 (1,2, BRTREYZORRCTEKEIIEZTANDZ2LE LTHRD 2%
WAL, ZODFTRD L UIZED L TORERNLRHE L Goldstein 5 [1] 12 X DA ZEDE
ﬂ$®ﬁﬁ’%%Ki&@6mfbé.Chﬂiét,%ﬁﬁ<®ﬁ%@L§kObf%

TR L 7=DIE D. Bernoulli [3] TH Y, 1738 FDOFEFITIE, FARDHEEIIERE LT
%@tﬁb?ﬁ?ﬂiﬁbﬁbtﬁéMThéML%@%%,Mﬁﬁ@ﬁﬂ@&%&
Z & U T Coulomb, Girard, Navier, Poisson, Poiseuille, Hagen, Darcy, Helmholtz,
Couette, Maxwell 72 EIA I FIZH 2T HRATZBIZE 5T, ETIVORIBPERN X
NTE7z. INSDRGEEDR, TR0 e LB @@ﬁ&a%%#%t®ﬁrﬁﬁa
EPRINDE Z LiE4 <, Goldstein 234K % HAR L 72 1938 ZE DI X TIXHE TR D 1
o, HULKIE, HHLUTHFHMUTERVLSHSWNIWESS LW NI N TV .
UL, 20 OB ENSRKELLF /T2 /0y —I12 &3 EHEROm LYo+
2T COHEBBFEORBIZE 5T, POTEHFHITE b o ZEKMOEE TR D
FAEDEZ <ME S, BETIETRYDEENRZD SNTWDS [4-19].

IS QIEFEDIHETIE, EHEHOEET XY DETIE LT 1823 412 Navier [20]
DRREL 725 OVEEIZH SN T WA, Navier 19 R D12 & 2 #1771 E O #E
ERTHDTROEE v [THHIT 2 EF R, EREERRE L XN 5 HIHRE A 2 v
THEWESHIZE T 2 AWIEID Avg TRIND & U7 [1,20]. TDTARDIZLBEAR
IS Avg (ZERICE < EABIGH 7 £ DDA D728, FEEARMEICE T 262DV T

=, (1.1)

DB DB, £7-, FEREEROTEIZEB ) 2K D Navier-Stokes R TR TE 5
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YEAUE, TAROICEBEAMISS Avs ZBHARDORMEIC X B AW L% L Wz

0vy

Avs =g

ERTILNTES., 22T, pldERETH Y, 0v,/oz IFREEE LA 2 12257

FUR AR S E vy, DA TH 5. [EREBRE A TR u LI ES R
n, ZOEZX

(1.2)

ls = z (1~3)

BFRDEILIFENSE. ZOTROEIEAVE L, EROEHDODEVOR (1.2)
%

d
%=gé§ (1.4)

LESRTILHTES. ZOX(14) FM L1ITRT XD, $§RDES [ AEWRSE
DB D FEE 7345 % BEH D NESAN & ERRTHMET L THREL X D LR o fE L, &S &
DD THEZE2RLTWS. EEORX (1.1), (1.2), (1.4) IFWVWIh$ Navier R
M EN, EET RO IZERERER A 23T AROES [ ITL-oTREBDIISZ
EINTES. ZLDFERT A & [ IFEAWEED 10° s IFORNIZEWT—EMET
HBHIEPHEINTEY 5], EBIHHINSRWNITEWT A & [ 13 AWEEIZ
HAFE 9, BEREBEAROHALGLEDOARZ L > TREDIYMEMEE ART I ENTEE, &2
B, 1P ReEs L E, FEBBEBRE A ZERSEDORED AIRT L Tk
EHMETHZDIHL, X (1.3) TRUTKZ & DT [ (IXTEIKOYINET & 2 KRB D 2
LEEENTVS. ERINZIEB L7 10° s L FORAMEE DN b DA, —F
T, VWD TFENFEEZAWEZY I ab—Y 3 Y TIRRA D20 1 X & FHRE O H
DR oFANEELB L2 10° s L EORNDBHWSNE Z AL L, ZOHFATI A
&l BEAMEE KT T 2 Z e RESINTWVS [10,21]. BOEAKNEETHDIZE
VIalb—=vavIZBLWTHEHEINSE A L [ DEDIXSDEIIRELS LD 7-DMHRT S

¢ /
/
/
)FV&? Vy
lg
\wf solid

Figure 1.1 Geometric representation of the velocity slip and slip length.



1.1 = 3

described by ;
Navier-Stokes equation | affected by solid |

4 // z ;\

macroscopic
(a) (b) (c)
Figure 1.2 Schematics of the concept of the solid-liquid interface. In (a), liquid is described
by the Navier-Stokes equation, and the solid-liquid interface has zero thickness as in the
macroscopic fluid dynamics. In (b), liquid is affected by the solid wall in the vicinity of the
interface with a thickness of /,. In (c), the whole liquid is affected by the solid wall.

ORHETH DD, ¥Ial—yaviZBVWTHEWEAWEET A & [ AA—EHEIZIL
RE2ZeNnHfFINTNS [10,21,22]. EERE Y Ial—YaryondhiisBnTd,
IS A 0 12 BT B % T T O Navier ERAIHCHNZ TRD B [ b U < [XFEE
BRI A 23RD, TRODKHEZHSMTT B I EVHND 1 DTHE2H5EMZ W [11].

Navier BEFR R ITRR L T HRPULGZDENIZ LD, Navier-Stokes J5F2 D [E TSR
FMETREBRWETEEELHD. ZHIZDWT, Navier-Stokes SFFEZ THlR T & 2 Hifk
DL, BERDOFEIZ XD Navier-Stokes HFER TR T SR WATREMED D 5 FHIK D K
NS, M 1.2 TRT 3EYORMICOVWTHERS. £9, M 1.2(a) TRLAZ 1D
HoGélE, X (1.2) THEALL DL, —BNR~ 27827 =)V OFRKIIF LRI
L EREERT O E [ £ T Navier-Stokes AR A TRIBTE 2 L ARELIHETH L. ZDY
&, EWEAEOFEAEE T & A% L THhbi, Navier BERGEMA T — LR I1# L R U
KT Navier-Stokes HFEARDHERSFMETH S, IZ, B 1.2(b) THRLU 2 DHOBE
1%, 7/ A= NV AT =V OBUNSTRENZE\WNT, BEMH D S BN 72 SEI% LI IAR O E B %
Navier-Stokes A TELR TE 2%, BEEGIMEIZE W TEEH DR % X 1T 2 IR DI
LT B, T72bs, EEAHDEM [, WEATELRWGEAETHL. ZOHEITEL
TH, M 1.2(a) DEGE L FRRIZ Navier B4 2% Navier-Stokes HRERDHERFMTH
22\ %E LN, Navier-Stokes HFER TRlA TE 25O EEL Z4F LT, D
TV, BEROFEEZF 5 1.2(b) THAAIZE > 72 HHISO NERO M 2 1 L <, BRI
l BED, JEX [, ORI % B < fEik DRK % Navier-Stokes 2R & Navier BE57
FMHFIZEDERTEZEWARETH D, H DV FE 72, Navier B % Navier-Stokes
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FREROBREM L ARSI RO %2 LI, BEEOREE 2 5 SN O3 E 54 %
HAWT, EURC IR, BEm @< & ABIGT, BERDEEOHREAR A, 5 X (1.1),
(LA ITED AR ZERTHIENARTHS. ZOVEOEE, X (1.1) &KX (1.4)
FENENT RO EE L EAWIGT, TN0HE R[N ZHEAROBKREERL, X
(1.2), (1.3) 28T 2 p 3EEEEE OGNNSR TH D L ARTHENDH D, &
Bz, B 1.2(c) TRLE3DHOEHAE, H—KYF ) Fa—7 (ONT) W [13,14,17]
R EZ HITHUNRIREEIZ BT, K RIEAEEMH D2 % 3% ) Navier-Stokes JiFEA T
AR TELHEBPFELRVWEETHSD. ZOK 1.2(c) DEEIZ, Navier BEFRGAMC
Navier-Stokes GRERNDEERGEM & UTOREKITZR WA, X (1.1), (14) ZHWT A% [
EERTHIENARETH L. LD, 7405, Navier B SEM: % Navier-Stokes
HRBRRNOEHERGEE RE D0, T HRIZA (1.1), (14) TEZEI N TR EE,
AWML, BEAROBFRE RE0E, BEOHFIIEVWTKIlENAY, B LI,
B T T35 D A5 Sh A 7 REME AR IS S & BN 7= REIR I WME L 72 5720 85 5 D% & -
THMERNETHEEDL N [8,10,17,23]. AWFETIX, HOHE 4 T TH 1.2(b) DR
W& S D, Navier RS 1& Navier-Stokes AREADFEEBE R SLME2RT & WD DAL
izl v, BEED SN/ BB — IS ORE A EMELT A, [ DREZETD.

Navier B RMFTRINGEE T RO PRNIZE X DB LN 72012, L p)]
EUTHEATERMOENRENIZ L2 EREHZATAS. K 1.3DX S H D 2R5ED
MEE TN AMDOETHAE%Z VP(< 0) & L7545, 1.2(a) DHED & S ITHEKDE
#)% Navier-Stokes HFEATERL, Iz ETOBEHR T I, 2 —& & U7 Navier 55 &4k
(1.4) 2L TR &, EFHREBOEEY v(y) 1

vP H?
v(y) = M {)’2 T Hls} (1.5)

7%, ZOMNDEHBEELRE fp 2RkD5. Thbb, BAEI DD DOEEK
—VP %I uy ETEAREE p Z FHHNT

2

B 1 pug,
_VP = fPH 5 (1.6)
ERUZE EDRIBMTH DEZBBEIBE fr 2RkDD L, Thi
24 1
fP—gH%_S 4o

&72% [24]. ZZT Reynolds #t Re = pu H/pu & U7z, FEEEFRELGREIZ TR LD
BIZIE Re DADEBTHED, IROVBHIGEFETARNY)EI LREIEOL I/H IZH
HIFEL, TROBDHIGEDHFPTRYBRLDEE XD BEEIN/NI V., TR D8 %
FEADLDIZ, IRDHY L UDEERIBEBODLI ¢ 2, Re BRI THDE LT

fp 1

- 1.8
(fe)l=0 1+6% (1.8)

o5 (Is/H) =
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Figure 1.3 Two dimensional pressure-driven laminar flow between parallel walls with Navier

boundary condition.
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Figure 1.4 The ratio of friction factor with velocity slip normalized by the value without

velocity slip.

CEHEL, ThE HOBEKE LT, [ =10,100 nm OFEIZDOWTERUZKEREZX 1.4
R U7z, WEIE H DA =R IV A= M A =X —DHETIETRD ORE LW
M, HPXA A A= MVA—=X =282 TRDIZLZELEKNOMENPENT NS,
HMWI ERIUA—X =272 LEEBERIETRD QL HART 1/TREICRD, KER
IR O R AF o NS,

1.1.2 FEEIARYDEHA

FERIZ T A R X 2FWT 2720101, HEBOZT — LT R E S TEWHUN
WA D BEND B [4-6,11,12,15,17). Bz, Holt & [6] iXEEALM L 7z H R
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2nm ARND CNT 2 HHWTHIAD D DI Z/EHR L, @i 5 KDMENS TR %
FHHIL 72, ZOFER, HERNAWMEIZTRND 2L 06 FHIT NS ED 560~8400 f%T
HY, INETRYRIITHR TS & 140~1400 nm TH B Z L2 WEL TS, £k,
Ortiz-Young & [15] i3/KH T 52 F 2 K AFM (Atomic Force Microscope)
THWOND AV FLUN—% 3 nm U TOHME CIEESE, 7Y FUAN-2REHI L
BRI 2@ < I 6T RDRE 2Rk 7z, BIWEORZLRETOFHIZLD, Hho
FVWKRHATIEITRYREZZFI LT TH S, BOEPIBENZETRDEIVEL, fl2IEHE
filfg 90° DRMTI AN RIFZ T~13 nm BETHL I 2RL TS,

EROZT RO DO~ /T, ¥Ialb—va ilkdTR0O@FbTbN, R
5181717 (Molecular Dynamics, MD) %1343 7 L NV T O BRI 72 it 23 C & 2 50
Y= UTIEL b TW\Wd [9-14,17]. KEzHW=H%22%1F5 &, D. Huang 5 [9)
% Sendner & [10] IZM T PHEDR LS4 2R LTOKDTRD KEI %, Couette
Wz U T8 723EEM MD (NonEquilibrium MD, NEMD) Tk®, TR0 Kk &KiH
DIEfNF 6, DIz REERIIC

Is oc (cos O, + 1)72 (1.9)

DR O LD I % RLUTWA. Sendner & [10] IZ&BYIalb—YavTid#E
fil /5153 90°, 140° DREMTI R EIFZENETN 1, 7Tum BETH Y, FidRD Ortiz-
Young 5 DEERE LB LTI R EIIZE WD, BilANKEWHKEDORER TH 3
FEETROBREVE WS ABRMENZ XL TWS, 72, Falk 5 [13,14] i NEMD
EFHAWTC2MOZ 572 D% CNT Ok, TX =), FThrigEDBEEKD
TRDIZDWTHRT Lz, ZOFER, 757 = VHEOHREND EREBGRERIZKDIEGE
A1=12x10* Ns/m? (I, =80 nm), =&/ —)LDOEHH 1=48x102 Ns/m® THb, F
72 CNT HOFNDH L ONT OFEAVNSWIEFE A BNBATEZ e 2SI L. Bl
WD Holt 5DEMREHIELTYIalb—raryDIRYVEIZEWS, AURICHLT
EWA =X —DfERMEFSNTNS [17].

ERD & S I1ZEE, NEMD OWIhd, KOTARDEI kL 0 i 2BEmIZ M LT
R EVHUKEDOBEIZFERWZ RSN TE Y, NEMD THEHIWZT R
DR X XBUKME O RENZ R U A2 X 20~70 nm FRETH S Z LA ME I LTV
% [12,18].

W zEL 72 NEMD &35z, mhd7znwEfi MD (Equilibrium MD, EMD)
THETRDZFHUL LS CVWOSHBRART T —F D SN T WS [22,25-29).
Bocquet & Barrat [25,26] 13 1994 4FIZBERI DA 5% 1T 51D W & & % W THEI#K
EEBURE & RD D Green-Kubo RZ O THEL . T D Green-Kubo RiF LD
Ry EX e OBFRA (1.9) PN T 2 BB OHHIZEHbNTWS [9,10]. LAL,
Bocquet & Barrat ® Green-Kubo &ilZ A D K E» 72l %Z FHITEI N TEDZEHD
D [14,26], FEERE 721 TR BEROMMEDOEREEATLES LWL S HEFHVLILTY
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% [22,26,28,30]. ZOME% R L 72 kL UT, Hansen 5 [28] I EH i % D
P OWAREE &, T 2@ DOMBEBEEN»S A 2RO EERELL. £z, K
Huang & Szlufarska [22] 1% Bocquet & Barrat & (3572 % Green-Kubo Nz EH L TW
5. ZOfzE, Wang 5 [27] ZAEDEARE L& R 28 Z, BEREFVPIEDRT V
Y NVDNERED TR BASBEETH D L RALT, WERIGEEDBGR» S KT v
Y LDIDEE (EHET RV F—) &AW CEREERERZ KD 5 FEE R U,

113 BEEIRYDIGAEEEGROTARY

HWETAR)DIGHORKRNZEDE LT, 7/ AT —LOfi{dlz b DOIEP L AEK%
W2 WK D B WA D S iR SR T S Z e T 5B [17,18]. BIZE, 72 TR
DY EIHEN D R VN TEDRERNTIT S KD DEED T 3 )V F = RIZFIEA N STV
2R B £ A MKOBIEMED 30 5 Th LI (18], ZTOTZTRY VO %
CNT 2L e UTHWAZBIZ X DL &5 s wWoRANEZ SN TWS [17,18,31].
FMOIGHE LT, Y17 {bZORBHTIESYI 7ans ) ) A7 =)L OiREEEHAWT
DEORRCEEITALEN RN 2T 52 LB EDLNTWVWE D [16,32], ZOHKIZH
WCTHEHETROPELDZEAREINTED [16], TRV ZRM LS 572 58%(b
DPHAFCTE 5.

FROESIRIEHEZEZEZ S LT, HEITRDITAKEW, UL, HIHTESEZ e2E
FLW. HETROIFEERAmIBVWTELZERTHDH, ZITCLEOBRIZDONT
FZEZTHDE, HERAMIESTHEAZREIE DS Hike UTHOBEKZREES & WS 4
k2 el eI N TV, FIZIE, PEROBLEERE CTIEHH nm A7 — )L O
& 33 2b DoY) vy a NOPEFHIZHRERD P2 LI L HWTAKAD T IV

A—VOREEMTONT WS [34,35]. 7z, FIRIZE TlE nm, nm R 7 — )VIUN R W
OENMEDHIENIZ T IV I = VORERHNSNT WS [36].

ZD XS IZHRDBREGITEE TN OfEH, HIEOFEE U THHATE 2N DH
5. 7z, ETEIZEETRYORANYTHBEOSH, EARNOTN, PG
7RO B IXIE G WA BRIV BREDRH D, WARDRENEETRDIZEZ S
B OHENKRDOOoNDE. LEDO LS ICERAGROEE TN FnH LEETHLD, Z
TUZ DWW T - 725E A . MD & F\W72l% %1 % £, Denniston & [37,38] & 2
BHEOBRFADFOIEIZ L > THEEINZ|NLO TR IZOWTHIT 2T 72, £77,
Ameur & [39] IZEARIZRT 2iENMZ T HRR S 2 FEOBFE T2 T ORAGHEZ AWV
T, HBOWEICRTE2TRODEEIZOWTHFTLTWS. MD ZHW-3 XD DT,
KigEDISH LEER T 5K 5REGWEZ R 725 DIFEZFDOH LR TIEBED L Z
AEINT VAR,
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1.2 fHREHN

PAETRUZZEDIT, BED DKOEE TR D EHE2 RERICN U TRVERENZE
REVWZEDBHISNTWED, TR OHIELREDRHEZEZ 5 ETEHEREGEDEE
TARDIIZHEAL TEHESCFARSN TV, £ TR TIE, KADMDBKRDESIZ &
ZHET RO OFIEOAGEMEDMIAEZ HR & LU, MD iEZ2HWTKE A X —)VOREH
DHET R Dfffr 17>, 2T, BETHIHEKELTAX ) —IVEHWEZDIE, Th
DRERE/NIRGTDT VA=)V TIKANDFEMRENIEFEITEH S, TERIZEESHWSGNT
WB7=OThD. 51T, AR —)VIFBIAMED OH 3 & BukitEd CH; % b RHE
MFHIDEHHERET IV EARTIENTEL 2D, REAOYMEICEELZEZXTWVWI BT
Hxn s [36].

AW TIIRR 2 7 A X ) — )VIBEORGHIZH LT, D dBIEFMR L IHNDZ W
EHIRD 2 DDREHWCTHNZ1T7S. KFROE 1 OBBIZEA X/ —IVREIZE W
THET R DR, $7hbb, EREERHR A LI ROEI [ ZENTLIILTHS.
VMR TIREE DA RBENZ T ZIEA2 5 R (1.4), (1.1) 2 HWTTRY B L [HKE
PR EEINT 2 EAHRETHD. O RICBIIIMHITLD, TRDEI LHEH
BRI A X ) — VORE IR L, DT PREEOREINI LD EETRD 2E#ET
EHLVIMRVBOND Z L a2mTH, KFFEDOH 2 DEHEIXI DZEDERIZDWT
BHSMZTBHZETHS. AL TIE Green-Kubo Rz & 0[] BEBAR L & Al 0 W
DR ZHERNIZRE S ZLIZEHL, FH#RIZBEWT Green-Kubo X% F W 7 it %
175 . %2, K. Huang & Szlufarska [22] 232% U 7z Green-Kubo RIZIEADIEIH T &
DEEEBRBIC B I TE I e PRETHY, ZOFEA/ZIELT 1 DOH
D FITHERS B ERD & DEEER L ) F ORHEE DR, T OFEHE L HLERBDOBERIZD
WCHRHT LU, IBREWOBERERREIZ OV THENT 5. 2B, INETICERAKIIHLT
Green-Kubo & FIWTHEHT U 72 BIEEHRE T T vz,

1.3 SR DIEK

ARERSLORERITA T D@D TH 5.

02 WTIED TENFEORE TR L AL THV D HERHERIZ O WTERRS ., KT,
ARFGE LRI ERARER, REMEREL, [ERERGRECE Green-Kubo XA FHWTHHT 5723, Z
NS DEHNIZ DOWTIZEEMIZZR U 7=

H3ETIIREDRN—HR NIV RITBWT, BOMITIZHWSKE AR ) —)LD
BAWDILERE & MR EIE U, AWSETH W28 FE TV D Z XM DWW TIRGE
T 5.

4 ZETITIEEMRDENFERIZ DO W TR RS, SEAFENHM CIRESHEIZ Couette LD



1.3 X DAL 9

HNnzAEUIE, HESMEBEEIZESEABRAON S TR BRI & EREBRREZ K
O, IREDORECEMFAHEN L EET N OERIZOWTHRT 5. 7z, BHROLE
XD BAMISOERL L, BEE & BAARDIE T DD D A WREER A 5 Bt 72 SIS B W
T Newton OREVEIERIDE O SEODZDOWTHER T 5. 612, X (1.9) TRUZBRA %2
BEIZ BT 2 Bl OWIR TR S N5 BIERDY, IBREWIZH U TR D LD 52 DWW THRGE
T5.

55 HTIX MR OMNTAERIZDOWTIRAR S, Bocquet & Barrat @ 4% [25,26] & K.
Huang & Szlufarska ® /i [22] 12 & D Green-Kubo X% W T B EBLEEZ KD,
INDE 4 BOIFEMRADKERZFHHT 22T OVWTHERT 5. 2512, K. Huang &
Szlufarska DI BG &2 JRAR U, EREBRGRE L 07 ORE, IREEREDBIRIZ DO WT
g 5.

#6 ETIIKmEZ B NRD.
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DFENNFIER & BEREER

2.1 & PEOES AN & BERDE

DTEIFEE, T OER) SRR UL LU TRERICE 22tk v fx DT D
HE 2B L CW HIETH D, AETHVWE D FETIVTIE, KEAR = VIEH+
WHHEZ S 220K E UTHky, BEREE FIFEAE LTS . 207k, 2170
Rk 2B GFER L U, BENOEE S X WA #EE) 121X Newton O EE) HFE
X, HHAD[EIEENZ 1L Buler OE& AR 2 HWS. AEiTIE, Wik, [lEEoES)HE
X, BLOEENS DHEBALTFIEIZ O WTRRS.

211 WEEH

HEm; DT ilZ20WT, ELODOMNENRY MVE r, 2 TIHEHT 6 0% F; L 31
¥, Newton DEE)HFERIX
2

W%ngi (2.1)
Thd. ZITERTIZEHLS O F PETOMEDAIEKGET2KT V¥ v I)VEK
O PoENINDZETE. ZOLE, T iV M HORTroEEINEEL, o
T iHOEET a(=1,...,M;)) DALEXNTZ bV%E r o EREEX, TORT VI YL
D (Fi1yee s F1LMys - s IN1s - PN My) ZHWVWT F; 1

Fi:—

a=1

(2.2)

ari,a

rERIND.
SHE AR (2.1) 2 BIERICRAT A2 Lic kD, B 1 2B 3 &H FOBELE r;
LT v, 2R L HED SHETE S, ABRCIENEEH OB SRR %5



12 H2E D FEER B

JEBHIZ LN O Verlet 3% [40] % W 7=,

AQ
rT1=ﬁ+Aw?+;ﬂIT (2.3)
m;
n+l _ _n 7 Fn Fn+1 2.4
Vi —"i+m,(i+i) (2.4)
1

22U, A RNERATHY, EMEORT n EAT Y THERT. I OME Verlet IK
TRETn ATy THIZB T 200, #E, HEHAWTR (23) I2&Y n+1 A7y 7HIZ
BIFBALE r 2RML, ZOMEEHWT i+l ATy THIZB T 20 FM 25l
5. ISIZZOHF ZHWTR (24) 1280 n+1 27y THOBE v+ 2kD 5.

212 [OEmEE

WA D Al E B 1, FEMERZEMICEEET, BIEROFMEZ D FOEMIEE L
THEIEMEEA D FOEEEE T E2L51CL200FHTHE. ZOREERE
X ={x,y, 2} TEL, DTEERLIERNZ LI2T 5. DTEERN S A7 Euler O j#
FHARENIUATORNTHREINS.

Loy — wywy(Iy — 1) = Ty (2.5a)
Iy iy —wywy (I = Io) = Ty (2.5b)
Liwy —wywy (I = 1Iy) = Ty (2.5¢)

ZIZT, Ly, Iy, Iy 3EEEE—A VM, 0" = (0y, 0y, 0)T & 0 FENZ0ENEE
WA D OfEE & 2 ORI, T = (e, 1y, )T BEEE#EADO ML TH S, F
Tz, BTERTET D ITEMU 2. O E 2 BEICEE U TRRB D TELE —3
T BHEMPEER XS = {x,y,z) TERUZAE r® 260 FEIER X = (x,y,7/) TRLUE
FiE rP o~ EEREZS X ZE AT 51 A % VT

rb = Ars (2.6)
TRTIENTE, ZOLHTH Ald Euler A4 ¢, 0, y ZHWT

cos ¢ cos i — sin ¢ cos 6 sin sin @ cosyy —cos@cos@siny  sinfsiny

A =|—-cos¢siny —singcosfcosyy —singsiny + cos¢cosfcosy sinfcosy
sin ¢ sin 6 —cos ¢siné cos 6
(2.7)

TRIND. 72, rP 95 rs ANOBEERIL, A ORETS AT 2T
rs=A%rb (2.8)

Thb. EREERATDO MY 5 130 Fi 2HETHREF a(=1,...,M;) DHFDELN
IO DALIENRT NV TSy CIRF a ZEHT 501 Fi g 25

i

7= 1y xFia (2.9)
1

a=
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LRED, BEAHEFEKIC, 2TEERO VY TP
b _ S
T° = At (2.10)

WZE->THRIZIENTES.
Euler 5 & EVEFE8EHE O A E DRI IZ

wy = sinfsinyg + 0 cosy (2.11a)
Wy = ¢siné cosy — Osin g (2.11b)
Wy = ¢cosh+y (2.11c)

DEBRADH Y, ZhE é, 0, ¥ IZONTIEL &

¢ = oy (a)x/ siny + wy cos ¢/) (2.12a)
0 = Wy cosY — wy siny (2.12b)
. cos 6 )

U= wy — v (a)x/ siny + wy cos 1//) (2.12¢)

WESND., EREEERATRDEZ MLy 15 2R (2.10) 2 AVTHFIERERA L ZBHL,
& (2.5) é:zt(z.m) RN UTRITIED FONEEH 255 e TES. Larl, R
(2.12a), (2.12¢) 2¥sinf = 0 (IZFERSZ D720, ZDF F CRBUEMIZALETH 5.
ZZT, INEEET ZH7EL LT, Euler HOMRD O IZWUTHEEHNTH T ORBER
B33 hEEHAWS. MW q = (91,2, 93, q4) T 1% Euler 42 W T

0\ iy (Y2
(Z1 Sin (5) Sll’l(T)
q2 sin(g) cos (%‘ﬁ)
q= o\ o (2.13)
qs3 005(5)81n (T)
q4 CcoS (g) cos(@)
t’—‘j’%ém’ D qi1; 92, 43, 44 ®Fﬁﬁc:ci
g =47 + 43 +4q3 +4q; = 1 (2.14)
DORIRNH 5. Pz HWS &K (2.7) OZEHITHNI
2 2 2 2
-7+ 95495 +q;  2(9394 — q192) 2(q293 + q194)
A=| -2(q1q2+q390) di-a5-495+4q;  2(q294 — q193) (2.15)
2(q293 — 191)  —2(q193 + 42q1)  —q} — g2 + g3 + ¢}
cxRINs. X (2.13) OEFEIHD IE
q1 —q3 —q4 42 q1)\[Wx
] 1 - - , 1
= q.2 _ 2| 44 q3 qr gz || Wy | _ “MoP (216)
qs 2| @1 92  q4 q3||wz 2

g4 -2 q —q3 qs)\ 0O
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THO, Euler f THNZRELAMEETETNS. 22T

—q3 —q4 42 q1

q1 q2 q4 43

—q2 q1 —43 (4
EBE, HTBERIIBTAAEE 0P 1357z

wb =Y (2.18)

ERU.

[l H5 B D EAERE 3 7V TV A& U THE Verlet % AR & U 72 U o B0 1%
[41,42] % 7=, PUEEHHIE CIRIER g 12DV, R (2.14) ORI EME £ 7T &
S e R &R U 7 #EE) 5 FE % Lagrange O R EFTEIEZ FHWTRD, ZHUIDWTHE
DEFZEITD. RERBA ZHWTHHRNZ —2Aq T 5%, HEE Verlet IKIZB T 541
BEDZA (2.3) TGS ST ¢ DA

At)?
q””::q”+uﬂqn+£7£—(q"—2Aq") (2.19)

Thbd. 2T, HBHE2HED ¢ 13X (2.16) kofEonsd. £z, HUHE3ED § 12D
WTIR (2.16) DT &b,

I
§=5Mo"-(4-9)q (2.20)

THY, o IEFHHER (2.5) £

Wy Ty [ Ly + wyrwz Ly — 1) [ Lo
b _ |y | |7/ ly +wywx Ly = 1)/
== 2.21
Wy Ty [y + wywy (L = 1yr) [ 1 ( )
0 0
ELTROLEND. THIT, REFEHAICDOVTIE, HRSEME (2.14) &0
9 (41)? (4r)? 9
(4nH°“A=1- 5 51 1= (4t)?sy — (At)3s5 — 1 (s3 —s7) (2.22)

ERED. ZZT, s1=q-q¢,50=q-¢,s3=§¢-§ £B\7=.
WIZ, HEE 0P 1I2DWT, HEE Verlet HEI2 B 1 2 HE D45 (2.4) IZxIET 5 201X

()" = (@) + 5 { (") + (o)) (2.23)

TEEND. UL, ZOEHR (2.23) i (6°)" OEHIIZR (221) TRLEE S IR
D (0P) BEENB OB IR RV, TOED I TRREREENNT
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RS . BIRICIE, 1+l 2Ty THOMEEOMEE (o?)" " c0 LsE,
DRI EHE DB LTS,
0 Lo + )P (1 - 1) L

L(j L(j
(d)b)n+1,(j) _ Ty”,“/ly, +wl) (])w;'f U1, - 1)/1

n+l n+1,(j) n+L(j) (2.24a)
TZ’ /IZ, + wx/ T wy/ ’ (Ix/ — Iy/)/IZ/
0
p\+LGHD o opyn At b\ b\ +L()
(«") = (") +7{(“’ ) + (@) } (2.24b)

I TEMERT () BIXEFEOMOBELUFEEZRL, ZORTEVRVERILZ DR
WZBEWTHEEHITH 5.
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22 RTFVIvIEMBLVULFETIV

AFFRIFEABDEE TR IZOVWT—BNIZERT2EDTHD, KEAX I —ILD
BEBOYIMEIZDOWTHEBRE OB BMIZHE R —BIIBEL L., ORI T
1, BD 4,5 EIIBEITBEITITRERKE XX — VDRGSR DREIERE & SEER S
DWT, BEZIIHUTHEEZH DLW EBRORHNREAEZ S Iab—Yavils
WTEMMICHET 2 Z L 2HNE UCTHRARD FETVOREZTo72. AWSETI, H#H
55> DWARD MD IZBWTIEKHAWSLNT WS 43] DL LT, K AR —LDsHT
ETIVIZENEN SPC/E €TV [44] & OPLS-UA €7 )V [45,46] 2 L7z, £72Z
NHDORFETIVIEHIAL UCHHEIZRA 5. ERIEOHEBRMEIZOWTORMIE 3T
R, TS DHFETIIIIARFFMEA/EA Z Lorentz-Berthelot 14 I 2 W5
Z & CIRATEDORNERE L ILBUREBDYERR & BN 2R T, b, Zhsofl
AGDOEIT & D FERR L FRREERFEEZER L2720, o TETVOMAGEDLEIC
DWTIHMGEE L TR, FERIZOWTIX, TOME, FoRmis, %rmbm, EEH
MEAEARI R EPEETROIZE R ZEIIRE VD [8,11], AL TIHIREOEAD
EBIZIEEHT 7280, ERICIZERHZETILE L THASOKTRIEEZ S 5 I EE

MM DR ZH W, AHITIE, TNS5OETIABLOEFEIART VY vILEIZD
WCRIAR T 5.

221 RFvIvILEH

AT THNS 3 TETIV T, BRRE T, BAAR-EKREFFIZ 12-6 Lennard-
Jones (L-J) KT v ¥ v )b @y & Coulomb KT > ¥ v )b Oc BMEHT S, 7z, [Ek-
GRS - 134212 2.5.3 IH TR % Langevin 2Rk 2 M cE 2 i@ ET L2 L
T [11), R FECHRE R T oYy L oy, ZHVS. WINOKRT VY v ILE
BHEF i, j FOE# r;; OBIBTH Y, ThZTROANTRIND.

o) = {(72)"- (32

e (i) = Zi;;% (2.26)
Oy (rij) = g (rij - req)2 (2.27)

ZIZT, ey, 0y BET 0, jED LI RT Y Y Y VOIZRNF— L HED/ST A —RTH
0, H21??Ti5’ﬁ%yvv»#ﬁ®%étﬁﬁuﬁﬁﬁé.ik,%uﬁ¥i®
LOEM, o FHZEDFER, k INFEB, req 1T FMFEFRIEHTH L. HEOFHH
~@&L2&1%fn«é&9_,%ﬁ@%ﬁk@t@KQJKQCKﬁEﬁ%mzé:
ZED, Ay NA T ro KV EEGOMHAEMERZITBY -7, L-JMHAEEHD A v
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NAZZDo0WTIE, BTy Yy K 2.1 TRUZE D ICHEREIZS LT -6 BCRUZIHRE
5Dy NATDEEINIWEEZSNS. 72 Coulomb HHEEHD A7y N A7
ZOWT, TNEHWS ZEIZX 0 BHE#OMAEEHASH S Ewald ¥ [40] 72 &% W
72356 & R U TR D YIMEEIZ BRI 24 U B [47,48] 7%, #RICE 3BTRS &
SIARMEIZBEWTH Y AT EHWZEETH > THIRGTHEOILHIRE & KRR D
BRI 27 %2 IS 728, WD FI2 D W TEEZRKEMES R ITHET 2D
Coulomb HEAEHIZDOWTIE A Y A T7ZHWTHEHETE2EFZ 6N 5.

-05 —

-1 | i | | | | [

0 05 1 15 2 25 3 35 4
rlo

Figure 2.1 12-6 Lennard-Jones potential.

222 KOHFEFIL

K (HyO) ®4r 7€ T )& LT SPC/E (Extended Simple Point Charge) [44] % F\»
2. TOETIVIEREFREESMEIEE S NWZHEETLVLTHD, B 22 12RT XS
IZIR R KEE FHEEEEX 0.1 nm, MEFRT& 2 DOKRFE 72749 A% 109.47° TH
5. FRFOERERT VY vy VWA IA-XDEEE 21 ITRT. &b, Ko FOHEEZ
2.992x1072 kg TH 5. F7z, KEFRTIZ L-J KT V¥ v )VIIEH L.

Figure 2.2 Structure of water molecule in SPC/E potential model.
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Table 2.1 Mass and potential parameters for water molecule in SPC/E model.

o [nm)] e [J] q le] mass [kg]
H - - 04238  1.674x107%7
O | 0.3166 1.08x1072!  —0.8476 2.657x10726

223 XY )—)ILOBFETI

AR /) —) (CH30H) D4 FET )& LT OPLS-UA (Optimized Potentials for Lig-
uid Simulation — United Atom) [45,46] % f\7z. UA €TV TIEA FIVE (CH;) %
FOT1IODOEREUTHD. £72, AR —=NVHFIEAHKE ULTHRDS Z W TE,
2.3 129 & 512 CH3-0 & O-H fEREIXZ 24 0.143 nm, 0.0945 nm TH D, 2
DOFEEH RS AIX108.5° THD. FRFOERERT VI Y VNI A—RDfEEK 2.2
RS, AR =V TOMERIZ 5.321x10726 kg TH 5. 7z, KT & FEKICK
FETFIZL-I BTy v VIREA LRV, 28, KX TREPHENFTALR ) L%
MeOH &K T 25605 5.

Figure 2.3 Structure of methanol molecule in OPLS-UA potential model.

Table 2.2 Mass and potential parameters for methanol molecule in OPLS-UA model.

o [nm)] e [J] q le] mass [kg]

CHs | 0.3775 1.439x1072'  0.265  2.497x107%0
O 0.3070  1.182x10721  -0.700 2.657x1072¢
H - - 0.435  1.674x10727
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224 EEHERETIL

EARBEE I21E, SHEFOEBOHHEZS DEMAET L E LT, R FMEICR
(2.27) TRUZHFEANIRE TR T V¥ vV O, ZEHIE2. AL TIIEHE FOEEL
RT VY Y IUNTA-RIZERDEZZRL . &iEEZKR 2.3 1TR7.

RS TIEEROREREMEE L LT FCC 2 AW, K 2413 F X5 7% (111) Wiz A L
BEdame UTHWE.

Table 2.3 Mass and potential parameters of solid atom.

k [N/m] req [nm]  mass [kg]
46.8 0.277  3.239x107%°

Figure 2.4 Top and side views of (111) surface of FCC crystal structure.

225 ERERFEOHEEBEFERNSA—%

B 5WARR O L-J 785 A —& g, o 1% Lorentz-Berthelot {£&HIIZ & > TEE L
72 [40,48]. ZOREGAITIE, 2 2 20T A, BIZ2DWT AB HD/XT X —X& gap,

EAB = VEAAEBB (2.28)
1
OAB = —(O'AA+O'BB) (2.29)

2
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THEZONG., BIZEIETHERD L S1Z, ZZTRUERBRNZESNZHWZ5ET
HoTH, KRR —IVEAWDILEFREL & MR D IR MM 12 B E & B MR
—H9 5.

WARE 7 BEHE FOMOMEEERICIZ LI RF oy LOAZMEMIE, HAEE
N T A —21F[A U < Lorentz-Berthelot {EGHIIZ X > TE&E L 2. BEHID L-J /N5
A—=RIZDOWTIXZDEEAHOAMMIANSE D, KWK T owall-wan (ZIEEHED van der
Waals 1% [49,50] Z2HHA L7z, £72, ewalwan W EXEERIC T 2HAROHE DL/ Z
KU, eyallowall PRZEWVIFZEFTNDVRLS DD [51,52], AL TIEEZE LT FCC D
(111) WX 2K DR O EMMA DS K Z 90° 12725 K 512 egalwan & BUEAIZEEE
U7z [36,51]. X (1.9) TREIN/ & D IR E ERDOFHE % [EE U T egall-wan & K E
KT5E, IRDEZIFELS, EREBEBEEHEIRE< R EEAONDS [9,10]. 7z,
Ewall-wall Z [EEU7ZHEDTRNY BRI PEEEBRED A X ) — VIREKREMEIZDOWT
1, B0 4,5 EFETRT & O ITHEMMEDBERNIZ T LT A X — DBk D CHy % B
AN, OH HEAMLOHAK L KEFEEG 2 IBKT 5 Z LT & DEBEMIZEET 5 Z L AENT
HY, BEKREECZOWTOEEMNZZRBENIZ ewall-wal DA DHEITNIVWEZZON
5. AFFETHWSEERE 7D L-J NI A —XDEMEER 2.4 1TRT.

Table 2.4 L-J potential parameters for wall atoms used to determine inter-molecular inter-

action parameters based on Lorentz-Berthelot mixing rules.

O wall-wall [nm] Ewall-wall [J]

0.35 1.44x10721
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2.3 FEOEZELEEREM

AETCEDFENFFECZBEWTILSHWSNS, By AT R FEREICXLEHED
b FEE, ARSI OWTIRRS [40].

231 Hhy hF7

AWML TIE, FHEIFRM O REHE D 72 D12 7 MRS — Sl EOMEFEMEZ ¥ rI2T 5
AV NATE2TRTOL-J KT V¥ ¥ I)LE LU Coulomb BT > ¥ ¥ I U THW .
FTOBIC, TALVF =L HRREFRZRS5RNE DL, By M T rey DALET
KTV Y VIANF = ZOREPERIT0D K51 ryy © 2 REE» S 72 5IEHE
Mz 7z, WHEEZMA 72 L-J AT X Coulomb AT V¥ ¥ VikFNnth

()" (50) + o (2 )] o v
QLJUﬁ): i i o (2.30)

0 (rij >rcut)

g o\ 2
qi4; 1 1 Tij __3 .
dneg [rij + {2rcut (rcut) 2rcut }] (rl'] S rCUt)

rij) = (231)
0 (rij > reut)
kb, 2T
12 6
Ti: O;i:
¢ty = (ri) —3(m1) (2.32)
12 6
O-ij O-ij
CgJ:_ (rcut) +4(rcut) (233)

ThbH. KifFETIE rege = 1.5 nm & U 7=,

232 NFEHE

LEDAY b AT ERHWGE, B row & 0EGOMEBMEHIZHE Z D BEPLND,
FAEATY T TR TOMEMEMA AR OEREZ B L CHEEHOEEEZHBT S
&, INECTHEMERMAO ZFIZIHIT MO E 2T BEN DD, ZOMHAIEH
DHE DR 2 ZNHANAT S FHiEe UTC, RRETIZHINMHEEHOMREDOH 2 ) A
b & AERCS DR ERREE Wz, K EBEORERM 2K 2.5 ITRY. ZOHEEAY
N A7 BEEE D AMANZ —EWE Areye OIS ZE T, MHE/EHA SO reyt + Arene WT
HERTDVANEMERL, ZOVANMIBHZHDIZOWTDOAN Y b 7 Hif ro, TH
HEROFHEZITS. 270, StBEOETICE B> TY A MIE TR WHEER AR
T DEEED rowe PIICADRWE 1T, A B REMELE UBUC) A 2 S
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5. BARMNZIE, VA MEKR D S OB EFHROBEIERLZEAT Y T3REL, 0
BRMEDY Aren/2 ZBATGEIT) A NOHEF %2475

O«

not in list

in list but not

in list and calculated

calculated\
@)

Figure 2.5 Concept of book-keeping method.

233 RFEHREAZMG

JERSAEE SRR 134 S BRI D JA P 42 < [A] U hisd D AR E s 2 R IZ L iE 9 % D
ThH, ZTNZEVRoNDFRTHRERIZIAD 2 2ZM &2 PRI 2L TE 5. 2
RICDGEIT BT 2 B R OBEERM 2 X 2.6 1279, FEBIR G2 V5 & it
2B L 720 TS OERPSFEIUEETHNS. 72, TXLVF 0o TR %ZEH
THEIC L DREFEIBIZH 2D T HEET 5. Bb, WdOHy hAT 2L
B, Ay DA T B row WIZEHRESEE 2 IR DA — D2 FAFERHSAEL RV & S 12
57D, FRGIED—IE 2roy KV RSEETIHEND S,
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O O @ O @) @)
@) O O
© o © o © o
A N
basic cell image cell
of o) 55
O cut-off O
area
@) @/’ @} .//' O o
@) @) @)
o O @ O @) O
O O @
© o © o © o
O O @)

Figure 2.6 Concept of periodic boundary condition.
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2.4 HEEUREX

AKHITIEDF DAL DI FE R &2 R 9 IR I & SEHPIRE D 7 7 DAL & & & T D
WA & kb B FHEIC D WTIREBIT B [53-55]. & & CEANS RIEZNEh Einstein,
Green-Kubo @& & (X4, [FIBRD B O RIS EHRR AR Tk R0 %2 KD 2 BRI & < HN
5. F7-, ILEBURE L BE L T Langevin D & FREIHGRE B & X0 5 BIR A% R
. ZIZTOFZFIFEIT 2.5.3 HTHLR T % Langevin #OURikX 2.8 i TR~ 3 [E A
B D Green-Kubo RADEHIZEHANWS. 72, ZERTFHTFIZODVTIED TFOALND
IR P % 2R [RIRHEEAR B & L BRI L RIRRICE R T 2 Z T E 5D, ZOHEH
FIZDOWTHRRS.

241 WHEHEREE Langevin AR

DT O E I 7 O BRB{R»oFZ, BRTODFOEH ROV TE R 5.
HEm ODFD 1IRGTDEINZDONT, D FIZELSENE Fora &35 &, EETHRERIX

dv
—:Foat 234
mdt total () ( )

B, ARTHNEL Fiopa 1FMOS T2 DHBEMFEATRBI NG D, Z I TIE—HIZHE
e Z OMEAEH 2 G L THE R, Fopa 130 TOEE AT 2T —yv(t) & F
DD FDOEREIZENT BT VXL RE) D58 Th. ZITy I 3EBRETHS.
7z, R@) EDTOME, HELHELRRWEDET S, 2oL S #EEHREAIX

d
md—‘; = —yv + R(1) (2.35)

L5, ZTh% Langevin HREA & R,
ZIT, ZOFVELIIRE) IZODWTHET 5720 EELRARIZ S 1 5 R SE O
RELEAT L. WHE T U CHER YRR A@) LT HEE

(A) = lim ! fT A(s)ds (2.36)

XD A DREEY (A) 2 ERT 5. FERICYELE A(r) LHOYEE A (1) DB
(A(0)A' (1)) %

(A(O)A’(H)) = lim %fT A($)A' (s + t)ds (2.37)
T—00 0

WL DEHRT S, FEPREBIZE W CHBIBEBUIRZ DRI L 50z EXikt OAD
e s, ZORAXEZH VL E, KX (2.35) DT VX LI R(@) BNRD 2 DDA % i
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-39 5.
(R)=0 (2.38)
(R(O)R(1)) = 2B6(1) (2.39)

—DHDEM (2.38) IEMRIEHLZT v XA HIERTHAE I L 2EKT 5. ZDHD
ZM(2.39) 1% R(r) DEHCHBEREEAD 1 =0 2T uThd b, RiDRL D5 1O
ZORIZHER NI & 2EKRT S, BIZI Vv XLOM®ER2RT. 70X L) R0 W
X (2.39) 27292 &, R(Et) DNV —ART MVEEITAEBIKS T —EEIZ% 5 7=
DR IFHETA M)A XTH 5.

WE, AFOBKOBEHELZ vy & BIZENL TRES D, FEORKITIRET &
WO BN E 2 E D720, y & BT LBET LI RTINS, DD, kp
% Boltzmann T & 375 & &, BOPARREBIZH 5 R IE T 3V F —FHEH

1

3™ <v2> = %kBT (2.40)

EWLTBY, Ihey  BIBENSS L EASND. K (240) LD (v2) 1220
TEZ S22, X (2.35) ® Langevin HFEA %ML &, Z OfifIX

1 (! ,
vU)ze_%HNO)+——JNe_%”4)RUUdﬂ (2.41)
m Jo

B, B, ZOMIZ BN 1 BRI EMS HREROMIETELS Z 2N TE, 2l
DWTIEfER ACRE L2, R (241) OF 1 HBWEOBEEZRL, H2HIXT VX LR
HizkoThEBEINE-EEZERT. Zh2HWT {(v())? 25HE T35
()2 = e 2w (v(0))?
2\}(0) —ll‘ ft —l(l‘—l‘,) ’ ’
——e L€ R(t")dt (2.42)

1 t ’ t ”
+— | emIREdr f e m IRt
m=Jo 0

+

ThHb. ZOHUOZREBEIZODWTHIEHZ DL, RO 1IRDEEZEGELE2HIIFO L
5. HIEIIDOWTIE, X (2.39) ZHWT

t t
LZ <f e—%(t—t’)R(t/)dt/f e—%(t—t//)R(tN)dt”>
m 0 0

= % e A f e E O (RAORE)
0 0
=;%- tdﬂa%ﬂ“fifﬁdﬂk—%“4”2350'—ﬂq
0 0
— 2_5; ' e—2%(t—t’)dt/
m=Jo
= = (1-e7) (2.43)
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LETED. k0T, WD) D 1= 0550 TEKRLEL (vin)2) X

(1) = e 25 (1) + — (1= e2) (2.44)

amé.:@%ﬁ:ﬁﬁﬁ@wm%uuzoﬁﬁ@wmﬁwm@%@ﬁ@éﬁ,:@ﬁ
BB IR L, T+ ORERIANE - 72 PHPIREE T I

(b)) = () = = (2.45)

ym
LA, INETRIVE—FEHEH] (2.40) CRATHIE, vy & BOBKBELT
B = ykgT (2.46)
2185, ZhaEHVTR (239) 2 ESHA B L
(R(O)R(t)) = 2ykpTé(t) (2.47)
b, ZOBRIETVELBPOEFIZLDZNREZAINVFTF—HADRI ZRT vy &%
oD 2HDTH Y, B FERBHCRER L IFENDERO—HTH D [53].

RIZHERRRBUZ B E U, vy &l EMBEIREE (v(0)v(2))y DBEFRIZ DWW T Langevin S
EHWTEL, X (2.41) OFZI v(0) 22 CTHREEEZ 5 L

WOy = em WO)W(0)) + <% f e‘%<f"’>R(t’>dt’> (2.48)
0

Y75, R(t) O 1ROEEEGADE 2 HZ¥ O L A0, £Hi05 1 HCOWTI 3L —
SAHLH (2.40) ZFWVWB &, & (2.48) &

VO = (v?)e '
kT _
=—¢
m

L%, WA RHETES T

fw<v(0>v<t)>dt _ fm ket 21y,
0 0 m

_ keT
Y

Y 4

o (2.49)

(2.50)
“Eonhsd., ZhkD,
l = L foo wO0)v(t))dt (2.51)
Y - ksT Jy '

2195, THITEBRE y OB TRINI D TOBBEN S TOREDOD S & & B
THILERLTED, F-MFEIHHRTH L ITIEN S [53]. AMIFETIE kpT/y THRZ
N30T OREE &2 WEILIIRE Dy LI, Thbb,
_ kgT
2

Dy (2.52)
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THHEL, & (250) &0,

D, = limf w(O)v(s))ds (2.53)
t—o00 0

Thd. NTORER C(x,t) &L, FHNZRSFOEEN Y71 27 — )V OHLE AR

(9C(x,t) 0%C(x,1)
ot T

LRUIRDEENE TSI 2ETNIE, X (253) &KX (2.54) ITHT 25 Dy 1E—ET

3 (53,55, TOLSIZR (2.54) LB B D, D& SBYIURT —LOWEERE, =X

(2.53) ITBITHHE Yy DX D72 I 7 aRZHOMBEBRKOR S L LTRLEZEDE —IC

Green-Kubo Dz & FEXK,

Wiz, WEILEEREE T OALE x 2 W TRT 2012

(2.54)

t
ggi;@wwu»dy:gg%(uayiamﬁ) (2.55)
B ERT. DFOME x() 13HE v(E) 2 HWT
t
x() = x(0) +f v(s)ds (2.56)
0

THREND. TNEMWTR (2.55) OV TR ((x(1) - x(0))?) kDB &

«mm—xmn3=<j‘vuowlj‘wmyhﬁ
0 0
t t
= j(; j; w(s1)v(s2)) dsadsy (2.57)

Ynh. ZZTRAEIIZN 2.7(a) TRUEZ0< s <1, 0< 50 <t DIESHOESBTH
B, RS EIRCH B D H ORI 51 & 5o OEOAIKET BBEKTHS
i, BAMEIR 2.7(a) ORHIEORIAED 2 YT 5. &koT,

<{x(t)—x(0)} f f (v(s1)v(s2)) dsadsy (2.58)
EB. IHIT, s=s59—85 BT

<{x(t) - x(O)} f f w(0)v(s)) dsdsq (2.59)

THb. ZITOMAHEHMIEM 2.7(b) ORFR TR UK TH 5. HMOBEBUL s DA
WZHRF LB THh B7-0, KMED

t
(1x0) = xOF) =2 [ =9 O ds

=2t (f W) (s))ds — %f s (v(0)v(s)) ds) (2.60)
0 0
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S92 S1
SS9 =81

s1=1t—3¢§

0 t sy O t s

(a) (b)

Figure 2.7 Integration domains for (a) Eq. (2.57) and (b) Eq. (2.59).

Lips. TI2TC, HEMBEBEBUIIRFEFERIIN L THPMZ 0 IPRT S Z L 2RET
5, $RDL,
t

lim L sv0)v(s))ds =0 (2.61)
0

t—oo f

Wiz s 56, & (2.60) OFLE 2% TEHD 1 — 0o OMEE L3

t
tli%%<{x(z)—x(0)}2>:}Lr§Ofo Ww(0)v(s))ds (2.62)
LB, INER (253) MUAT S L, SEEUREIE T /AR & N T

1
D, = lim o ({x() - x(0))) (2.63)

LLTHELNS. T Einstein DX & MEIENS.

ZZETRIMILTHERLD, SIRILDOHBEIZDOVWTIE, x, v,z AFIZDOVWTZENTN
RUAEDLE D Z L TIBBRBDEONS. Thbb, MENZ MVE r@), #EXRT ML
v LT AL 3WADBEDR (2.63), (2.53) ZEhZh

o1
Dy = lim <|r(t) - r(0)|2> (2.64)
= lim lf (0) - v(s))ds (2.65)
t—oo 3 0
Y5,

2B (2.36), (2.37) 1281 BFEEYIIEREFNIC N U Gl R 2RI T2 D0 TH S
M, VIal—YaviiBIARRNT — XX At OB DL 5720, Bl
IE (2.64) O ZREMIZDOWTIE, Ny [HORZIOMEAICKT 552 LT

N

1
(Ir@) -r)?) = FZ|r(jm+z)—r(jm)|2 (2.66)
T3
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50— 50)

Figure 2.8 Motion of the particle constrained on a sphere surface.

IZ&k o TRDZ, YREDS tIZOWTH 1 =ndt (neN) OHERKZRE DL 5. £z
CZETRBE—DRFIZOWTORREI2E X720, R UFIEPHSFTE 258132
DRHEPEIITMA TH UREEO 2 712DV T H KT 5.

A (2.52) IZBWTHLHRE & 70 1@ < BEARDBHE T 5 Z L 2R LD, Zhik
Einstein OB R & MEIEN 5. 4712 < #H1 & U T Stokes Pt 2 IE T 5 & BEEEIRE
y RIS p & MEEEIN T A TREE R EH W T y =6ruR, 55X 60, Z
NEMAVNIER (2.52) 1%

kT
£ 6 Ry

(2.67)

L5, ZNiE Stokes-Einstein BB & IE XN 5.

2.4.2 [CIERHLERER

HIHE TTHBAT2 & 57053 FOEAITN T 2468 %E, £ T3 T OAZEAITN U THY
28T, DFORLEBICET 2B FARICERT LI LN TES. M28D &I
BRI BAZ IR X N7 O EENT N 9 B IRfH ¢ DD ALALZ s(rad) & 95 &, s DI
IR ZNL & FIRRHEERE D, DN

(Is(t) = s(0)|?) = 4Dyt (2.68)

DOEBRABK D IO, T T ) IZEMEETH 5.

AW TIEZ O & 5 BRI B H X Wz hi+ O E) % WA D F FARD [ EE) A~ &
TEELTHE R, UTFICRT XS CEEEMOMERZ2 2 RGCFHICHE T I 2I2&-
TV ZR/RMBEMNZFF LUK [51]. X 2.9() CRT XD, HE0FDOn ATy 7HD
BT O RALRZ SV E e, TNIZHNIRT DA O ORABKRE EOMEZ S, &6
%, S, ¥ Spui BORE LOLENE S, S ERT. ZOL X, BEHREICET 2B
Sn-1 = Sy = Spus1 5 2.9(b) D 2 KoL KH EOBE P,oy — P, - Pug NOHRE
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\Pn+1

46,
4
-1

(b) trajectory projected on a two-

(a) trajectory on a unit sphere

dimensional plane

Figure 2.9 Projection of angular displacement on a two-dimensional plane.

%, POEMMNS OIEL —BU, 2D Apu_1.n & Appns1 IO AR 460, D35S, 125

7% S,_1Sn & S,uSui1 DHEMNRI MW RTHL-HTEH LTS, £7, &P, »
6 1:)n+1 O)ﬁé |Apn,n+1| &i

|APn,n+1| = COS_I(en “€ni1) (2.69)

WZEORESL, RIZAHABIZEHL T, BABREES, ZBWTETIHEZEZ, S,.1 BL
O Syl O ZDHANDEES LU IZME S)_1 BXUOS T3, Z0kE 40, 1T

n+l
S/ _1Sn & 8pS,, DETHEELW. S48, | MOS, LETTHHILE2EET DL,
—
OS,_, =en_1 + ke, (2.70)

YETZeNTES. S S, i30S, LEETHEED, ORK K BRAEML Z LT
"rons.

e, — (ep-1 + key)| - e, =0 (2.71)
—_—
ZDffEEHWS & S!Sy 1E
_—
S, _1Sn = (en-1-€n)e, —en_1 (2.72)
&Y, FRIZRDS,S! | ZHWT 40, 1&
S’ .Sp-S,S’
46, = sgn (en : (S;l_lSn X SnS;Hl)) cos™ ! | 2= ntl (2.73)
S5 |55
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WZEoTEHEALNS., 22T, FHEHEK sgn 1 e, (20T 2 [EEE G %2 P 5 7-DIZHW
THEH, MATEHEINS.

-1 (x<0)
sgn(x) =430 (x=0) (2.74)
1 (x>0)

R (2.69), (2.73) £HWT, 2RIEFH EOERARZ MV Ap, e &

Apn,n+1 = |Apn,n+1| (Z?I?Z:) (275)
j=1
ELUTHEREONS. 2 &Y, n ATy THOHEN |s, — sol &,
Isn = sol = |4po.nl (2.77)
n—1
Apon = Z apj.j+ (2.78)
j=0

&b, ZOMBMNEHWTE - RAZAMZENU, X (2.68) 25 HHRHLEREL D,
PRETHIENTESL. £/, YIalb—YariiBWT EMAEN ORI
(2.66) D AN L FRIZEH L, TSICFAUEEDOS FIZOVWTRES T THRLON
HIEIZDWTEH T 5.

7% $, Stokes-Einstein BIfRN (2.67) 128 dT 26D & UT, EEILHREBIZN L T

_ kpT
" 8muR3

(2.79)

DEARA D L H, Zhid Stokes-Einstein-Debye BIfRA & FEIEN S [56]. 22T, R, &
MHLETNZ T AN D FHEETH 5.
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25 RE
251 BEDHEE

ZOWET 1
1
§VkBT = EK (280)
WWEOWEET S, 22T, Ex FROEFHTXILX— DKM, v IEEBOHBEE, kgl
Boltzmann @ TH 5. AWETHWSIHEAED FIL, WIATH 57200 FHNEHBEED L
<, HEHJLTHE-DREEEOHBEN 3 THE15, 1 0FH7-00HHEIXNE & [z
TEINETNI THD. ZOLGE, L REEOEH TRV — E, E, ZHWNWT

Ex = E, + E, (2.81)

Thby, H£EHOEHHEIZL EDOWT NHADS T 57525 ROMERE T, & BEEE T,
zINTH

1 1
§VthTt = Et = 5 Zl: miv; - v; (282)
1 1
§w@n=a:§zxgw o+ Lyl + L) (2.83)

WEOBBEZENTES. 12720, v, v XZNT i L IO EFHOHBEETH D,
BER CIZH ENZEBEPRFELRVWRESIE vy = v, = 3N TH S, Hl 2 IXEB)=E D
RAF T 22 ARG 2B U R0 1Ew =3N -3 LT 50ERHB. KK
DEREBLFARICEDE ZENTES.

252 FHERT—VYVTE

ARHFZE TIZHIHPRIE 2 ME K 3~ 2B AR IC DA, T2 HIH I 28R ke U R
A=) IEERC, HERAT =Y v kL, EET XX — DIGIEHIRE T 125t
JE UL 8B XD IZ—EAT Y T LI TORE & AFHEIZZTNTNE—DEHR %
NFBHETHD. FICHERZRT.

Ts
vlgnew) _ vlgold) Lset (2.84)
T
Ts
WP @ew) _ ,bi(old) [7set (2.85)

i i T
r
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2.5.3 Langevin 858k

IH 2,41 TRUZEFEFEHREHEZIGHL T, BEROBERMZTS 2N TE
% [57]. B _FEFREIFOREE CIXT RV F —FESERRAID K O LB EIT T v X L) L
72§ REZMEEFZZ D, T 2T R EHCRER 2 723 & S IT AR/
FSURLNEEH A D TFICEZ DI IZ& > T T2IRE Ty, ICHIHT 222252 5.
Z % Langevin BiRiE L W5, DD HEWOAER D TIREI T 54018 x, E& m OfF
KRIR T2, X B U 7233500 —aqx &5 VX L0 R, 2 NBIIZERSE 5. R,
X, y, 2 RO PREHNCSITH D L L, 22 TRHD—HHEDED R, DAIZEHL T
HEAB. TVHE LI R ATDWTLART & [FRRIZ

(Re) =0 (2.86)
(R(0)R.(1)) = R4 (1) (2.87)

BIRO DT B, Fe, FUNMEREI & D L HOMD 7% 1 Xid Gauss Az s D2
EWHIFIND D, R 1E Gauss I TEREI NS 5. X (2.87) DM % I
TSI (RE) =02 LB 22,5, R

1 1 R?
f(Re) = Nt exp {—202 } (2.88)

R
THEF BHREEBIE £ (R) 2T L5 1I0RIENS. FBRERTHOMETH R
(2.46) % VL

02 = 2agkpTyet (2.89)

Ths.

BN AR BUERE Y T A BRTIE, KEEZIA A4t OFIIZ—ED T > X LT R MR TIZ
B EERD., ZDEE, At OBIZ—RED TV ZLI R DD FIZ5 25 158 RoAt &,
FEED T > & D) R, 15 At BIEH FI 52 2 HBOR [ Ro)dr ¥ H—BT 5 &5 1
R. ZEDDIRHENDHD. WE, 7VXLID Gauss DA IZDEDATHEI NS T2 Z
NIZDOWTEZDL, R & R At NN TFIZHEZ B HBEOHEIEZENEN (At)Qa'I%,
Aoy ERF D720, BUEMSTHVWS R, DHHED

2
a
a%::;f- (2.90)
5 EI25ZNE, R BER/NDOHEMBRTE R SNZIGE LR UEENESNS.
Tz (2.89) ZRATNIX, B

2 _ 2adkBTset

- (2.91)

o

i
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DEFRET7-TEIIZ R & aq 5 ANIXHE Ty DEWRERIITE 3.

ZOREFR (2.91) 27z TRD 2 DDA O'I% & ag DRFENNIMEREDR D 2D, aq 1E
& {KIZ[E A D Debye & Tp 2 HW5 &
amkgTp

67
Lt 58], WMENBERNRTA—R—=FTp 721345, ZIZThi$HA Planck E5
THhb.

ARFZE T, 2.10 D & 51T 3 BOREMABEHENIZ N U, WKL H U Z2WHIlOEKE DR
FEMIALE % B € U, FREOEICX LT Langevin 2981512 XK 2 IREHIEZ TV v &
LI EHEIZHBIL P12 52 7. £z, BHE&D Debye i LT Tp =240 K & L

7z [59].
HIH‘IHH 1000 HIH‘IHH
Ny & N
> G

thermostated
atoms

aq = (2.92)

\\\\\

fixed atoms

Figure 2.10 Temperature control of solid surface with Langevin method.
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26 EX

AFGETIEAIHPREZ /ER T 2 EAERRIZ B WT, FHEREBOIENVRKTE L RS LD
ZHIE L 72, AHITIRE OB & X OHIEIRIZ O WTHRANSD,

26.1 EEI’HDZROEN

B D 256, EHERAEESDZ D ICREICERT LI NE L TARIHAETSZ L
MWTED. B 211 IR T LI, m BN EELEEIIZIER ST SELT VYD 1S
593 Py 13, BEMIDANA & BALTERRN 2 SV & ey, | HIMIDBALANZ ML% e £ LT

Pt = ——<Z > {sentryi - en)Fi - el}> (2.93)

iewall jeliquid
LRIND. ZITSFRMM, F;; FEEMFET i PRANDWBIED T j 5% B I1DR
JR, r=r—r THY, () BIIEEERT. £, R s & e, OHFIC
xF9 B AR & E AR DAL EBIGR & Bk 37 5 72 DI e

liquid
@

K O
0 o0 @
@ @ @

Figure 2.11 Schematic of pressure tensor calculation using the forces exerted on the solid

wall by liquid molecules.

262 EYTFIVERBICEDENTVVIL

ERD &S REEDOEREBERIDRRWVGEETH->TH, (EEOMEmIZIEAT 2I6H%,
DTOBENC L2 EFELMIZ L > THITERT S L, HEEET 25 FHEHEEE-T
MoRDBIENTES [23,60,61]. RETIXZOHEICMEMTZINNZ2ZEEEETE L
T, EYTIWEBEIFENDEST vV IVOBRHIEIZ DO WTHHAT 5.

B 2.12 D & S ITHARFIZ m AFICRERRERZZ 2, BAEHED 720 ICRAER %8
LT —m IDOWEKIZ +m MOWEED S @ +1 DI THBIENT VIV o D ml (K45
Omi \COWTEZRD. o 1, HNIDBRVEE, 5 TOBENIC L EHELIICLEFS
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(a) kinetic contribution

//—-"

bi em i’j i

>

L

(b) intermolecular force contribution

Figure 2.12 Schematics of stress tensor calculation based on the method of plane.

ok LTI L B o AT K o TS 2720

kin int
Oml = O-ml +0—ml

LRIND.

£9 oMM IZOVT, [ 2.12(a) D& ST,

DFi DREBD —m 155 +m 11258

B B WU NTL R TEINE Ar DRI
WU 2L, —m MOWEIKIZI D51 O
WZED +1 AN —myv; - e /At DI1%EZITBHI LIZRB.
IRV THB. £, EHE myvy ODF i DREED +m 5 S —m i
&, —m MDOWRIE +1 AN mpvy - e) At DHEZITEHI LIZik5.
WX o T i At OIIZHRER Z@iEd 53X TONF

ml = g At

~ 1 i iem)Vi-
Uk’“———<zm sgn(v; - e,)v; - €;

1,4t

(2.94)

EEE m;v; D

ZZTe 1%+ ARAIDEALNR

s EE Rl
DWTHIZ &

(2.95)

L%, 22T, SEMEMOMEE, e, & +m HHEDBELRZ ML THD, Y, 4 1 4t

FICMAER 2889 29 X TODFOM, () IZRHEFEEZELT. KR

B sgn 1% +m

FHENZH U CHAR Z@EET 50 FOR & 2XKTZOITHW.
Iz o mt WZDOWT UL, BIIH 2.6.1 EABRIZ —m D212 +m DD T 6% 1T 51D

Mz & iJ:L\téb,

Toi = §<Z {Sgn("ﬁ “em)Fij - el}>

ij

LRIND., ZITY,; BREEZRATHEERNT TR TORFR I, j I
BeDILERL, I sgn 13 2.12(b)
S DHNZFIET B0 %25 T 572D H W,

(2.96)

DWTHI

TRTEDIZHMERINLUTHT i D

i L 7 5
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FEOMBEEIZE K 62 2ZBIFNIZEET 5 2 8T, [FREOEREIZ D W TEERZR G
TUVN T BEBEIENTES. Tubb, HlZIEm GRIZEELRRELZ my, 55
Mmax & CEFBEIL- & SI@EET AAEIZS LT, EHNRISHT VY IV %E

1 Mmax
. S— f Ot (m)dm (2.97)

mmax - mmln Mmin

LEDD LT D,

ZOEHRE RS HMBIR M 2R 2R BEOTVIEN T ¥V VTR T 5. RO
mHADORE % Ly & UT, m AN REZROMEIIENT 20600 %, m e
J6T%0<m< Ly, ORETHA TSI L TESTE. Z0LE, ok OFEZONT
&,

. 1 Lom m; sgn(v; - e,,)v; - e
— kin i i m)Vi
o =—— dm 2.98
mt =Ly, <f0 2, At (2:98)

i,4t

&b, ZIT, EATIZOVWTOMAWMEZ D DD Ar DRIZ T2 E T 2 IR
v - emdt| DDA THBZEZHAND. 53T i D mEIEr - ey & rim, m RHEE
Violm % Vi RE LRI, 51T v >0 vim <0 DRMAEIZTHTIZONTD
& ZNZEI Ty (105000 2i, im0y & LT, R (2.98) ORI % 8 15 51 e D R AH
HIREEDT A DI TOBETHXEANLEHESHZ 5 L,

im+VimAt
_kin 1 ThmTVEm Al m; Sgn(vi,m)vi,ld
O—ml = - m
ST \ ,

i,(Vi,m>0) ¥ 1im At

— L Z Ti,m m; Sgn(vi,m)vi,l i
SL,, 4 . T
i’(vi,m SO) rl,m+vl,ml't
1 N Fiom+VimAt
- m~v~,ldm>
SLmAt <; "[:i,m t
1 <i
- mivi,zvi,mdt>
SL,, At -

11
= v <Z miVi,mVi,l> (2.99)
i=1

LEWTHIEMNTED. 12U, BB SL, =V EBWz. o OO TH FRK
2, BRI BRI E OO FRMEEHIDBH < D THOATHS I L EHNS.
R HEPE 2 ISR S O AL EOTZORFHE L, rjim >0, rjim <0 2755
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ﬁ?ﬁﬂ@*ﬂ% %%%X’L Zij,(rji,m>0)’ Zij,(rji,m <0) tﬁ%ﬂ'ﬁ‘é & ’

rj,m
f Sgn(rji,m)Fij,ldm>

ij,(rji,m>0) ¥ i.m

1 Vi,m
* SL,, < f; Sgn(rji,m)Fij,ldm>

ij,(rji,m<0) 7 im
1 N-1 N rjim
(% 2 S )
1 N_—l N h
ST

i=1 j=i+1

1 N-1 N
:—V<Z Z rij,mFij,l> (210())

i=1 j=i+1

Y

int — 1
ml SLm

&b, 12120, 2 D0ODEFESOERT, AMFETHE S 1y bAT72HAWTMHEFHD X
1T, 3BT 2 RIS S et O AR 2 A TR LR WZ & 2{EL, 7
TN U CHE—DHBEEHANEE S Z 2 Wz, U EXD, ®AMICERERSM%
MURIZE T BEMEE LIS T Y Vi

1 N N-1 N
Oml = v (<Z miVi,mVi,l> + <Z Z rij,mFij,l>) (2.101)

i j=it+l

CRTIENTEL, FHTVINPIEEHT VY NLNDOEES 2 KIEXIHET

N N-1 N
<Z mivi,mvi,l> + < Z rij,mFij,l> (2.102)

ZEhBEsSNS.
HERR DO ES PIZESIT VY IILVONARES DL LT

P = (Pex + Py + P;)

i=1 j=i+1

Wl

X okE 5.

263 BMNBRIEAT VIV

ARIHGETIIE 4 ZT 2 DOBEMEI DOWRARITHERA S 2 RA RIS T T > YV )V DH AW
NEEEL, THEHMEIZL2hE D275, BiTE 2.6.2 TROZMEIZEAT 5B
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TV IIVERFEEV TEE$THZ 8T, VNIRRT VY IVERRNIZE>TERT
% [62-64].

N-1 N
1
Omi = 7 (<Z miVi,mVi,l> + <Z Z Wijrij,mFij,l>) (2.104)

i€V i=1 j=i+1

ZIZTwy; Bafik jzfIfooN, KV 2@8T5RIDOEEGTHS. 4b, F
VOTENRDH LGB IEI N R FOELEN S5 BEDVDHS.

FHRCRZBEH IFATRE TOEI L 725G, M 213 DX DI w; 30T i & j O z B
DRI L 72 5.

2 l4
Wi = ,w34 =0
4 |z12]
4 |rig| !
. I3 Wi = ,wag =1
212 212
[y
/ Io| wig | |,W34 =0
12
[
11 ---------------- 1 o h 0
z Wi = ——, W34 =
T |Z12]

Figure 2.13 Example of local stress calculation in parallel slabs using weight function w;;.

2.6.4 EEEZRWENSE

AIFFETHWDM 2.14 D & 57 2 D DOBERIENIZ WK 2 AN 7R CIREBEH DS 2 /
MOBEMEEMA S Z L TRETEZHETE S [65). AFETIE2 DOBERODSH, —
FDOMNEZEEL, &5 —AICOAHHEZMATENGEZIT>72. HHEZINA %5
8 O J5 - IR AL i % [ U 7z e B SMUDE D z R Z 7, & LT, RAITRSES) /52
R & o Tl U BER 2R %2 LATBEI S8 5 2 212 & 0 [EH %2 BEUE Py (HIBIT 5.

MyZy =S (Pz,z - Pset) (2105)

22T, PR (2.93) 1KBWT () 24 UFIE S OB, M, 1ZEN L 7 B EB0 &
HEZIZ DO WT ORI AEER, SIIEHOEMTHS. AR TIERA (2.105) 2K (2.3),
(2.4) DL Verlet 12 & b 243 BRI U 72.
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: additional
solid Idegree of freedom

<

T_,x solid

Figure 2.14 Pressure control by a solid wall with allowing a degree of freedom of motion to
the wall.

2.6.5 Andersen @D E A

WS CIE 4 A AN FRIBE S5 % I\ 7230 27 D R D FTHRBE D VERL DB IZ Ander-
sen O HIEIZ & BEH DK% N7z [66]. ZOHETIE, —LOEIN L ONAKDR
ZBWT, R V(= L3) 2 H#EBE UTROENHBEZTS. ABREIIC L 20 E:
DT i DERE r; ~NEUD AND T2, B LI N0 T OELEE s; % s; =r;/L 2 LT
EHTD., ZOrE, WME X = Ls; +Ls; 27250, L ORRZEIZNE W ERE
U, Fi=L$; IZXoTHIMBLSNZHE s; 2E&HET . ZD&E, Andersen D HIETIX
RDEE) FFER 2 W CHREE ) % HEAE Pser \ZHIHT 5.

.1 2V .
§; = m_l P = gvsi (2106&)
MpV = P’ — Py (2.106b)

ZZT, F; 30Fi @< EH, Mp ZMEREEZLIZOVWTOEREIZHYT 2EHTH 5.
¥ 72 P ILRDEN DOBREMET,

3V Zm V3sl s,+Z Z V3s,j i (2.107)

i=1 j=i+1

ThHb.
A5ETIER (2.106a), (2.106b) % ZNZ HE Verlet £ & b 23R L 72.
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2.7 RaMERE

KR8 & 0 T B IR L o CTEHRET 5 ik LT, FiRIZE VT Green-Kubo
K& W5 Fik [47,48,67,68] REEEN 1 & 5 2 72 I FHRICBE W TRD 7= E AW S90S 5
RIDHIE AT DD D, AW TIEZETE D Green-Kubo X& W5 HIEIZ K D 19E
IRRITB T DR DRMERE 2 FHR L 72 [67,68].

KEPEFRE 12X (2.102) I2BWT () A UEZRDIENT > VIV OBRREME P’ (1) DIExT
%5 OIS FIWT, Green-Kubo & &

Vv

M= et

fo (PL(OPL () dt [£.0(% &) = x,7.7] (2.108)
IZkoTkdohbd, 72, T &7 Einstein oA & LT

v o1 t 2

T Jim <(f0 ng(r)df) > [£.0(# &) = x,y,2] (2.109)
WX THRBRICHEMEREEZREETES. B, ZhosOROEHIZOWTIEfER C I
AU, RFRETIELED 2 XD 55, X DPEEDO R Einstein DX (2.109) % H W
72 [47]. a2 b=y a it BWTR (2.109) OREFEPEGES T > Vv O BREE % BUfE
AIZRED LT fPég(T)dT 2T 52 2T, R (2.66) &R,

t 2 N+ n 2
<(f0 Pé{(r)dr) >: NLT Z {Z Pl (i + /) A1) At} (t = nAt) (2.110)

j=1 U

ELUTHEHL.
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2.8 BERERRE

Navier BES G (1.1) 12 Bl 72 BERBERAREL A ([ DWT, IRBUERBOCRE MR B Ll
DRI & [FRRIZ Green-Kubo A% W T EHRREE TR T 25 HIEIREI LT W5,
Z @ Green-Kubo il 1994 412 Bocquet & Barrat [25] IZ & > T TRESI Nz, L
7 U, Bocquet, Barrat (Z & % /55 (AR BB O AHEEFER) 1IZIXWL D0 DREDH 5
ZEePHEINTED, FlRIX, BEXEIDRTI Green-Kubo XA HIZIPR L T
UE S I & [22,26,30], AR I E T EA O T b 5 [E R E BRI E RO R
BRDIEAIKFZL TEDL>TUE D [22,28,30] 72 EDOMENER IO TV, EAE,
Huang & Szlufarska [22] & BB D HIEIZDOWTHHZ L, I o ORENE IR WO
Green-Kubo X% & W7z (PAF HS O AL L), KEITIZZH 5D Green-Kubo XD
Bz oWT, FEOFRBEMTE L TRIIT 5. £/, T2 TRY Green-Kubo ATl
IBEBRI A T EFRBIZB W TEANEE IEKGFET —ElTHD e LTHKS.

2.8.1 Bocquet & Barrat A%

BB O HIEDEHIZDWT Bocquet & Barrat (3 3@ 0 O HEEZFERL TS [25,26].
CITEHEBHFLOEHEIZODWTRT [26]. 4E, BRICRTAI I TOENIX Huang
SIZE-oTHIEDH 2 Z e EIETh TV 5.

REBHEREM OREHEMRELELTWEREE XS, T OREMIXEE W HEE J5 [ DALE
FEEL, #MAMIZOAE TS DLT 5. WEILEAER D% G2 Langevin AR
(2.35) 2% X 7-0 L ARIC, BEEIC Navier BiFZME (1.1) 12 U7 hSS BEE ASv(r) &
ARSI @# 5V X L)1 6F @) DMEK & U, BEMOBARGAEE L U(r) &3 25 LB
® Langevin AFENIZ

Mcil—(t] = —ASvs(t) + 6F (1) (2.111)
Eb., ZIZTSIEKREME, A IXEWBEEBRETHS. £77, v IZTRYHEET, KET
DIREDEEZ v £ T5L v,0)=U@) —vi(t) TH5.

U@t) WINSWHIPHIT, TROEE v, UG LIERZED TIRATRT LD ICBRT

5 EIRET 5.

t
vs(t) = f E—-tHUdt (2.112)
ZIZTE@ FRERKTH L. ZhreX (2.111) @ Langevin SRR AT L
dU ! ’ ’ I3
ME = —/le E—tHUE )dt' + 6F(t) (2.113)

85, BT <0 IZBWTCEREFLELU=0TH»Y, t=012BWVWTATY 7
BNz UOY) Difiz D&k 5 ke & 2 5.



2.8 [FHWEEEBRIREK 43

Z ® Langevin AFERA* 5 Laplace Z#1% Fi\ T Green-Kubo %% <. 22T,
B f(t) D Laplace Z2# L(f) = f(s) #IRARTEHT 3.2

L) =fl&)=| fwedt (2.114)

0-

A (2.113) O % Laplace £#19° % &
M{U(s)s = U(0)} = =ASE(s)U(s) + L(6F) (2.115)

B ED,

MU(0) + L(5F)
Ms + ASE(s)

U(s) = (2.116)

Y d. BEEOMEEOE CHBEBEE Cy@) = UOU®) £BL L, Z0 Laplace Z#
Cy(s) %, (6F)=0Th27-OMEEE2 222 L(6F) >0 BR324 HH0n5E

- _ M (U?
Cu(s) = (UOU()) = ﬁé’;(s)
kT 1 (2.117)
M s+ &)/t

L75%. mBRBEOEROLER TEHWAD S Cy(0) = (U?) = kgT/M TH 5 Z & &
W, T=M/(AS) LBV,

BE 7332 1) B BER S0 D 11 Fop (1) IZBEDMIE U(t) 2 VT Fy(t) = MY 2 Fah 3
m6, Fy(t) ©HCHBERE Cr(r) (&, HBEBEKOMEZED 2 T

d2
Cr (1) = (Fy(0)Fy (1)) = —MZW UOU (1)) (2.118)

a Laplace 2B %2 fliHICE L HTHL.
BESC £ (1) @ 1 BB £7(1), 2 BSBSY (1) @ Laplace 253z hzh
L(f) =sf(s)-f(0)
L") =5%f(s) = sf(0) - f(0)
TREING. £, B L g DEEAIARS

t
(f=g)®) Efo fHg —tHadr
X439 % Laplace Z il

L(f*8)=f(E(s)

L755%.

b SEHRIRIEIZ B 1) B BB RS O I D W THiIC E £ T H L [55,69).
BHBYPLE A(t), B(t) DRIHHBBIE Cap (1) = (BO)A(1)) L T2 %, Cap(t) IEHEHED RITHAT
THHEMTH B0 Cap(t) = (BO)A(1)) = (A(0)B(-1)) = Cpa(-t) Th5. %7, Cap(t) DWH
CBILT LCap(t) = Cip(t) ==Cupz() THY, 92Cap(t)=-Ciz(t) THS.

dt?
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rFRES. W% Laplace 219 1L, Cr(r) ® Laplace Z4#t Cp(s) & Cy(t) ZHWT
Cr(s) = —-M? {sQEU(s) —sCy(t=07)=C},(t = 0—)} (2.119)
b, ZZTHEIMNG 2 HIXE ISR E S, £72, FHIHIZDODWTIE

Cy () =XUOU' 1) == (U (OU@)) = - U (-0)U(0)) = = UOU’(-1))
= —C[,(-1) (2.120)

ERBIENS CLt=0")=-C,t=0") THBHZ L, HIMEDERLD
C,(t=0" = lim s£(C})) (2.121)

ThHhorlezHWb &

CU(I—O ) = }g}(}os{SCU(S) CU(O)} M }ggo{s_;_g(s)/T 1}
_ kel sE(s) (2.122)

TM 520 s+ £(s)/
B, oI, t=0ICBVWTAT Y TEHBINICENEHE UOT) 25 DLEZTVBEA,
IO EWAIFEERDEEIZT SIS FBRTERWZD v(0H) =0THY, ZThikd, T
RO vy (0%) = UOY) — v (0%) = U0Y) 25, FIEDEHE, & (2.112) &b
vs(01) = U(0") = lim s {Ful9) - Us)} = lim s {E®U) - U}
= lim sU(s) {'g'(s) - 1} =0 (2.123)
Y70, Us) 3R (2.116) TEA SN 7D im0 &(s) =1 TH b, ThirHVD Lk
(2.122) 1%

kT

C[,/(t =0") = T_M (2124)
L%, BLEED
Cr(s) = kel {1 + L(S)} (2.125)
T s+ E(s)/T
EkFEB., s 50 2TNIE
Cr(0) = ASkgT (2.126)

&7, X (2.114) &0, Green-Kubo X

A

= ST fo (Foy (0)Fyy (1)) dt (2.127)
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Huang 53 EOBEHORERDOWT, XD 2 fizffiLTc\w5d [22]. £9° 1 DHIC
DWTIE, MEDOEHBTIXU & vy D 2 DOEIZDOVWTENEND Langevin HFEA %
T, Zho DERFENZA (2.112) ORfRZE L T 1 2D Langevin 53X (2.113) T
KLTWBZEIZE>TWA., UL, ZORENKDLODIETROHEEEZT VT
W UG8 DA TH Y, 0 FHEDOBEEIZN U TIE—MRIZIZK D L7280 DA
MY ThdE Lz, £/2H5 1 DOMEIE, R (2.112) T2 D2OEE DR SDIZHW:
FUEBIEUE AT LU B Langevin AFEA (2.113) THW - ZREBEI L — 303 2 BB A
Ths.

ARFEDY I 2 b —Ya VIZBEWTR (2.127) © B SAH B BB D IRFfE - 1

Ny
FuOF(0) = 1 > FuGAOFW (41 + 1) (2.128)
T _l:1

& o THRITT 2.

2.8.2 Huang & Szlufarska DA%

HS O HETH, BICSIRSAHAE WS 2 L 2B LT, EFE N -EICH T8
BEMN S 2 B HIDEYIINE (F;) (1) L9 FDHEE D RE (v;) (t) D Fourier-Laplace 2
B (F)(w), () () VT, 1 D0HFH7- 0 OEWEEEE 1 %,

(F)v (W)

Ai(w) = "Gy @) (2.129)

L& oTEHTS. 22T, BB F(r) D Fourier-Laplace Z#t f(w) 1&

f@0=bfmf0w*”%t (2.130)
0

THb. 12720, i XEBHAT, s =iw & BIE Laplace £t —83 5. /2, X
(2.129) 1IZHB1F B () DI SHRF ¢ FFHEEEZERL, £, BV IZERIT OB
FHETDERFIZOVTDFEHTHY, HLxDHFi IOVWTEREINSHILYHEE A; 12
DWT D (A 1, EERTE ORI FAET 29 TN, & AWT

1
Ay = — A; 2.131
ov Ns ie;;f ( )

WZEoTHEOND LTS, 270, Yicaus. EFRE U 72 B O MBI AZE T 5 KD
FOMERT. B, X (2.129), (2.131) 1D 1;(w), (A))y RE, ¢y 2HVTELSNDS
BRI BF I ZA T 1 OBV DEEETHL I 2R, FTHSTIER.
AR D ETREE R A(w) IZHEFE S H720 D A;(w) LT

Mw:% Z:hmoz%m@n (2.132)

iesurf.
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CkoTHONEEEXS. ZOLSIZHS OHETIE L #HV3ZEicky, &
(2.132) IEBWTHIZ L BT 2L B T & TR 72 BRI 0 5 0 Wk o RS
CEBPMNED LS.

W= 0 IHIET BEBOBEEERD L, 1w =0) = 4; FEWREI BT 2 EER
HDH T- DT (v;), v LHEED 52 B I (F)y ZAWT

2, = iy (2.133)

Wiy

LD, ZRER (2132) KRAT S E

Ny
Wiy A= _?<Fi>t,v (2.134)

L%, TolZ, ERIGEEL TV OERFEIZE T 201 OFIEE (v;), vy 137
RO HEE vy THY, DFVEEMPSZIT B0 F ZREM»SHEN S EABICRET 52 &
EEADL

N N 1 1 _
—?wmy:~§E Z<ﬂ»~§m»-m (2.135)

iesurf.

L5720, w— 0 DEFIREIZEWTR (2.129), (2.132) 1 Navier B 5 (1.1) &
—HT 5.

R (2.129) IBNB (F)(w) & ;) (0) ZRVIEERHZAVCTESMA DI L 252
3. SIS ETHTIREARED R DT RN ET 2 A ZHA0RDOIEE %,
SPHPRIEDEWD & FORRIHBEED S FHIT 22 LA TE S [55,69]. ZOFEDOA%E
KT L, ATEOYHE A KU CEMRRIED % (A), po, BB A 72 FARIRED
ZAb%E (A1), g ERT E, TNSDE A(A®D)), = (A1) pNE —(A)p.rc FHT E@) &
InE R papng (1) DI2T2 AT AERE LT

ACA®)), =f dam (t —$)E(s)ds (2.136)
0
ZkoTHEONE, 22T, MIZE L2HIZEEBONINVN=T Y AH = —-ME % ¥
TEEBTHY, ()p FAMHEBIZB T 2HETNFAN LR, £, REBEEIZ

1 d
Gam (1) = =120 OMOIAD), e (2.137)

TRINDG. 772U SA®W) = A(t) — (A)p o, M) = M) — (M), gc TH 5. LA EDHR
IS RO FMIZ DOWTIEN I D TS L 7.
RIZMZBEEDONINVN=T Y AH = -M(x;,v; ) E(t) %
M(xi) = X; (2.138)
E(t) = fe'«r! (2.139)
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W&o THEAS., 2IT, x; 1397 i OBEMIZNST ZAKERMOAE, fIFHIOKREE,
wp IR THS. IWEERDZVYEE A L LT, FBRAROEBIZIE TS, 210
DHE v, CEEHP O THRT D x ARAIDOS F; #ZNETNEZ, 43 X—=YHIED TR
U 7= tHE BB OMD OBGEZ WS &, MZIGEHEROMEELD

wi®)p = kBLT\fo wi(0)vi(t = s)), e'rs dy (2.140)

(Fi(®))p = kBLTf(; Vi(0)Fi(t - 5)), e'“rs s (2.141)

213%5. T 5% & 512 Fourier-Laplace £##9° % &, X (2.140), (2.141) HiZEHN 5 72
7= A Z AFE D X% % D Fourier-Laplace Z2#Df{ L 720,

<ﬂxﬁw):Egiﬁmawfw”m-lf}wmwxnbe4wdz (2.142)
<Eﬁ@»:é%i;dwrmwpl;owmﬂ@bfwwz (2.143)

2135, ZZTHAMEZEMIZBITSFE (), IT2VWT, ZThEyIalb—YavilBWiHE
BRDDZLIFEHBETH S0, TONT—FEEREL ())p - () L@AKR, TH5IC
I CIREBRFHEIZFIET 20 TOVEIREEZZEZTVWBH 2O ZNIZDWTDEHEE A
T 2y EHMABADILIZT D, ZOaABZEITY, A (2.142), (2.143) 2K
(2.129) ~MRAFT L, FEWARTE D 1 51572 0 O EREELREUIE

S GiOF @)y e (yiF) ()

Ti(w) = -0 _ 2.144
(@) fo Wi (0)v; (1)), et dt ivi) (w) ( )
B, 12720, mEOEANTIIRLOEED D1
(ABM@OE\[ (AO)B(®)), y ¢ di (2.145)
0

&L, F72, X (251) TRUZEDIZRK (2.144) ORI D TORBTIEICHY T 5 E
nT, IhE

_ 1o o
7w = fo WO (D)ry € di (2.146)

B ThzHWwb E

(iR W)
) = = T @)

5. Ai(w) BRFE S22, HIFK (2.132) TRUEZESICIhEREOH T THIZ
& % & [ER R

(2.147)

Ns (viF;) (w)

— 2.148
SkpTn;(w) ( )

M) =g > Aiw) =~

iesurf.
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LB, IHIZZ2T, ATEIIORE» SE AR F RS TR GRS &
TAPNIIERIZRD I E2FRT 5L, FELZEWSHOHEIBIFIET 55 7D
Yicsurt. 2 TR TOWHERD D Y, f\t’f‘ﬂ%bf%%“”%/\@%%ﬁw‘tb\. Thbb,
F; #88 (iF),y X (2.131) TRUE ()y OFEEBRIZELT

NoiFi)y = D iF)y ~ Ewa» (2.149)

iesurf.

YEMTES. ZOELEAVSE, & (2.148) 1

1 * —iwt
”“”Z‘ﬁgﬁazyﬂ kamﬂuo%e di (2.150)

ETBHIENTES. b, X (2.150) DM ERMAIDIEFIFANERZ LI ENTES.

Z DA (2.150) 12 & - THEIEEEBEEZ KDL ZENTEHA, ZOXETIEy OREM
ZEVR SR OMEIR E E T 2 BENRDH D, T IIEREMEDERS. £ 2T, — %k Langevin
FREAZHWTA (2.150) 2R HOFREDOHE L ZITIZKKREEDIZILITHESHMAS
LeaFEZ5.

Langevin £ (2.35) &% —ffb U, EEEIBIEORLDOME S TR, #@EDERE
WEEGFETHEL, INEZZAZABED THE VD D% (L Langevin SHFEA & I
& [63-55,69]. TITIEINEIOITHRL, B TRENSZIT LT F, ZREKN ST
51 & THEL THRIIZR L C,

m;v; = —f vi(t = s)vi(s)ds + R; () + F;(t) (2.151)
0

CWARD OB SRR AN TS, 2T, my, yi(t), Ri(t) 3T hFho1i OERE, W
KDZFHIZ & 5 EEGLREEE, FURLNTHD., ZOFTVXLN R; ivi,F} EHHEE D
N, TROLLIROEBRYEDHEHEDET S,

Wi(OR;i(1)), =0  (>0) (2.152)
(Fi(O)R; (1)), =0 (z>0) (2.153)

A (2.151) 12 v;(0), F;(0), v;(0)(= R; (0)/m;) & ZTNZNT TVIRME (v 2170,
Fourier-Laplace 2 #1% 3 #11%

m; (vivi) (W) = =i (W) (vivi) (W) + ViR;) (W) + (Vi F}) () (2.154)
m;i (Fivi) (w) = =yi(w) (Fivi) (0) + (F;R;) (w) + (Fi F;) (w) (2.155)
m; (Vivi) (W) = =Yi(w) Vivi) (W) + Vi R;) (W) + (Vi F;) (w) (2.156)

£7%%. 517, (Fourier-)Laplace Z#iDMHE (43 X— Ui a), HEEAREKOME (43
R—UIFb), THRIF—EH EEEU< > kgT/m;, v;(0) = R;(0)/m; EEITHILT
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IROBEBRRHLZ 2N,
kpT

Vi) () = = Gvi) () = iw (vivi) (@) = (v7) = iw Vi) () - : ( )
Wivi) (W) = iw (viv;) (W) ( )
(Vi Fy) (W) = —iw (viF;) (w) (2.159)
WiR;) (W) = (R R;) (w)/m; ( )

( )

ViFy) (@) = = (Fvi) ()
ZhbitkD, & (2.154)~(2.156) 1

[iwm; + ;i (w)] vivi) (w) = kT — (F;v;) (w) (2.162)
liwm; +7i(@)] (viF}) (@) = —(FiFy) (w) (2.163)
liwm; +yi (W) {kgT —iwm; (viv;) (W)} = (RiR;) (w) — iwm; (vi F;) (w) (2.164)

LA TES. X (2.162) &N (2.164) & 0 5 —FEFRB)HORE HL
(RiR;) (w) = kpTYy(w) (2.165)

RS, 72, X (2.162) OWA%E (vivi) (w) TED, X (2.144) Z VUL
1 —_—

iwm,- + /Ti (w) + %(w) B kBT

DEBRPEOND. ZNIZE—-MEREHHORCHIZHY T 55D T, LD RENDFI2E)

SEBREOBRME 5. D0, BEEIIEMS iom;, EE»S5521) 288 1 (w), B

R 5320 B 7 (0) DFRFIE R 5. 0 — 0 DEFHDOEHETIE, K (2.53) & 0 EHER
H ORI 51 2 BT 1 JOLOMEILRE Dy = [ (O (@),,y di ZHNT,

ivi) (W) (2.166)

- kgT
Ty= 2 (2.167)

LRED. BEHEETNODVDDEM4TIE, BER» S ODEENFEERI»CDED LD EKE
W, TRbL, 1, <y EREIEDBMRETE S,
X (2.162), (2.163), (2.144) £ b

) = ) @)

 kgT = (Fvi) (w) (2:168)

NEoND., T5IZZD A;(w) 2N (2.132) TR U2 &S ICER A OEIZ DWW T2
&0, (FF) DEIZDOWTRA (2.149) L FROEK 23 1L

1 . —iwt
A©) = srr o ) SEORO)

1 h —iwt
" SkT (1- a(w)}fo Z<Fi(0)Fi(t)>t€ dt (2.169)
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NEoND., 22T a(w) = (Fv;) (w)/(kgT) BV, w - 0IZHIET D ERINEEZE
A5 &, [FEREELARIX

1
" SkpT{l - a(0)} f Z<F (O)F; (1)), dt (2.170)

ZEkoT/Rons. a/(O) WZOWT, HOF BErSHEINS ¥z Z e 2HWTK
(2.149) OER 217 21

a(0) =

T fo Z CFo (O, di (2171)

nEohd. BLED F, OMEZ AWK, Green-Kubo R (2.170) 12 & D A &3k 5B
I ARBNZEOE S DAERMEA BN S DI, [EWESI & 8 U 72 S D 7 F8 Ny DA T H
5. LIPLIZT, BidD A; <y DO VLDOZFRMETTIE, KX (2.162) hoflo5nd

L )

T (2.172)
DR 5
a(0) < 1 (2.173)
THHIENRRAEN, R (2.170)
1 (o]
A% g fo Z(F,-(O)F,-(t)), dt (2.174)

LEMTES. ZOR (2.174) TIE AL HE O % % E T HEEEN RV, &b,
vVIal—YavilBWTHCHBEBERORETY (F;(0)F; (1)), 1£X (2.128) & FBRICH
e 5.



o1

/\'h-3ﬁ

RS

X&) =ILIKBBRDYHEIE

ARETIE, FHEDR SEHRITIIE CREHRRIBIZ H 5 /30 7 RITE W THIMEFRE & HEEK
R E kD, EBREL T 52 IZ X DAL THO G FETIVDOZELMEIZDONTKR
AET . 2 ZTRD DRMEMRE, HEHURBULEE TR LBRLTED, #IZ4, 5FEIZH
BRIV S, B, f5i2.2 THRANZD, RFETIEYIab—YavitkbREE
OB R R & — T 2 Z L 2 HE &9, KMEREE BRI D IR KT
MIZEBRTE NS & 5 BiifEz & OZB RS NIE, BFELFRUEAEDA =X LDH
HanTwsEDefET 5.

3.1 FEXR

BTN B SRS 2 3R U 7 L SR DFTRAIRIC B WT, FX X —VREIZH LT
HED 300 K THEANKREFEE L 25 )REEERL, NVE —E, $4bba T
B, A, TALF P —EORMETTYMHMEOBEE %1757z

ZOHIREDOERIX, £3, A 72K TRECTI VX LICEEL, NPT —&, T4
b TR, FEhH, BENR-EDOLRMETT2ns OBEMNFHEEZTS. 22T, EhEiE
DIz IXZE N ZE NE 2.6, 2.5 T X7z Andersen @ FikE HWERr—1 v 7ikzEHW,
HIEE S 0.1 MPa, HIBIERE 300 K & L7z, ZD#, RUERMETHO NPT —ED:HE
%Z 1 ns [TV, TOMDORD—HDOEIDFEEEZEZED NVE —EDRDLDE UTH
Wz, B, EAFIEOEMREIZEES 5 Andersen D HiED/NT A —X Mp 1%, NPT
—EDFHR DN AR & 725 & 512 Mp = 6.28 X 10'0 kg/m?* & L 7=.

NVE —EDRIZBITET —XOHFEKIEET 3 ns DEtREEZ 12 Y T To72. &
YV TIVIEHIRD NPT —EDRTHRE LR E R -7 FFHERA T —V v 7RIZ kD
E% 400 K £ TEATET0.9 ns DFREEITo 724212, B 300 K I(IZHIHL T 1.5 ns
FOENZIT>7-H D% H W=,

RERZI AL 1 fs U, MERPEE L Wo2FHEORTOT— XX 50 fs ZXITHEFL
7z, 2720, MERBOBHIZHWBIENT VY NVIZDWTIHMEDE Y % 3 2 M8 b 5
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72D 1fs TEICREUVTRIFEL. £/, BIORTHEREEILBRED 7 Z 7hox
T—=N—lE, YU TN LICRBHUYMEEE 1 DDA L UTHWW AR O (F
ETH B [40,47).

£ 31LIZHTE, ELVRREFERMZESNZRO-LOEY, BE, EHOFHHE%
RY. 7z, M31ICHERDAF Y TV ay bERT. BB, KEAX /) —ILDOHFH
WRPBEZREUY A X8 L5 ICRES > TEREL -, 1o RTENSE KD
2, REDORIZBWTKE AR ) —VIIFEIZRGI NG, £72, R31ITRLELIIZ
ROENDRTRTATHSH, ZNE NVE ~EDRDKEE IO HBRZ, HMIZ NPT
—EDFRPTER L2 5 —ADORIDOREEEEEZHW -0 EZ 5N, EIITERE
NS BAREOR Y% & 57258 L OAEPEN-AREERH 5. 72720,  MPa O
JEDZACDSKEMERREL [70] & MERLBUERER [71] 125 2 2083/ <, £/ NVE —~ED
RIZBWTENOBERMED WD & E13 £100 MPa & ABFSEIZ B 1) % 3% E E 5 it & kb
BUTREWEZD, BRTENDPELL BTV ARWIZ Y, HEIVWEZEDHE R >TWS
TRV Ialb—yvavoRRICGAREBIINIVWEEZLNS.

Table 3.1 Calculation conditions for bulk systems of water and methanol mixture.

# of water # of methanol molar side length  density  pressure

molecules molecules fraction [%] [nm] [kg/m3]  [MPa]
1200 0 0 3.31 992.8 -1.8
1100 40 3.5 3.29 981.2 -0.7
1000 82 7.6 3.28 967.7 -0.8
900 125 12.2 3.28 952.3 -1.6
800 167 17.3 3.27 935.5 -2.3
700 210 23.1 3.27 918.0 -3.5
600 250 29.4 3.26 900.2 -0.1
500 292 36.9 3.26 878.7 -1.6
400 335 45.6 3.27 855.3 -1.8
300 376 55.6 3.27 831.1 -24
200 418 67.6 3.27 805.0 -3.1
100 485 82.9 3.34 774.1 -2.3

0 500 100 3.30 741.9 -3.1
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Figure 3.1 Snapshots of bulk systems of water-methanol mixture.
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3.2 HREFREL

M LRI D, & [FIHEHEEGREL D, 13K & X & ) — )V DSy /AN & Y /ML
Riir & 2N Z 1 Einstein DR (2.64), (2.68) Z HHWTHEM U7z, W AL &P — 5
AR OIMFEOH E LT, KeAX ) —LOBEESDOZRDEE%2X 3.2 12737, Fi
TIRMEBNMIZDWTIED T D 3 DOENETEEITENE NG S NI IR M AN D
BThH5. £72, K 3.2121F20~50 ps IZH T 5 EDELELMRE GHOETRMTRL 7=,
t =0 TH TN EE) 2 U R \W 2O B RN & S /M AL & $ 1T
Z TR U CIERRIERIC 2 LT 5. 2Dk, I RALENL L KO REM DY
ABTt=5ps, AR —IVOFHRJEMDIGAETt =20 ps METINIEZ BB RER
B, AR TIIKE AR ) —=)LZENFNIZDWT 20~50 ps DHEIFADMHE 2 W T
Dy & D, ZHH U 7=

BAR ) —)VIBEIZNTBKE AR ) —)LOXMEILERE % 298.15 K (281 % EE
@Wﬂtébﬁfx3sm,@%mﬁ%ﬁ%x34m7.M$Kia%abfﬁ®mﬁ
%W@ﬁﬁmDmm%Abﬁfibfméﬁ,:Mimtxa/~w@mﬁ%ﬁDmm,
Dyieon &2 AR ) —IVDENLHK XP TEHMAZ T

Dean = l)water(1 - Xb) + DMeOHXb (31>

ko THEBUZ., ZOXEHEIZD FOMEZ2 KA TICE R UIREGRER AT 2 e
HETEL. VIal—varyTEONIEERREIZERME X 0 EWD, BEE(L

0.9 : ! ! | 50
— 08 - —— MSPD (water) &
o7 L — MSPD (MeOH) - 40§
o MSAD (water) =
06 o MSAD (MeOH) &
5 4 30=
=05 |- <
204 F e =
E - 20
=03 |- <
= o .
- S A
53 0.2 — 1()%
=01 | =
0 ¥ | | I 0
0 10 20 30 40 50

time, ¢ [ps]

Figure 3.2 Mean square position displacement (MSPD) and mean square angular displace-
ment (MSAD) of single component systems of water and methanol. Linear fitting for the
range from 20 to 50 ps are plotted with the dotted lines.
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Figure 3.3 Tranlational diffusion coefficients of water and methanol and their mean value
as a function of methanol molar fraction X”. The mean value is obtained by Eq. (3.1), and
experimental data at 298.15 K are also plotted with dotted lines [72].

R UTHBUNMEZE D2 \WIKE AR ) — )VORAEORHBN 2 E{L2HBETETWS
ZEWHERTE D, £, KE AR —)VORAHIT DN T EIHEILBURE D FEER Al 1372
WA, Stokes-Einstein BfR:\ (2.67) & Stokes-Einstein-Debye BIfg= (2.79) 2\ 2 &
DiR; < D,R? DEFZEME S, BEZIZ L2680 7 EE R, R, OZLB/NZI Ve T
E, IR [ R HE BRI M EHE BRI & RIRRITIREE ISR LT R IC M2z 95 2
EEFELR.

A EPEEBRBUZ D W TR B R SR 2 B L 2 RICB W THEA RO 1 XITKIFT 5 2
EDHONTHY [73,74], BT XKD B DA ZE WL ARORIZENT
FERMIBE RS 2 R U 72 B O ML RS Dppe &+ K E R & AWTI5E Ol #E L
BRI Dy DFNIZIRARDOBEGRD D 5 Z BRI NTWD [73].

kT

6L
27U, € WM (~ 2.837207) TH D, p HHIEEEK, L RRO-UORETH 3.
X B2 ZRERARINLTHLZOEEHEMAL, REIDOK 3.6 TRV Ialb—Yay
ICBWTHEHE U2 EAROMIERBORREDIEZ XX, Dppc 1& Dy & D HHEKRT
0.19x 1079 m2/s & < BB 5NT NS Z LIk 5.

Dppc = D — (3.2)
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Figure 3.4 Rotational diffusion coefficients of water and methanol and their mean value as

a function of methanol molar fraction XP. The mean value is obtained by Eq. (3.1).
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3.3 RatERE

FPERRBUE R (2.109) IZ& o THRE L. il LT, KEAR ) —IVOBEZTDRIZD
WT, ERT VY IVOIERS AT ORMED g% 3.5 1R, Ad, ZHIEEN
T YYD Pyy, Pyy, Poy B TNZTNIZDWTERA L R E, S5 FEHLTR
D7z, IR L FRRIZ, 2O TP OMEIE r AUNS W & EITRERENI S U TIERRIEIIC
ZALT B0, TOHRITERE D, AWK TIZ 10~25 ps OHIPHDIEE % F\ THVEFREL
ZEHUZ.

BAR ) —VBEEIZNTBKE AR ) —VORSGHEDOK SRR EZ, 303.15 KIZ8F5
KERAE [75] L ADETH 3.6 IZR U7z, ¥ ab—Y a3 v TR U ZEVEREIL LR
D HNEL, FIZEBRDICHRTEABEDO L EIZZDENIENREHDD, WIndEIL
DENI0 %D EETHAEEZL S, EREvIal—Ya vy CRBREBEREEZRTZ
LA TE 5.

B 3.3 £X 3.6 TR U7z & DI M EFLEAREL & R Mk AR I D FEBRAE DS IEAR I B 7 P P
FMEERT I LIE, BEICKFEL CKEREEGOMENEMT I LICHRTELEEZS
1 [48,76], AWMIETHWZ0TFET IV L > T I OIFGBHRIRERGTIEE2HHTE -
Zrid, YIalb—y a3 ilBVWTEERE FAKRBKEEEORMEDEMNREL 2720 T
HHLEZOND., Thbb, K33LE36 TRLAEEIIZYIalb—Ya VvOEMBE
ERAE & FRR BB 2R, ZhEy Ial—ya VIZBWTEBIRGFEEDSED 5
ANZALETHHTETWSZOTHDLEEZON, AMFETHW S TETIVAZY
ThHdLARTIENTES.

723, Stokes-Einstein BIf%N (2.67) 12 & 0, BEZIZH L THFOER LR R, O
ZAEDVNE W E T, WERLBRE RIS B R KB OBRIZH 5 L FE A 5
N5, ZOKBIOBRIE, HEEICHLUTH 3.3 THHEILFREN RIS TH O 3.6 T
KRB LT TH B %, Y Ialb—va yCEIEUZYHEDFERRE & ik LT
LRI TR E RTINS WZ B TwWb eEZ 6N 5.

Z 2 T7z Green-Kubo Rz & 2 KiMEREUL, TANEEN Y0 OMRE & - 7254
DIEE AeED. 2 ORMERBAIARIIZE THW S8 ABEE A 102 s 4 — & — D JEFf
RTEHAVWDEZENTELZDOH, SWVWHZ DL, TABEED 107 s7 DFETEKE A
R 7 — ) DRAED Newton JifkE UTIRZEED 2225 ik, &I 4.3 HiTHEET 5.



58 B3 AR — )VIKIER DY

— 2 T T T T

18

A

= 1.6 _
|

S 14 + .
X,
12 b .
;‘?: 1 - water ]
> 08 - |
w

0.6 —
o4 b MeOH

~02 - 7 —
Nl

SHN .""" | | | |

0 5} 10 15 20 25
time, ¢ [ps]

Figure 3.5 Mean square of time-integrated off-diagonal components of pressure tensor in
single component systems of water and methanol. Linear fitting lines for the range from 10
to 25 ps are plotted with dotted lines.
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Figure 3.6 Viscosity of water and methanol mixture as a function of methanol molar fraction
XP. Experimental data of viscosity at 303.15 K are also plotted [75].
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I~ =r
4

a8

FEEER DR

ARETIEE AT ERE DK E XA X 7 =)V DREGWIZ Couette DTN Z AL I, HE
TRDDOFEMEZRT IR BRI LERBEBRBOE N 2175, £ Z0roHhT, ©56
EEPRTEZ VO Z & o 25612, BEN—EOHEBRHEBIZE W THEE
DA LR DR AW~ 78 A7 — )V LR UBHRAE D LD PZ DWW T T 5. §
7mbH, Couette MOFWNIIK U CTHESHEVRLTH O, F-EBEHICE S EAWIGTIH
BN OEAWICT D0 BV, ZOBIKDICTIIRMEICHEKT 26D TH D Z L 2 HE
BT D, £z, EREBEBERROYTAWEERGEHEICDOWTHRIET 5.

41 EEBX

4.1 12 Couette BLDF N %2 £ U S H 72 FHRDOFEREZRT. FHHERDO LTI
2.2.4 TRz z @il A28 (111) 1 & 72 5 FCC O FERBER 2 BB U, x, y S5 E 5
Frgefb e Uz, FEFMERTIZ L N OBEM %2 x BT I ZNE N 2y, OEETE P
Z &2k b Couette BDFHENZEL X HS.

FCC (111) surfaces
(3 layers each)

10.49 nm
10.84 nm
water-methanol _..
mixture
z AY
Y 3.36 nm

¥ 3.05nm

Figure 4.1 Simulation system of Couette-type flow of water and methanol mixture liquid.



60 HAFE IR DT

RD x,y ROV A XEB &% 3.05%3.36 nm? TH 5. z HHOEIIXEHIHEIZ
Ko THRMIZE SN2 EZ Wz, BARIIZIE, vy =0, HIEES 0.1 MPa, HilfH0EE
300 K X UT, 2.64HTHRAZJENHIHEE Langevin #98ik%2 &b ETHWT 5 ns U E
BAGHE 21T - 7214, FHZRMT 2 ns OFEEITY, ZTOMOROEI DFEEEEZRDE
X LTHWE. b, EHHBONT XA =2 M, =5.0x 1072 kg & U7z,

KAVIZIORTHE LV ZWAES T8 L, HRINZEOND, BE—EDOHEED A X
J—IVIEE, ROEX, VHENERT. £, AETHWZTRTOROAF Y 7
vav MEM 4.2 1RT. BIRD FEILBARD A X 7 —)VIBEN 0 % & 100 % OBET
ZTNZ N 3160, 1336 fHTH D, REWDO D FEIXRDY A AVRB L ZRLCICRD L1
RAEH > THRELZ. ZORBB VI >THRD z HEY 1 X% 10.49~10.84 nm DHi
FZINE 5. £/, BEEHOS FHIE ETOREZ2EDLDET 924 lThD. £ 41I1TRLEZE
IIZRDIENFLIRE TH MPa FREIX S5 D0 T WA DY, 3.1 fi Tl R7z & 5 1T HLEEREL,
FEMEREBUZ X U CE N DORBIINE K, F7z, BIZH 4.8 72 ¥ TR 3 BB ERRRLEE
ZALITRT U TGN 5 5 T &0 S BRI EUT N U T H ARM5E Tk S #iPH O )+
XHDEDHEITNIVWEEZONS.

URIZRTHERIEEIZ vy =20 m/s & U, WIMHEEORHITRO Y 1 X% P I BEm
ZEPURET 1 ns OEHEZ L TEERBIZES2BDOT — X 2HWTTo72. Z
DIEEHOFETIX, BEMEOIRE IXH 12 Langevin B98I & 0 300 K 2 Hl4H Uil 7=,
BEIZOWTOHMIINNSE EICRLUZD, ZOEEREIIC X > T, BmoEHIC L0 AR
INBIIBEN SHITTWE, 7, y HAEDERED 300+ 1 K ITf7205 2 L 3R L 7.
E7z, BEREEREIE vy OREIITKGFEL TEAT 20, IOV TIEED 4.5 fiT
BGES 5.

R AT 1 fs 2 U, BHROT— XX 50 fs T IEFE L. RHIZH S WER Y 40 ns
DIMFEE %2 U l2ERE LTRT. ZORMEHEEIZD S EORSLREENAE &
VEEARZEELCETNT220TH5. ZHIZBELT, FEIZHWSHEE L EDIES
DEDMBRIZOVWTHERF IZR L. £/, 57D —N—1%, HEORRYF—
K% 1ns T, FXETENENE L U2 EEMEEZ 1 DOBEARE UTHWEE
AR OREHENR 2 T B [40,47)].
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Table 4.1 Calculation conditions for nonequilibrium systems of water and methanol mix-

ture.

# of water # of MeOH molar frac. system average

molecules molecules  in bulk, X® [%] height [nm] pressure [MPa]
3160 0 0 10.60 —-0.02
3096 24 0.6 10.57 -0.51
3030 52 1.1 10.56 0.02
2982 76 1.8 10.57 1.81
2900 100 2.2 10.49 2.47
2870 132 3.0 10.62 -0.79
2820 154 3.5 10.62 -1.48
2774 182 4.2 10.66 0.18
2632 254 6.0 10.70 —-0.56
2560 258 6.5 10.52 -1.09
2076 488 15.7 10.56 1.44
1676 676 24.9 10.61 4.18
1284 854 37.2 10.71 -1.51
960 970 48.6 10.58 -0.38
738 1058 56.3 10.55 1.17
492 1158 69.1 10.58 1.52
294 1266 80.6 10.84 -1.80

0 1336 100 10.59 0.27
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Figure 4.2 Side views of all simulation systems of Couette-type flow. Blue and yellow
molecules represent water and methanol molecules, respectively.
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42 BELEEDAMETNYRSE

B 4.3 120K DRDRAR ) = IVEBEDEAIZDOWNWT, KEAR ) = LVENETNDEE
Pwater; PMeOH DA Z /R T . B3R % BEMH & SEATIZ0E 0.02 nm D@ THEIL
THRBEHTHEML, IS5IEHTER2S ZNSDEIFRDO EFTHLETEILZ. £z,
DAEEED S DFFEEOBEE L LTRL,  MOFIIBERORNEOFHMEE Uiz, Z
DEENFIZDOVWTHE L, KEAR ) —LVOEEIBXZ 7> 2.5 nm OFEBET—EL
o THY, BERKRED SN TKE XX ) — U —RRIZBEESNTWE I e hD
M5, ZOHEEESE 3ETHWEZ NV REXH U T/ NIV IR EFERZ 220, ZDE
DFEMTIIRZRTHBIELE LTV IO AR ) —VELSER XD 2HWS. H—73N
V2 SEiE 2 X, AR EAADE THARIZZBMIC R — oA LRk e s Z e il
BETE5, ZOBEREE LTS, BEIEWADPSIHEIZE 1E, 28825
ZeIZTB. FBIBREBDOAR ) = VOBEEIZEHT B L, WLIZHHBDO AR ) —)IVIEE
PWMEWGATH>THIITD pyreon ERL, AR —IVHPEFEATEIZEE DTV
BabOZeWbnb. ZHIEAR —VDFDBUKED CHy 2 b D70, Ik L
I FUIFAET B & 0 B MMV D BERE 12 CHs B2 [ THAET 2 T RV F — T L
ThdHILIZBRT2EE2 505, FEBIZ, Surblys 5 [36] DA L F LA FET IV
THRHUZBERAEED X, WAL L TKEAVWEZBEEIDE AR —VERAWEZEED
FidMEL, TRIVF =T AR 7 =)V DFHAKE D & AR DB 1203 2 BUFIMED &
ZEeNonb. BB, AR —)VH CHy FEZ2EEMIZWIT CHEET S 2 130 FERA O
REEORHT S5 L TEERMIZFMTE, ZO/RIZOVTIFIRED 5.2 HiTrRT.

BRI DR E T N D (FEEE & 9 528 1 WERORBIZHESHET L LEZ NS 7
b, ZORBIZODVWTIVFHULKHERLTHEL. M44I1ZE 1 REEBDARXR ) —I)LEL
DE X L RIRARDBENHEDH 72 0 DREE ne 2/_7. ZTIT°T, H1REEOHMAI,
7 =0 P OWEBEROBEEVNRYOM/NMEE L ZMEBETELERLE. BB, K& AX
J =)V DHEEE % ZNZT N ng waters s McoH &3 D &

X2 = ns MeOH (4 1)
Ng water + ng MeOH

Thd. FTXIZOVWTHDE, FROED FEIZA X ) — VB EE D720, NIVIHE
SOWEE XP X0 5 1 REFEOIEE X2 DANEIZEN. £220AX ) —)LOWEED
72, X2 OB XP BB LZ 10 % U TORETATH Y, TDHOEIIMHIZ
BN TH D, ITHBEE ng, ThbOL, H1IREFIFETIHTOBIIOVWTHRS
L, XP OBINC e B0 1 IRER O TEIEEA L, R XP < 10 % okt Z o
ZALIZATH S, ZORMTTIZ, AR — )UHPEMMEORBIIZEE VX T WHEE L A &
)=V FDIKDFEDERENWZLIZERT R EEZSNS.

B 4.3 (TIXBE DA I TEEDEE vy, THIKKAL U 72 B [ BERR J 160 O WAR D T v




64 WA IR DM

DHTEH EDETRU . WADEE X, &% BEEICFATICIE 0.33 nm ORIETHEIL,
ZOXME OV EEE %2 VAEETH 723D LTHEMHLAZ., T40bb, ZOMHE%E
V, HFi OBRE m;, x FAOHEES v, £ LT, ZOXEOFHEE v, %

(4.2)

EUTH U2, HEZ VT RSB EEDOERENBBCRIEAOND &5 ITEV
ik,%Eﬁﬁ&ﬁ%kﬁﬂ%i@ﬁ@i???%bt.LﬁﬁﬁiﬂwﬁﬁﬁTEﬁX
BRoTHED, DOETOMENTRTE ZREICHIEEE L5, Dl esHER L
JHIBIZ B WTHEIZE L TIE~ 20 27 —)L®D Couette W DR & [ Uk R D V7 -
TWBEEZONS. £/, B 4.31213Z DNV 7 FHIS O E D A6 O LERR % FR TR
U728, IREE COEENMEITIGEICE > TEZ O HhifR» s bThricFntnsd. o
0, RITEH < EABBHDBRNTCT—ERZ LT, A0 ETIkEREORIMERE
DRANZZIL L TWB eEZ 6ND. TRDICEL T, 5 1 IRER-EOMEIZIHS 2
BHOEE LY /NS, KFEODFETIVIZEWTHEEITRDNELTWS Z & 2
RTE5.

X 4.5 12X 4.3 DEESAPSBONDITROEI [ TR EE v, % XP OFKE
ULTRY. 22T, H1EDOX 1.2(b) THMLZ &L ST, Navier BEREM (1.4) 28in
AR L UT, EREREOIREREDMEE WS Gk NV 7 8B OME % W 5 HED
EZLNBD, AL TIX Navier 35 513 Navier-Stokes /2N D BB R &M% £
TeWI R LD, BEDNNIVIHEEOMEE W [8]. TibB, AR TIXEREA
[0 A% C DR T8 DI R 72 1 DREMEREL D 28L&\~ > 72 Navier-Stokes /2 TH &
SNV RN RIE T R T Navier AR IZEEND W R LD, IRDE
IXRTRYFHEOREHIITITE R NI I EBOEE Z/ME L THWZ, 72720, X 4.3 »
5N D & D ITARGE THW AR DIGE XL 7 488 & S 8 Tl AR D2 AN E W\
728, TOVEGDE VI IDSFHEROERIINIVWEEZSNS. £, EERAEDOAMEIZ
DWTIREABEI DA G DIIME, $7abb z=0EDR [10]. BAEz i Hd
&, K45 1ZR U2 T R EE v (XX 4.3 12 SFRTR U 722NV 7 GEIS O O T BUE AR A
z=0THD v, DIHLBEMOEE v, DAL LUTHEHL, §XRDEX [ 1% Navier 557
St (14) &b, ELEMRE S SITAMEL T v, = vy, ERDME L FEBREDOME z =0
Ot LTk, M4A45 &0, AR —IVEE XPAVNIVWEE, TRVES [(IX
XP e HITHML, Rz XP <10 % OHPETHNDBRETH S Z Lhbhr b, Z OHIPHIX
REED AR ) —IVIRE X> DWRELSIMTH2HPFATHL 200, REIZEE-7ZAX

J=IVINETRDZEHELTWEEEZ OGNS, DFD, HWHMMEOREMIZEE D P TWVAX
J=)VOMEIZL D, HEBWDRNED AR ) = VDEAETREZRTRD DIEEDRYEMN
BoNTWBEEZSNS, £/, AKX/ —)VIEE XP > 40 % O TIZ I 1354 120
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PEBH, TNiF s AR (1.3) TRUZEZE S IO EEZ %, K 3.6 TRLEZLI I
ZZTHMERBAPME T T 2720 Ths eEZONDS. KMREORE L 2T 0\ EIRERE
FREUZ DO WTIIERD 4.4 HiTRT.

density, p [kg/m3]
0 1000 2000 O 1000 2000 O 1000 2000 O 1000 2000

4 (a)XP =0 %j‘, b)XP = 3.0 %ﬁ%i (E)Xb = 6.5 %|

(d)xb — 157 %

o

'

¢

,y 4

I S

7{ — Pwater |
{ﬂ ~7° PMeOH
" ° x/vw

l (H 4

0 02040608 0 02040608 0 02040608 0 02040608 1
velocity, vy /vy

density, p [kg/m3]
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T T T T ] T T T
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Figure 4.3 Distributions of water and methanol densities pwater (blue solid line) and pyreon
(orange dashed line), respectively, and normalized lateral velocity along the x direction vy /vy
(red dots) for different methanol molar fractions in the bulk region X® of (a) 0 %, (b) 3.0 %,
(c) 6.5 %, (d) 15.7 %, (e) 24.9 %, (f) 48.6 %, (g) 69.1 %, and (h) 100 %. The dash-dot black
lines correspond to the mean position of solid layers, and the origin of the z axis is set as
the mean position of the innermost layer of the solid surface. The dotted black line along

the red dots is a fitting line of the velocity in the bulk region.
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Figure 4.4 Methanol molar fraction X2 and surface number density ng in the first adsorption
layer as a function of methanol molar fraction in the bulk region XP. Water and methanol

components of ng are also plotted.
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Figure 4.5 Slip length I3 and normalized slip velocity vs/vy as a function of methanol
molar fraction in the bulk region XP. The slip length is calculated by Eq. (1.4) using the

slip velocity and velocity gradient.
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Figure 4.6 Velocity gradient in the bulk region of nonequilibrium system, and viscosity
obtained in equilibrium systems. The viscosity data are the same as these shown in Fig. 3.6,
and a fitting line using 3rd-order polynomials is appended.
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Figure 4.7 Relations between methanol molar fraction in the bulk XP and lateral shear
stress 7. The three 7 values 7y, 7, and 7, are independently calculated using the force

exerted on the wall, the average shear stress inside the bulk region, and the viscous stress in

the bulk region, respectively.
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Figure 4.8 Solid-liquid friction coefficient A in the Navier boundary condition of Eq. (1.1)
and slip length s given by Eq. (1.3) for various methanol fractions in the bulk region XP.
The slip length given by Eq. (1.4) shown in Fig. 4.5 is also plotted.
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Figure 4.9 Water and methanol contributions to the solid-liquid friction coefficient.
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Figure 4.10 Solid-liquid friction coefficient A and solid-liquid interfacial tension yg) [36] for
various methanol fractions in the bulk region XP.
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Figure 4.11 Dependences of the solid-liquid friction coefficient A on the lateral wall velocity
vy in the cases of methanol molar fractions XP of 0 %, 37.2 %, and 100 %. Corresponding
apparent shear rate is shown on the upper horizontal axis. The friction coefficients obtained
in the equilibrium systems by BB’s and HS’s methods discussed later in Chapter 5 are shown

by dashed and dash-dot horizontal lines, respectively.
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Figure 5.1 Integral of the correlation functions shown in Egs. (5.1) and (5.2) in the cases of
methanol molar fractions XP of 0 %, 37.2 %, and 100 %. The integrated values correspond
to the friction coefficients through BB’s and HS’s methods, respectively. The lines with the
same shape and color denote the values of top and bottom walls.

DOWRMETH D, ERTHEDOND & 5 R EREERRED —E M & ARt KW A WHHE
BB AE2EE TN AEETHL. AEiTIX 28 fiTiR77Z BB & HS 12 &5
Green-Kubo X% ZNZNH W CREIEEEGRHR A 2HH U, IEFEERORE R L KT 5
Z & T Green-Kubo XD Z Y IZDWTHEET 5.

AZHEBT 2720121, BB O (2.127) TIREEHRIDSEAL 521350 F, DAC
FHBIBAEL (Fiy (0)Fy (1)) DREDMED BT H D, HS OFE (2.170), (2.171) TIEHEAS
T i DIBEM A 5321 BBEHBERR G DN F; & B AR T A D v; & W 7 A B B
(F;(0)F; (1)), (F;(0)v; (1)) DEDFIZOVWTDHDMNMENBETH 5.

X 5.1 12 BB O AETHBER (Fy(0)Fy (1)) D& L, HS O HIETEE RN %2 5D S
EEZOoND Y (Fi(0)F; (1)) DR ZKE ¢ O E LT, T74bb,

1 t

App(?) = m](; (Fw(0)Fw(7))dT (5.1)
1 t

Aus(t) = fo D (0)F;(r) dr (5.2)

2T, TS OFESMEDDR U 7 E A ER AR A [T 5. 5.1 Tld V248
BDRAR ) —VELGR X D0 %, 37.2 %, 100 % DHZHEIZODWTDOHRL, K TH
UREHOMIE L TORBTENENROBEAETHS. 5.1 &0, HS DHIETKD
T REEIE— IR T 2, BB O AETIHICERASEL, AUMHEE L BREDETD
BEHIZDOWTOMMETH > TEENKREVWI 23005, BB OHETITHE—~DHCOH



5.1 Green-Kubo &2 & 2 [EEEER O E H 79

0.016 : : : :

0.014
0.012
0.01

Fi(0)vi(1))dr

0.008

~
"~

- - 0.006

(=)

Lz

z 0.004
=

—

£
0.002 |- |

0 | | | |
0 10 20 30 40 50

time, ¢ [ps]

Figure 5.2 Integral of the correlation function }; (F;(0)v;(#)) in the cases of methanol molar
fractions XP of 0 %, 37.2 %, and 100 %. The lines with the same color are the values of top
and bottom walls.

BABEEL (Fiy (0) Fyo (1)) DA ZE W2 72D D RN D72 <, THIZ & D BARINZEDIE

S5DOENKEL LD, —~HTHS DAETIE, EEOH 1 TRD MBI (F; (0)F; (1))
OMZEANDE 7=, f#x DHEREBD 7 14 XA X, BB D HEL LT A XH
INEL o TVWBEEZLND.

HS O AIET A 2R ZI121EH 5.1 TRUZR (5.2) OFAEZ T TR, KX (2.171)
D a(0) bRODBENDH B, 727U, 28 WITHRAIZ L ST, EED S DEEHEE A; WK
PODEE y, FDENSIL A <y THHEHEAET a(0) <1 &2 Z e fFIh, Z
NAYHS @ Green-Kubo i (2.170) 125X 558 3N W R TFRINE. Tz~
57002, X 5212 a(0) DRI BT & HE OO 3, (F(0)v; (1)) O
fie

1 t
TN fo D (FiOyi(r) dr (5.3)

ZXP 230 %, 37.2 %, 100 % DIGFEIZOVWTRT. 22T, EWATEEIZFES 5
R TH Ny %135 72 DI IZFEE A H OO E T 2 BEDH BH, ZIUTIHEEMED
Ho. AMEDGEIZBEREIZ & > THEAKREEHET LMK EZXHNTLEILNTES
b, ZOBEPEREOMHEKE UTHA4ETRUZE 1 REREHAWEZ., T72bb, X 44T
RUZE 1 IREEOEBERE n, L REHK S #HVT Ny =nS & U7 K52&b, X
(5.3) OFBEMIFIENEL, FHkARERATHZK 51 TRLUEZRX (5.2) OFAS LD HED
EoDENKREZLAWbNs. ZHEA (5.2) »WEHCHEBBOBEA TH 2 DI L TR
(5.3) IR DEHEF, & v; OMBEMBEREKTH v, B U THIIZ /4 DK



80 95 FE VMR DN

0.016 : : : :

0.014
0.012

i “3 I

0.01
0.008

a(0)

0.006

0.004
0.002 | .

0 20 40 60 80 100
methanol molar fraction in bulk, X [%]

Figure 5.3 Relation between methanol molar fraction in the bulk XP and @(0) value in
Eq. (2.171).
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Figure 5.4 Friction coefficients obtained using EMD by HS’s method in Eq. (2.174) and
BB’s method in Eq. (2.127) as a function of (a) methanol fraction in the bulk region X" and
(b) that in the first adsorption layer X2. The friction coefficient obtained in NEMD shown

in Fig. 4.8 is also plotted.
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Figure 5.5 The ratio between the friction coefficient obtained in EMD using HS’s and BB’s
methods and that obtained in NEMD.
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Figure 5.6 Water and methanol contributions of the solid-liquid friction coefficient obtained
by HS’s method.
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5.2 T1H7-0 OEWREERE L 5T OIS 87

5.2 DFHY DERERREEOFDOEE

Hiffi 5.1 ©, HS OFkz AW CREREBERO SR 2 Mzt 2 e 2 & 2R
U727z, HS O HEOBEHTHNZFERRNIOVWTHZYTH D LHRINS. Tihb
t, HS O HEOBHTHiRE L2 1 D572 D OFEIEEBRE A, 2 H VTR (2.132)
2 & o TRRDETREEBR A BE N D LW E X%, BERHLEED S 1O Langevin
FRERP S G0N 2 B L I OBRATH 258 —FEREEHGREH (2.166) IZD\WTH [H
FRICAHIGDOZ YR D D EEZ NS,

ARETIE, FERFETEE O 53 T EREEE 5T 7= D ORREBRE A, & LTED
WTHILNTES, T74bb, BBOAECIEWTHK (5.5) DERAAE 2 HIZE N/
DT & DM EAHBEBEBASRHETE 2 Z L2 HWT, EBERMINT X b EREBRBDMER
THERIOWCHENTS 5. Kz, BALEED 72 D OYIVEME T & 2 B AR A % FEWR
SIS DAY T 72 0 DEEEE 1; SOV TOHEMIMETE I ICEHL, [
WIS D AR D 73 5 D IR [P ) 7 Mg i & BB D BRI D W T E T 5.

B 5.8 12 HS @ HETHM U BERBEBEBIZ DOWTKE AR ) —vENEN 1 451
Bz 0 OEWEEBLRE A 2R3, ZOMHIXK 5.6 TR U ZEREERRE A ~DKE A X
)= VDEFEGEENTN, K 4.4 TRULE 1IREREOHEEE ng = Ny/S THl-> TR
L7z 58 &0, XX =) 103FH70 OEMEEHBHEIZHE KT FLDERENT
EWOMNE. DED, AR —IVEEOENNT & 7D EEAEERE A OWAIEE 1 k&

—_
(@}
|
|

i [x10714 Ns/m]
>

—_
.

friction coefficient per molecule, A

—
N

i
o o
I
|

water

o <2
RS
T T
| |

| | | |
0 20 40 60 80 100

methanol molar fraction in bulk, X® [%]

o

Figure 5.8 Solid-liquid friction coefficients per water and methanol molecule.
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Figure 5.9 Snapshots of water and methanol mixture near wall for different methanol molar
fractions in the bulk region X® of (a) 1.8 %, (b) 3.0 %, (c) 6.5 %, (d) 15.7 %, (e) 24.9 %,
(f) 69.1 %, and (g) 100 %. In the left and middle panels, water and methanol molecules are

visualized by differently colored balls and lines, respectively. In the right panels, hydrogen

bonds (HB) of methanol are visualized by lines with different colors depending on bonding

molecular pair. Dotted black lines correspond to the apparent boundary between the first

and second adsorption layers.
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Figure 5.10 Probability density functions of the angle between surface normal of wall toward
liquid and dipole moment of water molecule in the first adsorption layer. The color of lines

expresses the methanol molar fraction in the bulk region.
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Figure 5.11 Probability density functions of the angle between surface normal of wall toward
liquid and CH3 — oxygen vector of methanol molecule in the first adsorption layer. The

color of lines expresses the methanol molar fraction in the bulk region.

(a) water (b) methanol

Figure 5.12 Schematics of the definitions for representative angle of (a) 6y and (b) 6

indicating the water and methanol orientations to the wall surface.
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Figure 5.13 The peak angle giving the maximum probability shown in Fig. 5.10 and
Fig. 5.11, respectively.
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Figure 5.14 Probability density functions 6y, and 6y, obtained in EMD and NEMD for
different methanol molar fractions in the bulk region X of 0 %, 3.0 %, 37.2 %, and 100 %.
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Figure 5.15 CHj3 contribution to the friction coefficient of methanol in NEMD.
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AR BRI R SEBERDZ 2 CIOBBREFNS. A MEILRERRE &b
B CHERIEHRE S BEH L, WFICDOWTHERT 5.

HS DG & R BEm AR G H O 1 T OMEILEIZ DWW THE X 572012, TR
MR BEBRE DR 24T 5 . AR TR R IEERE O R D 72012, K (2.66) &
[l Bk 7 = 2L DRSS O BRI B\ CRFT IS REZ ¢ = jat \ITFAEL 72 T DA
ZFNCMACTEE /AN 2L, ZOMES» IR EZ RD7-. £72, FHUFEHME
PR TE SO VO S FIZOVWTHEFEET S, 516 12l LTr=jar 1281
A AFAE L T2 T DA ZNY U7z x O R 207, L, FKICELLUZE
BZRMENZEK, AR —VDENENRBEFDOHEIIDOWTRT. I 2T A
ZERIZDWTIEE 3 ED NIV RDGE L AMRIZH 7O 3 DOEME XN S ZhZ kK
DIAEEFIUTHEB U, 72, BFUZIEZE L LT 25~30 ps 1281 20 BUERRE s
TmUTz. 5.16 £ 0, FHZR/ANIIK 3.2 TRUZNIVTZ ZDEGE & F R0 KA
i U CE MBI E L E L TWD Z e GiAalNn, — 5T, R ALAIIKDY;
BTt <15 ps BETEMESRE TNEH, FHoREAM LD HEMHRICE/LLLTED,
PNIVT RDFEFRITIENZ D5, B REN IR LT 28 HE LT, N
Vo RERILOEERIDH 2R TIHEHENIREL BV EBET N, 2K TD
WA AR RR DN HEEF DD & EDHENMb L EEZOND. —F, AEAIZD
WK EFOW & MR TH 572NV REFAKDE{LEZTEEEZ 5N,
E-ZOMOEE L LT, ERICHIERBDZT 2856, KERBIZX2 0 T0BE)
2 e B WY IR &Y IR AN L RALEIB ) AL OEERAE EFND
LT B0, THODEERICTH U TR S RWI EAE R 5N5. R %
B2 WIS TUE, EEOMEIZE D TE 2R EWCEZOME E % WV THRER
xR BT DH 573, 32 TRUNNV I RDAERN SGHERRTH - TH WAL
Pid 20 ps, AZALIE 5 ps FRE £ TIRILEIN R E B & 72 52\ 728, RIFZETIEZ D45
%R E S AN DB G 20~30 ps, P RMABAOEGIE 5~10 ps DIEHE %2 HW
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TENENRFFRWNZ Dy, D, ZEE U7, ZOHEICE0ER U 0612333, [k
AR ENE N 30, 10 ps DRI z HENCHEIT 2D D&M LEE2 5L 812
BH, [(A2)2 = V2Dt 75 RS 5B DM, M 3.3 TRULAENLZRICEBT
5IKD Dy N5 &, FHRILHRETENE N 0.40, 0.23 nm F2ETH 5.

[ AR 72 LB B D RS SR o il & LTI 5.17, 5.18 (2 F N F NG HEILEREL Dy & (1]
BEPEERARER D, DZEMD A ZRIK, AR —ILVOHBEDRDGEIZOVWTHRT. X 5.18 D
D, DAL LU T 5.17 @ Dy IZEDIXS D E N KRE WA, ik, EiLoFH—HE
BADRRIL L i85 mnZ &, BEY, 1IRTOILERTH 5720 3 DOMEM: EHlD ¥ % A
W5 D, LHIEUTESICHWS T Y TP LICHkT 22 F R 6NSE. Dy
DEGEIFMEDIESDENKEVWZDHMTERWS, D, O/HED, D, DEIZNNIVYHE
BTeEbbh—EThY, BEEEETIHMENEIT I b5, Kz, X518 &b,
BEFHEAETAKD D, &L, HITA X =D D, 13MEL > TE Y, MM D BE [T %
TKDFIRAIEITER L RDEDIZHL, A X =V FTREEIIFH X NS Z bk
5. ZhiX, KOFOEE, ABIZ 4 D3 Z 23T E ZKEME 2 MR LTk
Mz A DT RTEBL Z DN TERLKBRE1-2O0TORENFHIRD, AKX =)D
£l CHs BZBEEAMIT 5 Z & CLERMEEZ LD 2 LICK D HRENEL 25720 TH
rEZOND.

¥ 5.19, 5.20 IZFNFNKE A X J — )V O EFLEGRE De, [FIHEHLEGRE D, D % X
J = VIBEKRFEEZRT. ThOoORIZBWTRE 2R TR LT, X 5.19(a), 5.20(a)

0.25 40
OE 00 L MSPD (water) | 35%\
f% —— MSPD (MeOH) . 30§i
SR I MSAD (water) &
S 015 | e MSAD (MeOH) 7 173
S g =
| 20 T
T 01+ 153
= 10 a
CD,-*) 0.05 + =
= 5§

. | | ! ! 0

time, 7 [ps]

Figure 5.16 One dimensional mean square position displacement (MSPD) and mean square
angular displacement (MSAD) of the molecules in the first adsorption layer. Only the cases
of water and methanol single component systems are shown. Linear fitting for the range
from 25 to 30 ps are plotted with the dotted lines.
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translational diffusion coefficient, Dy [x107° m? /s]

Figure 5.17 Distributions of x-directional translational diffusion coefficient D¢ of single
component systems of water and methanol.
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Figure 5.18 Distributions of rotational diffusion coefficient D, of single component systems
of water and methanol.

TNV FEIED AR 7 —VELZHR X 2, B 5.19(b), 5.20(b) TIEX 4.4 TRL
T IREEDAR ) —IVELVDR X ZHW. 72 EfFEXXFICONWT, D* I3 1
A5, DP IZEER 2\ 2ROV 2 EIE, D 1XM 3.3, 3.4 TR U =25 I A5
Rz UL RO NV RICB T 5 EE2£RT. X 519,520 &b, X5.17,5.18 T
HR U7 & ST R AR I & L U CUE LR DEDIE S D ENRE W T &b
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5. FRoNVIHEEE NV T RITE T BIEREICOWT, K 5.19(a) TR LU XP-DP
 XP-DP® OBIfRE D, UM MBI &R U 72 L HRD NV 2 RO W E AR R
Db &b & BEE 2B E N7 WA D UEILERE XP-DP DI BRENZ L HbhB. O
AIZOWT, 32 HiTHIRAR & S I EILERBUI I E R IR T H > THHEPRDY A
AXRRZDT ARY MITESKAFET 2 Z ARG TN TE D [74,80,81], AWFETH W=
BERTLZOMRMVENZLEEZ S5ND. — CHERLBERIIZ DWW TIE, X 5.20(a)
TRU7z XP-DP & XP-D> DRGNS WMEE & 5 Z 05, WMEILHRE L D HROY
A ADFEEZIFIS VI PRI ND. R, B 1IRER L V2 HI8IC B 1 2L
REUZDWT, WHEILEEREUEX 5.19(a) © XP-D2 & XP-DP OBfRL D, OIS D
ENREIVDPVTNEIKE AR ) =L HITEBEHTIEWVEEZ L 5 TWD. —/, [HHRHEL
BRBUZ DWW TIX 5.20(a) D XP-D2* & XP-DP OB L b, HEORDEEIZH 5.18
TRUD LRI, MOFTRTOREDOHFPIZE W TKRDE 1 B O FHKHLEERE
D ier WE/SVI DM DY F O BREL, KT A R =L DLEIEEE 1 R
DI D2\ o BV FIEDME DY\ oy FD BNV EHHERTES. K, B1R
A &NV 7 SIS BT B IR DIRERAAIEIC DO WT, WMERRBRE R, E0EE %
L B DEE OB E U THZK 5.19(a) ® XP-DP OBfR &K 5.19(b) ® X*-D2 O
BRED, T —N—0HIFTEBORMEERGEE L 02 Z L255ARNS. —/T
AR LR BUZ DWW TIE, X 5.20(a) ® XP-DP % & X 5.20(b) D X*-D* DR &

D, B1RERE LNV EISTRESREERENE 2 RS Z b0, BHOPEIZLD
BEMELE D2 OEB D HEMIIREDATRE S LW L DDD 5.

IR L 0 ¥ & 72 » DFEIBEFRROBFRE R 572012, X 5.19 TRUK DY 104
Hd 2. HS O THNZR (2.167) &0, EREROBEBIGE A; & BRE RO EE
Iy 1IZDWT A +y; = kpT/DE OBMRED ® 5. B 52112, FAR —VIREICNT
% kpT/D %3 . ZOM 5.21 TR UZEBEHOR kgT/D? 1¥8 5.8 TRUE A; O
102 fEREDOREVZ b h 5. X 5.21 D kgT/D> &K 5.8 D A; Dfin SR (2.167)
EHOWTHEHUZ A;/y; ODEEK 522 125, 72, X 5.22121%K 5.3 TR Uz a(0)
NoN (2.172) ZHVWTHEE Uz A /y; DB EDLETRULZ. K522 kb, KT
FAWZRTIE A4 Ey; D02~13 % BBETHLZhWbrd. DFD, B 1IKERICE
TE9 % 70 1 DIBEMHEAR TG SRS B U 72 BRIT SR I 320) 2 BEEHR U0, SR DR &
ZIIB5LDORKNTH Y, ER? ST 5 BEBIZWAEP S D 0.2~1.3 % BE LIV
Zedbhbhb. 2, ToOfRE, ®5.19(a) TRUZ DR L DY HNEWEE &5 Z e h
S, WIKHRDOEERE y; D3NV I E 1 RS TEWEEZ L 5 Z 8 bns. DFD
I, RIFRTHWEZDFETLVOEE, K 4.3 DEEDMATRUL L SITH 1 BEE
DBEENNIL 2K E D B ENEATH>TH, JAFDBURD T 5 8 < ek S5 10 D FE#E
NV IEBE BHEVEDLST, REBILBWTEHEBELRIHEN NI VW LERT.
F7z, a(0) PHKRDZ A;/y; ITDOVWTHZ L, ZOMITEDIES D E DK E WA HEHLEK
FREL & BRI ER U 5 R D T2 A [y LiEWVEZ L 2 Z EHRRTHINS. ZDZ &I, H
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2, FEEEARE . a(0) 2 MBIBEE (F; (0)F; (1)), (Fi(0)v;i (1)) 2 53RN, FEH S
EAE DM IR E RS 2 2N TEBH I L2 EKRT 5.

PAEDRER K, BERBGHRT E O MEIABGRBUEE § R OFM2HNLHEREE L5
LEZONS. OF D, WHEREET RO DPEET D720121F 4; NS VBEDNRDH 5D,
AR CHN D FET VDX SNV IHEIBEE 1 BAEET Yy BdE v ELLENT
EERMET I, VT IS 1 R JE O EILE R L L, WE DN WEE &
XA AYUNS SHIREZRGEE ST RO WFEET 2 L HRITE, ROHTHE 1 RS T8 CREMm AR
[F] DWEFLHAREAVNE T E A DRE HET RO NIV EHFITE LA TES.
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Figure 5.19 Translational diffusion coefficient Dy of water and methanol as a function of

(a) methanol fraction in the bulk region XP and (b) that in the first adsorption layer X?.

Superscripts

1P
K

a

system, and cubic bulk system shown in Fig. 3.3, respectively.

“b” and “cb” denote the first adsorption layer and bulk region in wall
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B Diwater DiMeOH
0'2 W 5 coocleees Db Lt ahid Db —

r,water
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(a) XP-D, relation
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Figure 5.20 Rotational diffusion coefficient D, of water and methanol as a function of
(a) methanol fraction in the bulk region X and (b) that in the first adsorption layer X®.
Superscripts “a”, “b” and “cb” denote the first adsorption layer and bulk region in wall

system, and cubic bulk system shown in Fig. 3.4, respectively.
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Figure 5.21 kgT/Dy for various methanol molar fractions in the bulk region.
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Figure 5.22  1;/y; obtained by Eq. (2.167) using A; and kT /D for various methanol molar
fractions in the bulk region. A;/y; calculated by Eq. (2.172) using a(0) are also shown.
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AWFFETIE, KAOMDEAEDIRE 1T & 0 ERH OHE T XD OFEAFEETH 5 hD
fREAZ Hi e U, MMEDORER & ET B KE XX ) — VDREGBEDEET R IZDONTH
FENFEIC LAY I ab—va v RV 217> 72, AIF3ETIE 9 Navier B
FAFITHIN B B BRI Z Couette BLDENZ AU I/ FERATHINTSZ LT
AR —IVDRAIZEDEHESTNYDEAZPSPIZL, 5122 DEIEDERIZDONT
RND 72 WVEHRIZE W T Green-Kubo Rz W @i 217 - 7. BAF, BonfER
IZDOWTiR 3,

B 3BETIHRED R NIE RNV T RIZEWTIKE AR ) —)VOIREEDHILEERE & b
PEGRE 2 B U, SEBRAA & D HRIT & 0 ARWF5E TR W2 /IR S TE T IV DZSMEIZ DWW T
MRE U 72, B U 72 SR EAR A & MR W v E, SEBRA & Rk IZIRE 2 iz U
THiffizHDOZ L 2R L, AMIRTHWZ2TETIVT, KEMEOHEEDZEIZHERE
TBHKEAR ) —IVORGHEOFEBNREEFHHTE S Z L 2HEIDT-.

% 4 FTlE Couette DN 2 E U I VI MR Z W@ 21T o7z, K& AR
J =)V OB IR S HEN IR TR —ETH O, HER VI EESE KT 508, BE
AT E TIRBEENCSEATICEIR E B RERE 2o 7=, A X — Lo I3BKMED CH; 5
2HO7OKSF LD HEMEOBEE 12 U TEF VR TWEELH D, ZoOWEIZED
EIREREDAR ) —)VREVP NIV LD B EL< R o7z, IROEE N FIEY 71 A
=)L @D Couette it & FMKIZHE RNV 7 HHICTRIETH O, £72, »OV 7wz <&
ABTIE IS 3 T TRO 7ZREMARE Z FH W TSRO 7RIS 1 e — BT 5 Z 2 h 5, AW
THWZ 107 st A =X —OFE W ABEEOFHNIZ B W TEH Newton ORGMEERI DKL
U, 7NV 7 GEIZ 81 2 YN R S /0 45 D3 E & D Navier-Stokes AFEADfiE L —H,T 5
Z e RMERUT-. Navier HEHREMEZHWTHAWIS T & TR EED SFH U 7= [ E
BRI ANV ZFHIED AR ) —LELDE XP BB L% 10 % LT O#FHT XP o
SUTRML, ZORIZ—EL258{%E L, X° =10 % OHAOMHEIXHEAL U THEY
DKEHNIZGED 1/3BEFTHADT LI 2R bh o7z, ZORE, HEBHE DRI
FFORPTWVAR ) —)VOMEEIZED XP <10 % OHPFTE 1 RGO X X ) — Vi
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p={1{

PRELERTEHZLIICRRNTZEEZEZON, DRVALX ) —IVORAEIZ & o TEEKK
DRPRENTZ LI1T705. FTz, FRx REURERR O BRSO U THD LD
WEAF DRRERIN 722 L 4 R D D E 7L TIZFEIR T E IR DV S W & ERE BRI R & <
BN, KMFETHWZEABROBEIZIOHT, XX/ —I)IVOREGIZ XD ERSHR
TN < 72 2 DAER BRI A T 2 L WO KRB E S, BREWE DA 1L EH Sk
J1D A TREVEEESREZ FHITE RV & 2R U T,

5 ETIE, B4 HETHWROBER 2 #f ik S E 2N D0 FHRIZE W TENT 2
1T-7z. HS @ Green-Kubo ROEBH CHW B2 IR T 5 2 & ©, BEImIZERERE
R WA D FOYMAE 2 BEA I 2 e N TE B AUCERL, 84 ZTRU ZEIRELR
FREDSIERE DBIINZ & B 72 WA B BRI DWW TR 22 8L & fifbr 24T o 7. et
RO TIE, £7 Green-Kubo XDMEED 72812 BB D ik & HS D /5 T &%
BOBRHET o772, ZOME, BEREBRBUIIIDEA RO EREE L I XP AVhE W
HETHEA LT, TORIT LB 2%E L, BEEWTH > TH Green-Kubo X% AW
TR TV RDEMN iR E2 FRTESZ 2R Uz, £/, FEEMRT 40 ns
DIRIENC & o THE S I 7 B EERRE L RIS R A, EHR TlX 2 ns ORI
TE S5, Green-Kubo N X B2HHDKKTHB Z L 2R U, 72720, FEHREEGR
OB ATIE DM ANZIE AR L PR T T 50D, VMR TIHTHE R TR
EUTRWE AWEE DR NE R Z N2, AL TH - 72 H#PH T3R8 A WS I
BWTCIEEHRDMEIEARITED L PIZOWTDREEIZTET WA W, BB & HS O
FarRT 5L, BEOAVLBOMEBRBOME LB N TEL72OHRNLL, E
DIXSDENNINZ & 2HER L T=.

E7z, BEWICH U CEIEEEBREIZNT 2K AR ) —VDEFGIZOWTHHZIT-
7. ZOEHIMHEMBEAEN S BB O 5L TIEFEANCRIEETH 505, HS DAIET
XA EEL B HDTH Y, 2O DIEGWIZH U THEHHALZE DIEAMELIDHTTH
5. ZORER, BEREEBLREIZEDDKE AR —LDOELEDOEEGIIIETHAR L TR T
—HT BN broTz. ZZETT, HSDAEIZ —EDOZYMLH 5 Z L DR TE
To72, RWIZETIEZ OBEHTHWZ# 2 f % I6A U CERBEEAEDREORE M £
RNRAD T BERIZOWTHNT U7z, £9, IERD 75720 OREIREEREZ KD 5 LK
DNFEOEAR ) —NVRTFDHEPRENZ VDR oT2. TbE, RO [E IR
DARIRN | ZEETL S D FELD A F B 72 D DEE BRI DA DO W N2 B E
THDN, KRR THE S22 TIEE 1L BREEDOD THKNPS AR ) — Vit IvEbs Z Lk
THTH7- 0 OFEEEBFERIIETEOD, IN& D 0 TFOBEEDRDDNED S
KREWZD, FERMIZA R — IV OBNNT & 5 EREERE OB ED 5 Z LB bho
2. ETz, BTH0 OFBEEEGEEEARS A X —VREORINZ X 0 EDTEZ 20
OhY, BREOWINZEVE 1IREREONS TOEBEVENT 522056, ZhDERKE
WX E0TORBEUAVPEATEZILIZEEEDTHS I EBHERINEZ. 512, HS
DHERTH N/ E B HOAEE % N T 5 & BRI AFET 2K S T12Do0
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T, MHEHLEAREL D WEA 53 18 7= D O [ R BE AR A & J&] [ D YRR HH 2 oD EE AR B D RN
Y32 &S BRABE S NS, KFEOEE XS TH 720 OEREEINEIKERD S
DD 0.2~1.3 % BB E/NE <, WAEIREERED & B ERAR 2 C/IICEBED 5 Z &
EREECTHEZ 2Rz, UL, MIKHRDOEEPRERETE RSB LRI &
ZAE T UL, FIHE & NV SIS O M ESLERE % [T 5 2 & THLBASEE TR D
DAMEZ T SRR R 55 Z L 2R LT,

PAERARZ XS0z, AgeTl, HEBEORE I L TAX ) — Vs EE 2HED -
DB DRI TR RN ER RO Z T TN TEL 2R L. 5T,
HS OMFazZ & IZHTH 70 OEWEEBFEEZEAL, A X —)LOEREEBRREDK
0 BHEMNEHD, XX =V OFDPERFENED S TEEEPEN2OTHEI L %
HOoMZU, EHREIZL > THES TOERICN T 28U ANEDHDEZ LI R TH
720 DEEEBURENZLT 5 Z L 2R Uz, AR — )LD FE A~ O ESE 3 R D BE 1
WZHUKEE R [T 5 Z L ICERNT 5720, io7va—, HlIZIETESETIALHWSH
5T &) —) (CH3CH,OH) 4 Y 7a ¥ )L 7L a—) (IPA, (CHz),CHOH) [36], T
HoTHAKIZDTPRIBEAICE > TERIEEERRE 2T T2 I e TE I L FHTH
5. F7z, EBIZF ) A7 =L DKL LTHWS NS Z &A%\ ONT IZMEMGIE T H
%7280, EEDOANZZXLZED DT DRBNMYNE > THETR) ZEEI LT L0
WifFcE b, 72720, AMIEORR LD, 5175720 OEEEERBIIKEEEDO X v b
7 — I EOEAR TN BRI D FIRADOE S Y OEMARERIZ L > TEDLEZ L
DWRIBINTED, HTOFEEPREEZZETLZBRICZ o2 CEMICFHIT S Z & I1EF
HThdrHERZONS. £72, RIIFETIEIENEOEERRE LAV TRWD, ERD
M, KX, MrEiE, HEERRS 28 PNRATRO EREERRBUZS X 5 BIZD VT
FEORIMFAPBETHSD. UL, KIFFETHEEL 72 HS @ Green-Kubo i fhd
B2 R RERCTEEATE 5720, INoDHER LHMATHRMZMTTSZ &
T, BEVEEBUREIZ O WT OGN ZRIR & TR EE TR ORI TREE b Z &
DI NS,
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Tk A

Langevin AN DEDEH

X (2.114) TR U7z Laplace Z#1% i\ T, Langevin 2R & FH UK DOIRD 1 BERIE
WS AR EELT 5.

dx(1)
el ax(t) + b(t) (A.1)

R—3 43 DIFE a TR U7z Laplace Z2#OWE %2 H, EXDOMAD Laplace £ % ¢
5,

s3(s) — x(0) = ax(s) + b(s) (A.2)

&y,

sy = 2O

§s—a s —

b A.
LB, Tho Ol % Y Laplace 2#13 5 73,

-1 1 _ at
£ (s—a)_e (A-4)

THY, 43 _R—Y DT a TRUKE D ITHEIAARD (f *g) (1) I2DWT
L7Hf () 8(s) = (f+g)(0) (A.5)

e n Z VNI,

t
x(1) = e“ x(0) + f b dr! (A.6)
0
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&k B
Liouville AT & A HHZEE D FE(E

18k C L {48k D THW 3 Liouville AR B & HiHZEM EOE¥EO B H HiEIZD
Wik~ 3B [55,69].

B.1 Liouville 2R
N fE DR FIZDOWThHE & HEEE 2 T NZTIRD L S IR T 5.

q-= {éh,x, qi,y-491,z> - - > 4N, x> QN,y,CIN,z} ={q1,...,93N} (B~1)
P = {Pl,x,Pl,y,Pl,z, .. -,pN,x,pN,y’pN,z} ={p1,....P3Nn} (B-Q)
s EHAEDE (g,p) ¥ 6N ot DAAHZER ED 1 iz 52, Tz &

RN DFOEFDELREFFERIIHKE D & TN OEFH £ /2 EEE LRI/, NI
V=7 V% H(q p) LE T,

(?q 0H
B.3
ot 6p (B.3)
op 6H
hat B.4
ot 8q (B.4)
Thb.

w LR T lE b 2 W EE O SN ZE M Bz BT B 5w f (g, p. 1) ZFWT
K. Bl 112 (q,p) Y OHIK dqdp \ZRWPGFEET 2HERIL f(q,p,t)dgdp THRZX
N, ZOMEOREITHIREINTED

j?%mnﬂdww=1 (all 1) (B.5)

ZiiZUTW5, HWAANFIZE TS Euler W72 R % LT, 2B EE U 7= UMAR
5qép TRV ILD f(q,p,t) DERERGFHIZEZX B, 22T, O ER - HIkiXmWwe T
5. £F, q1 & qu+6q1 TRELTWT, ¢ 8N EE 2% Y5 M SO
WTHEZD. g DHZBYZREICODWTIE, WK f(g1,....0¢1(q1,...,t) THIEREA



110 f+#% B Liouville A= & A7 FHZE[E] D SEYa4E

8qo, ..., 0q3NOp TRIND72D

fq,....0q(q1, .. .,1)6q2, ..., 693N 6P (B.6)
LRED. £/, ¢ +6p1 DHIZHYBIEIZDOWTI,

f(g1+6p1,....t)G1(q1 +Op1,...,1)0q2, ..., 0q3NOP

~ (f(ql, LD+ (;9—;16@) (q’l(ql, o)+ g—zéql) 892, ..., 0q3NOP (B.7)

Thb. MEDEEL>T, KK oqop TEHY, 2MOBNEZELHZHERTNL, ¢
WG f OREZR Lof, &

d . of oqr
—5f, =—|g—= = B.
dt Jar (Ch g +f8q1) (B.8)

ThH5. MOTRTOMNEEEBEIZDOWTHEBRIZZAZREZ KD, ZNs50/%E LT

af o . a9 \ . of . of

=L - _ . _ . L L B.9

ot {f(aq 7 op p)+q g "7 81)} (B9)
MESNS. 2T SICEREARR (B.3), (BA4) &b

d d d O0H 0 OH

— . [ - )= — e — . = B.1

aq q+6p P oq O0p Jdp O0q 0 (B.10)
LB EAvIE, & (B9)IF

of (. of . of

ar (q ag " P 8p)

__9H of OH df

~ dp dq dq Ip
Y% 5. Zhid Liouville AR & I-IEH, RAZER L2535 0B F 02 4% i
T 5. INZEEIEIIZRET A 72012 Liouville fEFHZE L %

(B.11)

L:q%+p 6_6Hi_6_Hi (B12)

EEFHZT NI, Liouville R
ﬁf =_Lf (B.13)
o’ '
ERFILTE S, 7z Poisson FEill

(A B == = -2=. (B.14)

vz,

Lf =—{H. [} = {f. H) (B.15)
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TH Y, Liouville FERIZ

S p=-trm) (B.16)

ERELTHILHTES.
Liouville /iF A D32 RH12

f(g.p.0) =e""f(q,p,0) (B.17)

THzZ2oNG., 72720, fEHZ L 285T4E8%, Taylor B ZH\WT

—tL _ S (-1)" n
e :Z—;) L (B.18)

TEHEIND.
M EFE Tl Euler IZ% 2 72h%, Z Z T Lagrange 72 HL D M2 DWTH X 5. D/Dt
7Y Lagrange 3 2 &K 4 & dnix, X (B.11) &b

Df(qg.p.t) _
Dt a

ME D NLD. 22T, (A% Lagrange FIZIERF T 5 & LT, Wl r OIEH % AR
&, Ihx LRAFE LT, mEkE

0 (B.19)

flg.p.t) = f(q'.p") (B.20)

ERTILILTE. Z0EIIFETIE, X (B.19) KB Z > T f OMEIFZ/LL 22
/=&

f@%p% = fg'.p" (B.21)

Thsd. 7=, WH 0 THRMERPIZHUMERE dg'dp® 2 L 2L, ZORAKRIKH &
EHIZEILT DV ZDRBIIAETH D, T8bDb,

dq®dp® = dq'dp’ (B.22)

NS A RVASR

B.2 FHfEDIEIE

FHREIZB VT, £ TOFOME L EER, §2bbMHROBEOEK TR
LYELE a(q,p) @F A DL, TOFIE (a) 1FFHEARED DB f(q, p) ZHNT,

(ay = fa(q,p)f(q,p)dqdp (B.23)

WZEhRES.



112 f+#% B Liouville A= & A7 FHZE[E] D SEYa4E

Iz, MEFITEEEICET 2MHREGE T COWMME a(q, p) DFEEEEZEZS. Z
:‘/Cciﬁut bf, ﬁj\% 1D x Eﬁo)fﬂﬂ%‘% Xi fﬁ Xio0 VCKD% C‘f. %@?i’ﬂﬁé’i’?&5 i‘é—, Xi
M xio D¥5 Xj0 +0x DHIFAIZH BGEIIOWVWTERDLE, ZDEED a DEWME (a) 1

f a(q. p)f(q. p)dadp
<Cl> |x,~o <x;<xjo+6x — Xio SXi SXio O (B24>

f f(q.p)dgdp
Xio<x; <Xijp+0x

THZOLND. IRIT x; DY xj0 THD LWV FMATEDOFEMEIE 6x —» 0 DR & U TE
HTE L7, Dirac DT IV XEEZHNT,

f 5(x: — xi)a(q. p)f(q. pdqdp

(a) |x,~:x,-0 = (B25)
fé(xi - x;0)f(q,p)dqdp
THRIND., WEZEVPERD G5 HEETH 5.
F7-, X (B.25) D% xi0 DEBE AT, HDHT

fi(xio) = fé(xi - xi0)f(q,p)dqdp (B.26)
ELTETIE, ZHEDFi D x HHEDALE x;0 IZ2WTORMEKZOLDTH D,

f fi(xio)dxio =1 (B27)
T,

B.3 EHALZEHEDFHIE

REENTARE U 72 E A ORI 1 (2B 535 (A(D)) IZD2WTHE RSB, ZD (A))
DRDFIZIE 2 DD HENREZ HND.

1 DH®D J5iklE Lagrange 7RI WTH 0, Az E DAL R OMEENIZ 2 > TH < 4
IMEREIZDOWTEZ B, 20 E, R (B.21) TRUEE S ITZ OBUMERED E AL
R UTAETH DD, A(g,p,t) FREICPHICRET 225 2 5. EHIE (AQ)) 1X

<A(t)>=fA(q,p,t)f(q,p,t=0)dqdp (B.28)
ko hE, ZI2T, t=01CB5 A(q,p.t) OEEMSIZOVWTEZ L L

_5_A.(3_‘1) +3_A.(5_P)
£20 q ot),_., Op ot

a_A
ot

t=0

= LA(g, p.t = 0) (B.29)
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TH Y, Liouville fFAZIZ & > TEBOKBIMOMRRITE 5. [FARKIZ 2 B IX LLA
THO, nBEEIIZ
0" A
oM

=L"A(q,p,t =0) (B.30)
=0

TERING., ZhEHWD L, Taylor BRHOREZH\WT A(g, p, 1) 1

[o0] (0]

tn

= Z —'L"A(q,p,t =0)
n!

t=0 n=0

" 0"A
Alg.pn=) — -

n=0

=e'tA(g, p,1 = 0) (B.31)

YEFIENTES. ZhER (B.28) LRATAE

A0y = [ (e Aq.p.t = 0)) Sq.p.t = Odadp (B.32)

L5,
2 DHD LI BEuler W WTH O, MMHZEMICEEUZEETEXS. ZOLE,
A FR NIRRT, DB RMIIZZ(LT 5 L EA T,

(A®D)) = f Alg.p.1 = 0)(q.p.)dqdp

= fA(q,p,t =0) {e_th(q,p,t = O)} dqdp (B.33)

THh5. =720L, X (B.17) V.
ZIZTmRUEZ2DO2DHEKIZLSHER (B.32), (B.33) i&—L,

f {e¢'"Ag,p.1 = 0)} f(g.p,1 = 0)dqdp = f A(g.p.t =0){e"" f(g.p,1 = 0)} dgdp
(B.34)

DERZRES.
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g% C
PRI D Green-Kubo DEH

KEMEAREL D Green-Kubo ROEHIXHT 2.4 TR U ILEGEER O &EHie e BAWIZE LT
HY, HLEZYEMHEEZBRRN LT To—FeIraky Ta—FTcrhTRd, 0o
EAEDETHEAS [67,68]. Tabb, IBEREIZ OWTHSGRINRILBIERE I 71
7% Langevin AR Z M I E 572010 NT NP _R/RENE2F X 5 [55] D L [FRRIZ,
FEMEFREL DB H TIEBIS RN 7 Navier-Stokes HFER & I 7 u i K 5K L T
TNENECYMMEZ KD 5.

5B, I TR B THR-o NEE V.

C.1 IR&mmMALr77Oo—F

N AD}FTHEKRI NG 2 iR E &R 5. £3, KElt =0T, x=x0 DME
ZHDBINTiH, OOFIRELT y HAOMEEE p=po 2db, THIZIVESNDS
HWEG D y HWERD vi(x,t | Xi0.pio) ZRDB. EEITREX, 07 i DEE (= pjg/m)
NEDEFHEL 2T 2DIFTIERL, ORI ESRIC & > THEDMGDIEK
INDEEZDLVDETHD. T7bb, fiilE x = x;0 £ D DIE 5x DWUNEIKIZ pio
OfFEEZMA, IhzEz ZOHBOEETRLZ3DE2G5OREL TS, p 2%BE, A%
x B RELRAEOmBEE Lz &, 6x > 0 DRZZEZNIE, Klr=0128WTI D
FEIZED 725 INIHELIX, Dirac DT IOVRER 6(x) ZFHVWTULFDO LS IT&RE
ns.

Pio 0x << N 0x
Xio— — S X = X0 —_—
V(%1 | Xio, pio)li=o = lim { PASX l 2 l 2
ox—0
(else)
Pio
= p;Aé(x - )Ci()) (Cl)

ZZT, B v O N ERATI L, EEGP i llkbsZ2EKL, i8S
DEETIEZ .
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T, v uilikERARDO XN TH % Navier-Stokes HFEAIZEWT, R TIX Y
WHE, EDARANThEX e THEH 5
ovi E82vi
or  p Ox2
723, 22T, p 3R THS. ZoMma AN, AR (2.54) & H
UCHOMIEOMS HERTH S, HIHEELR (C1) OFVEEBTRINLHEY
vi(x, 1| X0, pio) DIRFEIFER D IZ

(C.2)

Pio (x— xiO)Q)
vi(x,t | X0, pio) = (-———— C.3
i i0> Pi0 pAQ\/T[/JT 4,ut/p ( )
L5, OB EIXI IS 2IRDE—AX Vb
(o) 2 .
Ii(t | xi0, pio) = f (x = xj0)*vi(x, 1 | xi0, pio)dx = ;flgot (C.4)

2EZ DM, SOEEE pio DFEEAENREBTHY, pig ICO2VWTHES L 2IRE—A Y
}‘ Ii(t | Xio,pi()) @Ilzi’ﬂﬁéﬂilﬁlb <‘ED c\f_ﬁﬁfbi '5 ‘%:VC“:—_ :‘/C‘\&i, Z?I’Va’:iﬁfb‘é
T2 2ME—AY M pig ZR/UZBDEERD. Thbb, RD ¢ Z2EET .

Zi(t | xi0, pio) = f Pio(x = xi0)?vi(x, 1 | Xi0, pio)dx = %f (C.5)
’:iﬁ@ﬁ%iﬁz:Oﬁﬁ Xio \2H Y, y HADHEEE p;g &2 HDGEDEED

HxEZEZTLD, ZIroldnTi O E L VIIESZICET 6 FEEE2EZX 5. £
T, WIALE xi0 1I22WT, RIZH—LRETLDT, x OHHZ 025 X(>0) &7
5Y, BFM xio D xig + dxijo \[CIFIET HHERIL dx;o/X THDH. — 1, {HEE =
Pio WCDOWT, 2 FOME, 25 \WIGHEHEEOMREEREBUL, FHEREBOE LR T,
Maxwell-Boltzmann /G (XD 728, HEJE p;o & ZNITHRKEDS. T48b5, BTFidDy
T DEEED pio 225 pio + dpio @F'ﬂki)%ﬁﬁf

1 (Pio)
T exp 2kaT] dpio (C.6)

Thb. £oT, i@t xi0,pio) ZDOWT, 1 i OIHDAE x;0 & vy FHAIDOEERE p;
BT 52 L o726 D% ;1) LT 5L

X )
dxiOf 1 [ (pio)? ]
(1) = exp i(t | Xj0, Pi di
0 l; X ). kT | £t 1 X0 Pio)dpio

1 2ur » 1 (Pio)?
d — 2 ap,
X p2A f xtOf (pLO) 2m7rkB €Xp |: 2kaT Pio

2ut

= XA X ((pi0)?)
2uX

= ——mkpTt C.7
pQVm B ( )
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Eib. 2L, V= XA REBOKETH, REBEDODEFTCZ 2L —F 0 H
<(pi0)2> = mkpT %\ 7=.

REIZIIZOWT, RAND NEDETORFIZHF LU THRME L 725D % L) &35
&,

2uXt 2uXkgT N 2uXkgT
ﬁ;V~NkaT: HAKBE | mt: H Bt

P P pvV P

OEDWACE (C.8)

nREoND.

C2 X/sox77O0—F

AIffi & Bz 0, EEEE HWTHEY vi(x,t | xi0,pio) IC2WVWTHEZRD. 2T,
xi(t=0) = x¥ = xj0, pi(t = 0) = p¥ = pjo DFAM% 7z 9 RAZEH DI E A DA 112
B2 5mEAE

N (g, p" 1 X0 = xi0,p° = pio) (C.9)

ERTETEH., ZI2T, e THME, EHEOERIIFLN0IIBIZ2H5DTHEDIT
KU, DHEEBRORL 132 B LU TWARWZ 2IZEZELTEL. BB, ZO%M4)
E DB fn (g, p" | X0 = xi0,p? = pio) b,

ffN(qt,Pt | x9 = xj0,p{ = pio)dq'dp’ =1 (C.10)

79,

ZDEMNERMBEEHNCT, DFiPRA =012V T, x=x;0 DAEIZH D,
y AFIOEEE p=pio 2D DL EOHELZKRDD LA (C.1) 2B WL & LAKDFE
A} T,

pl
vi(x,1 | Xi0, pio) = Zf p—j4<5(x;~ ~0)fn (g’ p" | x] = xio, P} = pio)dq' dp’
J
(C.11)

5. UL, ZOFETIE, WREGZ2ERTIRME, DHABEBOKLINRLR S
720, DHEBEB»SFEE R (B.25) DX ICFHET LI eNTE RN, ZORL %
—HE 572012 Liouville ARARZH 2. 405, X (B.22) DEKIE, x¥ = x,
p) = pio DERMZEFRLIZHBHRICOVWTHEDLDRD, Tz HWTA (C.11) h D4
B MNMARER O 2 HE M2 5 L,

In(g " | X0 = xi0,p) = pio)dq'dp' = fn (g% p° | x) = xi0, P} = pio)dq°dp®
(C.12)
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Yis. 2k DR (C11) 1,

1
vi(x,t | X0, pio) = oA ZJ: fp}é(x? —0)fn (g% p° | XY = xi0,pY = pio)dgq dp®

(C.13)

YD, fy OER YN OBMKRE ORI, fIREEORA E —8F 5. £oT, &
(B.25) IZft>T, & (C.13) 2 F N XEMAEFVTRAD LS ICBEHET Z L NTE 3.

> f Pio(x; = 0)8(x = xi0)6(p = pio) fn (¢° p*)dq°dp°
J

vi(x,t | X0, pio) = —

A
P f 5% = xi0)6 (2 = pio) i (q°. p*)dg°dp”
(C.14)
22T, R (C14) ORGSO,
f §(x? = xi0)6(pY = pio) fn(q° p°)dg dp® = £ (xi0, pio) (C.15)

& BL K, C?’Wiﬁ (B26) T/%bf:i 2 2, t=0 Kﬁllﬁ Xi0 (‘.’.E%ﬁ%pio “C“f)ofzi—
DHT i OB THS. ThEHRC, & (C5) LABOFIEIZNG, po Z2EL~
2IRDE—AV b 2ERDD &,

gi(t | xi0, pio) = f Pio(x = xi0)?vi (x, 1 | Xi0, pio)dx

(o8]

_ 1 oo 2 t t 0 0 0..0 07..0
_Wf—m(x_xm) ;fpiopjé(xj—x)(S(xi—xio)é(pi —-pio)fn(q p )dqdp

1 foo[f t 2 t 0 0 0.0 0 0]
= Dio(x—x;0)0(x; —x)6(x; —x;0)0(p; —pio) fn(q.p~)dqd
pAfl-O(xiO,Pio); L 0)0(x; 0)6(p; —pio) fn(qp)dq dp
(C.16)
B, ZIZT, TIVXEABROMEEEHWS L, x ILETAIEDIZOVWT,
f (x - Xio)zé(x;- - x)dx = (x} - Xi0)? (C.17)

LTE507T, X (C.16) D x IZET 2HED 4N,

Zi(t | xi0, Pio)
1

_ t ot 200 0o 0 07 7.0 7.0
= mepjpl()(xj x;i0)70(x; — xi0)0(p; —pio)fn(q ,p )dq dp
i 4 J

(C.18)

AR

dx

dx
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WAz, PARTE ERRIZ, b UTHERLUTE 2t =0 2B B0E x;0 LIEENE p; 12
DWTEEZE LS. f(xi0,pio) EHR—DAF i I 2DHEKTHENS, ThEH
WCEIE (£ (1) 2R &,

(i (@)
=f &i(t | xi0, pio) f1 (Xi0, Pio)dxi0dpio

1
= ff [Z fPJtPio(X} — xi0)%6(x] = xi0)6(p] = pio) fn (g%, p°)dq°dp® | dxiodpio
J

(C.19)
L%, ZIZTTVEBEBOMEE WL, xo ITBET BRI OWT,
\fﬂﬁ—xmfé@?—m@dmO:U§—x%2 (C.20)
L7320, pio T ARNICONT,
fPiO(S(P? — pio)dpio = p} (C.21)
LTEBHDT, X (C.19) D dxio, dpio (2T 25 H 4N,
(i) = AZ f pipi (x5 = x)? fn (g%, p*)dq dp” (C.22)

EhB, BBIZIIZOWT, TRTOHTICH U TR ZE & niZ,

L(t) —Z@l(r»— AZZ f PPl = x0)? (g%, p°)dg dp®
<Z Dot -7 (C.23)

2185,

C3 HMMERHMEEADTVVILOWP S EDFER

L) E2WT, EBROEERAL 5@ 5N 5K (C.8) L HHEEN 5 E5h 5K
(C.23) T 5 &,

2uXk T
el <Z St -a27%) (c24)

&b, Th &b RIMEREIX

H= 2kBTAXt <Zzp1p’ () _x0)> 2Vk Tt <ZZP >
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(C.25)

YA, EELV = AX WS, A0EINE X SIZERT S &,
<Z 2P - x?>2>
iJ
= (XS] 23 Vrietaiat)+ (3 X piniad)
J j

i i i J
= <Z Py ZP}(X§)2> -2 <Z ZP§X§P?X?> + <Z i (x))? ZP§-> (C.26)
i J i J ) J
b, HEBEIIRFTEI LN,
D= 2pl == (C.27)
i i 7 7

Thh, InzHWSE, X (C.26) DAMUE 1 HIZ

(
(S0t S} = (S S} = (5 Sty
i Jj i J LJ
(8 3 rinicir)+ (2 3 pirjes)
i JjED) i jED

=2 )+ (Soie)

i j(#i)
= <Z<p§x§>2> (C.28)

b, 212U, 117H»S 27HADEILT, i,j D% i+ j DL i = j OHHII Y
HEL7. £/, MBOZHTE, (ph) =0 &Mk, ZIh6E 510, HWHATHRATE,
EEIE OO MAIFAEIZ & S 3 Maxwell-Boltzmann 234G 246D 728,

(vt} = (i) {xi) =0 (€29
LB IEEFZZING, i # ] OL SILROWL 1,17 (2B B plxl & plxt OFIH7%
MBI, Thbb,

<pfx§p;/x;,> = <pltxf> <p;./x;-,> =0 (+)) (C.30)

THBNS, & (C.28) I

<Zi:(pfxlt- 2> = <Z ;pﬁxl’-pj~Xj~> (C.31)

EENTH, MERMIZIK = j ODEHDOAFES. X (C.26) DAUE 3SHEFMKRIZT L LT
DEIITB.

DITENDWARIPAC TR R DI IR TR 2
i J i i
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sk (C.31), (C.32) &R (C.26) ILRAT 5 &,
(2 2ot )
=<Z;pfﬁp§ §> <Z;pfﬁpf f> <Z;p?X?p§) ?>
=<ZZ(pf - pix)(phxl - p?x?)>

:<Z pixt = plx ?)Z(pjx,—po °>>

) ,.

Z(p,xl - pix})

Y5, koT, R (C.25) 1%

2

> (C.33)

) (C31)

CERTES., T

<Z(p§x§—p?x?) U ZdT pixy)

THDH, KibZRUTxl - rix®), pi = piy(@) &L THDTRA (C.35) DAL DKFH
WO zEZET L,

Z jt (pl yri, x) = Zl: (pi,y% + dl;%ri,x)

= Z (pisyvi,x + Fi,yri,x)
i

- Z MiVi,yVix + Z FiyTix (C.36)
i i

> (C.35)

b, 22T, X (2102) OV TUEHIZE VBN EREELZELT VYLD
WEHEIE P/ (1) 7

, 1 1
Pyx(t) = VZmivi,yvi,x + VZFi’yri’x (037)

YTOhBMS, kR (C.34) ILRATIIE

14 ' 2
u= ko <(f; P)’cy(‘[')d‘[') > (C.38)
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&%, ZNid Einstein O TH Y, Tz EILGREO & 12X (2.62) OB%%E
E\W7=D & [F U FIET Green-Kubo BIOXIZE S EHIT,
t

.V / /
o= th—>r£lol<]3_T i (P, (0P, (1)) dt (C.39)

WESNE. [EHT VYV IVOMOIER AR IZDOWNTHREBRIZEIT 5.
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1% D

ORI & EE 5

IH 2.8.2 TR U7z HS O HEDBEHIZ AW MBI E BRI D W THHT % [55,69].
BRBEIZITI, B TRUZARZAVS.

EHPRFEDRDNIN =T V% H(q,p) L BL. THZEEE LT -M(q,p)EQ®t) %
mx, E#ZEMA7ZNINVN=T V% H(q,p,E(t)) = H(q,p) —M(q,p)E(t) IZ& > T
. ZZTIRIDEEEMAZNINVN=T Y H(q, p,E) Db 2T, Rz HAFZT 288
& A(q, p.1) DEE (A1) DEBREDIED S DFHIZDOVWTHAS. & (B.33) &b
YA IE

(A1) = fA(q, p,0)f(q.p.0)dqdp (D.1)

EREB-D, HAGEE f(q, p,t) ORFFFEREZFARNIL (A(r)) KR E 5.
DA B DRI Z L1 Liouville HRRAIZHE, HE2 A 72HGAICI 0%

(Z—{ =-Lof ~LiE®D)f (D-2)

ERY. 272U, Lo, L1 3N ZFNEHEREE & HE) D Liouville fEFHZE TH U, Poisson
iz w5 &,
Lof =—-1{H, [} (D.3)
Lif=-{-M,f} (D.4)

LERESLH, T, FO1IRETOREMAEZEZ, fFOEIZDVWT0ORE 1IROEEIEE
ThEh fo & frelLT

f=fo+f1+0(E? (D.5)

r#$. Zhk Liouville SR (D.2) IZRALT, E®0RE 1 ROEIZHHEL, E D
2 R E DT % A X

0
o0 1oy (D.6)
Oh =—Lof1— L1E() fo (D.7)

ot
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»Eons
ZZT, ANGPMER U 28N RIBIRE —EDOFAPRETH o722 L, f OFIHI%
e UTH ) =HVad
fc = w (DS)

2FZD. 12120, QUEAEEKTHY, B=1/kpgT) BV, Tk EELD 2D
oWMn FHERX (D.6), (D.7) kxhzh

fO(O) = fc (DQ)
f1(0) =0 (D.10)

DYMEIETHE S WD, EHRED DA I KT L Yo = Lof. =0 &2
5Zris, 1 OHOMA AR

fo®) = fe (D.11)

DOfR%EEHD. 2 OHDOWO FHERNZEANIZAEE A TRUELDERUTH Y, RiT

fit) = - f "o E(s) fo(s)ds (D.12)
0

TH5 [55]. 22T, XN(D.11) &0 fo(s) IF f. TEEMWMADZILNTE S, Ik
AT B L, A (D.12) HUZBIND Ly fo i22WTIER (D.4) 225

Llfc == {_M’fc}
:_(8M af. oH aﬂ)

gy (M 0H oM o
‘\op oq 0dq op
=—-pBf.{M H}

= -BfM (D.13)
LERTES, 1L, MM OKEEITHE. iy, X (D.12) X
t
fﬂ0=ﬁJ“Euk*“”“Mﬁﬂs (D.14)
0

LD,
Iz HWT A(g,p,0) DFEDKHEFERZHNS. AETRHLDMEE f(1) ~
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fot fit) BAVSER (D.1) &b
4wy = [ Aq.p.0f0dgdp
~ (Ao + B fo asEGs) f dqdpA(g, p,0) {e™ "L M(0) f. |
= (Apc + B fo dsE(s) f dqdp {0 A(g, p,0)} M(0) f.
= (Agc + B fo dsE(s) f dqdpA(g, p.1 = 5)M(0) f.
= (A)gc + B fo B (A(g.p,t - )M (0)), . ds (D.15)

nEoNS. 1B, 217H”S 3ITHADERTA (B.34) OFEEH WA, 22T, 43
R—VE b TR U HBEBEROMS OMEEE AV, IBEEE

$am (@) = B(MO)A®D)),
0
= —ﬁa (M(0)A(1))rc (D.16)

BT,

(A(1)) = (A)rc = fo pam (1 — s)E(s)ds (D.17)

PRRoNG. INDERENZRIEIGEHGROF R TH 5.
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to the mean position of solid layers, and the origin of the z axis is set as the mean position
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0.33 nm OMETHEL, £XETy, z AAOEHTANVF—2H BT LI & TRD.
7z, ROXNFMEL D RD EFTHEIL, z illOFAIZEHRORNE DM E L L.
51T, MOMIZEI VNV IHEEDAR ) —VELRR XD 2K L. MEL X0, i
E 300 K 2 U TRDOEEIFEF L1300+ 1 K iZIUE > TH Y, Langevin BBk
Lo TRDBENRI-NT VWD Z L ZMHRTE 5. £/, BEGEZIT > TV OIXEEH
DATHZH, BEED SR NEED GO TEMWICEE XS LT —EThHD, R Lo
TG RIRE AR A EL TWR I L 2HENIDL LN TE S,

ZZT, WROKMEIZ X > TERINZEDNS, BEREHZ LALWGEOEE LR A
BdH 0, REREOMBIZOVWTHERT 5. KT THWT WS x il /id Couette it
TR DREE I & 0 BALRER], WAARED 72 D ICERSNBEQ 1F O = u(9vy/0z2)?
TR2E2IENTES. 72720, u \THWERE, Ov,/0z \FBEHERR AWM 2 122572 x /5
M OVRAEE v, ODABITHS. 72, IWEROHRNEED -0 OBEEE ¢, BIKOEE
p i, BEEEE cp THD. InSEHWD L, BRI R T RHEE AT
1% AT = Q/(cp) = u(dvy/02)? [(cp) THEINS. KDGEEHIZEL 5L, X 3.6, 4.6
BEUE 31 TRUZAHEDRER LY u=74%x10"* Pa-s, dv,/dz = 1.9 x 107 s71,
p =993 kg/m3 ThH O, 7z, FEMHE [82] 5 c=4.2%x10% J/(kgK) THDZ & xH
WAL, AT =0.64 x 10° K/s = 0.64 K/ns & BfEH 5 Z e R TE L. AW TIXEHHER
D HIRID 5 FERANIZIER @ NEAWEE 2 VS0 ERH B2, T THHEE -
T2 AT \FFEBLEMZENMETH 5. WEGHIEHZ 7D WA IR TR L 72 40 ns
OMIZ ERTAREITIZORBH D I 26 KIRETHED, ZOLIBREWHKITH -
THX E.1 TRU &SI Langevin BUAiEIZ K - T IZHIERE R IC 720, BEmE
DO HEYNZEDE D R b Z L 2R TE 5.
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8% F

FIEROFHFE EEDIESDE
D EE R

A BETIIRMEEZ2 2 52 L TYMHMOEEE R UA, RASTIRESEIZ
W2 HEE E HEEOEDIES D EDBEBRIZDOVWTRT. ZZTlfle LT, PR
BT DEBEHDEE vy, 2, HABETEIIEK Sz vy =20 m/s BT 45 HTHW
vy =25 m/s & UZBROKDEE SR (XP =0 %) OBEDFRIZOVWTRT.

BABERTHFEHMEDIESDEZ, SIROKRI T — X% 1 ns ZTEIZRY D, &K
MTETNTNHE L UALEEELZ 1 DOFEAL L THWS Z &2 & 03 U 72 (block
average) [40,47]. 2%V, WKRFIT—X % 1ns ZLIZHRE UL N, THY, H5Y
PEE A IZDWT i HEHOKM TR UZZREEEEEZ (A), L RTL T2, 2KHD A
DIEYIE (A) &

1
(A= 5 D<A (F.1)

i=1

WEoTHEBL, ZOFHEE (A) DIXSDE V(A) IX (A); DIEHE[R o (A) % N, TE
%52 &T,

N,
VM%ZJWUM)ZJ%HW%TZHM”M»Q (F.2)
IZ & o THHM U 72 [40,47].

B FA~F.4 ([ZRATR s, AL, RATRRE, #EARD>WT, N, 2%
UBR DY DX S D EDEIZOWTR U, IFHDIZT I —nN—F, N, >3 D
HDIZDOWTEIEDP S IEAIZK (F.2) Dffiz & > TRUK. £, vy =20 m/s D5E
1340 ns, vy = 2.5 m/s DEHIF 80 ns DFIRZITo72720, N, IZZNENHEKT 40,
80 TH 5. F.1 3R REEDEMEIZDOWTRUZEDTH D, EEEI» S
2NV T FEIRIZ BT R A B & ATIZ, X 4.3 OEE NG L FRRIZEE 0.33 nm 2 XY o
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723 DB OEE DM TH 5. F.2 TRUZZEAWIGHIZN 4.7 D 1, LRA—TH
D, BEEIDSRIAD 52T 2 AMIGHOFIMETH S, X F.3 13RI 722 EE O fEIZ
DWTRLEZEDTH D, 4.3128WT z=2.54 nm 7 5/FEX 0.33 nm DHEIK DY
HE, 205K 4.3 DEESMIZOVWTEERE”S 8 MHDEEDMHEIZDOWTRLZHD
Thd. B FAFANVIHEBOEREALDFIMHETH D, 1 ns TRYI->ZEXKHTEN
ZHRFAPEYS U CoRD 7 /AR 120 U TN ik 2 W T U 22 Al DO FIIET H
5. F7-, ZF11Z, IF1 20X F4TRUET—XOEERELZ, vy =25 m/s D
BT Ny = 80, vy =20 m/s DA N, =40 & UTEH U 72fHZ R,

M F.1 CRUZEEIZDVWTRSE, v, =25 20 m/s DHATHTNEROEKRIE
FLWOMHEITEWTEAEZ & 5 2 EPERTE 5. 72, T7—N"—0DIRITFHMHEIC
U THAIZNES WZ D30 n D, T, M43 TRUZEBEMADO L SIZ, &b
2 0.02 nm DEATRKY] - 72 IO FE 2 5 H L TH LMK EDIE S D E AN
JVEIR R D A2 FH I N TERLEZLNS.

K F1IBLUOKHFI~F4 &0, v, OEAIC & RO ELIZEEEDOZEL 2
BLUTNEL, T—ROEEFEIINT S vy, DREIDFEN NI NI 2hRb0b,
DFER KD, FIED vy, DRE I BT S &S5 WMl B 2% 2 T B OEHERAED
vy DREZITHRIFLIRWEIRET D&, TNEN Ny, N DYV TNV EEHD 2 DOEE
D vy, 1, Vg2 IZ2WT, SEEEIZH T 2EDIESDE DI V(B)/(B) BELWVWET
B7-HIzlE

o(B1))  o(B2) o(By)

= = F.3
VNe1(B1)  [Ni2(B2) /N2 ::1 (B1) (F:3)
D&M, Thbb,
e \2
Ny = (Ll) Nia (F4)
Vw,2

M7z INBBERDHD. DFED, vy =20m/s, vy =2.5m/s & TIUE (Vg 1/Vw.2)? =
(20/2.5)2 =64 TH Y, vy, THHIT 2 &5 2P IZ D W TEEEICH T 2EDIES D
ED%E v, =25 m/s DEEIT vy =20 m/s DEELFRUIZL L5 91X, 645D
FHREREPBRETH S, b, BEFEEZRETFETIXEORS, FaHEEZEL T 5K
B, BEHOMER EITKFL, 1 DOXBOFEHRFEAEL, £7-52 2K HBENK
STNEEADTEEEFEZONS.

72, M F2~F4 ZHiETHE, FHEICTT2EOESDEDHIIN F.2 TRUEZ
BAMISIIZR U TR F.3, F4 O#E, HEAROAPKRE L, RFEIZEWTIEEM
RTCIT o - BRI OFIITHECHE AR ZEE L BEHT2720THL L VWA 5.
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Figure F.2 Relation between number of samples N; and average shear stress exerted on
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Table F.1 Standard deviations of density p, shear stress 7y, velocity vy, and velocity gra-

dient dvy/dz shown in Figs. F.1 - F.4, in the cases of wall velocity vy, of 2.5, 20 m/s.

vw m/s] | p [kg/m®] 1, [MPa] v, [m/s] dv,/dz [x10° s7!]
2.5 0.82 0.15 0.86 0.40
20 0.81 0.16 1.0 0.45
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