
Title Dynamics for Epitaxial Growth Model under
Dirichlet Conditions

Author(s) Azizi, Somayyeh

Citation 大阪大学, 2016, 博士論文

Version Type VoR

URL https://doi.org/10.18910/55980

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



 

 

1 

 

 

 

 

Doctoral Dissertation 

 

 

 

Dynamics for Epitaxial Growth Model under 

Dirichlet Conditions 

 

By 

 

SOMAYYEH AZIZI 

 

 

 

Department of Applied Physics 

Quantum Engineering Design Course 

Graduate School of Engineering 

Osaka University 

 

December 2015 

 

 

 

 

 

 

 

 

 



 

 

2 

 

Preface 

This dissertation is devoted to studying the dynamics of crystal surface grown by molecular 

beam epitaxy from the aspect of theoretical understanding of its mechanism. The molecular 

beam epitaxy (MBE) is regarded as one of useful techniques that enable us to grow structures 

with very high precision in the vertical direction in spite of difficulty of controlling instability of 

growing surface caused from roughening tendency that it naturally possesses. 

We will use a nonlinear diffusion model which has been presented by Johnson-Orme-Hunt- 

Graff-Sudijono-Sauder-Orr in 1994 to describe the growing process of crystal surface by MBE. 

The model equation is a fourth order parabolic equation containing two terms describing surface 

diffusion and roughening effect caused from the Schwoebel barrier. Equipping the 

homogeneous Dirichlet boundary conditions, we study the model equation analytically and 

numerically. After proving global existing of solutions, we construct a dynamical system and 

show that the dynamical system possesses a Lyapunov function, i.e., a real valued function 

whose values decreases monotonously along any trajectory. Furthermore, using the Lyapunov 

function, it is proved that every trajectory converges asymptotically to a stationary state which 

is a critical point of the Lyapunov function and in which the roughening effect is completely 

balanced with the surface diffusion. Finally, stability of the flat surface is investigated. It is 

indeed shown that, if the roughening coefficient is suitably smaller than the coefficient of 

surface diffusion, then the flat state is stable; meanwhile, if it is contrary, then the flat state 

becomes unstable. It is also shown that slenderness of the substrate domain enhances flatting 

effect of the surface against roughening. 

In order to study profiles of solutions, we perform numerical computations. We are mainly 

interested in stationary solutions to which every trajectory converges. It is observed that all 

non-flat stationary states have a number of ridges. It is also observed that, as the roughening 

coefficient increases, the number of columns of ridges increase and similarly the number of 

ridges in a column increase. 
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1 
Introduction 

 
Molecular beam epitaxy (MBE) is one of useful techniques that enable us to grow structures 

with very high precision in the vertical direction, such as monolayer-thin interfaces or 

atomically flat surfaces. But there still remains the major challenge of growing surfaces which 

are structured laterally. A theoretical contribution in order to control the unstable growth may 

then lie in understanding its basic mechanisms. 

In the present study, we are concerned with the initial-boundary value problem for a nonlinear 

parabolic equation of fourth order 

 

 

 

 

 

 

 

in a two-dimensional bounded domain  ⊂ 𝑅2,  being a substrate domain. We assume that  

is convex or of  𝒞2class. Such a problem has been presented by Johonson-Orme-Hunt-Graff- 

Sudijono-Sauder-Orr [8], in order to describe the process of growing crystal surface under MBE. 

Here, ),,( tyxuu   denotes a height of surface at position(𝑥, 𝑦) ∈  and at time 𝑡. The 

term −𝑎∆2𝑢 in the equation of (1.1) denotes a surface diffusion which is caused by the 

difference of the chemical potential which is proportional to the curvature of the surface. 

Therefore, the adatoms have a tendency to migrate from the positions of large curvature to those 

of small one. In the meantime, the term −𝜇∇. [
∇𝑢

1+|∇𝑢|2]  denotes the effect of surface 

roughening,  𝜇  being a positive constant called the surface roughening coefficient. Such 

roughening is caused by the Schwoebel barrier. In Chapter 2, we shall review the two effects, 

surface diffusion and roughening, together with somewhat detailed derivations of the forth-order 

parabolic equation in (1.1).  

To solve the parabolic equation, it is naturally necessary to impose suitable boundary conditions 

on the unknown function 𝑢(𝑥, 𝑦, 𝑡). In this study, we choose the homogeneous Dirichlet 

boundary conditions on 𝜕  which mean that we assume that the surface height is always 

(1.1)
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controlled at a constant level, 𝑢 = 0, on 𝜕 together with vanishing normal derivatives,  
𝜕𝑢

𝜕𝑛
= 0. 

In the papers Fujimura et al. [4,5,6], Neumann like boundary conditions  
𝜕

𝜕𝑛
∆𝑢 = 0 were 

assumed by some mathematical reasons. But it seems very difficult to give any physical 

meaning to such boundary conditions.  

We shall study the problem (1.1) analytically and numerically. After constructing a global 

solution to (1.1) for any initial state  𝑢0(𝑥, 𝑦), we construct a dynamical system generated by the 

problem in the Hilbert space  𝐿2() . We then show that the dynamical system has a Lyapunov 

function Φ(𝑢), namely, a real valued function defined for all state functions  𝑢(𝑥, 𝑦) whose 

values decline monotonously as t for any trajectory. So, the function plays a role of 

dynamical energy such that the trajectory proceeds every time to a direction in which the energy 

decreases. And a state ),( yxu is stationary if and only if ),( yxu is a critical value of the 

function, i.e., 0)(  u . On account of this function, we can furthermore prove that every 

trajectory ),,( tyxu converges as t to a stationary state ),( yxu . Clearly, ),( yxu

satisfies 0)(  u and  𝑎Δ2𝑢 = −𝜇∇ . [
∇𝑢

1+|∇𝑢|2 
] , and so ),( yxu is a state that the roughening 

is balanced against a surface diffusion. Analytical study is finally devoted to investigating 

stability of the stationary state 0),( yxu , the completely flat surface. In fact, we can show 

that there exists a crucial constant C such that, if Ca  , then the flat state is stable, 

meanwhile if Ca  , then the roughening becomes a dominator and destabilizes the flat 

growing surface. Furthermore, C is seen to be estimated by the band length of the substrate 

domain  . Slenderer is , smaller is C, that is, slenderness of  can enhance flatting effect of 

the surface against roughening. 

Under those analytical results, we shall investigate profiles of solutions by numerical methods. 

As the equation is of fourth order, any usual scheme is not readily available. We must build up 

some scheme for fourth order parabolic equation which adapts to the homogeneous Dirichlet 

boundary conditions. We are mainly interested in the question of how profiles of stationary state 

change as the roughening coefficient  𝜇 increases. Indeed, it is observed that all non-flat 

stationary solutions have a number of ridges. As 𝜇  increases, the number of columns of ridges 

increases. Similarly, the number of ridge in a column also increases. We perform numerical 

computations in rectangular domains   whose areas are fixed, say, as 1, starting with an initial 

state of slight perturbation of 𝑢0 ≡ 0. When   is square, the trajectory converges to a non-flat 

stationary state, but when  is slender enough, the trajectory goes back to the flat state. The 

critical value of C (i.e., 𝑎 < 𝐶𝜇) agrees well to the analytically expected one.  

The remainder of this thesis is separated into 5 chapters. The summery of description and details 
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of mathematical models that lead to construct of equation (1.1) is given in chapter 2. The 

construct of dynamical system and also the Lyapunov function of the dynamical system are 

express in third chapter. The fourth chapter is devoted to showing longtime convergence of 

trajectories to some stationary solution of problem. The fifth chapter is related to prove stability 

and instability of the null solution under Dirichlet boundary condition which is a unique 

homogeneous stationary solution. Indeed, we shall prove that, when surface diffusion effects are 

stronger than roughening effects then, the null solution is globally stable, and in the meantime, 

when the roughening effects are stronger than surface diffusion effects, the null solution is 

unstable. Finally the numerical results for the problem of (1.1) based on finite difference scheme 

are given in the last chapter.        
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2 
Mathematical Models of Epitaxial Growth 

 
In this chapter we introduce the mathematical models of main physical effects for describing the 

process of growing crystal surface under MBE. These physical effects are surface diffusion and 

roughening. 

 

2.1   MOLECULAR BEAM EPITAXY  

Molecular beam epitaxy is a technique for epitaxial growth via the interaction of one or several 

molecular or atomic beams that occurs on a surface of a heated crystalline substrate. Epitaxial 

growth deposition grows a single crystal film over a substrate by rearranging the atoms on top 

of the substrate and also can be categorized as either homoepitaxial or heteroepitaxial depending 

on the type of material grown on the substrate. A homoepitaxial growth has a film of the same 

material as the substrate (i.e., Si on Si growth). A heteroepitaxial growth, on the other hand, has 

a film of different material than the substrate (i.e., AlAs on GaAs or GaAs on Si growth). This 

property of heteroepitaxy is used as an advantage on optoelectronic and band gap engineering 

applications. Using beam epitaxy, it is possible to grow structures with very high precision in 

the vertical direction, such as monolayer- thin interface or atomically flat surfaces. After 

irradiation, crystal surface will grow in some function of t. Figure 2.1.1 shows the mechanism of 

MBE. 

 

Figure 2.1: MBE growth mechanism 

 

After irradiation molecular beam epitaxy, two physical effects on crystal surface are observed, 

one is a surface diffusion and the other is roughening. The following summary explains the most 

important features of these processes. 
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2.2   SURFACE DIFFUSION 

Surface diffusion (SD) is a really common phenomenon playing a highly important part in the 

field of science and technology. The effect of SD is to move surface atoms, molecules and 

clusters and allows them to assemble into some desirable configurations or, vice versa, to 

destroy the configurations that have been purposely created. (cf. [21]). 

Surface diffusion rates and mechanisms are affected by a variety of factors like of chemical 

potential gradients proportional to the curvature of surface. In the effect of chemical potential 

proportional to the curvature of surface, the atoms have tendency to migrate form the positions 

of large curvature to those of small one. 

2.2.1 Types of surface diffusion 

There are two different general schemes in which diffusion may take place [68], tracer diffusion, 

and chemical diffusion. 

. Tracer diffusion or low diffusion describes the motion of individual ad particles on a surface 

at relatively low coverage levels. The single atom diffusing in Figure 2.2 (b) is a nice example 

of tracer diffusion. Notice that the low diffusion is stable. See Figure 2.2 (a) 

 

                    (a)  Stable surface             (b) Low diffusion 

 

     Figure 2.2: Model of tracer diffusion  

 

. Chemical diffusion or high diffusion describes the process at higher level of coverage where 

the effects of attraction. In a crude way, figure 2.3 (b) serves to show how adatoms may interact 

at higher coverage levels. The adatoms have no "choice" but to move to the right at first, and 

adjacent adatoms may block adsorption sites from one another. The high diffusion is unstable. 

See Figure 2.3(a) 

 

(a)  UnStable surface       (b) High diffusion    

 

Figure 2.3: Model of chemical diffusion 

1 
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2.2.2  Adatom diffusion 

Diffusion of adatoms may occur by a variety of mechanisms. The following is a summary of the 

most important of these processes: [65]. 

. Hopping or jumping is conceptually the most basic mechanism for diffusion of adatoms. In 

this model, the adatoms reside on adsorption sites on the surface lattice. Motion occurs through 

successive jumps to adjacent sites, the number of which depends on the nature of the surface 

lattice. As shown in Figure 2.4. 

 

Figure 2.4 Model of an atomic hopping mechanism. 

 

. Atomic exchange involves exchange between an adatom and an adjacent atom within the 

surface lattice, as shown in Figure 2.5 

 

Figure 2.5 .Model of an atomic exchange mechanism occurring between an adatom (1) and surface atom 

(2) at a square surface lattice (black).  

. Vacancy diffusion can occur as the predominant method of surface diffusion at high coverage 

levels approaching complete coverage. It is very difficult to directly observe vacancy diffusion 

due to the typically high diffusion rates and low vacancy concentration: [67]. Figure 2.6 shows 

the basic theme of this mechanism.  

 

Figure 2.6 Model of vacancy diffusion mechanism. 

 

. Long-range atomic exchange is a process involving an adatom inserting into the surface as in 

the normal atomic exchange mechanism, but instead of a nearest-neighbor atom it is an atom 

some distance further from the initial adatom that emerges. Shown in figure 2.7, this process has 

only been observed in molecular dynamics simulations and has yet to be confirmed 

experimentally.  

https://en.wikipedia.org/wiki/Surface_diffusion#cite_note-12
https://en.wikipedia.org/wiki/Concentration
https://en.wikipedia.org/wiki/Surface_diffusion#cite_note-18
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Figure 2.7.Model of Long-range atomic exchange mechanism at a square lattice. Adatom (1), resting at 

surface (a), inserts into lattice disturbing neighboring atoms (b), ultimately causing one of the original 

substrate atoms emerge as an adatom (2) (c). Not to scale. 

 

2.2.3  Thermal grooving due to surface diffusion   

. The phenomenon. A polished polycrystal has a flat surface. At room temperature, the surface 

remains flat for a long time. At an elevated temperature atoms move. The surface grows grooves 

along triple junctions, where the surface meet grain boundaries. Atoms may move in many ways. 

They may diffuse in the lattice, diffuse on the surface, or evaporate into the vapor phase. Here 

we will only consider surface diffusion. Atoms diffuse on the surface away from the triple 

junction, making a dent along the junction, and piling two bumps nearby. The process conserves 

the total mass. The process of grooving was modeled by Mullins (1957). See Figure 2.8. 

 

Figure2.8. Section showing profile of ideal thermal groove 

. Grain boundary energy and surface energy. Development of groove is resultant of the two  

surface tension and the one grain tension along the line of intersection. Let 𝛾𝑠 be the surface 

energy per unit area, and be 𝛾𝑏 the grain boundary energy per unit area, see Fig 2.9. The free 

energy of the system is the sum of the surface energy and the grain boundary energy: 

𝐺 = 𝛾𝑠𝐴𝑠 + 𝛾𝑏𝐴𝑏 . 

As the groove grows, the grain boundary area decreases, but the surface area increases. The net 

free energy must decrease. 

 

Figure 2.9 Surface energy and grain boundary energy 

*L. Klinger and E. Rabkin, 2001*  

http://www.researchgate.net/publication/228564670_Thermal_grooving_by_surface_diffusion_Mullins_revisited_and_extended_to_multiple_grooves
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. Local equilibrium and the dihedral angle. During the motion of the surface, the triple 

junction maintains local equilibrium. Local equilibrium at the triple junction implies that the 

surface tensions balance one another, giving the angle, 𝜃, 

2𝛾𝑠𝑠𝑖𝑛 𝜃 = 𝛾𝑏 . 

. Differential geometry of a curve in a plane. For example, we can prescribe the coordinates of 

a point on the curve, x and y, as functions of the curve length s. The functions and x(s) and y(s) 

describe a set of points that trace the curve. We have adopted a sign convention. The solid is 

beneath the surface. The curvature is positive when the solid is convex. K=+1/R for a 

cylindrical solid of radius R, and K=−1/R for a cylindrical hole of radius R. When the surface 

evolves with time, we represent the family of curves by a function of two variables:ℎ(𝑥, 𝑡) is 

the height of the surface at location x and time t. At a given time, the curve has the length, the 

tangent angle, and the curvature. In the above expressions, the differential becomes the partial 

differential 𝜕ℎ/𝜕𝑥 with time fixed.  

. Atomic flux. The adatoms have tendency to flow on the surface from positions of large 

curvature to those of lower one. According to Nernst-Einstein low, the mean velocity V of 

adatom’s flow along the surface is 1D case known as 

𝑉 = −
𝐷𝑠𝛾Ω

𝑘𝑇

𝜕𝐾

𝜕𝑠
. 

Here, 𝐷𝑠 is a surface diffusion constant, 𝛾 is a surface energy per unit area, Ω is a volume of 

molecule,  𝑘 is the Boltzmann constant, and 𝑇 is temperature. Thereby, the flux of flow is given 

by 

𝐽 = −𝑉𝑣 = −
𝐷𝑠𝛾Ω𝑣

𝑘𝑇

𝜕𝐾

𝜕𝑠
, 

where 𝑣 is a number of adatoms per unit area. 

. Mass conservation. Consider the motion of a surface element dx. When the time goes from t to 

+∆𝑡, 𝐽(𝑥)∆𝑡 , number of atoms flow into the element, 𝐽(𝑥 + 𝑑𝑥, 𝑡)∆𝑡, number of atoms flow 

out of the element, and the surface height changes from ℎ(𝑥, 𝑡)  to  ℎ(𝑥, 𝑡 + ∆𝑡).  Mass 

conservation requires that 

𝜕ℎ

𝜕𝑡
= −Ω−1

𝜕𝐽

𝜕𝑥
. 
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2.2.4  Mathematical model of surface diffusion 

Let us derive an equation satisfied by the surface curve following the methods due to Mullins 

[10]. The normal component of growing velocity of surface can now be describe by  

𝑟𝑛 = −Ω
1
3

𝜕𝐽

𝜕𝑠
=

𝐷𝑠𝛾Ω
4
3𝑣

𝑘𝑇

𝜕2𝐾

𝜕𝑠2
. 

Since 𝑠 = ∫ √1 + ℎ𝑥
2𝑑𝑥, it follows that 

𝜕

𝜕𝑠
=

𝜕𝑥

𝜕𝑠

𝜕

𝜕𝑥
=

1

√1 + ℎ𝑥
2

𝜕

𝜕𝑥
. 

Furthermore, 

𝜕2

𝜕𝑠2
= (

1

√1 + ℎ𝑥
2

𝜕

𝜕𝑥
)

2

. 

Meanwhile, the curvature is equal to 𝐾 = −
ℎ𝑥𝑥

(1+ℎ𝑥
2)

3
2

. Therefore, we obtain that 

𝑟𝑛 = −𝐵 (
1

√1 + ℎ𝑥
2

𝜕

𝜕𝑥
)

2

(
ℎ𝑥𝑥

(1 + ℎ𝑥
2)

3
2

) 

with a constant 𝐵 =
𝐷𝑠𝛾Ω4/3𝑣

𝐾𝑇
. 

On the other hand, we have  

𝑟𝑛 =
1

√1 + ℎ𝑥
2

𝜕ℎ

𝜕𝑡
. 

Combing these two equations, we arrive at 

𝜕ℎ

𝜕𝑡
= −𝐵

𝜕

𝜕𝑥
[

1

√1 + ℎ𝑥
2

𝜕

𝜕𝑥
(

ℎ𝑥𝑥

(1 + ℎ𝑥
2)

3
2

)]. 

In this study, we are concerned with the case when the gradient of the curve is sufficiently small, 

i.e., ℎ𝑥 ≈ 0, thereby 

𝜕ℎ

𝜕𝑡
= −𝐵

𝜕4ℎ

𝜕𝑥4
. 

These arguments can be extended into two- dimensional case by analogous arguments. The two- 

dimensional equation of surface diffusion is indeed given by 

𝜕𝑢

𝜕𝑡
= −𝐵 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2)

2

𝑢 

                                                                      = −𝐵∆2𝑢, 

where 𝑢(𝑥, 𝑦, 𝑡) denotes a displacement of surface from the standard level at position (𝑥, 𝑦) of 

substrate and at time 𝑡. 
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2.3   ROUGHENING 

During the film production by MBE, the surface may follow distinct growth regimes: [60]. The 

so-called kinetic roughening, where is caused by Schwoebel barriers [3; 10] (cf. also [14]). The 

step edge barriers prevent adatoms from hopping down from the upper terraces to lower ones. 

See Figure 2.10.  

 

Figure 2.10. Step barrier mechanism 

 

As a consequence, diffusing adatoms preferably attach to steps from the terrace below rather 

than from above and non-equilibrium uphill currents are induced [3; 11]. See Figure 2.11. 

 

 

 

Figure 2.11. Processes of roughening due to step barriers; (a) step barrier between up and down terrace; 

(b) injection of new molecules; (c) tendency of old and new molecules toward step barrier; (d) growth of 

terrace 1 to end of new molecules in terrace 2. 
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2.3.1 Mathematical model of Roughening 

A mathematical model of surface roughening was presented by Rost [26]. He assumed that the 

surface evolves according to an equation  

𝜕ℎ

𝜕𝑡
= −𝐵∆2ℎ − ∇. 𝐽𝑁𝐸 + 𝐹, 

where the first term on the right hand side denotes smoothing due to the surface diffusion, 𝐽𝑁𝐸 

is the uphill non-equilibrium mass current induced by the step edge barriers, and 𝐹 is the 

deposition rate. Under the assumption of in-plane isotropy the current is directed along the local 

tilt ∇ℎ, and it can be written as 

𝐽𝑁𝐸 = ∅(|∇ℎ|)∇ℎ. 

A calculation in [65] in the framework of Burton-Cabrera-Frank (BCF) theory [23] yields that  

 

∅(|∇ℎ|) = 𝐹𝑙 𝐷
 2 𝑓(𝑙𝐷|∇ℎ|), 

where 𝑙𝐷 is the diffusion length or terrace size on the singular surface: [15], 𝑙𝐷 is the effective 

diffusion length which is obtained by some modifications on 𝑙𝐷, and 𝑓(𝑠) is a dimensionless 

shape function. There are several possibilities for choosing this function. Johnson [8] proposed 

in 1994 a form 

𝑓(𝑠) =
1

1 + 𝑠2
 , 

by interpolating the facts that, as 𝑠 → 0, 𝑓(𝑠) ≈ 1, and as 𝑠 → ∞, 𝑓(𝑠) ≈
1

𝑠2. Following this 

idea, we obtain that 

𝜕ℎ

𝜕𝑡
= −𝐵∆2ℎ − 𝐹𝑙 𝐷

 2 ∇. (
∇ℎ

1 + 𝑙 𝐷
 2 |∇ℎ|2

) + 𝐹. 

Replacing ℎ(𝑥, 𝑦, 𝑡) by 𝑢(𝑥, 𝑦, 𝑡) = ℎ(𝑥, 𝑦, 𝑡) − 𝐹𝑡 as before, we arrive at the equation 

 

𝜕𝑢

𝜕𝑡
= −𝐵∆2𝑢 − 𝐹𝑙 𝐷

 2 ∇. (
∇𝑢

1 + 𝑙 𝐷
 2 |∇𝑢|2

). 
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3 
Dynamical System for Epitaxial Growth Model under Dirichlet 

Conditions 

 
In this chapter we construct a dynamical system generated by the initial value problem (1.1) for 

the Dirichlet boundary conditions and we verify that the dynamical system has a finite- 

dimensional attractor. Also this chapter is devoted to presenting a Lyapunov function of the 

dynamical system whose values are monotonously decreasing along trajectories. 

 

3.1   ABSTRACT FORMULATION 

In order to employ the theory of abstract parabolic equations, let us formulate (1.1) as the 

Cauchy problem for an abstract evolution equation. We first define a realization of the 

operator 𝑎∆2 under the conditions 𝑢 =
𝜕𝑢

𝜕𝑛
= 0. For this purpose, we consider a symmetric 

sesquilinear form 

𝑎(𝑢, 𝑣) = 𝑎 ∫ ∆𝑢
1



⋅ ∆𝑣 ̅𝑑𝑥,         𝑢, 𝑣 ∈ 𝐻0
2(), 

defined on  𝐻0
2(). Since  ∇𝑢 ∈ 𝐻0

1() if  𝑢 ∈ 𝐻0
2() ,  𝑢 ∈ 𝐻0

2()satisfies  
𝜕𝑢

𝜕𝑛
= 0 on  𝜕 . Of 

course,  𝑢 ∈ 𝐻0
2()satisfies  𝑢 = 0  on  𝜕 . Therefore  𝑢 ∈ 𝐻0

2()satisfies the homogeneous 

Dirichlet boundary conditions. Furthermore, as  is convex or of class𝒞2, in either case, the 

elliptic estimates yield that 

(3.1.a)            ‖𝑢‖𝐻2
≤ 𝐶‖𝑢‖𝐿2

,                 𝑢 ∈ 𝐻2()⋂ 𝐻0
1(). 

This then implies the coercive estimate  

  𝑎(𝑢, 𝑣) ≥ 𝛿‖𝑢‖𝐻2                           
2 for all 𝑢 ∈ 𝐻0

2(),  

with some constant δ > 0. As a consequence, we see that 𝑎(𝑢, 𝑣) determines a linear operator A 

from 𝐻0
2() into 𝐻−2() by a formula 𝑎(𝑢, 𝑣) = 〈𝐴𝑢, 𝑣〉 𝐻−2× 𝐻0

2, see, [2]. Here, 𝐻−2() is 

the dual space of  𝐻0
2() and these spaces compose a triplet 

 

(3.1.b)                  𝐻0
2() ⊂ 𝐿2() ⊂  𝐻−2().   

The operator A thus defined is considered as a realization of 𝑎∆2under the homogenous 

Dirichlet boundary conditions which is a densely defined, closed operator in 𝐻−2() whose 

spectrum is contained in the positive real line (0, ). (Note that the part of A in 𝐿2() is a 
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positive definite self-adjoint operator of 𝐿2(). ) For 0 ≤ 𝜃 ≤ 1,  𝐴𝜃 denotes the fractional 

power of A with exponent 𝜃. Of course, 𝐴0 = 𝐼 (identity operator on 𝐻−2()) and 𝐴1 = 𝐴. As a 

general result (cf. [15, Theorem 2.35]), it follows from (3.1.b) that 𝒟 (𝐴
1

2) = 𝐿2() with norm 

equivalence. From this fact it is further deduced that, for 
1

2
≤ 𝜃 ≤ 1,  

(3.1.c)         𝒟(𝐴𝜃) = [𝒟 (𝐴
1

2) , 𝒟(𝐴)]2𝜃−1 = [𝐿2(), 𝐻0
2()]2𝜃−1 ⊂ 𝐻4𝜃−2(). 

As well, (3.1.a) can be extended for 
1

2
≤ 𝜃 ≤ 1,  

 ‖𝑢‖𝐻4𝜃−2 ≤ 𝐶 ‖𝐴𝜃−
1
2𝑢‖

𝐿2

,          𝒟(𝐴θ). 

We next define a realization of a nonlinear operator −𝜇∇ ∙ (
∇𝑢

1+|∇𝑢|2) in the framework of (3.1.b). 

Since ∇ is a bounded operator from 𝐿2() into 𝐻−1(), if 
𝛻𝑢

1+|𝛻𝑢|2 is in 𝐿2(), then we see 

that ∇ ∙ (
∇𝑢

1+|∇𝑢|2) ∈ 𝐻−1() ⊂  𝐻−2(). So, it is natural to set 

(3.1.d)              𝑓(𝑢) = −𝜇𝛻 ∙ (
𝛻𝑢

1+|𝛻𝑢|2) ,          𝑢 ∈ 𝐻1().    

In view of (3.1.c), 𝒟 (𝐴
3

4) ⊂ 𝐻1(). This shows that f is defined on the domain 𝒟 (𝐴
3

4) and can 

be regarded as a subordinate operator to A. We thus arrive at an abstract formulation of (1.1) 

which is written as 

(3.1.e)                {
𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 = 𝑓(𝑢),               0 < 𝑡 < ∞,

𝑢(0) = 𝑢0, , , , , , , , , , , , , , , , , , , , , , , , , , ,
 

in the underlying space 𝐻−2(). It is now possible to apply the various results of the theory of 

semilinear abstract parabolic equations. 

3.2   CONSTRUCTION OF SOLUTIONS 

We begin with constructing local solutions to (3.1.e) by using [15, Theorem 4.4]. To this end, it 

suffices to verify a suitable Lipschitz condition for 𝑓(𝑢). In fact, for 𝑢, 𝑣 ∈ 𝐻1(), 

 

                      
∇𝑢

1 + |∇𝑢|2
−

∇𝑣

1 + |∇𝑣|2
 =

(1 + |∇𝑣|2)∇(𝑢 − 𝑣) − (|∇𝑢|2 − |∇𝑣|2)∇𝑣

(1 + |∇𝑢|2)(1 + |∇𝑣|2)
 

                                              =
∇(𝑢 − 𝑣)

1 + |∇𝑢|2
−

(|∇𝑢| − |∇𝑣|)(|∇𝑢| + |∇𝑣|)∇𝑣

(1 + |∇𝑢|2)(1 + |∇𝑣|2)
. 
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 Therefore, 

            ‖
∇𝑢

1 + |∇𝑢|2
−

∇𝑣

1 + |∇𝑣|2‖
𝐿2

≤ C‖𝑢 − 𝑣‖𝐻1. 

This then yields that 

                 ‖𝑓(𝑢) − 𝑓(𝑣)‖𝐻−1 ≤ 𝐶 ‖𝐴
3
4(𝑢 − 𝑣)‖

𝐻−2
,              𝑢, 𝑣 ∈ 𝒟 (𝐴

3
4), 

i.e., f fulfills [15, (4.21)] with 𝜂 =
3

4
. 

As a direct consequence of [15, Theorem 4.4], for any 𝑢0 ∈ 𝐻−2(), there exists a unique local 

solution to (3.1.e) in the function space: 

(3.2.a)      𝑢 ∈ 𝒞([0, 𝑇𝑢0
]; 𝐻−2()) ∩ 𝒞1((0, 𝑇𝑢0

]; 𝐻−2()) ∩ 𝒞((0, 𝑇𝑢0
]; 𝐻0

2()). 

The local solution u satisfies the estimate 

(3.2.b)         𝑡‖𝑢(𝑡)‖𝐻2 + 𝑡
3

4‖𝑢(𝑡)‖𝐻1 + ‖𝑢(𝑡)‖𝐻−2 ≤ 𝐶𝑢0  ,         0 < 𝑡 ≤   𝑇𝑢0
. 

The time 𝑇𝑢0
> 0 and constant 𝐶𝑢0

are determined by the norm ‖𝑢0‖𝐻−2 alone. 

For constructing global solution, the essential thing is to establish the a priori estimates for 

global solution, cf. [15, Corollary 4.3]. By the smoothing effect of solution seen by (3.2.a) we 

have 𝑢(𝑡) ∈ 𝐻2() for any 𝑡 > 0. So in proving the a priori estimates (and hence constructing 

a global solution to (3.1.e)), there is no loss of generality to assume that 𝑢0 ∈ 𝐿2() = 𝒟(𝐴
1

2). 

Under this assumption, let u denote any local solution to (3.1.e) in the space: 

(3.2.c)         𝑢 ∈ 𝒞([0, 𝑇𝑢]; 𝐿2()) ∩ 𝒞1((0, 𝑇𝑢]; 𝐻−2()) ∩ 𝒞((0, 𝑇𝑢]; 𝐻0
2()). 

Proposition 3.1. There exists a constant 𝐶 > 0 such that the estimate 

 ‖𝑢(𝑡)‖𝐿2 ≤ 𝐶(‖𝑢0‖𝐿2
+ 1),            0 ≤ 𝑡 ≤ 𝑇𝑢, 

holds true for any local solution u lying in (3.2.c), 𝐶being independent of the interval [0, 𝑇𝑢]. 

Proof. Take a scalar product of the equation of (3.1.e) and �̅�.  Noting that  ‖𝑢(𝑡)‖𝐿2
2  is 

differentiable for 𝑡 > 0 with derivative  
𝒹

𝒹t
 ‖𝑢(𝑡)‖𝐿2

2 = 2𝑅𝑒 〈
𝒹u

𝒹t
(𝑡), 𝑢(𝑡)〉𝐻−2,𝐻0

2  and that 

〈𝐴𝑢(𝑡), 𝑢(𝑡)〉𝐻−2,𝐻0
2 = 𝑎(𝑢(𝑡), 𝑢(𝑡)), we have  

1

2
 

𝒹

𝒹𝑡
 ∫ |𝑢|2𝑑𝑥 + 𝑎 ∫ |∆𝑢|2𝑑𝑥

1



=
1



 𝜇 ∫
|∇𝑢2|

1 + |∇𝑢|2
 𝑑𝑥 ≤ 𝜇||

1



. 

By (3.1.a) there exists a constant δ > 0 such that  

                                               
1

2
 

𝒹

𝒹𝑡
 ∫ |𝑢|2𝑑𝑥

1



+ δ ∫ |𝑢|2𝑑𝑥 ≤ 𝜇||.
1



 

Solving this integral inequality, we obtain that 

‖𝑢(𝑡)‖𝐿2
2 ≤ 𝑒−2𝛿𝑡‖𝑢0‖𝐿2

2 + 𝜇𝛿−1||,            0 ≤ 𝑡 ≤ 𝑇𝑢. 

Proposition 3.1 shows that the norm ‖𝑢(𝑡)‖𝐿2  remains uniformly bounded for any interval 
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[0, 𝑇𝑢]. This then means that one can always extend any local solution with a uniform time 

interval to obtain a global solution in the space: 

(3.2.d)          𝑢 ∈ 𝒞([0, ∞]; 𝐿2()) ∩ 𝒞1((0, ∞]; 𝐻−2()) ∩ 𝒞((0, ∞]; 𝐻0
2()). 

Of course, the global solution satisfies the similar estimate 

(3.2.e)             ‖𝑢(𝑡)‖𝐿2
2 ≤ 𝑒−2𝛿𝑡‖𝑢0‖𝐿2

2 + 𝜇𝛿−1||,            0 ≤ 𝑡 ≤ ∞. 

Finally, let us remark that, if the initial function  𝑢0  is real, then the solution  𝑢(𝑡) with 

𝑢(0) = 𝑢0 is also real for every time 𝑡 > 0. In fact, we notice that the complex conjugate �̅� 

of the solution  𝑢 to (3.1.e) satisfies the same evolution equation for every t. So, �̅� is a solution 

satisfying an initial condition 𝑢(0)̅̅ ̅̅ ̅̅ = 𝑢0.̅̅ ̅̅  If 𝑢0 is real, i.e., 𝑢0 = 𝑢0 ̅̅ ̅̅ , then uniqueness of 

solution implies 𝑢(𝑡) = 𝑢(𝑡)̅̅ ̅̅ ̅̅  and 𝑢(𝑡) must be real for every t. 

3.3   DYNAMICAL SYSTEM 

The next step is to observe that the problem (3.1.e) generates a dynamical system. For this 

purpose, we can again follow the general procedure for semilinear abstract parabolic equations; 

see [15, Section 6.5]. 

For𝑢0 ∈  𝐻−2(), let 𝑢(𝑡; 𝑢0) denote the global solution of (3.1.e), and set 

𝑆(𝑡)𝑢0 = 𝑢(𝑡; 𝑢0),         0 ≤ 𝑡 ≤ ∞. 

Then,  𝑆(𝑡) is a nonlinear semigroup acting on  𝐻−2(),  i.e.,  𝑆(0) = 𝐼  and  𝑆(𝑡 + 𝑠) =

𝑆(𝑡)𝑆(𝑠) for  0 ≤ 𝑠, 𝑡 < ∞.  Furthermore, 𝑆(𝑡) is seen to be continuous in the sense 

that (𝑡, 𝑢0) ↦ 𝑆(𝑡)𝑢0 is continuous from [0, ∞) × 𝐻−2() into 𝐻−2(). Whence,  𝑆(𝑡) defines 

a dynamical system in 𝐻−2() which is denoted by ( 𝑆(𝑡),  𝐻−2()). We can see from the 

dissipative estimate (3.2.e) that 𝑆(𝑡),  𝐻−2()) has an exponential attractor.  

Remember that a set ℳ satisfying the following conditions is called the exponential attractor: 

1. ℳ is a compact subset of  𝐻−2() with finite fractal dimension. 

2. ℳ is a positively invariant set of 𝑆(𝑡), i.e., 𝑆(𝑡)ℳ ⊂ ℳfor any 0 ≤ 𝑡 ≤ ∞. 

3. There exists an exponent 𝑘 > 0 such that, for any bounded subset B of  𝐻−2(), it holds 

true that  

ℎ(𝑆(𝑡)𝐵, ℳ ≤ 𝐶
𝐵𝑒−𝑘𝑡 ,              0 < 𝑡 < ∞, 

with a constant 𝐶𝐵 > 0. 

Here, ℎ(𝐵1, 𝐵2) = sup𝑓∈𝐵1
inf𝑔∈𝐵2

‖𝑓 − 𝑔‖𝐻−2   is a semi-distance of two bounded 𝐵1 and 𝐵2. 

As explained in [15, Section 6.4], the compact smoothing property 

(3.3.a)            ‖𝑆(𝑡∗)𝑢0 − 𝑆(𝑡∗)𝑣0‖𝐿2
≤ 𝐶‖𝑢0 − 𝑣0‖𝐻−2,               𝑢0, 𝑣0 ∈ ℬ,   

of 𝑆(𝑡) provides existence of exponential attractors, where  ℬ  is an attractive, positively 

invariant, compact subset of  𝐻−2() and where 𝑡∗ > 0 is a fixed time. But, this property is 

also easily verified from the known estimates (3.2.b) and (3.2.e). In fact, let B be any bounded 

subset of  𝐻−2(). Then, it follows from (3.2.b) that there exist a bounded ball 𝐵2 of 𝐿2() 

and time 𝑡𝐵 > 0 both depending on B such that 𝑆(𝑇𝐵)𝐵 ⊂ 𝐵2,𝐵. In addition, (3.2.e) yields that, 
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for any 𝑢0 ∈ ℬ, 

‖𝑆(𝑡)𝑢0‖𝐿2

2 = ‖𝑆(𝑡 − 𝑇𝐵)𝑆(𝑇𝐵)𝑢0‖𝐿2

2 ≤ 𝑒−2𝛿(𝑡−𝑇𝐵)𝑅2,𝐵 + 𝜇𝛿−1||,    ∀𝑡 ≥ 𝑇𝐵, 

where 𝑅2,𝐵 is the radius of 𝐵2,𝐵. This shows that the ball 𝐵(0; √1 + 𝜇𝛿−1||) of 𝐿2() is an 

absorbing set. Let ℬ be the collection of all trajectories starting from this ball. Obviously, ℬ is 

an absorbing and invariant set. Finally, the desired Lipschitz condition (3.3.a) can be verified by 

using the standard techniques described in [15, Subsection 6.5.3]. In this way, we verify that our 

dynamical system admits an exponential attractor. 

Finally, let us notice that 𝑆(𝑡) defines a dynamical system even in the space 𝐿2() and the 

restricted dynamical system denoted by (𝑆(𝑡),  𝐿2()) also admits an exponential attractor. In 

fact, as seen in (3.2.d),  𝑆(𝑡)maps  𝐿2() into itself. In addition, it is proved that  𝑆(𝑡)is 

continues from 𝐿2() into itself. Therefore, (3.1.e) generates a dynamical system in 𝐿2(), too. 

Furthermore, the exponential attractor ℳ in 𝐻−2() constructed above is obviously a bounded 

subset of 𝒟(𝐴) (= H0
2()), and remains to be an exponential attractor of (𝑆(𝑡),  𝐿2()).    

3.4   LYAPUNOV FUNCTION  

Multiply the equation of (1.1) by − 
𝜕�̅�

 𝜕𝑡
 and integrate the product in . By somewhat formal 

computations, its real part is given by   

               − ∫ |
𝜕𝑢

𝜕𝑡
|

2

𝑑𝑥 = 𝑎Re ∫ ∆𝑢
𝜕

𝜕𝑡
∆�̅�𝑑𝑥

1

 1

1



− 𝜇Re ∫ [
∇𝑢

1 + |∇𝑢|2] ⋅
𝜕

𝜕𝑡
∇�̅�𝑑𝑥

1

 1

 

=
1

2

𝑑

𝑑𝑡
∫ [−𝜇 log(1 + |𝛻𝑢|2)]𝑑𝑥.

1



 

These computations then suggest that the functional 

(3.4.a)         Φ(𝑢) =
1

2
∫ [𝑎|∆𝑢|2 − 𝜇 log(1 + |𝛻𝑢|2)]𝑑𝑥,

1


            𝑢0 ∈ 𝐻0

2(), 

becomes a Lyapunov function of the dynamical system.  

In order to justify this, however, we need a higher regularity of solution to (3.1.e) belonging to     

(3.4.b)          𝑢 ∈ 𝒞1((0, ∞]; 𝐿2())    and     ∆2𝑢 ∈ 𝒞((0, ∞]; 𝐿2()). 

It is clear that  

                                   ‖∆𝑢(𝑡 + ℎ)‖𝐿2

2 − ‖∆𝑢(𝑡)‖𝐿2

2  

             = (∆[𝑢(𝑡 + ℎ) − 𝑢(𝑡)], ∆2𝑢(𝑡 + ℎ)) + (∆𝑢(𝑡), ∆𝑢[𝑢(𝑡 + ℎ) − 𝑢(𝑡)])        

      = (𝑢(𝑡 + ℎ) − 𝑢(𝑡), ∆𝑢(𝑡 + ℎ)) + (∆2𝑢(𝑡), 𝑢(𝑡 + ℎ) − 𝑢(𝑡)). 

In view of (3.4.b), it is observed that 
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𝑑

 𝑑𝑡
‖∆𝑢(𝑡)‖𝐿2

2 = (
𝑑𝑢

𝑑𝑡
(𝑡), ∆2𝑢(𝑡)) + (∆2𝑢(𝑡),

𝑑𝑢

𝑑𝑡
(𝑡)) 

      = 2Re (
𝑑𝑢

𝑑𝑡
(𝑡), ∆2𝑢(𝑡)). 

  In the meantime, for 𝑢, 𝑣 ∈ 𝐻0
2(), consider  

∫ [log (1 + |∇𝑣|2) − log(1 + |∇𝑢|2)]𝑑𝑥
1



 

For a.e. 𝑥 ∈ , we have 

     log[1 + |∇𝑣(𝑥)|2] − log[1 + |∇𝑢(𝑥)|2] = ∫
𝑑

𝑑𝜃

1

0

log{1 + |∇[𝜃𝑣(𝑥) + (1 − 𝜃)𝑢(𝑥)]|2} 𝑑𝜃 

                                                                                                   

= ∫
2Re∇[𝑣(𝑥) − 𝑢(𝑥)] ⋅ ∇�̅�(𝑥) + 2𝜃|∇[𝑣(𝑥) − 𝑢(𝑥)]|2

1 + |∇[𝜃𝑣(𝑥) + (1 − 𝜃)𝑢(𝑥)]|2

1

0

𝑑𝜃. 

Moreover, since 

               
1

1 + |∇[𝜃𝑣(𝑥) + (1 − 𝜃)𝑢(𝑥)]|2

=
1

1 + |∇𝑢(𝑥)|2
−

2𝜃Re∇[𝑣(𝑥) − 𝑢(𝑥)] ⋅ ∇�̅�(𝑥) + 𝜃2|∇[𝑣(𝑥) − 𝑢(𝑥)]|2

{1 + |∇[𝜃𝑣(𝑥) + (1 − 𝜃)𝑢(𝑥)]|2}(1 + |∇𝑢(𝑥)|2)
, 

we have  

  |log[1 + |∇𝑣(𝑥)|2] − log[1 + |∇𝑢(𝑥)|2] −
2Re∇[𝑣(𝑥) − 𝑢(𝑥)] ⋅ ∇�̅�(𝑥)

1 + |∇𝑢(𝑥)|2
|

≤ 𝐶{|∇[𝑣(𝑥) − 𝑢(𝑥)]|2 + |∇[𝑣(𝑥) − 𝑢(𝑥)]|4}. 

Therefore, integration in  yields that 

                      |∫ [log(1 + |∇𝑣|2) − log[1 + |∇𝑢|2] −
2Re∇[𝑢 − 𝑣] ⋅ ∇�̅�

1 + |∇𝑢|2
]

1



𝑑𝑥|

≤ 𝐶{‖∇(𝑣 − 𝑢)‖𝐿2

2 + ‖∇(𝑣 − 𝑢)‖𝐿4

4 }. 

We have to use Galiardo- Nirenberg’s inequality ([15, Theorem 1.37]) to obtain that  

                      ‖∇(𝑣 − 𝑢)‖𝐿4
≤ 𝐶‖∇(𝑣 − 𝑢)‖

𝐿2

1
2 ‖∇(𝑣 − 𝑢)‖

𝐻1

1
2 ≤ 𝐶‖𝑣 − 𝑢‖

𝐻1

1
2 ‖𝑣 − 𝑢‖

𝐻2

1
2

≤ 𝐶‖𝑣 − 𝑢‖
𝐿2

1
4 𝐶‖𝑣 − 𝑢‖

𝐻2

3
4 . 

Then, 

                            |∫ {log(1 + |∇𝑣|2) − log[1 + |∇𝑢|2] + 2Re [∇ ∙
∇𝑢

1 + |∇𝑢|2
(�̅� − �̅�)] 𝑑𝑥}

1



|       

≤ 𝐶‖𝑣 − 𝑢‖𝐿2
+ (‖𝑣 − 𝑢‖𝐻2 + ‖𝑣 − 𝑢‖𝐻2

3 ). 

Let us apply this estimate with 𝑣 = 𝑢(𝑡 + ℎ) and 𝑢 = 𝑢(𝑡), where 𝑢 is the solution mentioned 
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above. Then, since ‖𝑢(𝑡 + ℎ) − 𝑢(𝑡)‖𝐻2 → 0 as ℎ → 0, it is easily verified that  

𝑑

 𝑑𝑡
∫ log[1 + |∇𝑢(𝑡)|2]𝑑𝑥

1



= −2Re ∫ ∇ ⋅ (
∇𝑢(𝑡)

1 + |∇𝑢(𝑡)|2)

1



 
𝑑�̅�

 𝑑𝑡
(𝑡)𝑑𝑥. 

We have thus proved that, for any solution lying in (3.4.b), the function  Φ(𝑢(𝑡)) is 

differentiable with derivative  

(3.4.c)                  
𝑑

 𝑑𝑡
Φ(𝑢(𝑡)) = ‖−

𝑑𝑢

𝑑𝑡
(𝑡)‖

𝐿2

2
,            0 ≤ 𝑡 ≤ ∞. 
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 4 
Longtime Convergence for Epitaxial Growth Model under 

Dirichlet Conditions 
 

This chapter is devoted to showing longtime convergence of trajectory. We shall prove that 

every trajectory converges to some stationary solution as 𝑡 → ∞. 

In this chapter, we assume that  is a rectangular domain or 𝒞4 domain. 

 

4.1   DYNAMICAL SYSTEM 

4.1.1 Abstract formulation. We rewrite (1.1) into the form   

 (4.1.a)              {
𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 = 𝑓(𝑢),               0 < 𝑡 < ∞,

𝑢(0) = 𝑢0, , , , , , , , , , , , , , , , , , , , , , , , , , ,
 

in the underlying space  𝑋 = 𝐿2(). Here, A is a realization of  𝑎∆2 in 𝐿2()  under the 

Dirichlet boundary conditions. In fact, A is defined in the following way. Consider the 

symmetric sesquilinear from 

𝑎(𝑢, 𝑣) = ∫ ∆𝑢
1



⋅ ∆𝑣 ̅𝑑𝑥,         𝑢, 𝑣 ∈ 𝐻0
2(). 

Here, 𝐻0
2() is the closure of 𝒞0

∞() (space of infinitely differentiable function in  with 

compact support) in  𝐻 2().  If 𝑢 ∈ 𝐻0
2(),  then ∇ 𝑢 ∈ 𝐻0

1();  consequently,  𝑢 satisfies 

𝜕𝑢

𝜕𝑛
= 0 on ∂. Since it is clear that 𝑢 = 0 on ∂,  𝑢 ∈ 𝐻0

2() implies that 𝑢 satisfies the 

Dirichlet boundary conditions in (1.1). Furthermore, the convexity of   when   is 

rectangular, or the 𝒞4 regularity of  ∂  in the alternative case yields that  

‖𝑢‖𝐻2
≤ 𝐶‖𝑢‖𝐿2

,                 𝑢 ∈ 𝐻2()⋂ 𝐻0
1(). 

This shows that the form 𝑎(𝑢, 𝑣) is coercive on 𝐻0
2(). Consequently, 𝑎(𝑢, 𝑣) determines a 

linear operator 𝒜  from  𝐻0
2()  into  𝐻 −2()  by the formula  𝑎(𝑢, 𝑣) = 〈𝒜𝑢, 𝑣〉 𝐻−2× 𝐻0

2 , 

where 𝐻 −2() denotes the dual space of 𝐻0
2() and these space compose a triple  𝐻0

2() ⊂

𝐿2() ⊂  𝐻−2().  The operator 𝒜  thus defined is considered as a realization of 𝑎∆2 

in 𝐻−2() under the Dirichlet boundary conditions which is a densely defined, closed operator 

in  𝐻−2() with the domain 𝒟 (𝒜) =  𝐻0
2(). Furthermore, its part in 𝐿2() denoted by 

𝐴(= 𝒜|𝐿2
) is defined by   
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(4.1.b)             {

𝒟(𝐴) = {𝑢 ∈  𝐻0
2();  𝒜𝑢 ∈ 𝐿2()},

 
𝐴𝑢 = 𝒜𝑢. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

1

 

Whence, A is a realization of  𝑎∆2 in 𝐿2() under the Dirichlet boundary conditions. It is 

easily seen that A is a positive definite self-adjoint operator of 𝐿2().  

Proposition 4.1. The domain of A given by (4.1.b) can actually be characterized as 𝒟 (𝐴) =

𝐻4()⋂ 𝐻0
2(). Furthermore, 

(4.1.c)                  ‖𝑢‖𝐻4 ≤ 𝐶‖𝑢‖𝐿2
,                 𝑢 ∈ 𝒟(𝐴). 

Proof. If 𝑢 ∈ 𝐻4()⋂ 𝐻0
2() , then  𝑎(𝑢, 𝑣) = (𝑎∆2𝑢, 𝑣) for any  𝑣 ∈  𝐻0

2() . Therefore, 

𝑢 ∈ 𝒟(𝐴). This shows that it is the case in general that 𝐻4()⋂ 𝐻0
2() ⊂  𝒟(𝐴). So what we 

have to prove is the converse inclusion 

 𝐻4()⋂ 𝐻0
2() ⊃  𝒟(𝐴). 

Let us first prove this in the case where  = (0, 𝑙1) × (0, 𝑙2) is rectangular. We use the Fourier 

expansion for the function of 𝐿2(). Any function 𝑢 ∈ 𝐿2() can be expanded as a series 

𝑢 = ∑ 𝑢𝑚𝑛sin
𝑚𝜋

𝑙1

∞

𝑚,𝑛=1

𝑥 ∙ sin
𝑛𝜋

𝑙2
𝑦 

with Fourier coefficients 𝑢𝑚𝑛  satisfying ∑ |𝑢𝑚𝑛|2 < ∞.𝑚,𝑛  

Then, 

∆2𝑢 = ∑ 𝑢𝑚𝑛 

∞

𝑚,𝑛=1

[(
𝑚𝜋

𝑙1
)

2

+ (
𝑛𝜋

𝑙2
)

2

]

2

sin
𝑚𝜋

𝑙1
𝑥 . sin

𝑛𝜋

𝑙2
𝑦 

in the distribution sense. So, if ∆2𝑢 ∈ 𝐿2(),  then there exists a double sequence 𝑓𝑚𝑛 

satisfying ∑ |𝑓𝑚𝑛|2
𝑚,𝑛 < ∞ such that 

𝑢𝑚𝑛 = [(
𝑚𝜋

𝑙1
)

2

+ (
𝑛𝜋

𝑙2
)

2

]

−2

 𝑓𝑚𝑛,           1 ≤ 𝑚, 𝑛 < ∞. 

This yields that for 𝑘 = 0,1,2,3,4, 𝐷𝑥
𝑘 𝐷𝑦

4−𝑘𝑢 ∈ 𝐿2() as may be evident for 𝑘 = 0,2,4. For 

𝑘 = 1,3, say 𝑘 = 1, we have  

𝐷𝑥𝐷𝑦
3𝑢 = − ∑ 𝑢𝑚𝑛

𝑚𝜋

𝑙1
 

∞

𝑚,𝑛=1

(
𝑛𝜋

𝑙2
)

3

cos
𝑚𝜋

𝑙1
𝑥 ∙ cos

𝑛𝜋

𝑙2
𝑦. 

So, since cos
𝑚𝜋

𝑙1
𝑥 ∙ cos

𝑛𝜋

𝑙2
𝑦 are mutually orthogonal in , it is seen that  

‖𝐷𝑥𝐷𝑦
3𝑢‖

𝐿2

2
=

𝑙1𝑙2

4
∑ {

𝑚𝜋

𝑙1
(

𝑛𝜋

𝑙2
)

3

[(
𝑚𝜋

𝑙1
)

2

+ (
𝑛𝜋

𝑙2
)

2

]

−2

}

2

|𝑓𝑚𝑛|2 <

∞

𝑚,𝑛=1

∞. 
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Furthermore, ‖𝐷𝑥𝐷𝑦
3𝑢‖

𝐿2

2
≤ 𝑐 ∑ |𝑓𝑚𝑛|2 ≤ 𝑐‖∆2𝑢‖𝐿2

2 .∞
𝑚,𝑛=1  

Hence, ∆2𝑢 ∈ 𝐿2() implies 𝑢 ∈ 𝐻2(). 

Second, let us consider the case where  is a 𝒞4 bounded domain. In this case, we have to 

appeal to existence result for the higher order elliptic operators. Among other, the arguments due 

to Tanabe [12, Section 3.8] are very comprehensible (cf. also [17, Section 5.2]). It is then 

asserted that for any 𝑓 ∈ 𝐿2(), there exists a unique global solution 𝑢 ∈ 𝐻4() for which it 

holds that   ∆2𝑢 = 𝑓 in  and   𝑢 =
𝜕𝑢

𝜕𝑛
= 0  on ∂ together with ‖𝑢‖H4 ≤ 𝐶‖𝑓‖𝐿2

, 𝐶 >

0 being some constant. Furthermore, since 𝑢 =
𝜕𝑢

𝜕𝑛
= 0 on ∂ implies 𝑢 ∈ 𝐻0

2(), we see 

that 𝑢 ∈ 𝐻4()⋂ 𝐻0
2() ⊂ (𝒟(𝐴)) and  𝐴𝑢 = 𝑓 . Then, since A is one-to-one from  𝒟(𝐴) 

onto 𝐿2(), 𝒟(𝐴) must coincide with 𝐻4()⋂ 𝐻0
2().       

Proposition4.2. For the square root 𝐴
1

2 of A, it holds true that  𝒟 (𝐴
1

2) =  𝐻0
2() together 

with the estimate 

(4.1.d)                 ‖𝑢‖H2 ≤ 𝐶 ‖𝐴
1

2𝑢‖
𝐿2

,   𝑢 ∈ 𝒟 (𝐴
1

2). 

Proof. Note that 𝑎(𝑢, 𝑣) is symmetric. It is then kown (cf. [15, Chapter 16]) that for 
1

2
≤ 𝜃 ≤ 1,  

(4.1.e)                 𝒟(𝐴𝜃) ⊂ 𝐻4𝜃()⋂ 𝐻0
2(). 

And, for 0 ≤ 𝜃 ≤
1

2
, 

                 𝒟(𝐴𝜃) ⊂ 𝐻4𝜃(). 

It also holds true that for any 0 ≤ 𝜃 ≤ 1, 

(4.1.f)                ‖𝑢‖H4𝜃 ≤ 𝐶‖𝐴𝜃𝑢‖
𝐿2

,   𝑢 ∈ 𝒟(𝐴𝜃). 

The nonlinear operator 𝑓(𝑢) is defined by 

                                                 𝑓(𝑢) = −𝜇∇ ⋅
∇𝑢

1 + |∇𝑢|2
 

       = −𝜇 [
∆𝑢

1 + |∇𝑢|2
+

∇|∇𝑢|2. ∇𝑢

(1 + |∇𝑢|2)2
]. 

By direct calculations (as in the proof of [7, Proposition 2]), we observe that  

‖𝑓(𝑢) − 𝑓(𝑣)‖𝐿2
≤ 𝐶[‖𝑢 − 𝑣‖𝐻2 + (‖𝑢‖𝒞2 + ‖𝑣‖𝒞2)‖𝑢 − 𝑣‖𝐻1]. 

In view of the inequality (4.1.f) (with 𝜃 =
1

4
 and 𝜃 =

7

8
 ) and the embedding 𝐻

7

2() ⊂ 𝒞2(̅), it 
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is verified that 

(4.1.g)    ‖𝑓(𝑢) − 𝑓(𝑣)‖𝐿2
≤ 𝐶 [‖𝐴

1

2(𝑢 − 𝑣)‖
𝐿2

+ (‖𝐴
7

8𝑢‖
𝐿2

+ ‖𝐴
7

8𝑣‖
𝐿2

) ‖𝐴
1

4(𝑢 − 𝑣)‖
𝐿2

]. 

By the theory of abstract semilinear parabolic equations (see [15, Theorem 4.1]), we can state 

that, for any  𝑢0 ∈ 𝒟 (𝐴
1

4) ⊂ 𝐻1(), there exists a unique local solution to (4.1.a) in the space: 

𝑢 ∈ 𝒞([0, 𝑇𝑢0
]; 𝒟(𝐴

1
4)) ∩ 𝒞1((0, 𝑇𝑢0

]; 𝐿2()) ∩ 𝒞((0, 𝑇𝑢0
]; 𝒟(𝐴)), 

𝑇𝑢0
> 0 being determined by the norm ‖A

1

4𝑢0‖
𝐿2

alone. 

4.1.2. Global Solution. In order to extend the local solution constructed above to a global 

solution, we show a priori estimate for the local solutions of (4.1.a). Consider a local solution 𝑢 

which is defined on interval [0, 𝑇𝑢]:  

(4.1.h)          𝑢 ∈ 𝒞([0, 𝑇𝑢]; 𝒟(𝐴
1

4)) ∩ 𝒞1((0, 𝑇𝑢]; 𝐿2()) ∩ 𝒞((0, 𝑇𝑢]; 𝒟(𝐴)). 

We can then prove the following estimates. 

Proposition4.3. There exist positive constant 𝛿 and 𝐶 such that, for any local solution 𝑢 in 

the space (4.1.h), it holds true that  

(4.1.i)                 ‖𝐴
1

4 𝑢(𝑡)‖
𝐿2

≤ 𝑒−𝛿𝑡 ‖𝐴
1

4 𝑢0‖
𝐿2

+ 𝐶,              0 ≤ 𝑡 ≤ 𝑇𝑢. 

Here, 𝛿 and 𝐶 are independent of the interval [0, 𝑇𝑢] on which u is defined. 

Proof. Consider the inner product of the equation of (4.1.a) and 𝐴
1

2 𝑢(𝑡). Then, since 
𝜕𝑢

𝜕𝑛
= 0 

on ∂, it follows that 

𝑑

𝑑𝑡
‖𝐴

1
4 𝑢(𝑡)‖

𝐿2

2

+ ‖𝐴
3
4 𝑢(𝑡)‖

𝐿2

2

= −𝜇 ∫ [∇ ⋅ (
∇𝑢

1 + |∇𝑢|2
)]

1



𝐴
1
2 𝑢(𝑡)𝑑𝑥 

                                                  = 𝜇 ∫ (
∇𝑢

1 + |∇𝑢|2
) .

1



∇𝐴
1
2 𝑢(𝑡)𝑑𝑥 

                          ≤
 𝜇

2
‖∇𝐴

1
2 𝑢(𝑡)‖

𝐿2

. 

Noting that ‖∇A
1

2 𝑢(𝑡)‖
𝐿2

≤ C ‖A
3

4 𝑢(𝑡)‖
𝐿2

and ‖∇A
1

4 𝑢(𝑡)‖
𝐿2

≤ C ‖A
3

4 𝑢(𝑡)‖
𝐿2

, we 

conclude that  

𝑑

𝑑𝑡
‖A

1
4 𝑢(𝑡)‖

𝐿2

2

+ 𝛿 ‖A
1
4 𝑢(𝑡)‖

𝐿2

2

≤ 𝐶 

with some constant 𝛿 > 0. Solving this differential inequality, we obtain (4.1.i). 
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By the standard arguments we can then construct for any 𝑢0 ∈  𝒟 (A
1

4), a unique global 

solution to (4.1.a) in the function space: 

𝑢 ∈ 𝒞([0, ∞); 𝒟(𝐴
1
4)) ∩ 𝒞1((0, ∞); 𝐿2()) ∩ 𝒞((0, ∞); 𝐻4() ∩ 𝐻0

2()). 

The global solution 𝑢 as well satisfies the same estimates 

(4.1.j)               ‖A
1

4 𝑢(𝑡)‖
𝐿2

≤ 𝑒−𝛿𝑡 ‖A
1

4 𝑢0‖
𝐿2

+ 𝐶                 0 ≤ 𝑡 < ∞, 

(4.1.k)                                 ‖𝐴 𝑢(𝑡)‖𝐿2
≤ 𝐶 (𝑡−

3

4 + 1) ‖𝐴 𝑢0‖𝐿2
  ,           0 ≤ 𝑡 < ∞. 

As shown in chapter 3, however, there is a local solution 𝑢 to (4.1.a) for any initial value  𝑢0 ∈

𝐿2() . Then, since a smoothing property of the 𝑢  implies that 𝑢(𝑡1) ∈  𝒟 (𝐴
1

4)  for 

any 𝑡1 > 0, we can extend this local solution to a global one by considering the problem (4.1.a) 

replacing the initial condition by 𝑢(0) = 𝑢1, where 𝑢1 = 𝑢(𝑡1). Ultimately, we arrive at the 

following existence result. For any initial function  𝑢0 ∈ 𝐿2(), (4.1.a) possesses a unique 

global solution in the function space: 

(4.1.l)     𝑢 ∈ 𝒞([0, ∞); 𝐿2()) ∩ 𝒞1((0, ∞); 𝐿2()) ∩ 𝒞((0, ∞); 𝐻4() ∩ 𝐻0
2()). 

For 0 ≤ 𝑡 < ∞, set 𝑆(𝑡)𝑢0 = 𝑢(𝑡; 𝑢0),where 𝑢(𝑡; 𝑢0) is the global solution of (4.1.a) for 

initial value 𝑢0 ∈ 𝐿2(). Then, 𝑆(𝑡) defines a family of nonlinear operators acting on 𝐿2() 

with the semigroup property  𝑆(𝑡 + 𝑠) = 𝑆(𝑡)𝑆(𝑠)  and 𝑆(0) = 𝐼.  Moreover, the mapping 

𝐺: [0, ∞) × 𝐿2() ⟶ 𝐿2()  defined by  𝐺(𝑡, 𝑢0) = 𝑆(𝑡)𝑢0  is continuous, i.e., 𝑆(𝑡)  is a 

continuous semigroup on 𝐿2().  In this way, (4.1.k) generates a dynamical system 

(𝑆(𝑡), 𝐿2()).  Let 𝑢0 ∈ 𝐿2(). In view of (4.1.k), the trajectory {𝑆(𝑡)𝑢0; 1 ≤ 𝑡 < ∞} is a 

bounded subset of 𝐻4(). Consequently, it is   

relatively compact subset of 𝐿2(). In particular, its 𝜔-limit set  

𝜔(𝑢0) = {�̅�; ∃𝑡𝑛 ↑ ∞ such that S(𝑡𝑛)𝑢0 ⟶ 𝑢 ̅ in 𝐿2()} 

is a nonempty set. In addition, if 𝑆(𝑡)𝑢0 ⟶ 𝑢 ̅ in 𝐿2(), then it automatically observed that 

(4.1.m)                     S(𝑡𝑛)𝑢0 ⟶ 𝑢 ̅ in 𝐻𝑠() 

for any 0 ≤ 𝑠 ≤ 4.  

As verified in [16], (𝑆(𝑡), 𝐿2()) has furthermore a finite-dimensional attractor which attracts 

every trajectory at an exponential rate (c.f, [1, 13, and 15]).   

4.2   LYAPUNOV FUNCTION 

It is already proved in chapter 3, that the following function  

(4.2.a)       Φ(𝑢) =
1

2
∫ [𝑎|∆𝑢|2 − 𝜇 log(1 + |𝛻𝑢|2)]𝑑𝑥,

1


            𝑢0 ∈ 𝐻0

2(), 
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becomes a Lyapunov function of our dynamical system (𝑆(𝑡), 𝐿2()). 

In what follows, we will consider Φ to be a function from 𝐻0
2() to ℝ (although Φ may be 

defined on the whole space 𝐻2()). And we handle it in the triplet  

(4.2.b)              𝐻0
2() ⊂ 𝐿2() ⊂  𝐻−2() =  𝐻0

2()′, 

this section is then devoted to verifying various properties of the derivatives  Φ′(𝑢) ∈

ℒ( 𝐻0
2(), ℝ) = 𝐻−2() and Φ′′(𝑢) ∈ ℒ(𝐻2(), 𝐻−2()).  

4.2.1 Differentiability of 𝚽(𝒖). Let us begin with showing differentiability of Φ(𝑢). 

Proposition4.4. Φ:  𝐻0
2() ⟶  ℝ  is differentiability with the derivative Φ′(𝑢) = 𝒜𝑢 −

ℱ(𝑢) ∈  𝐻−2() for  𝑢 ∈ 𝐻0
2(). Here, ℱ(u) = −μ∇ ⋅ (

∇𝑢

1+|∇𝑢|2) is a nonlinear operator from 

𝐻0
2() into 𝐻−2().  

Proof.  For 𝑢, ℎ ∈ 𝐻0
2(), we have  

‖∆(𝑢 + ℎ)‖𝐿2

2 − ‖∆𝑢‖𝐿2

2 = 2(∆𝑢, ∆ℎ). 

Therefore, 

(4.2.c)            ‖∆(𝑢 + ℎ)‖𝐿2

2 − ‖∆𝑢‖𝐿2

2 − 2〈∆2𝑢, ℎ〉𝐻−2× 𝐻0
2 = ‖∆ℎ‖𝐿2

2 . 

In the meantime, for a,e 𝑥 ∈ , we have 

log {1 + |∇[𝑢(𝑥) + ℎ(𝑥)]|2} − log{1 + |∇𝑢(𝑥)|2}  

    = ∫
𝑑

𝑑𝜃

1

0

log{1 + |∇[𝑢(𝑥) + 𝜃ℎ(𝑥)]|2} 𝑑𝜃 

= ∫
2∇𝑢(𝑥). ∇ℎ(𝑥) + 2𝜃|∇ℎ(𝑥)|2

1 + |∇[𝑢(𝑥) + 𝜃ℎ(𝑥)]|2

1

0

𝑑𝜃. 

Moreover, since  

1

1 + |∇[𝑢(𝑥) + 𝜃ℎ(𝑥)]|2
=

1

1 + |∇𝑢(𝑥)|2
−

2𝜃∇𝑢(𝑥) ⋅ ∇ℎ(𝑥) + 𝜃2|∇ℎ(𝑥)|2

{1 + |∇[𝑢(𝑥) + 𝜃ℎ(𝑥)]|2}(1 + |∇𝑢(𝑥)|2)
 , 

it follows that  

|log {1 + |∇[𝑢(𝑥) + ℎ(𝑥)]|2} − log{1 + |∇𝑢(𝑥)|2} −
2∇𝑢(𝑥) ⋅ ∇ℎ(𝑥)

1 + |∇𝑢(𝑥)|2
|

≤ 𝐶{|∇ℎ(𝑥)|2 + |∇ℎ(𝑥)|4}. 

We have to use Galrardo- Nireberge’s inequality ([15, Theorem 1.37]) to obtain that 

‖∇ℎ‖4 ≤ 𝐶‖∇ℎ‖
𝐿2

1
2 ‖∇ℎ‖

𝐻1

1
2  ≤ 𝐶‖ℎ‖

𝐻1

1
2 ‖ℎ‖

𝐻2

1
2 ≤ 𝐶‖ℎ‖

𝐿2

1
4 ‖ℎ‖

𝐻2

3
4 . 

Hence, (4.2.d)   

|∫ log
1



 {1 + |∇(𝑢 + ℎ)|2} − log{1 + |∇𝑢|2}𝑑𝑥 + 2 〈∇ ⋅ (
∇𝑢

1 + |∇𝑢|2
) , ℎ〉𝐻−1×𝐻0

1|

≤ 𝐶‖ℎ‖𝐿2
(‖ℎ‖𝐻2 + ‖ℎ‖𝐻−2

3 ). 

 Combining (4.2.c) and (4.2.d), we conclude that 
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|Φ(𝑢 + ℎ) − Φ(𝑢) − 〈𝒜𝑢 − ℱ(𝑢), ℎ〉𝐻−2×𝐻0
2| ≤ 𝐶[‖∆ℎ‖𝐿2

2 + ‖ℎ‖𝐿2
(‖ℎ‖𝐻2 + ‖ℎ‖𝐻−2

3 )]. 

This shows that Φ(𝑢) is differentiable and the derivative is given by Φ′(𝑢) = 𝒜𝑢 − ℱ(𝑢) for 

any  𝑢 ∈ 𝐻0
2(). On the domain 𝒟(𝐴)(⊂ 𝐻4()), however, it is possible to observe that 

Φ(𝑢) is differentiable in somewhat weak topology. 

Proposition 4.5. If  𝑢 ∈ 𝒟(𝐴), then Φ(𝑢) = 𝐴𝑢 − 𝑓𝑢 ∈ 𝐿2(). In additions, when the variable 

h also runs only in 𝒟(𝐴), it holds true that 

(4.2.e)  |Φ(𝑢 + ℎ) − Φ(𝑢) − 〈𝒜𝑢 − ℱ(𝑢), ℎ〉| ≤ 𝐶 ‖ℎ‖𝐿2
(‖ℎ‖𝐻4 + ‖ℎ‖𝐻2 + ‖ℎ‖𝐻−2

3 ). 

Proof. Since 𝑢 ∈ 𝒟(𝐴) implies 𝒜𝑢 − ℱ(𝑢) = 𝐴𝑢 − 𝑓(𝑢), that first assertions are obvious. In 

addition, for ℎ ∈ 𝒟(𝐴), we observe that  

‖∆ℎ‖𝐿2

2 = (∆ℎ, ∆ℎ) = 〈∆2ℎ, ℎ〉𝐻−2×𝐻0
2 = (∆2ℎ, ℎ) ≤ ‖ℎ‖𝐻4‖ℎ‖𝐿2

. 

Hence, (4.2.e) is also verified. 

Let 𝑢0 ∈ 𝐿2(). Let {𝑢(𝑡); 0 ≤ 𝑡 < ∞} be the trajectory starting from 𝑢0 and  𝜔(𝑢0) be its 

𝜔-limit set. As an immediate consequence of (4.2.e), we observe that Φ(𝑢(t)) is differentiable 

for 𝑡 > 0 with the derivative  

(4.2.f)                
𝑑

𝑑𝑡
Φ(𝑢(t)) = −‖𝐴𝑢(𝑡) − 𝑓𝑢(𝑡))‖𝐿2

2  

Indeed we apply (4.2.e) with 𝑢 = 𝑢(𝑡) and ℎ = 𝑢(𝑡 + ∆𝑡) − 𝑢(𝑡). Then, 

|
Φ(𝑢(𝑡 + ∆𝑡)) − Φ(𝑢(𝑡))

∆𝑡
− (𝐴𝑢(𝑡) − 𝑓(𝑢(𝑡)),

𝑢(𝑡 + ∆𝑡) − 𝑢(𝑡)

∆𝑡
)|

≤ 𝐶 ‖
𝑢(𝑡 + ∆𝑡) − 𝑢(𝑡)

∆𝑡
‖

𝐿2

(‖ℎ‖𝐻4 + ‖ℎ‖𝐻2 + ‖ℎ‖𝐻2
3 ). 

As 𝑢(𝑡 + ∆𝑡) − 𝑢(𝑡) → 0 in 𝐻4() due to (4.1.l), we obtain (4.2.f). Therefore, along the 

trajectory 𝑢(𝑡), the values of  Φ are monotonously decreasing. Furthermore, if �̅� ∈ 𝜔(𝑢0), then 

(4.2. g)                Φ(�̅�) = lim𝑛→∞ Φ(𝑢(𝑡𝑛)) = inf𝑛→∞(𝑢(𝑡𝑛)). 

In particular,  Φ takes a constant value on the ω-limit set ω(𝑢0). 

It is well known that ω(𝑢0) is an invariant set of 𝑆(𝑡). Indeed, if �̅� ∈ 𝜔(𝑢0), then there 

exists 𝑡𝑛 ↑ ∞ such that 𝑆(𝑡𝑛)𝑢0 → �̅� in 𝐿2(). Then,  𝑆(𝑡 + 𝑡𝑛)𝑢0 = 𝑆(𝑡)𝑆(𝑡𝑛)𝑢0 → 𝑆(𝑡)�̅�; 

hence 𝑆(𝑡)�̅� ∈ 𝜔(𝑢0), i.e.,  𝑆(𝑡)𝜔(𝑢0) ⊂ 𝜔(𝑢0). Conversely, we have 𝑆(𝑡𝑛)𝑢0 = 𝑆(𝑡)𝑆(𝑡𝑛 −

𝑡)𝑢0 for all 𝑡𝑛 such that 𝑡𝑛 ≥ 𝑡. Since 𝑆(𝑡𝑛 − 𝑡)𝑢0 is a relatively compact subset of 𝐿2(), it 

is possible to assume that 𝑆(𝑡𝑛 − 𝑡)𝑢0 → �̅� ∈ 𝜔(𝑢0) in 𝐿2(), i.e., �̅� = 𝑆(𝑡)�̅�. This means 

that 𝜔(𝑢0) ⊂ 𝑆(𝑡)𝜔(𝑢0). For any �̅� ∈ 𝜔(𝑢0), consider the trajectory 𝑆(𝑡)�̅�.  

As verified, 𝑆(𝑡)�̅� ∈ 𝜔(𝑢0);  therefore,  (4.2. g)  implies consequently, that Φ(𝑆(𝑡)�̅�) ≡

Φ(�̅�);  
𝑑

𝑑𝑡
Φ(𝑆(𝑡) �̅�) ≡ 0; in particular,  

𝑑

𝑑𝑡
Φ(𝑆(𝑡) �̅�) = 0. Equality  (4.2. f)  then provides   

that  𝐴�̅� −  𝑓(�̅�) = 0. By virtue of Propositions 4.1, this is equivalent to Φ′(�̅�) = 0.  We have 
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thus verified the following proposition. 

Proposition 4.6. For any  𝑢0 ∈ 𝐿2(), its 𝜔-limit set 𝜔(𝑢0) consists of critical points of  Φ, in 

particular, if �̅� ∈ 𝜔(𝑢0) then  Φ′(�̅�) = 0. 

Let us next show that Φ(𝑢) is twice differentiable. 

Proposition 4.7.   Φ′: 𝐻0
2() → 𝐻−2() 𝑖𝑠 𝐹𝑟�́�𝑐ℎ𝑒𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 

 Φ′′(𝑢) = 𝒜 − ℱ′(𝑢), where ℱ′(𝑢) is the 𝐹𝑟�́�𝑐ℎ𝑒 derivative of  ℱ: 𝐻0
2() → 𝐻−2() which 

was introduced above. Precisely, for 𝑢 ∈ 𝐻0
2(),  ℱ′(𝑢) ∈ ℒ( 𝐻0

2(),  𝐻−2()) is given by  

(4.2.h)         ℱ′(𝑢)ℎ = −𝜇𝛻 ⋅ (
∇𝑢

1+|∇𝑢|2 −
2(∇𝑢⋅∇ℎ)∇𝑢

(1+|∇𝑢|2)2 ) ,           ℎ ∈  𝐻0
2(). 

Proof. Noting that  𝛻 is a bounded linear operator from  𝐿2()  into  𝐻−1(),  let us 

consider   
∇𝑢

1+|∇𝑢|2. For 𝑢, ℎ ∈ 𝐻0
2(),  

         
∇(𝑢 + ℎ)

1 + |∇(𝑢 + ℎ)|2
−

∇𝑢

1 + |∇𝑢|2
=

(1 + |∇𝑢|2)∇ℎ − 2(∇𝑢. ∇ℎ)∇𝑢 − |∇ℎ|2∇𝑢

(1 + |∇(𝑢 + ℎ)|2)(1 + |∇𝑢|2)
. 

And, as seen before, 

1

1 + |∇(𝑢 + ℎ)|2
=

1

1 + |∇𝑢|2
−

2∇𝑢 ⋅ ∇ℎ + |∇ℎ|2

(1 + |∇(𝑢 + ℎ)|2) + (1 + |∇𝑢(𝑥)|2)
. 

Therefore, it follows that 

                  
∇(𝑢 + ℎ)

1 + |∇(𝑢 + ℎ)|2
−

∇(𝑢)

1 + |∇𝑢|2
−

(1 + |∇𝑢|2)∇ℎ − 2(∇𝑢. ∇ℎ)∇𝑢

(1 + |∇𝑢|2)2
 ≤ 𝐶(|∇ℎ|2 + |∇ℎ|3), 

and hence 

‖
∇(𝑢 + ℎ)

1 + |∇(𝑢 + ℎ)|2
−

∇(𝑢)

1 + |∇𝑢|2
−

(1 + |∇𝑢|2)∇ℎ − 2(∇𝑢. ∇ℎ)∇𝑢

(1 + |∇𝑢|2)2
 ‖

𝐿2

 

≤ 𝐶(‖∇ℎ‖𝐿4

2 + ‖∇ℎ‖𝐿6

3 ) ≤ 𝐶(‖ℎ‖𝐻2
2 + ‖ℎ‖𝐻2

3 ). 

This shows the operator 𝑢 →
∇𝑢

1+|∇𝑢|2 is Frechet differentiable from 𝐻0
2()  into  𝐿2().   

4.2.2. Gradient Estimates of 𝚽′(𝒖). Let  𝑢0 ∈ 𝐿2() and let 𝑢 ̅ ∈ 𝜔(𝑢0). As shown by 

Proposition 4.3, we know that Φ′(𝑢) = 0 . The goal of this subsection is to establish the 

Lojasiwecz-Simon inequality for Φ′(𝑢) at 𝑢 ̅ that plays a crucial role in proving convergence 

of 𝑢(𝑡) to �̅�. That is, there exists some exponent 0 < 𝜃 ≤
1

2
 for which it holds true that  

(4.2.i)              ‖ Φ′(𝑢)‖𝐻−2 ≥ 𝐷 |Φ(𝑢) − Φ(�̅�)|1−𝜃,              𝑢 ∈ 𝑈(�̅�). 

Here, 𝑈(�̅�) denotes a neighborhood of �̅� in 𝐻0
2() and D > 0 is some constant. For this 

purpose, we will follow the methods devised by Chill [18] in which the underlying space must 

be divided into a sum of critical manifold and its supplement. 

Put  𝐿 = Φ′′(�̅�).  As a verified by Proposition 4.3, 𝐿 = 𝒜 − ℱ′(�̅�)  is linear operator 
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from 𝐻0
2() into 𝐻−2(). As a general result of the calculus of variations (see [19, Theorem 

5.1.1, p.65]), or as is directly verified from (4.2.h), L is a symmetric operator, i.e., 

(4.2.j)              〈𝐿𝑢, 𝑣〉𝐻−2×𝐻0
2 = 〈𝑢, 𝐿𝑣〉𝐻0

2×𝐻−2 ,           𝑢, 𝑣 ∈  𝐻0
2(). 

In addition, L is observed to be a Fredholm operator. Indeed, writing 𝐿 = [𝐼 − ℱ′(�̅�)𝐴−1]𝐴, 

we rather consider the operator 𝐼 − 𝐾 acting on 𝐻−2(), where  𝐾 = ℱ′(�̅�)𝐴−1. As  ℛ(𝐾) ⊂

𝐿2(), 𝐾 is a compact operator of 𝐻−2(). Therefore, by virtue of the Riesz-Schauder theory, 

𝒦(𝐼 − 𝐾) is a finite-dimensional subspace of  𝐻−2(). And ℛ(𝐼 − 𝐾) is a closed subspace 

of 𝐻−2() with finite-dimensional such that dim 𝒦(𝐼 − 𝐾) = codim ℛ(𝐼 − 𝐾) = 𝑁. Since A 

is an isomorphism from  𝐻0
2() onto 𝐻−2(), it follows that  𝒦(𝐿) is a finite-dimensional 

subspace of  𝐻0
2() and ℛ(𝐿) is a closed subspace of 𝐻−2() with dim 𝒦(𝐿) = codim  ℛ(𝐿) 

= N. That is, 𝐿  satisfies the conditions of Fredholm operator. Since  𝒦(𝐿 ) is a finite 

-dimensional space, we can regard it as a closed subspace of any space of triplet 𝐻0
2() ⊂

𝐿2() ⊂  𝐻−2(). Furthermore, by the same reason, these topologies are mutually equivalent. 

In the arguments below, we may not clarify the topology of 𝒦(𝐿) when it is easily presumed by 

the contexts. We introduce the orthogonal projection 𝑃: 𝐿2() → 𝒦(𝐿) in 𝐿2(). We have a 

direct sum  𝐿2() = 𝐻0 + 𝒦(𝐿), where  𝐻0 = (𝐼 − 𝑃)𝐿2()  is the orthogonal supplement 

of  𝒦(𝐿) in  𝐿2(). We notice that 𝑃 is a bounded operator from  𝐻0
2() into itself. So, 𝑃 

induces a projection from  𝐻0
2() noto 𝒦(𝐿)and a topological direct sum  𝐻0

2() = 𝐻2 +

𝒦(𝐿), where  𝐻2 = (𝐼 − 𝑃) 𝐻0
2() is a topological supplement of 𝒦(𝐿) in  𝐻0

2(). On the 

other hand, it is easy to see that ‖𝑃𝑓‖ 𝐻−2 ≤ 𝐶‖𝑓‖ 𝐻−2 for all  𝑓 ∈ 𝐿2(). This means that  𝑃 

can be extend by continuation over the space  𝐻−2(). Clearly, 𝑃 is a bounded operator 

from  𝐻−2() into itself and induces a projection from   𝐻−2() onto 𝒦(𝐿) which yields 

another topological direct sum  𝐻−2() = 𝐻−2 + 𝒦(𝐿), 𝐻−2 = (𝐼 − 𝑃) 𝐻−2()  being a 

topological supplement of  𝒦(𝐿) in 𝐻−2().  

It is also clear that 𝑃 is symmetric in the sense that  

(4.2.k)        〈𝑃𝑢, 𝜑〉 𝐻0
2, 𝐻−2 = 〈𝑢, 𝑃𝜑〉 𝐻0

2, 𝐻−2 ,      𝑢 ∈  𝐻0
2(), 𝜑 ∈  𝐻−2().     

By definition,  𝐿𝑃 = 0  on  𝐻0
2();  then, (4.2.j) and (4.2.k) provide that  𝑃𝐿 = 𝐿𝑃 = 0 

on  𝐻0
2();  in particular,  𝐿 = (𝐼 − 𝑃)𝐿 on  𝐻0

2().  This concludes that  ℛ(𝐿) ⊂ 𝐻−2  must 

coincide and consequently  

(4.2.l)        L must be an isomorphism from 𝐻2 onto 𝐻−2.      

Following [19], we set the critical manifold by  

𝑆 = {𝑢 ∈  𝐻0
2(); (𝐼 − 𝑃) Φ′(𝑢) = 0}.   

Then, 𝑆 is verified to be a 𝒞1-manifold of dimension 𝑁 in a neighborhood of 𝑢,̅  𝑆 can be 

represented as  

𝑆 = {(𝑔(𝑢2), 𝑢2;  𝑢2 ∈ 𝒦(𝐿) → 𝐻2}, 

𝑔  being a  𝒞1 mapping defined in a neighborhood of �̅�2 ∈ 𝒦(𝐿),  where �̅� = �̅�1 + �̅�2. 



 

 

33 

 

According to [18, Theorem 2], we can state the following proposition. 

Proposition 4.8. Assume that the restriction of  Φ on 𝑆 satisfies (4.2.i) in a subset 𝑈 ∩ 𝑆, 

where  𝑈  is some neighborhood of �̅�  in  𝐻0
2() , with exponent 𝜃 ∈ (0,

1

2
].  Then,  Φ itself 

satisfies (4.2.i) in a neighborhood of �̅� in 𝐻0
2() with the same exponent 𝜃. 

The desired inequality (4.2.i) on 𝑆can generally be verified, as mentioned in [18, Corollary 3], 

from analyticity of the Lyapunov function Φ(𝑢).  

This is, however, not true in the present case, for the correspondence 𝑢 ↦  ∫


log(1 + |∇𝑢|2)𝑑𝑥 

is not analytic in 𝐻0
2() due to the fact that 𝐻1() ⊄ 𝒞(̅). So, we have to utilize upper 

shifting of spaces. 

Let 0 < ε <
1

2
 be arbitrarily fixed. We introduce the domains 𝒟(𝒜1+𝜀) and  𝒟(𝒜𝜀). 

Naturally, 𝒟(𝒜1+𝜀) ⊂ 𝒟(𝒜) = 𝐻0
2() and 𝒟(𝒜𝜀) ⊂ 𝐻−2(). And, since 𝒜1+𝜀 = 𝒜𝒜𝜀 , 𝒜 

is an isomorphism from 𝒟(𝒜1+𝜀) onto 𝒟(𝒜𝜀). Then, by the same reason as before, 𝑃 is 

bounded operator from 𝒟(𝒜1+𝜀) into itself and induces a topological direct sum 𝒟(𝒜1+𝜀) =

𝐻2,𝜀 + 𝒦(𝐿), where  𝐻2,𝜀 = (𝐼 − 𝑃)𝒟(𝒜1+𝜀). Similarly,  𝑃  is a bounded operator 

from  𝒟(𝒜𝜀) into itself and induces a topological direct sum 𝒟(𝒜𝜀) = 𝐻−2,ε + 𝒦(𝐿), 

where  𝐻−2,ε = (𝐼 − 𝑃)𝒟(𝒜𝜀).  Obviously,   𝐻2,ε ⊂ 𝐻2 and 𝐻−2,ε ⊂ 𝐻−2.  We can verify that 

(4.2.l) still holds true in the shifted spaces. 

Proposition 4.9. L is an isomorphism form 𝐻2,ε  onto 𝐻−2,ε. 

Proof.  As L is a bounded operator from  𝒟(𝒜1+𝜀)  into  𝒟(𝒜𝜀), so is from 𝐻2,ε into  𝒟(𝒜𝜀). 

So, it suffices to prove that 𝐿( 𝐻2,ε) =  𝐻−2,ε . Let 𝜑 ∈ 𝐿( 𝐻2,ε); then,  𝜑 = 𝐿𝑢  and 𝑢 =

(𝐼 − 𝑃)𝑣  with some  𝑣 ∈ 𝒟(𝒜1+𝜀);  therefore,  𝜑 = (𝐼 − 𝑃)𝑣 = 𝐿𝑢 with some  𝑢 ∈ 𝒟(𝒜); 

furthermore,  𝒜𝑢 = ℱ′(�̅�)𝑢 + 𝜑 ∈ 𝒟(𝒜𝜀);  therefore,  𝑢 ∈ 𝒟(𝒜1+𝜀)  and  𝜑 = (𝐼 − 𝑃) ∈

𝐿( 𝐻2,ε). We furthermore verify analyticity of Φ(𝑢) for 𝑢 ∈ 𝒟(𝒜1+𝜀). 

Proposition 4.10. Φ: 𝒟(𝒜1+𝜀) → ℝ 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐.      

Poof. Notice that  𝒟(𝒜1+𝜀) = 𝒟 (𝒜
1

2
+𝜀) ⊂ 𝐻2+4𝜀() due to (4.1.e). Hence,  𝑢 ∈ 𝒟(𝒜1+𝜀) 

implies ∇𝑢 ∈ 𝒞(̅). Then, for small variable ℎ ∈ 𝒟(𝒜1+𝜀), it is possible to develop  

log(1 + |∇(𝑢 + ℎ)|2) − log(1 + |∇𝑢|2) = log (1 +
2∇𝑢 ⋅ ∇ℎ + |∇ℎ|2

1 + |∇𝑢|2 )

= ∑
(−1)𝑛−1

𝑛

∞

𝑛=1

(
2∇𝑢 ⋅ ∇ℎ + |∇ℎ|2

1 + |∇𝑢|2 )

𝑛

. 

This directly yields analyticity of 𝑢 → ∫


log (1 + |∇𝑢|2) 𝑑𝑥 on 𝒟(𝒜1+𝜀). It is now ready to 

show the inequality (4.2.i) on 𝑆. We first observe that 𝑆 actually lies in 𝒟(𝒜1+𝜀). Indeed, 

if 𝑢 ∈ 𝑆, then Φ′(𝑢) = 𝑃Φ′(𝑢); therefore, 𝒜𝑢 = ℱ(𝑢) + 𝑃Φ′(𝑢) ∈ 𝐿2(); hence, by  
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definition, 𝑢 ∈ 𝒟(𝒜) ⊂ 𝒟 (𝒜
3

2). Thus, 𝑆 = {u ∈ 𝒟(𝒜1+𝜀); (𝐼 − 𝑃)Φ′(𝑢) = 0}. As before, 𝑆 

is determined by the operator 𝐺: 𝒟(𝒜1+𝜀) → 𝐻−2,𝜀  given by 𝐺(𝑢1, 𝑢2) = (𝐼 − 𝑃)Φ′(𝑢1 +

 𝑢2) for 𝑢1 ∈ 𝐻2,𝜀   𝑢2 ∈ 𝒦(𝐿). As we know that 𝐷1𝐺(�̅�) = 𝐿|𝐻2,𝜀
 is an isomorphism,  𝑆 can 

be represented in a neighborhood of �̅� as 

𝑆 = {(𝑔(𝑢2), 𝑢2); 𝑢2 ∈ 𝒦(𝐿), 𝑔: 𝒦(𝐿) → 𝐻2,𝜀}. 

Now, as Φ is analytic, 𝑔 is also analytic in a neighborhood of �̅�2, where �̅� = �̅�1 + �̅�2, which 

means that  𝑆 is an analytic manifold. Remembering that Φ is analytic on 𝒟(𝒜1+𝜀), we next 

apply Lojasiewics’s classical result [20] in finite-dimensional spaces to  Φ|𝑆. Then, for some 

exponent  θ = (0,
1

2
],  

‖Φ′(𝑢)‖𝐻−2 ≥ 𝐶|Φ(𝑢) − Φ(�̅�)|1−𝜃 

for  𝑢 in a neighborhood of �̅� on 𝑆. 

As stated above, Proposition 4.5 thus provides the desired inequality (4.2.i) in a neighborhood 

of the whole space  𝐻0
2() of �̅�. 

4.3   CONVERGENCE RESULTS 

Let  𝑢0 ∈ 𝐿2()  and �̅� ∈ 𝜔( 𝑢0).  And let  𝑡𝑛 ↑ ∞ be a sequence such that  𝑢(𝑡𝑛) → �̅� 

in  𝐻0
2() due to (4.1.m). We can then show that, once the trajectory approaches sufficiently 

close to �̅�, it must remain in a neighborhood forever. 

Proposition 4.11. Let 𝑟 > 0 be the radius for which the gradient inequality (4.2.i) holds true in 

the ball 𝐵𝐻0
2
(�̅�; 𝑟) and let 𝑡𝑁 be such that 𝑢(𝑡𝑁) ∈ 𝐵𝐻0

2
(�̅�; 𝑟). Then, if 𝑢(𝑡) ∈ 𝐵𝐻0

2
(�̅�; 𝑟) for 

every  𝑡 ∈ [𝑡𝑁 , 𝑇], where 𝑇(≥ 𝑡𝑁) is any time, then it holds that 

(4.3.a)       ‖𝑢(𝑡) − 𝑢(𝑡𝑁)‖𝐻0
2 ≤ 𝐶[𝛷(𝑢(𝑡𝑁) − 𝛷(�̅�)]

𝜃

2      𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝑡 ∈ [𝑡𝑁 , 𝑇], 

here 𝐶 > 0 is a constant independent of 𝑇. 

Proof. For 0 ≤ t ≤ 𝑇, 

𝑑

𝑑𝑡
[𝛷(𝑢(𝑡)) − 𝛷(�̅�)]

𝜃
= 𝜃[𝛷(𝑢(𝑡)) − 𝛷(�̅�)]

𝜃−1 𝑑𝑢

𝑑𝑡
𝛷(𝑢(𝑡)) 

                                                         = 𝜃[𝛷(𝑢(𝑡)) − 𝛷(�̅�)]
𝜃−1

(𝛷′(𝑢(𝑡)),
𝑑𝑢

𝑑𝑡
(𝑡)) 

                                                         = 𝜃[𝛷(𝑢(𝑡)) − 𝛷(�̅�)]
𝜃−1

‖𝛷′(𝑢(𝑡))‖
𝐿2

‖
𝑑𝑢

𝑑𝑡
(𝑡)‖

𝐿2

. 

Here, we used the equality  

𝑑𝑢

𝑑𝑡
(𝑡) = −𝐴𝑢(𝑡) + 𝑓(𝑢(𝑡)) = −𝛷′(𝑢(𝑡)). 

By virtue of (4.2.i), 
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𝑑

𝑑𝑡
[𝛷(𝑢(𝑡)) − 𝛷(�̅�)]

𝜃
≥ 𝐶[𝛷(𝑢(𝑡)) − 𝛷(�̅�)]

𝜃−1
‖𝛷′(𝑢(𝑡))‖

𝐻2 ‖
𝑑𝑢

𝑑𝑡
(𝑡)‖

𝐿2

 ≥ 𝐶 ‖
𝑑𝑢

𝑑𝑡
(𝑡)‖

𝐿2

. 

Integration in [𝑡𝑁 , 𝑡] yields that    

[𝛷(𝑢(𝑡𝑁)) − 𝛷(�̅�)]
𝜃

− [𝛷(𝑢(𝑡)) − 𝛷(�̅�)]
𝜃

≥ 𝐶 ∫ ‖
𝑑𝑢

𝑑𝑡
(𝑡)‖

𝐿2

𝑑𝑠.
𝑡

𝑡𝑁

 

Therefore,  

(4.3.b)    

‖𝑢(𝑡) − 𝑢(𝑡𝑁)‖𝐿2
≤ ∫ ‖

𝑑

𝑑𝑡
(𝑡)‖

𝐿2

𝑑𝑠 ≤ 𝐶−1
𝑡

𝑡𝑁

{[𝛷(𝑢(𝑡𝑁)) − 𝛷(�̅�)]
𝜃

− [𝛷(𝑢(𝑡)) − 𝛷(�̅�)]
𝜃

}. 

Hence,  

‖𝑢(𝑡) − 𝑢(𝑡𝑁)‖𝐿2
≤ 𝐶−1[𝛷(𝑢(𝑡𝑁)) − 𝛷(�̅�)]

𝜃
. 

We next apply the estimate  

‖𝑢‖𝐻0
2 ≤ 𝐶‖𝐴𝑢‖

𝐿2

1
2 , ‖𝑢‖

𝐿2

1
2 ,             𝑢 ∈ 𝒟(𝐴), 

which follows from (4.1.d) to 𝑢(𝑡) − 𝑢(𝑡𝑁). Then, in view of(4.1. k), (4.3, a) is obtained.  

Choose a time 𝑡𝑁 so that ‖𝑢(𝑡𝑁) − �̅�‖𝐻0
2 ≤

𝑟

3
 and 𝐶[𝛷(𝑢(𝑡𝑁)) − 𝛷(�̅�)]

𝜃

2 ≤
𝑟

3
, here 𝐶 is the 

constant obtained in (4.3.a). Then, if 𝑢(𝑡) ∈ 𝐵𝐻0
2
(�̅�; 𝑟) for every 𝑡 ∈ [𝑡𝑁 , 𝑇], 𝑇(≥ 𝑡𝑁) being 

any time, then 

‖𝑢(𝑡) − �̅�‖𝐻0
2 ≤ ‖𝑢(𝑡) − 𝑢(𝑡𝑁)‖𝐻0

2 + ‖𝑢(𝑡𝑁) − �̅�‖𝐻0
2 

                                                                 ≤ 𝐶[𝛷(𝑢(𝑡𝑁)) − 𝛷(�̅�)]
𝜃

2 + ‖𝑢(𝑡𝑁) − �̅�‖𝐻0
2 ≤

2𝑟

3
,       

i.e., 𝑢(𝑡) ∈ �̅�𝐻0
2

(�̅�;
2𝑟

3
) for 𝑡𝑁 ≤ 𝑡 ≤ 𝑇.  

This means that the trajectory staring from 𝑢0 is trapped in 𝐵𝐻0
2
(�̅�; 𝑟) for all 𝑡 ≥ 𝑡𝑁 . 

We now arrive at the main result. 

Theorem 4.1. Let  𝑢0 ∈ 𝐿2() and �̅� ∈ 𝜔( 𝑢0).  Let 𝑡𝑁be the time chosen above. Then, 

(4.3.c)               ‖𝑢(𝑡) − �̅�‖𝐿2
≤ 𝐶[𝛷(𝑢(𝑡𝑁)) − 𝛷(�̅�)]

𝜃
         𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡 ∈ [𝑡𝑁, ∞).  

Proof. We already know that, for all 𝑡𝑁 ≤ 𝑡 < ∞, 𝑢(𝑡) ∈ 𝐵𝐻0
2
(�̅�; 𝑟). So, the same argument as 

in the proof of Proposition 4.1 is available to 𝑢(𝑡) for every 𝑡 > 𝑡𝑁 . Let   𝑡𝑁 ≤ 𝑡 < 𝑡𝑛,  where  𝑡𝑛 

is the sequence introduced above. Then, by the same way as for (4.3.b), we obtain that 

‖𝑢(𝑡𝑛) − 𝑢(𝑡)‖𝐿2
≤ 𝐶−1 {[𝛷(𝑢(𝑡)) − 𝛷(�̅�)]

𝜃
− [𝛷(𝑢(𝑡𝑁)) − 𝛷(�̅�)]

𝜃
}. 

Fixing 𝑡, let 𝑡𝑛 tend to infinity. Then, in view of (4.2. g), (4.3.c) is verified. 
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      5 
Homogeneous Stationary Solutions to Epitaxial Growth Model 

under Dirichlet Conditions 
                               

In the previous chapters 3 and 4, we constructed a dynamical system generated by the problem 

and showed that every trajectory converges to some stationary solution as t → ∞. This chapter 

is then devoted to investigating stability or instability of the null solution which is a unique 

homogeneous stationary solution. Indeed, we shall prove that, when the surface diffusion is 

stronger than roughening, the null solution is globally stable, and in the meantime, when the 

roughening is stronger than the surface diffusion, the null solution is unstable. 

 

5.1   REVIEWS OF KOWN RESULTS 

We assume that  is a rectangular domain or a 𝒞4 domain.  

In this section, let us review known results obtain in the previous chapters 3, 4. As in chapters 3 

and 4, we formulate (1.1) as the Cauchy problem for a semilinear abstract evolution equation 

(5.1.a)                {
𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 = 𝑓(𝑢),               0 < 𝑡 < ∞,

𝑢(0) = 𝑢0, , , , , , , , , , , , , , , , , , , , , , , , , , ,
 

in the underlying space 𝑋 = 𝐿2(). Here, 𝐴 is an associated linear operator in the framework 

of a triplet  𝐻0
2() ⊂ 𝐿2() ⊂  𝐻−2() (=  𝐻0

2()′)  with a symmetric sesquilinear from 

defined by  

𝑎(𝑢, 𝑣) = ∫ ∆𝑢
1



⋅ ∆𝑣 ̅𝑑𝑥,         𝑢, 𝑣 ∈ 𝐻0
2(). 

Then, 𝐴 is a positive definite self-adjoint operator of 𝑋 with domain 𝒟(𝐴) ⊂  𝐻0
2(). The 

operator 𝐴 is considered as a realization of the fourth order operator 𝑎∆2 in 𝑋 under the 

conditions 𝑢 =
𝜕𝑢

 𝜕𝑛
= 0  on 𝜕.  As seen by Proposition 4.1, our assumption    yields a 

characterization of 𝒟(𝐴)  in such a way that 𝒟(𝐴) = 𝐻4()⋂ 𝐻0
2() with norm equivalence. 

As the sesquilinear form is symmetric, 𝒟 (𝐴
1

2) coincides with the form domain, i.e., 𝒟 (𝐴
1

2) =

 𝐻0
2() with norm equivalence. By interpolation, we can then verify that, for 

1

2
≤ θ ≤ 1, 

𝒟(𝐴θ) ⊂ 𝐻4θ()⋂ 𝐻0
2(), 

And for 0 ≤ θ ≤
1

2
, 
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𝒟(𝐴θ) ⊂ 𝐻4θ(). 

In addition, for any 0 ≤ θ ≤ 1, the inequality 

(5.1.b)                ‖𝑢‖H4𝜃 ≤ 𝐶‖𝐴𝜃𝑢‖
𝐿2

,   𝑢 ∈ 𝒟(𝐴𝜃), 

is satisfied, namely, the embedding described above is continuous. Meanwhile, 𝑓 is a nonlinear 

operator defined by  

(5.1.c)               𝑓(𝑢) = 𝜇∇ ⋅
∇𝑢

1+|∇𝑢|2 

                                = −𝜇 [
∆𝑢

1 + |∇𝑢|2
+

∇|∇𝑢|2. ∇𝑢

(1 + |∇𝑢|2)2
] ,       𝑢 ∈ 𝒟 (𝐴

7
8). 

Note that, since 𝒟 (𝐴
7

8) ⊂ 𝐻
7

2  due to (5.1.b) and 𝐻
7

2 ⊂ 𝒞2(̅), 𝑢 ∈ 𝒟 (𝐴
7

8) certainly 

implies 𝑓(𝑢) ∈ 𝐿2(). Furthermore, according to (4.1.g), it holds true that 

(5.1.d)      

‖𝑓(𝑢) − 𝑓(𝑣)‖𝑋 ≤ 𝐶 [‖𝐴
1
2(𝑢 − 𝑣)‖

𝑋
+ (‖𝐴

7
8𝑢‖

𝑋
+ ‖𝐴

7
8𝑣‖

𝑋
) ‖𝐴

1
4(𝑢 − 𝑣)‖

𝑋
], 

   𝑢, 𝑣 ∈ 𝒟 (𝐴
7
8). 

The general result on abstract semilinear evolution equation (c.f [15, Theoream 4.1]) readily 

provides local existence of solutions. For any 𝑢0 ∈ 𝒟 (𝐴
1

4) , (5.1.a) possesses a unique local 

solution. As a matter of fact, we can formulate (1.1) even in a larger underlying space 𝐻−2(), 

there exists a unique local solution. Combining these two existence results, we can claim that, 

for any 𝑢0 ∈ 𝐿2() = 𝑋, (5.1.a) possesses a unique local solution in the function space: 

(5.1.e)         𝑢 ∈ 𝒞([0, 𝑇𝑢0
]; 𝒟(𝐴)) ∩ 𝒞((0, 𝑇𝑢0

]; 𝑋)) ∩ 𝒞1((0, 𝑇𝑢0
]; 𝑋), 

𝑇𝑢0
> 0  being determined by the norm ‖𝑢0‖𝑋 alone. 

In the subsequent sections, we need to use differentiability of 𝑓(𝑢). 

Proposition 5.1. 𝑓: 𝒟 (𝐴
7

8) → 𝑋 is 𝐹𝑟�́�𝑐ℎ𝑒𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒  

𝑓′(𝑢)ℎ = − 𝜇𝛻. (
∇ℎ

1 + |∇𝑢|2
−

2( ∇𝑢. ∇𝑢)∇𝑢

(1 + |∇𝑢|2)2 ) ,        𝑢, ℎ ∈ 𝒟 (𝐴
7
8). 

Proof. Let 𝑢, ℎ ∈  𝒟 (𝐴
7

8). Form (5.1.c) it follows that  

𝑓(𝑢 + ℎ) − 𝑓(𝑢) = − 𝜇𝛻. [(
1

1 + |𝛻(𝑢 + ℎ)|2
−

1

1 + |𝛻𝑢|2
) 𝛻(𝑢 + ℎ)] 
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− 𝜇𝛻. (
𝛻(𝑢 + ℎ) − 𝛻𝑢

1 + |𝛻(𝑢 + ℎ)|2) 

 

= − 𝜇𝛻.
−2∇𝑢. ∇ℎ − |𝛻ℎ|2 ∇(𝑢 + ℎ)

1 + ∇|(𝑢 + ℎ)|2
 

− 𝜇𝛻. [
−2∇𝑢. ∇ℎ − |𝛻ℎ|2 ∇(𝑢 + ℎ)

1 + ∇|(𝑢 + ℎ)|2
] − 𝜇∇. (

𝛻ℎ

1 + |∇𝑢|2
). 

By the similar calculation as for (5.1.e)  

‖𝑓(𝑢 + ℎ) − 𝑓(𝑢) − 𝑓′(𝑢)ℎ‖𝑋 ≤ 𝐶 ‖𝐴
7
8ℎ‖

𝑋

2

(‖𝐴
7
8𝑢‖

𝑋
+ ‖𝐴

7
8ℎ‖

𝑋
). 

This means that 𝑓: 𝒟 (𝐴
7

8) → 𝑋 is Fréchet  differentiable at 𝑢. 

Proposition 5.2. Let 𝑢 ∈ 𝒟 (𝐴
7

8) vary in a ball  𝐵
𝒟(𝐴

1
2)

(0; 1).  𝑇ℎ𝑒𝑛, 𝑓′(𝑢) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡ℎ𝑒  

𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

‖[𝑓′(𝑢) − 𝑓′(𝑣)]ℎ‖𝑋 ≤ 𝐶 ‖𝐴
1
2(𝑢 − 𝑣)‖

𝑋
‖𝐴

7
8ℎ‖

𝑋
,  

𝑢, 𝑣 ∈ 𝒟 (𝐴
7
8) ⋂𝐵

𝒟(𝐴
1
2)

(0; 1); ℎ ∈ 𝒟 (𝐴
7
8). 

Proof. From the formula giving  𝑓′(𝑢), we can estimate directly the difference 𝑓′(𝑢) − 𝑓′(𝑣). 

Proposition 4.3 provides a priori estimates for local solutions obtained above in the space 

(5.1.e). Indeed, any local solution to (5.1.a) on interval [0, 𝑇𝑢] satisfies the estimate  

‖𝑢(𝑡)‖𝑋
2 ≤ 𝑒−2𝛿𝑡‖𝑢0‖𝑋

2 + 𝜇𝛿−1,            0 ≤ 𝑡 ≤, 

with some fixed exponent 𝛿 > 0. Then, by standard argument, we conclude that, for any 𝑢0 ∈ 𝑋, 

(5.1.a) possesses a unique global solution 𝑢 in the function space: 

(5.1.f)              𝑢 ∈ 𝒞([0, ∞]; 𝑋) ∩ 𝒞((0, ∞]; 𝒟(𝐴)) ∩ 𝒞1((0, ∞]; 𝑋). 

Furthermore, 𝑢 also satisfies the same estimate 

(5.1.g)              ‖𝑢(𝑡)‖𝑋
2 ≤ 𝑒−2𝛿𝑡‖𝑢0‖𝑋

2 + 𝜇𝛿−1,            0 ≤ 𝑡 < ∞, 

which shows dissipation of 𝑢. Set a nonlinear semigroup 𝑆(𝑡), 0 ≤ 𝑡 < ∞, on 𝑋 by 𝑆(𝑡)𝑢0 =

𝑢(𝑡; 𝑢0), using the global solution 𝑢(𝑡; 𝑢0) to (5.1.a) with initial data 𝑢0 ∈ 𝑋. Then, we obtain 

a dynamical system (𝑆(𝑡), 𝑋) generated by (5.1.a). The dissipate estimates yield existence of a 

finite-dimensional attractor ℳwhich attracts every trajectory 𝑆(𝑡)𝑢0 at an exponential rate. 

Such an attractor is called the exponential attractor. In particular, we know that every trajectory 

has a nonempty 𝜔-limit set 𝜔(𝑢0). 

As shown in section 3.4, our system(𝑆(𝑡), 𝑋) admits a Lyapunov function of the form  
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Φ(𝑢) =
1

2
∫ [𝑎|∆𝑢|2 − 𝜇 log(1 + |𝛻𝑢|2)]𝑑𝑥, 𝑢

1



∈ 𝐻0
2(). 

it is seen that, for �̅� ∈ 𝒟(𝐴), Φ′(�̅�) = 0 and 𝐴(�̅�) = 𝑓(�̅�) (i.e., �̅� is a stationary solution) are 

equivalent. From this equivalence, we see that, if �̅�  ∈ 𝜔(𝑢0), then �̅� must be a stationary 

solution of (5.1.a). The set 𝜔(𝑢0) consists only of stationary solution. 

Convergence of Solution. The objective of chapter 4 was then to show that 𝜔(𝑢0) is a singleton 

for every 𝑢0. We proved thatΦ(𝑢) satisfies the Lojasiwicz- Simon inequality  

‖Φ′(𝑢)‖𝐻−2 ≥ 𝐷|Φ(𝑢) − Φ(�̅�)|1−𝜃 

in a neighborhood of �̅�, where �̅� ∈ 𝜔(𝑢0), with some exponent 0 < 𝜃 ≤
1

2
. This inequality 

readily implies that 

‖𝑆(𝑡)𝑢0 − �̅�‖𝑋 ≤ 𝐶[Φ(𝑆(𝑡)𝑢0) − Φ(�̅�)]𝜃. 

As Φ(𝑆(𝑡)𝑢0) converges to Φ(�̅�) as 𝑡 → ∞, we observe that  𝑆(𝑡)𝑢0 converges to �̅� in 𝑋  

with some rate of convergence. 

5.2   LINEARIZED STABILITY  

Let us now investigate stability and instability for the stationary solution (5.1.a). For this 

purpose, we will employ the general methods for abstract evolution equations, see [1, 13]. 

Let �̅� ∈ 𝒟(𝐴) be any stationary solution to (5.1.a), i.e., 𝐴(�̅�) = 𝑓(�̅�). By Propositions 5.1 and 

5.2, 𝑓: 𝒟 (𝐴
7

8) → 𝑋 is of class 𝒞1.1. It is known that this condition in turn implies Fréchet 

differentiability of semigroup. Indeed, for 0 < 𝑡 < 𝑡∗  where  𝑡∗ > 0  is arbitrarily fixed 

time,  𝑆(𝑡): 𝒟 (𝐴
1

2) → 𝒟 (𝐴
1

2)  is of class  𝒞1.1  in a neighborhood 𝒪′(�̅�) of �̅�  in  𝒟 (𝐴
1

2) 

together with the estimate 

(5.2.a)    ‖𝑆(𝑡)′𝑢 − 𝑆(𝑡)′𝑣‖
ℒ(𝒟(𝐴

1
2)

, ≤ 𝐶 ‖𝐴
1

2(𝑢 − 𝑣)‖
𝑋

,              𝑢, 𝑣 ∈ 𝒪′(�̅�);  0 < 𝑡 < 𝑡∗. 

For the detailed proof, see the proof of [15, Subsection 6.6.3]. 

We have to assume a spectral separation condition of the form 

𝜎(𝐴−𝑓′(�̅�))⋂{𝜆 ∈ ℂ; Re 𝜆 = 0} = ∅. 

Then, since 𝑆(𝑡)′�̅� = 𝑒−𝑡�̅�,  where  �̅� = 𝐴 − 𝐹′(�̅�),  we have in turn a spectral separation 

for  𝑆(𝑡)′�̅� of the form  

(5.2.b)                  𝜎(𝑆(𝑡)′�̅�)⋂{𝜆 ∈ ℂ; |𝜆| = 1} = ∅. 

According to [15, Theorem 6.9], under (5.2.a) and (5.2.b), a smooth local unstable manifold 

ℳ+(�̅�; 𝒪) can be constructed in a neighborhood 𝒪of �̅� in 𝒟 (𝐴
1

2).  

When  



 

 

40 

 

(5.2.c)                   𝜎(𝐴−𝐹′(�̅�)) ⊂ {𝜆 ∈ ℂ; Re 𝜆 > 0},   

we have 𝜎(𝑆(𝑡)′�̅�) ⊂ {𝜆 ∈ ℂ; |𝜆| < 1} and  ℳ+(�̅�; 𝒪) reduces to a singleton {�̅�}. Whence, if 

(5.2.c) takes place, �̅� is stable. In the meantime, when  

(5.2.d)                   𝜎(𝐴 − 𝑓′(�̅�)) ∩ {𝜆 ∈ ℂ; Re 𝜆 < 0} ≠ ∅, 

we have  𝜎(𝑆(𝑡)′�̅�)⋂{𝜆 ∈ ℂ; |𝜆| > 1} ≠ ∅ and  ℳ+(�̅�; 𝒪) is not trivial. Whence, if (5.2.d) 

takes place, �̅� is unstable. Let us now apply these discussions to the null solution �̅� ≡ 0.  

We see from Proposition 5.1 that (𝐴 − 𝑓′(0) = 𝑎∆2 + 𝜇∆. So, it is necessary to investigation 

the spectrum of the operator 𝑎∆2 + 𝜇∆.  To this end, we will introduce a normalization of 𝐴; 

indeed, when 𝑎 = 1, we denote 𝐴 = 𝐴1; and, regarding 𝑎 as a positive parameter, we denote in 

general  𝐴 = 𝑎𝐴1.  Of course,  𝐴1  is a realization of the operator  ∆2  in  𝐿2()  under the 

homogenous Dirichlet condition ∂, and is a positive definite self- adjoin operator of 𝑋. As 

verified above, we have 𝒟(𝐴1) = 𝐻4()⋂𝐻0
2()  with norm equivalence and  𝒟 (𝐴1

1

2 ) =

𝐻0
2() with norm equivalence. We here notice a fact that the mapping 𝑢 ↦

‖∇𝑢‖𝑋

‖∆u‖𝑋
 is continuers 

from   𝐻0
2() − {0}  into ℝ  and has a maximum on the sphere ‖𝐴1𝑢‖𝑋 = 1  because of 

compact embedding, 

𝒟(𝐴1) ⊂ 𝒟 (𝐴1

1

2 ).  

Put 

(5.2.e)                     𝑑 ≡ max
‖𝐴1𝑢‖𝑋=1

‖∇𝑢‖𝑋

‖∆𝑢‖𝑋
. 

In other words, the 𝑑 is an optimal coefficient in the inequality 

‖∇𝑢‖𝑋 ≤ 𝑑‖∆𝑢‖𝑋                    𝑢 ∈ 𝒟(𝐴1). 

Stability of the null solution is then determined by dominance in magnitude of the two 

coefficients 𝑎 and 𝜇 to the other but with weight 𝑑−2 for 𝑎. 

Theorem 5.1. If  𝑎𝑑−2 > 𝜇, then the null solution is stable. If 𝑎𝑑−2 < 𝜇, then the null solution 

is unstable. 

Proof. We notice that  𝑎∆2 + 𝜇∆ is a self-adjoint operator of 𝑋 whose domain 𝐻4()⋂𝐻0
2() 

is compactly embedded in 𝐿2(). Therefore, the spectrum set σ( 𝑎∆2 + 𝜇∆) is contained in the 

real axis and consists of point spectrum alone. For any 𝑢 ∈ 𝒟(𝐴1) − {0}, we observe that 

( 𝑎∆2 + 𝜇∆, 𝑢) = 𝑎‖∆𝑢‖𝑋
2 − 𝜇‖∇𝑢‖𝑋

2 ≥ (𝑎𝑑−2 − 𝜇)‖∇𝑢‖𝑋
2 > 0, 

provided 𝑎𝑑−2 > 𝜇. Therefore, if 𝜇 is dominated as 𝜇 < 𝑎𝑑−2, then σ( 𝑎∆2 + 𝜇∆) ⊂ (0, ∞) 

and the null solution is stable. To the contrary, if 𝜇 is large enough so that 𝜇 > 𝑎𝑑−2,i.e., 𝑑 >

√
𝑎

𝜇
, then there exists an element 𝑢0 ∈ 𝒟(𝐴1) − {0} such that  ‖∇𝑢0‖𝑋 > √

𝑎

𝜇
‖∆𝑢0‖𝑋. Therefore, 
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( 𝑎∆2𝑢0 + 𝜇∆𝑢0, 𝑢0) = 𝑎‖∆𝑢0‖𝑋
2 − 𝜇‖∇𝑢0‖𝑋

2 < 0. 

This means that  σ( 𝑎∆2 + 𝜇∆)⋂(−∞, 0) ≠ ∅. Hence, the null solution is unstable. 

As a matter of fact, when  𝑎𝑑−2 > 𝜇, every trajectory converges to 0, that is, the null solution is 

globally stable. 

Theorem 5.2. Let  𝑎𝑑−2 > 𝜇.  For any  𝑢0 ∈ 𝑋, 𝑆(𝑡) 𝑢0 converges to 0 as  𝑡 → ∞ at an 

exponential rate. 

Proof. Multiply the equation (1.1) by �̅� and integrate the product in . Then,  

1

2

𝑑

𝑑𝑡
∫ |𝑢|2

1



𝑑𝑥 + 𝑎 ∫ |∆𝑢|2
1



𝑑𝑥 = 𝜇 ∫
|∆𝑢|2

1 + |∇𝑢|2

1



𝑑𝑥 ≤ 𝜇 ∫ |∇𝑢|2
1



𝑑𝑥. 

It then follows from (5.2.e) that  

1

2

𝑑

𝑑𝑡
‖𝑢(𝑡)‖𝑋

2 𝑑𝑥 ≤ −(𝑎𝑑−2 − 𝜇)‖∇𝑢(𝑡)‖𝑋
2 ≤ −(𝑎𝑑−2 − 𝜇)𝐷−1‖𝑢(𝑡)‖𝑋

2 , 

where 𝐷 > 0 is a coefficient for the Pincare inequality given by (5.3.a) below. Hence,    

‖𝑢(𝑡)‖𝑋 ≤ 𝑒−(𝑎𝑑−2−𝜇)𝐷−1
‖𝑢0‖𝑋 for 𝑡 ≥ 0.  

5.1   ESTIMATION OF d FROM ABOVE 

The weight constant 𝑑 can easily be estimated from above from the Poincare inequality 

(5.3.a)                ‖𝑢‖𝑋 ≤ 𝐷‖∇𝑢‖𝑋         𝑢 ∈ 𝐻0
2().    

Theorem 5.3. Let 𝑑 be the constant determined by (5.2.e) and let 𝐷 be an optimal coefficient 

for the Poincare inequality (5.3.a). Then, it always holds true that 𝑑 ≤ 𝐷. 

Proof. Indeed, 

‖∇𝑢‖𝑋
2 = (−∆𝑢, 𝑢) ≤ ‖∆𝑢‖𝑋‖𝑢‖𝑋 ≤ 𝐷‖∆𝑢‖𝑋‖∇𝑢‖𝑋,               𝑢 ∈ 𝐻0

2(). 

Therefore,  ‖∇𝑢‖𝑋 ≤ 𝐷‖∆𝑢‖𝑋  for  𝑢 ∈ 𝐻0
2().  Of course, it holds that  ‖∇𝑢‖𝑋 ≤ 𝐷‖∆𝑢‖𝑋 

for 𝑢 ∈ 𝒟(𝐴1). 

The coefficient 𝐷 is usually estimated by the band width of , see [2, Section 4.7]. 

The rest of this section is devoted to obtaining an optimal estimate of 𝐷 in the specific case 

where 

 = {(𝑥, 𝑦); 0 < 𝑥 < 𝑙1, 0 < 𝑦 < 𝑙2}. 

Let  𝛬 denotes a realization of −∆  equipped with the boundary condition  𝑢 = 0  in 

𝐿2(). Then,  𝛬 is a positive definite self-adjoint operator of  𝐿2() with domain  𝒟(𝛬) =

𝐻2()⋂𝐻0
1().   

Furthermore, since its minimal eigenvalue is 
𝜋2

𝑙1
2 +

𝜋2

𝑙2
2  with eigenfunction sin 

𝜋2

𝑙1
2 𝑥 +

𝜋2

𝑙2
2 𝑦, we 

have (𝛬𝑢, 𝑢) ≥  
𝜋2

𝑙1
2 +

𝜋2

𝑙2
2  ‖𝑢‖𝑋

2  for any 𝑢 ∈ 𝒟(𝛬). It then follows that        

‖∇𝑢‖𝑋
2 = (−∆𝑢, 𝑢) ≥ (

𝜋2

𝑙1
2 +

𝜋2

𝑙2
2 ) ‖𝑢‖𝑋

2 ,       𝑢 ∈ 𝒟(𝛬). 
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Since 𝒟(𝛬) is dense in 𝒟 (𝛬
1

2) which coincides with 𝐻0
1(), this inequality holds true for every 

𝑢 ∈ 𝐻0
1(). Hence, (5.3.a) takes place with 𝐷 = (

𝜋2

𝑙1
2 +

𝜋2

𝑙2
2 )

−
1

2
 and, in fact, this is optimal. 

Theorem 5.4. Let   = (0, 𝑙1) × (0, 𝑙2). Then, an optimal constant  𝐷  for the Poincare 

inequality (5.3.a) is given by 𝐷 =
𝑙1𝑙2

𝜋√𝑙1
2+𝑙2

2
. Consequently, the weight constant 𝑑 is estimated 

by 𝑑 ≤
𝑙1𝑙2

𝜋√𝑙1
2+𝑙2

2
.  

Corollary 5.1. Let  = (0, 𝑙1) × (0, 𝑙2). If 𝜇 <
𝜋2(𝑙1

2+𝑙2
2)𝑎

𝑙1
2+𝑙2

2 ,  then the null solution is globally 

stable. 
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6 

Numerical Results for the Model Equation  

 
In this chapter, first we shall construct a discretization scheme by Finite-Difference Methods for 

the model equation (1.1). Second we shall illustrate some numerical results. 

  

6.1   FINITE DIFFERENCE METHOS  

FDMs are numerical methods for solving partial differential equations by approximating them 

with difference equations, in which finite differences approximate the derivatives. FDMs are 

thus discretization methods and involve discretization of the spatial domain, the differential 

equation, and boundary conditions. In this section we will use FDMs for discretization the 

problem of the model equation (1.1)  

(1.1)             

,in                                ),()0,,(

              

 ),(0,  on                                         0

),,0(in 
||1

0

2

2















































yxuyxu
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u
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in a two-dimensional domain .  

6.1.1 Finite difference formulation for a one-dimensional problem 

A- Discretization of time and space in one-dimensional case 

In one dimension the approximate solution is given by  𝑢(𝑥𝑖 , 𝑡𝑛 )  ≈ 𝑢𝑖
𝑛, i= 0… I and n=0, 1, 

2…. The domain is partitioned in space and in time and approximations of the solution is 

computed at the space or time points, Therefore the variables step sizes in 𝑥 direction and step 

time in 𝑡 time are labeled by ∆𝑥 and ∆𝑡, respectively. We first perform the time discretization 

of (1.1): 

(6.1.a)          
,

),(),( 1
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and space discretization of second derivative is given by   

(6.1.b)           
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  . 

Similarly, on the basis of these relations, for the fourth derivative we have the following 

approximation 
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(6.1.c)                  
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In the meantime, discretization of −𝜇. (
∇𝑢

1+|∇𝑢|2) in Eq. (1.1) is given by,  

(6.1.d)                    
,1

2

1
x

uu
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n
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(6.1.e)                    
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Eventually, the equation (1.1) after discretization becomes as follow   

(6.1.f)     
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B- Discretization of boundary conditions in one-dimensional case  

In this study the equation (1.1) is presented under the homogeneous Dirichlet boundary 

conditions. Therefore, in order to discretization boundary condition in one-dimensional 

for  𝑢 = 0, we assume that  

(6.1.g)                          𝑢0
𝑛 = 𝑢𝐼

𝑛 = 0,  

in which i=0,…,I and n=0, 1, 2... On the other hand for discretization 
𝜕𝑢

𝜕𝑛
=0, it is assumed that  

(6.1.h)                           𝑢𝐼+1
𝑛 = 𝑢𝐼−1

𝑛 , 

(6.1.i)                            𝑢−1
𝑛 = 𝑢1

𝑛.     

C- Applications of MATLAB program in one-dimensional case  

In this study a simulation process for the Eq. (1.1) is shown by MATLAB program. We use the 

following MATLAB code to illustrate the implementation of Dirichlet boundary condition, and 

also for simplicity of writing MATLAB code, the equation of (1.1) is shown as the following 

form:     )]32(
1

1.[1 partpart
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Boundary condition: 

,00  n

I

n uu  

nnn

I

n

I uuuu 1111 ,   . 

The MATLAB code to solve this problem is shown below. 

clc 

clear 

close all 

% a=input('input the constant value, named a:  '); 

% miuo=input('input the constant value, named \mu:  '); 

% N=input('n=1,2,...,N    input the last value of n (N):  '); 

% I=input('i=-1,0,1,...,I+1    input the Penultimate value of i (I):  '); 

% dt=input('input the dt value (e.g. 1/1024):  '); 

% dx=input('input the dx value:  '); 

a=1; 

epsilon=0.1 

miuo=60; 

N=1200; 

dx=1/80; 

dt=dx.^4; 

L=80; 

x=(1:L).*dx; 

I=length(x); 

alpha=2*3.14; 

Which we specify initial conditions as follows, 

u (:,1)=a*sin(alpha*x); 

And we can specify Dirichlet boundary conditions as follows, 

for n=1:N-1; 

    for i=3:I+1;   % play the role of i=1:I-1 without shifting 

u(2,n)=0;   % Boundary condition(6.1.g),play the role of u(0,n)=0 without shifting 

u(1,n)=u(3,n); % B.C(6.1.i),play the role of u(-1,n)=u(1,n) without shifting 
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u(I+2,n)=0;   %B.C(6.1.g),play the role of u(I,n)=0 without shifting 

       u(I+3,n)=u(I+1,n);  % B.C(6.1.h), play the role of u(I+1,n)=u(I-1,n) without 

By using the following routine in this MATLAB code we can compute the numerical solution of 

an initial value problem with given boundary condition, 

part1=(u(i+2,n)-4.*u(i+1,n)+6.*u(i,n)-4.*u(i-1,n)+u(i-2,n))./(dx.^4);  

part2=dx.*(u(i+1,n)-u(i,n))./(dx.^2.+(u(i+1,n)-u(i,n)).^2);   %  

 part3=dx.*(u(i,n)-u(i-1,n))./(dx.^2.+(u(i,n)-u(i-1,n)).^2);    

  u(i,n+1)=u(i,n)+dt.*(-a.*part1-(miuo./dx).*(part2-part3));   

    end 

end 

MATLAB makes plotting functions easy. We can plot our solved function as follows, 

nn=100;% choose nn from 1 to N 

plot((1:I+3).*dx,u(:,nn)) 

xlabel('x') 

ylabel('u'); 

And finally for creating a 3-D graph of the function has been used the following command, 

set(gcf, 'Renderer', 'zbuffer'); 

surf(1:N,(1:I+3).*dx,u) 

xlabel('n') 

ylabel('x') 

zlabel('u'); 

-MATLAB code for Lyapunov function 

As you remember the Lyapunov function of the dynamical system was presented in chapter 3, 

such that the values of Lyapunove function are monotone decreasing along trajectories. In this 

section, in order to illustrate this phenomenon the following MATLAB code is presented. 

for t=1:N; 

    for i=1:I+1;    

S(i+1,t)=(a*(u(i+1,t)-2*u(i,t)+u(i-1,t))./dxx.^2)-miuo*log10(1+((u(i+1,t)-u(i,t))/dxx).^2); 

    end 

    dxx=length(S(:,t)); 

    SS(t)=inac(dxx,S(:,t)); 

end 

figure 

plot(1:N,SS(1:end)) 

And this integral is computed by using the following MATLAB code 

function [dy]=inac(dx,y) 
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for i=1:length(y) 

    yy(i)=(y(i)+y(i+1))*dx/2; 

end 

dy=sum(yy); 

6.1.2 Finite difference formulation for a two-dimensional problem  

A- Discretization of time and spaces in two-dimensional case 

In two dimensions the approximate solution is given by 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛) ≈ 𝑢𝑖𝑗
𝑛  with assume 𝑖 =

0, … , 𝐼 ,  𝑗 = 0, … , 𝐽  and  𝑛 = 0,1,2, … .The approximations of solution are computed at the 

space  𝑥, 𝑦  and time t. The variables step sizes in  𝑥  and 𝑦 directions are labeled 

by ∆𝑥, ∆𝑦 respectively. And step time in 𝑡 time is labeled by ∆𝑡. 

Time discretization is as follows, 
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Space discretization of second derivative in two-dimensional case is given as follows, 
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On the basis of these relations, for the fourth derivative we have the approximation 
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In the meantime, discretization of −𝜇. (
∇𝑢

1+|∇𝑢|2) in Eq. (1.1) is given as follows, 

















































22 )(,)(1

,

.),(

y

u

x

u

y

u

x

u

yx


          

                                 















































































y

u

y

u

x

uyx

u

y

u

x

ux
.

)(,)(1

1
.

)(,)(1

1

2222



 

(6.1.m)   



































































































































































































2

2

1

2

2

1

2

1

2

2

1

2

2

1

2

1

2

2

1

2

2

1

2

1

2

2

1

2

2

1

2

1

11

1

11

1

n

ji
y

n

ji
x

n

ji
y

n

ji
y

n

ji
x

n

ji
y

n

ji
y

n

ji
x

n

ji
x

n

ji
y

n

ji
x

n

ji
x

uDuD

uD

uDuD

uD

y

uDuD

uD

uDuD

uD

x





, 

all relations in (6.1.m) are defined as follow, 
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Eventually, the equation (1.1) after above discretization becomes as follow 
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B- Discretization of boundary conditions in two-dimensional case 

In order to discretization boundary conditions for 𝑢 = 0 we assume that                       
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In addition, for discretization 
𝜕𝑢

𝜕𝑛
=0, it is assumed that 
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6.2 Numerical Example in 1D 

In this section, we present numerical examples for the problem of equation (1.1) 
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in one-dimensional case to illustrate the critical point in roughening coefficient .  

And also we investigate stability and instability of null solution by controlling roughening 

coefficient . (cf. [chapter 5, Theorem 5.1]). For this purpose, we consider (1.1) in the 

interval    = (0, 𝑙),  where  𝑙 = 1.  In this section the coefficient   𝑎  is fixed as  𝑎 = 1 

but 𝜇 > 0 is treated as a control parameter. We also specify the initial function as  

𝑢0(𝑥) = 0.1[sin (2 × 3.14 𝑥)],               𝑥 ϵ , 

which is a perturbation of the null solution 𝑢 ≡ 0. Clearly, the null solution is a unique 

homogeneous stationary solution.  

A- Investigation critical point by roughening coefficient  in 1D 

Critical point is equivalency point .In this study the critical point is observed about 𝜇=13, see 

Figure 6.1.Notice that after the critical point any profiles with increased 𝜇  become 

inhomogeneous stationary solution. 

 

𝜇=1                     𝜇=6                    𝜇=12 

 

𝜇=13                     𝜇=15                  𝜇=20 

 

𝜇=30                     𝜇=50                   𝜇=60 

 

Figure.6.1: Dynamics for several 𝜇 at the same time 𝑡 = 150 
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B- Investigation of stability and instability of null solution by controlling roughening 

coefficient in 1D 

We illustrate some numerical examples which show stability or instability of null solution by 

controlling roughening coefficient 𝜇.  

Set first 𝜇 = 12. As seen by Figure 6.2, the solution tends to the null solution as 𝑡 → ∞, and the 

Lyapunov function along this trajectory is given by Figure 6.2(d). 

 

 

 

(a) 𝑡 = 0                 (b) 𝑡 = 35 

 

(c) 𝑡 = 65              (d) 𝑡 = 100  

 

           

                          (d) Lyapunov function 

 

Figure.6.2: Dynamics for 𝜇 = 12 in 1D. 
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Take next 𝜇 = 30. As seen by Figure 6.3, the solution no longer tends to null solution. Instead, 

as time increases, the small perturbation grows into shallow ridges. The graph of Lyapunov 

function along the trajectory is given by Figure 6.3(i). 

 

 

 

 

Figure.6.3: Dynamics for 𝜇 = 30 in 1D. 

 

 

 

 

 

 

 

 

  

         (a) 𝑡 = 0               (b) 𝑡 = 20               (c) 𝑡 = 40    

 

(d) 𝑡 = 60                (e) 𝑡 = 80               (f) 𝑡 = 100    

 

(g) 𝑡 = 120               (h) 𝑡 = 140              (i) Lyapunov function 
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Finally, take a sufficiently large 𝜇, say 𝜇 = 60. As seen by Figure 6.4, as time increases, the 

perturbation grows into deep ridges. Therefore, the solution again converges to non-null 

stationary solution. This means that the null stationary solution is unstable. The graph of 

Lyapunov function along the trajectory is given by Figure 6.4(i). 

 

 

 

 

Figure.6.4: Dynamics for 𝜇 = 60 in 1D. 

 

 

 

 

 

 

 

(a) 𝑡 = 0                 (b) 𝑡 = 30                 (c) 𝑡 = 60 

 

(d) 𝑡 = 90                 (e) 𝑡 = 120                 (f) 𝑡 = 150 

 

(g) 𝑡 = 180                 (h) 𝑡 = 210                 (i) Lyapunov function 
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6.3  Numerical Example in 2D  

In this section, we present some numerical examples for the problem of equation (1.1) 

(1.1)

,in                                       ),()0,,(

             

                ),(0,  on                                         0

),,0(in 
||1

0

2

2















































yxuyxu

n

u
u

u

u
ua

t

u


 

in a tow-dimensional domain . 

A- Investigation of stability and instability of null solution by controlling roughening 

coefficient  

As first results for 2D, we illustrate some numerical examples which show agreements to 

theorem (5.1) in chapter 5 (if  𝑎𝑑−2 > 𝜇, then the null solution is stable. If 𝑎𝑑−2 < 𝜇, then the 

null solution is unstable).  

Stability and instability of the null solution is determined by dominance in magnitude of the two 

coefficients 𝑎 and 𝜇 to the other but with weight 𝑑−2 for 𝑎. For this purpose, we consider 

(1.1) in the square domain    = (0,1) × (0,1) .  The coefficients   𝑎  is fixed as  𝑎 = 1 

but 𝜇 > 0 is treated control parameter. In this section constant 𝑑 is computed as 𝑑 ≈
1

√2𝜋
 (cf. 

[chapter 5, Theorem 5.4]). We also set the initial function as  

𝑢0(𝑥, 𝑦) = 0.1[sin (2 ⋅ 3.14𝑥) × sin (2 ⋅ 3.14𝑦)],              ( 𝑥, 𝑦)ϵ , 

which is a perturbation of the null solution 𝑢 ≡ 0. Clearly, the null solution is a unique 

homogeneous stationary solution. 

Set first 𝜇 = 12, such that  𝑎𝑑−2 > 12, then the null solution is stable. In this case, as seen by 

Figure 6.5, the solution tends to the null solution as 𝑡 → ∞. This means that the null stationary 

solution is stable.  

The Lyapunov function along this trajectory is given by Figure 6.5(e). 
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(a) 𝑡 = 0                    (b) 𝑡 = 20                

 

(c) 𝑡 = 40               (d) 𝑡 = 60            

 

 

                   (e) Lyapunov function  

 

Figure 6.5: Dynamics for 𝜇 = 12 
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Take next 𝜇 = 40, such that  𝑎𝑑−2 < 40,  then the null solution is unstable. As seen by Figure 

6.6, in this case the solution no longer tends to the null solution. Instead; the perturbation grows 

into two columns of ridges. This means that the null stationary solution is unstable. The 

Lyapunov function along this trajectory is given by Figure 6.6(f). 

 

(a) 𝑡 = 0                 (b) 𝑡 = 40 

 

 

(c) 𝑡 = 80                (d) 𝑡 = 120 

 

    

(e) 𝑡 = 160               (f) Lyapunov function  

 

Figure.6.6: Dynamics for 𝜇 = 40 in ∆x =1/256 and  ∆t = ∆x. ^4 
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With respect to symmetric initial function, theoretically the profiles of solutions must also be 

symmetric. According of figure 6.7, as expected, in the small time the perturbation growth of x 

and y directions are in the symmetric state, however, with increasing time the perturbation 

growth of x direction is dominant to perturbation growth of y direction. Also note that this 

symmetric growth in very small value of ∆𝑥  and ∆𝑡 can be observed (e.g. ∆𝑥 =1/1024 

and ∆𝑡 = ∆𝑥. ^5 ). This means that the symmetric solution is unstable.  

 

(a) 𝑡 = 0               (b) t=20                (c) 𝑡 = 40 

  

    

(d) 𝑡 = 60             (e) 𝑡 = 80               (f) 𝑡 = 100                             

  

(g) t=120                       (h) t= 140 

Figure.6.7: Dynamics for 𝜇 = 40 in ∆x =1/1024 and  ∆t = ∆x. ^5 
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B- Change of profiles by enhancement of roughening coefficient  

In this section, we shall illustrate some numerical results to observe how change the profile of 

stationary solution by enhancement of roughening coefficient. Therefore, in order to justify this 

section by numerical examples, we consider (1.1) with one of the roughening coefficient 

𝜇 = 13, 30, 40.  The coefficient  𝑎  is fixed as 𝑎 = 1. In addition, the square domain is 

specified in   = (0,1) × (0,1). We choose initial function as 

𝑢0(𝑥, 𝑦) = 0.1[sin(2 ⋅ 3.14𝑥) × sin(2 ⋅ 3.14𝑦)],              ( 𝑥, 𝑦)ϵ  . 

When 𝜇 = 13 the solution tends to non-null stationary solution and the perturbation grows into 

two columns of ridges. In the meantime, as seen by Figure 6.8 in each column there are 12 

ridges. Also, the Lyapunov function along this trajectory is given by Figure 6.8(e). 

Set secondly 𝜇 = 30. In this case as before, the solution tends to non-null stationary solution 

and the perturbation grows into two columns of ridges, with the exception that the number of 

ridges in a column increases more than that of the case of  𝜇 = 13. In each column there are 18 

ridges, as shown in Figure 6.9. Also, the Lyapunov function along this trajectory is given by 

Figure 6.9(e). Finally, set 𝜇 = 90. As noted above, in this case, the solution tends to non-null 

stationary solution and the perturbation grows into two columns of ridges and the numbers of 

ridges in each column are more than those of other cases, as shown in Figure 6.10. Also, the 

Lyapunov function along this trajectory is given by Figure 6.10(g). 

           

(a) 𝑡 = 0                  (b) 𝑡 = 30                (c) t=60 

 

(f) t=90                  (e) Lyapunov function 

 

Figure.6.8: Dynamics for 𝜇 = 13 
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(a) 𝑡 = 0                       (b) 𝑡 = 40 

 

 

 

(c) 𝑡 = 80                       (d) 𝑡 = 120 

 

 

 

(e) Lyapunov function  

 

 

Figure.6.9: Dynamics for 𝜇 = 30 
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(a) 𝑡 = 0                       (b) 𝑡 = 50 

 

(c) 𝑡 = 100                      (d) 𝑡 = 150 

 

(e) 𝑡 = 200                      (f) 𝑡 = 250 

      

(g) Lyapunov function 

 

      Figure.6.10: Dynamics for 𝜇 = 90 
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C- Change of profiles by initial functions at 𝜇 = 40  

In this section, we shall illustrate some numerical results to observe how change the profile of 

stationary solution by initial functions. Therefore, in order to justify this section by numerical 

examples, we treat (1.1) in the square domain  = (0,1) × (0,1). The coefficients 𝑎 and 𝜇 

are fixed as 𝑎 = 1 and 𝜇 = 40, respectively. We shall choose initial function as  

𝑢0(𝑥, 𝑦) = 0.1[sin(3.14𝑘𝑥) × sin(3.14𝑦)],              ( 𝑥, 𝑦)ϵ  , 

where 𝑘 is a positive integer varying from 1 to 5. These are a perturbation of the null stationary 

solution to 𝑢 ≡ 0. First, let 𝑘 = 1 in initial function. The dynamics for the solution is illustrated 

by Figure 6.11. The small initial perturbation grows into a single column of ridges. The graph of 

the Lypunove function is given by Figure 6.11(f). At time about 𝑡 = 120, the values of the 

Lyapunov function are stabilized. In view of Theorem 4.0 in chapter 4, this suggests that a final 

profile of the trajectory may be given by that of time 𝑡 = 120.    

 

 

(a) 𝑡 = 0                   (b) 𝑡 = 30                (c) 𝑡 = 60   

 

 

(d) 𝑡 = 90                 (e) 𝑡 = 120            (f) Lyapunov function 

 

 

Figure.6.11: Dynamics for 𝑘 = 1 

 



 

 

62 

 

Secondly, let 𝑘 = 2 in initial function. As Figure 6.12 shows, the perturbation grows in this 

case into double columns of ridges. The profile of the solution is stabilized about time 𝑡 = 180. 

The graph of Lyapunov function is given by Figure 6.12(f). 

 

 

 

                  (a) 𝑡 = 0                     (b) 𝑡 = 20                  

                 

(c) 𝑡 = 60                 (d) 𝑡 = 120 

    

            (e) 𝑡 = 180                    (f) Lyapunov function 

 

 

Figure.12: Dynamics for 𝑘 = 2 
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Thirdly, consider the case where 𝑘 = 3. As seen by figure 6.13, the initial perturbation grows 

into triple columns of ridges. Figure 6.13(f) illustrates the graph of the Lyapunov function of 

trajectory. 

 

 

 

(a) 𝑡 = 0                    (b) 𝑡 = 60    

 

 

(c) 𝑡 = 120                  (d) 𝑡 = 180    

 

 

(e) 𝑡 = 240               (f) Lyaponuv function   

 

Figure.6.13: Dynamics for 𝑘 = 3 
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Next, consider the case where 𝑘 = 4 in initial function. For a while, the small perturbation 

grows into four columns of ridges. Gradually, the state of fourth column becomes unstable. 

Ultimately, one column of ridges disappears and the trajectory converges to a stationary solution 

whose profile is the same as that of the case where 𝑘 = 3, see Figure 6.14. Numerical results 

indicate that the total number of the stationary solution at  is 3. Also was shown that the 

stationary solutions to which trajectory convergence are dependent on initial functions.  

 

(a) 𝑡 = 0                       (b) 𝑡 = 80 

 

(c) 𝑡 = 160                     (d) 𝑡 = 240   

     

(e) 𝑡 = 300                   (f) Lyapunov function 

 

Figure6.14: Dynamics for 𝑘 = 4 
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Finally, consider the case where 𝑘 = 5 in the initial function. Two columns of ridges disappear 

and the trajectory converges to a stationary solution whose profile is the same as that of the case 

where 𝑘 = 3, see Figure 6. 15.  

 

(a) 𝑡 = 0                       (b) 𝑡 = 70 

 

(c) 𝑡 = 140                       (d) 𝑡 = 200 

 

(e) 𝑡 = 270                       (f) 𝑡 = 340 

 

Figure.6.15: Dynamics for 𝑘 = 5 
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D- Change of profiles by initial functions at 𝜇 = 90  

In this section, as before we shall illustrate some numerical results to observe how change the 

profile of stationary solution by initial functions with 𝜇 = 90. We treat (1.1) in the square 

domain  = (0,1) × (0,1). We shall choose initial function as  

𝑢0(𝑥, 𝑦) = 0.1[sin(3.14𝑥) × sin(3.14𝑘𝑦)],              ( 𝑥, 𝑦)ϵ  , 

where 𝑘 is a positive integer varying from 1 to5. 

First, we apply 𝑘 = 1 in initial function. The dynamics for the solution is illustrated by Figure 

6.16. The small initial perturbation grows into a single column of ridges. The final profile of the 

trajectory is stabilized about time 𝑡 = 150. 

 

 

 

(a) 𝑡 = 0                 (b) 𝑡 = 50 

 

 

(c) 𝑡 = 100               (d) 𝑡 = 150 

 

 

Figure.6.16: Dynamics for 𝑘 = 1 in 𝜇 = 90. 
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Secondly, we consider 𝑘 = 2 in initial function. The small initial perturbation grows into a 

double column of ridges. The profile of the solution is stabilized about time 𝑡 = 200. the 

dynamics for the solution is illustrated by Figure 6.17 

 

 

 

(a) 𝑡 = 0                       (b) 𝑡 = 40 

 

 

 

(c) 𝑡 = 80                     (d) 𝑡 = 120 

 

 

(e) 𝑡 = 160                     (f) 𝑡 = 200 

 

 

Figure.6.17: Dynamics for 𝑘 = 2 in 𝜇 = 90. 
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Thirdly, consider the case where 𝑘 = 3. As seen by figure 6.18, the initial perturbation grows 

into triple columns of ridges. The profile of the solution is stabilized about time 𝑡 = 260. 

 

 

 

(a) 𝑡 = 0                 (b) 𝑡 = 60 

 

 

(c) 𝑡 = 120                 (d) 𝑡 = 160 

 

   

(e) 𝑡 = 260 

 

 

Figure.6.18: Dynamics for 𝑘 = 3 in 𝜇 = 90. 
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Next, we consider the case where 𝑘 = 4 in the initial function. The initial perturbation grows 

into four columns of ridges. Notice that the profile is not the same as of the case where 𝑘 = 4, 

in 𝜇 = 40. In this case the state of fourth column becomes stable see Figure 6.19. 

 

 

(a) 𝑡 = 0                 (b) 𝑡 = 80 

 

 

 

 (c) 𝑡 = 160                 (d) 𝑡 = 250 

 

 

(e) 𝑡 = 330 

 

Figure.6.19: Dynamics for 𝑘 = 4 in 𝜇 = 90. 
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Finally, consider the case where  𝑘 = 5  in the initial function. For a while, the small 

perturbation grows into five columns of ridges. Gradually, the state of fifth column becomes 

unstable. Ultimately, one column of ridges disappears and the trajectory converges to a 

stationary solution whose profile is the same as that of the case where 𝑘 = 4, see Figure 6.20. 

The profile of the solution is stabilized about time 𝑡 = 360. Numerical results of this indicate 

that the total number of the stationary solution at 9 is 4, and is more than of 4.  

 

(a) 𝑡 = 0                 (b) 𝑡 = 90 

 

 

(c) 𝑡 = 180                 (d) 𝑡 = 270 

 

 

 

(e) 𝑡 = 360 

 

Figure.6.20: Dynamics for 𝑘 = 5 in 𝜇 = 90. 
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E- Change of profiles by initial function in rectangular domain 

In this section, we shall illustrate some numerical results to observe how change the profile of 

stationary solution by initial function in rectangular domain. For this, we consider (1.1) in the 

rectangular domain  

 = (0,1) × (0,2). 

The coefficients 𝑎 and 𝜇 are fixed as 𝑎 = 1 and 𝜇 = 90, respectively. we shall choose initial 

function as  

𝑢0(𝑥, 𝑦) = 0.1[sin(3.14𝑘𝑥) × sin(3.14𝑦)],              (𝑥, 𝑦)ϵ  , 

where 𝑘 is a positive integer varying from 1 to 4. 

First, we apply 𝑘 = 1 in initial function. The dynamics for the solution is illustrated by Figure 

6.21. The small initial perturbation grows into a single column of ridges. The final profile of the 

trajectory is stabilized about time 𝑡 = 200. 

 

(a) 𝑡 = 0                       (b) 𝑡 = 50 

 

(c) 𝑡 = 100                      (d) 𝑡 = 150 

 

(e) 𝑡 = 200                      (f) Lyapunov function 

  

Figure.6.21: Dynamics for 𝑘 = 1 in rectangular domain. 
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Secondly, we consider 𝑘 = 2 in initial function. The small initial perturbation grows into a 

double column of ridges. The profile of the solution is stabilized about time 𝑡 = 280. The 

dynamics for the solution is illustrated by Figure 6.22. Figure 6.22(g) illustrates the graph of the 

Lyapunov function of trajectory. 

 

(a) 𝑡 = 0                    (b) 𝑡 = 40 

 

(c) 𝑡 = 80                    (d) 𝑡 = 160 

 

(e) 𝑡 = 240                    (f) 𝑡 = 280 

 

(g) Lyapunov function 

 

Figure.6.22: Dynamics for 𝑘 = 2 in rectangular domain. 

 

 



 

 

73 

 

Next, consider the case where 𝑘 = 3 in initial function. For a while, the small perturbation 

grows into triple columns of ridges. Gradually, the state of third column becomes unstable. 

Ultimately, one column of ridges disappear and the trajectory converges to a stationary solution 

whose profile is the same as that of the case where 𝑘 = 2, see Figure 6.23. The profile of the 

solution is stabilized about time 𝑡 = 350. The graph of Lyapunov function is given by Figure 

6.23(f). 

 

 

(a) 𝑡 = 0                    (b) 𝑡 = 50 

 

 

(c) 𝑡 = 150                   (d) 𝑡 = 250 

 

 

(e) 𝑡 = 350                   (f) Lyapunov function 

  

Figure.6.23: Dynamics for 𝑘 = 3 in rectangular domain. 

 



 

 

74 

 

Finally, consider the case where 𝑘 = 4 in the initial function. Two columns of ridges disappear 

and the trajectory converges to a stationary solution whose profile is the same as that of the case 

where 𝑘 = 2, see Figure 6. 24. Numerical results of this section indicate that the total number 

of the stationary solution at 90 in rectangular domain is 2.  

 

 

 

(a) 𝑡 = 0                       (b) 𝑡 = 100 

 

(c) 𝑡 = 200                       (d) 𝑡 = 300 

  

 

(f) 𝑡 = 400                     (g) Lyapunov function 

 

 

Figure.6.24: Dynamics for 𝑘 = 4 in rectangular domain. 
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F- Change of profiles by decreasing of rectangular domain 

In this section, we shall illustrate some numerical results to observe how change the profile of 

stationary solution by decrease domain in rectangular space. For this, we consider (1.1) in the 

one of the following rectangular domains  

 = (0, 𝑙) × (0,2),   where 𝑙 is 
1

2
 or 1.  

The coefficients 𝑎 and 𝜇 are fixed as 𝑎 = 1 and 𝜇 = 90, respectively.  

Set first  = (0,
1

2
) × (0,2). We also set the initial function as  

𝑢0(𝑥, 𝑦) = 0.1[sin(3.14𝑘𝑥) × sin(3.14𝑦)],              (𝑥, 𝑦)ϵ  , 

where 𝑘 is positive integer varying from 1 to 3. First, let 𝑘 = 1 in the initial function. The 

dynamics of the solution is illustrated by Figure 6.25. The small initial perturbation grows into a 

single column of ridges. The final profile of the trajectory is stabilized about time 𝑡 = 240. 

The graph of the Lyapunov function is given by Figure 6.25(f). 

 

 

(a) 𝑡 = 0                  (b) 𝑡 = 60 

 

(c) 𝑡 = 120                 (d) 𝑡 = 180 

   

(e) 𝑡 = 240              (f) Lyapunov function 

 

Figure.6.25: Dynamics for 𝑘 = 1 in  = (0,
1

2
) × (0,2). 
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Secondly, let 𝑘 = 2 in the initial function. As Figure 6.26 shows, for a while, the small initial 

perturbation grows into a double column of ridges. Gradually, the states of two columns become 

unstable. Ultimately, one column of ridges disappears and the trajectory converges to a 

stationary solution whose profile is the same as that of the case where 𝑘 = 1. The final profile 

of the trajectory is stabilized about time 𝑡 = 300.  

 

(a) 𝑡 = 0                       (b) 𝑡 = 60 

 

(c) 𝑡 = 120                      (d) 𝑡 = 180 

 

(d) 𝑡 = 240                       (b) 𝑡 = 280 

 

(e) 𝑡 = 300                       (f) Lyapunov function  

                   

Figure.6.26: Dynamics for 𝑘 = 2 in  = (0,
1

2
) × (0,2). 



 

 

77 

 

Thirdly, let 𝑘 = 3 in the initial function. As Figure 6.27 shows, for a while, the small initial 

perturbation grows into a triple column of ridges. Gradually, the states of first and two columns 

become unstable. Ultimately, two columns of ridges disappear and the trajectory converges to a 

stationary solution whose profile is the same as that of the case where 𝑘 = 1. The final profile 

of the trajectory is stabilized about time 𝑡 = 350.  

 

(a) 𝑡 = 0                      (b) 𝑡 = 70 

 

(c) 𝑡 = 140                    (d) 𝑡 = 210 

 

(e) 𝑡 = 250                     (f) 𝑡 = 270 

 

(g) 𝑡 = 300                (h) Lyapunov function  

Figure.6.27: Dynamics for 𝑘 = 3 in  = (0,
1

2
) × (0,2). 
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Set secondly  = (0,1) × (0,2). We also set the initial function as  

𝑢0(𝑥, 𝑦) = 0.1[sin(3.14𝑘𝑥) × sin(3.14𝑦)],              (𝑥, 𝑦)ϵ  , 

where 𝑘 is a positive integer varying from 1 to 4. 

First, let 𝑘 = 1 in the initial function. The dynamics of the solution is illustrated by Figure 6. 

28. The small initial perturbation grows into a single column of ridges.  

 

 

 

(a) 𝑡 = 0                       (b) 𝑡 = 240 

 

Figure.6.28: Dynamics for 𝑘 = 1 in  = (0,1) × (0,2). 

 

Secondly, we consider 𝑘 = 2 in initial function. The small initial perturbation grows into a 

double column of ridges. The profile of the solution is stabilized about time 𝑡 = 280. The 

dynamics for the solution is illustrated by Figure 6. 29. 

 

(a) 𝑡 = 0                    (b) 𝑡 = 280 

 

Figure.6.29: Dynamics for 𝑘 = 2 in  = (0,1) × (0,2). 
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Next, consider the case where 𝑘 = 3 in initial function. For a while, the small perturbation 

grows into triple column of ridges. Gradually, the state of third column becomes unstable. 

Ultimately, one column of ridges disappears and the trajectory converges to a stationary solution 

whose profile is the same as that of the case where 𝑘 = 2, see Figure 6.30. The profile of the 

solution is stabilized about time 𝑡 = 350.  

 

 

(a) 𝑡 = 0                     (b) 𝑡 = 350       

          

   Figure.6.30: Dynamics for 𝑘 = 3 in  = (0,1) × (0,2). 

 

Finally, consider the case where 𝑘 = 4 in the initial function. Two columns of ridges disappear 

and the trajectory converges to a stationary solution whose profile is the same as that of the case 

where 𝑘 = 2, see Figure 6.31.  

 

 

(a) 𝑡 = 0                        (b)𝑡 = 400  

                

Figure.6.31: Dynamics for 𝑘 = 4 in  = (0,1) × (0,2). 

 

Numerical results of this section indicate that the total number of the stationary solution in 

rectangular domain at 90 decreases.  
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G- Investigation of stability or instability of the null solution by controlling slenderness of 

domain 

In this section, we illustrate some numerical examples which show some agreements to 

corollary 5.1 in chapter 5. For this, we consider (1.1) in one of the following rectangular 

domains 

 = (0,
1

𝑙
) × (0, 𝑙),  where 𝑙 is 1,2 or 4. 

When 𝑙 = 1,  is square. Otherwise,  is strictly rectangular. The area of  is constantly 

equal to 1. The coefficients 𝑎 and 𝜇 are fixed as 𝑎 = 1 and 𝜇 = 40. Also the constant 𝑑 is 

computed as  𝑑 ≈
1

√2𝜋
 (by. [Chapter 5, Theorem 5.4]).  

Set first  = (0,1) × (0,1). We also set the initial function as 

𝑢0(𝑥, 𝑦) = 0.1[sin(3.14𝑥) × sin(3.14𝑦)],
 

            (𝑥, 𝑦)ϵ , 

see Figure 6.32. This is a small perturbation of the null solution. The solution then converges to 

some non-null stationary solution as 𝑡 → ∞. Its profile is given by Figure 6.32 (d). This means 

that the null stationary solution is unstable. 

 

 

 

(a) 𝑡 = 0                      (b) 𝑡 = 40 

 

 (c) 𝑡 = 80                    (d) 𝑡 = 120 

 

Figure.6.32: Case where  = (0,1) × (0,1) 
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Set secondly  = (0,
1

2
) × (0,2), and the constant 𝑑 is computed as 𝑑 ≈

2

√17𝜋
.  We accordingly 

replace the initial function with   

𝑢0(𝑥, 𝑦) = 0.1[sin(2 ∙ 3.14𝑥) × sin(3.14𝑦)],              (𝑥, 𝑦)ϵ , 

see Figure 6.33. The solution again converges to some non-null stationary solution as 𝑡 → ∞ 

whose profile is given by Figure 6.33(e). This means that the null solution is still unstable. 

 

 

(a) 𝑡 = 0                       (b) 𝑡 = 20 

 

(c) 𝑡 = 40                       (d) 𝑡 = 80 

 

(d) 𝑡 = 120                      (e) 𝑡 = 180   

  

Figure.6.33: Case where  = (0,
1

2
) × (0,2) 
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Finally, set  = (0,
1

4
) × (0,4).  The constant 𝑑 is computed as 𝑑 ≈

4

√257𝜋
 and replace the 

initial function with  

𝑢0(𝑥, 𝑦) = 0.1[sin(4 ∙ 3.14𝑥) × sin(3.14𝑦)],              (𝑥, 𝑦)ϵ , 

see Figure 6.34. As seen by Figure 6.34(d), the solution now converges to the null solution. The 

domain  is slender enough to reduce the weight constant 𝑑 in such a way that 𝑑 ≤
𝑙1𝑙2

𝜋 √𝑙1
2+𝑙2

2
 

(by [chapter 5, Theorem 5.4]) and to globally stabilized the null solution as ensured by 

Corollary 5.1 in chapter 5.    

 

 

(a) 𝑡 = 0                           (b) 𝑡 = 60   

 

(c)𝑡 = 120                        (d) 𝑡 = 240 

 

Figure.6.34: Case where  = (0,
1

4
) × (0,4). 
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7 
Conclusions 

 
In the present thesis, we are concerned with the initial-boundary value problem for a nonlinear 

parabolic equation of fourth order in a two-dimensional bounded domain  ⊂ 𝑅2,  being a 

substrate domain. Such a problem has been presented by Johnson-Orme-Hunt-Graff-Sudijono- 

Sauder-Orr, in order to describe the process of growing crystal surface under Molecular Beam 

Epitaxy. MBE is one of useful techniques that enable us to grow structures with very high 

precision in the vertical direction. The model equation contains two terms describing a surface 

diffusion and a roughening effect caused from the Schwoebel barrier. Equipping the 

homogeneous Dirichlet boundary conditions, we studied the model equation analytically and 

numerically.  

 We have obtained the follow results: 

 For any initial value  𝑢0 ∈ 𝐿2(), there exists a unique global solution. For showing this, 

we used the general theory of abstract parabolic equations in infinite-dimensional spaces. 

The theory is available to the higher order semilinear parabolic equations, too. After 

providing global existence of solutions, we constructed a dynamical system generated by 

the problem and showed that the dynamical system possesses a Lyapunov function. 

 

 Using the Lyapunov function, we succeeded in showing that every trajectory converges to 

some stationary solution as 𝑡 → ∞. Also, stationary solutions to which trajectories converge 

are dependent on initial functions.  

 

 We investigated stability and instability of the null solution which is a unique homogenous 

stationary solution. When the surface diffusion is stronger than the roughening, the null 

solution is globally stable. In the meantime, when the roughening is stronger than the 

surface diffusion, the null solution becomes unstable.   

 

 We made many numerical simulations to find that, when the null solution is unstable, non- 

null stationary solutions have a certain number of columns of ridges. When the roughening 

becomes stronger, the number of columns and the number of ridges in a column both 

increase.  
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