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Fig. 2.2.1 Post Panamax container ship referred for designing test models



Table 2.2.1 Principal dimensions

Length, L 267.00 m
Breadth, B 39.80m
Depth, D 23.60 m

Draft, d 12.50 m
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RITKEIREEIZ X > CTHBES L= 3 DO FR—/L KB 7e 0 e (Bay-1) 38 L UYiRE (Bay-6)
D12 A=)V FRIZIZZ B AT v X LG22 (Fig. 222 38), L7zi-> T,
—ERRIRED B — A v N EAM LA, PN To %5 Bay-1 3 X O Bay-6 (2827 5 Bay-2
BLOBay-5 DNy Fa—F—HIZBWT KVISP RO RESRDEZZOLND 2B,
AEBRIATIX, FEMBIEICHDHRDOF ¥ X, BLO, EAPY—7 L EZEH L,

e oo - o

D C A B C D C
Bay-6 Bay-5 Bay-4 ay-

Bay-3 Bay-2 B
tl

1

e

ezee = = =3 =
s 2 g 2 g <
© B © B o ®
= [ P T S 3
[ = [ = v Lo
< = £ = < =
= = = 3 = =)
2 |t 2 2 |2 2 2 |2 e
— & — & - P
z. ® | c L ® | c = t O
- | = > Fd > - o)
2 t 2 £ 2 £
2 s 2 S s
b .
t2 2 I [¥: = o |t2 = 2| ®
g E 4 = n =
T‘ \— \— \— \ \ 3

L

lxi 82x3|_82x3 L BZx3_|_ BZx3_|J31x

tl

u_Jud 2 Jua, L2 Judl, L2 Jual, L2 Jul 3l

Lo
Hold-3 Hold-2 L Hold-1

>l >
L L L

A

Fig. 2.2.2 Deck plan of test models
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m‘[_— | F tZ\_ 12 stiff.3 \t3 ‘
= - T | —— — |
L dj |
85 | & | t4 |
2 - I 3—; t4\' L i
o v = b
ol FF I t4
/ ]
r\ﬂF I —— t4 !
:) L PR | I P t3\- e I S
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™
t3
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|
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— | ITe)
L \ stiff.3 L L ]
t4 |
[ [ | |
AN A | |
i t4 /t4 | | |
|
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Fig. 2.2.3 Transverse cross section of test models

ARERR DR E L OFE % Fig. 2.2.2, Fig. 2.2.3 8 X O Table 2.2.2 (27759, Fig. 2.2.2 1o
Watertight bulkhead TfEEIHN7ZE83728 1 BA— /L FTH Y, 1/2 Fm—/L KZ &IT Bay-1,
Bay-2, * - - HEOAMEA L TWD, 2, ftHhFE—A L M &RV E— A FOHFELE
Z T BR AR & F T 5 72, 3 RORER IR Z BRI L L7,

222 HEBREOHME
(1) HAERIEDHE

SHEKDOREIE, BHEC X D BRIE B L ORI bAh % TE 37203 5720, —
BERECHEM L7z, 9, “HEIEAZSOMEME, (L S0 RIS, MR, J O
JAAT X EETNENEET ey 7 L LT, ABVEBAIIHI TEX 2 L) L—Y—iE#EIC X
DEUWELT-, DI, TNTNOEET O v I BRET AT — 7 EBICLVES L, {5
REREFANL T2, 728, IO OEER, T TEBRELE L,
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Table 2.2.2 Dimensions of test models (in mm)

Model 1 Models 2 and 3
L1 900
L2 1,000
L3 650
L4 150
LO 6,550
Bl 180
B2 190
BO 3,000
D1 120
D2 180
D3 180
DO 1,800
tl 5.94 5.87
t2 4.35 4.48
t3 3.13 3.14
t4 2.28 2.13
stiff. 1 50X5.97 50X5.89
stiff. 2 50X2.92 50%x2.89
stiff. 3 50X2.92 50%X2.89
Table 2.2.3 Material properties
Model 1 Models 2 and 3
E (GPa) 0p.2 (MPa) o, (MPa) E(GPa) | oy, (MPa) | o, (MPa)
tl 195 231 351 192 190 300
t2 175 203 338 198 209 298
t3 183 175 302 198 255 349
t4 194 240 332 209 244 351
stiff. 1 202 761 780 200 648 678
stiff. 2 and 3 207 727 730 203 724 725

Note; E: Young’s Modulus, oy »: 0.2% proof stress and o

12

Maximum tensile stress.




(2) ER#H

STz 2 U7 T, AR ISR EEE, 3 KON fithmeE i EiE 180 YP36 44,
LS OEMICIT R IR I8 YP32 A & 7218kl (MS) 23MEMH STV 2 23, REBRIETIE,
T RTOHMMITHRER (SS400) M A L7z, FIBERERIC X o T & ALl AR O ki
PR % Table 2.2.3 127”7, 7235, Flat-bar BifEst & U CHHA 2] L7272, Table 2.2.3
WRT X 91T, 0.2%I0M 138 L OFBRIREE NS, bkt ik L CH L &L oz,

223 BEOPTE
1) BFERRILOBEAT=HH
ARERIE D — D SF UK LT, R R 7c o 2500 L7z, FHRIERTIE, SUBRIK
D 1A BIZEEZ ST O 720 Bay-4 OISR, 8 KON fRESMR (Fig. 2.2.2 2))
T, BFEEM R SO ER o oo 11 SIS 5 MMM A2 2B EHT L 0 3 L7,
—fl & LT, Model-3 OFHAIKE R % Fig. 2.2.4 3 XUV Fig. 2.2.5 1287, BN S505 &
T, FHAI S =W DATRIE, 1 B DN B Th o7, Fio, BlBRIEE b
WE 3 (S 32mm) BIOE (AFF2.3 mm) ORI Tz bAENKE L,
LT, WE t4 OISRV DOERKRPIMTIZ DA ET, BRRTHRIED 1.5 FRETH -0, S
FATEDIELOEBLRE N, L, Sun b 22k DL, R E— AL FAKERRSES
2, AMARR O BHRE IS RIZ T2 A DREN/NI N ERRE STV D,

Q) BRI OBEREE A

FRBRAEOWHIE 7 1y 7 LR UHEN S5 BESMIC X VoA EZ - EL, Wb
D DISTIFFAENZ LY | NSRBI U BRI a2 HEE LT-, 72720, g7 ey
7 HRBRIR & AL ST T D BRICA U DI HER RIS OB Z IR S vz, BB S
IV RATIE O KD 7 A FEREFR R G ) O o, A Table 2.2.4 (2R, #IHI7-HA & [RIER,
INRVHICAE U TWJEMEREIS DX, ERE T2 L0 REDThoTo, 728,
PRIV & BB OBRREBSTITEE OB IRREIS 1T, Wb 0.2% M2 L T,

Table 2.2.4 Maximum value of predicted welding residual stress

model G/ 0p2
t1 t2 t3 t4
Model 1 022 | 0.18 | 0.28 | 0.27
Models 2 and 3 0.57 | 030 | 0.24 | 0.25
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W, /1,

W,/t,
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(a) t1 (5.87 mm)

025 r
0.2
0.15
0.1
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-0.1
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(c) t3 (3.14 mm)

0.1

0.08
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~N

g 0.04
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7/ frame space
(b) 12 (4.48 mm)
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hﬂ.
R
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0.8 1

(d) t4 (2.13 mm)

Fig. 2.2.4 Examples of local initial deflection in side shell plates (Model-3)

W, /1,

0.4
z/ frame space

0.6

Fig. 2.2.5 Examples of local initial deflection in outer bottom shell plates (Model-3)

14



2.3 ZFRAEARBER

231 HfaREHBRAE

AR BRAR 0D 3B U R e Vi LB 22 AT R T TR O #E6 far AR B AL 1 C 980 L 72, Fig.
23. 11T L 91T, RBRIAD Bay-6 DN (Fig. 2.2.1 28) 2 ilBRIEE ORI Z[E 5 L
THEHZRE L, Bay-1 DA OKRANZIE 70 2 NE 7 MO EF 5 mf E & A &5
7o, WZRER AN L CHEY Y v X 20 T2, Zhic kv BBt £ —
AV R, BB IORY E—A 2 MRRRICERT 22 L1082, 2B, MEY Y v ¥
MOMEBEBIX45m, o, WET ¥ > X EAHARER OEBEL X 6.0m ThH D,

BRI W T, WEY ¥ v X OME~R b r— 7 BRI ELRIC & 5 FipH
WTIE, BEEMmIZET DM FE—A > N M (=@PI1+P2)-L) LIRVE—AL NT (=PI -
P2)-B2) DM /| THRFE—EMERDL DT, FrEHEIC XY WE A BN S
B, ZOBE, fTEESIIEINREZERBN R VERE, T7hbb, 1 45%720) OffER S %
150 kN LA FChH %, Ammtkid— mﬁﬁ%@%ﬁﬁ%%ﬁbto*ﬁ\ﬁE~XFn~7%
RPHRIBMRZHER L < R o T BT, MEY ¥ v F 2 EMHIEICE 0 B2, AAHO
ZENTHE 3 bE 203 B A 28 Eh R PR L2 TéwuﬁAm%ﬁﬁﬁéio’wu%&W% THEN
T, Z0LEFOVY v XMEEZHM L, LT, iFfE—A L FEHEVE—XA B
DM/ TIE, BHERZEERENTOR—E LR D,

2.3.2 EHABER
FRBRIRICECD20FA, BEO, MRBEMEICKT 2 By 3 —T —HofhER LT
KPEMZFP LIz, OFT RS =K, T vx, Zr AT v %, SR, ftl@iE, PE
M, BEON RSN T, OB E L, WONT, BAEE I AR de 7 @ B L 7=,
72720, MR K UOWRERE X T ERETH SO, SN X OB IEAMER T IEst m il
. MERRAE S L OV CIEINERNCBEST L7e, 2072, Bk i @& Cidiss )

Fig. 2.3.1 Model setup
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ZEPEFHHITE 2V, BHEEME _EALE COOT AFHRE S Z ONE TO /T IS 71 &
IS HEHEE LT, MEY Y vy XFOMEB IO hu—27 2&eiiT — & 305503, &
7280 HCTH oI,

233 FEEH

F9. BRBRIKOHMEZRE) 25720, RN CTRM I L OWRM 4 EHR kK L
Tt BRI A F2h U 7o, AR5 2 WA B4R % Table 2.3.1 (27”7, #BR
A Model-1 1Zxf L Cid, BT E—A L FEIRVE—RA L PO M/ T3 0512725 K 91Tk
iEL7c, Model-2 (Zxf LTI, EEMICHITOHISTE—A L MRFICRD LD ITHE PI B
KO P2 Bl & iz, —F. Model-3 IZxf LTiX, X7 OMNFE— A2 hOIBBPEfHT
SINLED, MEPIBLOP2OWMFZFRIUKRE ST IFMEI/FEHEET,

Table 2.3.1 Initial loading conditions

Loads Relationship
(downward: +) between T and M
Model-1 P2=-0.68 P1 M/ T=0.5 (Hogging)
Model-2 P2=-PI M =0 (torsion)
Model-3 P2=PI T=0 (Hogging)

Note, 7: Torsional moment, M: Vertical bending moment

234 BHERER

o7 A T T 2 DR P e OB IS TR D B — A > N ORBEREFTT 2720, KRBk
OB R & el U R g,
1) R"EVITOHIFE—4AY FOADIBE

RERAOHHRIZBITAMEY ¥ v XMEPIBIOP, 2, EHICFREICRCKRKEET
A L7286 (Fig. 2.3.1 28 . SBRIRICITIRY T — A FAMERHET, fitliFE—2 2 K
BLOFIW MR35 < Z &7 %, iR IA Model-3 % AW - BRI IZ B W TR B
TEMEY ¥ v FOME~A ha—77 BfR% Fig. 2.3.2 (R T 83, et R f&oiE 1359 6.39 X
10° kNm T o7z, ZOfEIL, EHEYIHIAEZ EZE LR WBEAICON T, %ibd 28R
IEFEM 7' 11 7' L LS-DYNA IZ & 5 FEM AT 7 545 5005 7.20 X 10° kNm D1 89% TdH 1) |
ARFBRARIT 0 LTIk, RISl e MRS I AT TR 10%RETh H 2 &
R LTW5D, MMUSME, 6 XU MYESMER OB E T2 381 % Atk DIk IL % Fig.
233 ITRT D, ARFX T HNT ' — A 2 M X D SR Ze R FREE B ST,
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700

600 |
500 F
Z 400 |
% 300 | 5
- o Pl(Exp.) —~
100 —P1(FEM)
0 1 1 1 J
0 50 100 150 200
Stroke, mm

Fig. 2.3.2 Load-stroke relationships of Model-3 (7= 0)

(a) Side shell plates (b) Outer bottom plates

Fig. 2.3.3 Buckling deformation after collapse in Model-3

Q) BYE—* Y FAXERLTIEES

B0 E— A2 FBKEN A (Model-1 3 X T Model-2) (281 B iHEY ¥ v F O HE
~A bu—27BfR% Fig. 234 1”7, Elo, RV E— A b EfEITE— A FOFEERM
£% % Model-3 DR & ff T Fig. 2.3.5 12R 7

RERIA Model-1 36 X U Model-2 D AREER OZETEARDLZ Fig. 2.3.6 IR T23, 240 H Ol
ST B T DRBRINO FEEEENT, WH & BISIEREET, LTO LB THhote, T,
WRIE M O EREF L 0 <L HEPNSG /1 23 B9 R & < 72 D ARSI ES & OWERRAE D &
S RARTIC BV T BEE AR AET 5 (Fig. 2.3.6()5 ), &2, IRV E—A L MZ
K DML OISR E 72 % PILIOEESELFIZH VT (Model-1 1238 W THEL, 51T
RX 7 ORI — A v MK D JEMENTIS N EET D) By a—F—(HEOIMK
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200 | ——PI(FEM)
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(a) Model-1 (M/ T=0.5)
700
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500 |
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=
g 300 t+
= K 0 —P2Exp)
200 P-
——P1(FEM)
100 —— — P2(FEM)
0 1 1 1 J
0 50 100 150 200

Stroke, mm

(b) Model-2 (M = 0)

Fig. 2.3.4 Load-stroke relationships of Model-1 and Model-2

3.0E+03 ; ;

3 2o —3 S
< 20503 O Model 3 Exp) | |
E 1.5E+03 ——Model-1 FEM) [
g 1.0E+03 ——Model -2 FEM) —
3 50E+02 ——Model-3 FEM) ||
=)

s 0.0E+00 —%@o—oo—oooc%mrmrmﬁp—
= 50E+02

-2.0E+03 0.0E+00 2.0E+03 4.0E+03 6.0E+03 8.0E+03

Vertical bending moment, M (kN-m)

Fig. 2.3.5 Relationship between applied torsional and vertical bending moments
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R L ORRAE L 5 (Fig. 2.3.600)2 ), Ziud, FROMAISMI I & OtlRaEZ 1
SOHHERE L B9 &L PHAITTIEL, M1 L Co T o EMERNCALE 2 R OFRIE A F
BANOHIZ L 0 2D P2 ALK D b IrmlE2 eI 425 Z L2k % (Fig. 2.3.4(0)%
), 2ok, W OHE Y RIMER K& BT 555, b biMWim ([EE 5Tk Bay-6
DI AART X)) IZBET 2Ny Fa—F—HIEm 4 T (Fig. 2.3.6(c)2 ) | HBf&iic
JERMEDR VI T3 KOMIF IS Lo Thl &l & ST BIRZE 23, Bay-5~Bay-6 DK
MRES KON PTAIORMAISME R IA <R L (Fig. 2.3.6(d)8B L D) S HR) . il HIED i
/IN& 72 B W C AR AR EE A A U,

(e) Collapse of Hold-2 side shell (f) Break of side shell

Fig. 2.3.6 Collapse modes of Model-1((a) to (¢)) and Model-2((f))
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728, Fig. 2.3.4(b)D—P2(Exp.) T/~ L 72 LMY v » 4 B O 2K 22K T a%w
Model-2 DFERH P MAISR & AR & OO L—HF—EHES (& BICAFMRIE 6 mm) |
WTC, BWITIAARBEDRK & & 2 b D IEESROMW N LT, 1&'%*&75@*&75%5’*%
T L7=Z 2k D (Fig. 2.3.6(H0% ),

235 BEREROBREERBEBFTAZEORE

FRO XS, FFEHROGEMTEM L - BZRFHERBRICBW T, B E—R2 2 IR
KB 7R E . OIS TIDOREIZ LY | RSO ISR DAL O Wi R I K DR
DK T 23 %Ltﬁ(mgwamkio@%%)mkﬁé_iﬁétw FRERR 1 23 Sl
BI7eRHED X 51, BAEEITE 2SR R 5 NS BB BRI & 1372 B 72V, £72. FEM RN
REEDTELE ?ék]@232kﬁg%4%%@bf%%#&i? o HEHE S A3 SR
256 L AR TERMEIRER OBE DR TR ESNTH D, LIeRn > T, 7 SRIVEEE DS R
P LA 2 Bk BB LRI A4 O IR BE T I, ﬁ@%~x/%;@®f% AV MZ X DRERT
MBHFEIZ T2 D728 T IR B IR EERAT FIEOREIZB WL, 10 OR8E Y “ R L%
Zéo?ﬁb%\ﬁ@%~x/b_iofibé%wmﬁi\m&%%ﬁ#&%%ﬂﬁw
OMELOBERIGN R T EEH T ETEE L, KVIGHE, ARV OHHIG T & LT
EETDHE LT D,

KEILTIX, 3 3 BLUREICBWT, 20X 9 iR 0 OB % B8 He 72 5 KRB AT
IZOWTCERR T 5,

24 ¥E

% 2 B, Wi fTIE ORI S, HEMEL ST 2 HANTHEZORHEA T =
ALB I OEMRBRELRGET 720, EHIZ, AR FIEB LOFRERE (FEM) I2X5
FENTRER DB AT D720, AT HE R L7z RE 2B 1 &2 A7 L R B (K %
SUEL, dhF &R0 2 FRFICAN T 2B R AR R 4 FEhi L 72/ RIC oW T~ 7z, 3R
FERN OGS B E LIRS,

(1) #RY E—A 2 FBKER & R DA ERME T, ABRIKORERENITIU T 725,
O O, REMUOFI L0 HEL< mASTWGE I AR K & < 72 2 vl s &
ONHERREE D & & J7 [0 R AT B WO CBIWT R 23 58 4% (Fig. 2.3.6(a) 5 ),
@ Wiz, RV E—RA 2 ML DEMRI D ISR ERKE 72D PL IO BEEmIHIZIBT
(Model-1 [Z8BWTiX, EHITHARF L T OMEHTE— A > MT XD EMNIT IS 03 E
BT 3), Y a—F—AT ORI %i@hﬁ#iLéG@:mam%%)
T, FIEROMMISMRES L ONEREEE | S OHEE & 7209 & . PL TR EM
OME SRR ORIE L 0 N =8, P2 LD S WrmEMEN EIsmdbd 5 Z L2k
% (Fig. 2.3.4b)Z2 ),
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@ ZDt%k, Wi O MPER K & < ZBLT 585, Tb bk (EEwmiTHEo 7
AT v X)) \ZHET LNy Fa—F—ICHEE AL L5 (Fig. 2.3.6(0) ),

@ FBIZ, MOV IENB L OCHITIEAIC L - Tl &l Z SN EEER 2, Bay-5
~Bay-6 ODHSESMIIS L O P1 AIOHMBISME FEICIA LR L (Fig. 2.3.6(d)3 X Ue)
2R BT RIS /N & 7 2 Wi C AR R RS A U T,

Q) Y E—A L IRXERE DA, MlPREOSHE & ik U<, REImER OfHE
DIETBFERLTH Y . IR TN W, H- e B R AT FIEORERICE
WL, R OFBE ZRNEEZ D, Thbb, EVE—AL MIEoTAETL LY
WO J0i%, Witk 2 MRS D B SRV OB ORRIE N 2R TS 2 2 &L TERE L,
KOS, BHBEASRVOPIE I E LTEBETLHZ L LT 5,

%2 EDSEM

1) Smith, C. S.: Influence of local compressive failure on ultimate longitudinal strength of a ship's

hull, Proceedings of PRADS, Tokyo, pp.73-79, 1977.
2) Sun, H-H. and Guedes Soares, C.: An experimental study of ultimate torsional strength of a

ship-type hull girder with a large deck opening, Marine Structures, 16:1, pp.51-67, 2003.

21



22



EIE BAMERO/ITEY BITER

3.1 ®E

AT TIE, Y B— A 2 D DSARARHE T B AR EE 1 KT 5B 2 (i ISR 5 72,
RO ORI A B G TR Z A SRR T OB IR B EMRNT FIE 2T T 5 Z L2 HE LT 5,
AT Smith D Fk D ICHEL DD, 2 B OMNTIE O Z R A D, T 5, Smith
DFFIEF, METIREBIZ & D W OB R AEFIATIE CTH Y | 2 D E E TITHR Y AT ICHE
MT&EZR, 22T, Smith D FHE & [RERIZRERTIR 2 B BRI 08 L 72 ERGREER & 87212
BREL, ThERIHMICESZ LITED, EWmPo TR0 T 217 5 FIEEEET
D (E1LAT YT, BT, ZOMITHRY TR Z Z 8 U ORI OB IR BRI 217
DHEEMET D (B2 AT v 7 5 EBM), REFIEOERKOFERIZ, ZhbWAT
» TNZBW TR O ERE B Z LA TE 58 THY . TET LV OERIEICON TS
FEM fifttr & bl U CIERIICAR TH 5, AETIE, MEFEOE 1 A7 v 7ITHW S i
FIRY 2% 1) 5 REZOERALICHOWTIRARS & & Bz, MEWiE O SIErH.0E Y O 0 B
A EIIR D D FIEERT,

AT CHEGL T 2 BRI AR EEARAT TIRIE, 30 B L OT OB AW E 2 %1 B ARG % %t
LLELTWDN, ZORBERERIZIE VT, Mt 2 3 E5 i e & 2 8ET 2, Bl 21X,
55 2 B I\ Tl R ERBR AR 2 55 - B E S 2 72 DI B R L 72 5,250TEU =2 7 Tl T,
FREHATEIS ) L, Sl i AR O #T IS T o, OBIRIE 1oy ICKT 20X o) loy =
059 THY RV E—AL MZE DKV IETIo, OXERIG X, /6y=0.043 THDH, —
7. FXPEIIC KR & 2R 0 B — A v h 34 U BB RTIENR Tl o) /oy=0.38 GRIEMICIX
oy /oy=047), BLDV, o,/cy=026 THY, KOISHBHFIAEEW R &L D KE 72503,
TNTHRRISND VARETH D, o, WRPIZENTIE, —KIIZ, H#VE—A |
LA E— A F OFHBITRWVAY, IR E— A b T E— A FOFEBEIZTHW
EEROND, U LOBHNG, ABETIE, B 1 X7 v 7O BT 001 FH #E0H 2 ik
HPANICIRET D 2 & &5, TORE, HlE 4 Smith O 7% & RIFKICHE R ERIC LY
DEIL, FEVICE > TENENOWIEMERERICEC DRV IS, WO, SRS ) % i
BOFED ICHELTRD D, TD%, H1 AT v TOHY T ORE B%a ZE L5, Smith
DI EES et T BERBERNT 258 2 A7 v 7 LTETT S, ZhIZHOWTIEE 5
BTk D,

ARETIX, £7. 5 32~34 HiT, HAWEROEERZER L, MHWER, dliFZE
BB IR B A2 EE L AR RZOEMESEZ R L, ZIUTES B~ 4
BRI ~OFTHEREZEL,
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DEIC, FISHITIX, 5 32~34 HilRTHEIC KX, RHERE AW | orHRE
FIEDOERBIZHOWTRL, FAMEEOFRIIC L0 Wi HREEE <,

BHIZ, 5B 3.6~3.7 HiTix, MAKIERZOKY B ZEHT 28 mE R L, RO GE
\ZHE U 72 O ) 0 B D FHR T IEIZ DWW TR T,
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32 ZuEHRXOEL

321 EER

Fig. 32. 1l L 90T, — AR R O umilbrm B2 x — y FEARGL, RO M 2 dha
LD, TNOPERAFEIERIZRD X T 5, 72720, BAERA O ZWimLIc & 5
2l &L, WO SETRL S OEREE (v, p) & T B, o BREBOIEE K, y, 2 x i,
y #iE KOz OB EZZNEN U (x,y, 2. Vx,py,2). BEE W,y ) TET,

Fig. 3.2.1 Coordinate system

322 ZEMBEH
1) BIFICKDROER

ZEQr BIRE, BTG LT BRI OTRITETG L2 & {RE (BT IR AR OARE)
THZE, WIS, MIFIC XD ROMMER A ER TS 2 LickvEiEhD, £, #
FLO . xp FERNCIEOTHRE LN LD, KA Y Lo,

ex=g—i’=o 3.2.1)
Y _o (3.2.2)
Sy:a_= ohn
y
WL (3.2.3)
”"y_ay ox -

ZZITL e BRVe iE, ENEN, x FB Xy HRIOEOT Iy, 1% xy ENOTGHETO
THTHDH, B2 BLOKB22) LV, Ux,y,2) BEXO Wx,y,z) IXEHIC,

U=U(@,2) (3.2.4)
V=V(,z) (3.2.5)
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s, (B.23) Kv-oUwLy=0Viox THDHINH, 0(z) % z#hElY Ol L35 &

W_ o (3.2.6)
dy
v_ 0(2) (3.2.7)
ox

MR SEH H(3.2.6) BLOKB2.T7) 2 ZNEiL, y BLOx THOTLHZ &I2E0, &k
NEFELND (RO H 1T, HHWH EOT TR, x HDW0Ty HFHOFR U E
OIIFER u b2 IvELDZ L ERLTND),

U(x,y,z) = u(z) —y0(z) (3.2.8)
V(x,y,z) = v(z) +x6(2) (3.2.9)

K(3.2.8) BILO KB2.9) 1T x BIOy Eih I OENEE E 72D,
DX, MIFICLAUEER A BHTHZ L2k, WA Lo,

Yz = + = 3.2.10
Xz ) ) (3.2.10)
V- +—=0 3.2.11
vz = ay ) (3.2.11)

I,y BEOy, . EREN, 2 BE Wy N0 AR TH S, X(3.2.8) B&
VDB BT D UBLOVICOWTHITERODAEZEZ D E, U=uz) BELRV=vz)
ThoH0b, (3.2.10) BLOXB21) #FNFix 2Ly THEOTHZ LI D RAN
BFoid (FHiO% 2 HB XU 3 HIX, Z2EANIHENCELR LT -Wimix, #iFEE%
%%%Lkﬁwupxbfmé;k%%bfmé(Nw3w4-ﬁ4§~®ﬁﬁno

W(x,y,z) =w(z) —xu'(z) — yv'(2) (3.2.12)

I X ARG OMOKELOREEIL, ME ET—HTHLIEEZLNDL-D, K
@zu)i\%ﬁkio@f_iézﬁWQM%%fo

Q) RYICKIRDER

ROICLD z FZEMIZ, #HErmo~K 0 ZER (warping) IZE2HDTHY, #hiFiz k-
TH U 2 z HIAZEN &I, Wi EA OB$o # W TRADO LS Iz bhvd, ifk
B ST RN W (x, v, z) 12, KDL OET N wz) LlmbAhrfiu'(z) BLO v () I X
DRSY. WS, TRV IC KD O ofE 25, 72720, () Xz 2k D 1By
ERT,
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W(x,y,z) =w(z) —xu'(z) — yv'(z) + w(x, y)0'(2) (3.2.13)

- >

Z 2T, o, ) X, EABEWTE O Saint-Venant 7 U IZXT D Wi DK Y 2RIV BIET
b5 (3.6 HBMH),

PLEXn, K@B.2.8)., X3.2.9). X(B.2.13) NEMEKEX L 20, HET DL,

Ulx,y,z) =u(z) —yb(z) (3.2.14)

V(x,y,z) =v(z) +x0(2) (3.2.15)

W(x,y,z) =w(z) —xu'(z) — yv'(z) + w(x, y)0'(2) (3.2.16)
L%,

T IC, BEELEY IR SN2 O T, BTG (x, ) 2 W TEMEIE(B.2.14)
~x(3.2.16) ZIRD L HITFEKT,

Ulx,y,z) = us(z) = (y — ¥:)8(2) (3.2.17)
V(x,y,z) =v5(z) + (x — x5)0(2) (3.2.18)
W(x,y,z) =w(z) —xu'(z) — yv'(2) + w,(x,v)0'(2) (3.2.19)

- = )

T2, uy BEO w TEEOL O x, y HFIAIZEAL, 0 1 XEIEHLGEND OElERA | w X0
2 TN, @ (ZFIHTHLENY DR BETH S,

H(3.1.17) ~K(3.1.19) IZBW T, #FICLBEMOEIT, U, V. WIZBOTERER,
1 (2) v,(2) BEBWE) —xuy @)~y (@) L7825, ARV IC L BEMOEIL. (v - 3)0(2),
(xr=x)0() @,(x,1) 0'(2) 725,

33 TR~V FTAHER

X(3.2.17) ~H(3.2.19) DEA LN B IR DO OT HATFHN D,

= 27 = W) — () ~ y0,"(2) (210" @) (33.1)

_ow U 0wns(x,y)
i P vl S T

D y-ylo (332)
_OW OV (Dwps(x,y) ,
Vyz _W+£_ {T-I_ (x—xs)}e (z) (3.3.3)

2T, AR OBE Y, Fig 3.3.1 1R & 9IS, BIERORRITANC 5 JEIE, O
TN n EiEZ & T s—n JEEERDBHW OIS, RIENENGEIZIE, RIEFOHRICEE
72 n FEOHWOT Iy, 13, BEFOBUTIE O s FHOTWOS By A THO/AS
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PR DR

Fig. 3.3.1 s — n coordinate system in the section of thin walled beam

WO THERT 22 ENTE, BTOT AT y. ODAREEZ D,

4z Ve dxtyydy  0x N dy
Vsz =35 = ds = Vaz g T Vyz g
Jwys 0x (Owys } dy
= —(y—y)ler= —x)le' =
{ ox o yS)} st { dy o= xs) ds

0w,s 0x  Owps 0y dx By}
= J— - — — —_ — =19’
{ dx ds 9y 0s =) s * (x = x5) ds

5.3..(;
— — N

Owps  Owps 0x  Owys 0y
ds  Ox 0s dy 0s

ThHdrNL, XB34) Ik E s,

0wy

dx oy
Voo = o= (=9 S (1= 2) 5} 0°C2)

Fo. WERIZIAETH D720, BHEo@Y | WAL Y 32D,

ou
T ox
av
€y=@=0
oau ov
Vxy =@+a=—9(z)+9(2) =0
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34 A~V THER

AW, B30 TERINDIEOT A ¢, EK(3.3.5) TEINDHBOT 4 y,.
WELC D, £l2, InBITHcT 28G o, LEWIG It DAL D, I /~OT ZBR
I, —RICRATE 26D,

d d
od=la a2l6e) (3.4.1)

F2iE, KBADEKD L2k T,

{o} = [Dl{e} (3.4.2)
Z 2,

[D] = [Zi Z;] (3.4.3)

@={} @={7} (3.4.4)

BRMERIPH T, dy=E (Y 7)), dp=G (TEHEMELRE) L7R 508, FEIECRERAVE
Cd &L dn dyn TMIBICENT D, E7o, BlET) & SIS T OME A B RE L7 T,
dio=dy =0 %725, APFFETIEL, @7 & SRS ) OEEITEEE T, R0 IZK D20
R EIORBROEZBE LW &L L, dp=G & LTI T 5, JEIECRIRZ2 B8 L 7= b
M dy OEHIZOWTIEE 4 FETRT,

35 RERZRAVE 1 RBRERERN

AEICIIFE 32 H~F 34 H TR LULIZHEGRICHKSE, RERE2HWE 1 ReHRERLEO
ERAIT OV TRT,
351 HIRABLUEHRENM

Fig. 3.5.1 [T K o12, 1 DORBEROMEDOHRZ i B L j | BEORIZLE L,
WM % z &5,
FHRBHTZVUTO T OOHHEZ 52, BE2ROLHITERT D,

uSl vSl le

U Vi 0'si w;
{uS} = usj ) {US} = 175]' ) {BS} = 951 ) {W} = {W]} (351)
u sj v sj kels]J
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Node, i Node. j

A
v

L

Fig. 3.5.1 Beam element

Inbzxldd e,

w
w}={2}
05
Z 2T, fug) : BIETHLO x Tk A, BRI, TLbAA
(v} @ IO O y iz b A, BEOL Tmbaf
{0,) : Tk LED Y OFENA, BLO, R
{w} = XD #h 7 T ZE 7
B uy=dugldz R,
Fo, BEMICHIST DERITZRDO X ITERT D,

A (% T
By ={p" b Uﬂ—{ i {@}—!Tl 5= {7} (352)
W, ) ) J 5,)

H
H
™

(F,} : x IO EW ) F, & SEkruGE D o fhiFE—2 > b M,
(F,} 1y HM OB F, & SilErdLE Y ofiiFE— 2 v kM,
{Fo} : BITHLEIY OFRY E— A T ENRALE—AL B
{F,} : z 711D
Z 2T, B L OBz DA ug, vy, BERON R A0, OB E 2 D 3k L, K
D DE TN w DENEISE 2 D 1 k& L

us(z) = a; + a,z + azz?% + a,z3 (3.5.3)
vy(z) = by + byz + b3z? + b, z3 (3.5.4)
0(2) = ¢1 + 3z + 322 + 423 (3.5.5)
w(z) =d, +d,z (3.5.6)
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THRTE, KBS53) ORMEE a; ~ as 1E. —Vz=01ZBWTuy=uy O u, =uy i
z=L 2BV T u=u; O u'=uy; ThDHILND, HiREN {u} DR E L TREMN,

1 0 0 0

a, [0 1 0 0] Usi

w| | 3 2 3

{aa}_ 2L 2 LW

ay 2 1 2 1|y
rorr R

K(3.5.7) £V u,(z) 1. kA TREIND,

us(z) = [A.(2) {us}
07
0
1
L2 L L2 L
| 2 1 2 1
lZ &= B &

[Ac@D] =11 z 22 2°]

|

(3.5.7)

(3.5.8)

(3.5.9)

RIBRIZ, RENEEL by ~ by ) ~ ¢4 I, TNEIN, BIRE{v) . {0} ITXvERENS,

Flo, diBEDPGIZOWTHERRICEHASZA (wy X kLTINS,

PRER W

L L

X(3.5.10) LV, we) BFXROEHI RIS,

w(z) = [AL(2)]{w}

1 0
[AL(2)] = [1 z][ 1 1]
L L

PLEX Y, (3.53)~(3.5.60F, kOXHIZREND,

us(2z) = [Ac(2) {us}
vs(2) = [Ac(2)[{vs}
65(z) = [Ac(2)]{6}
w(z) = [AL(2)]{w}

352 A~V THER

(3.5.10)

(3.5.11)

(3.5.12)

(3.5.13)
(3.5.14)
(3.5.15)
(3.5.16)

REFZNOEOT Z 6. BLOTWOT Ay, ZWmERAICB T 2EMEHNTERTZ L
EBEZD, (331 RTREINHIEOT A g, EX(3.3.5) TREINDHWOT Ay 1z, K
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(3.5.13)~33.5.16) ZRAT D &, k&5,

&, = [B1l{w} — x[BzJ{us} — y[Bl{vs} + wns(x, ) [B21{6s} (3.5.17)

Ysz = 9(s)[B3]{0} (3.5.18)
d

[B,] = o~ [4.(2)] (3.5.19)
d2

[B,] = FEP [Ac(2)] (3.5.20)
d

[Bs] = -~ [A.(2)] (3.5.21)
dwns(x, 0 a

O L e (3:5.22)

K(3.5.17) BLOHB.5.18) 1, WOk LI IcERSIND HOREZATET),

Ae, = [B,[{Aw} — x[B,[{4us} — y[B,1{4vs} + wns(x, ) [B,1{46,} (3.5.23)
Ays, = g(s)[B;3]{46} (3.5.24)

MRAFEDTY M 7 RAFERTHE, KLLMD,

Aw
Agz _ [B] —X[B] _Y[BZ] wns(xvY)[BZ] Aus
{Aysz}_[ o o o 9(s)[Bs] ]{Avs} (3.5.25)
A6,
T2, KBS529)ERD L HITFEKT,
{4¢} = [Bl{4d} (3.5.26)
ZZlZ.
_ [B] —X[B] _y[BZ] wns(x:y)[BZ]
[B] —[ 01 0 2 0 2(5)Bs] ] (3.5.27)
Aw
Auy
{4d} = { Avg} (3.5.28)
A6,

JEN~OFTHBERIL, KB4 kRSN, TOHESBTKRO LI ITRIND,
Ao, _ [di1 dyg](4e,
{Afsz} B [d21 dzz]{Aysz} (3.5.29)
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F72, KB.S529) 2RO EHICKRTZLEHLTED,

{40} = [D]{4¢} (3.5.30)
{40} = [D][Bl{Ad} (3.5.31)

353 BEAEEOREBICXSAIEAERXDER
iS50 {F+ AFY OVEFIFC, 5/ {o+ Ao} AU TWBEENE S VIRIEICH S &
X | LB OMUEEEZENL {(SAd ) 1K LT, ROBEHFOBIE AL Y 1o,

{(AdYT{F + AF} = f (84} {0 + Ao}dV (3.5.32)
\4

#(3.5.26) L 1.
(54¢) = [Bl{6Ad)
Thorb, K(3.530) #HWT, K(3.532) #LLFD XS ITEMT 5,
{6Ad}T{F + AF} = f {64d}T[B]T ({c} + {Ac}H)dV
14
~ | wady1BY” (0} + 014D
\%4

- f (844YT[B]” ({0} + [D][BI{Ad})dV
174

— (5Ad)" < f [B]T {c}dV + f [B]T[D][B]dV{Ad}>
14 v
= {64d}T ({R} + [K]{Ad}) (3.5.33)
ZZiZ
{R} =f [B]T {o}dV (3.4.34)
vV
K] = f [B]"[D][B]dV (3.4.35)
174

ThHU ., (R} TN {c} 10 A O FMEE S, K] FAME~ NY v 7 2 Th D,
R(3.5.33) DMEEDORAEZENL {SAd} 1Z%F L TEL D SEDOSMENG | [l SRR O L 912
ROLND,
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(AF} + {F — R} = [K]{4d} (3.5.36)

K(3.5.36) DENHE 2 THIZEB W T, T _XTOHIFTH U CEISZENIE /) &SI 03890 A&
WRHEZE L TWhiuE, (FY={R} 720 M GRERITRD L 51275,

{4F} = [K]{4d} (3.5.37)

T bbb, BRENIE Y &R TESIIIRO X9 RBRIC R D,

AF,, Aw
AE, [ Aug
a8, ( “HKD a, (3.5.38)
AF, 26,

LUF, Wit~ RV » 7 2 [K] & BARRICEIRE T 5, X(3.4.3) BLU(3.527) 2RAT 52
LIZEky, WD LS D,

[Bi]" 0O
_ —x[B;]" 0 dy; di][[B;] —x[B,] —YI[B-l wns (B,]
- fv —y[B,]" 0 d21 dzz] [ 01 0 ’ 0 ]dV

_ f —x[B,]" 0 dy1[B;] —xdy1[B,] —ydi1[B;]  wpnsdiq[B] + gdiy [33]] dv
v —y[B,]" 0 dy[B1] —xdz1[B;] —ydz1[Bz]  wpsdai[B,] + gdy[Bs]
Lwys[B,]" Q[Bs]T-

dy1[B1]"[B1] —xd1[B1]"[B,]
:f —xdy;[B,]"[B,] x2dy1[B,]"[B,]
v —ydq1[B,]"[B] xydy;[B,]"[B,]
|l wysdy1[Bo]T[By] + gdy1[B3]"[By]  —xwnsdy1[B,]"[B;] — xgd,q[B3]"[B,]
—yd11[B:]"[B,] wnsdy1[B1]"[B2] + gdy12[B1]"[Bs] ]
xydi1[B;]"[B,] —XWnsdq1[B,]"[B,] — xgdi,[B,]" [Bs]
— T
A Tl RO i
—Ywnsdi1[B2]" [B;] — ygda1[Bs]"[B,] +w,.g(dys[B)"[Bs] + dyy [Bs]” [Bz])}J
(3.5.39)

X(3.5.39) IZHBWT, BRDHEIE ., diy, dig, dor, doy DFFVE, x, y ITBIT D WrEFE 71, T
THBEILERE SRR z=L2) TITH5, £l=. 2 IZBET DX, [B1], [B.], [B3] [TV
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ch%éﬁgf?‘?‘b o 3$‘f$%ﬁ“(‘6i dll :E, d22: G k fcﬁ D N iﬁﬁ&%@ﬁﬁ’{ﬁ%iﬁfoo 17‘:\
FER, BERDSAE U D & dy 38X W I L, MO DS b % #0728, Z DM
SWTIE, FARITY, 05 AT TFE TR, BBk L7c X D ISHS ) & BT ) o
&%%Fg L/foﬁl/\f:’_&)\ d12:d21 =0 & L/Tﬁ%z—*ﬁ%??5o

3.6 EANAPEORY EHK

AHITIE, X(3.2.13) THWEKY B o 283 2854 ~7, Fig. 3.6.1 IZT X 512,
BEWTIEN S5 L CH ISR WA O MG IZHIR Y E— A b2 IR 5 & B AU VWE Sy
PERE . AFTHENE -CEOLEIRAE L 725 (Saint-Venant #2V ), L7273 > T, #Miih G D4R
NWA%EO(E)TET L WD 1o,

0'(z)=a (a: &%) (3.6.1)

ok x, (335 TREINDHHEHOTAITKRD L S22 5,

0wy 0x dy
= L 3.6.2
Ysz ( 0s yas+xas)“ ( :

E7o. FREHEIPE CTITSWIS TR D X D122 D,

0wy 0x dy
— —_— - 3.6.3
tsz G(as yas+xas)“ ( )

7272 L. GIIBIMEMERECTH D, WE ¢ OERWIEROEE . Saint-Venant #2012 K-> T

ZIZEL DO THZRAX VIR TEIND,

1
V= E_f TgzYVsztds (3.64)

Fig. 3.6.1 Saint-Venant’s torsion
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o, ROWREHIERT 2B E— A b a2 M. | BORS % L &E3HUE, Wb O
HRfG 1 Xal CTH 2 B, AN O3 RAEFIIRA TR SN D,

SW = M,LSa (3.6.5)

K(3.6.4) B L OK(3B.6.5) ZAULEFHFFEX V- W=0 12T D ERADELND,

1 0wy dx dy
- _ i — = 3.6.6
ZfGa ( s yas + xas) tds —M,LSa =0 ( )

H(3.6.6) Za BIWY 0, ITOWTEDELED L.
9 dx  dy\ddw
fGa ( Ons _ 2% 4 x y) " tds — L(GaK — M,)6a = 0 (3.6.7)

Js as 0 Js

Z ZIZ, Saint-Venant B K 1%, A TERIND,

Jwps 0x Iy\*
= —y—= e 3.6.8
K f(@s y85+x65> tds ( )
X(3.6.7) IZBWT, fEEDZESy Sa ikt L TREDI LY 2D,
M, = GaK (3.6.9)

1(3.6.9) 73 Saint-Venant DR Y RIEEDEI Y G HRER E 72D,
F72. XB.6.7) OF 1 A s TEHOFENT 5 ERADEFELND,

dw,s  0Ox 6y 02wy 02x 02y
- - - 3.6.10
6a? (G = v g + s Sons fG“ < 552 Vas2 T X557 ) 00mstds  (3.6.10)

LMo T, FEEDOES Sw, \ 25k L TIRD 2 LY 3T,
Qo, % Xl 25L& D780 EVHREKX

0%w,, 0*x 0%

sy 2 = (3.6.11)
ds? Y ds2 T ds2 0
@55 A
Jw 0x dy
aSnszyg_l_xg (3.6.12)
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X(3.6.11) BLVB.6.12) L0 0 BEARE S,

37 HEORYEHOARERENERE

AREITIE, 8 3.6 HIOMGRICIESE | WRWTEH O Y B E AIRERECIVEIET L)
Ry, ZOHEE, B 20 T < Pl & & R RR O AW (26 LT,
MHARETH D,

Fig. 3.7.1 lORT L9 0, (LEOHMAKEARE + . BE I, DEMREZOESKICET L
3%, DEIC, Fig. 3721 0RT X912, | DOEMERO—IHZHIN i . MskZ iR &
L. Him i 22 BFE T CHERBFELE s ZRET D, Him i BLOEIR) D x, y IR
EENTI. (xi,y) BED (x),p) ET5E. ZOBEMEE LOLEDHA s D x, y FEEEIZIR
ATk 5,

S S

x(s) = <1 — l_> x; + l—xj (3.7.1)
S S

ﬂﬂ=(07ﬂm+7w (3.7.2)

ERIE, x() BLEO ps) s D1RATHDZ AR LTNWDS, LER-T, R3B.6.11) 12
MR ERAT D &, EREZOLES, FE2HEFEIHEMNEWT D, Lo T, ERESRELET
Do D 1= T XX FERL, kDX H1725,

-0 (3.7.3)
X(3.7.3) 1&, EMER LOKY BEBEPERICENT D LE2R LTS, LIZdi> T,
EFREER OB DR s ITBIT D o(s) 1T, BERERMGOKY o, 8L 0o, T, K

LTHEND,

l

S

L]

Fig. 3.7.1 Assembly of straight-line element
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Fig. 3.7.2 Straight-line element

s s
w(s) = <1 ——) w; + 7+ w;j
Ls Ls

L3.7.1) ., X£B72) . BLO, XB.7.4) 2L HEHEA(B.6.6) ITIAAT D &
2725,

s e — w; s s )X — X
g "t S PV o i
L | L, {0 g%“+g”} L

B e L .
+{(1 ls)xl-l_lsx]} L L tds=0

B DSy 60, 12k L TRAD Y Lo,

w; —w; Gt
Gt——— = — (xy; — x%:)
ls ls

F o AR DL S0, 123 L TIRAD LY S22,

w; —w; Gt
]ls l=z(xiyf—xjyi)

MAZELOTY M) vy 7 ARBTHLRDEHITRD,
G t Gt
| T -] ( _(xiyj _xjyi) )

t
[ Gt GltS‘{Z;}:{ .
A

Gt
= 7 (xiyy = xjyi)J
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X(3.7.8) NEMER THEI SNTALBEOHAWTE O Y B LR T 220V bh
% MRS DML L 72 D,

38 #E

%3 B, AW RO TR Y T O 72D O BEAERE R LT,

£, H32~34HiTIE, HAWMHRROBERZER L, TR IO BRICES<
BN RS A R LTz, TOBMBHE b &0, B ~OFHBMR, WS, i~ 2B
Rz EH N,

DX, FHISE T, BF32~34HIR LIHEICESE, REERZ AW 1 RooaR
BRIEOEARIZOWTR L, AAMEFEOFEIC L 0 Wit SRR B,

E BT, 5 3.6~3.7 i Tlx, LEOHAWHEICR LT Y B A G 58 ma R~ L,
PO 2 EAMRERE THET L 2 Ltk o T, BWEZS I TR, MlEE S TEER
WROHABHEOK Y AR TEL L E2R LT,

B IEDSEXR

1) Smith, C. S.: Influence of local compressive failure on ultimate longitudinal strength of a ship's
hull, Proceedings of PRADS, Tokyo, pp.73-79, 1977.
2) R FRAE R MRS, 2 Y 2 — 2T K D WIREATIE S U — X 5, BEJEEE, 1990.
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4.1 ¥E

a T HE, OO RE VN TR, IRV E—A 2 ML TAELLIMIEDKR YD 2
FEMARTE & it L CRE < 22D, 20 & & BEBIE%E o BN B CRERRBE S 03 i 0 257
IZ3EHTT 5. Senjanovic B " 1F. IMAD Y BTN D RENREBE D HAMETE 2 — kL TH
BL, ZOOTHZILXEMEREEROOTHZRAVFITMAET L2 LI2E0, I
* A RAMREE DAL BB T 5 ikE R LTz, AETIL, Senjanovic D HiEE S LT
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PERRE LT, BTS2 VIRV ICE 20T AR VX525 HT 5 FiEE R T,

A4 HITIE, BA3HTHONTLOT AR X &2 RN EH R RO O BT R LFT
B LATe Z LIk D | RERET VOR Y T FIEICHRREE OB A AT ik Z R,

55 4.5 HiClE, BEREE 2 Y — LER & ZAUCEAS T D MRS O Ry 7 2T — 2 —E D
FICRER SR AE AT 5 Z LT R0 BEREER Y — L0 i T AT R 2 Mg -
ARy 7 AT — L= O ER O EE EES D HIEERET D,

BB, 46 HiTiE, PAWTE & L COMMREER > D82 B8 5 HIEEBHIT 2,

4.2 BEREOZEEOETIVIE

4.2.1 HWEEORYER

BRI 2 I8 < BT D MIRICIRY =— A > BMEHT 5 &0 Wi A WITH R 7 min &
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Fig. 4.2.1 Warping deformation w " of “U” shaped cross-section beam and screwing of bulkhead "

L. JFEREFA O ZRIESMROMMEH LR FIC & 0 BTmE R x — y i, &SI z
W%, ek, BERIIAFRET D,
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w=—x(y—d), —b <x <b, 0<y<H 4.2.2)

2b
d=H/@2+3p) (4.2.3)
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Wy, = +bda
W02 = ib(H - d)a

(4.2.4)
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RYEFwid, &Ry 2V TRATRS D,
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- (4.2.5)

K422)B LR @.25 50, BEBTE N OIEE DS (x, y) (BT 50T w (v, p) 1%
w®(x,y) = —x(y — d)y’ (4.2.6)
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Fig. 4.2.2 FOIRBAMEARD L O ITHRIEM D & FARMRNI IR 2 IERAE BN EINT 5, 72720, i
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kA TEREND,
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Fig. 4.2.2 Bending deformation w " by horizontal bending of transverse bulkhead "

™
Xy = !(,b'y) =-( -y (4.2.10)

BALINZ, K4.2.9), BLO, X@.2.1002X@.2.7)IfRA LT,
@y =2y’ (4.2.11)
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v=xtany = xy (4.2.13)
F7-. Fig. 423 1R T X910, MEOHETARROEE Ik TEEND,

6, === x|/ (4.2.14)

rotation angle and deformation =0
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Fig. 4.2.3 Bending deformation w *” by vertical bending of transverse bulkhead "
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D 2% AERREE XTI CEIEICER LTS Z L2 EW%T S5 (Fig. 423 M), L=n
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Fig. 4.2.4 Shape of bulkhead deformation "
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4.3.1 HEFHT
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my, = —D, ﬁ+ Va_yz = Dx(Kx + wcy)
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w
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yycr
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0%w 0%w 0%w
R et (432)

TN, x BEOy#liEb o ofig, Wi, EhFEsz KT, D, . D,BIO DI,
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FORIPETH 5,
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TRbb,

1 H b
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;@=%;P—(91<2—%§¢' (43.5)
Kyy = {1 + [1 ~3 (%)2]%(4 - 3—y>}¢ 4.3.6)

BEMRBED I 25T w (x, y) 1T OB TH D720, HIRDEIGITEHE L 203, #1Y
EIGITIR Y T2 Tk o (T A RIT T,

R(43.4)~@3.6)X@E33)NA L, WRESECHYZEET S 2 L2k 0, REOD
FHEFFBRATH NS,

116H3 32b3 8bH 286bH

U,, = D D D.+D D, |y 437
bg = 355 Dx o5 Oy + 75 V(Dx+ Dy) + = De|¥ (4.3.7)
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WM OEMETE— A MeEX D & BRI 2 iiFRER X O 0 fEExA T
FTZLENTE S,

Ei, Ei,
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T gy vy BEO iR R, R ORAE S 720 OEMEE— A 2 MR X UHR
VEHTHD, £z, BB KR, WS, T a2 iR 5K FI L OSRE T M OHi)
SR SN D720, WA EHTOFAPERS LOREAEEL LT, KDL HIcRKRIT LN
T& 2,

I I pl
==, i=2, = |=2 (4.3.9)
Cy Cy CxCy

I I L Lk BEOL X, EREN, BEE—A S FBIOBEVERTHY ., ¢, BE
W e, 1K B X OShEHTORIFRTH 5.

22T, RE3R)ZRUINMRATHZ LI LD REOOTHZRLFE Uy, 135N
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T—v2|35p = T 1osgy T s Vi Tl 75 (L= V)ie| By (4.3.10)

Ubg =

R(4.3.10ICBT HTXTOHIT, BREEOIE b BEXOES H IZEKF L, —F, Fig. 4.2.1
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FERREED EEIZ A Y —b, TRbLMERAR Y 7 AN —F =l Lo THBRINTEY
HIF, Il K OMRY 25200 %, @S h (BRIED S 2 — LTl & TORRRE) (1281525 X
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_1(Ely)? BKx(x NE e = 7201 h? /h\? , (h lesz 2
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A —)LDIR Y DT A X, WA TERINS,
1 b 2 blSt 4.'h ,2
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_ 9bly 2
f1ou4qu¢

B Ly L 4, BEO L 1E B0 RV — LV OMTEIEMEE— A > b SRR
FONRY B TH B,

MEEEDEOT BT R ILX U, 1%, X(4.3.10)~(4.3.13) DIEFH1, BL, AV —/LDOT R
NMEZEFELTHRALE R D,

Up = Upg + Usp + Ugs + Ust (4.3.14)
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ESITORBERITHEVE— A N M, ™MEHT 5 & =, Saint-Venant JR Y (2 X > TELH O
FTHZFAX U 1E, XB.6.9) Lk TcEEND,

1 ! 1
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Rotary spring:
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Bulkhead (stool) Bulkhead (stool)
(a) Rigid side shell structure (b) Elastic side shell structure
Fig. 4.5.1 Deformation of bulkhead and side shell structure
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(b) Assumption of beam for side shell
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(a) Deformation of side shell

and bulkhead

(c) Assumption of beam for bulkhead

Fig. 4.5.2 Modelling for the deformation of bulkhead and side shell structure
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Fig.4.5.3 Efficiency factor, 17, between side shell structure and bulkhead stool by Senjanovic "
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\ Plate element

Fig. 5.2.1 Division of cross-section for progressive collapse analysis
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Table 5.3.1 Collapse mode of plates and stiffened plates

Loads Elements Collapse modes Stress—strain curve

Stiffened panel

Tension Plate Elasto-plastic collapse )

Hard corner

Beam column buckling 2)

Stiffened panel Torsional buckling 3)

Compression Web local buckling of @)

ordinary stiffeners
Plate Plate buckling %)
Hard corner Elasto-plastic collapse )

s : Stiffened panel width

h,  :Web height
by  :Flange width

: Stiffened panel thickness

t., : Web thickness

t;  :Flange thickness

A,  :Web cross-section area (= &, t,,) Ay :Flange cross-section area (= bt )

A Stiffener cross-section area (=A4,,+A47) L :plate longitudinal length

CSR-BC Dt h 1 B & 58 FEMRMTIEIZ K - THE B 2 B OV HIES I~ fil O 2 BEfR &

Fig. 5.3.1 Dimension of stiffened plate

PITFIORT, £72. BROBEFRHEICOWTIE, Fig. 5.3.1 IR T X2 ICEESND,
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FI. Wi EE R AR 2 58OV TR, B FR T e 2 S
N~ FHHOTH MR (- e ti#R) TR L > TEREIN, EMEHMEIZLD20TH LR
MEIZLDOTHOMG 2 EET D,
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o = Doy (5.3.1)
Z 2T, oy 3EME/NERIS I THY . @ 1%, BTk L D,

-1 ce<—1 DFE
;—1Ses=s-1 O%H (5.3.2)

LS ST S
Il

&
1 ce>1 OHA
7272 L. elIfROTH TR L 5,

g=2E
5 (5.3.3)

I, ep IBETL2EHROTH, ey FRRIENITBIT 52 EZFRZOTHTRAUZ LD,

gy = (5.3.4)

Y ==+

reee] —0

Fig. 5.3.2 Load-end curve o — ¢ for elasto-plastic collapse

(2) REERE
Fig. 533 IZRT L 91T, Wk BN A e L CliT R 256 (HEEE) 1I©o
WORT, AR RS 3 2 SRS )~ R O A R IR IS K D

Ocr1 = cI’0'(:114.— (5.3.5)
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e 1

Fig. 5.3.3 Beam column buckling

K(535HTOD 1%, WEBEE TRGIDC LD, 2. oo FRASH TR L B,

OE1
Oc1 = < ; Og1 = oye/2 DEE

(5.3.6)
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X(5.3.60)F De 1%, HFOTAHTRGS3NTL D, £72. op 1E Euler DEEJERIS ) TRAUZ &
ZDO

Ig
ApL2

0p1 = M2E (5.3.7)
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HEZTROLEXD L BB OfF S RO A DIE bey 13,

bg, = S ; Bg > 1.0 OGE
Be (5.3.8)
bgy = s L B =10 OHY
22T, B3R R THRAIZL D,
g s [eoy
=— = 5.3.9
E tp E ( )

Flo. Ap 13 BIEEM O SR OMEIT by 2B TR O v FEIEETH Y | be 1E. B
MO EROAZETRAUZ X 5,

225 1.25
bo=(S0-T2) > 125 oW
Be Bz

by =s ; B =125 OBFH

(5.3.10)
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Fig. 5.3.4 |25 1~OT HBfREZ R T,

~
-
&

Fig. 5.3.4 Load-end shortening curve o cz; — € for beam column buckling

() ENER

Fig. 5.3.5 |29 L 212, WA EE N REIVER T 258120 TORT, O E W BhEE
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/AN

Fig. 5.3.5 Torsional buckling
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Ocr2 = (5.3.11)
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Og2 PN
Ucz=? ; Op2 S oye/2 DGR

(5.3.12)
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>
&

Fig. 5.3.6 Load-end shortening curve o cx, — € for flexural-torsional buckling
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bgt, + hyety + byt;
Stp + hwtw + bftf

Ocr3z = Poy (5.3.14)

Fig. 5.3.7 Local buckling of stiffener web with face plate
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Flo. e FHHOTAHT, XGB33)THEABND,

® flat-bar [HEEH DIGE
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Fig. 5.3.8 Local buckling of flat-bar stiffener
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S AstifOca + Styocp 5317
CR4 Astif + Stp ( o )
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Fig. 5.3.9 Overall buckling of stiffened plate
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Fig. 5.3.10 Rectangular plate with initial imperfections due to welding 3
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Fig. 5.3.11 Plastic mechanism of plate under thrust”
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Fig. 5.3.13 Average stress and deflection relationship 3
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Fig. 5.3.14 Average stress and deflection relationship 3
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Fig. 5.3.15 Initial deformation of stiffener
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Fig. 5.3.16 Elastic and plastic deflection ”
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2x%  2x a a,
Wy =Wy -+ 21— [—+ 2
aa, a, a, a
2 2 _— (5.3.43)
bp=0p]——+—+1—(—+-2
aa, a, a, a

® FHY R IR
736 L OMR Y Ok U7z PHEM B3R O JE R 1L, EENDEEE — F2X(5.3.40)
THETERXOBEAMEBEZM ZLI2LvBons,

(P —a)W, + (a; — yoaP)®, = 0

5.3.44
(az — yoaP)W, + (aasP — a,)®, = 0 ( )
Z 2z,
T\ 2
a =(2) Ely
T\ 2
a = (E) EI;’zz(Zo —Zp)
, (5.3.45)
0 ’ ’
as =I—ZOZ + 2}

a, = (g)z (ILEL(z — 2))2} + K' + (g)2 kg

Z 2T o= Ay (Agig+ Ay) TPV 11 Fig. 5.3.17 OEERRIC X 2 Wik ftediad £ 9. 7272 L,

Ay VIBEEEM O, 4, 13HRES DEFETH D, 'z TEEERITBGEER D H DG 2 JF I
7o yz JERERIIB M E R 2R ORRNO 2 RIS & D,
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I, = fzsz

Iz=fy2dA
A=fdA
Iw=fw2dA

K = Saint-Venant TE$X
IO = Iy + IZ + (yo +Zo)A

(8]

Fig. 5.3.17 Coordinate system

X(5.3.44)DHEHIZHT-V | y HEl Y O T IIWrm 2RI T 553, z8hE ) OB L,
WO NI E Sy DIATAELT DL LTS, ZAUIMER 2 2N S x L D—ETHH Z &
ZEE UTARER T, B ORI T DR 7 DR BT ANRIEEL ky DRIER SR Z B
EBEEM OBEATICEAT HZ L TEE LTS, flat-bar & 5T tee-bar B DA,
AFTNT, angle-bar BhEEkF D356, Fig. 5.3.18 D X 5 REHZEE % T LT, TNETIAARE
BIIRAD X 91272,

* flat-bar & 5V X tee-bar D&

E [(t3, t3
_ p1 , Ip2
k=15 <_b1 + » ) (5.3.46)

- angle-bar DA

E(t3, t3
_ - pl p2
ky = 6<—b1 +—b2> (5.3.47)
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)

Fig. 5.3.18 Torsional deformation of stiffener >

SOEIZ, K(5.3.41) THWJERIRE 2 LL FIRd,

« flat-bar & 5 VX tee-bar D&

ay
Pere = a1, Pere = a_a?, (5.3.48)
- angle-bar DI (5.3.49)
_b2 + 1[ b22 - 4’b1b3
Perer = 2p
1
ZZIZ,
b, = a(“)’(')z —as)
b, = a(a,a; — 2ypa;) + ay (5.3.50)

by = a3 — aja,
728, angle-bar BiEEM O RNTHR Y FEIH I AR DOIR D oy DRE ST, WA TEHERZ BN D,

o =W Peret — a4
e — e IP _
aYoleret — A2

(5.3.51)
o iYL N ~THEMOTHREARODELN

WA R SR I AE U 2 SRS )~ SO AR A 8T 2 720 £ TR 2RI
L CHERFFORED b & B Z M 5, #OT A LOHRORE TS U T, B
B o = TNIZAE C DI 0 AiiE, Fig. 5319 [RT MO WT /e b, Fi-. Bk
7 PNICAE L DI040 S Fig. 5.3.20 IR T OWT N2 D, iR S 3 V801
5 532 (IR LI FIET, TORR LIz B8l )~ EEH O3 BRI HE - TR 23
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CROSS SECTION 1

STRAIN STRESS

CROSS SECTION 2
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R
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| 141,
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STRAIN  STRESS

-y

; dzL E

STRAIN STRESS

€y Oy ey Oy ey 0y
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+ +
dy
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ey -0y
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-ey -0, -€ -0,
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Fig. 5.3.19 Possible distributions of strain and stress at cross-sections 1 and 2 ¥

CROSS-SECTION 1

e 0Tl

CROSS-SECTION 2

| o,

\
|

: FLEXURAL-TORSIONAL
STRAINS
: TORSIONAL STRAINS

(a) Flexural-torsional strain

Fig. 5.3.20 Flexural-torsional strain and stress distributions in cross-section of angle-bar stiffener *

STRAIN STRESS STRAIN STRESS.
eyt o ]

) A N§
c% e AT AT
W, v TR %
\ U . v
c,,.» X } UYI_'——‘ o ? _UYL_'_J

CROSS-SECTION 1§

/ CROSS-SECTION 2

(b) Possible strain and stress distribution in top flange

)

HEUDET D, TNENOWEIZCEBT 2Ei B LT E—A > M, ZhbAlETT0n5
oI ERES L CRD D Z ENTE S,

FREDOH ) SVELEICHONTIL, XS TOR ) D85

EEMET DL ERIERTD

HNBLOE—A Y MIFig. 5321ITRT LI | RAETE LRITiu 57220,
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P, +P, (5.3.52)
M1 + M2 =W

X(5.3.52) & i/ 9D £ 5 IS oA & RAERHRIZ K D RD ., EOFEHROT A% R 5

T
i—

¥

P2

Fig. 5.3.21 Forces and moments acting on both ends of stiffener element >’

PLEDFNEIZ LY | Fig. 5.3.22 1T K 9 oWl B3 2 & OIS ) ~ L) dh O3
HPARNEHR I N D, 2B, B3 ET/RINIEESCHAIR O % E 8 Ui ), 13k
KUz LV RD B, Fig 5.3.22 1281 2 RO & 2 £,

Ao

— 5.3.53
Az ( )

di =

O'/O'Y \
1.0 +
Tension
(0] 87£Y
Compression
-1.0 +

Fig. 5.3.22 Average stress-average strain relationship 3
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54 BYIZKDEHIEHDEEDER

RO OELBRE LT RBERET VOBRREMRITIZIBNT, 8 1 A7 v 7 OHMERY
RATIC L > THRONDOVISENE, B 2 AT v 7B HHEHR (Wrifl) OB\ EEMRNT
DEZHIIS ) & L“CUT@%EE%% fPmEns, —J, BRI k> TR 6N D
SRS, Wi ER Z E DR RREZ IR TS5 2 LICk WV 20RELZET 5,
ZDBEDOBEREIEIZ DN TIX, RATH 2 HivD Mises DFFIREEM % W5

02 + 312, = of (5.5.1)

2T, oy FBRIETI. o Xz G mOES T, BEON 1. ld sz FRN OB ETIS ) & 2%
4, Fio, XGSDHEHANWTo./ oy kD X H12ET,

Z—-11-3 <Tﬁ)2 (5.5.2)

K(SS2)ITHA & | FIHITAR S U7 Wik R EE 3R O S XJRIG )~ FE s O 2 BIfRIZ. Fig.
551 IORENDEHIIEEEEND, LIEN->T, BRI D0EIS HEBEETHZ LIk
. BRI O CIXBRIBE MR T35 2 L1272 228, JEMA O T b R(5.5.2)DIEE
RV e—7id) (BRI PMETT2Z &b, e, 64 Hi CRIfEtrxig=a
TR ORISR A dge b SR oL ERE LC, mNSIErE 1 TS & RIRC 2T D
BB DRALTREIZ OV TOMGHER % Appendix B (28T, Z OENTHESR TIX. 100 MPa 2
FELLN D BB INZ DWW T, AREOFIENEH L+ Tho 2 R,

olo,
I,_ _——————
[ "
/ Tension
/
/
/
/
/|0 gle,
- /
RN /
~ N /
\ /
. N
Compress|°n VT
1.0 +

Fig. 5.4.1 Modification of yield stress considering the effect of shear stress
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55 EERE. BRICHS HEOBRRhIIghE S VBRI LD E

PR R R %Vﬁ#ibék ZAUTPEN R SZ IS W I B 5, Smith D71k
(ZHEED S BUWHABEMRAT TIE, #TIC & D AR O RIEE 2t < (TN S T O3 A
NS, ZOE, BRIz Té%%f@&ﬁWék%ﬁﬁu@x@#E\Mﬁ¢
SEEIZE (RO IR LT, FIC K 28OFT AN n LR H60E) iR
60L#L\%ﬁtm®*@TT%%M%ﬁ@¢5;&:iD\¢ﬁ%@ﬁ%ﬁ§%%m
BRATREL 72 %, RV ICB L CTHRERD A THWT T .LoOBENTHEINICE BT & R D,
L7ehi o> T, AWEIZR T 2 #T IR0 T 7' v 77 ATl sl v OS54k T THiZEAL
RHFART 22 LIk PECRET P L OBEIZ ABIRICEE L T\ D,

5.6 #8

ARETIE, TRV AERAICH 2 EAWIR RS, S DICHEMT 2521 5556 OB IR R
AT FIEIZ DWW T, Smith D FIEIZES T FIEZ R LT,

55 5.2 HiTlE, Smith D HFIEIZHD < — AR B AR EEREAT FINRIZ DUV Tl AR
AN RS 2 — i 72 Bl 5 EZ R LT,

53 {i I, OB S F NN O ESE O SRS )~ SEEE O 2 B fR 0 & H FIEIC
DWW T, CSR-BC DFFHA Y ICHSL Hik, NS, REOIC KB FIE>Y 2R L1,
B SAHITIE, B 1 AT v 7 CHE ST SIS ) 0 R % W AR R B SR O SRS ) ~
SEHJEE O BRI R S B AT B FIEICOW TR L, BB, ZoHEoZ Yl &
OV FH&EPHIZ DU TiE Appendix B 1278,

B 5 EOSEXRE

1) Smith, C. S.: Influence of local compressive failure on ultimate longitudinal strength of a ship's
hull, Proceedings of PRADS, Tokyo, pp.73-79, 1977.

2) International Association of Classification Societies (IACS): Common structural rules for bulk
carriers (Chapter 5 Appendix 1), pp. 21-26, 2006.

3) Yao, T. and Nikolov, P. I.: Progressive Collapse Analysis of a Ship's Hull under Longitudinal
Bending, Journal of the Society of Naval Architects of Japan, 170, pp. 449—461, 1991.

4) Yao, T. and Nikolov, P. I.: Progressive Collapse Analysis of a Ship's Hull under Longitudinal
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1992.
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FOE fEH

6.1 #&E

ARIFFRTIE, EEMELZZ T 2WEROERN L EEREMITIEE LT, EARMICIE
Smith D5k D ICHE U 72 2 BYBSRATIE ORGSR 23870 72, Smith OB, 2 Sl T &2 & il
IR EELC & 2 HEWT T O B IR BREEREATIE CH 0 . 2O F F IR ER O MR v fRir 258
MT&EZR, 22T, Smith D FHE & [RERIZRERTIR 2 B BRI 08 L 72 ERGREER & 87212
ERL BEI3EZR), TheESHEICORSZ Ik, EAZERmEO TR Y it
EATO FEEME L CGB1 AT v ), o, MVICKs TAELLRERET NVOKY
TAAZHEHT 2 BERREBRE D %513, Snjanovic D51k 2 IZHESS TR AFEIC L LB L, MR
BEZ Y — VERO M ZETEACHE S . WV E EERR » 7 A0 — 2 — 0 #F 25T 0 B8 & Hi
DAL HIERBE L (B4 FSM), S512, DLEOITFIRY ki B4 Z8 L <. Rk
T DBIRFREEIRNT 24T 5 FIEEEE LT (B2 A7 v 7)), T77bb, RERETLOMIT
BOHIIC L > THRONLIERITEORVISIIE, ZOEEH 2 AT v T OWHEEKESR
IR LIAEND, ., HTFH 0 ITIC L - TE U DB ORI, Mises D FRRSA:
IZHE, MBIOBRIBE AR T S A Z L ICL W BEET D (5 EEBR), BEFEOKRK
DFFRIE, WMAT v BN TR OBERSE A LA TE L0 THY | fTET L OE
i TEUZ DV T H FEM f#MT & beis U CIEBIICERI CTH 5, ATIEICL Y, REFRET L
BIET, HDVE, RER T LR OFEEZ[E L7 fitdh F R AR E 2 T riE T o 5.

ARETIX, RETIEEZLTOMITHRIZHEA L, 3 KLy = /VET MK 5 FEM fifdTfs
R L12L 0, BETIEICL - TER., IS0 E X OERRKRENER L+
IEE T, o TRO LN Z EEHLNIT D,

® MO AHT HEIERRAR Y 7 AH—H—)
® T N EARRE L7 RAEEERIR (55 2 &)
® ST Ik

5 6.2 Hi T, WO PN sEIR S & HRRE Ok E S S EAIC oV T, ET
EE 1 AT v 7O Tk ROREIC E OREOREL RIEThERIET 5720, A
HEAT DRy 7 AH—F—ITREFIEEWEA U, TR R4 FEM TR R & i35,

55 6.3 HiTIE, 5 2 BT L7 RARRGBR R I IR B FIE L @A L, BREEL A3 5K
— AR L A KT & LTI BT DT, RER T T VRIS F 4 BBk 536 K OV FEM fgtir
R L T 5,

% 6.4 HiTIE, 5250TEU =2 7 FARICIREFIEA A U, Bl 2 —ER TRV FEM 2t
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G L LIEGBIZHOWT, RERET VTR Z FEM MRt R & k42, 7, _EF
1536 K OVFEM 12X L CET /UMD HiEE R L, FRITSRIFIZ DWW TR R %, ¥KIZ, No.2~No.6
T —TR—)V REMNT RIS E LIZET L (58— REFIL) Z T, sibE#ipH P it
T LCRY T 2170, G oI ER., ihFIis), \hER, Ko7, B8O
ST 1 DA 0 A % EERGE S 5, X DI, B ET LB LI VS A—/V RET IR LT,
AAME R OMAE Y 280 L, #hT 8 X OMR Y ISk 28 /162 %2 FEM s &
T 5, IS, HARRY £ — A > MER T CHitdh 5 B AT 2 5206 L. it i &
FEHRPE 12OV T b FEM MRS 5 & Heie 3 5,
L EOfRFTAEFRICE S & | IRETFIEORE, WS, #ARMFAIC O W TERT 5,
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6.2 FHANEETHARYIRIT—F—~DEH

6.2.1 BRITHRNROEERETIVILEBITEY
RETIES Fig. 6.2.1 LR X 9 72 Pedersen 5 2 28R 0 T I W ZBI N2 49 578 v
U A — ST L BRIER D RIS % FEM RITHER & ikt %,

0.2m

M. =1kNm

Fig. 6.2.1 Box girder with open section subjected to torsional moment

(1) FRITR

Fig. 6.2.1 IZRT R 7 AT — X —% it R &4 2, E AL B S LR B B LU,
S HPR, ZNEN, 24m, 04m, BLL02m THY, Ry 7 AH—F—EHIZES 2L,
OO &2H T 258 O WERERE TH 5,

) BERRORERETILE

Ry I AN —F =W BN TH R E DR Y T— X MEAMT D720, SFtE4L EE
L. T8 D 7 NALHLPH &2 ST i 2 S imial £ TOXr L35, Le=0.6 m OHAIT
DWW Fig. 6.2.2(a) IZ" T K 912, fEbTct S 24 EOREFRIZESET D, Elo, Mt
SO ER R L OBAWr I % Fig. 6.2.2(b) (2R & D ITHRERICHET 5,

(3) BHR&EH

Fig. 6.2.2(a) IZR" T L 212, TG o ki (REBZET AV OHR 1) IZEESME
AL, R SO BHEZRERT 5,
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Sym.

Open Sec. Closed Sec.
T
1 5 9 13 17 21 |25
z
el 200 | 200 200 | 200 | 200 | 200 N
u=0,v=0,w=0, Load point

0,=0,0,=0,6.=0

(a) Beam elements

P Sy S S Sy il S Sy iy P
*—0—0—0—0—0—0—0—0—90— 90

Open section

DU D G G G G G G G G
00— 00— 0—0—0—0—0—9©

(b) Plate elements of cross-sections

Fig. 6.2.2 Mesh division for the proposed method

@) FEEH
M.=1.0 kN-m OIRY E— A > k% Fig. 6.2.2(a) |Z/RTRERE T VOISR 25 ITAMT D,

(5) HHEHHE
AT R I TR & U MPBHERME S LT Y v VT RE=2.06x10° GPaB L ORT Y U Hiv=03
ERET D, 7ok, ATIIHMERENTITY b LT 5,

6.2.2 BEITHROEBRERETI/IVEEBIEH
(1) BEHRROBRERETILE

FENT R R OAIREFRET V& Fig. 623 1T, T XTOWRE/INC Y = VEHEZ AT,
T LRI R ER T TV L EHFE E U, B N o B3 S BIECS BB O 53 FIHK
LR ET 5, 7od. FEM fi#ATIZIE MSC.Nastran Z V%,

(2) BR&EH

AIREFET NVOEFREMEL, MFrmE (57 v OB NAlEES) MBIV T, xBED
y TRDOZEAL u, v, WS, z @AY OFNAO . ZHIRT D, F7o. BN TOREZE
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a3 2 7, S Wi 2> 5 200 mm Z & OWid (Fig. 6.2.3 FIZSHR TR9) 128V T,
2 R HRIC K0 B E R OZEN & MURZEN T U CREtT & 322

u=0,v=0,60,=0

Multi-point constraint

Fig. 6.2.3 Finite element model of the box girder

Q) FEEFHES L UMHHEE
HIREHFRET L O ESIER L O BRI, §6.2.1 fil R LI REBETLEFRL &
T 5,

6.2.3 FEITHER

Ry 7 AT —Z—=DBAEORS Ly=600 mm OEEOHFNA, I IO Hik 25 (Fig. 6.2.2
(b)DA &) (2R T DT mIS S O R S TR & £ v E R, Fig. 6.2.4 3 KU Fig. 6.2.5 IZ
7, BATHEIR (Fig. 6.2.4 @ 0.6 m LT OREL) (21T DIRNAIEL, REFRE T VOIS
B8 FEM fEHTHE B L bR TRI 135 & 7> TV A28, Bl (Fig. 6.2.4 @ 0.6 m LI ED
IR ICBITDIENAOE(LE, bbb, IREIXITE LY, Fiz, Bl & AW
EDOBRFIZBITDHEVMIEOENC LY . Ry 7 AT —F—IZE IS TID3FET D5,
PEHRTTNADLELNIZ Y IES554A1X, Fig. 6.2.5 12787 X 912, FEM fifTiER & B8
DREWHBEZ R LTS, 72720, BREGORINEFRTHLTIE, K 50%DRZENED 5
o,

OEIL, Ry 7 AH—X =2 5D 5 AR EkOF S & E AT SR A O
FRERFT D720, BHEHORI Ly 20 (FXTHWHE) ~12m (TRl 1221k
S CHEEBEOMBI 2 920 L=, REZTT N> THELNEMESICB T S HEAM %
FEM it 5 & FLlge LU C Table 6.2.1 (2R3, PHBTE O, & 5T BIWH O H D512
IXE OFRZEIL 2% LA N Th 203, PAWE & BAWIE 2NRIET 258 1R KRE W, T O
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ELT, TNENOREFORRY WIMEIIHEER GRS TW DA, Bl & Pl & 2
filf SHEiIRIZIBN T, PHMTEEFR S X DBAWTE ER OIR Y O T2 TR, Rz
RiZedlebEBZBAbN5, Licin-> T, Bl & AWM EET 2 RERET /LTI,
LA T, M mOZN (K ER) OEEREZEPRNCHE S5 hikz
BANTDHZENBETH S, 12120 ARBFFETIX, PAWrm L (BFREERER O & ST Y)
DENA T T ME TR LT 570, LRLORELZEET, MLl L O S
LRy 7 AN —F—OMTORBEOHEEETH L L L (B4EBR),

3.5E-03
3.0E-03
2.5E-03 r

2.0E-03
1.5E-03
——Beam model

1.0E-03
5.0E-04

0.0E+00 : : : : : :
0 02 04 06 08 1 12

Torsional angle (rad.)

Distance from midsection (1)

Fig. 6.2.4 Longitudinal distribution of torsional angle (L = 600 mm)

70 ——Beam model
60 r —FEM
50 r
40
30
20
10
0 . . . .
0 0.2 0.4 0.6 0.8 1 1.2

Axial stress (MPa)

Distance from midsection (1)

Fig. 6.2.5 Longitudinal distribution of axial stress (L o = 600 mm)

88



Table 6.2.1 Comparison of torsional angle for box girder with different open section length

(L-Ly)/L Torsional angle (rad.)

Beam model MSC.Nastran Ratio

1.000 (Closed Sec.) 2.37x10™ 2.32x10™ 1.02
0.833 4.92x10™* 3.96x10™ 1.24
0.667 1.36x107 9.78x10™* 1.39
0.500 3.12x107 2.25%107 1.39

0.333 6.04x107 4.45%x107 1.36
0.167 1.04x107 8.04x107 1.29

0.083 1.33x107 1.12x107 1.19
0.042 1.62x107 1.50x107 1.08
0.000 (Open Sec.) 2.11 2.08 1.01
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6.3 ITHZEE L -BREEEHRE~DER

RRFELE 2 =R L3 T & B U7 i RSB BMA D BRI . 36 LN,
BEIRAEEARAT I 0 U, ARG 5 4 3Bk 536 L OV FEM RATRS 5 & beile+ % )

6.3.1 FERAORERETIVEEBITES
(1) FRITR

g AR IR (Fig. 2.2.2 3 LUV Fig. 223 2 A #AMIE G & 272 L, Fig. 6.3.1 [Z7R~
TR oz, RBRIKOEERD S B Hin £ TORPFAZ TR E T 5,

Constraint point \

Load point
Beam elements p

Fig. 6.3.1 Analyzed scale models

Q) BREORERETIVE

Fig. 632 (27 & 91C, #g IEAER AL 4 BEORERET VL TET MET D,
Beam-A1l 3 X O Beam-A2 |L, #ERIAZIKRD &350 | FiEE (Bay-1 3 XU Bay-6) % PAWrm
L L. ZDOMOE S (Bay-2~Bay-5) Z Bl &35, —F . Beam-Bl 3 & U Beam-B2 3,
ARBRIRATR I OAMRT 2 50, TN TORERZHAWE L L TET /LT D, k.,
Beam-A2 35 J U Beam-B2 (22T, %k ¥ 2 BAfRAE DR s L OWMAIEE BB dh i o
WBEEET D, PEFEO~QOE ST, Fig. 63.2(c) 7T L0 ThD,

T, REEWIHOEIRSE A Fig. 6.3.3 (R T A, HEMiE 2T DR ER, B3
NVEHR, BLO, N—Fa—F—#RE2ZNLI, T, B, BLORRTRT, bk,
M HECOWTIE, B2EIRLIEEY TH D,
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Node 123 4 5 6 7 8 9 10 111213
Element D@ ® @ ® ® @ ® ©® @ @ @

(a) Beam elements and nodal points

(b) Treatment of the effect of bulkhead and side shell structure

Beam Element No. Consideration for the effects of BHD or S.S.

models D, ®, W, @ @ to Bulkhead Side shell
Beam-A1 | Closed section | Open section X X
Beam-A2 | Closed section | Open section O O
Beam-B1 Open section X X
Beam-B2 Open section O O

Note; O: considered, X: not considered

(c) Length of beam elements (unit: mm)

Element No. ©) ® ® to @ @
Beam length 475 450 575 475 400
Trans. space 450 450 500 325 325

Fig. 6.3.2 Modelling of beam elements

:}:}Ill|l|?l?|l|lll :i::

1 f C
L L Closed section L ¢ Open section
I — Plate element FE — Plate element

ﬁ_ —L Stiffened plate element —{ —L Stiffened plate element
B — Hard corner element I I — Hard corner element

Fig. 6.3.3 Division of cross-section by plate, stiffened panel and hard corner elements
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() HAEH
REFRET VIZFIE 631 IR T X RARLEMEEZR L, Him 1 OFTXTOBEHE (4, v,
W: exa eya 92; 92 ) %#@Eﬁj—éo

4) TEEH

BRVEMENT ClE, e (B 12) [CEWPATE, HDH VI Ml ACET, B RON
BOE—A NEAMT D, —H. R0 OFELEZE LICBERAERITCIL, FTEDIRY
TRV NEAM LIoth, TREREF LT E £, el e & mf AU BRI AT 5,

(5) M fFE

PHEFRET VOMEHRFE, RBRIRE S O EHRFE (Table 2.2.3 28) &ML, 02%
Mit7) (oo2) ZBERIET & LToMERBMEM B 2 ET 5, 72720, YU 7R EIX, TC
DM BFO I 72 & LT 2.0 x 10°GPa £ 5,

(6) MAAF-HH

ABR A Model-3 O FHAIEEFHN T/ SR UERIZAE U W i RO 7= oA, 56 2.2.3 TH(1)
IR LI L D1, AFE 6.0 mm 3 X V4.5 mm O/ 3RV TIERED 8~10%FEE, AFRK
JE& 3.2 mm D/ IV TIIRIED 20%FEE CTh > 70, — 7. AFRRIE 2.3 mm O/3F VT, i
RO OHEPRIED 15 FICET L2008 Aoiiz, L LRt Yl bAikix
1 ARG S SCBLI T 0 | PRI AT IFABRIIS NS W & E e, BT 53k v o
O JFENZ Lo TE, Pl bADOFENEIEREZ GO 2856 bbb, LR T, K
Bt B33V D E[E L7V Smith D FEIZHE U 21 EFIEIZH VT, Table 6.3.1 12
R DN T2 DB AR VIR ET D, 7212 L, Pl bAhoEBOEEIL, #
BFEE 2 AT v FICBVWTERRD & D2 ko> TIRL SN 7= HULLST # V5454751 C
HY ., CSR BXZHWDLEAITITBHICEE I,

Table 6.3.1 Initial deformation considered in collapse analysis by HULLST

Panel (Buckling mode, 4s) Stiffener (4y;)
t1 t2 t3 t4 vertical bending tripping
t,/200 t,/200 t,/200 t,/200 a/2000 a/2000

Note: 4y, = m half-wave mode of initial deformation, ¢, = panel thickness, a = frame space

(7) BEBIGH
BRI SV OFRE IS IHEEE X, 5 223 THQUOR L2 LB, T RTOWRED/IF
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ERICBWT, EE B L TR ER->TW2, LHLARD, IMENKRE 7 Offtrh
Fa% T 256 MU IR OREr T R SRS U T, SRS oD 9 i A S 73 5
BAITH D LB BND, TDOTD, BRAREMANTICER L T3nEME 2 Mk 2 /S 1r
FNC DA BIRBIS ) i ES D 2 L & ¥ D, —filL LT, ABRIA Model-3 [Z3TE SN DI
BRG] % Table 6.3.2 (TR T,

Table 6.3.2 Welding residual stress applied to Model-3

t1 t2 t3 t4

Oy¢ 0 0 0.246{).2 0.25 O0y.2

Note: o, = commpresive residual stress, oy, = 0.2 % proof stress
b

8) HEfREDRMIMEHE

% 4 BIORLIEIFEICRY | BREBEDORE AL BE T 5720, MREEAZ AT D REF X
DR — VE O #FRIEZ GRS 5, TRH — 2 —B LUK v 7 20— & —Wrim OEMEE —
ArME, A TREND Y,

@:—li—~@A+l@+éHAB

A, + A, +4; U rT 3\ Ty f (6.3.1)
ZZUTL by, Ay, Ay BRO 403, EAEN, T—F—ES, ROEMERE, U =7 O
HfE, BEO, 77 VOWHBETHD, o, SRR ITIEIC Y = 7 O Wik fE i %
LWe LTRIET S,

— 05 HBRBEZ MR T DT R CON—F — DK W IZZBEE T [ BN — 7 — DR R50E,
BB L7 7 v POEMEROZILOOELEY OEEE—A L MZFELWE LT, kX
TRT, L, U= 7L MOBNHEICHZ 2 2 LN TEXRWZD, ZOFHEND
IR S LD,

_ APAf 2
I, = —Ap T A hg (6.3.2)
F72. HIBMMIEO N —F — 00 ZHIL, kA TREND,

brh
Q5=;%ﬂ(@q~+mﬂw) (6.3.3)

S, b BEO R, BEREN, TIUVEBLRY 2T ESTHY , 4 BEU L IR
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. RS TAWRETH D,
%ﬁﬁ%&?6@“%%%@%%@%%&&?5&%“ WONZ, FBAyRREER X OUKE
fEEEICHmd 2 2 — 3 (Fig. 2.2.2 28) OfE&EREM %2 Fig. 6.3.4 (2177,
2(6.3.1)~2(6.3.3)Z H\ T, BERREED T — & —H3 LAY — /Lo T 3 L OR Y [
P& G LIz 2 2 24, Table 6.3.3 35 X O Table 6.3.4 (27”7, Fig. 6.3.2(b) ® Beam-A2
BLOBeam-B2 |2 L TX I N HDEDOMHEEH WD

YL
Ay (il

150
147x213-+50x289 D
El . g

_‘ 4 - 4.48

Ea ;m m& e
) T

50x2.89
A

360

(a) watertight bulkhead plate and girders (unit: mm) (b) stool (unit: mm)

Fig. 6.3.4 Details of transverse bulkhead

Table 6.3.3 Stiffness parameters of watertight bulkhead girder

Girder Moment Torsional Girder
of inertia modulus spacing
1 (mm4) A (mm4) ¢ (mm) i (mm3) iy (mm3)
Horizontal | 6.22x10° 0 540 1.15x10° 0
Vertical 4.35%10° 2.89x10° 570 7.64x10° —

Table 6.3.4 Stiffness parameters of stool

Shear area Moment of inertia Torsional modulus
As (mmz) Isb (mm4) ]ts (mm4)
1.14x10° 1.08x107 3.61x10’
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9) MAEEEERY  RH—F—0iTRIEOFE

i R ERBR (R DR [REE & AR & OREEEIZ BT 2 AR AIREE O R i o8 %%
BT D72, & 4 FI L O Appendix A (2R L7 HIEIC XV . MAEE D upper deck 38 LY
2nd deck THHE Ny O T RIMER X OYR Y @5z 53R T 5, UikiiE O % Fig. 6.3.5
SRS, AWTE O EENE Y O dFREIPEE, L =3.86x10"mm* L0 B, 2L, BEREEED
IR, 36 & O8N MERREE O M08 2 T, [=1.15%10° mm, b=1.32x10> mm & L CEH LT,
72¥. 45 HiTR LICHERRRE R Y — L & Ml E B oRE S EIC T 2 F N olElEs
AOEr 2R T T ERBEr=0100 EIKEL, ST A—F% k.=0.767 & L7z,

180

5.87

. |
5.87

5.87 -‘\

50x5.89

360

3.14

Fig. 6.3.5 Details of side shell structure (unit: mm)

632 HBRERETILEBIFEE

FEM AT IS I BN fRIE 7 1 75 2 LS-DYNA Z VS, fig RABERIGRER A6~ 5 4558k
St A G ok 2 IR EESRIT6 LT FEM 3B R AREEf#AT & F2hi 5,
(1) BHETIL

g R B A DA REHZ T T /L% Fig. 6.3.6 127, 72720, MEY ¥ v FOHY 1
BEZFMICTRT LD ICHER E LCTET MMET 5, Bk 2 & R BRiE o3 TOHH
W2 LT, BIEH NS 2 DOFESy 55 % £ Belytschko-Tsay o = /VER &AL, AAKET
FHEXFROMESMIC KR TE D L) ICRBREREEET MMET D, Fio, BIEESX LD
JERE— R&2 0 ETHIBLTE 2 K 5120 1/3%1 (900 mm x 180 mm) 54721 D43E|
Bw 36x7 nEl (A vyt A X = 925 mm <25 mm) . flat-bar Bk % 36 X2 /&L L7z

(Fig. 6.3.6(b)Z ) , Z DFER ., T T VAR DO EHEHUL 264,184 i mET 254,722 L7 o7z,

(2) &Y
%632 H() TR LIEARERET VAW, HPEMNT, BXO B IOEVIZLD
YA MR IR AR EEMRAT 2 FEhE T 5, MRATSR(4E % Table 6.3.5 I2F & D TART,
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(a) plan (b) detail of mesh

Fig. 6.3.6 FE model of scaled model

Table 6.3.5 FE analysis condition for scaled models

FEM program - LS-DYNA ver. 971
Extent of model - Longitudinal direction : A whole model
- Transverse direction : Both sides

Condition of initial - No initial shape deformation was given

imperfection - Idealized average compressive residual stress are considered
(see Table 2.2.5)

Thickness - Gross thickness

Boundary condition - Cantilever condition at aft end of the model

Model weight -+ Model weight of the whole model is considered

Load Bending and - Bending and torsional moments are generated gradually by

condition | torsional moments the concentrated reactive loads due to prescribed
displacement at the both sides near the free end of the model

(3) T

MBFOMEOMHE & LT, BRI SRt o 5 IRRBRE R (Table 2.2.3 Z&) 7>
5153 BT ARG S~ AR OT 7 BfR & BLIG ) ~ 5O A BRI 25 H: LTV e, 3Bk
& Model-3 (235 1F D4 SR DEIS ) ~5HE O 2 BtR % Fig. 6.3.7 (12”7,

4) EA=-HH
B 63.1H(O6) TR L 9T, BERBET NV EFEER, AREZRETT VBN THIHIb
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700 —tl —t
600 —13 —t4
500 —stiff. 1 ——stiff. 2

True stress (MPa)
=
(=]
o

0 1 1 1 1 1 J
0 0.01 0.02 003 0.04 0.05 0.06

True strain

Fig 6.3.7 True stress—true strain curve (Models 2 and 3)

B BB LR, 7272 U AR T 9% LS-DYNA O X 9 22 EhA 5 fiE1E FEM ST Tl
WIBEA R E LW AICB W TS, BN L OB A E IS U7 R R 2 )3
B EN D,

(5) BEZRRISH

HRRDIR X 0 7 O % 50T 2356, MIEERT i O HE il ﬁf-ﬁk?@ﬁ TR LTI, fRE
HIE DR RERE NN TH L B2 LD, £D7®, FEM | BIR AR EERRITIZ
BRLTH, MIEMEEICORBEBRAIC N ZRETHZ LT 5,

R ECAM IR K O\WIEAR OARIEIE, Fig. 2.2.3(b) (IR LIZX D12, TN, 3 (AFRE
32mm) BEO WA (BDHMIE 2.3 mm) THY, F7z, Table 2.2.5T7 L72 XK 9, Model-2
B LU Model-3 DIRIE 3 3 L OMRIE t4 O/ SR VEO ERMEFR RIS T1E, 0.2%i 71D 24%35 &
O 25% & HEE ST, L7 - T, MIESMIIES L OWNIER OB EEHRE 1 4 bR < S
RETIE, ZNEI, = 61.2 MPa 35 X OY = 61.0 MPa F&JE DRSS I DVE L Tz L HE
ESND, I T, fRITXIED FEM BIR AT ICI W TR, (a) RIS 12 BE L
PRMERT, AFONT, (b) ERL O EREIREA IR T D I A IR AMR & 5 P EAR OWE 7 TN FE 5
L. Z10H OFEMEE TN ENOMETER L THE b5 b LT BRI 71 (Z 0545 - 48.0
MPa) % RRJERE B SR VTR E T DT, O 2 FEHA ERiT 5 (5 6.3.4 HZH), 72385,
FEM BMEFEHTIZ AW T, R RIC ) &2 B L2\,

(6) BHREH

FEM M IZ BV CRRET DR, MMM, B XL O #iid 4RV 2 X 28k AREE
AT & b BIRAREERER & FEE. APREFET T /L0 Bay-6 B W CHEESRM 259, 372
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b, BHEMICBNTIE w, v, w, 0, 0,, 0,=0DERFMHEEZ2 D, £7-. Bay-1 6
oy DAL HAREEY 2B L, ZOXs (ffEA) (2 ETFHmoOMtHES 5252 &
R TRETOHRNEMEY ¥ v X fEEHRRT,

(7) WEEH

VRS RE IR 1T FE S 3 2 JEMEIS ) & fnIEAE IE 1M 53 2 56 M R ERBR (K D UK R
BT CIE, LT OWMEZINEICARERET VICAN T 5, BHER-ICNEEEB L7320
AlE. Q) DB ET D,

A) Bl fRJEAREIE DB SRV INITAFIE T D FEME OVEHEIR RIS 1 TH Y T 5 [E eI ) &
WG & LT BT 5,

B) HHFRMTE : A) Ofii) TAEC S a— vl T—2 2 N EHEET S,

C) ME TR ~DOBREIEE : MfiZICE 2 2 HEDME L RESEEZDLZ LITLY,
ET VAR SNOMITE—RA L MRV E—RA L NEDUEEEZD

F9°. ERE A), B)E 0.1 BECHEME T AR L, 20k, MilFEKEREICED
ETOEWIANT D, 2B, MBREIERAT2HFE—A U FBIXORY E— 2> ME
i E IR A DK 1E S EICEET S,

6.3.3 HEMEMTER
(1) #eeh 74T

BT RIS far . (B ESH © 6.0 m BEAV 7o BER W iR O FOALE) (T S EFRE F,=
—1.67x10% kN ([EEHIZ I BHEHITE— A > b M, = 1.00x10° kN-m) % Afid 5t
@%ﬁ%imﬁé

Fig. 6.3.8 I[CSREENM OR S H A%~ d, WA A2 BE LI REEZETT VI L D60
ﬁﬁ%ﬂiEM%ﬁﬁ%k%@LT\ﬁ%%k%D ZBAMTIE 5 K OPHIE &2 £ 7 Ak L
72 Beam-Al 35 J OV Beam-A2 TRORCE O (ff BRI T HFRZE - 4.1%) | ‘ﬁ%%%ﬁ%ﬁ%ﬁﬁ@
#f%?methmmiﬁXMmMBzf%%iE#@(miﬁ_ HRA7E 9.5%)
LD, SREZENIZOWTIL, EETFIEIC X DMHTHRE S 0S FEM f#FTHSE 3 & kkﬂmﬂb VAH
BEZRLTWD, 7B, RERET /LTI, HEITFIT6T 2MEEEOREIT RN,
O, REFED (FEM BHTIZ OV Tid z = 237.5 mm OWFAINLEOBETE) (281 5 MMl
%ﬁ%i@%ﬁ%ﬁ@%ﬁﬁﬁ%i@%%ﬁﬁ@%ﬁ%%ﬂ%ﬂ\Hg6&9%i0F@
6.3.10 127”9, HUTIS TN OWTIL, BEFIEC X DT #5R2S FEM MEATHRE S & RV EB
ORTN, TOXTORESE % W CTE T UL L7z Beam-B2 5753 FEM f#ATHE RIZ U0
ZHUTDOWTIE, & 6.2 HiTilk~7= X 512, AW & Bl & O#ETIc W TEM O &
FUHNHREIN T RWERELZEZ LND, o, BBISIIZON TR, BETFEICLD
& HAY FEM FEHTAE SR & Il L CROR@m O OfER 277, ZOBM & LT, EEmIs cix
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SIS ) O F S MO K E W2, REZONOYEEI 72108 z = 237.5 mm ALE D
W DE e —FH L TWARrWE=h EEZ LN,

Distance from fixed end (m)
0 1 2 3 4 5 6 7

g 0 ; .
g 0

g

E -15

= ot

E 25 b ——Beam-Al, A2

b ’ ——Beam-B1, B2

= 3 |—FEM

» 35 -

Fig. 6.3.8 Distribution of vertical displacement by F),

= 60 —Beam-A2 ~ 60 r —Beam-A2
& 40 f | —BeamB2 S 4wt —Beam-B2
S —FEM e —FEM
2 - g 20
- 0 i t t | g 0 t t t |
% Qo:;féayl E 20 |
z m gy — — -

-40 L -40 L

0 0.5 1 1.5 2 0 0.5 1 1.5 2
Distance from baseline (1) Distance from centerline (m)
(a) Side shell plate (b) Outer bottom plate

Fig. 6.3.9 Distribution of bending stress by F),
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15 r 15

——Beam-A2
s —Beam-B2 )
S 10 —FEM S 10
= g
2 o : : : | 2 o |
- 7
-5 L -5 -
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Distance from baseline (1) Distance from centerline (1)
(a) Side shell plate (b) Outer bottom plate
Fig. 6.3.10 Distribution of shear stress by F),
) &®Y &t

TFESIZ M, = 1.00X10° kN-m DIRVY &— A > s B AT DI 2 EMi+ 5, Fig. 6.3.11
ICR S MOIRNA DA T, RERET /ML HNHE (AX(a) (X, FEM IZ X
é%ﬁ%%&&@bf%@k%b@ﬁh%&ﬁéo:@ﬁmkbf %62mf¢~ti9
. PAWTE & BIWTE & ORI B W TEMOMEA SN R SN TE 5, BEEmIC
Té%&@%ﬁ#%mﬁm:mbgﬁmtwk%z%héo*ﬁ\ﬁ%%%ﬁbﬁwt%
Hrask (FB((b) Tix, W& OIRNAOHAIE—T 5, o2XI2, REFEO (FEM f#fTic
DUNTIE z = 237.5 mm OWrifl) (Z351F 2 MMAISMIIS L ORRIESMR DBV 5136 KOS MG
@%ﬁ%%h%hmgamzﬁiomgaws:m¢OE$W®¥w%&mﬁ%m¢%%
FETIVOFERD FEM T OFER L 0 /NSO TH 20 WFIZEFEEOMEZ R LTV 5,

1.0E-02 1.0E-02

——Beam-A2 - —Beam-Al

¥  8.0E- ¥ 8.0E-03 A

H 8.0E-03 g

P @

=, 6.0E-03 6.0E-03

3 E

& E

- 4.0E-03 - 4.0E-03

S e

£ 2.0E-03 E 2.0E-03

= =

0.0E+00 0.0E+00 !
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Distance from fixed end (m) Distance from fixed end ()

(a) With bulkheads (b) Without bulkheads

Fig. 6.3.11 Distribution of torsional angle by M,
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150 150 ——Beam-A2
100 —Beam-B2

-100 | ——Beam-A2
-150 —Beam-B2
——FEM

Warping stress (MPa)
h
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Warping stress (MPa)
h
o

0 0.5 1 1.5 2 0 0.5 1 1.5 2
Distance from baseline (1) Distance from centerline (1)

(a) Side shell plate (b) Outer bottom plate

Fig. 6.3.12 Distribution of warping stress under torsional moment M,
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(a) Side shell plate (b) Outer bottom plate

Fig. 6.3.13 Distribution of shear stress under torsional moment M,

6.3.4 BT ELIRY IC&k DFREREMBENT
(1) #EpIFIC & B FBREREH

55 2.3.4 TH(1) 1R L7z RAEAERBR (A Model-3 D35 /L Beam-A2 (Fig. 6.3.2 B X
O'Fig. 6.3.3 2/) , WONT, AREFEET /L (Fig 6.3.5 ) Z H ., MedhiF 20w i
ZEMT D, MAENT & b EAICTRTIEN 2 5 2, BJONT KN BEEWmIZIT 5 S
T AL MNERD D, 7ok, RETIEITIT D Wk B 58 O LIS T~ O A
R OEHIZIE, Yao 51T X5 HULLST *” | 8L Y, CSR-BC %Y oili & H+ 5,
Fig. 6.3.14 [ZE AT E— A > b ~Fi B R OSHE N BEFR & FBREE R & OFgCORT, I1882
WIIAEE 2 B 8 L 72055 OREH F e TR 1, FEBRAE B & bl L ¢ RETFIETITN 135
~15.5%r=®, FEM f#HT Cl3k 11.7%m0 & e o7,
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72¥5, LS-DYNA (T X 2B RN OFEEIT, =X O = 3 L1257 5 bt

(energy ratio) % i 4 7Z2RFMMME CH T2 Z LIC L VMR LTz, AEATICH W TIE, &

FRAEZ 2BV T H energy ratio = 0.997 (FR7£ 0.3%) BRETH Y, 72Tk ELZH LT
L2 EDPHERINTWD,

~ S8.0E+03

g

2,

£ 6.0E+03

E

2

£ 4 -

= OE+03 —Beam-A2 (HULLST) | .
——Beam-A2 (CSR-BC)

g 2.0E+03 ~—LS-DYNA

5 —a— Experiment

= 0.0E+00 ! ' : !
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Vertical displacement (mm)

Fig. 6.3.14 Bending moment — vertical displacement relationships

without considering initial imperfections

DXL, H632HO)BLOINWIR LB LV | SEE R EMEN J1 & LTRSS
VARG B U728 25T, LS-DYNA (2 X 2 Bk AR EEMATE 5 4 Fig. 6.3.15 1
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Fig. 6.3.15 Bending moment — vertical displacement relationships considering residual stresses
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(2) RBY BXBHLGIHE DOERHHIEEN
mM%ﬁ*i@%Enk%Rﬁﬂﬁ%WMm&4@%%%~F%HgaM6m%¢oﬁ
BB 62 K91, R FT— A2 FKEHI 256 FEM fEATICEHW T | ARt
T ¥ —F A4 NZEEICITR 5T, Hold NERID] J%@Jé?wﬂ:iﬁé
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PEELTHFXF U TOMITE—A L FEZITHZ LR, HRIEDE— A2 MTE
L 7% b AT iE ORIPEIR T 3R ciEde 2 L1270 D (Fig. 2.3.4(b) 21R), I72bb,
JROEED /NS, BRRKER OSSR EY L 2 D, RKIRY T— A v FEGERFOBE O A
BLOENKOTAOKRE ST, & HIC 1LXI0°BRETH S,
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LS-DYNA user input

Time= 052794 Fringe Levels
Contours of Effective Stress (v-m) 8.198e+08
max IP. value PZ 7.3780+08
min=0, at elem# 267875 e
max=8.19803e+08, at elem# 910253 6.558e+08 _|
5.739e+08 _
4.919e+08
4.099¢+08
3.279e+08
2.459e+08
1.640e+08
8.198e+07
0.000e+00 |

(a) Side shell

LS-DYNA user input

Time= 052794

Contours of Effective Stress (v-m)
max IP. value

min=0, at elem# 267875
max=8.19803e+08, at elem# 910253

Fringe Levels
8.198e+08
7.378e+08 :I
6.558¢+08 _|
5.739¢+08 _
4.919e+08
4.099e+08
3.279e+08
2.459¢+08
1.640e+08
8.198e+07
0.000e+00 _|

(b) Outer bottom

Fig. 6.3.16 Collapse modes of Model-1 by finite element analysis
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..;9:7- i Fringe Levels

Mean Ipt X-strain 8.0000-04

4837, at elem# 870390

513, at elem# 1004327 6.400e-04
4.8000-04 _|
3.2000-04 _

1.600e-04
0.0000+00

P2
(a) Normal strain, ¢,

;’.’-;. s Fringe Levels
Wean Ipt ZX-strain 8.000e-04
58518, at elom# 1081668

18487, at elem# 947731

P2
.-r-l:';.:l IS.I'\ U< IIIPUI Fring. L.V.I'
Contours of Mean Ipt XY-strain 4.000e-04
min=-0.00272679, at elem# 984664 3.2000-04

max=0.000762334, at elom# 1060290
2.400-04 _|

1.6000-04 _
8.000e-05
0.000e+00
-8.0000-05
-1.600e-04
-2.4000-04
-3.200-04
-4.0000-04 |

(b) Shear strain, y., and 7.,

Fig. 6.3.17 Distribution of longitudinal normal strain and shear strain under pure torsion

(T/TU = 0.6)
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;i\r’n-ev; "'a;;:c' saApgsss Fringe Levels

Contours of Mean Ipt X-strain 1.500e-03
min=-0.0112685, at elem# 870390 2085 _OS:I
max=0.0140068, at elem# 992467 -

9.000e-04

6.000e-04 _
3.000e-04
1.084e-19
-3.000e-04
-6.000e-04
-9.000e-04
-1.200e-03
-1.500e-03 _|

(a) Normal strain, ¢,

s, g P

s of Mean Ipt ZX-strain 1.5000-03

0371379, at elem# 1074515

10364097, at elom#¥ 910011 1.200e-03
9.0000-04 _
6.0000-04 _

3.0000-04
1.084e-19
-3.0000-04
-6.0000-04
-9.0000-04
-1.2000-03
-1.5000-03 _|

P2
Lo T IVAM UDTT IHTPUL
Time= 04135 ¥ Fringe Levels
Contours of Mean Ipt XY-strain 8.000e-04
min=-0.0105824, at elem# 850727 6.4000-04

max=0.00636087, at elem# 995758
4.800e-04

3.2000-04 _

1.600e-04
0.0000+00
-1.600e-04
-3.2000-04
-4.8000-04
-6.4000-04
-8.0000-04 _|

(b) Shear strain, y., and 7.,

Fig. 6.3.18 Distribution of longitudinal normal strain and shear strain under pure torsion

(T/TU = 1.0)
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RYFE—A b EWELTHITE— 2> PORKEN 2GS, RS FEICL -
T LN ToRAETREEIT, FEM STIC K2R & BWHEBZ RT, Lo Led s, WIHHRD
T AV IBEINT 22O T, REFIEIHM T REBELZERDICHEL TWVDH, Z0
HHE LT, MEPFIETIE, HVICL o TEU LBIWNG I OB E | Wik 25 O Rk
BEAZIRTIEDLZLICEVBELTHD, BEIS R KE < 25125 T KRIZ 2
ML CLES 72D THD (Appendix B B, F 7o, AMHTSAED K O (T AW 3 [
EHITITL R A 8A . ¥ =V EFE A2 M- FEM BT T, BSOS RN RE L 2D
7o, M RERENREDICRD EZEZXDND, O LI, BURTIE, BETIEIC
B 5 203728 IR RS EET 508, i L3R 0 OE AT E TS T 2 R Z O s
JE & fRICARMT RATRE T D Z E MBI BT 72 5 T2,

12 w—T=0 —T/M=0.13

g 1 e TIM=0.38 ==T/M=1.10
— — - ’)

S o5 M M=0 O Beam-A2
E - o —
£ 06 ] )
: _~
- 04
'g 02 / lg%
E "] %f
B 0

0.2

-0.2 0 0.2 04 06 0.8 1 12
Vertical bending moment M/MU

Fig. 6.3.19 Correlative relationship between bending and torsional moment

107



6.4 FEaVTIHM~DiEA

6.4.1 BERETILLEBITEE

WETIEZFE T TIMOMEMEMT, WIS, R0 ORI B8 L = el o % a7
BricHiH L, @bt 54 FEM i@t (LS-DYNA 3 & O MSC . Nastran) #&5 & fid 5,
(1) FRITR

fENT RIS % Fig. 6.4.1 IR T AR A M3~y 7 2M a7y (5250TEU) &5, £D
T2 H B L UEKEHIEA Table 6.4.1 12777,

(2) BIEREMORERETIVIE

SF G & A G & A7 L, Fig. 6.42 B X OVFig. 643 (24 K912, 2 EOPER
ETFNTET MET D, BT T /L Beam-A IE, FPDH AP £ TOEMAERGEL, 574
—/L K& /L Beam-B |£, No.2 ~ No.6 1 — 2 HK—/L REEL#EHE T T LT 5, 725,
SR AIIAIREENLE & 352, IRV WE FICBW TRV ISTOBIENKREL D EEZ
DAV DB RIS 4.35m OALEICHI R A 5% 1T 5 (Beam-A D i 6 35 J N Beam-B D#fifi 2),

T, BELREOWIHE)~WrE(16)D K% Fig. 6.4.4 (R T 2, T XCTORERTERN
TR 2 NET D, 72d. Fig. 6.4.4 FOSRBIWE 2R T D/ N— Ra—F—EHEr
AU, ERRIIRESR 8 SRV B R AT,

! No.6 « No.5 ! No.4 : No.3 « No.2 : No.1 Cargo holds

— P — P — P —PC—P———

HH

i
I
I
1
|
]
[
I
T
i
V]
[
1
i
]

-
i

Fig. 6.4.1 Post-Panamax container ship (5,250TEU)

Table 6.4.1 Principal dimensions and design speed

Length, L Breadth, B Depth, D, Draft, d Speed, V'
g P p 7 p

267.00 m 39.80 m 23.60 m 12.50 m 29.4 knot
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AP. F.P.

jﬂ== o T

___?

Beam-A EESRES S o s e b e e e T = =
Node 11 2i 3 16l 7t 81 9i 10f 11i 120 131 14f 15 161 170 18! 19{ 20

Element- O @ '® -@
(2)

Section

1 @

(3) (4)5) (8)

™

8 (9

(a) Range of modelling

(b) Treatment of the effect of bulkhead and side shell structure

Beam Element No. Consideration for the effects of BHD or S.S.
models D to Bulkhead Side shell
Beam-A1l Open section X X
Beam-A2 Open section O X
Beam-A3 Open section O O
Note; O: considered, X: not considered
(c) Length of beam elements
Element No. D to @ ® ® @ to @ @®,
©
Length (m) 15.0 18.3 4.35 10.0 14.35 15.75
Frame space (mm) 800 800 800 800 800 800

00 ® ©®@ ® ® @ ® @® ® ® O
(10) (11) (12)(13) (14) (15) (16) (16)

Fig. 6.4.2 Modelling of beam elements for a 5,250 TEU container ship (Beam-A; full model)
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.....

S=NEES S S - et i s e

H4
%..[IHHHIH-LL S

Node 1i2i 3i 4
Element D@ ® @ ® ® @ ® © ® @
Section (4)(5) (6) (7) (7) (8) (9) (10) (11) (12) (13)

5 61 7t 8 9i 10i 11 12

Beam-B

(a) Range of modelling

(b) Treatment of the effect of bulkhead and side shell structure

Beam Element No. Consideration for the effects of BHD or S.S.

models D to @ Bulkhead Side shell
Beam-B1 Open section X X
Beam-B2 Open section O X
Beam-B3 Open section O O

Note; O: considered, X: not considered

(c) Length of beam elements

Element No. ©) @) ® to @
Length (m) 4.35 10.00 14.35
Trans. space (m) 3.20 3.20 3.20

Fig. 6.4.3 Modelling of beam elements for a 5,250 TEU container ship (Beam-B; 5-hold model)
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Section (3) Section (4)

Section (5) Section (6)

I
I
I
I
=

Section (9) Section (10)
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Section (15) Section (16)

Fig. 6.4.4 Division of cross-section by plate, stiffened panel and hard corner elements

() ER&H

BT IC BV T, 2T T /L (Beam-A ; Fig. 6.4.2 ZMR) 2% L Cix., BAMEEHS
DRI TR O BREFTMMA A RTA > YV ITREN TV D XERMBICHEL 5, T72bb, AP

(B 1) IZBWTT X TOWHEE LFENAZ AR L, FP. (Him 20) (2B TKRFES 0
BROSRE T M OWHEEN AR T 5, £7o, TNHOHREBED &9 i 2 BLOEIR
19 IZBWT AR MENM ZWET 5,

—J5. 58—/ RET /L (Beam-B ; Fig. 6.4.3 /) |Zxf L Ci, #ERI== [T Wi (His 1)
ICEESRGAR L CT X TOABEALWR L, Rl omEA (Him 12) s\ T2eE
D OBERGAFEETRT, B 11X, BEME LTI RTOABEZRRL2WERSEETHY
F21%, BT D 5 A—/L RET VO FEM EFTIZEW T, 7 Va4 i 4
DEMFICEDLETZLDTH D, T72b5, &ATTOMENR (Hif 12) 2B\ T, KPE (x
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i) 5 RO (v B b0 OENE, LT, R (0,) 2RRT R EHETH 5.
VI EOBERSEAMZ £ &9 T, Table 6.4.2 IZ7-7,

Table 6.4.2 Boundary conditions for beams A and B

(a) Beam-A
u v w 0, 0, 0. 6.’
A.P. Node 1) O O O
Node 2 O
Node 19 O
F.P. (Node 20) O O
(b) Beam-B
u v w QX 0y 02 02,
E.R. (Node 1) O O O O O

or

u v w BX 9y 92 92'
E.R. (Node 1) O O O O O O O
L.P. (Node 12) O O O

Note, O: Constraint, E.R.=Engine room, L.P.=Load point

@) FIESH

EMET L (Beam-A) 1ZxF LTIE, MEHITHR Y BEFHT A R4 Y ick pihf T
— AV MIABLOIRY E— A "NMyfi e B U S L Hi i mEARTT 5,

—J. FEbLEMZ#T 5 A—/L FEF /L (Beam-B) (25 L Tl, HHS~OEPHE

(HTFE—=A PBLTIRY T—A 2 b)), W, EREFROTA T A CwEISE T
HiRMEEAM T L LT D,

5) @M
FEFT XTI, 8 (MS) B X OV 2 FEO EE 8 (YP32 38 LTV YP36) 23
HENTW5b, 270, AAMRBLONEHMOIZE A SITEENTH S, REZEETILIC
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BWTIEL, ZR 6 0OHMEEE LT, BRI ER/IME & L7 SR 2 E T
%, Table 6.4.3 [ZHEHTIZ 2 S W EAE 2 779,

Table 6.4.3 Material properties of steel

Young’s modulus 206,000 MPa
Poisson’s ratio 0.3
Mass density 0 ton/m’
MS 235 MPa
Yield stress YP32 315 MPa
YP36 355 MPa

6) MHf=-bHH L VBERBIES

BEENT IC B W T, Il b Ads T ONVEERRIS D& L BIZER L2, R O
% EJE LT MErh I AREEARAT T, 85 2 AT v 7 @ Smith D 1A S < BRAEMAT I B\
T. CSR-BC OH NI L 25 A MH & bEEET, KESO HULLST®? AW 5541
X, VEBEFRRLIG 1T B[R L7223, Table 6.4.4 (R A=A & S 3L E K OBLE I23%
ET Do

Table 6.4.4 Initial deformation considered in progressive collapse analysis by HULLST

Panel Stiffener

Vertical bending Tripping
t, /200 a /2000 a /2000

Note: ¢, = panel thickness, a = trans. space

(7) HEREORIMESHE

2 T TR OREREEE AR DOIR 0 BTN RIE T EEBET 5720, # 6.3.1H (7) L[H
FRIZ, 55 4 33 L O Appendix A [Z/R L7Z FIEIC LD . BERRREZMERK 2 2 — Ll L O
A — )V F OB (BFHT) OBALRE S Y70 ofiiFHIMEZ 595, Tt Smo Zhn
B OREEFEM &2 Z N, Table 6.4.5, Table 6.4.6, LY, Fig. 6451277, £z, &4
M ORIPEFH S R % Table 6.4.7 . Table 6.4.8 33 J U8 Table 6.4.9 (27”7,
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Table 6.4.5 Details of plate part in watertight bulkhead (unit: mm)

Plate thickness

Horizontal girder

Vertical girder

10

448x9 + 97x10

175010 + 397%18

Table 6.4.6 Details of plate part in partial bulkhead (unit: mm)

Horizontal girder (I-type)

Vertical girder (I-type)

Web Flange Web Flange
1750x10 197x10 1750x10 397x13
1750
15-{180x11] *}
1371, H
— o H 8
— é H o
=
N
—H < H
— 12 H
N
15

Fig. 6.4.5 Details of stool in watertight and partial bulkhead (unit: mm)

Table 6.4.7 Stiffness parameters of stool

Shear area Moment of inertia Torsional modulus
A, (mm?®) Ly, (mm®) I (mm")
7.53x10* 1.31x10" 5.31x10"
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Table 6.4.8 Stiffness parameters of watertight bulkhead girder

Girder Moment Torsional Girder
of inertia modulus spacing
1 (mm4) A (mm4) ¢ (mm) i (mm3) iy (mm3)
Horizontal | 4.25x10° 1.96x10° 2.60x10° 1.63x10° 7.11x10°
Vertical 2.43x10" 1.71x10" 2.55%10° 9.52x10° —
Table 6.4.9 Stiffness parameters of partial bulkhead girder
Girder Moment Torsional Girder
of inertia modulus spacing
I (mm®) I, (mm*) ¢ (mm) i (mm’) i, (mm?)
Horizontal | 6.90x10° 6.03x10° 2.60x10° 2.65x<10° | 3.79x10°
Vertical 9.39x10° 3.79x10° 2.55x10° 3.68x10° —

(8) MAIHEE LA DM (FRIEDEH

2 T N OREREEE & AMARE RS & OBEA TSR DI E O BT O B A L
BH72, 5631 H (8) EREIEKIC, 2 4 R L Appendix A 1278 L2 FIEIZ LD | kg
O EFRBS LU 2 FIRCHENS SO APER L OR Y e ET 5, YisEsE
DFEMZ Fig. 6.4.6 (SR 25, AW O E#hE v o di i FRIPEIL, [ =3.60x10" mm* & 725,
722U, BifREEORINE [ B L O BREEOYIE b 22N, [=1435m, b=18.12m &

LCRE LT,

48 |

20 (2nd deck)

1780

400x50 = -

N

300x50

»

4300

48

1

C

200%x90x9/14

50 (upper deck)

Fig. 6.4.6 Details of side shell structure (unit: mm)
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642 HBRERETILLEBIFEE
(1) BAERRMOARERETIVIE

FEAT S RN D BN EPREHR T T /L % Fig. 6.4.7 17T, TRTONEITIE Y = VEHE (%
THEERE) MWz, —J7, Hids KOBEEM Tk LT, MR Ty = VB R &
W3, RSO IIZ e — 2R 52 7z, 7 0h BEBIERTS 5 A—L K (No.2
~No.6 Cargo Hold) 73 &Ml A > v afie L, 1 73RS O EIEAE T2 BE (A vy
a2 A X = KJ450X425 mm) & Uiz, ZHUSOREREIZ. SHITHWA Yy 2 (1
V1 BEHERE) TET ML, ZORER, BT VAIROH S KOEREIT. £
Zh, 430,229 3B L UN530,615 Lotz

—J7. Fig. 648 \Z” T K 912, LR AMRERET VOFEMA v o 285 DAZ IR0 H L,
5 R—/VRETNET D, KET/VOHISEIB XL OEREIL, 2E0., 418,051 BLV
497,975 Th %,

7ok, BEH L7z = V#3313, Belytschko-Tsay B35 C, MJE SOy RE SEE LTz,
EMET LB LV S R—L RET L& FEM IZ X il 4% Table 6.4.10 (27859,

Fine mesh part

(a) Overview

(b) Inner bottom (c) Watertight bulkhead (d) Partial bulkhead

Fig. 6.4.7 Full model of a 5,250 TEU container ship for FEM analysis
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. Multi point constraint or free
Fixed end p

|

Fig. 6.4.8 5-hold model of a 5,250 TEU container ship for FEM analysis

Table 6.4.10 Analysis condition for finite element model of a container ship

FEM program - LS-DYNA ver. 971 (Elastic and elasto-plastic analysis)
MSC.Nastran (Elastic analysis only)

Extent of model - Longitudinal direction : A whole ship or five holds

Transverse direction : Both sides

Condition of initial imperfection - No initial shape deformation was given

- No consideration of the effects of welding residual stress

Thickness - Gross thickness
Boundary condition - Simply supported at fore end and aft end of the model
(full model)

Cantilever condition (five-hold model)

Container load and | -+ No consideration

ballasting condition

Load Hull weight - Hull weight of the whole model was considered
condition Sea pressure - No consideration
Bending moment - QGradually increased until the hull girder was fractured in

the model, i.e. the hull girder ultimate strength

Torsional moment | - Distribution given by ClassNK Guideline ¥
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() mREH

BRET VIS LD FEM MITICHE W TRIET 258 R E, APRIOE S F—F 1 kO
fHRICBWTI R TOWEABEZHRL (u=v=w=0), FPAlOE % —F 1 LOfHi
IRV TKRFEB LOSRE M EBHEEZHERT S u=v=0),

—JF. S A=V RET T DR GMIE, MEAERTARmAN O RIZHB N TTXTo
HHREZHRL u=v=w=0,=0,=0,=0), FPM% Al WER) &7, 22 TiE,
w IR vIZ B AW, widseRG W, 0, [TARE A mEE Y . 0, 1X BT A midhE v |
B LG, IR gE Y 2 R~7,

7B, 5 A= FET O FEPMIE MGG DR FEIFIZOWTIE, MEOEPIZ XD R
BT 5720, MHARZ BN L TEOELBIZIED T— A > b db D WITHNITE— 2
v b EAMT AR LRIET D,

() WEEH

EMETNVBLY 5 A=V RET L E S, FIEDIRYD E— A MMk LU T E— 2
v NSARNERT B & 5. S E AR LRSI OBART 5, 2L, B
Bl FEM gt = — KT 5 LS-DYNA T, EEISENINRT 5 (bbb, #Eiimx
JVERR 01270 D) ETICHLHBEORMAZEST D720, £7 /0T &I EOwE Y2 /EHEE
i3 L OREFRFR] 2 Gt L. A A2 E LT,

4) e

fE R8T O ELE S A Table 6.4.11 12T, Y 7 HE =206 GPa, &R7T YV v =03 &
T 5, RS AR EEOA 1 HT36 #&8i & L CRARIG 1% 352.8 MPa, & OO
X HT32 #8il & U CRIRIG 1% 313.6 MPa &35, F7-. BHiEebIE HT36 i & L TR
Ji5J1% 352.8 MPa &35, 7235, MELOEISI) ~KHEOT 2% % Fig.6.4.9 O K 5 ITUE
TN, . RERET VK DI DY, SIMREE S U CORSERBIEARE LT
fERT b EE T 5,

(5) DR=bAHE I VEEREIEN

AT SAR DA IREFRE T VL TlE, Pl bhl JOWBREIS 2 & BIZHEE LRV,
7212 L BhRIISRTE FEM SRAT = — RIS & 2 B RARERMRNT Tl Efi 22 D BiEE S %
IZBWT, T AVORBFICL Y EAREE— FBRETD BN,
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Table 6.4.11 Material properties of steel

Young’s modulus 206 GPa
Poisson’s ratio 0.3
Mass density 7.85 ton/m’
MS 235.2 MPa
Yield stress YP32 313.6 MPa
YP36 352.8 MPa
True stress and true strain curve See Fig. 6.4.9
700
600
g 500
§« 400 —MS
g 300y —YP32
s 200 F YP36
E 100
0 . . ! ! )
0 0.2 0.4 0.6 0.8 1

True strain

Fig 6.4.9 True stress and true strain curve

6.43 FEMMENTIC K SFEREE

AT, AIEWE CTh D Ea T T T 2 IREFIEO AR E A LT 572
B, WHAZLDORE WINE R EZ R - 5 5 —L RET L (L = 0.237~0.775) 12X LT,
RO TR U 72 MEREdh 1 36 L OWHRMESR 0 fighir 2 Ehi 5,
(1) #dh 17T

57—V RPERET /L (beam-B3 ; Fig. 6.4.3 ZH) | WNZ, 5 F—/ REREFRET L

(Fig. 6.4.7 Z8) Z T, FRIEEPHPN THREM TR 2 29 5, HEBI=S AT BE I [E 2 S
PEARR L. 143.5 m BITALIE &2 (W E S & LT, My =1.00 x 10° kN-m D73 > 7 fit i £ — A
v M EAMT D,
o fhIFfZER

LS-DYNA % H W\ 7o HEE B FRAT IZ X o TS D AV 7 88 1B 5 101 2L D fiy & 057 W) 43 Afi &
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Fig.6.4.10 (27”7,

T/, BEFREET /L, LS-DYNA 1 X O MSC.Nastran (& £ » TH L7t F E R O E
Ji 534 % Fig. 6.4.11 123, A K D | SEREFE N ORENF AR ICR LT, RERET L
(2 K DIRATHRE RS FEM ST RS R & 12IE—8T 5 Z L 3o 5,

Fringe Levels
5.850-02
-1.250e+00
-2.550e+00 _|
-3.868e+00 _
5.177e+00 __
-6.485e+00 _
-7.794e+00 ]
-9.103e+00 _|

-1.041e+01
-1.172e+01
-1.303e+01

Fig. 6.4.10 Contour of vertical displacement calculated by LS-DYNA (M, = 1.00 x 10> kN-m)

Distance from A.P., /L
_ 0 0.2 0.4 0.6 0.8 1
§ 0 I 1 1
=
E 27
@
E 4
@
= 6 r
= g L
% - ——Beam-B
E: -10 —LS-DYNA
£ -12 ¢ ——MSC Nastran
@
> -14 L

Fig. 6.4.11 Distribution of vertical displacement under bending (M, = 1.00 x 10° kN-m)

o fhliFisAh

DN MM E— A > b M, 12X > THMRITAE C 2 T I 0 A & i3 %, Fig. 6.4.12
|2 LS-DYNA AT L 0 1§ bz iS04 27”9, £72, Fig. 6.4.3 |[TR L2 RO~
@IZAEC TSI OWE N A % . TNZENOEE O R S J7a R Wrim s @i s 5
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LS-DYNA fEH5 5 & ol L C Fig. 6.4.13 1237, 7272 L, X BRI W oS E %
TTHDOTH D, REFZQ D534 1E LS-DYNA (2 L B & 258 A 5528, fthod
TR TIIRWVHEBEZ R LTS, ZOHHBEE LT, REEQIZERES (10.00 m) (3L
TWIE LR K E W2 BRINOFEENRIE T & LR SN D RERNOISIE & | 2L
=0.272 OWIEIZI51F 5 LS-DYNA IZ K DR EE DR —H L tE X b,

PALEX D SRMEREFENIC I T 2 MEd T AT ICBI L Cid, REHRET VI K DT RS R
FEM fEHTfE R & BWHBIZ "9 Z E B 60T o T,

Fringe Levels

4.000e+00
y 3.200e+00 ]

T_i (a) Side shell 2400ev90 3

1.600e+00 _
8.000e-01
-2.220e-16
-8.000e-01
-1.600e+00
-2.400e+00

-3.200e+00
4.000e+00 |

O ® @ @ :Corresponding beam element

z
x (b) Outer bottom

Fig.6.4.12 Contour of membrane bending stress calculated by LS-DYNA (M = 1.00 x 10° kN-m)
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1"}@

———Beam-B
—LS-DYNA

-4 3 2 -1 0 1 2 3 4 - - 1 2 3 4
Bending stress (MPa) Bending stress (MPa)

(a) Element D (z/L = 0.237~0.253) (b) Element @ (z/L =0.253~0.291)

) 11 /D

4-3-‘2.11012344'3'2-101234
Bending stress (MPa) Bending stress (MPa)
(c) Element 3 (z/L = 0.291~0.345) (d) Element @ (z/L = 0.345~0.398)

Fig. 6.4.13 Distribution of membrane bending stress in beam models (M, = 1.00 x 10° kN-m)

() RY BT (BREOEZES JURABEDORSHITOELEEZERLEMNES)

HEH AT &[RRI, BRMEREPHN CIR 0 fiftr 2 254 2, £9. MREEOZE R L O
RS O R T OB A2 ZE L WREFEET /L (Beam-Bl), N, 5 Fm—/L RATR
WHRHET /UK L, SIS M, =1.19 x 10* kN-m DR T— A > b2 &M 5, B, A
[REFRET BN TIE, IRV E— A POARIC K o TA U D FTE A% 5 Lok N T
DERZMHT D720, 7 /VERmOHMREEL L L, MOMRIEL R T 2T X To
BWRERET D,

LS-DYNA T2 & » T b= ghE T AL D534 % Fig.6.4.14 (TR d, £/, REHE
ET/VE LULS-DYNA IZ L o THE LI RIVETR O R 1015341 % Fig. 6.4.15 127, 72
. LS-DYNA OfRIAIL, AR BT 5 2N O 7 % Y4 3% OmE T2 &2 &
VaRDIz, FKE Y, #kREER KOS O FE T OB L2 EE L 2056 OFRNE
AR LT, BERET I L DIITHERD FEM MU R L 1ZIE BT 2 2 &b n b,
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Fringe Levels
1.250e+01
1.000e+01 ]
7.500e+00 _|
5.000e+00 _
2.500e+00
0.000e+00

-2.500e+00
-5.000e+00
-7.500e+00
-1.000e+01
-1.250e+01 _|

Fig. 6.4.14 Contour of vertical displacement calculated by LS-DYNA (M, = 1.19 x 10* kN-m)

7.0E-04
3  6.0E-04
2 —Beam-B1
T 5.0E-04 |
—LS-DYNA
B 40E-04
[
_é, 3.0E-04 |
..E. 2.0E-04 [
S 1.0E-04 |
0.0E+00 : : : : '
0 0.2 0.4 0.6 0.8 1
Distance from A.P., 7/L

Fig. 6.4.15 Distribution of torsional angle under torsion (M, = 1.19 x 10* kN-m)

Q) RY MBI (BRBOEZESIURABEDRSHMITOELEEZERT H5HST)

REFRBE DR RS K OIS O i i T OB A2 B8 5 R EHEET /L (Beam-B3) (%t
L. WEAIC M, = 1.19 x 10* kN-m DRV T— A > MR AR T2 EiET 5, Z D,
FEM fitfr Tl &7 Ve OMIREE 2 S rimicis VT, IRV E— A M MEAELSED
bR & O HTE A MRS RO RIS LT x5,

o ERNER

LS-DYNA fIEHTIZ & = THE & AR E T BN O R 7 1715341 % Fig.6.4.16 (7R3, £ 72,
W4 IR LT ARSI X OWEREEE X > — Lo T AT IR 3 5 F R E o
RADLEr (=010, 217 A—FL LT, RERET MLV MN L7-IRNAOIME
J7 1615341 % FEM FRHTHRE 5 & it L C Fig.6.4.17 (29, S 512, Fig. 6.4.17 (28 L 7= fhf S
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IRTDIRNAZFEL D/RT A —H p 1Tk THAT L7 R % Fig. 6.4.18 1R, AL 0 |
AR E O M ETE 2 B L RERET MENTHERIZ, r=01, T70bb, MMUEE L5
D[AlEEfE 0 DIFEREEE X Y — LA DOEERH 0 , D 10% EUE LIZHAIC, LS-DYNA B L
MSC.Nastran (2 X D MG R & RWHBZ =¥, 2o & &, 4.5. 12)@1@& k. X, k.=0.735
(k2= 0.540) &700 | Al EEbds K OWERRAE 2 Y — LESOFEAERIARUE L 7z [alfE /S %
DISRER ks 13, ky=6.88x10° kN-m / rad & 72 %, & 2T, ufiﬂp@wﬁﬁ%a@%ﬁ—?wﬁ@
HrizHs W TR, k. =0.735 ZHWTHT 2175 2 & LT 5,

Fringe Levels
9.250e+00
7.400e+00 :I
5.550e+00 _|
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Fig. 6.4.16 Contour of vertical displacement calculated by LS-DYNA (M, = 1.19 x 10* kN-m)
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126



X n
" " " |
T

N
'S
W
"o
'
LR
(O S -

4
Warping stress (MPa)

(a) Element D (z/L = 0.237~0.253)

R SRR N T S
\ .

Warping stress (MPa)

(c) Element 3 (z/L =0.291~0.345)

5
Warping stress (MPa)
(b) Element @ (z/L =0.253~0.291)
5 _
4 4 7
3
—Beam-A3
—LS-DYNA
1 4
403 2 4 / 4 s
2 4

34
Warping stress (MPa)

(d) Element @ (z/L = 0.345~0.398)

Fig. 6.4.20 Distribution of warping stress in cross-sections (M, = 1.19 x 10* kN-m)

o RYICKHHMIEA

EHIC, IRV ET—A 2 b M, T XK o THMRICA U 2 BTG 041 & Hefisd™ 5, Fig. 6.4.21
|2 LS-DYNA fi##TIZ £ 0 1§ & 7= SIS )1 04 27797, £ 72, Fig. 6.4.3 |[TR L2 RO~
@IZA L DM ) OWE N A % . TNZENOESE O R S S5 R Wi @i s 5
LS-DYNA fE#rs 5 & b L C Fig. 6.422 12737, B KD, 2RI & OBIWENS S54RI
WTTIEEHRAEIC RN /L DAL D A3 SIS 15346 O B PR 2287 1L, LS-DYNA 12 X % fi#

PR EHEZ AT D2 ERDN D,

127



11 1 | |
OROINE) @ Element

4

(a) 7,. in side shell (starboard side)

(b) 7., in outer bottom shell

L

Fringe Levels
1.400e+00
1.120e+00 :l
8.400e-01 _|

5.600e-01 _

2.800e-01
0.000e+00
-2.800e-01
-5.600e-01
-8.400e-01
1.120e+00
-1.400e+00 _|

Fringe Levels
1.100e+00
8.800e-01 :I
6.600e-01 _!
4.400e-01 _
2.200e-01
-5.551e-17
-2.200e-01
-4.400e-01
-6.600e-01
-8.800e-01
-1.100e+00 _|
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Fig. 6.4.23 Distribution of still water bending moment of the target ship
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Myy1 = Myy - Cya (6.4.4)
Myyz = Myy * Cu (6.4.5)
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Fig. 6.4.24 Distribution of wave-induced horizontal bending moment of the target ship
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My, = Myr - Cr (6.4.10)

My = 1.3C,LdCp - (0.65d; + €) + 0.2C;LB%C,, (6.4.11)
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Fig. 6.4.40 Warping stress induced by torsional moment, My,
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Fig. 6.4.41 Warping stress induced by torsional moment, My,

O, V=AY b Myn WMERT2HAICOWT, BETEICI > THEON-RE
FWEHZ OV IENEEMETAVBLY 5 F—I/L RET VO EZ i L >, Fig.
6.442 12T, ZOWE, 5 AV RETAOBEEMIITWVER TIX, KV IO
ETAMOENLONDD, KO ISTIDNHERNCRKE 25 BMET VOREFEO~,
BIO, 55—V RETLVOREZO~® (2/L=0.398~0.613) TiL, MiHDEEN 10%F2
Lo TS, ZOXMTIEL, JEMEMR VIS5 80~100 MPa FREIZEL TWbH L LD
(., e — A T & 2 EMEATENITIS ) S Fig.6.4.32 1Z7R L2 X 912K 200 MPa (29
Do LIEEDMoT, BV E—RAY N Myp E#IFE—2 > NEIOMAHBRICH X 52, WES
T My 1THERN T TR I RITTRHEBERRENEEZ BND,

144



———Beam-A3
———Beam-B3

\1_- /D
0.8

06 +

04 1

02 +

-100 -80 60 40 -20 0 20 40 60 80 100
Warping stress (MPa)

(a) Element ® of Beam-A3 and (D of
Beam-B3 (z/ L = 0.237~0.253)

~———Beam-A3
~——Beam-B3

-100 -80 -60 40 -20 0 20 40 60 80 100

Warping stress (MPa)

(c) Element (D) of Beam-A3 and @ of
Beam-B3 (z/ L = 0.291~0.345)

——Beam-A3
———Beam-B3

\ (.
-100 -80 -60 40 -20 O

20 40 60 80 100
Warping stress (MPa)
(e) Element ©® of Beam-A3 and & of
Beam-B3 (z/ L =0.398~0.452)

- D
0.8

—Beam-A3
0.6 | ~—Beam-B3
04 H
02 H

a

-100 -80 -60 40 -20 0

20 40 60 80 100
Warping stress (MPa)

(b) Element ® of Beam-A3 and @ of
Beam-B3 (z/ L = 0.253~0.291)

/D

——Beam-A3
~—Beam-B3

1\ . o
-100 -80 -60 40 -20 0

1 1 1 1 )

20 40 60 80 100

Warping stress (MPa)

(d) Element (8 of Beam-A3 and @ of
Beam-B3 (z/ L =0.345~0.398)

——Beam-A3
B eam-B3

0.2 1

—

-100 -80 60 40 -20 O 20 40 60 80 100

Warping stress (MPa)

(f) Element of Beam-A3 and ®of
Beam-B3 (z/ L =0.452~0.506)



1T /D
0.8 +
~——Beam-A3
- —Beam-B3

1 1 1 1 J

20 40 60 80 100

-100 -80 -60 40 -20 0

Warping stress (MPa)

(g) Element @ of Beam-A3 and @ of
Beam-B3 (z/ L = 0.506~0.560)

~——Beam-A3
~—Beam-B3

-100 -80 -60 40 -20 0

1 1 L 1 1 1 J

20 40 60 80 100

Warping stress (MPa)

(i) Element @ of Beam-A3 and @ of
Beam-B3 (z/ L =0.613~0.667)

1 },
8+
06 1

——Beam-A3
04 1 ——Beam-B3
02 1

-100 -80 60 40 -20 O 20 40 60 80 100
Warping stress (MPa)
(k) Element @ of Beam-A3 and @ of
Beam-B3 (z / L = 0.721~0.775)

l -y
———Beam-A3
- ———Beam-B3

20 40 60 80 100

-100 -80 -60 -40 -20 0

Warping stress (MPa)

(h) Element @ of Beam-A3 and ® of
Beam-B3 (z/ L = 0.560~0.613)

——Beam-A3
—Beam-B3

-100 -80 -60 40 -20 0O 20 40 60 80 100

Warping stress (MPa)

(j) Element @ of Beam-A3 and 0 of
Beam-B3 (z/ L = 0.667~0.721)

Fig. 6.4.42 Distribution of warping stress induced by My
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(a) Full model

(b) 5-hold model

Fig. 6.4.44 Shear stress induced by torsional moment, M
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(a) Full model

(b) 5-hold model

Fig. 6.4.45 Shear stress induced by torsional moment, My,
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Fig. 6.4.46 Distribution of shear stress induced by My
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Fig.6.4.48 Bending moment—curvature relationship under My ;.
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(b) 5-hold model

Fig.6.4.49 Contour of von-Mises equivalent stress under My, ;p.s
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(a) Full model

(b) 5-hold model

Fig.6.4.50 Contour of equivalent plastic strain under My, ;s
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0 20 40 60 30

Time (sec)

Fig. 6.4.51 Time history of vertical bending moment at collapse section

(Note, *: definition of elastic-perfect plastic for material properties)
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Fig. 6.4.52 Warping and shear stress induced by torsional moment, M
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Fig. 6.4.53 Warping and shear stress induced by torsional moment, My,

o BfMFE—2A

B0 E—AL b Myn £720F Myp A0 LTORIET, &% 1 WERIR TR LA X
7 E—A b (Fig. 6.426 Z2R) ZE2ET LB IS A—/L BT ICHE T RA& TR IS
BT 5 E TREMICANT 5,

o RYNEELXEE LI-ERI L oM ITREEE

Fig. 6.4.54 |ZHERNITE— A > D&, RV E— A > b Myp BIL O T E—A >~ i
T, D B—RA 2 N My, 8 X ONER T E— 2 > &AM LG okl F£— 2 v b~
BhRBERZ BT T LB LW 5 A—/L RET OV TRT, WTFRORERIZBWTH
AIRO L 91, PRV F—RA 2 N My ODEBERBFZETHY , IRV E— A 2 b Myr, DB
INSWZ LD D, BMETNORERO~OIZBIT 2B T—A 2 b My BFMICED
BASBRE DR FERIT, NEIZ 11.7%, 14.0%., 13.4%B LN 11.1%TH D, R, Y T— A
VN Myry T EIZ 2.11%, 0.32%, 1.31%EB X 0N240%TH D, LI=Rn->T, 8k
WTLHRY E— A N My EHEHNTE— A > MRERAETIER T 2 SAE L7356 fitdh
TRAETREE DR T I, AEMTEZ Z0REROTORTEERD 134%L D,

T UHKBEZOEMET LB LS Am—IL RETIVORKEIEE %4 g L C Fig. 6.4.55 IZ
AT, 5 R—/V RETILVOMHAER N BT T /L OMITHER L0 L@ b TlEH 528, 0
BT LO%BRETH U | MBI=ATHEILEE TRV ISNBRL DR T— A2 b Myr, 12 &
DRV N 22 BT (B8 6.4.4 THG)Z M) | MEBIERTHICEERMELHT 5 A—L FET L
DFENTTHoTH D Z EBRH LM -T2,

160



Bending moment (kN-71) Bending moment (AN-71)

Bending moment (AN-21)

1.2E+07
1.0E+07 |
8.0E+06 |
6.0E+06 |

~———Bending only
——=Mwtl + bending
2.0E+06 | ——Mwt2 + bending

4.0E+06

0.0E+00 : : . !
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04

Curvature (rad./m)

(a) Element © of full model
(0398 = z/L < 0.452)
12E+07
1.0E+07 |
S8.0E+06

6.0E+06 |

—Bending only
——Mwtl + bending
2.0E+06 [ ~=Mwt2 + bending

40E+06 |

0.0E+00 L L L !
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04

Curvature (rad./m)

(c) Element 0 of full model
(0452 = z/L < 0.506)

1.2E+07
1.0E+07
8.0E+06 |

6.0E+06 |

——Bending only

4 0E+06 [ e Nt + bendmg

2.0E+06 | ———Mwt2 + bending

0.0E+00 * . . !
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04

Curvature (rad./m)

(e) Element @ of full model
(0.506 = z/L < 0.560)

161

Bending moment (AN-71) Bending moment (AN-71)

Bending moment (kN-1)

1.2E+07

1.0E+07

8.0E+06 |

6.0E+06 |

40E06 T —f/[::jlmf l:lx:zing
20E+06 | ——Mwt2 + bending
0.0E+00 + . . )

0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04
Curvature (rad./m)

(b) Element & of five-hold model
(0398 = z/L < 0.452)
12E+07 r
1.0E+07
8.0E+06

6.0E+06 F

——Bending only
——Mwtl + bending
2.0E+06 r ~—Mwt2 + bending

4.0E+06

0.0E+00 . L . i
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04

Curvature (rad./m)

(d) Element ® of five-hold model
(0452 = z/L < 0.506)
1.2E+07 r
1.0E+07 [
8.0E+06 |

6.0E+06 |

———Bending only
——=Mwt] + bending
20E+06 [ ~—Mwt2 + bending

40E+06 f

0.0E+00 . . . !
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04

Curvature (rad./m)

(f) Element (D of five-hold model
(0.506 = z/L < 0.560)



Bending moment (kN-1)

14E+07 14E+07
12E+07 | E 12E+07
1.0E+07 | = 1.0E+07 |
=
8.0E+06 [ g 8.0E+06
=
6.0E+06 ~——Bending only ; 6.0E+06 ~——Bending only
40E+06 | ———Mwtl + bending -E 4.0E+06 [ ——Mwt] + bending
2.0E+06 | ——Mwt2 + bending 2 20E+06 L ——Mwt2 + bending
0.0E+00 ! ! ! ! 0.0E+00 A 4 . 4
0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04 0.0E+00 5.0E-05 1.0E-04 15E-04 2.0E-04
Curvature (rad./m) Curvature (rad./m)
(g) Element @ of full model (h) Element ® of five-hold model
(0560 = zL < 0.613) (0.560 = z/L < 0.613)

Fig. 6.4.54 Vertical bending moment — curvature relationships under combined loads
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Fig. 6.4.55 Comparison of ultimate strength between full model and five-hold model
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Fig. B.1 Stiffened panel specimen after shear buckling
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Fig. B.2 Deformation of continuous stiffened panel under in-plane shear
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Fig. B.3 Finite element model of continuous stiffened panel
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Fig. B.4 Induced initial deflection
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Fig. B.5 Interaction relationship of ultimate strength of stiffened panel under compression and shear
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