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General Introduction 

The structural control of molecular self-organization leads to the development 

of functional materials.
1 

Non-covalent bond is useful for the formation of 

self-assembling structures. Control of hydrogen bonding
2
 plays an important role in the 

design of diverse molecular assemblies because of its directionality and specificity.
3
 

Reversibility and tuneability of hydrogen bonding are also significant to affect the 

chemical and/or physical properties of molecular assemblies. 

On the other hand, highly organized molecular aggregates are constructed in 

biosystems to accomplish unique functions as shown in enzymes, receptors, etc. 

Biomolecules such as nucleobases, peptides, and sugars play an important role in the 

formation of the highly organized structures like DNA, proteins, and enzymes. For 

example, the double helical DNA is composed of adenine-thymine and guanine-cytosine 

base pairs, which are managed mainly by complementary hydrogen bondings, - 

interactions, and hydrophobic interactions.
4
 Nucleobases possess a particular ability to 

perform directionally controlled multiple and complementary hydrogen bondings. The 

utilization of nucleobases in bio-inspired systems provides the flexibility to exploit four 

different binding motifs. The employment of self-assembling properties of nucleobases 

is considered to be an appropriate strategy for a design of well-defined molecular 

aggregates.
5
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Figure 1. Watson-Crick-like nucleobase pairing and an aggregation system by using 

nucleobases 

 

Uracil is one of major nucleobases and used 

in RNA instead of thymine in DNA. Uracil consists 

of pyrimidine ring and possesses alternately adjacent 

two hydrogen bond donors (D) and two hydrogen 

bond acceptors (A) (Figure 2). Owing to the order of 

acceptor-donor-acceptor (ADA) of hydrogen bonds, uracil can form three hydrogen 

bonds with DAD-typed hydrogen bonding sites. 2,6-diamidopyridine derivatives which 

have DAD-typed hydrogen bonding sites are adopted as the complementary hydrogen 

bonding moieties for uracil in construction of organized-assembling structures by using 

of uracil. For example, Lehn’s group reported formation of supramolecular liquid 

crystalline polymers through the complementary three hydrogen bonds between uracil 

with a 2,6-diamidopyridine derivative (Figure 3a).
6
 Inouye’s group also published 

molecular recognition of thymine by using a scaffold bearing a 2,6-diamidopyridine 

derivative and a conjugate compound (Figure 3b).
7
 A functional moiety can also be 

introduced to uracil in both fifth and sixth positions of the pyrimidine ring unlike 

Aggregations by

Hydrogen Bonds

Adenine, Thymine, Uracil

Guanine, Cytosine,

Interaction of 
functional Moieties

Scaffold

Nucleobases

Hydrogen Bonds

π-π interaction3.3 Å

Figure 2. Structure of uracil 
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thymine. Orientation of hydrogen bonds for the functional moiety can be regulated by 

the position of introduction. The above mentioned properties of uracil are useful for 

controlled arrangement of the functioned moieties. 

 

 

Figure 3. (a) Supramolecular liquid crystalline polymers and (b) molecular recognition 

of a thymine derivative by using a scaffold through the complementary hydrogen bonds. 

 

Organometallic compounds have attracted much attention in not only synthetic 

organic chemistry but materials science because of utility of photochemical and 

catalytic abilities and redox properties. The control of the structural properties of metal 

centers is significant to manage the functions of the complexes. It is known that 

metal-metal interaction in the organometallic compounds affects the functions of the 

complexes as catalysis, emission property etc. In particular, square-planar d
8
 transition 

metals and linear geometric d
10

 transition metals exhibit a unique emission and catalytic 

properties based on induced metal-metal interaction owing to stacking of planar or 

linear complexes. However, it is a problem that a multi-step synthesis is necessary for 

an organometallic complex induced the metal-metal interaction.  

 

 

 

(b)(a)
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Square-planar d
8
 transition metal complexes have intriguing photochemical 

properties. In particular, platinum(II) complexes with oligopyridine or cyclometalating 

ligands have drawn much attention due to their interesting luminescence properties 

based on Pt(II)Pt(II) interaction.
8
 Emission properties of phenylbipyridine type 

platinum(II) complexes were reported to be changed by the Pt(II)-Pt(II) interaction 

(Figure 4). For instance, Wai-Yeung Wong and co-workers have published the change of 

emission properties through the control of a distance of two platinum(II) moieties based 

on electrostatic interaction between the ligands (Scheme 1a).
9
 Hirao’s group has also 

reported the switching of emission properties based on conformational change of the 

dinuclear platinum(II) complex depending on the solvent polarity(Scheme 1b).
10 

 

 

 

Figure 4. Diagrams of metal-metal-to-ligand charge transfer through Pt(II)Pt(II) 

interaction of phenylbipyridine-typed platinum(II) complexes 

 

Interaction
(ca. 3 Å)

Metal-Metal-to-Ligand
Charge Transfer (MMLCT)
Absorption and Emission

Metal-to-Ligand 
Charge Transfer (MLCT)
Absorption and Emission
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Scheme 1. 

 

A organogold(I) complex, which is a linear geometric d
10

 transition metal, has 

drawn increasing attention because of aggregation properties through attractive 

aurophilic interaction.
11

 This aurophilic interaction is comparable to the strength of 

hydrogen bonding and convenient for construction of supramolecular architectures in a 

solid state (Figure 5). Gold(I) alkynyl compounds have also attracted attention in a 

variety of areas due to their diverse and interesting photophysical
12

 and biological
13

 

properties. In 1993, Shie-Ming Peng and co-workers reported the emission of a gold(I) 

alkynyl compound based on Au(I)-Au(I) interaction in a solid state.
12a 

 

Figure 5. Diagram of Au(I)-Au(I) interaction 

(a)

(b)
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The introduction of functional complexes into highly-ordered biomolecules is 

considered to be a convenient approach to design novel biomaterials and bio-inspired 

systems. Recently, the research field of bioorganometallic chemistry, which is a hybrid 

area between organometallic chemistry and biochemistry, has received extensive 

interest.
14

 The combination of functional organometallic compounds with biomolecules 

such as nucleobases and peptides is envisioned to afford bioorganometallic compounds. 

The bioorganometallic compounds are expected to be applicated for probes, catalysts 

and medicines owing to synergistic effect of both properties of organometallic 

compounds and biomolecules. For example, Richard H. Fish and co-workers, Gérard 

Jaouen and co-workers, and Gerard van Koten and co-workers reported the synthesis of 

a rhodium complex bearing guanosine,
15

 a chromium complex bearing an estradiol 

derivative,
16

 and a platinum complex bearing valine
17

 respectively (Figure 6a-c). Hirao’s 

group has also published the formation of a chiral organized structure of ferrocene 

bearing dipeptides through intermolecular hydrogen bonds of the dipeptides (Figure 

6d).
18

 

 

Figure 6. Bioorganometallic compounds composed of organometallic and biomolecular 

moieties such as nucleobase, amino acid and peptide.  
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From these points of view, a combination of organoplatinum(II) and gold(I) 

complexes with uracils as nucleobases is allowed to design novel bioconjugates and 

controlled arrangement of metal centers depending on both properties. Uracil is useful 

for the construction of supramolecular systems due to its hydrogen bonding capacity, 

which forms complementary hydrogen bonds for 2,6-diamidopyridine derivatives. 

Arrangement of the metal centers by application of assembly property of the uracils is 

convenient for induction of the metal-metal interaction. On the other hand, ancillary 

ligands of the complexes play an important role in aggregation of metal centers. Steric 

hinderance and  interaction of the ancillary ligands affect the assembly properties of 

the organometal-uracil conjugates. 

 

The dissertation deals with studies on syntheses of organoplatinum(II) and 

organogold(I) complexes bearing the uracil moieties and structural control of 

metal-metal interaction through molecular scaffolds and ancillary ligands. 

Chapter 1 describes synthesis of organoplatinum(II)-uracil conjugates and 

controlled arrangement of the platinum(II)complexes by using molecular scaffolds.  

Chapter 2 describes syntheses of organogold(I)-uracil conjugates and 

evaluation of steric effect of ancillary ligands for assembly properties of the gold(I) 

centers.  

Chapter 3 describes syntheses of dinuclear organogold(I)-uracil conjugates 

with bridging diphosphine ligands and induced Au(I)-Au(I) interaction. 
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Chapter 1. Controlled arrangement of organoplatinum(II) 

complexes bearing uracil moieties by using molecular scaffolds 

 

1-1. Introduction 

 As mentioned in general introduction, square-planar d
8
 transition metal 

complexes possess the intriguing photophysical and photochemical properties. In 

particular, luminescent platinum(II) complexes with oligopyridine and cyclometalating 

ligands have attracted much attention. It is reported that the luminescent platinum(II) 

complexes with a phenylbipyridine ligand exhibited an interesting luminescence 

properties based on metallophilic interaction through dZ
2
•••dZ

2
 and/or - interactions.

1
 

On the other hands, uracil is useful for construct of supramolecular systems due to its 

hydrogen bonding capacity. Uracil formed a complementary hydrogen bonds for 

2,6-diamidopyridine derivatives and have two position for introduction of a functional 

moiety.
2
 From these points of view, I report the syntheses of the bioorganometallic 

compounds by conjugation of the uracils and the organoplatinum(II) compounds and 

controlled emission properties based on the regulation of aggregation of platinum(II) 

centers in the chapter 1 (Figure 1). 

 

Figure 1. Design of the bioorganometallic compounds composed of uracils and 

organoplatinum(II) complexes, and molecular scaffolds. 

Scaffolds

4.9 Å

2.5 Å
5

6

Uracil2,6-diamide
pyridine

Pt(II) complex
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1-2. Results and discussion 

1-2-1. Syntheses and structural properties of organoplatinum(II) complexes 

bearing uracil moieties 

The bioorganometallic platinum(II) compounds U6Pt and U5Pt were obtained 

by the treatment of [4-octyloxy-(C^N^N)PtCl] (2), which was prepared from the 

reaction of 6-(4-octyloxyphenyl)-2,2'-bipyridine (1) and K2PtCl4, with 

6-ethynyl-1-octyluracil or 5-ethynyl-1-octyluracil, respectively (Scheme 1). 

 

Scheme 1. 
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Structural information was found by a single-crystal X-ray structure 

determination. The formation of the dimeric structure through intermolecular hydrogen 

bonds between the uracil moieties of two independent molecules was exhibited in the 

crystal structure of U6Pt (Figure 2a and Table 1). The [4-octyloxy-(C^N^N)Pt] moiety 

is nearly parallel to the uracil moiety probably due to the d,-conjugation; the dihedral 

angles between the least squares plane of the [4-octyloxy-(C^N^N)Pt] and the uracil 

moieties are 19.8(3) and 14.8(3)°. Furthermore, a packing structure of U6Pt revealed 

that each hydrogen-bonded dimer were connected through - interactions between the 

[4-octyloxy-(C^N^N)Pt] ligands as well as uracil moieties to form -stacks. Pt(II)-Pt(II) 

interaction (the intermolecular Pt-Pt distance is ca. 3.3 Å) was observed, as shown in 

Figure 2b.  

 

 

Figure 2. (a) A dimer structure of U6Pt through intermolecular hydrogen bonds 

between the uracil moieties and (b) a portion of a packing structure of U6Pt layer 

containing the -stack molecular assembly through - interactions between the 

[4-octyloxy-(C^N^N)Pt] ligands as well as uracil moieties. 
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Table 1. Intermolecular hydrogen bonds for U6Pt
a
 

Donor Acceptor D•••A (Å) DH•••A (°) 

    N(4) O(23)
b
 2.787(10) 175(5) 

N(24)
b
 O(3) 2.819(10) 170(4) 

N(24) O(3)
b
 2.819(10) 170(4) 

N(4)
 b
 O(23) 2.787(10) 175(5) 

    (a) Two independent molecules exist in an asymmetric unit. 

(b) X+2, Y+1, Z+1. 
  

 

This - and Pt(II)-Pt(II) interactions might require the orientation of the 

[4-octyloxy-(C^N^N)Pt] moiety within a limited range of location parallel to the uracil 

moiety. In fact, the platinum(II) complex U6Pt showed the emission band around 720 

nm, ascribed to the triplet metal-metal-to-ligand charge transfer (
3
MMLCT) excited 

state resulting from Pt(II)-Pt(II) and - interactions, in a solid state (Figure 3). In 

contrast, the platinum(II) complex U5Pt, wherein the direction of hydrogen bonding 

sites of the uracil moieties is different from U6Pt, exhibited an emission band based on 

the metal-to-ligand charge transfer (MLCT) and/or ligand-to-ligand charge transfer 

(LLCT) transition. Synergistic effects of emission properties are considered to depend 

on the aggregation properties of the platinum(II) complexes. 
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Figure 3. Emission spectra (ex = 470 nm) of U6Pt and U5Pt in solid states at 298 K. 

 

1-2-2. Controlled arrangement of organoplatinum(II) complexes bearing uracil 

moieties by using molecular scaffolds 

 

To control the aggregate of the organoplatinum(II) complexes having uracil 

moieties, molecular scaffolds ND and AD combined aromatic rigid frameworks, 

naphthalene and anthracene, respectively, with two 2,6-dihexamidopyridine moieties as 

a complementary hydrogen bonding site for the uracil moiety were designed and 

synthesized as shown in Schemes 2 and 3. The coupling reaction of 

1,8-diiodonaphthalene with 2,6-dihexamido-4-ethynylpyridine (7) afforded the 

molecular scaffold ND by using the palladium-catalyzed Sonogashira coupling 

procedure in 40% yield. The molecular scaffold AD was prepared by the coupling 

reaction of 1,8-diethynylanthracene and 4-(2,6-dihexamidopyridyl) 

trifluoromethanesulfonate (5) in 28% yield.  
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 Scheme 2. 

 

 

 

Scheme 3. 
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In a case of addition of 0.5 molar equiv. amounts of ND to a dichloromethane 

solution of U6Pt, a new shoulder band at around 500 nm was found in the UV/vis 

spectrum as shown in Figure 4a. The absorption at around 500 nm is probably attributed 

to the MMLCT transition based on the aggregation of U6Pt through the complementary 

hydrogen bondings to ND. The emission spectrum of only U6Pt in dichloromethane 

exhibited emission band at 590 nm, which is assigned to a 
3
MLCT and/or 

3
LLCT 

emission (Figure 4b). Interestingly, U6Pt showed a new emission band based on 

synergistic effect around 730 nm with decrease of the 
3
MLCT/

3
LLCT emission in the 

presence of the molecular scaffold ND (Figure 4b). This emission band is assignable to 

a 
3
MMLCT emission based on Pt(II)-Pt(II) and - interactions between the 

[4-octyloxy-(C^N^N)Pt] and uracil moieties as shown in Figure 4b. The molecular 

scaffold ND was found to facilitate aggregation of U6Pt through the complementary 

hydrogen bonding and π-π interaction between the ligands in a solution state. The 1:2 

stoichiometry of ND-U6Pt was verified by Job’s plots. The stepwise association 

constants (K1 and K2 in M
1

) were evaluated to be logK1 = 3.7(3) and logK2 = 4.1(2), 

respectively, for 1:2 complexation of ND with U6Pt.
3
 The value for the ratio 4K2/K1 = 

~16 clearly indicates the positive homotropic cooperative nature of this complexation. 

The metallophilic and - interactions are likely to induce the positive 

cooperative effect. In the case of using U5Pt, such absorption and emission resulting 

from Pt(II)-Pt(II) and - interactions were hardly observed (Figures 5a and 5b) 

although 1:2 complexation of ND with U5Pt was verified by Job’s plots. The decrease 

in K values (logK1 = 2.95(2) and logK2 = 2.82(9)) between ND and U5Pt was 

observed.
3
 These results indicate the importance of the direction of the hydrogen 

bonding sites to arrange the [4-octyloxy-(C^N^N)Pt] moieties regularly. 
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Figure 4. (a) UV/vis spectra of ND, U6Pt, and ND-U6Pt (1:2) in dichloromethane 

([ND] = 0.5 x 10
3

 M, [U6Pt] = 1.0 x 10
3

 M) at 298 K, (b) emission spectra (ex = 530 

nm) of U6Pt and ND-U6Pt (1:2) in dichloromethane ([ND] = 0.5 x 10
3

 M, [U6Pt] = 

1.0 x 10
3

 M) at 298 K, 

 

 

 

Figure 5. UV/vis spectra of ND, U5Pt, and ND-U5Pt (1:2) in dichloromethane ([ND] = 

0.5 x 10
3

 M, [U5Pt] = 1.0 x 10
3

 M) at 298 K, (b) emission spectra (ex = 530 nm) of 

U5Pt and ND-U5Pt (1:2) in dichloromethane ([ND] = 0.5 x 10
3

 M, [U5Pt] = 1.0 x 

10
3

 M) at 298 K. 
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The Pt(II)-Pt(II) and - interactions in aggregated complexes is considered to 

be influenced by an interbase distance. The change of Pt(II)-Pt(II) and  interactions 

might be reflected on their absorption and emission properties. The molecular scaffold 

AD was also ascertained to form the 1:2 complex with U6Pt by Job’s plots, wherein the 

stepwise association constants (K1 and K2) were appraised to be logK1 = 5.05(4) and 

logK2 = 4.189(6), respectively.
3
 The appearance of a new shoulder band around 500 nm 

was caused by the addition of 0.5 molar equiv. amounts of AD composed of anthracene 

to a dichloromethane solution of U6Pt in the UV/vis spectrum. The new shoulder band 

is assignable to the MMLCT transition based on Pt(II)-Pt(II) and - interactions 

(Figure 6a). By the addition of 0.5 molar equiv. amounts of AD, the increase of the 

3
MMLCT emission at around 730 nm based on its synergistic effect and the decrease of 

the 
3
MLCT/

3
LLCT emission were also observed in the emission spectrum as shown in 

Figure 6b. 

 

 

Figure 6. UV/vis spectra of AD, U6Pt, and AD-U6Pt (1:2) in dichloromethane ([AD] = 

0.5 x 10
3

 M, [U6Pt] = 1.0 x 10
3

 M) at 298 K, (b) emission spectra (ex = 530 nm) of 

U6Pt and AD-U6Pt (1:2) in dichloromethane ([AD] = 0.5 x 10
3

 M, [U6Pt] = 1.0 x 

10
3

 M) at 298 K. 
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In comparison to the emission with the molecular scaffold ND composed of 

naphthalene, U6Pt aggregates with the AD exhibited the low intensity of the 
3
MMLCT 

emission and the high intensity of the 
3
MLCT emission probably because of the weak 

Pt(II)-Pt(II) and - interactions based on the longer interbase distance (Figure 7). The 

emission properties of U6Pt was revealed to be controlled by changing the molecular 

scaffold size.  

 

Figure 7. Schematic depiction of the controlled aggregation of the bioorganometallic 

platinum(II) compound U6Pt by using the molecular scaffolds of ND and AD. 
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1-3. Conclusion 

In conclusion, the designed organoplatinum(II)-uracil conjugate U6Pt was 

performed to form the dimeric structure through intermolecular hydrogen bonds 

between the uracil moieties of two independent molecules. The each hydrogen-bonded 

dimer was connected through Pt(II)-Pt(II) and  interactions in a packing structure. 

The tuning of the emission properties of the organoplatinum(II)-uracil conjugates was 

attained by changing the direction of hydrogen bonding sites and the molecular scaffold 

size. which affected the regulation of the aggregated structures, to induce the 

Pt(II)-Pt(II) and  interactions. The architectural control of molecular assemblies 

using preorganized molecular scaffolds is envisaged to be a useful approach to artificial 

highly-ordered systems without chemical synthesis.  
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1-4. Experimental section 

General methods 

 All reagents and solvents were purchased from commercial sources and were 

further purified by the standard methods, if necessary. All manipulations were 

performed under Ar. Melting points were measured with a Yanagimoto Micromelting 

Point Apparatus and were uncorrected. Infrared spectra were obtained with a JASCO 

FT/IR-480 Plus spectrometer. 
1
H NMR spectra were recorded on a JEOL JNM-ECS 400 

(400 MHz) spectrometer with tetramethylsilane as an internal standard. Mass spectra 

were run on a JEOL JMS DX-303 spectrometer. 

 6-Ethynyl-1-octyluracil,
4 

5-ethynyl-1-octyluracil,
5
 

4-benzyloxy-2,6-pyridinediamine,
6
 1,8-diiodonaphthalene

7
 and 

1,8-diethynylanthracene
8
 were prepared according to literature procedures. 

Synthesis of 6-(4-octyloxyphenyl)-2,2'-bipyridine (1) 

 A mixture of N-(2-pyridacyl)pyridinium iodide (3.4 g, 10 mmol), 

3-dimethylamino-1-(4-octyloxyphenyl)propan-1-one hydrochloride (3.3 g, 10 mmol), 

and NH4OAc (17 g, 0.22 mol) in glacial acetic acid (40 mL) was refluxed under Ar for 3 

days. After the addition of water and dichloromethane to the resulting mixture, the 

organic phase was washed with saturated NaHCO3 aqueous solution, and brine, and 

then dried over Na2SO4. The solvent was evaporated in vacuo and the residue was 

chromatographed on silica-gel column (eluent, CH2Cl2/EtOAc 49:1) to give the desired 

6-(4-octyloxyphenyl)-2,2'-bipyridine (1) (2.0 g, 5.5 mmol) as a white solid. 

 1: yield 55%; mp 61-62 °C; IR (KBr) 3279, 3048, 2917, 2850, 1607, 1582, 

1561, 1516, 1455, 1434, 1249, 1182, 1017 cm
1

; 
1
H NMR (400 MHz, CDCl3, 1.0 x 10

2
 

M)  8.69 (d, 1H, J = 4.0 Hz), 8.63 (d, 1H, J = 8.0 Hz), 8.31 (d, 1H, J = 8.0 Hz), 8.10 (d, 
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1H, J = 8.8 Hz), 7.90-7.80 (m, 2H), 7.71 (d, 1H, J = 8.0 Hz), 7.32 (dd, 1H, J = 8.0, 4.0 

Hz), 7.02 (d, 1H, J = 8.8 Hz ), 4.04 (t, 2H, J = 6.4 Hz), 1.86-1.79 (m, 2H), 1.52-1.45 (m, 

2H), 1.42-1.26 (m, 8H), 0.90 (t, 2H, J = 6.8 Hz); 
13

C NMR (100 MHz, CDCl
3
, 1.0 x 

10
2

 M) 160.1, 156.5, 156.2, 155.5, 149.0, 137.6, 136.9, 131.7, 128.2, 123.7, 121.3, 

119.5, 118.6, 114.7, 68.1, 31.8, 29.4, 29.3, 26.1, 22.7, 14.1 ppm; HRMS (FAB) m/z 

Calcd. for C24H29N2O (M
+
), 361.2274; Found, 361.2281; Anal. Calcd. for C24H28N2O: C, 

79.96; H, 7.83; N, 7.77. Found: C, 79.94; H, 7.82; N, 7.67. 

 

Synthesis of the platinum(II) complex 2 

 A mixture of 1 (100 mg, 0.28 mmol) and K2PtCl4 (165 mg, 0.40 mol) in a 

mixed solvent of acetonitrile (8.0 mL) and water (8.0 mL) was refluxed under Ar for 42 

h. After the reaction was completed, the acetonitrile was evaporated. The product was 

extracted with dichloromethane and the organic phase was washed with water, and brine, 

and then dried over Na2SO4. The solvent was evaporated in vacuo and the residue was 

washed with methanol to give the desired platinum(II) complex 2 (138 mg, 0.23 mmol) 

as an orange solid. 

 2: yield 84%; mp 153-154 °C (decomp.); IR (KBr) 3052, 2925, 2853, 1591, 

1544, 1435, 1263, 1203, 1034 cm
1

; 
1
H NMR (400 MHz, CDCl3, 1.0 x 10

2
 M)  8.99 

(d, 1H, J = 5.6, 1.6 Hz), 8.05 (dt, 1H, J = 8.0, 1.6 Hz), 7.90 (d, 1H, J = 8.0 Hz), 7.75 (t, 

1H, J = 8.0 Hz), 7.62 (dd, 1H, J = 8.0, 5.6 Hz), 7.47 (d, 1H, J = 8.0 Hz), 7.35 (d, 1H, J = 

8.0 Hz), 7.28 (d, 1H, J = 8.8 Hz), 7.13 (d, 1H, J = 2.8 Hz), 6.61 (dd, 1H, J = 8.8, 2.8 

Hz), 4.03 (t, 2H, J = 6.4 Hz), 1.82-1.75 (m, 2H), 1.52-1.44 (m, 2H), 1.41-1.26 (m, 8H), 

0.90 (t, 3H, J = 6.8 Hz); 
13

C NMR (100 MHz, CDCl3, 1.0 x 10
2

 M) 166.8, 161.6, 157.8, 

154.7, 149.3, 145.4, 139.8, 139.1, 138.7, 127.8, 126.5, 122.8, 119.7, 118.4, 117.0, 111.1, 
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68.3, 32.3, 29.8, 29.7, 26.5, 23.1, 14.3 ppm; HRMS (FAB) m/z Calcd. for 

C24H27ClN2OPt (M
+
), 589.1454; Found, 589.1456; Anal. Calcd. for 

C24H27ClN2OPt•0.5H2O: C, 48.12; H, 4.71; N, 4.68. Found: C, 48.29; H, 4.44; N, 4.58. 

 

Synthesis of the bioorganometallic platinum(II) complex U6Pt 

 To a dichloromethane (3.0 mL) solution of 6-ethynyl-1-octyluracil (50 mg, 

0.20 mmol), 2 (59 mg, 0.10 mmol), and CuI (1.5 mg, 7.9 mol) was added 

triethylamine (1.2 mL, 8.6 mmol) under Ar at room temperature in the dark. The 

resulting mixture was stirred at room temperature for 23 h and the solvent was 

evaporated. The residue was washed with methanol, and the bioorganometallic 

platinum(II) complex U6Pt was isolated as a dark red solid (76 mg, 95 mol) by 

recrystalization from dichloromethane and methanol.  

 U6Pt: yield 95%; mp 240-241 °C (decomp.); IR (KBr) 3427, 2925, 2853, 2089, 

1696, 1651, 1561, 1456, 1435, 1262, 1202, 1041 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 2.0 

x 10
3

 M)  8.97 (dd, 1H, J = 5.2, 1.6 Hz), 8.28 (br, 1H), 8.11 (td, 1H, J = 7.6, 1.6 Hz), 

7.95 (d, 1H, J = 7.6 Hz), 7.84 (t, 1H, J = 8.0 Hz), 7.63-7.57 (m, 2H), 7.52 (d, 1H, J = 

8.0 Hz), 7.37 (d, 1H, J = 8.4 Hz), 7.18 (d, 1H, J = 2.4 Hz), 6.62 (dd, 1H, J = 8.4, 2.4 

Hz), 5.83 (s, 1H), 4.22 (t, 2H, J = 7.6 Hz), 4.00 (t, 2H, J = 6.4 Hz), 1.87-1.75 (m, 4H), 

1.50-1.11 (m, 20H), 0.89 (t, 3H, J = 6.8 Hz), 0.77 (t, 3H, J = 6.8 Hz); 
13

C NMR (100 

MHz, CD2Cl2, 2.0 x 10
3

 M) 165.7, 163.2, 162.1, 158.6, 154.7, 152.1, 151.5, 143.6, 

142.7, 140.0, 139.9, 139.4, 128.2, 126.9, 124.2, 123.3, 118.7, 117.0, 110.5, 103.2, 97.2, 

68.3, 46.7, 32.3, 29.8, 29.7, 29.3, 27.3, 26.5, 23.1, 23.0, 14.3 ppm; HRMS (FAB) m/z 

Calcd. for C38H47N4O3Pt
194

 (M
+
), 801.3275; Found, 801.3268; Anal. Calcd. for 

C38H46N4O3Pt1•0.5H2O: C, 56.28; H, 5.84; N, 6.91. Found: C, 56.47; H, 5.53; N, 6.96. 
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Synthesis of the bioorganometallic platinum(II) complex U5Pt 

 To a dichloromethane (4.0 mL) solution of 5-ethynyl-1-octyluracil (75 mg, 

0.30 mmol), 2 (89 mg, 0.15 mmol), and CuI (1.8 mg, 9.5 mol) was added 

triethylamine (1.8 mL, 13 mmol) under Ar at room temperature in the dark. The 

resulting mixture was stirred at room temperature for 14 h and the solvent was 

evaporated. The product was extracted with dichloromethane. After evaporation of the 

solution, the bioorganometallic platinum(II) complex U5Pt was isolated as an orange 

solid (73 mg, 91 mol) by reprecipitation from dichloromethane and ether. 

 U5Pt: yield 61%; mp 197-199 °C (decomp.); IR (KBr) 3088, 3039, 2928, 2852, 

2106, 1695, 1659, 1581, 1547, 1435, 1351, 1225, 1173 cm
1

; 
1
H NMR (400 MHz, 

CD2Cl2, 2.5 x 10
3

 M)  9.36 (d, 1H, J = 5.2 Hz), 8.32 (s, 1H), 8.07 (t, 1H, J = 7.6 Hz), 

7.94 (d, 1H, J = 7.6 Hz), 7.80 (t, 1H, J = 8.0 Hz), 7.63 (dd, 1H, J = 7.6, 5.2 Hz), 7.58 (d, 

1H, J = 8.0 Hz), 7.48 (d, 1H, J = 8.0 Hz), 7.44 (s, 1H), 7.39 (d, 1H, J = 2.4 Hz), 7.37 (d, 

1H, J = 8.4 Hz), 6.60 (dd, 1H, J = 8.4, 2.4 Hz), 4.07 (t, 2H, J = 6.4 Hz), 3.72 (t, 2H, J = 

7.2 Hz), 1.83-1.68 (m, 4H), 1.52-1.25 (m, 20H), 0.91-0.87 (m, 6H); 
13

C NMR (100 

MHz, CD2Cl2, 2.5 x 10
3

 M) 165.7, 163.4, 162.1, 158.7, 154.9, 152.5, 150.2, 144.8, 

143.7, 139.6, 139.4, 139.3, 128.2, 126.6, 124.0, 122.9, 118.4, 116.9, 112.6, 110.3, 104.8, 

94.7, 68.3, 49.1, 32.3, 32.2, 29.9, 29.8, 29.7, 29.6, 29.5, 26.9, 26.5, 23.1, 23.0, 14.3, 

14.2 ppm; HRMS (FAB) m/z Calcd. for C38H47N4O3Pt
194

 (M
+
), 801.3275; Found, 

801.3267; Anal. Calcd. for C38H46N4O3Pt1•0.5H2O: C, 56.28; H, 5.84; N, 6.91. Found: 

C, 56.49; H, 5.55; N, 6.98. 
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Synthesis of 2,6-dihexamido-4-ethynylpyridine (7) 

 2,6-Dihexamido-4-ethynylpyridine (7) was synthesized from 

4-benzyloxy-2,6-pyridinediamine in 5 steps. To a dichloromethane (100 mL) solution of 

4-benzyloxy-2,6-pyridinediamine (2.2 g, 10 mmol) and triethylamine (5.6 mL, 40 

mmol) was added a dichloromethane (50 mL) solution of heptanoylchloride (3.3 mL, 21 

mmol) dropwise under Ar at 0 °C. The resulting mixture was stirred at room 

temperature for 12 h. The resulting mixture was diluted with dichloromethane, washed 

with saturated NaHCO3 aqueous solution and brine, and then dried over Na2SO4. The 

solvent was evaporated in vacuo and the residue was chromatographed on silica-gel 

column (eluent, CH2Cl2) to give 3 (3.3 g, 7.6 mmol).  

 3: yield 76%; mp 54-56 °C; IR (KBr) 3424, 3325, 2953, 2926, 2860, 2367, 

1692, 1673, 1583, 1541, 1503, 1440 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 5.0 x 10

2
 M)  

7.66 (s, 2H), 7.61 (s, 2H), 7.46-7.32 (m, 5H), 5.14 (s, 2H), 2.33 (t, J = 7.5 Hz, 4H), 

1.70-1.63 (m, 4H), 1.38-1.28 (m, 12H), 0.89 (t, J = 7.0 Hz, 6H); 
13

C NMR (100 MHz, 

CD2Cl2, 5.0 x 10
2

 M) 172.0, 168.8, 151.3, 136.5, 128.9, 128.5, 128.1, 96.2, 70.5, 38.1, 

31.9, 29.2, 25.6, 22.9, 14.2 ppm; HRMS (FAB) m/z Calcd. for C26H38N3O3 (M
+
), 

440.2908; Found, 440.2924. 

 Benzyl ether 3 (5.6 g, 13 mmol) was dissolved in a mixture of ethanol (60 mL). 

Pd/C (10 weight%, 0.59 g) was added and the reaction mixture was placed under H2, 

stirred at room temperature for 18 h and filtered through celite. The solvent was 

evaporated in vacuo and the residue was chromatographed on silica-gel column (eluent, 

EtOAc) to give 4 (4.0 g, 12 mmol).  

 4: yield 90%; mp 80-82 °C; IR (KBr) 3271, 2956, 2929, 2858, 1657, 1597, 

1464, 1435, 1230 cm
1

; 
1
H NMR (400 MHz, CDCl

3
, 1.0 x 10

2
 M)  10.03 (s, 1H), 7.67 



26 

 

(s, 2H), 7.55 (s, 2H), 2.38 (t, J = 7.6 Hz, 4H), 1.75-1.68 (m, 4H), 1.41-1.25 (m, 12H), 

0.89 (t, J = 6.4 Hz, 6H); 
13

C NMR (100 MHz, CDCl3, 1.0 x 10
2

 M) 172.6, 168.0, 150.1, 

98.0, 38.1, 31.5, 28.8, 25.4, 22.5, 14.0 ppm; HRMS (FAB) m/z Calcd. for C19H32N3O3 

(M
+
), 350.2438; Found,350.2454; Anal. Calcd. for C19H31N3O3: C, 65.30; H, 8.94; N, 

12.02. Found: C, 65.05; H, 8.94; N, 11.84. 

 To a pyridine (6.5 mL, 80 mmol) solution of 4 (700 mg, 2.0 mmol) was added 

trifluoromethanesulfonic anhydride (0.5 mL, 3.0 mmol) dropwise under Ar at 0 °C. The 

reaction mixture was stirred at room temperature for 3 h. After removal of the solvent, 

the residue was poured into water and extracted with diethyl ether. The diethyl ether 

extract was evaporated in vacuo and the residue was chromatographed on silica-gel 

column (eluent, hexane/EtOAc 4:1) to give 5 (810 mg, 1.7 mmol). 

 5: yield 84%; mp 49-51 °C; IR (KBr) 3396, 3261, 3120, 3040, 2958, 2931, 

2862, 2362, 1686, 1605, 1523, 1433, 1212 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 5.0 x 

10
2

 M)  7.93 (s, 2H), 7.80 (s, 2H), 2.38 (t, J = 7.7 Hz, 4H), 1.73-1.64 (m, 4H), 

1.40-1.29 (m, 12H), 0.89 (t, J = 7.0 Hz, 6H); 
13

C NMR (100 MHz, CD2Cl2, 5.0 x 10
2

 

M) 172.2, 159.0, 151.8, 119.0, 101.9, 38.0, 31.9, 29.2, 25.4, 22.9, 14.2 ppm; HRMS 

(FAB) m/z Calcd. for C20H31F3N3O5S1 (M
+
), 482.1931; Found, 482.1949 

 To a triethylamine (24 mL) solution of 5 (1.9 g, 4.0 mmol), PdCl2(Ph3P)2 (0.14 

g, 0.20 mmol), and CuI (19 mg, 0.10 mmol) was added (trimethylsilyl)acetylene (2.8 

mL, 20 mmol) under Ar at room temperature. The reaction mixture was stirred at 50 °C 

for 14 h. After removal of the solvent, the residue was poured into water and extracted 

with dichloromethane. The dichloromethane extract was evaporated in vacuo and the 

residue was chromatographed on silica-gel column (eluent, CH2Cl2) to give 6 (1.7 g, 3.9 

mmol). 
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 6: yield 98%; IR (KBr) 3282, 2958, 2947, 2858, 2168, 1675, 1609, 1557, 1419, 

1211 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 5.0 x 10

2
 M)  7.93 (s, 2H), 7.86 (s, 2H), 2.34 

(t, J = 7.6 Hz, 4H), 1.70-1.62 (m, 4H), 1.36-1.27 (m, 12H), 0.88 (t, J = 7.0 Hz, 6H), 0.24 

(s, 9H); 
13

C NMR (100 MHz, CD2Cl2, 5.0 x 10
2

 M) 172.0, 150.3, 135.6, 111.6, 102.8, 

99.7, 38.0, 31.9, 29.2, 25.6, 22.9, 14.2, -0.3 ppm; HRMS (FAB) m/z Calcd. for 

C24H40N3O2Si1 (M
+
), 430.2884; Found, 430.2899. 

 A mixture of 6 (1.6 g, 3.7 mmol) and KOH (0.41 g, 7.3 mmol) in methanol (55 

mL) was stirred at room temperature under Ar for 4 h. The resulting mixture was diluted 

with ethyl acetate, washed with water and brine, and then dried over Na2SO4. The ethyl 

acetate extract was evaporated in vacuo and the residue was chromatographed on 

silica-gel column (eluent, CH2Cl2/EtOAc 9:1) to give 7 (0.98 g, 2.7 mmol). 

 7: yield 73%; mp 45-47 °C; IR (KBr) 3566, 3402, 3278, 2955, 2927, 2857, 

2116, 1672, 1613, 1557, 1507, 1419, 1212 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 5.0 x 

10
2

 M)  7.97 (s, 2H), 7.67 (s, 2H), 3.31 (s, 1H), 2.35 (t, J = 7.6 Hz, 4H), 1.72-1.64 (m, 

4H), 1.38-1.29 (m, 12H), 0.89 (t, J = 7.0 Hz, 6H); 
13

C NMR (100 MHz, CD2Cl2, 5.0 x 

10
2

 M) 171.9, 150.4, 134.7, 111.9, 81.8, 81.5, 38.1, 31.9, 29.2, 25.6, 22.9, 14.2 ppm; 

HRMS (FAB) m/z Calcd. for C21H32N3O2 (M
+
), 358.2489; Found, 358.2499; Anal. 

Calcd. for C21H31N3O2•0.5H2O: C, 68.82; H, 8.80; N, 11.47. Found: C, 68.78; H, 8.76; 

N, 11.19. 
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Synthesis of the molecular scaffold ND 

 To a DMF (7.5 mL) solution of 1,8-diiodonaphthalene (92 mg, 0.24 mmol), 7 

(0.26 g, 0.72 mmol), PdCl2(Ph3P)2 (15 mg, 20 mol), and CuI (4.8 mg, 25 mol) was 

added triethylamine (2.5 mL, 18 mmol) at room temperature. The resulting mixture was 

stirred under Ar at 55 °C for 21 h. The resulting mixture was diluted with 

dichloromethane, washed with water and brine, and then dried over Na2SO4. The 

solvent was evaporated in vacuo and the residue was chromatographed on silica-gel 

column (eluent, CHCl3/EtOAc 19:1) to give ND (79 mg, 95 mol) as a white solid. 

 ND: yield 40%; mp 178-180 °C; IR (KBr) 3296, 3050, 2954, 2928, 2856, 2211, 

1703, 1672, 1610, 1555, 1420, 1260, 1213, 1168 cm
1

; 
1
H NMR (400 MHz, CDCl3, 5.0 

x 10
3

 M)  7.95-7.91 (m, 4H), 7.77 (s, 4H), 7.55-7.52 (m, 6H), 2.30 (t, 8H, J = 7.7 Hz, 

H), 1.65(q, J = 7.7 Hz, 8H), 1.39-1.28 (m, 24H), 0.90 (t, J = 7.0 Hz, 12H); 
13

C NMR 

(100 MHz, CDCl3, 5.0 x 10
3

 M) 171.3, 149.8, 136.1, 135.9, 134.4, 131.7, 130.9, 126.2, 

120.0, 111.5, 95.1, 93.9, 37.9, 32.0, 29.3, 25.6, 22.9, 14.2 ppm; HRMS (FAB) m/z Calcd. 

for C53H67N6O4 (M
+
), 839.5218; Found, 839.5220; Anal. Calcd. for C52H66N6O4•H2O: C, 

72.87; H, 8.00; N, 9.80. Found: C, 73.14; H, 7.78; N, 9.69. 

 

Synthesis of the molecular scaffold AD 

 To a tetrahydrofuran (3.5 mL) solution of 1,8-diethynylanthracene (91 mg, 0.40 

mmol), 5 (0.48 g, 1.0 mmol), PdCl2(Ph3P)2 (8.4 mg, 12 mol), and CuI (2.3 mg, 12 

mol) was added triethylamine (1.5 mL, 11 mmol) at room temperature. The resulting 

mixture was stirred under Ar at 50 °C for 17 h. The resulting mixture was diluted with 

dichloromethane, washed with water and brine, and then dried over Na2SO4. The 

solvent was evaporated in vacuo and the residue was chromatographed on silica-gel 
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column (eluent, CH2Cl2/MeOH 19:1) to give AD (98 mg, 0.11 mmol) as a pale yellow 

solid. 

 AD: yield 28%; mp 213-215 °C; IR (KBr) 3057, 2955, 2927, 2856, 2208, 1708, 

1609, 1556, 1501, 1418, 1264, 1212, 1166 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 5.0 x 

10
3

 M)  9.56 (s, 1H), 8.56 (s, 1H), 8.12 (d, J = 8.8 Hz, 2H), 7.98 (s, 4H), 7.88 (d, J = 

6.8 Hz, 2H), 7.55 (dd, J = 8.8, 6.8 Hz, 2H), 2.27 (t, J = 7.6 Hz, 8H), 1.65-1.56 (m, 8H), 

1.37-1.26 (m, 24H), 0.91 (t, J = 6.8 Hz, 12H); 
13

C NMR (100 MHz, CD2Cl2, 5.0 x 10
3

 

M) 171.4, 150.1, 135.8, 132.0, 131.9, 131.8, 130.3, 128.2, 125.7, 124.3, 120.9, 111.6, 

93.7, 91.9, 37.9, 32.0, 29.4, 25.5, 23.0, 14.2 ppm; HRMS (FAB) m/z Calcd. for 

C56H69N6O4 (M
+
), 889.5375; Found, 889.5370. 

 

Physical measurements 

 UV/vis spectra were obtained using a Hitachi U-3500 spectrophotometer in a 

deaerated dichloromethane solution under nitrogen at 298 K. Emission spectra were 

collected using a Shimadzu RF-5300PC spectrofluorophotometer in a deaerated 

dichloromethane solution under nitrogen at 298 K.  

 

1
H NMR titrations 

 The CD2Cl2 solution of ND or AD with a concentration 0.5 x 10
3

 M 

containing various amounts of U6Pt or U5Pt was prepared and 
1
H NMR spectra were 

measured at 295 K. The changes in chemical shift of ND or AD signals as a function of 

U6Pt or U5Pt were then analyzed. Titration data for three different signals were used to 

determine the association constant in each experiment.  
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Job’s plots 

 For each component of the complex, 5.0 mL CD2Cl2 solutions of accurately 

measured and identical concentrations (2.0 x 10
3

 M) were prepared. The two solutions 

were then combined to give a series of samples of identical total concentration (2.0 x 

10
3

 M) containing different mole fractions of the two components. The 
1
H NMR 

spectrum of each sample was then measured at 295 K, and these spectra were used to 

produce a graph of  x [H] against [H]/([H] + [G]) shown as the Job’s plots. 

 

 

Figure 8. (a) Job’s plots for complexation of ND with U6Pt, where  x [ND] was 

plotted against [ND]/([ND] + [U6Pt]) at an invariant total concentration of 2.0 x 10
3

 M 

in CD2Cl2 at 295 K, (b) Job’s plots for complexation of AD with U6Pt, where  x 

[AD] was plotted against [AD]/([AD] + [U6Pt]) at an invariant total concentration of 

2.0 x 10
3

 M in CD2Cl2 at 295 K and (c) Job’s plots for complexation of ND with U5Pt, 

where  x [ND] was plotted against [ND]/([ND] + [U5Pt]) at an invariant total 

concentration of 2.0 x 10
3

 M in CD2Cl2 at 295 K. 
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X-ray structure analysis 

 All measurements for U6Pt were made on a Rigaku R-AXIS RAPID 

diffractometer using graphite monochromated Mo K radiation. The structure of U6Pt 

was solved by direct methods
9
 and expanded using Fourier techniques. All calculations 

were performed using the CrystalStructure crystallographic software package
10

 except 

for the refinement, which was performed using SHELXL-97.
11

 The non-hydrogen atoms 

were refined anisotropically. The H atoms involved in hydrogen bonding were located 

in electron density maps. The remainder of the H atoms were placed in idealized 

positions and allowed to ride with the C atoms to which each was bonded. 

Crystallographic details are given in Table 2. Selected bond distances and angles of 

U6Pt are reported in Table 3. Crystallographic data (excluding structure factors) for the 

structures reported in this paper have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication no. CCDC-851423 for U6Pt. 

Copies of the data can be obtained free of charge on application to CCDC, 12 Union 

Road, Cambridge CB2 1EZ, UK [Fax: (internat.) +44-1223/336-033; E-mail: 

deposit@ccdc.cam.ac.uk]. 
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Table 2. Crystallographic data for U6Pt 

  U6Pt 

  Formula C38.5H47N4O3Pt1Cl1 

Molecular weight 844.36 

Crystal system Triclinic 

Space group P-1 (No. 2) 

a (Å) 12.1080(4) 

b (Å) 14.5494(5) 

c (Å) 20.4353(7) 

 (°) 89.7533(9) 

 (°) 88.4541(9) 

(°) 83.7668(9) 

V (Å
3
) 3577.4(2) 

Z 4 

Dcalcd (g cm
-3

) 1.568 

 (Mo Ka) (cm
-1

) 40.236 

T (°C) 150 

 (Mo K) (Å) 0.71075 

R1
a
 0.065 

wR2
b
 0.214 

  (a) R1 = ||Fo| |Fc|| / |Fo|. 
 

(b) wR2 = [w(Fo
2 
Fc

2
)
2 
/ w(Fo

2
)
2
]
1/2

. 
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Table 3. Selected bond distances (Å) and angles (°) for U6Pt 

            U6Pt 

   Bond distances (Å) 
  

Pt(1)N(1) 2.112(9) 2.141(9) 

Pt(1)N(2) 1.983(8) 1.985(8) 

Pt(1)C(16) 2.010(11) 2.010(9) 

Pt(1)C(25) 1.949(9) 1.931(9) 

O(2)C(28) 1.234(12) 1.225(12) 

O(3)C(29) 1.234(12) 1.259(12) 

N(3)C(27) 1.390(13) 1.394(13) 

N(3)C(28) 1.399(12) 1.397(12) 

N(4)C(28) 1.358(13) 1.373(13) 

N(4)C(29) 1.389(12) 1.371(13) 

C(25)C(26) 1.211(13) 1.220(13) 

C(26)C(27) 1.437(13) 1.419(13) 

C(27)C(30) 1.340(14) 1.344(14) 

C(29)C(30) 1.433(12) 1.409(13) 

   
Bond angles (°) 

  
N(1)Pt(1)N(2) 77.8(4) 79.1(4) 

N(1)Pt(1)C(16) 160.3(4) 160.7(4) 

N(1)Pt(1)C(25) 101.2(4) 99.8(4) 

N(2)Pt(1)C(16) 82.5(4) 81.7(4) 

N(2)Pt(1)C(25) 176.3(4) 178.8(4) 

C(16)Pt(1)C(25) 98.4(4) 99.5(4) 

N(3)C(28)N(4) 116.3(9) 114,7(8) 

N(4)C(29)C(30) 114.7(8) 114.8(9) 

C(27)N(3)C(28) 121.0(8) 122.1(8) 

C(27)N(3)C(29) 125.9(8) 126.7(8) 

   (a) Two independent molecules exist in an asymmetric unit. 
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Chapter 2. Synthesis and structural properties of mononuclear 

organogold(I) complexes bearing uracil moieties 

2-1. Introduction 

Organogold(I) complex has drawn increasing attention because of their 

aggregation properties through an attractive aurophilic interaction.
1
 This aurophilic 

interaction possesses the comparable strength to a hydrogen bonding and is useful for 

construction of supramolecular architectures in a solid state. A combination of 

organogold(I) complexes with nucleobases is envisaged to provide highly-organized 

assembly bioorganometallic systems depending on both properties. Herein I report the 

structural characterization of organogold(I)-uracil conjugates to disclose the steric 

effects of ancillary ligands on assembly properties of the uracil and the gold(I) moieties 

in a solid state. 

 

2-2. Results and discussion 

The organogold(I)-uracil conjugates were designed by introduction of planar 

phenyl isocyanide and bulky triphenylphosphine as an ancillary ligand to clarify the 

effect of ancillary ligands on the assembly properties. The synthesis of 

organogold(I)-uracil conjugates U6AuCNPh and U6AuPPh3 is depicted in Scheme 1. 

The organogold(I)-uracil conjugate bearing planar phenyl isocyanide U6AuCNPh was 

obtained by the coupling reaction of 6-ethynyl-1-octyluracil with chloro(phenyl 

isocyanide)gold(I) [(PhNC)AuCl], which was prepared by the treatment of 

chloro(tetrahydrothiophene)gold(I) [(tht)AuCl] with phenyl isocyanide, in the presence 

of CuI as a catalyst. The reaction of 6-ethynyl-1-octyluracil with 
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chloro(triphenylphosphine)gold(I), which was prepared by the treatment of 

chloro(tetrahydrothiophene)gold(I) with triphenylphosphine in situ, in the presence of 

sodium bis(trimethylsilyl)amide produced the organogold(I)-uracil conjugate bearing  

bulky triphenylphosphine U6AuPPh3. The formation of thus-obtained 

organogold(I)-uracil conjugates was confirmed by 
1
H NMR, 

13
C NMR, 

31
P NMR, IR, 

HRMS, and elemental analysis. For example, the uracil proton showed upfield shift in 

the 
1
H NMR spectra after the introduction of the gold(I) center. 

 

 

Scheme 1. 

 

The structural features of U6AuCNPh and U6AuPPh3 were confirmed by 

single-crystal X-ray structure determination, revealing the self-assembly properties of 

the gold(I) and uracil moieties. The crystal structure of U6AuCNPh possess propeller 

twist conformation with a dihedral angle of 45.9(4)° between the planes of the uracil 

and benzene moieties of phenyl isocyanide (Figure 1a). It is noteworthy that a 

head-to-tail dimer through the Au(I)-Au(I) and  interactions between the uracil and 

benzene moieties of phenyl isocyanide was formed in a crystal packing as shown in 
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Figure 1b. Furthermore, each head-to-tail dimer was linked with not only the 

intermolecular hydrogen bonds of N-H•••O pattern between the uracil moieties but the 

weak hydrogen bonds of C-H•••O pattern between the uracil and benzene moieties of 

phenyl isocyanide (Figure 1c and Table 1). 

 

 

Figure 1. (a) Molecular structure, (b) a head-to-tail dimer, and (c) a part of the 

intermolecular hydrogen bonds of N-H•••O pattern between the uracil moieties and the 

weak hydrogen bonds of C-H•••O pattern between the uracil and benzene moieties of 

phenyl isocyanide of U6AuCNPh (octyl moieties are omitted for clarity). 
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Table 1. Intermolecular hydrogen bonds for U6AuCNPh and U6AuPPh3
a
 

Compounds Donor Acceptor D•••A (Å) DH•••A (°) 

     U6AuCNPh N(2) O(2)
b
 2.827(12) 160(11) 

 
C(19) O(1)

c
 3.159(14) 125.2(8) 

 
C(20) O(1)

c
 3.210(13) 119.0(8) 

 
C(20) O(2)

d
 3.468(15) 146.2(2) 

     
U6AuPPh3 N(2) O(52)

e
 2.854(9) 168(5) 

 
N(52) O(2)

e
 2.849(8) 168(3) 

     (a) Two independent molecules exist in an asymmetric unit. (b) X, Y, Z1. 

(c) X, Y+1/2, Z. (d) X, Y+1/2, Z+1. (e) X+1/2, Y+1/2, Z+1. 

 

The organogold(I)-uracil conjugate U6AuPPh3 crystallized in the space group 

C2/c (Z = 16) and two independent molecules of U6AuPPh3 exist in an asymmetric unit. 

The structural characterization of U6AuPPh3 is confirmed by the formation of the 

dimeric structure through intermolecular hydrogen bonds of N-H•••O pattern between 

the uracil moieties of two independent molecules as shown in Figure 2. Self-assembly 

properties of the organogold(I)-uracil conjugates were found to depend on the ancillary 

ligands. In comparison with the self-assembly properties of U6AuCNPh, the crystal 

structure of U6AuPPh3 showed no Au(I)-Au(I) interaction probably due to the sterically 

bulky triphenylphosphine ligand (Figure 2b). 
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Figure 2. (a) Molecular structure and (b) a hydrogen-bonded dimer through 

intermolecular hydrogen bonds between the uracil moieties of U6AuPPh3. 
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2-3. Conclusions 

The bioorganometallic compounds consisted of the organogold(I) complexes 

with uracil moiety as a nucleobase were designed and synthesized. The structural 

characterization of organogold(I)-uracil conjugates was demonstrated to disclose the 

assembly properties of the gold(I) and the uracil moieties in a solid state. Interesting 

feature of organogold(I)-uracil conjugates is their strong tendency to self-assemble 

through intermolecular hydrogen bonds, wherein hydrogen bonding patterns were found 

to depend on the ancillary ligands. Furthermore, the introduction of planar phenyl 

isocyanide as an ancillary ligand induced the formation of a head-to-tail dimer through 

the Au(I)-Au(I) and  interactions between the uracil and the benzene moieties of 

phenyl isocyanide. On the contrary, the Au(I)-Au(I) interaction was not observed in the 

case of bulky triphenylphosphine ancillary ligand probably due to the steric hindrance.  
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2-4. Experimental section 

General methods 

 All reagents and solvents were purchased from commercial sources and were 

further purified by the standard methods, if necessary. 6-ethynyl-1-octyluracil,
2
 

chloro(tetrahydrothiophene)gold(I) [(tht)AuCl]
3
 and chloro(phenyl isocyanide)gold(I) 

[(PhNC)AuCl]
4
 were prepared by the literature methods. Infrared spectra were obtained 

with a JASCO FT/IR-6200 spectrometer. 
1
H, 

13
C, and 

31
P NMR spectra were recorded 

on a JNM-ECS 400 (400, 100, and 160 MHz, respectively) spectrometer. For 
1
H and 

31
P 

NMR spectra, chemical shifts were determined by using of tetramethylsilane and 85% 

H3PO4 aq. as standard samples, respectively. Chemical shifts of 
13

C NMR spectra were 

determined relative to the solvent residual peaks. Mass spectra were run on a JEOL 

JMS-700 mass spectrometer. 

 

Synthesis of (1-octyluracil-6-)ethynyl(phenyl isocyanide)gold(I) U6AuCNPh  

 To a mixture of chloro(phenyl isocyanide)gold(I) (67 mg, 0.20 mmol), 

6-ethynyl-1-octyluracil (50 mg, 0.20 mmol), CuI (1.9 mg, 10 mol), and NaOAc (33 

mg, 0.40 mmol) were added dichloromethane (16 mL) and methanol (4.0 mL). The 

resulting mixture was stirred at room temperature for 9 h under Ar in the dark. The 

solvent was evaporated and the residue was extracted with dichloromethane, insoluble 

impurities was filtered out. The solvent was evaporated and purification of the crude 

product by recrystallization from dichloromethane, diethyl ether, and hexane gave the 

desired gold(I) complex U6AuCNPh (53 mg, 0.096 mmol) as a pale yellow crystal.  

 U6AuCNPh: yield 48%; IR (KBr) 3150, 2924, 2855, 2228, 2124, 1712, 1656, 

1574, 1465, 1416, 1364 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 4.0 x 10

2
 M):  8.97 (br, 



42 

 

1H), 7.64-7.52 (m, 5H), 5.73 (s, 1H), 4.03 (t, 1H, J = 7.6 Hz), 1.38-1.29 (m, 10H), 

1.50-1.11 (m, 20H), 0.89 (t, 3H, J = 6.8 Hz); 
13

C NMR (100 MHz, CD2Cl2, 4.0 x 10
2

 

M): 163.4, 155.0 (t, J = 24.9 Hz), 151.4, 140.2, 140.0, 132.3, 130.5, 127.4, 124.6 (t, J = 

14.4 Hz), 105.7, 93.7, 46.7, 32.4, 29.7, 29.6, 28.9, 27, 23.2, 14.4 ppm; HRMS (FAB) 

m/z Calcd. for C21H25N3O2Au (M + H
+
), 548.1607; found, 548.1612; Anal. Calcd. for 

C21H24N3O2Au: C, 46.08; H, 4.42; N, 7.68. Found: C, 45.78; H, 4.37; N, 7.68. 

 

Synthesis of (1-octyluracil-6-)ethynyl(triphenylphosphine)gold(I) U6AuPPh3 

 A mixture of triphenylphosphine (53 mg, 0.20 mmol), 

chloro(tetrahydrothiophene)gold(I) (64 mg, 0.20 mmol), and 6-ethynyl-1-octyluracil (50 

mg, 0.20 mmol) was stirred in THF (10 mL) at room temperature for 15 minutes under 

Ar. To the solution was added sodium bis(trimethylsilyl)amide (40 mg, 0.22 mmol) and 

the resulting solution was stirred at room temperature under Ar for 21 h. The mixture 

was diluted with dichloromethane, washed with water, brine, and then dried over 

Na2SO4. The solvent was evaporated and purification of the crude product by 

recrystallization from dichloromethane, diethyl ether, and hexane gave the desired 

gold(I) complex U6AuPPh3 (68 mg, 0.096 mmol) as a colorless crystal. 

 U6AuPPh3: yield 48%; IR (KBr) 3170, 3074, 2923, 2852, 2116, 1698, 1661, 

1574, 1456, 1402, 1366 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 1.0 x 10

2
 M):  8.30 (br, 

1H), 7.59-7.48 (m, 15H), 5.74 (s, 1H), 4.06 (t, 2H, J = 7.6 Hz), 1.77-1.69 (m, 2H), 

1.41-1.21 (m, 10H), 0.80 (t, 3H, J = 6.8 Hz); 
13

C NMR (100 MHz, CD2Cl2, 1.0 x 10
2

 

M): 163, 151.4 (d, 
2
JC-P = 142.3 Hz), 151.2, 140.3 (d, 

4
JC-P = 3.1 Hz), 134.6 (d, 

2
JC-P = 

13.7 Hz), 132.2 (d, 
4
JC-P = 2.2 Hz), 129.6 (d, 

3
JC-P = 11.3 Hz), 129.6 (d, 

1
JC-P = 57 Hz), 

105.2, 93.8 (d, 
3
JC-P = 26.6 Hz), 46.7, 32.2, 29.6, 29.5, 28.9, 27, 23, 14.2 ppm; 

31
P NMR 
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(160 MHz, CD2Cl2, 1.0 x 10
2

 M): 41.8 ppm; HRMS (FAB) m/z Calcd for 

C32H35N2O2PAu (M + H
+
), 707.2096; Found, 707.2096; Anal. Calcd. for 

C32H34N2O2PAu: C, 54.40; H, 4.85; N, 3.96. Found: C, 54.37; H, 4.95; N, 4.02. 

 

X-ray structure analysis 

 All measurements for U6AuCNPh were performed with a Rigaku R-AXIS 

RAPID diffractometer by using graphite-monochromated Mo-Kα radiation. All 

measurements for U6AuPPh3 were performed with a Rigaku R-AXIS RAPID 

diffractometer by using filtered Mo-K radiation. The structures of U6AuCNPh and 

U6AuPPh3 were solved by direct methods
5
 and expanded using Fourier techniques. All 

calculations were performed using the CrystalStructure crystallographic software 

package
6
 except for the refinement, which was performed using SHELXL-97.

7 
The 

non-hydrogen atoms were refined anisotropically. The H atoms involved in hydrogen 

bonding were located in electron density maps. The remainder of the H atoms were 

placed in idealized positions and allowed to ride with the C atoms to which each was 

bonded. Crystallographic details are given in Table 2. Selected bond distances and 

angles are shown in Table 3 and 4. Crystallographic data (excluding structure factors) 

for the structures reported in this paper have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication no. CCDC-1026761 for 

U6AuCNPh and CCDC-1026762 for U6AuPPh3. Copies of the data can be obtained 

free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: 

(internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk]. 
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Table 2. Crystallographic data for U6AuCNPh and U6AuPPh3 

  U6AuCNPh U6AuPPh3 

   Formula C21H24N3O2Au1 C32H34N2O2P1Au1 

Molecular weight 541.41 706.57 

Crystal system Tetragonal Monoclinic 

Space group I41/a (No. 88) C2/c (No. 15) 

a (Å) 35.091(3) 38.4526(14) 

b (Å) 
 

16.5099(4) 

c (Å) 6.7679(6) 20.2551(7) 

 (°) 
 

114.7260(11) 

V (Å
3
) 8334.0(12) 11680.0(7) 

Z 16 16 

Dcalcd (g cm
-3

) 1.745 1.607 

 (Mo Ka) (cm
-1

) 71.052 51.414 

T (°C) 150 170 

 (Mo K) (Å) 0.71075 0.71075 

R1
a
 0.062 0.060  

wR2
b
 0.156 0.152 

   (a) R1 = ||Fo| |Fc|| / |Fo|. (b) wR2 = [w(Fo
2 
Fc

2
)
2 
/ w(Fo

2
)
2
]
1/2

. 
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Table 3. Selected bond distances (Å) for U6AuCNPh and U6AuPPh3  

 
U6AuCNPh          U6AuPPh3

a
 

    Au(1)C(15) 1.982(11) 
  

Au(1)P(1) 
 

2.2783(18) 2.2762(18) 

Au(1)C(14) 1.990(11) 1.998(8) 2.002(8) 

P(1)C(15) 
 

1.818(10) 1.821(10) 

P(1)C(21) 
 

1.811(8) 1.825(7) 

P(1)C(27) 
 

1.812(7) 1.806(7) 

O(1)C(1) 1.242(14) 1.220(9) 1.22613) 

O(2)C(2) 1.215(15) 1.230(8) 1.223(10) 

N(1)C(1) 1.361(14) 1.392(10) 1.364(13) 

N(1)C(4) 1.415(14) 1.391(10) 1.356(12) 

N(2)C(1) 1.356(16) 1.381(9) 1.333(12) 

N(2)C(2) 1.420(15) 1.393(9) 1.360(10) 

N(3)C(15) 1.134(14) 
  

N(3)C(16) 1.404(13) 
  

C(2)C(3) 1.425(15) 1.427(10) 1.433(11) 

C(3)C(4) 1.350(16) 1.364(10) 1.356(11) 

C(4)C(13) 1.421(14) 1.436(11) 1.410(10) 

C(13)C(14) 1.198(14) 1.205(12) 1.214(11) 

    (a) Two independent molecules exist in an asymmetric unit. 
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Table 4. Selected bond angles (°) for U6AuCNPh and U6AuPPh3  

 
U6AuCNPh         U6AuPPh3

a
 

    C(14)Au(1)C(15) 176.0(4) 
  

P(1)Au(1)C(14) 
 

176.3(3) 176.2(2) 

Au(1)C(15)N(3) 176.4(9) 
  

Au(1)P(1)C(15) 
 

111.5(2) 111.5(3) 

Au(1)P(1)C(21) 
 

116.2(3) 116.6(3) 

Au(1)P(1)C(27) 
 

110.8(2) 112.4(2) 

Au(1)C(14)C(13) 173.6(9) 177.6(8) 174.4(9) 

O(1)C(1)N(1) 123.1(11) 122.9(7) 121.8(9) 

O(1)C(1)N(2) 120.7(10) 122.3(7) 121.5(9) 

O(2)C(2)N(2) 120.2(10) 119.5(6) 119.3(7) 

O(2)C(2)C(3) 126.0(11) 125.9(7) 125.6(8) 

N(1)C(1)N(2) 116.1(10) 114.8(6) 116.7(9) 

N(1)C(4)C(3) 119.9(9) 121.2(7) 118.5(7) 

N(1)C(4)C(13) 117.9(9) 116.3(6) 119.4(7) 

N(2)C(2)N(3) 113.8(10) 125.9(7) 115.1(7) 

C(1)N(1)C(4) 122.0(9) 121.6(6) 123.0(9) 

C(1)N(2)C(2) 126.4(9) 126.7(6) 125.5(7) 

C(2)C(3)C(4) 121.5(10) 121.0(7) 120.7(7) 

C(3)C(4)C(13) 122.2(10) 122.5(7) 121.9(7) 

C(4)C(13)C(14) 172.7(11) 178.1(12) 174.7(11) 

C(15)N(3)C(16) 176.4(11) 
  

    (a) Two independent molecules exist in an asymmetric unit. 
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Chapter 3. Induced Au(I)-Au(I) interaction of dinuclear 

organogold(I) complexes with diphosphine ligands and uracil 

moieties 

3-1. Introduction 

As mentioned in the chapter 2, Au(I)-Au(I) interaction in the  gold(I) 

complexes is influenced by steric structure of ancillary ligands. The dinuclear gold(I) 

complex with a bridging ligand is conceived to be a useful approach for the design of 

well-designed aggregates.
1
 Arrangement of metal centers in the same side of the ligand 

is expected by using the semirigid bridging diphosphine ligand. Xantphos and 

(R)-BINAP were focused on as the bridging diphosphine ligand. The advantage in the 

use of Xantphos and (R)-BINAP derived from their semirigid backbone to arrange the 

phosphorus atoms on the same side. From these points of view, I herein report designs 

and syntheses of the dinuclear organogold(I)-uracil conjugates with the bridging 

diphosphine ligands in order to control the arrangement of Au(I) centers and 

self-assembly properties of the uracil moieties. 
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3-2. Result and discussion 

The dinuclear organogold(I)-uracil conjugates with the bridging diphosphine 

ligands were synthesized by the introduction of Xantphos and (R)-BINAP to cause an 

intramolecular aurophilic Au(I)-Au(I) interaction. The dinuclear organogold(I)-uracil 

conjugates (U6Au)2(-Xantphos), (U5Au)2(-Xantphos) and (U6Au)2(-R-BINAP) 

were obtained by the reaction of 6-ethynyl-1-octyluracil or 5-ethynyl-1-octyluracil with 

(ClAu)2(-diphosphine) (diphosphine = Xantphos or (R)-BINAP), which were produced 

by the treatment of chloro(tetrahydrothiophene)gold(I) [ClAu(tht)] with the 

corresponding diphosphine in situ, in the presence of sodium bis(trimethylsilyl)amide 

(Scheme 1). Thus-obtained dinuclear organogold(I)-uracil conjugates were fully 

confirmed by 
1
H NMR, 

13
C NMR, 

31
P NMR, IR, HRMS, and elemental analysis. In the 

1
H NMR spectra, the signal for the ethynyl proton of the uracil derivatives disappeared 

and the upfield shift of the uracil proton was observed after the introduction of the Au(I) 

center. The 
31

P NMR spectra of (U6Au)2(-Xantphos), (U5Au)2(-Xantphos) and 

(U6Au)2(-R-BINAP) exhibited only one kind of resonance at around 30 ppm in 

CD2Cl2, suggestng that two phosphorus atoms of the dinuclear organogold(I)-uracil 

conjugates are equivalent in NMR time scale. 
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Scheme 1. 
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X-ray crystallographic analyses were performed in order to elucidate the 

coordination environment of Au(I) centers and self-assembly properties of the dinuclear 

organogold(I)-uracil conjugates. Diffraction-quality single crystals of 

(U6Au)2(-Xantphos) and (U5Au)2(-Xantphos) were prepared by diffusion of 

methanol into dichloromethane solution of (U6Au)2(-Xantphos) and diffusion of 

hexane into dichloromethane solution of (U5Au)2(-Xantphos). The dinuclear structure 

of (U6Au)2(-Xantphos) bearing 6-ethynyl-1-octyluracil moiety was determined by 

single-crystal X-ray structure determination (Figure 1). The crystal structure showed a 

linear coordination geometry of the Au(I) centers bridged by Xantphos ligand. It is a 

noteworthy that an intramolecular aurophilic Au(I)-Au(I) interaction was observed with 

Au(1)-Au(2) distance of 2.9994(8) Å. The semirigid xanthene backbone was found to 

facilitate the arrangement of the phosphorus atoms on the same side to induce 

intramolecular Au(I)-Au(I) interaction. The conformational enantiomers based on the 

torsional twist about the Au(I)-Au(I) axis are possible in the dinuclear gold(I)-uracil 

conjugates (Figure 2). The dinuclear organogold(I) complex (U6Au)2(-Xantphos) 

crystallized in the space group P-1 with R- and S-enantiomers based on the Au(I)-Au(I) 

axis in the unit cell (Figures 1a). The Au(I)-Au(I) interaction was found to induce the 

deviation from the linearity of the coordination structures of the Au centers with P-Au-C 

angles of 168.1(4)° and 174.5(5)°. The torsion angle of P(1)-Au(1)-Au(2)-P(2) of 82° 

indicates that the P-Au-C moieties are almost perpendicular to each other. Furthermore, 

the heterochiral hydrogen-bonded assembly was formed by connecting the each 

enantiomer alternately through intermolecular hydrogen bonds between the uracil 

moieties (Figure 1b and Table 1). There are two types of hydrogen bonding pattern in 

the heterochiral hydrogen bonded assembly, wherein one uracil moiety is linked by the 
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hydrogen bonded bridges of methanol solvent molecules and another uracil moiety is 

linked by hydrogen-bonded to the uracil moiety of another molecule directly (Figure 

1b). 

 

 

 

Figure 1. (a) Molecular structures of the R- and S-enantiomers of the dinuclear 

organogold(I)-uracil conjugates (U6Au)2(-Xantphos), (b) the heterochiral 

hydrogen-bonded assembly through intermolecular hydrogen bonds between the uracil 

moieties of (U6Au)2(-Xantphos) and (c) a part of the crystal structure showing two 

types of the hydrogen bonding pattern in the heterochiral hydrogen-bonded assembly 

(hydrogen atoms and octyl moieties are omitted for clarity). 
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Figure 2. Enantiomorphous conformations of the dinuclear organogold(I)-uracil 

conjugates with the bridging diphosphine ligands by . The enantiomorphs are related by 

the mirror plane. 

 

Table 1. Intermolecular hydrogen bonds for (U6Au)2(-Xantphos), U5Au)2(-Xantphos) 

and (U6Au)2(-R-BINAP) 

Compounds Donor Acceptor D•••A (Å) DH•••A (°) 

     (U6Au)2(-Xantphos) O(4)
a
 O(2)

b
 2.73(2) 147(10) 

 
N(2) O(4)

a
 2.78(2) 172(5) 

 
N(42) O(41)

c
 2.798(15) 167(4) 

     
(U5Au)2(-Xantphos) N(2) O(42)

d
 2.816(13) 166(4) 

 
N(42) O(1)

e
 2.924(13) 169(3) 

     
(U6Au)2(-R-BINAP) N(2) O(41)

f
 2.816(17) 158(4) 

 
N(42) O(2)

g
 2.789(18) 176(4) 

     (a) Oxygen atom of methanol. (b) X+2, Y+1, Z+2. (c) X+2, Y+1, Z+1. (d) X, Y, Z+1/2. 

(e) X, Y, Z+1/21. (f) X+2, Y+1/21, Z+1/2. (g) X+2, Y+1/2, Z+1/2.
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In the crystal structure of (U5Au)2(-Xantphos) composed of 

5-ethynyl-1-octyluracil, wherein the direction of hydrogen bonding sites of the uracil 

moieties is different from (U6Au)2(-Xantphos), an intramolecular aurophilic 

Au(I)-Au(I) interaction with Au(1)-Au(2) distance of 2.9287(9) Å was also determined 

by single-crystal X-ray structure determination. R- and S-enantiomers based on 

Au(I)-Au(I) axis in (U5Au)2(-Xantphos) were present as depicted in Figure 3a. The 

distortion of the linear coordination geometry of the Au centers based on the 

Au(I)-Au(I) interaction was also observed, resulting in P-Au-C angles of 166.9(3)° and 

176.1(3)°. Compared with (U6Au)2(-Xantphos), the P(1)-Au(1)-Au(2)-P(2) torsion 

angle of 78.96(10)° was slightly small. The Au-C bond of (U5Au)2(-Xantphos) was a 

little shorter than that of (U6Au)2(-Xantphos). The position of the introduced ethynyl 

moiety of the uracil is likely to influence the electronic environment of the Au centers. 

Interestingly, a homochiral  stacked dimer was formed through  interactions 

between the uracil moieties of each enantiomer (Figure 3b). Furthermore, each 

homochiral  stacked dimer was linked alternately for formation of the 

hydrogen-bonded assembly through intermolecular hydrogen bonds between the uracil 

moieties (Figure 3c and Table 1). The direction of hydrogen bonding sites were found to 

affect the self-assembly patterns. 
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Figure 3. (a) Molecular structures of the R- and S-enantiomers, (b) the homochiral 

stacked dimer, and (c) the heterochiral hydrogen-bonded assembly through 

intermolecular hydrogen bonds between the uracil moieties of the dinuclear 

organogold(I)-uracil conjugate (U5Au)2(-Xantphos) (hydrogen atoms and octyl 

moieties are omitted for clarity). 
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Based on the above-mentioned interesting results, we launched on the chirality 

induction in Au(I)-Au(I) axis by using the bridging diphosphine ligand with axial 

chirality. Diffraction-quality single crystal of (U6Au)2(-R-BINAP) was prepared by 

diffusion of hexane into chloroform solution of (U6Au)2(-R-BINAP). The dinuclear 

organogold(I)-uracil conjugate (U6Au)2(-R-BINAP) crystallized in the space group 

P212121; the molecular structure exhibited an intramolecular Au(I)-Au(I) interaction 

based on the aurophilic interaction (Figure 4). The deviation from the linear 

coordination structure of the Au centers with P-Au-C angles of 172.2(5)° and 176.5(4)° 

based on the Au(I)-Au(I) interaction was also observed. The crystal structure of 

(U6Au)2(-R-BINAP) showed the P(1)-Au(1)-Au(2)-P(2) torsion angle of 71.97(8)°, 

which is smaller than that of the gold(I)-uracil conjugates with Xantphos probably due 

to the difference for rigidity of the diphosphine frameworks. Gratifyingly, 

(U6Au)2(-R-BINAP) assumed R,R-configuration through the chirality induction in 

Au(I)-Au(I) axis by the axial chirality of BINAP moiety as shown in Figure 4a. 

Although Au(I)-Au(I) aurophilic interactions have been researched by using the 

bridging diphosphine ligand,
1
 to the best of our knowledge, the chirality induction in 

Au(I)-Au(I) axis has not been reported so far. In the crystal packing, a left-handed 

helical molecular arrangement was found to form by assembling of each molecule 

through intermolecular hydrogen bonds between the uracil moieties as shown in Figure 

4b. 
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Figure 4. (a) Molecular structure of the R-enantiomer and (b) the homochiral 

hydrogen-bonded assembly through intermolecular hydrogen bonds between the uracil 

moieties of the dinuclear organogold(I)-uracil conjugate (U6Au)2(-R-BINAP) 

(hydrogen atoms and octyl moieties are omitted for clarity). 
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3-3. Conclusions 

In conclusion, the combination of the dinuclear organogold(I) complexes with 

a bridging diphosphine ligand as an organometallic compound and the uracil derivative 

as a nucleobase was established to afford the bioorganometallic conjugates. The 

single-crystal X-ray structure determination of the dinuclear organogold(I)-uracil 

conjugates was demonstrated to disclose the assembly properties of the gold(I) and the 

uracil moieties in a solid state. The semirigid bridging diphosphine ligand was found to 

play an important role in the arrangement of the phosphorus atoms on the same side and 

to support the induction of intramolecular aurophilic Au(I)-Au(I) interaction, wherein R- 

and S-enantiomers based on Au(I)-Au(I) axis exist. It should be noted that the chirality 

of Au(I)-Au(I) axis was induced by the utilization of (R)-BINAP as the bridging 

diphosphine ligand with axial chirality. Their strong tendency to self-assemble through 

intermolecular hydrogen bonds between the uracil moieties is Interesting feature of the 

dinuclear organogold(I)-uracil conjugate. These hydrogen bonding patterns were found 

to depend on the direction of hydrogen bonding sites. 
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3-4. Experimental section 

General methods 

 All reagents and solvents were purchased from commercial sources and were 

further purified by the standard methods, if necessary. All manipulations were carried 

out under Ar. Infrared spectra were obtained with a JASCO FT/IR-6200 spectrometer. 

1
H, 

13
C, and 

31
P NMR spectra were recorded on a JNM-ECS 400 (400, 100 and 160 

MHz, respectively) spectrometer. For 
1
H and 

31
P NMR spectra, chemical shifts were 

determined by using of tetramethylsilane and 85% H3PO4 aq. as standard samples, 

respectively. Chemical shifts of 
13

C NMR spectra were determined relative to the 

solvent residual peaks. Mass spectra were run on a JEOL JMS-700 mass spectrometer. 

 6-Ethynyl-1-octyluracil,
2
 5-ethynyl-1-octyluracil,

3
 and 

chloro(tetrahydrothiophene)gold(I) [ClAu(tht)]
4
 were prepared by the literature 

methods. 

 

Synthesis of the dinuclear organogold(I)-uracil conjugate (U6Au)2(-Xantphos) 

 A mixture of Xantphos (116 mg, 0.20 mmol), 

chloro(tetrahydrothiophene)gold(I) (128 mg, 0.40 mmol), and 6-ethynyl-1-octyluracil 

(1) (100 mg, 0.40 mmol) was stirred in THF (20 mL) at room temperature for 10 

minutes under Ar. To the solution was added sodium bis(trimethylsilyl)amide (93 mg, 

0.51 mmol) and the resulting solution was stirred at room temperature under Ar for 12 h. 

The mixture was diluted with dichloromethane, washed with water, brine, and then 

dried over Na2SO4. The solvent was evaporated and the residue was washed with ethyl 

acetate. The crude product was purified by recrystallization from dichloromethane and 

methanol to afford the desired dinuclear organogold(I)-uracil conjugate 



60 

 

(U6Au)2(-Xantphos) (153 mg, 0.10 mmol) as a colorless crystal. 

 (U6Au)2(-Xantphos): yield 52%; IR (KBr) 3172, 3047, 2925, 2854, 2119, 

1677, 1579, 1435, 1403, 1363, 1227 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 5.0 x 10

3
 M): 

 8.22 (br, 2H), 7.69 (dd, 2H, J = 7.8, 1.4 Hz), 7.48-7.44 (m, 4H), 7.34-7.23 (m, 16H), 

7.11 (td, 2H, J = 7.8 Hz, 
4
JH-P = 1.2 Hz), 6.48 (ddd, 2H, J = 7.8, 1.4 Hz, 

3
JH-P = 12.1 Hz), 

5.67 (s, 2H), 4.01 (t, 4H, J = 7.2 Hz), 1.69 (s, 6H), 1.67-1.60 (m, 4H), 1.29-1.12 (m, 

20H), 0.81 (t, 6H, J = 6.8 Hz); 
13

C NMR (100 MHz, CD2Cl2, 5.0 x 10
3

 M): 163, 153 (d, 

2
JC-P = 4.0 Hz), 151.3, 150.2 (d, 

2
JC-P = 140.9 Hz),140.8, 134.6 (d, 

2
JC-P = 14.9 Hz), 

133.4, 132, 130, 129.8 (d, 
1
JC-P = 51.8 Hz), 129.5 (d, 

3
JC-P = 12 Hz), 124.9 (d, 

3
JC-P = 9.1 

Hz), 117 (d, 
1
JC-P = 52.2 Hz), 104.8, 95.5 (d, 

3
JC-P = 26.8 Hz), 46.6, 35.1, 32.2, 31.6, 

29.8, 29.6, 29.2, 27.1, 23, 14.2 ppm; 
31

P NMR (160 MHz, CD2Cl2, 5.0 x 10
3

 M): 31.2 

ppm; HRMS (FAB) m/z Calcd. for C67H71N4O5P2Au2 (M + H
+
), 1467.4225; Found, 

1467.4215; Anal. Calcd. for C67H70N4O5P2Au2: C, 54.85; H, 4.81; N, 3.82. Found: C, 

54.85; H, 4.94; N, 3.82. 

 

Synthesis of the dinuclear organogold(I)-uracil conjugate (U5Au)2(-Xantphos) 

 A mixture of Xantphos (58 mg, 0.10 mmol), 

chloro(tetrahydrothiophene)gold(I) (64 mg, 0.20 mmol), and 5-ethynyl-1-octyluracil (2) 

(50 mg, 0.40 mmol) was stirred in THF (10 mL) at room temperature for 10 minutes 

under Ar. To the solution was added sodium bis(trimethylsilyl)amide (47 mg, 0.25 

mmol) and the resulting solution was stirred at room temperature under Ar for 19 h. The 

mixture was diluted with dichloromethane, washed with water, brine, and then dried 

over Na2SO4. The solvent was evaporated and purification of the crude product by 

preparative thin-layer chromatography using dichloromethane/methanol (93:7 v/v) as 
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mobile phase gave the desired dinuclear organogold(I)-uracil conjugate 

(U5Au)2(-Xantphos) (20 mg, 0.014 mmol). Recrystallization from dichloromethane 

and hexane produced a yellow crystal. 

 (U5Au)2(-Xantphos): yield 14%; IR (KBr) 3178, 3053, 2925, 2854, 2116, 

1682, 1435, 1403, 1343, 1221 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 5.0 x 10

3
 M):  8.15 

(br, 2H), 7.66 (d, 2H, J = 7.7 Hz), 7.45-7.41 (m, 6H), 7.36-7.27 (m, 16H), 7.09 (t, 2H, J 

= 7.7 Hz), 6.49 (dd, 2H, J = 7.7 Hz, 
2
JH-P = 11.4 Hz), 3.66 (t, 4H, J = 7.3 Hz), 1.69-1.60 

(m, 10H), 1.33-1.22 (m, 20H), 0.87 (t, 6H, J = 6.8 Hz); 
13

C NMR (100 MHz, CD2Cl2, 

5.0 x 10
3

 M): 162.8, 153.1 (d, 
2
JC-P = 2.0 Hz), 151.1, 146.1, 137.5 (d, 

2
JC-P = 141.6 Hz), 

134.8 (d, 
2
JC-P = 14.5 Hz), 133.3, 132, 131.5, 130.7(d, 

1
JC-P = 55.8 Hz), 129.6, 129.3 (d, 

3
JC-P =11.4 Hz), 124.6 (d, 

3
JC-P = 8.1 Hz) 117.8 (d, 

1
JC-P = 50.5 Hz), 102.3, 94.6 (d, 

3
JC-P 

= 28.6 Hz), 49.1, 35, 32.1, 31.4, 29.5, 29.4, 26.7, 23, 14.2 ppm; 
31

P NMR (160 MHz, 

CD2Cl2, 5.0 x 10
3

 M): 31.8 ppm; HRMS (FAB) m/z Calcd. for C67H71N4O5P2Au2 (M + 

H
+
), 1467.4225; Found, 1467.4171. 

 

Synthesis of the dinuclear organogold(I)-uracil conjugate (U6Au)2(-R-BINAP) 

 A mixture of (R)-BINAP (125 mg, 0.20 mmol), 

chloro(tetrahydrothiophene)gold(I) (128 mg, 0.40 mmol), and 6-ethynyl-1-octyluracil 

(1) (99 mg, 0.20 mmol) was stirred in THF (20 mL) at room temperature for 20 minutes 

under Ar. To the solution was added sodium bis(trimethylsilyl)amide (93 mg, 0.51 

mmol) and the resulting solution was stirred at room temperature under Ar for 19 h. The 

mixture was diluted with dichloromethane, washed with water, brine, and then dried 

over Na2SO4. The solvent was evaporated and purification of the crude product by 

preparative thin-layer chromatography using dichloromethane/methanol (93:7 v/v) as 
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mobile phase gave the desired dinuclear organogold(I)-uracil conjugate 

(U6Au)2(-R-BINAP) (121 mg, 0.080 mmol). Recrystallization from chloroform, 

diethyl ether and hexane produced a pale yellow crystal. 

 (U6Au)2(-R-BINAP): yield 40%; IR (KBr) 3165, 3049, 2925, 2853, 2118, 

1683, 1582, 1456, 1407, 1367 cm
1

; 
1
H NMR (400 MHz, CD2Cl2, 1.0 x 10

2
 M):  8.69 

(br, 2H), 8.11 (d, 2H, J = 8.8 Hz), 7.93 (d, 2H, J = 8.2 Hz), 7.76-7.71 (m, 4H), 7.59 (t, 

2H, J = 8.8 Hz, 
3
JH-P = 8.8 Hz), 7.49-7.36 (m, 10H), 7.25-7.17 (m, 8H), 6.87-6.83 (m, 

2H), 6.60 (d, 2H, J = 8.5 Hz), 5.65 (s, 2H), 4.01-3.90 (m, 4H), 1.68-1.60 (m, 4H), 

1.34-1.14 (m, 20H), 0.83 (t, 6H, J = 6.8 Hz); 
13

C NMR (100 MHz, CD2Cl2, 1.0 x 10
2

 

M): 163.3, 152.1 (d, 
2
JC-P = 141.9 Hz), 151.4, 143.3 (dd, 

2
JC-P = 16 Hz, 

3
JC-P = 7.2 Hz), 

140.7 (d, 
4
JC-P = 2.6 Hz), 135.3 (d, 

2
JC-P = 14 Hz), 135, 134.8 (d, 

2
JC-P = 14.6 Hz), 134.1 

(d, 
3
JC-P = 10 Hz), 131.8, 130.5 (d, 

3
JC-P = 4.8 Hz), 130.4 (d, 

1
JC-P = 56.6 Hz), 130.2 (d, 

2
JC-P = 8.4 Hz), 129.5 (d, 

3
JC-P = 11.5 Hz), 129.3 (d, 

3
JC-P = 11.7 Hz), 128.9 (d, 

1
JC-P = 

56.6 Hz), 128.8, 128.6, 128.2 (d, 
1
JC-P = 56.2 Hz), 127.4, 127.3, 105.1, 93.2 (d, 

3
JC-P = 

25.9 Hz), 46.6, 32.2, 29.8, 29.7, 29.1, 27.1, 23, 14.2 ppm; 
31

P NMR (160 MHz, CD2Cl2, 

1.0 x 10
2

 M): 33.5 ppm; HRMS (FAB) m/z Calcd. for C72H71N4O4P2Au2 (M + H
+
), 

1511.4276; Found, 1511.4257; Anal. Calcd. for C72H70N4O4P2Au2•CHCl3: C, 53.77; H, 

4.39; N, 3.44. Found: C, 53.78; H, 4.45; N, 3.42. 
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X-ray structure analysis 

 All measurements for (U6Au)2(-Xantphos), (U5Au)2(-Xantphos), and 

(U6Au)2(-R-BINAP) were made on a Rigaku R-AXIS RAPID diffractometer using 

graphite monochromated MoK radiation. The structures of (U6Au)2(-Xantphos), 

(U5Au)2(-Xantphos), and (U6Au)2(-R-BINAP) were solved by direct methods
5
 and 

expanded using Fourier techniques. All calculations were performed using the 

CrystalStructure crystallographic software package
6
 except for the refinement, which 

was performed using SHELXL-97.
7
 The non-hydrogen atoms were refined 

anisotropically. The H atoms involved in hydrogen bonding were located in electron 

density maps. The remainder of the H atoms were placed in idealized positions and 

allowed to ride with the C atoms to which each was bonded. Crystallographic details are 

given in Table 2. Selected bond distances and angles are reported in Table 3. 

Crystallographic data (excluding structure factors) for the structures reported in this 

paper have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication no. CCDC-1033826 for (U6Au)2(-Xantphos), 

CCDC-1033825 for (U5Au)2(-Xantphos) and CCDC-1033824 for 

(U6Au)2(-R-BINAP). Copies of the data can be obtained free of charge on application 

to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) 

+44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk]. 
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Table 2. Crystallographic data for (U6Au)2(-Xantphos), (U5Au)2(-Xantphos) and 

(U6Au)2(-R-BINAP) 

 
(U6Au)2(-Xantphos) (U5Au)2(-Xantphos) (U6Au)2(-R-BINAP) 

    
Formula 

C67H70N4O5P2Au2 

・CH2Cl2 ・CH3OH 

C67H70N4O5P2Au2 

・CH2Cl2 

C72H70N4O4P2Au2 

・CHCl3 

Molecular weight 1584.17 1552.13 1630.63 

Crystal system Triclinic Monoclinic Orthorhombic 

Space group P1 (No. 2) C2/c (No. 15) P212121 (No. 19) 

a (Å) 10.6798(6) 30.3688(18) 11.0678(16) 

b (Å) 14.2920(7) 26.6704(15) 23.228(4) 

c (Å) 22.3083(13) 21.7986(12) 27.246(4) 

 (°) 97.4663(16) 
  

 (°) 90.7906(16) 109.0564(16) 
 

(°) 91.1556(14) 
  

V (Å
3
) 3375.0(3) 16688.2(16) 7004.5(18) 

Z 2 8 4 

Dcalcd (g cm
-3

) 1.559 1.235 1.546 

 (Mo K) (cm
-1

) 45.360  36.672 44.086 

T (°C) 4.0  4.0  150 

 (Mo K) (Å) 0.71075 0.71075 0.71075 

R1
a
 0.083 0.054 0.078  

wR2
b
 0.232 0.179 0.211 

    (a) R1 = ||Fo| |Fc|| / |Fo|. (b) wR2 = [w(Fo
2 
Fc

2
)
2 
/ w(Fo

2
)
2
]
1/2

. 

 

 

 

 

 

 

 



65 

 

 

Table 3. Selected bond distances (Å) and angles (°) for (U6Au)2(-Xantphos),  

(U5Au)2(-Xantphos) and (U6Au)2(-R-BINAP) 

 
(U6Au)2(-Xantphos) (U5Au)2(-Xantphos) (U6Au)2(-R-BINAP) 

    Bond distances (Å) 
   

Au(1)Au(2) 2.9994(8) 2.9286(5) 3.0021(9) 

Au(1)P(1) 2.283(4) 2.281(3) 2.281(4) 

Au(2)P(2) 2.275(3) 2.253(4) 2.290(4) 

Au(1)C(14) 2.009(14) 1.976(10) 2.066(14) 

Au(2)C(54) 2.002(17) 1.926(11) 2.003(17) 

C(13)C(14) 1.16(2) 1.230(13) 1.14(2) 

C(53)C(54) 1.18(2) 1.188(17) 1.16(2) 

    
Bond angles (°) 

   
P(1)Au(1)C(14) 168.1(4) 166.9(3) 172.2(5) 

P(2)Au(2)C(54) 174.5(5) 176.1(3) 176.5(4) 

Au(1)C(14)C(13) 180.0(13) 175.1(11) 175.8(14) 

Au(2)C(54)C(53) 173.1(16) 170.5(8) 175.6(14) 

C(4)C(13)C(14) 173.3(17) 
 

168.7(18) 

C(44)C(53)C(54) 173(2) 
 

175.3(18) 

C(3)C(13)C(14) 
 

171.6(13) 
 

C(43)C(53)C(54) 
 

175.9(10) 
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Conclusion 

In this dissertation, the synthesis of bioorganometallic compounds combined the 

organoplatinum(II) and organogold(I) complexes with the uracil and appearance of 

metal-metal interaction in the organometal-uracil conjugates is described. The structural 

characteristics and assembly properties of the organometal-uracil conjugates were 

determined by single-crystal X-ray structure determination, absorption and emission 

spectra and NMR measurement. Noncovalent bonds such as the hydrogen bonding and 

 interaction found to play an important role in aggregation of metal moieties and 

introduction of metal-metal interaction. These organometal-nucleobase conjugates are 

considered to have potential as probes, catalyst and pharmacy. 

 

In chapter 1, the bioorganometallic platinum(II) compounds were synthesized by 

the reaction of the corresponding uracil derivative with the organoplatinum(II) 

compound. the platinum(II) complex bearing 6-ethynyl-1-octyluracil revealed the 

formation of the Pt(II)-Pt(II) interaction by supporting of intermolecular hydrogen 

bonding between the uracil moieties and  interaction between the phenylbipyridine 

ligands. Furthermore, controlled arrangement of organoplatinum(II) complexes bearing 

uracil moieties was achieved by changing molecular scaffolds, which having two 

2,6-dihexamidopyridine moieties as a complementary hydrogen bonding site for the 

uracil moiety. The emission properties of the organoplatinum(II) compounds were tuned 

by the induced Pt(II)-Pt(II) and  interactions through the regulation of the 

aggregated structures.  
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In chapter 2, the conjugation of the gold(I) complex having a planar ligand or a 

bulky ligand with 6-ethynyl-1-octyluracil afforded the corresponding gold(I) complexes, 

respectively. The crystal structure of the gold(I)-urcil conjugate having the planar 

phenyl isocyanide ligand disclosed the formation of a head-to-tail dimer through the 

Au(I)-Au(I) and  interactions between the uracil and benzene moieties of phenyl 

isocyanide. Furthermore, each head-to-tail dimer was connected not only through the 

intermolecular hydrogen bonds of N-H•••O pattern between the uracil moieties but the 

weak hydrogen bonds of C-H•••O pattern between the uracil and benzene moieties of 

phenyl isocyanide. In contrast, the Au(I)-Au(I) interaction was not observed in a crystal 

structure of the gold(I)-uracil conjugate having the bulky triphenylphosphine ligand 

probably due to the steric hindrance of the bulky ligand 

 

In chapter 3, the dinuclear gold(I)-uracil conjugates synthesized by the 

treatment of the dinuclear organogold(I) complexes with a bridging 

diphosphine ligand and the uracil derivative. The crystal structure of the 

dinuclear gold(I)-uracil conjugates with Xantphos as a bridging diphosphine ligand 

exhibited an intramolecular aurophilic Au(I)-Au(I) interaction. R- and S-enantiomers 

based on Au(I)-Au(I) axis are exist in the unit cell. By contrast, the utilization of 

(R)-BINAP as the bridging diphosphine ligand with axial chirality was performed to 

induce the chirality of Au(I)-Au(I) axis. The crystal structure of the dinuclear 

organogold(I) complex with (R)-BINAP confirmed the axial chirality in Au(I)-Au(I) 

axis to form R,R-enantiomer, wherein each molecule is arranged through intermolecular 

hydrogen bonds between the uracil moieties to form a helical molecular arrangement. 
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The structure characterization and assembly properties of the bioorganometallic 

compounds bearing the uracil moieties were demonstrated to be controlled by the 

molecular scaffolds or ancillary ligands. These results and findings provide a significant 

contribution for structural control of metal-metal interaction in bioorganometallic 

compounds. 
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