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ABSTRACT 
 

 

X-ray free-electron lasers (XFELs) produce unprecedented high brilliance, excellent spatial 

coherence, and ultrafast pulse durations. In recent years, several XFEL facilities have achieved 

lasing in the hard X-ray regime. The use of focusing optics enables enhancement of X-ray 

intensity, which expands the range of possible XFEL applications. Several optical devices, such 

as Fresnel zone plates, refractive lenses, and reflective mirrors, have been utilized for this 

purpose. Amongst these devices, reflective mirrors can achieve the highest focusing efficiencies 

with long working distances; therefore, they provide significant advantages for various 

applications.  

The principle aim of the investigation described herein was to generate an extremely intense 

X-ray field to explore nonlinear phenomena in the hard X-ray regime. To meet this requirement, 

the usage of an XFEL and its focusing are critically important. To achieve power densities of 

around 1022 W/cm2, a XFEL sub-10-nm focusing system was developed in this study using two-

stage reflective focusing optics. The development of this system required studies of the 

fabrication and measurement of mirror substrates with steeply curved surfaces, deposition of 

multilayers with high reflectivities and sufficient X-ray irradiation tolerances, and techniques 

for single-shot measurement of focused wavefronts.  

XFEL sub-10-nm focusing mirrors have steeply curved surfaces that are difficult to measure 

using conventional shape testing methods. The minimum radius of curvature is a few meters, 

and the slope range is several dozen milliradians. Furthermore, the required accuracy, or 

Rayleigh criterion, of the mirror surface is 1 nm peak-to-valley. A laser autofocus microscope 

system featuring a position correction mechanism utilizing three heterodyne interferometers 

was developed to provide measurements at this level of accuracy. This apparatus successfully 

measured the surface shapes of sub-10-nm focusing mirrors with the accuracy required by the 

Rayleigh criterion.  

In XFEL optical design, the utilization of multilayer mirrors may be considered, since the 
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grazing incidence angle is much greater than the critical angle at which total reflection occurs. 

However, one of the critical requirements of the optical elements used in XFELs is sufficient 

tolerance to intense X-ray irradiation. Therefore, we investigated the X-ray damage thresholds 

of multilayer films consisting of Pt and C, a suitable combination for this optical design, in 

grazing incidence conditions. We determined that the threshold value was 0.051 μJ/μm2, which 

is sufficiently higher than the energy densities that are practically employed. Additionally, the 

focusing efficiency is related to the X-ray reflectivity of the multilayer film. We improved the 

X-ray reflectivity of a Pt/C multilayer by approximately 10% through slight C-doping into the 

Pt layers.  

To investigate the focused state of the XFEL nanobeam, a wavefront measurement method 

was developed, utilizing single-grating interferometry based on the Talbot effect. This method 

can be used to measure the wavefront phase error, which includes the alignment and surface 

shape errors of the mirror optics, from a single image. Correct mirror alignment was achieved 

using this method, and the residual errors could be corrected through deferential deposition with 

sub-nanometer accuracy.  

Use of the above results facilitated initial commissioning of the XFEL sub-10-nm focusing 

optics at SPring-8 Angstrom Compact free-electron LAser. We found that phase errors of 

several radians were caused by the shape error of the multilayer mirror, and the focused beam 

size was approximately 10 nm, which is the smallest reported to date in XFEL focusing. Then, 

we endeavor to focus the XFEL to sub-10-nm size with a power density greater than 1022 W/cm2, 

by using shape-error-corrected multilayer mirrors. Such X-ray field intensities will enable the 

exploration of nonlinear phenomena in the hard X-ray regime.  
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Chapter 1  
 
INTRODUCTION 

 

 

In 1895, a new form of radiation was discovered by W. C. Rӧntgen [1], when he experimentally 

discharged a Crookes tube [2] to produce radiation of a wavelength that had not been observed 

previously. This new radiation was subsequently named “X-ray” to signify its unknown nature. 

Rӧntgen went on to research his discovery further and was able to ascertain some of the typical 

characteristics of X-rays, such as their deep penetration abilities, their fluorescence, and that 

their trajectories are unaffected by electric and magnetic fields. Then, in 1912, M. von Laue 

discovered the diffraction of X-rays by atoms in a crystal structure [3,4]. Moreover, in 1913, W. 

H. Bragg and W. L. Bragg observed the diffraction of X-rays by crystal planes and determined 

the relationship between X-ray reflection angle and crystal lattice spacing, called Bragg’s law 

[5]. Since these discoveries, X-rays have played important roles in a wide range of scientific 

fields, including the physical sciences, the medical sciences, and engineering. In the fields of 

materials and life sciences, the high penetration of X-rays through materials and their mutual 

interactions with crystals and atoms have been effectively utilized, and they have been 

instrumental in groundbreaking discoveries such as that of the double helix structure of DNA 

[6]. Consequently, X-rays are widely recognized as irreplaceable analytical tools.  

However, X-ray sources remained essentially explored until the 1960s. Synchrotron 

radiation was theoretically predicted in 1946 [7] and was observed using an electron accelerator 

in 1947 [8]. However, at that time, synchrotron radiation, which was produced by first-

generation facilities, was considered to be only the energy lost from accelerators in elementary 

particle experiments. In the 1970s, a second-generation synchrotron radiation facility was built, 

which was designed primarily as an X-ray source. It was then found that synchrotron radiation 

is much more powerful and more widely applicable than radiation from conventional X-ray 



2 Chapter 1. Introduction 

sources.  

In recent years, various advanced analytical technologies have been developed by utilizing 

the high-brilliance and low-emittance properties of third-generation synchrotron radiation 

sources [9], which began operation in the 1990s. The increase in the peak brilliances of the X-

ray sources over time is shown in Fig. 1.1. The development of X-ray free-electron lasers 

(XFELs) [9] is expected to enable further advances in the field of X-ray analytical technology. 

High-brilliance X-ray sources are effective for providing high photon densities at their focal 

points and can yield both high spatial resolution and high throughput when used in scanning-

type X-ray microscopes. Therefore, the competition to improve focusing states via advances in 

optical element performance has intensified since the 2000s, and the use of Fresnel zone plates, 

refractive lenses, reflective mirrors, and various other X-ray optical elements has yielded focus 

spot sizes of 100 nm or less [10–16]. Of these optical elements, mirrors greatly surpass the 

others due to their high focusing efficiencies, long working distances, and small chromatic 

aberrations. Furthermore, since ablation damage induced by intense X-rays, such as those  

 

 

Fig. 1.1. Peak brilliances of X-ray sources. 
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produced by XFELs, cannot be avoided in normal incidence optical elements, the use of mirrors 

in grazing incidence optics is advantageous.  

The principle aim of this study was to generate an extremely intense X-ray field to explore 

nonlinear phenomena in the hard X-ray regime. To meet this requirement, the usage of an XFEL 

and the control of its focusing are critically important. In SPring-8 Angstrom Compact free 

electron LAser (SACLA) [17], a 50 nm focusing beam with a power density of 1020 W/cm2 has 

been achieved using total reflection mirror optics [18]. This focused beam has been applied to 

studies of nonlinear X-ray optical phenomena such as two-photon absorption [19], saturable 

absorption [20], and Cu-atomic inner-shell lasers [21]. To achieve higher power densities of 

around 1022 W/cm2, XFEL sub-10-nm focusing is needed. With the objective of developing 

such a focusing system, we performed studies of the fabrication and measurement of mirror 

substrates with steeply curved surfaces, deposition of multilayers with high reflectivities and 

sufficient X-ray irradiation tolerances, and development of a technique for single-shot 

measurement of focused wavefronts.  

The remainder of this thesis is organized as follows.  

In Chapter 2, the fundamentals of reflective X-ray focusing optics are described. The focal 

spot sizes achievable by reflective optics, the limitations of total reflection, and the need for 

multilayer films to overcome their limitations are described. Then, the existing reflective XFEL 

focusing optics at SACLA are introduced.  

In Chapter 3, the mirror substrate fabrication and measurement methods used to produce 

the sub-10-nm focusing mirrors for this study are described. To create the desired mirror shapes 

accurately, precise shape measurements were necessary; therefore, a new measurement system 

was developed, as explained in this chapter.  

In Chapter 4, the thin film deposition system developed to fabricate Pt/C multilayers and 

its tolerance to XFEL irradiation are described. Then, evaluations of the Pt/C multilayers 

obtained using focused and unfocused XFEL beams are described.  

In Chapter 5, various methods of improving the reflectivities of Pt/C multilayers are 

discussed, and the results of Pt layer thinning and C-doping tests are presented.  

In Chapter 6, XFEL sub-10-nm focusing optics and focusing strategies are described, and 

the wavefront measurement method developed to examine the focused state of the XFEL 

nanobeam is discussed. The results of using this method for accurate mirror alignment and the 
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measured residual surface shape errors of the mirror optics are presented. Then, the initial 

commissioning of the XFEL sub-10-nm focusing optics at SACLA is described. 

Finally, in Chapter 7, the conclusions of this study are summarized.  
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Chapter 2  
 
REFLECTIVE FOCUSING OPTICS FOR 
X-RAY FREE-ELECTRON LASERS 

 

 

XFELs produce unprecedented high brilliance, excellent spatial coherence, and ultrafast pulse 

duration. The Linac Coherent Light Source [22] in the USA and SACLA [17] in Japan have 

recently achieved lasing in the hard X-ray regime. Additional hard XFEL facilities are under 

construction in many countries, e.g., the European XFEL in Germany, the Pohang Accelerator 

Laboratory XFEL in South Korea, and the SwissFEL in Switzerland. These X-ray sources, in 

conjunction with analysis methods, provide unique capabilities, and their application to 

exploring new frontiers of science can be advanced by using focusing optics.  

 

 

2.1 X-ray Focusing with Reflective Optics 
 

The use of focusing optics enables further enhancement of X-ray intensity, expanding the range 

of applications of XFELs. Several optical focusing devices, such as Fresnel zone plates [23,24], 

refractive lenses [25], and reflective mirrors [18,26], have been utilized in XFEL facilities. 

Amongst these, reflective mirrors achieve the highest focusing efficiencies with long working 

distances; therefore, they provide significant advantages in various applications. In this section, 

X-ray focusing with reflective optics and the focal spot sizes achievable by using this method 

are described.  

X-rays are high-frequency electromagnetic waves. Therefore, the diffraction-limited focal 
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spot size D of an X-ray beam, based on Fraunhofer diffraction theory [27], is given by  

 
2

D
NA
l

= , (2.1) 

in the case of a rectangular aperture, where λ and NA are the X-ray wavelength and numerical 

aperture of the incoming beam, respectively. NA is given by  

 sinNA n q= , (2.2) 

where θ and n are the convergent angle of the incoming beam and the refractive index (n ≤ 1 

usually in the X-ray regime), respectively. If the spot size is defined by the full width at half 

maximum (FWHM) of the intensity on the focal plane, the spot size DFWHM is given by  

 FWHM 0.44D
NA
l

= . (2.3) 

The essential lower limit of the spot size is comparable to λ, since NA is generally smaller than 

1.  

However, large convergent angles, NA ≈ 1, are currently impossible to attain in the X-ray 

regime, since transmission without reflection occurs when the incidence angle becomes large. 

Therefore, the fundamental upper limit of NA is severely restricted by the effective value of NA, 

which is optical-element dependent. Attempts to estimate the theoretically available lower limit 

of the focal spot size, i.e., the upper limit of NA, in diffraction-limited conditions have been 

reported. For example, in the Kirkpatrick–Baez (KB) optical system [28] (see Fig. 2.1), which 

is the typical X-ray reflective focusing system, the upper limit of NA is the equivalent to the 

critical angle of the surface material of the total reflection mirror. Therefore, D is given by 

 
c2

D l
q

³ , (2.4) 

 

Fig. 2.1. Schematic of KB mirror geometry, where two concave mirrors are 

arranged orthogonally. 
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since the critical grazing incidence angle is sufficiently small, sinθc ≈ θc. In the total reflection 

condition, θc is restricted by the surface material. Even for high-density materials, such as Pt 

(21.45 g/cm3), θc is only 8 mrad at a photon energy of 10 keV. In contrast, employing a 

multilayer coating enables the use of a large grazing incidence angle 3–4 times larger than the 

critical angle at which total reflection occurs, thus allowing spot sizes 3–4 times smaller 

according to Eq. (2.4).  

The geometry of an ellipsoidal focusing mirror is depicted in Fig. 2.2, showing that the two 

focal points of the ellipse become the source and the focus. Typically, the major and minor axes 

are several tens of meters and several tens of millimeters long, respectively. The grazing 

incidence angle on the optical axis is θ2, with θ1 ~ θ3, where θ1 < θ3.  

A schematic of a multilayer mirror, and the difference between the total reflection condition 

of a single-layer mirror and the Bragg refraction condition of a multilayer mirror, are shown in 

Fig. 2.3. If the influence of refraction is ignored, the shape of each interface of the multilayer 

film follows part of the ellipse, each with a slightly different eccentricity. Moreover, to design 

multilayer mirrors, it is necessary for the difference of each optical path to be an integral 

multiple of the X-ray wavelength. The light impinging on each interface will then be reflected 

towards the focal point, and the ideal diffraction-limited focusing conditions, such as 

constructive interference at the focal point, will be satisfied. The multilayer period is non- 

uniform at each point on the mirror surface since the incidence angle changes, resulting in a 

laterally graded multilayer mirror. The advantage of replacing the single-layer mirror with a 

multilayer mirror is the large convergent angle of the incident X-rays, as shown in Fig. 2.3(b).  

 

Fig. 2.2. Ellipsoidal focusing mirror geometry. 
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Fig. 2.3. (a) Multilayer mirror schematic: thick black lines represent multilayer 

interfaces. (b) Differences between total reflection from single-layer mirror and 

Bragg reflection from multilayer mirror. 
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2.2 Multilayer Films for X-ray Focusing 
 

A multilayer film is an X-ray optical element utilizing Bragg diffraction from an artificial 

periodic structure consisting of alternating layers of two or more optically dissimilar 

components. Bragg diffraction from the constructive interference of the multilayer film can 

occur at large grazing incidence angles, which are sufficiently larger than the critical angle at 

which total reflection occurs. 

X-rays can penetrate substances easily when the incidence angle is larger than the critical 

angle. Therefore, periodically layered structures inside the material will cause reflected waves 

to interfere with each other. When the optical path difference between the reflected waves is 

equal to an integer multiple of the wavelength, a high reflectivity will be obtained. This 

condition is Bragg’s law [5] and can be written as 

 2 sinm dl q= ,  (2.5) 

where m, λ, d, and θ are the Bragg index, incident X-ray wavelength, multilayer period, and 

grazing incidence angle, respectively. Considering refraction inside the materials, Eq. (2.5) can 

be written as 

 
2

2

22 sin 1
sinm

m

m d d dl q
q
-

= - , (2.6) 

where θm is the mth-order grazing incidence Bragg angle, and δ is the real part of the complex 

refractive index n. Equation (2.7) defines n to be  

 1n id b= - - , (2.7) 

where δ and β are related to the real (refraction) and imaginary (absorption) parts of n, 

respectively, and are given by  

  
2

e A 1

2
mr N f

A
l rd

p
=  (2.8) 

and 

 
2

e A 2

2
mr N f

A
l rb

p
= , (2.9) 

where re, NA, ρm, and A are the classical electron radius, Avogadro’s constant, the material 

density, and the atomic weight, respectively. The variables f1 and f2 represent the real and 
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imaginary parts of the anomalous dispersion factors, respectively.  

Multilayer films have artificial periodic structures, consisting of alternating layers of two 

optically dissimilar components. A material with a high atomic number (Z) is used to obtain a 

high reflectivity, and a low-Z material is used as the spacer. Various material combinations have 

been researched for use as focusing mirrors and monochromators in the hard X-ray regime. 

Predominately, Cr, Ni, Mo, W, and Pt have been used as high-Z materials, while B4C, C, and Si 

have been used as low-Z materials [29–38]. In this study, Pt was used as the high-Z element 

because it exhibits adequate reflectivity and chemical stability, and C was used as the low-Z 

element because it possesses sufficiently low absorptivity in the hard X-ray regime and is 

resistant to thermal interdiffusion.  

A brief theoretical background of X-ray reflection and X-ray standing waves (XSWs) in a 

periodical multilayer is as follows. The multilayer structure consists of N bilayers of alternating 

high- and low-Z materials, as shown in Fig. 2.4. A plane electromagnetic wave of frequency ω 

in the jth layer of a medium, at a position r, can be described by [39]  

 ( )( ) expj j jE i twé ù= - × -ë ûE r k r , (2.10) 

where Ej is the field amplitude at the top of the jth layer, and kj is the wave vector in the material 

of the jth layer. The z-component of the wave vector is given by  

 22 cosjz jk p e q
l

= - , (2.11) 

where θ is the grazing incidence angle, and λ is the incident X-ray wavelength. The dielectric 

function in the jth layer, εj, is given by 

 1 2 2j j jie d b= - - . (2.12) 

Here, δj and βj are the real and imaginary parts of the complex refractive index of the jth layer, 

respectively.  

In the X-ray regime, there is no significant difference between s and p polarizations [40]; 

thus, the expression for s polarization can be adopted. The Fresnel equations for the reflection 

and transmission coefficients, rj and tj, respectively, at the interface between layers j and j+1 

are given by 
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Fig. 2.4. Schematic of transmitted (Et) and reflected (Er) plane electromagnetic 

waves inside multilayer. 
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 1,

1,

jz j z
j

jz j z

k k
r

k k
+

+

-
=

+
 (2.13) 

and 

 
1,

2 jz
j

jz j z

k
t

k k +

=
+

. (2.14) 

An expression to consider attenuation due to the interface roughness σj, the root-mean-square 

(RMS) deviation at the interface of layers j and j+1, was previously derived [41,42]. Here, rj 

and tj are multiplied by factors Sj and Tj, respectively, which are given by 

 2
1,exp 2j j jz j zS k ks +é ù= -ë û  (2.15) 

and 

 ( )22
1,exp / 2j j jz j zT k ks +

é ù= -ê úë û
. (2.16) 

The behavior of electromagnetic waves in a multilayer system consisting of multiple interfaces 

can be calculated by recursive [40,43] or matrix [42] methods. In the following derivation, the 

recursive method is used. The amplitudes of the transmitted and reflected plane waves at the 

top of the jth layer, Et
j and Er

j, respectively, are given by 

 r texp 2j jz j j jE ik d A Eé ù= -ë û  (2.17) 

and 

 
t

t
1

1, 1 1

exp
1 exp 2

jz j j j j
j

j z j j j j

ik d E t T
E

ik d A r S+
+ + +

é ù-ë û=
é ù+ -ë û

, (2.18) 

where 

 1, 1 1

1, 1 1

exp 2
1 exp 2

j j j z j j
j

j z j j j j

r S ik d X
A

ik d A r S
+ + +

+ + +

é ù+ -ë û=
é ù+ -ë û

 (2.19) 

and dj is the thickness of the jth layer. 

The X-ray reflectivity R can be calculated from the ratio of the field amplitudes at the 

sample surface:  
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 ( )
2r

0
t
0

ER
E

q = . (2.20) 

The XSW field intensity at each interface of the multilayer can be obtained using Eqs. (2.17)–

(2.19), and the inside of the jth layer can be interpolated to be an interface between the 

transmitting and reflecting plane waves as [44,45]  

 ( ) ( )2 2t r t r, exp 2 exp 2 2 cos 2j jz j jz j j jzI z E k z E k z E E k zq n¢¢ ¢¢ ¢é ù é ù= - + + +ë û ë û , (2.21) 

where z and ν are the depth from the top of the jth layer and the phase difference between Er
j 

and Et
j, respectively. The variables k'jz and k"jz are the real and imaginary parts of the component 

kjz, respectively.  

The calculated X-ray reflectivities and XSW field intensities of the Pt/C multilayers are 

shown in Figs. 2.5–2.7 and Fig. 2.8, respectively, for an X-ray photon energy of 10 keV (λ = 

0.124 nm). The X-ray reflectivities were calculated as functions of three quantities: the grazing 

incidence angle (Fig. 2.5); γ (= dhigh/d), the ratio of the thickness of the high-Z layer to the total 

thickness of the bilayer (Fig. 2.6); and the multilayer period (Fig. 2.7). In Fig. 2.5, it can be 

seen that high reflectivity peaks were obtained in the Bragg condition (Eq. (2.6)). The vibrations 

of the reflected intensity, which are called Kiessig fringes [46], enable determination of the  

 

 

Fig. 2.5. Calculated X-ray reflectivities versus grazing incidence angle (fixed 

parameters γ = 0.25, N = 50). 
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thickness of the multilayer period. In Fig. 2.6, the γ range from 0.2 to 0.5 is optimal for the first-

order Bragg diffraction, with a small dependence on N. For the second-order diffraction, the 

reflectivity is approximately 0 at γ = 0.5. The XSW field intensities were calculated as functions 

of the grazing incidence angle and the depth of the multilayer medium, as shown in Fig. 2.8. 

 

 

Fig. 2.6. Calculated X-ray reflectivities of (a) first- and (b) second-order Bragg 

diffractions versus γ (fixed parameter d = 3 nm). 

 

 

Fig. 2.7. Calculated X-ray reflectivities of (a) first- and (b) second-order Bragg 

diffractions versus multilayer period (fixed parameter γ = 0.25). 
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Fig. 2.8. Calculated XSW field-intensity distributions in multilayer structure, as 

functions of grazing incidence angle and depth of multilayer medium. Dashed white 

lines represent first-order Bragg angle. (a) d = 2.5 nm, γ = 0.5, N = 40; (b) d = 6 nm, 

γ = 0.25, N = 40.  
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2.3 Reflective Focusing Optics Used at SACLA 
 

At SACLA, 1 μm [26] and 50 nm [18] XFEL focusing has previously been demonstrated by 

utilizing total reflection focusing mirrors. The schematics of the optical configurations and the 

optical design parameters used to obtain 1 μm and 50 nm focusing are shown in Fig. 2.9 and 

Table 2.1 and in Fig. 2.10 and Table 2.2, respectively. 

The 1 μm focusing system [26] realized an FWHM beam size of 0.95 μm (horizontal 

direction, H) × 1.20 μm (vertical direction, V), at a photon energy of 10 keV. The photon flux 

density of the focused beam was 4 × 104 times higher than that of the unfocused beam. A peak 

power density of 6 × 1017 W/cm2 was achieved, at a pulse energy of 98 μJ and a pulse duration 

of 20 fs [47]. To reduce XFEL-induced irradiation damage, sufficiently long mirror substrates 

and small grazing incidence angles were utilized. The mirror surfaces were coated with 50 nm 

of C so that they would be highly reflective, since C and quartz have reflectivities of 

approximately 99.9% and 99%, respectively, up to photon energies of 20 keV. The resulting 

high-intensity focused beams are appropriately sized for various applications, such as X-ray 

coherent diffraction imaging [48–51] and observations of other physical phenomena [52,53].  

The 50 nm focusing system [18] realized an FWHM beam size of 55 nm (H) × 30 nm (V) 

at a photon energy of 9.9 keV. The peak power density achieved was 1.2 × 1020 W/cm2, which 

is 200 times higher than that of the 1 μm focused beam, at a pulse energy of 11 μJ and a pulse 

duration of 7 fs [47]. To obtain a large NA, and a long working distance with small beam 

divergence, a two-stage reflective focusing system was used. In the first (upstream) stage, an 

uncoated total reflection KB mirror was used for beam expansion. In the second (downstream) 

stage, a single-layer metal-coated KB mirror focused the expanded beam. Beams focused using 

this method have been applied to studies of nonlinear X-ray optical phenomena, such as two-

photon absorption [19], saturable absorption [20], and Cu-atomic inner-shell lasers [21].  
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Fig. 2.9. Schematic of optical configuration of XFEL 1 μm focusing system at 

SACLA. 

 

 

Table 2.1. Optical parameters of XFEL 1 μm focusing system at SACLA. 

 
Vertical direction 

focusing mirror 

Horizontal direction 

focusing mirror 

Surface shape Elliptical cylinder Elliptical cylinder 

Substrate material Quartz Quartz 

Coating material Carbon Carbon 

Coating thickness (nm) 50 50 

Substrate size (mm3) 420 × 50 × 50 420 × 50 × 50 

Grazing incidence angle 

on mirror center (mrad) 
1.55 1.50 

Focal length (m) 2.00 1.55 

Distance from source (m) 120.00 120.45 

Semi-major axis (m) 51 51 

Semi-minor axis (mm) 21.9 18.7 
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Fig. 2.10. Schematic of optical configuration of XFEL 50 nm focusing system at 

SACLA. 

 

 

Table 2.2. Optical parameters of XFEL 50 nm focusing system at SACLA. 

 Upstream focusing mirrors Downstream focusing mirrors 

 
Vertical 

direction 

Horizontal 

direction 

Horizontal 

direction 

Vertical 

direction 

Surface shape 
Elliptical 

cylinder 

Elliptical 

cylinder 

Elliptical 

cylinder 

Elliptical 

cylinder 

Substrate material Quartz Quartz Quartz Quartz 

Coating material None None Platinum Platinum 

Coating thickness (nm) None None 50 50 

Substrate size (mm3) 400×50×50 400×50×50 500×50×50 465×50×50 

Grazing incidence angle 

on mirror center (mrad) 
1.5 1.5 5.5 5.0 

Focal length (m) 6.520 6.070 1.115 0.582 

Distance from source (m) 120.00 120.45 72.247 72.780 

Semi-major axis (m) 120.000 120.450 36.68 36.68 

Semi-minor axis (mm) 42.0 40.6 49.4 32.6 
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Chapter 3  
 
PREPARATION AND MEASUREMENT OF 
MIRROR SUBSTRATES 

 

 

Mirrors are among the most widely used optical devices, and the surface shape of a mirror 

significantly affects the quality of X-rays at the sample position. Planar or nearly planar 

surfaces can be measured using interferometry (e.g., microstitching interferometry (MSI) [56] 

and relative-angle determinable-stitching interferometry (RADSI) [57,58]), slope profilers (e.g., 

long trace profilers (LTPs) [59,60] and nanometer optical component measuring machines 

(NOMs) [61]), and coordinate measuring machines (CMMs) [62]. However, the focusing 

mirrors used for soft X-ray focusing and single-nanometer hard X-ray focusing have minimum 

radii of curvature of a few meters. Thus, it is difficult to measure the surfaces of these mirrors 

using conventional methods. We developed a new measurement system that uses a laser 

autofocus microscope as a probe to measure steeply curved mirrors. 

 

 

3.1 Reflective Mirrors for XFEL Focusing 
 

Reflective mirrors are the most widely used optical elements in synchrotron radiation facilities 

and are employed to collimate and focus X-rays and to filter high-order light frequencies. The 

shapes of X-ray mirrors must be more accurate than those of visible light mirrors because X-

rays have wavelengths much shorter than those of visible lights. Mirror surface shape errors are 

the factors that most significantly degrade the focusing of X-rays. The phase error φ of a 
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reflected X-ray that originates from the shape error is 
 2 sinhkj q= , (3.1) 

where h and θ are the peak-to-valley (PV) height shape errors of the mirror surface and the 

grazing incidence angle, respectively, and k is the X-ray wavenumber, which is given by 

 2k p
l

= , (3.2) 

where λ is the X-ray wavelength. The degree of constructive interference is significantly 

influenced by the phase error. According to Rayleigh’s criterion [27], an image is not 

significantly degraded unless it has wavefront aberration of greater than λ/4 in the imaging 

optical system. The height error of a mirror surface corresponding to a λ/4 phase error (i.e. π/2 

rad) is 

 /4 8sin
hl

l
q

= . (3.3) 

For example, in the case of an X-ray wavelength of 0.124 nm (i.e., a photon energy of 10 keV), 

the required shape accuracy is as shown in Fig. 3.1.  

The required shape accuracies of the 1 μm and 50 nm focusing mirrors whose optical  

 

 

Fig. 3.1. Height error corresponding to λ/4 phase error at photon energy of 10 keV. 
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parameters were described in Tables 2.1 and 2.2 are approximately 10 nm and 2.8 nm (PV), 

respectively, because the grazing incidence angles are 1.5 mrad and 5.5 mrad, respectively. The 

designed optical parameters of XFEL sub-10-nm focusing mirrors, which were the target optical 

systems of this study, are shown in Table 3.1.  

 

Table 3.1. Designed parameters of XFEL sub-10-nm focusing mirrors. 

 Horizontal direction Vertical direction 

Mirror length (mm) 380 100 

Grazing incidence angle 

on mirror center (mrad) 
14.6 13.2 

Focal length (m) 0.380 0.070 

Distance from source (m) 79.072 72.372 

Semi-major axis (m) 39.696 36.221 

Semi-minor axis (mm) 73.438 29.710 

 

The grazing incidence angles of the sub-10-nm focusing mirrors are greater than those for other 

optics. Correspondingly, the required shape accuracy is ~1 nm (PV), which is higher than the 

accuracies required by the other optics. Furthermore, as the surface shape steepness increases, 

measurement becomes more difficult. The surfaces of the sub-10-nm focusing mirrors are the 

steepest among the three optical systems shown in Fig. 3.2.  

The surface shape profiles of the sub-10-nm focusing mirrors are shown in Fig. 3.3. The 

lengths of the horizontal and vertical mirrors are 100 mm and 380 mm, respectively. In Fig. 3.3, 

the black, red, and blue lines represent the heights, radii of curvature, and slopes of these mirrors, 

respectively. The vertical focusing mirror has a wide slope range of 14 mrad and a small radius 

of curvature of 1.62 m. The horizontal focusing mirror also has a wide slope range of 11 mrad 

over a long range of 380 mm. Therefore, a new system is necessary that can measure a wide 

slope range and small radius of curvature with an accuracy of nearly 1 nm. 

The typical measurement methods for X-ray mirrors involve using slope profilers, stitching 

interferometers, and CMMs. Recently, slope profilers [59–61] and stitching interferometers 

[56–58] have been primarily used. Slope profilers can perform highly accurate measurements  
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Fig. 3.2. Surface shape profiles of 1 μm, 50 nm, and sub-10-nm XFEL focusing 

mirrors, whose optical parameters are given in Tables 2.1, 2.2, and 3.1, respectively.  

 

because they do not have reference planes. Interferometers are used to measure high spatial 

frequencies in two dimensions. On the other hand, CMMs are not currently used to measure X-

ray optics, as their accuracies are insufficient to determine shape errors with the accuracy 

required in X-ray mirror substrate measurements. However, if their accuracies are improved 

and become acceptable, CMMs could be very useful for measuring steeply and two-

dimensionally curved mirrors, since their dynamic ranges are more extensive than those of the 

other methods. Therefore, we are developing a new system that uses the CMM method. 

Additionally, after developing this system, we will cross-check its results with those obtained 

using other methods in order to advance X-ray optics measurements. 
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Fig. 3.3. Surface shape profiles of XFEL sub-10-nm focusing mirrors of the (a) 

horizontal and (b) vertical directions. 
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3.2 Development of Surface Shape Measurement System 
 

3.2.1 Apparatus Overview 
 

The surface shape measurement system developed to measure steeply curved surfaces is shown 

in Fig. 3.4. The main components of this apparatus are a main probe to perform steeply curved 

surface measurements, sub-probes to measure the posture error of the main probe, and a 

kinematic stage. In this study, the apparatus was placed in a temperature-controlled room inside 

a class-1 cleanroom, whose temperature was also controlled. The graph in Fig. 3.4(b) depicts 

the temperatures outside and inside the room, both of which are very stable. In particular, the 

temperature stability inside is very high, exhibiting variations of less than ±0.01 °C. A counter-

balance is used to prevent center-of-gravity movement and to suppress the elastic deformation 

of the metrology frame.  

 

 

Fig. 3.4. Schematic of shape measurement apparatus. 
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A laser autofocus microscope (MP-3P, Mitaka Kohki), which is optimal for measuring 

steeply curved surfaces, is used as the main probe in this system. A principle diagram is shown 

in Fig. 3.5. First, light emitted from the laser irradiates the sample surface through an objective 

lens. Then, the light reflected from the sample surface goes to the center of an auto-focus (AF) 

sensor through the objective and imaging lenses. If the distance between the objective lens and 

the sample is varied, the position of the light on the AF sensor also varies. To maintain the 

position of the light on the sensor, the objective lens moves upwards and downwards. The 

surface shape is determined based on the magnitude of movement of the objective lens. The 

elemental parts were upgraded from the commercially available machine (MP-3, Mitaka Kohki 

[63]) to increase the sensitivity of the AF sensor. The linear scale was also upgraded to a 

resolution of 0.034 nm. The angular dependence of the laser autofocus microscope is measured 

by MP-3. In this study, the sample was a 5-mm-diameter glass sphere, whose measured surface 

profile is shown in Fig. 3.6(a). The error with respect to an ideal spherical surface is shown in 

Fig. 3.6(b), as a function of the surface angle. There is no angular dependence within ±30° (~0.5 

rad), which is sufficiently large to measure the surfaces of focusing mirrors (Fig. 3.3). 

 

 

Fig. 3.5. Principle diagram of laser autofocus microscope. 
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Fig. 3.6. Angular dependence of laser autofocus microscope measured using 5-mm-

diameter glass sphere: (a) measured surface profile and (b) error compared to ideal 

spherical surface. 

 

 

Fig. 3.7. Schematic of probe table. 
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Three heterodyne interferometers (Zygo ZMI 4000) are used as sub-probes and are located 

on the same table as the main probe to measure the posture of the main probe. The schematic 

of the probe table is shown in Fig. 3.7. The laser autofocus microscope is positioned at the 

center of the table, and the heterodyne interferometers are positioned at the three indicated 

locations. A reference mirror is placed under each heterodyne interferometer. The heterodyne 

interferometers are used to measure the posture of the probe table and to correct the value 

measured by the main probe accordingly. 

 

 

3.2.2 Repeatability Test using Planar Mirror 
 

The measurement repeatability of the shape-measurement apparatus was tested using a nearly 

flat surface mirror as a measurement object. The size of the mirror was 400 mm (length) × 50 

mm (width) × 50 mm (height), and it was composed of Si. The testing conditions are shown in 

Table 3.2.  

 

Table 3.2. Conditions for testing measurement repeatability using planar mirror. 

Step length Number of steps Speed Averaging 

1 mm 380 1 mm/s 
50 at each point 

20 lines 

 

The average number of measurements at each point was 50, and the average number of lines 

was 20. Therefore, the total number of measurements taken and averaged at each point was 

1,000. The repeatability was tested by comparing two independent measurements, and the 

results are shown in Fig. 3.8. The solid and dashed black lines represent the first and second 

measurements, respectively, and the solid red line represents the difference between the first 

and second measurements. Figure 3.8(a) is the result measured using only the laser autofocus 

microscope. This profile includes the surface profiles of the measured object and the posture 

error of the probe table due to the bending of the stage guide, etc. Figure 3.8(b) shows the 

measurements made using only the heterodyne interferometers. This profile includes the surface 

profiles of the reference mirrors and the posture error of the probe table due to the same factors. 
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Fig. 3.8. Results of repeatability test: (a) surface profile of measured object, (b) 

surface profiles of reference mirrors, and (c) repeatability error. 
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Both figures show the same posture error. Therefore, the error could be eliminated by 

subtracting the results in Fig. 3.8(b) from those in Fig. 3.8(a). If the errors of the results shown 

in Figs. 3.8(a) and 3.8(b) were equal, the repeatability error would become zero. Figure 3.8(c) 

shows conclusive evidence that the developed apparatus can achieve measurements that are 

repeatable to within ~2 nm (PV). This value is not small; however, high-frequency fluctuations 

can be reduced by the interferometer. 

 

 

3.3 Fabrication and Measurement of XFEL Sub-10-nm Focusing 

Mirrors 
 

To fabricate XFEL sub-10-nm focusing mirrors with highly precise elliptical shapes, numerical 

control machining was performed by using elastic emission machining (EMM) [64–66], 

stitching interferometers (MSI [56] and RADSI [57]), and the newly developed instrument.  

EEM is a processing method utilizing a solid chemical reaction between particles, such as 

metal oxides, and the workpiece surface. Figure 3.9 shows a conceptual diagram of EEM. When 

the reactive particles are supplied to the surface by a flow of ultrapure water, the atoms of the 

workpiece surface and the particles are chemically coupled via oxygen. Atom-by-atom removal 

can be realized by carrying away the particles using ultrapure water, which can chemically 

couple to the atoms of the workpiece surface. Figure 3.10 presents schematic diagrams of 

processes using nozzle-type and rotating-ball-type machining heads. In nozzle-type EEM, the 

workpiece is processed by using slurry jet from the nozzle with an appropriate pressure, such 

as 0.2 MPa. The removal spot shape can be easily controlled in this type of machining by 

changing the nozzle shape, supply pressure, and particle size. In rotating-ball-type EEM, by 

generating physically stable elastohydrodynamic lubrication conditions between the workpiece 

and the surfaces of the rotating spheres, the particles are fed to the workpiece surface. By 

utilizing the parallel flow generated in this area, rotating-ball-type EEM was found to be 

suitable for automatic smoothing of regions with the spatial wavelengths shorter than 0.1 mm.  
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Fig. 3.9. Conceptual diagram of EEM. 

 

  

Fig. 3.10. Schematic diagrams of processes using (a) nozzle-type and (b) rotating-

ball-type machining heads. Arrows indicate direction of water flow. 

 

To perform the surface shape measurements, MSI using a Michelson-type white light 

interferometer (Zygo NewView 5000) was employed in the high spatial frequency range, and 

RADSI using a Fizeau-type phase-shifting interferometer (Zygo GPI-XD/D) and the newly 

developed instrument were employed in the low spatial frequency range. The residual shape 

errors obtained after deterministic figuring are shown in Fig. 3.11. The obtained shape accuracy 

is ~3 nm (PV) and includes some ambiguity because of the high curvature of the surface. We 

confirmed the final shape using wavefront measurements, which will be described later. 
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Fig. 3.11. Residual shape errors of (a) horizontal and (b) vertical direction focusing 

mirrors. 
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3.4 Summary 
 

XFEL sub-10-nm focusing mirrors have steeply curved surfaces that are difficult to measure 

using conventional shape measurement methods. Their minimum radii of curvature are a few 

meters, and their slope ranges are several dozen milliradians. Furthermore, the required 

accuracy, or Rayleigh criterion, of the surfaces of such mirrors is ~1 nm (PV). Therefore, we 

developed a laser autofocus microscope system featuring a position correction mechanism 

utilizing three heterodyne interferometers to provide measurements at this level of accuracy. 

The apparatus could be consistently adjusted to within 2 nm (PV), as demonstrated by a 

repeatability test.  

The sub-10-nm focusing mirrors used in this study were fabricated by EEM and measured 

by MSI, RADSI, and the newly developed instrument. The residual shape errors typically 

obtained after deterministic figuring of the sub-10-nm focusing mirrors were ~3 nm (PV). These 

errors are somewhat high; however, we confirmed the final shape using wavefront 

measurements, which will be described later. 
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Chapter 4  
 
TOLERANCE OF MULTILAYER FILMS 
TO X-RAY FREE-ELECTRON LASER 
IRRADIATION 

 

 

One of the critical requirements of the X-ray optical elements for XFELs is sufficient tolerance 

to intense X-ray irradiation. Therefore, the X-ray damage thresholds of various optical 

materials in normal and grazing incidence conditions have been extensively investigated. The 

damage threshold in the normal incidence condition was theoretically estimated using the 

amount of absorption energy per atom, while in the grazing incidence condition, it was 

evaluated by considering the energetic photoelectrons that can remove deposited energy from 

an interaction region [68]. These models have been experimentally verified [69–77]. However, 

the damage to multilayers induced by XFEL exposure has not been investigated in the hard X-

ray regime. In order to investigate this damage in this study, focused and unfocused XFELs 

were used at a photon energy of 10 keV to provide a sufficiently high intensity and actual 

operating conditions. 

 

 

4.1 Development of Thin Film Deposition System 
 

4.1.1 Apparatus Overview  
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The thin film deposition system developed to fabricate a laterally graded multilayer is shown 

in Figs. 4.1 and 4.2. Our X-ray focusing mirror design requires optical thin film deposition in a 

region elongated in the longitudinal direction of the mirror substrate. A mirror substrate that is 

long in the longitudinal direction is required to allow for the small divergence of the XFEL. 

The deposition apparatus was therefore designed for deposition over an elongated area of 500 

mm (length) × 50 mm (width), sufficient to produce XFEL focusing mirrors.  

As shown in Fig. 4.1, three direct current (DC) magnetron sputtering cathodes (Kurt J. 

Lesker Company) with 2-inch targets were mounted in this apparatus. Magnetron sputtering is 

a widely used deposition method and is generally considered to enable reproducible sub-

nanometer control of the deposition thickness [78]. Two targets can be used concurrently in one 

deposition area to allow the mixing of two materials. The mixing ratio is controlled by adjusting 

the sputtering cathode power, since the deposition rates are proportional to the input power. 

Slits and shutters were mounted between the substrate and the sputtering cathode to limit the 

particle flux to a local deposition area. The substrate was placed on a speed-controlled 

horizontal scanning stage, and the distance from the target to the substrate was approximately 

100 mm.  

The elemental performance of the deposition apparatus was tested by depositing Pt and C 

single-layer thin films. To achieve highly accurate thickness control, it was necessary to 

determine the spatial distributions of the sputtered atoms accurately. The thickness distributions 

of the deposited Pt and C films were measured precisely under predetermined conditions by a 

Fizeau interferometer (ZYGO GPI XP/D). The interferometer method is not suitable for direct 

measurements of the thickness distributions of thin films, but rather is intended for 

measurements of the surface shapes of homogeneous substrates. The shape profiles obtained 

might not accurately represent the shape of the outermost surface, due to the influences of the 

difference between the reflectivities of the thin film and the substrate and the light reflected 

from the interface between the thin film and the substrate. To overcome these problems, a 

sufficiently thick Pt film of ~50 nm was deposited on the substrate in advance. 

A spatially limited Pt film was deposited thereon, and the surface shape was then precisely 

measured by the interferometer. The deposition thickness distribution was calculated from the 

difference between the surface shape profiles before and after film deposition. Measurement of 

the C film was performed after deposition of another sufficiently thick Pt film on the C surface. 
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Fig. 4.1. Schematic of thin film deposition apparatus. 

 

 

 

Fig. 4.2. Photograph of thin film deposition apparatus. 
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The measured film thickness distributions of the Pt and C films are shown in Figs. 4.3 and 4.4, 

which were obtained using the deposition conditions listed in Table 4.1.  

 

Table 4.1. Deposition conditions for Pt and C deposition spots. 

Sample 
DC input power (W) 

(Sputter gun 1 / 2 / 3) 

Deposition time 

(min) 

Ar flow rate (sccm) 

(Sputter gun 1 / 2 / 3) 

Ar pressure 

(Pa) 

Pt 10 / 0 / 0 40 16 / 10 / 10 0.11 

C 0 / 120 / 120 40 16 / 10 / 10 0.11 

 

In Figs. 4.3 and 4.4, the horizontal direction corresponds to the longitudinal direction of the 

substrate. The slit used to limit the extent of the deposition region had dimensions of 30 mm 

(length direction) × 10 mm (width direction). The measured deposition distributions give 

deposition rates of Pt and C of 2.53 nm/min and 1.71 nm/min, respectively. The deposition rate 

of C was significantly lower than that of Pt, even at higher input powers, due to the difference 

between the Pt and C sputtering rates and the different responses of Pt and C to the Ar atom 

impacts [78,79]. At the C deposition spot, the entire substrate was distorted convexly, as can be 

seen in Fig. 4.4, due to the film stress caused by the subsequent Pt deposition. This substrate 

deflection should be corrected when evaluating the C deposition distribution, and the corrected 

distribution is shown by the dashed line in Fig. 4.4(a).  

 

 

4.1.2 Differential Deposition Test for Mirror Shape Modification 
 

XFEL sub-10-nm focusing mirrors must have extremely accurate surface shapes. As described 

in Chapter 3, the required shape accuracy across the entire mirror substrate is typically ~1 nm 

(PV). In addition, the spatial wavelength components of several parts of the mirror length are 

particularly important to obtain an ideally focused beam. The remaining residual shape errors 

from the mirror manufacturing process distort the reflected wavefronts and ultimately 

determine the quality of the focused beam. Therefore, it was planned to obtain the final shape 

correction by the differential deposition of a Pt thin film, since it has very high reliability and  
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Fig. 4.3. (a) Thickness distribution of Pt deposition spot. (b) Thickness profile along 

center line of (a). 

 

 

 
 

Fig. 4.4. (a) Thickness distribution of C deposition spot. (b) Thickness profile along 

center line of (a). In (b), dashed line represents correct profile after correcting 

substrate deflection. 
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precision despite the relative simplicity of the method. 

A differential deposition test was performed using the deposition apparatus. In this test, the 

spatial wavelengths of the created shape were set to 10–20 mm with a slit size of 2 mm (length 

direction) × 10 mm (width direction). The creation of shapes with shorter spatial wavelengths 

is also possible by using narrower length direction slits. The scan speed of the substrate stage 

was calculated by deconvoluting the deposition spot and the designed film thickness 

distribution. The thickness profile of the Pt deposition spot for the differential deposition is 

shown in Fig. 4.5. The deposition conditions were a 20 W input power and 20 sccm Ar flow 

rate for a deposition time of 20 min. As shown in Fig. 4.5, a sufficiently short horizontal 

distribution was obtained. The designed and measured thickness distributions agree well, as 

shown in Fig. 4.6. The residual errors are 1.46 nm (PV) and 0.28 nm (RMS), without low-pass 

filtering, which include measurement errors, as shown in Fig. 4.7. Eventually, the deposition 

error was considered to be less than 1 nm (PV), as can be seen from the data obtained by using 

a 200 Hz low-pass filter (LPF) that are shown in Fig. 4.7. 

 

 

 
 

Fig. 4.5. Thickness distribution of Pt deposition spot for differential deposition. (a) 

Thickness distribution of deposition spot. (b) Thickness profile along center line of 

(a). 
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Fig. 4.6. Designed and measured thickness distributions. 

 

 

Fig. 4.7. Residual errors of differential deposition with and without LPF. PV and 

RMS errors are represented.   
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4.2 Evaluation of Breakdown Threshold using Focused XFEL[80] 
 

An experiment was performed at SACLA using 1 μm focusing optics [26] at a photon energy 

of 10 keV, a pulse duration of <10 fs [47], and a repetition rate of 10 Hz. The experimental 

system is shown in Figs. 4.8 and 4.9. The test sample was a Pt/C multilayer with 40 bilayers 

having a multilayer period of 3 nm with a ratio of the Pt layer thickness to the multilayer period 

γ = 0.5, deposited on a commercially available Si (100) wafer using a DC magnetron sputtering 

system. The sample was placed at the focal point and was pre-aligned to the first-order Bragg 

condition at a reduced X-ray intensity. The irradiation tests were performed using 100-shot 

exposures in a fluence range of 0.01–10 μJ/μm2 using Si attenuators of various thicknesses. The 

pulse energy fluctuation over 100 shots was approximately 10%. 

 

 

Fig. 4.8. Schematic of experimental system for evaluation of breakdown threshold 

of Pt/C multilayer. 

 

  

Fig. 4.9. Photograph of experimental system for evaluation of breakdown threshold 

of Pt/C multilayer. 
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The damage threshold was determined by comparing the reflectivities, measured in 

reduced intensity conditions, before and after the 100 shots of fluence-controlled irradiation. 

The changes in reflectivity during the 100-shot exposure were also monitored. 

The reflectivities before and after the fluence-controlled irradiation are presented in Fig. 

4.10. As shown, the reflectivity does not change at fluences less than 0.051 μJ/μm2; however, a 

notable decrease is apparent as the fluence exceeds this value, corresponding to the damage 

threshold of the Pt/C multilayer. 

Typical reflectivity changes during the 100-shot exposures in different fluence conditions 

are shown in Fig. 4.11(a). Images of the sample surfaces after exposure were obtained with an 

optical microscope (OM) and are shown in Fig. 4.11(b). At a fluence of 0.051 μJ/μm2, no 

damage is apparent in either the reflectivity data or the OM image. However, at fluences 

considerably greater than the damage threshold, a scratch is noticeable in the OM image, with 

a corresponding rapid decrease to almost zero reflectivity. Interestingly, only the first pulse 

exhibits the original reflectivity because the temporal duration of the X-ray pulses was much 

faster than the changes in the multilayer structure. At a fluence of 0.11 μJ/μm2, just slightly 

larger than the damage threshold, there is a slight decrease in the reflectivity, with little damage 

observable in the OM image. 

To investigate the detailed mechanisms behind the changes observed at the last condition, 

θ-2θ scans were performed before and after irradiation at a reduced intensity and indicated a 

shift of the Bragg angle from 22.05 mrad to 21.98 mrad, together with a decrease in the 

reflectivity, as shown in Fig. 4.12(a). This shift corresponds to an expansion of the multilayer 

period by approximately 0.3% on average over the irradiated area. Cross-sectional transmission 

electron microscopy (TEM) images of a central part of the footprint were obtained before and 

after irradiation and are shown in Figs. 4.12(c) and 4.12(b), respectively, indicating that the 

multilayer expanded by approximately 10% and that the expansion was widely distributed 

across its footprint. The expansion may originate from intermixing at the interface and the 

introduction of vacancies into the Pt layer, although further investigation is required to clarify 

this phenomenon.  

The damage threshold fluence Fth can be converted to the damage threshold dose Dth for a 

single atom using the following expression [68,81,82]: 
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Fig. 4.10. Change in reflectivity versus irradiation fluence. 

 

 

 
Fig. 4.11. (a) Changes in reflectivity versus number of pulses at each irradiation 

fluence. (b)–(d) OM images of sample surface after 100 pulses of irradiation. 
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Fig. 4.12. (a) Bragg angle shift measurement by θ-2θ scan near first-order Bragg 

angle. Measured pre- and post-irradiation Bragg angles were 22.05 mrad and 21.98 

mrad, respectively. (b), (c) Cross-sectional bright-field TEM images of irradiated 

and non-irradiated areas, respectively. Dark and bright layers correspond to Pt and 

C layers, respectively.  
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where R and θ are the reflectivity and grazing incidence angle, respectively. In this study, R and 

θ were estimated to be 0.76 and 21.6 mrad, respectively, which were theoretically determined 

based on the multilayer design parameters. Here, QPt is the approximate quantity of Pt atoms, 

which is given by  

 ( )A Pt A C C
Pt

Pt C Pt

1N NQ
A A
r r rg g

r
= + - , (4.2) 

where NA, ρ, and A are Avogadro’s constant, density, and atomic weight, respectively, and the 

subscripts Pt and C denote the Pt and C layers, respectively. The quantity of C atoms is included 

as a converted quantity using a ratio of the general electron penetration depth, which is 

approximately inversely proportional to the density [83]. Moreover, the energy deposition depth 

d is given by 

 2 2
x ed d d= + , (4.3) 

where dx and de are the X-ray penetration depth and electron collision range [84], respectively. 

In this case, de was assumed to be 70 nm, which is twice the de value of a Pt single layer (35 

nm [85]), because electrons penetrate the C layers more easily than the Pt layers. An estimate 

of dx was obtained using an XSW field intensity of 1/e. The XSW field intensity was calculated 

using Eq. (2.21), with the assumption that the sample was surrounded by a vacuum and that the 

parameters of the materials retained their bulk properties [86]. The calculated XSW field 

intensity is shown in Fig. 4.13, where Fig. 4.13(b) shows dx to be 22.5 nm at the Bragg angle. 

According to Eq. (4.1), Dth was calculated to be 0.58 eV/atom, which is in reasonable agreement 

with the measured threshold dose of a Pt single layer (0.52 eV/atom [74]).  

The typical beam size of SACLA at a photon energy of 10 keV is 200 μm in diameter 

(FWHM), with a pulse energy of 400 μJ, implying that the fluence should reach 0.01 μJ/μm2. 

This fluence is sufficiently lower than the damage threshold of the Pt/C multilayer. Thus, we 

confirmed the feasibility of utilizing multilayered Pt/C films as optical components in XFELs. 
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Fig. 4.13. Calculated XSW field-intensity distribution in multilayer structure versus 

(a) grazing incidence angle and depth of multilayer medium and (b) line profile at 

first-order Bragg angle. 
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4.3 Evaluation in Actual Operating Conditions using Unfocused 

XFEL[87] 
 

Two Pt/C multilayer samples, fabricated by the DC magnetron sputtering system on Si (100) 

wafer substrates, were evaluated. Number of bilayers N, designed and measured multilayer 

periods d, and designed and measured ratio γ of the Pt layer thickness to the multilayer period 

of the multilayer samples are shown in Table 4.2.  

 

Table 4.2. Details of Pt/C multilayer samples. 

Sample N 
Design Measured (Cu-Kα) 

d (nm) γ d (nm) γ 

A 45 5.0 0.5 4.78 0.508 

B 45 2.5 0.5 2.45 0.527 

 

An X-ray reflectometer (Rigaku SmartLab) was used to estimate the thicknesses, since X-ray 

reflectrometry is a non-destructive and non-contact method for thickness determination of thin 

films. The experimental setup consisted of a Cu-Kα X-ray source (λ = 0.154 nm) and a θ-2θ 

goniometer stage to change the grazing incidence angle on the sample surface, as shown in Fig. 

4.14. The intensities of the X-rays reflected by the sample were monitored at various grazing  

 

 
Fig. 4.14. Schematic of X-ray reflectometer. 
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incidence angles. 

To ensure that the multilayer films would function in typical operating conditions, 

multilayer films A and B were evaluated with the non-monochromatic XFEL at a photon energy 

of 10 keV, a pulse duration of <10 fs [47], a repetition rate of 10 Hz, a mean pulse energy of 

130 μJ, and a beam diameter (FWHM) of 300 μm. In this evaluation, the fluence of the incident 

beam was designed to be ~0.0014 μJ/μm2. In the first-order Bragg angle, the change of 

reflectivity of film B was determined after X-ray irradiation for 5 hours. Irradiation damage 

was expected to be induced in the B multilayer due to its very large first-order Bragg angle. 

Post-irradiation, the cross-section of an irradiated region of film B was compared with that of 

a non-irradiated region by TEM. 

Figure 4.15 shows the measured X-ray reflectivities of samples A and B as functions of the 

grazing incidence angle of the XFEL. The solid lines represent the measured reflectivities, and 

the dashed lines show the curve fitting results. The experimental data from samples A and B 

show that their reflectivities of the first-order Bragg peak were 78.3% and 51.8%, respectively. 

Since sufficiently high reflectivities were obtained, these samples function well as multilayer 

films. The periods of the multilayers and the ratios of Pt layer thickness to multilayer period 

were estimated by using the curve fitting results and are shown in Table 4.3. 

 

Table 4.3. Multilayer periods and ratios of Pt layer thickness to multilayer period 

of Pt/C multilayer samples. Thicknesses of fabricated samples were measured by 

using X-ray reflectometer and XFEL. 

Sample 
Measured (Cu-Kα) Measured (XFEL) Deviation of 

multilayer period (%) d (nm) γ d (nm) γ 

A 4.78 0.508 4.74 0.513 0.84 

B 2.45 0.527 2.42 0.528 1.22 

 

The calculated multilayer periods agree with the results obtained from the X-ray reflectometer 

to within 1%.  

The reflectivity of film B in the first-order Bragg peak is shown in Fig. 4.16, with no change 

during the 5 hours of measurements. After 50 min, 100 min, 200 min, and 300 min, the angle 
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Fig. 4.15. X-ray reflectivities of Pt/C multilayer samples (a) A and (b) B versus 

grazing incidence angle. Solid and dashed lines show experimental data and 

calculated fit curves, respectively. X-ray reflectivities of first-order Bragg peaks are 

(a) 78.3% and (b) 51.8%. 

first-order 
Bragg peak 

first-order 
Bragg peak 
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Fig. 4.16. X-ray reflectivity versus time, with annotations indicating measured first-

order Bragg peak angles of sample B at various times. 

 

of the first-order Bragg peak was measured, and the results are presented in Fig. 4.16. As shown, 

the angle of the first-order Bragg peak also did not change. 

Figure 4.17 depicts the cross-sectional TEM images of the surface and substrate sides of 

the non-irradiated and irradiated regions of film B. The dark and bright layers correspond to the 

Pt and C layers, respectively. No evidence of XFEL irradiation damage is evident. The 

multilayer periods and the ratios of Pt layer thickness to multilayer period were estimated from 

these images. The resulting values were somewhat larger than those obtained from the X-ray 

reflectometer and the XFEL, possibility due to slight inclination of the cross-sections.  

The reflectivity and TEM images do not display any observable changes throughout the 5 

hours irradiation period. Thus, the unfocused XFEL irradiation did not seriously damage the 

multilayer film samples. 
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Fig. 4.17. Cross-sectional bright-field TEM images of film B. (a) and (b) show non-

irradiated and irradiated sections, respectively, and “-1” and “-2” in figure part 

names denote surface side and substrate side, respectively. Dark and bright layers 

correspond to Pt and C layers, respectively. davg is average multilayer period, and 

γavg is average ratio of Pt layer thickness to multilayer period. 
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4.4 Summary 
 

In hard X-ray focusing, multilayer mirrors are required, because reflection at high grazing 

incidence angles is necessary. To fabricate laterally graded multilayer mirrors for X-ray 

focusing, a thin film deposition system was developed in this study. Then, an arbitrarily shaped 

mirror was fabricated using the differential deposition technique to estimate the accuracy of the 

deposition apparatus. The deposition apparatus was found to be capable of sub-nanometer 

accuracy, which is sufficiently high for multilayer mirror fabrication and mirror shape 

modification.  

We also evaluated the feasibility of using Pt/C multilayers for XFEL focusing applications. 

The X-ray reflectivity, surface, and cross-section of a multilayer film were measured to observe 

the irradiation damage. We determined the damage threshold of the Pt/C multilayer using a 1 

μm focused hard XFEL beam with a photon energy of 10 keV and found that the damage 

threshold of the Pt/C multilayer with a bilayer period of 3 nm was 0.051 μJ/μm2, confirming 

that it could be employed in XFEL focusing optics. Moreover, no damage to the multilayer was 

observed during testing in the conditions in which it was designed to be used. Our calculated 

value of the threshold atomic dose in the multilayer was similar to that of the bulk material. The 

obtained threshold should be a useful criterion for designing multilayer optics in XFEL sub-10-

nm focusing and related fields. 

 

 

 

 
  



 

 

 



  

 53 

 

 

Chapter 5  
 
IMPROVEMENT OF X-RAY  
REFLECTIVITY IN MULTILAYER FILMS 

 

 

The achievement of high photon densities using reflective optics requires the use of multilayer 

films in the hard X-ray regime. One important property of multilayer films used as optical 

elements is X-ray reflectivity, which is related to focusing efficiency. Since the X-ray reflectivity 

of a multilayer film is mainly related to the X-ray wavelength and the composition of the film, 

it is necessary to design multilayer films in accordance with the wavelength to be used, by 

varying the base materials, component ratio, and number of layers [88]. Additionally, 

compatibility between the different materials in a multilayer film is important to suppress 

interdiffusion and interface roughness between the layers. To improve the reflectivities of Pt/C 

hard X-ray multilayers, we evaluated the effects of thinning and C-doping their Pt layers.  

 

 

5.1 Determination of Critical Pt Layer Thickness 
 

To confirm the Pt/C multilayer reflectivity improvements realized by thinning their Pt layers, 

the changes in reflectivity with varying period d and number of bilayers N were calculated as 

functions of the ratio γ of the Pt layer thickness to the total bilayer thickness, and the results are 

shown in Fig. 5.1. A Cu-Kα X-ray source was used with a photon energy of 8.048 keV. The 

multilayer period of such a laterally graded multilayer is typically in the range of 3–9 nm [89]. 

At least 30 bilayers are required since the reflectivity of short-period multilayers is saturated.  
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Fig. 5.1. Calculated X-ray reflectivities of Pt/C multilayers with varying d and N as 

functions of γ at photon energy of 8.048 keV. 

 

In the case of a long-period multilayer, as the Pt layer thickness is reduced, the reflectivity 

improves if there are a sufficient number of bilayers to reflect the incident X-rays. 

Pt layer thinning can increase the reflectivities of long-period multilayers. However, since 

it is not possible to reduce the Pt layer thickness indefinitely, the critical Pt layer thickness was 

evaluated by using the reflectivities of Pt/C multilayers. Although the reflectivity can be 

increased by reducing the Pt layer thickness, caution must be exercised so that a continuous 

film is not formed when the Pt layers are too thin. 

The measured thicknesses of the Pt layers used in this study were 1.0 mm, 1.1 mm, 1.2 mm, 

and 1.4 nm; the multilayer period was 4 nm; and the number of bilayers was 30. The measured 

and calculated X-ray reflectivities are shown in Fig. 5.2. Initially, the calculated reflectivity 

increases as the Pt thickness decreases; however, when the Pt thickness becomes less than 1.2 

nm, the measured reflectivity drops off significantly. The reason for this reflectivity reduction 

is that continuous Pt layers are not formed when their thicknesses are less than 1.2 nm. Thus, 

we confirmed that the critical Pt layer thickness is 1.2 nm, which is reasonably comparable to 

the results of previous research [33], in which the critical thickness was determined by  
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Fig. 5.2. Critical Pt layer thickness measured by X-ray reflectivity of Pt/C 

multilayers in 30-bilayer stack with d = 4 nm. 

 

measuring the electrical resistance of a single Pt layer. To obtain the highest reflectivity, the 

optimal Pt layer thickness in the Pt/C multilayer structure was 1.2 nm.  

The reflectivities of Pt/C multilayers with fixed Pt layer thickness dPt = 1.2 nm or with fixed 

γ = 0.5 were calculated and measured at various incidence angles, and the results are compared 

in Fig. 5.3. Again, 30 bilayers were used, and the X-ray wavelength was 0.154 nm. As shown, 

the calculated reflectivity is higher with dPt = 1.2 nm than with γ = 0.5. The experimentally 

measured reflectivity also increases when the theoretically obtainable reflectivity increases.  

 

 

5.2 X-ray Reflectivity Improvement in Pt/C Multilayers by C-

Doping of Pt Layers 
 

The X-ray reflectivity of a multilayer film depends strongly on the quality of the interfaces 

between the individual layers [90–93]. Furthermore, the reflectivity reduction induced by  
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Fig. 5.3. Calculated and measured X-ray reflectivities of Pt/C multilayers with fixed 

γ = 0.5 (black) or fixed dPt = 1.2 nm (red). 

 

interface roughness becomes more significant as the multilayer period decreases because the 

ratio of the interface roughness to the multilayer period directly affects the reflectivity through 

the Debye–Waller factor (DWF) [94]. One reason for interface roughness is crystallization 

during multilayer deposition [92,93]. In a short-period multilayer (shorter than several 

nanometers), the metal layer, e.g., the Pt layer, retains its amorphous structure. However, Pt 

atoms tend to form closely packed structures and are covered by surfaces with relatively low 

surface energies, such as (111) surfaces, which is the most significant cause of interface 

roughening. Crystalline metals can generally be made amorphous by the addition of non-metals 

or metalloids such as B, C, P, or Si [95]. Thus, in this section, we address whether the doping 

of C atoms into Pt layers at concentrations of 1–15 v/v % can effectively reduce their 

roughnesses; we also discuss the controllability that can be achieved by this method. 
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5.2.1 Roughness Improvement by Crystallization Suppression[96] 
 

Pure Pt and C-doped Pt (PtC) films were fabricated by DC magnetron sputtering. The Pt and 

PtC films were deposited on Si (100) substrates. To confirm the crystallization suppression, the 

surface morphologies of the Pt and PtC films were measured by an atomic force microscope 

(AFM, Digital Instruments D3100) in air. Scan areas of 500 nm × 500 nm and 5 μm × 5 μm 

were used for both types of film. The thickness of each film was 50 nm; this relatively large 

thickness was chosen to enhance the difference between the surface roughnesses of the Pt films 

with and without C-doping. Figure 5.4 presents AFM images of the deposited Pt films with C 

concentrations of 0–15 v/v %. Figure 5.5 shows the relationship between the RMS roughness 

of the film surface and the C concentration; the surface roughness decreases with increasing C 

concentration. A level of C-doping as low as 1 v/v % can reduce the RMS roughness by 0.1 nm. 

The surface roughness of the PtC film with 15 v/v % C is equivalent to that of the substrate, so 

the roughness induced by crystallization during deposition is almost completely suppressed.  

The X-ray diffraction spectrum of each film was measured using a Cu-Kα X-ray source; 

the results are shown in Fig. 5.6. The sharp diffraction peak is from the Si substrate, while the 

X-ray diffraction spectra of the deposited Pt and PtC films have high-intensity peaks at (111) 

and (222). The films with lower C concentrations are more likely to have their (111) orientations 

parallel to their surfaces. This result clearly shows that C-doping can effectively suppress Pt 

crystallization during film deposition.  

The grain sizes of the polycrystalline Pt and PtC films were estimated from the widths of 

their diffraction peaks at (111) by applying the Scherrer equation [97,98], 

 
0.9
cos

D l
b q

= , (5.1) 

where D is the grain size, λ is the X-ray wavelength, β is the line broadening at FWHM in 

radians, and θ is the Bragg angle (θ of Pt(111) is 0.347 rad). The FWHM of the Pt film is 30.1 

mrad, which is almost the same as those of the PtC films. The grain size is 5 nm, which is nearly 

the same as the spatial wavelength of the AFM image shown in Fig. 5.6. 

To obtain the electron diffraction patterns and TEM images of the Pt and PtC films, a 10-

nm-thick C film was deposited on a NaCl (100) substrate, and 50-nm-thick Pt and PtC films 

were deposited on this film. Then, the thin film formed on the NaCl substrate was peeled off 
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Fig. 5.4. AFM images of surfaces of deposited Pt and PtC films with 0–15 v/v % C. 

Scanned areas are (a) 500 nm × 500 nm and (b) 5 μm × 5 μm. 



 5.2 X-ray Reflectivity Improvement in Pt/C Multilayers by C-Doping of Pt Layers 59 

  

 

Fig. 5.5. RMS film surface roughness versus C concentration in PtC film. 

 

 

Fig. 5.6. X-ray diffraction spectra of Pt and PtC films. 
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and placed on the TEM grid. Electron diffraction patterns, bright-field TEM images, and dark-

field TEM images were obtained and are shown in Fig. 5.7. The electron diffraction patterns of 

the deposited Pt and PtC films have significant high-intensity peaks at (220), most likely 

because Pt has its (111) orientation parallel to its surface. Moreover, the intensity of the (220) 

peak decreases as the C concentration increases. This result shows that C-doping can effectively 

suppress Pt crystallization during film deposition. From the bright-field TEM images, it can be 

seen that the grain size becomes smaller as the C content increases. The dark-field TEM images 

depict only the grains of Pt (220). The grains of the C-doped samples are smaller than those of 

the Pt film, and the grains were evenly distributed. 

 

 

5.2.2 X-ray Reflectivity Improvement[99] 
 

The reflectivities of the Pt/C and PtC/C multilayers were compared when dPt was 1.2 nm. The 

C concentration in the PtC layer was 4 v/v %, which is sufficient to suppress Pt layer 

crystallization. The calculated and measured reflectivities are shown in Fig. 5.8, which was 

obtained using 30 bilayers and an X-ray wavelength of 0.154 nm. The calculated reflectivities 

of the films are similar. However, the measured reflectivity is higher for the PtC/C multilayer. 

The interface roughness of each sample was calculated using the DWF, 

 
22exp mDWF

d
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where m is the Bragg index, d is the multilayer period, and σ is the RMS interface roughness 

[94]. The DWF is essentially the relative reflectivity (the ratio of the measured and theoretical 

values). The calculated interface roughnesses are presented in Fig. 5.9, which shows that the 

average interface roughness of the PtC/C multilayer is lower than that of the Pt/C multilayer. 
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Fig. 5.7. Electron beam diffraction patterns (-1) and bright-field (-2) and dark-field 

(-3) TEM images of single-layer films. (a), (b), and (c) refer to pure Pt, PtC (3 

v/v %), and PtC (11 v/v %) samples, respectively.  
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Fig. 5.8. Calculated and measured X-ray reflectivities of Pt/C and PtC/C multilayers 

using N = 30, Pt (or PtC) thickness of 1.2 nm, and C concentration in PtC of 4 v/v %. 

 

 

 

Fig. 5.9. Interface roughnesses calculated using DWF for Pt/C and PtC/C 

multilayers.   
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5.3 Summary 
 

To develop a Pt/C multilayer film with improved X-ray reflectivity, we evaluated the effects of 

Pt layer thinning and C-doping of the Pt layers.  

Pt layer thinning effectively reduced the absorption of hard X-rays by the Pt, especially in 

the long-period multilayers. In this study, the critical Pt layer thickness was determined by using 

the X-ray reflectivity of the Pt/C multilayer because it is not possible to reduce the Pt layer 

thickness indefinitely. We determined the critical Pt layer thickness to be ~1.2 nm, at which the 

theoretically obtainable X-ray reflectivity was increased, and the measured X-ray reflectivity 

was increased by ~10%. 

Since admixtures of metals and nonmetals, or metalloid elements such as C, generally 

suppress the crystallization of metal films during deposition, we compared single-layer films 

of pure Pt to single-layer films of C-doped Pt to evaluate the effectiveness of C-doping in 

suppressing Pt crystallization. C concentrations ranging from 0 v/v % to 15 v/v % were 

employed, and the surface roughnesses, X-ray diffraction spectra, and electron beam diffraction 

spectra of the resulting films were measured. We concluded that the surface roughness 

decreased with increasing C concentration in the Pt layers and that the Pt crystallization during 

deposition was also suppressed; these factors can be used to achieve improvements in interface 

quality and reflectivity. Furthermore, we found that C-doping effectively increased the 

reflectivity of the total X-ray reflection optical system.  
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Chapter 6  
 
NANOFOCUSING OF  
X-RAY FREE-ELECTRON LASERS 

 

 

The use of focusing optics enables enhancement of X-ray intensity, which can expand the range 

of applications of XFELs. At SACLA [17], a 50 nm focusing beam with a power density of 1020 

W/cm2 has been achieved using total reflection mirror optics [18]. To achieve higher power 

densities of ~1022 W/cm2, multilayer mirrors have been developed for use as XFEL sub-10-nm 

focusing optics. To investigate XFEL nanobeam focusing, a wavefront measurement method 

was developed. Using this method, correct mirror alignment was achieved, and the residual 

surface shape errors of the mirror optics were measured. Then, the XFEL sub-10-nm focusing 

optics were commissioned at SACLA. 

 

 

6.1 XFEL Sub-10-nm Focusing Optics and Focusing Strategy 
 

The optical configuration and parameters of a sub-10-nm focusing system are shown in Fig. 

6.1 and Table 6.1, respectively. To achieve a sub-10-nm spot size, a shorter focal length and 

larger numerical aperture are theoretically required. However, short focal lengths have several 

demerits, such as the risk of incurring debris from samples and limited application variations. 

For the focal length to be sufficiently long, the incident beam must be several millimeters in 

diameter. However, such a large numerical aperture cannot be obtained by using the 

conventional single-stage focusing system due to the small divergence of the XFEL beam,  
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Fig. 6.1. Schematic of optical configuration of two-stage XFEL sub-10-nm focusing 

system. 

 

 

Table 6.1. Optical parameters of XFEL sub-10-nm focusing system at SACLA. 

 Upstream focusing mirrors Downstream focusing mirrors 

 
Vertical 

direction 

Horizontal 

direction 

Horizontal 

direction 

Vertical 

direction 

Surface shape 
Elliptical 

cylinder 

Elliptical 

cylinder 

Elliptical 

cylinder 

Elliptical 

cylinder 

Substrate material Quartz Quartz Quartz Quartz 

Coating material None None [Pt/C]30 [Pt/C]30 

Coating thickness (nm) None None 93.6–217.5 86.1–273.0 

Substrate size (mm3) 400×50×50 400×50×50 380×50×50 100×50×50 

Grazing incidence angle 

on mirror center (mrad) 
1.50 1.50 14.6 13.2 

Focal length (m) 10.10 2.70 0.320 0.070 

Distance from source (m) 176.30 176.75 79.072 72.372 

Semi-major axis (m) 93.200 89.725 39.696 36.221 

Semi-minor axis (mm) 63.296 32.768 73.438 29.710 
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which is on the order of microradians. At SACLA, which is a compact facility, the maximum 

beam size is ~500 μm (FWHM) at the farthest experimental hutch. To overcome this limitation, 

this focusing system has adopted a two-stage reflective focusing system, which was also 

adopted for the 50 nm focusing at SACLA. In the first (upstream) stage, non-coated total 

reflection KB mirrors are used to pre-focus and expand the incident beam. In the second 

(downstream) stage, multilayer coated KB mirrors focus the expanded beam. The geometric 

reduction ratios of the horizontal and vertical directions are 1/16175.8 and 1/18046.9, 

respectively. Therefore, if the XFEL source size is 100 μm (FWHM), the obtainable spot size 

becomes 6.2 nm (H) × 5.5 nm (V). Then, the theoretically obtainable diffraction-limited focal 

spot size is 5.3 nm (H) × 4.2 nm (V) at a photon energy of 9.1 keV, which was calculated by 

using wave-optics analysis. A photon energy of 9.1 keV was used to enable the application of 

nonlinear phenomena [20] for optical system alignment, such as astigmatism, and to confirm 

the focusing power density. The calculated focusing beam waists and profiles of the horizontal 

and vertical directions are shown in Figs. 6.2 and 6.3, respectively.  

The grazing incidence angle and multilayer period of the sub-10-nm optics have the 

distributions shown in Fig. 6.4. The grazing incidence angle ranges of the second KB mirrors 

are 11.58–22.88 mrad (H) and 10.09–24.68 mrad (V). These grazing incidence angles 

significantly exceed the critical angle of Pt at which total reflection occurs (8.97 mrad) at a 

photon energy of 9.1 keV. In this optical design, the multilayer mirror is essential. The required 

accuracy of total multilayer film thickness is the same as that of the mirror shape, ~1 nm (PV), 

as was described in Chapter 3. The multilayer period ranges were calculated to be 3.12–7.25 

nm (H) and 2.87–9.10 nm (V) by using Eq. (2.6). The ratio of the thicknesses of the Pt and C 

layers was chosen to be 1:1 to facilitate phase control of the reflected beam. A high-reflectivity 

C-doped Pt/C multilayer, which was introduced in Chapter 5, will be adopted for the second 

commissioning because the purpose of the first commissioning was primarily to measure the 

shape errors of the focusing mirrors. 

Figure 6.5 shows the calculated multilayer X-ray reflectivity distribution for an interface 

roughness of 0.2 nm (RMS). The X-ray reflectivity continually increases towards its saturation 

value with increasing number of multilayers. Moreover, uniform and high X-ray reflectivity is 

evident across the entire mirror surface. However, practically, it is desirable to select the 

minimum number of multilayers within the range capable of obtaining a certain degree of  
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Fig. 6.2. Calculated (a) horizontal and (b) vertical focusing beam waists. 

 

 

 

Fig. 6.3. Calculated (a) horizontal and (b) vertical focusing beam profiles. 
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Fig. 6.4. Grazing incidence angle and multilayer period distributions of (a) 

horizontal and (b) vertical direction focusing mirrors. 

 

 

 

Fig. 6.5. X-ray reflectivity distributions of (a) horizontal and (b) vertical direction 

focusing mirrors. 
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uniformity and high reflectance from the entire mirror surface. Multilayer films with fully 

saturated reflectivity may have adverse effects, such as increasing the film stress and the shape 

error of the outermost surface due to the increased amount of film and changes in the deposition 

rate resulting from increased deposition time. We chose to use 30 multilayers based on the 

simulation results to obtain the reflectivity of 99.5% to the saturation value. 

In this sub-10-nm focusing system, an at-wavelength wavefront measurement method, 

which will be described in the next section, was used to measure the final surface shape error, 

because it would have been difficult to define the absolute shape errors of the second KB 

mirrors by using only ex-situ measurements. The at-wavelength wavefront measurement 

method is an in-situ measurement method and is useful for determining the shape error, which 

degrades the focusing. In the first commissioning, the final shape error will be measured by 

using the X-ray wavelength that is actually used. Then, as shown in Fig. 6.6, the error will be 

corrected by using differential deposition on the surfaces of the second KB mirrors, because the 

repeatability of the multilayer deposition and the accuracy of the differential deposition are 

sufficiently high, as mentioned in Chapter 4. Finally, ideal sub-10-nm focusing will be achieved 

by using shape-error-corrected multilayer KB mirrors. 

 

 

Fig. 6.6. Schematic of XFEL sub-10-nm focusing strategy. 
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6.2 Measurement of Focused X-ray Wavefront 
 

The achievable focal spot size is significantly degraded by mirror shape errors and grazing 

incidence angle misalignment. For sub-10-nm focusing optics, to satisfy Rayleigh’s criterion, 

the mirror shape and grazing incidence angle errors must not exceed 1 nm (PV) and 0.1 μrad, 

respectively. Generally, the alignment accuracy is evaluated by monitoring the beam profile 

using knife-edge scanning methods [100,101]. In this way, the alignment is optimized by an 

iterative procedure of beam profiling and grazing incidence angle adjustment. This procedure 

is very time-consuming and frequently introduces significant profiling error due to shape 

imperfections and/or vibrations of the scanned object. Accordingly, the grazing incidence angle 

alignment often determines the achievable focal spot size. To evaluate XFEL nanofocusing, a 

shot-by-shot method is essential to reduce the influence of focal position fluctuations during 

beam profiling.  

To meet this requirement, we used single-grating interferometry [102–116], based on the 

Talbot effect [117]. Therefore, we tested the sensing capability of the coma aberration generated 

by the grazing-incidence-angle error of a focusing mirror. A schematic of the single-grating 

interferometer system is shown in Fig. 6.7, and the phase grating parameters are listed in Table 

6.2. 

Table 6.2. Phase grating parameters. 

Parameters  

Material Tantalum 

Thickness 2.25 μm 

Pitch 3.0μm 

Phase shift λ/2 (at 9.1 keV) 

Transmission 80.5% (at 9.1 keV) 

 

The energy of the X-rays was 9.1 keV. A tantalum phase grating (3.0 μm pitch; NTT Advanced 

Technology Corporation) fabricated on a thin SiC membrane (thickness <1 μm) was used, and 

the grating thickness (2.25 μm) was chosen such that the grating would behave as a π/2 phase 
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Fig. 6.7. Schematic of single-grating interferometer system. 

 

shifter for 9.1 keV X-rays. The grating was placed 8.34 mm downstream from the final focal 

point. The formed self-image was recorded by a charge-coupled device (CCD) camera (C9300-

124, Hamamatsu Photonics) placed 820 mm downstream of the final focal point. The effective 

pixel size and field of view of the camera were 9.0 μm and 36.00 mm × 24.05 mm, respectively. 

Self-images were obtained by single-shot irradiation.  

To detect the coma aberration caused by grazing incidence angle error, we intentionally 

varied the grazing incidence angle around the optimal angle and measured the resulting 

wavefront shapes, which are shown in Fig. 6.8. To evaluate only the coma aberration induced 

by the grazing incidence angle error, best-fit quadratic functions were removed from the 

reconstructed wavefront shapes. The obtained wavefront shapes appear to be cubic functions, 

with no significant higher-order polynomial components below λ/10. We measured the PV 

heights of the cubic functions by changing the grazing incidence angle (pitched at 1 μrad) from 

-5 μrad to 5 μrad and found that the heights increased with increasing grazing incidence angle 

error. Figure 6.9 depicts the experimental and calculated results, which agree well. The phase 

difference at the minimum, for which the grazing incidence angle is optimal, is sufficiently 

small to satisfy Rayleigh’s criterion. Single-grating interferometry is the only available method 

for evaluating aberration shot-by-shot. 
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Fig. 6.8. Reconstructed wavefront aberration. 

 

 

 

Fig. 6.9. Typical relationship between grazing incidence angle error and phase 

difference of cubic function (PV) from wavefront shape measured by grating 

interferometry. 
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6.3 Experimental Evaluation of Multilayers at SPring-8 
 

To measure the mirror shape by using the wavefront measurement method, it is necessary to 

coat the multilayer on the mirror surface. If the multilayer film has multilayer period error, the 

relationship between the grazing incidence angle and the multilayer period (Bragg condition) 

is broken, and the reflectivity is reduced. When the multilayer period error is the range of -4–

2%, more than 90% of the designed reflectivity can be achieved, as shown in Fig. 6.10. To 

evaluate the deposition accuracies of the multilayer films, their reflectivities were measured at 

SPring-8 BL29XUL using the experimental setup shown in Fig. 6.11. The intensities of the 

incident and reflected beams were measured by using an ion chamber and a PIN photodiode, 

respectively. The evaluated multilayer films were the same as those used for XFEL sub-10-nm 

focusing. 

Figure 6.12 presents the measured reflectivities as functions of the grazing incidence angle 

at an X-ray photon energy of 9.1 keV. Grazing incidence angles that deviated from the ideal 

grazing incidence angle by between -0.5 mrad and 0.5 mrad were used. The reflectivity of the 

 

 

Fig. 6.10. Relationship between multilayer period error and reflectivity. 
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Fig. 6.11. Experimental setup for multilayer evaluation at SPring-8. 

 

horizontal direction focusing mirror increases when the grazing incidence angle is shifted to the 

negative side, as shown in Fig. 6.12(a), because the multilayer period became longer than the 

design value. On the other hand, the reflectivity of the vertical direction focusing mirror is the 

highest at the ideal grazing incidence angle, as shown in Fig. 6.12(b), indicating that the 

multilayer period was fabricated at a value close to the design value.  

Figure 6.13 depicts the measured reflectivities at the ideal grazing incidence angle and at 

X-ray photon energies ranging from 8.1 keV to 10.1 keV. The lines indicate the reflectivities at 

an arbitrary mirror position. Figures 6.13(a) and 6.13(b) show that the photon energies at which 

the horizontal and vertical direction focusing mirrors reflectivities are maximized are 8.909 keV 

and 9.096 keV, respectively. The corresponding multilayer period errors were determined to be 

+2.1% (H) and -0.4% (V). Thus, we succeeded in fabricating the multilayer within the allowable 

error range. 
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Fig. 6.12. X-ray reflectivities of (a) horizontal and (b) vertical direction focusing 

mirrors at various grazing incidence angles and X-ray photon energy of 9.1 keV. 

 

 

 

Fig. 6.13. X-ray reflectivities of (a) horizontal and (b) vertical direction focusing 

mirrors at various X-ray photon energies and ideal grazing incidence angle. 
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6.4 Nanofocusing Experiment at SACLA 
 

The first commissioning of the sub-10-nm XFEL focusing system was performed at SACLA 

using the setup shown in Fig. 6.14. The mirror and sample chambers were divided to protect 

the mirror from debris and to increase the range of potential applications.  

To investigate the focused beam profiles roughly, wire scan and knife-edge methods were 

applied, which are capable of micron-order evaluations. These methods are not suitable for 

sub-10-nm focusing, in which the beam profile would be estimated to be significantly larger 

because of focal point fluctuations. The measured results are shown in Fig. 6.15. The measured 

focused-beam size was 65 nm (H) × 49 nm (V) at a photon energy of 9.1 keV; this beam size 

is larger than the predicted focal spot size. As mentioned above, the knife-edge scan method is 

not suitable for evaluating sub-10-nm focusing optics. Grating interferometry, using a shot-by-

shot method, was employed to understand the exact wavefront aberration. In this case, the 

cubic function corresponding to the coma aberration was minimized by precisely aligning the 

grazing incidence angle, and higher-order polynomial elements were extracted to investigate  

 

  

Fig. 6.14. Experimental setup for XFEL sub-10-nm focusing. 
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Fig. 6.15. (a) Horizontal and (b) vertical focused-beam profiles measured using 

wire scan method. 

 

the wavefront error due to mirror shape imperfections. The results of this test are shown in 

Fig. 6.16. The mirror imperfections led to errors of several radians in both the horizontal and 

vertical directions, which exceed the errors allowed by Rayleigh’s criterion. In two-stage optics 

for sub-10-nm focusing, the grazing incidence angles of the downstream mirrors are about 10 

times larger than those of the upstream mirrors, which means that the shape errors of the 

downstream mirrors affect the wavefront error 10 times more than those of the upstream mirrors. 

Accordingly, we concluded that the wavefront error originated from the imperfections of the 

downstream mirrors. Meanwhile, using the obtained phase errors, the focusing beam waists and 

profiles were calculated and are shown in Fig. 6.17 and Fig. 6.18, respectively. The theoretically 

expected beam size is ~10 nm, which is the smallest beam size reported to date in XFEL 

focusing. Then, in the second commissioning, we endeavor to focus the XFEL to sub-10-nm 

size with a power density greater than 1022 W/cm2, by using shape-error-corrected multilayer 

mirrors. 
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Fig. 6.16. Measured phase errors resulting from shape errors of sub-10-nm focusing 

mirrors. 

 

 

 
Fig. 6.17. (a) Horizontal and (b) vertical focusing beam waists expected based on 

measured phase errors. 
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Fig. 6.18. (a) Horizontal and (b) vertical focusing beam profiles expected based on 

measured phase errors. 

 

 

6.5 Summary 
 

To achieve X-ray fields with higher power densities, sub-10-nm XFEL focusing was developed 

using a two-stage reflective focusing system. In the second (downstream) stage, multilayer 

coated KB mirrors were adopted, and the focused XFEL beam profiles were obtained. Using 

such optics, the theoretically obtainable diffraction-limited focal spot size is 5.3 nm (H) × 4.2 

nm (V) at a photon energy of 9.1 keV. To investigate the focused state of the XFEL nanobeam, 

a wavefront measurement method was developed. In this way, the alignment was optimized by 

iterative beam profiling and grazing incidence angle adjustment. However, this procedure is 

very time-consuming and frequently introduces significant error in the beam profile due to 

shape imperfections and/or scanner vibrations. Accordingly, the grazing incidence angle error 

often determines the achievable focal-spot size.  

The first commissioning of the sub-10-nm XFEL focusing system was performed at 

SACLA. To investigate the focused beam profiles roughly, wire scan and knife-edge methods 

were applied. The measured focused-beam size was 65 nm (H) × 49 nm (V), which includes 

imperfections and scanner vibrations. Therefore, grating interferometry, using a shot-by-shot 
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method, was employed to understand the exact wavefront aberration. The mirror imperfections 

led to errors of several radians in both the horizontal and vertical directions. The beam size was 

theoretically determined to be ~10 nm based on the obtained phase errors, which is the smallest 

beam size reported to date in XFEL focusing. Then, in the second commissioning, we endeavor 

to focus the XFEL to sub-10-nm size with a power density greater than 1022 W/cm2, by using 

shape-error-corrected multilayer mirrors. 
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Chapter 7  
 
CONCLUSIONS 

 

 

In this study, to generate extremely intense X-ray fields that can be used to explore nonlinear 

phenomena in the hard X-ray regime, a sub-10-nm XFEL focusing system was developed using 

multilayer KB mirror optics. The design of this system required studies of the fabrication and 

measurement of mirror substrates with steeply curved surfaces, deposition of multilayers with 

high reflectivities and sufficient X-ray irradiation tolerances, and techniques for single-shot 

measurement of focused wavefronts. The main conclusions can be summarized as follows. 

 

 

XFEL Sub-10-nm Focusing Mirror Fabrication 
XFEL sub-10-nm focusing mirrors have steeply curved surfaces that are difficult to measure 

using conventional shape measurement methods. The minimum radius of curvature is a few 

meters, and the slope range is several dozen milliradians. Furthermore, the required mirror 

surface accuracy, or Rayleigh criterion, is ~1 nm (PV). A laser autofocus microscope system 

was developed to provide measurements at this level of accuracy, featuring a position correction 

mechanism utilizing three heterodyne interferometers. A repeatability test demonstrated that the 

apparatus could be consistently adjusted to within 2 nm (PV).  

The sub-10-nm focusing mirrors were fabricated using EEM and measured using MSI, 

RADSI, and the newly developed instrument. The residual shape errors typically obtained after 

deterministic figuring of the sub-10-nm focusing mirrors were ~3 nm (PV).  
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Pt/C Multilayers with XFEL Irradiation Tolerance 
In hard X-ray focusing, multilayer mirrors must be used because reflection at high grazing 

incidence angles is necessary. To fabricate laterally graded multilayer mirrors for X-ray 

focusing, a thin film deposition system was developed. An arbitrary shape was fabricated using 

the differential deposition technique to estimate the accuracy of the deposition apparatus. We 

confirmed that the deposition apparatus was capable of sub-nanometer accuracy, which is 

sufficiently high for the fabrication of multilayer mirrors and mirror shape modification.  

We then evaluated the applicability of Pt/C multilayer films in XFEL focusing. The X-ray 

reflectivities, surfaces, and cross-sections of the multilayer films were measured to observe the 

irradiation damage. We measured the damage threshold of a Pt/C multilayer using a 1 μm 

focused hard XFEL beam with a photon energy of 10 keV and found that the damage threshold 

of the Pt/C multilayer film, which had a bilayer period of 3 nm, was 0.051 μJ/μm2, indicating 

that it could be employed in XFEL focusing optics. Moreover, damage to the multilayer was 

not observed in the conditions in which it was designed to be used. Our calculated value of the 

threshold atomic dose of the multilayer was similar to that of the bulk material. The obtained 

threshold should be a useful criterion for designing multilayer optics in sub-10-nm XFEL 

focusing and related fields. 

 

Pt/C Multilayers with High X-ray Reflectivities 
To develop Pt/C multilayers with improved X-ray reflectivities, we evaluated the effects of Pt 

layer thinning and C-doping of the Pt layers.  

Pt layer thinning effectively reduced the absorption of hard X-rays by the Pt, especially in 

long-period multilayers. The critical Pt layer thickness of ~1.2 nm was determined by using the 

X-ray reflectivity of the Pt/C multilayer because it is not possible to reduce the Pt layer 

thickness indefinitely. With this thickness, the theoretically obtainable X-ray reflectivity was 

increased, and the measured X-ray reflectivity was increased by ~10%. 

Since admixtures of metals and nonmetals, or metalloid elements such as C, generally 

suppress the crystallization of metal films during deposition, we compared single-layer films 

of pure Pt to single-layer films of C-doped Pt to evaluate the effectiveness of C-doping in 
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suppressing Pt crystallization. C concentrations ranging from 0 v/v % to 15 v/v % were used, 

and the surface roughness, X-ray diffraction spectra, and electron beam diffraction spectra were 

measured. We concluded that the surface roughness decreased with increasing C concentration 

in the Pt layers, and that Pt crystallization during deposition was also suppressed, which can 

explain the observed improvements in interface quality and reflectivity. Furthermore, C-doping 

effectively heightened the reflectivity of the total X-ray reflection optics. 

 

XFEL Nanofocusing 
To achieve higher power densities, sub-10-nm XFEL focusing was developed using the two-

stage reflective focusing system. In the second (downstream) stage, multilayer coated KB 

mirrors were adopted, and the focused XFEL beam profiles were obtained. Using such optics, 

the theoretically obtainable diffraction-limited focal spot size is 5.3 nm (H) × 4.2 nm (V) at a 

photon energy of 9.1 keV. To investigate the focused state of the XFEL nanobeam, a wavefront 

measurement method was developed. In this way, the alignment was optimized by iterative 

beam profiling and grazing incidence angle adjustment. However, this procedure is very time-

consuming and frequently introduces significant error in the beam profile due to shape 

imperfections and/or scanner vibrations. Accordingly, the grazing incidence angle error often 

determines the achievable focal-spot size.  

The initial commissioning of the sub-10-nm XFEL focusing system was performed at 

SACLA. To investigate the focused beam profiles roughly, wire scan and knife-edge methods 

were applied. The measured focused-beam size was 65 nm (H) × 49 nm (V), which includes 

imperfections and vibrations of the scanner. Therefore, grating interferometry, using a shot-by-

shot method, was employed to understand the exact wavefront aberrations. The mirror 

imperfections led to errors of several radians in both the horizontal and vertical directions. The 

beam size was theoretically determined to be ~10 nm based on the obtained phase errors, which 

is the smallest beam size reported to date in XFEL focusing. 

 

Prospects 
Sub-10-nm XFEL beams with power densities greater than 1022 W/cm2 will be generated using 
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shape-error-corrected multilayer mirrors. Such X-ray field intensities will enable the 

exploration of nonlinear phenomena in the hard X-ray regime. Moreover, further development 

of the elemental technologies involved can lead to the realization of focusing diameters at the 

wavelength level. Then, the electromagnetic field power density could possibly reach the 

Schwinger limit [118] (~1029 W/cm2), at which electron and positron pairs are generated from 

the vacuum. Additionally, in the field of biomolecular imaging, structural analyses of single 

molecules of protein before destruction may become possible by using single-shot XFEL pulses 

[119,120]. 
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