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Chapter 1 

Introduction 

 

1.1 The global threat of antimicrobial resistance and new emerging infectious diseases 

Humanity has always been in constant battle with infectious diseases caused by bacteria and 

other pathogens. Such diseases have claimed millions of human lives and continue to threaten 

many more. Infectious diseases have become a global health crisis, calling for immediate 

strategies and action to tackle the crisis. One of the main contributing factors to the global crisis 

is the exponential growth of antimicrobial resistance. 

Nature has blessed us with an astonishing number of secondary metabolites with important 

biological functions, such as the antibiotics. The study of antibiotics had a humble beginning in 

1928 when Alexander Fleming fortuitously discovered the first antibiotic penicillin after he 

observed a clear zone encircling mold that contaminated a petri dish in his laboratory at St 

Mary`s Hospital in London. The impact of this discovery has been called one of the greatest 

contributions to medicine. Penicillin turned into a wonder drug of its time, curing thousands of 

individuals with bacterial infections. 

Between 1940 and 1962, which is known as the golden age of antibiotics, scientists around 

the world discovered more than 20 novel classes of antibiotics (Fig. 1.1). The filamentous soil-

inhabiting genus Streptomyces from the family of actinomycetes stands out as one of the major 

producers of clinically important antibiotics. However, bacteria and other pathogens have always 

found ways to survive by developing resistance to antibiotics through adaptation and mutation, 

creating new strains of antibiotic-resistant bacteria. If there were an endless supply of new 

antibiotics, antimicrobial resistance would not be a problem. Unfortunately, the rate of discovery 
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of new classes of antibiotics has slowed drastically since the 1960s, with only six classes of 

antibiotics discovered in 1963–1987 and no discoveries of new classes of antibiotics since 1987 

(Silver 2011; World Economic Forum 2013) (Fig. 1.1). Thus for the almost 30 years since 1987, 

there has been a ‘discovery void’ of new antibiotics. However, in 2014 a group of scientists from 

the University of Notre Dame discovered a new class of non-β-lactam antibiotics (O`Daniel et al. 

2014). 

 

Fig. 1.1. The discovery dates of distinct classes of antibiotics. No new classes have been 

discovered since 1987 (Adapted from World Economic Forum 2013). 
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In contrast, the rate of bacteria found to have developed resistance to antibiotics is not 

showing any signs of slowing down and instead is aggressively increasing, sparked by the misuse 

and overuse of antibiotics. The more a particular antibiotic is used, the more quickly bacteria 

resistant to that antibiotic will be selected and then increase in number. Antimicrobial resistance 

is currently implicated in 700,000 deaths worldwide per year, and this number is projected to 

increase to 10 million deaths worldwide per year by 2050 unless action is taken (Neil 2014). 

Simply stated, the world is running out of antibiotics, and we are facing the threat of returning to 

the post-antibiotic era.  

From the scientific point of view, there are several reasons why the development of new 

antibiotics has slowed: (1) The classical screening of new antibiotics from natural resources has 

proven to be laborious, costly, and ineffective as scientists have repeatedly found only known 

compounds over time. (2) The genome information of bacteria has revealed that the majority of 

biosynthetic gene clusters for secondary metabolites are silent. (3) Biosynthetic gene clusters for 

secondary metabolites are tightly regulated and weakly expressed, leading to the production of 

minute amounts of secondary metabolites which hampers the isolation and structural elucidation 

of the secondary metabolites. Scientists have come up with several approaches to increase the 

development of new antibiotics, including combinatorial chemistry to obtain new leads toward 

the identification of bioactive natural products, the overexpression of silent biosynthetic gene 

clusters in heterologous hosts to discover new compounds, and the engineering of regulatory 

networks controlling antibiotic biosynthesis, in order to increase the production of valuable 

fermentation products. 

The classical screening methods were recently modified by high-throughput screening with 

the extensive use of combinatorial chemistry. Unfortunately, potent inhibitors (hits) are usually 

ineffective in the host, and the lead-to-hit ratios (<0.001%) (Berdy 2012) of synthetic libraries are 
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very low. Additionally, new compounds from combinatorial chemistry usually cannot be used 

therapeutically in light of the poor accessibility to the target (due to poor permeability or efflux). 

Lastly, the expensive and sophisticated instrumentation required for combinatorial chemistry 

means that only research groups with sufficient financial means can do the research. 

The heterologous expression of biosynthetic genes cluster for secondary metabolites has 

been receiving greater attention in recent years due to the increasing availability of genomic 

information in databases and because some successful discoveries of new compounds have been 

made. However, the research focus is still at a premature stage due to the limited availability and 

compatibility of heterologous hosts (Krawczyk et al. 2013). Unlike classical screening, 

combinatorial chemistry, and heterologous expression approaches, engineering of the regulatory 

network controlling antibiotic biosynthesis offers a promising solution, based on the accumulated 

knowledge of the regulatory mechanisms and the availability of genetic tools. It is thus 

fundamentally important to gain a complete understanding of the regulatory mechanisms 

underlying the production of secondary metabolites. 

Studies toward this end could reveal the information that is necessary for engineering 

regulatory networks for scientific, medical, and industrial purposes. The production of secondary 

metabolites is usually activated in the transition phase between primary metabolism and 

secondary metabolism. The regulatory mechanism is a complex biosynthetic process controlled 

in a hierarchical manner at different levels, with a global regulator at the highest level of the 

hierarchy controlling downstream low-level pathway-specific regulators that directly control the 

transcriptional activation or repression of biosynthetic genes for secondary metabolites. 

 

1.2 The genus of Streptomyces 

Actinomycetes are high-G+C Gram-positive bacteria, many of which develop a mycelial 
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habit. The members of the actinomycetes family produce a wide variety of secondary metabolites 

with various biological activities, including antibiotic, antivirus, antitumor and other 

pharmacologically/immunologically active substances. Among the actinomycetes, the genus of 

Streptomyces is the single most important producer of bioactive secondary metabolites, 

accounting for 31% of the total number of bioactive secondary metabolites identified in the 70-

year period from 1940 to 2010 (Fig. 1.2) (Berdy 2012). During the golden age of antibiotics, 52% 

of the bioactive secondary metabolites were isolated from Streptomyces (Berdy 2012). Due to its 

medical and industrial significance, numerous scientists from all over the world have been 

carrying out research on all aspects of Streptomyces for decades, with the ultimate goal of 

providing the world with a continuous supply of safe and effective antibiotics as a major part of 

the arsenal in the war against antimicrobial resistance and new infectious diseases. 
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Figure 1.2 Approximate numbers of bioactive secondary metabolites in periods from 1940 to 

2010 (Berdy 2012) 

 

Streptomyces are ubiquitous in nature. Their ability to colonize the soil is greatly facilitated 

by their growth as a vegetative hyphal mass that can differentiate into spores that assist in the 

spread and persistence of these bacteria. The life cycle of Streptomyces begins with the growth of 

a colony from a spore, which under suitable conditions triggers the germination of tubes 

emerging from the unigenomic spore. The tubes grow by tip extension and branch formation to 

give rise to the formation of a substrate mycelium (Fig 1.3)(Kieser et al. 2000). In response to 

nutrient limitation and other types of physiological stress, Streptomyces undergo further changes 
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including the onset of secondary metabolism, the lysis of some compartments of the substrate 

mycelium (thus releasing nutrients), and the initiation of aerial hyphal growth. The aerial hyphae 

growth further, forming a spiral synctitium that contains many tens of genomes. When the aerial 

hyphae growth stops, the aerial hyphae subdivides into a unigenomic pre-spores compartment, 

followed by the thickening of walls and the deposition of a gray spore pigment to generate 

dessicant-resistant spores. 

 

Figure. 1.3 The life cycle of Streptomyces. (adapted from lisci.kitasato-u.ac.jp) 

 

In regard to the secondary metabolism, research on Streptomyces has focused mainly on 

two approaches: the phenotypic approach and the genetics approach. The phenotypic approach 

includes the classical screening method that uses soil Streptomyces, which is still regarded by 
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many as a promising technique in the search for new or novel derivatives of bioactive secondary 

metabolites. However, the phenotypic approach requires laborious effort for screening, and it has 

resulted in the repeated re-discovery of known compounds. In addition, many researchers have 

shifted their focus to a different source of Streptomyces, i.e., marine environments. Marine 

Streptomyces live in habitats that are completely different from those of soil Streptomyces, which 

subjects them to different types of physiological stress compared to soil Streptomyces. The 

different living conditions of marine Streptomyces are speculated to contribute to the production 

of secondary metabolites with novel features. There have been a few successful discoveries of 

new bioactive secondary metabolites from the marine Streptomyces (Igarashi et al. 2010; 

Abdelmohsen et al. 2010) 

The genetics approach is rapidly gaining in popularity, especially since the dawn of the 

genomic era, which began with the publication of the first completed genome sequence of the 

model Streptomyces coelicolor A3(2) in 2002 (Bentley et al. 2002). Since then, numerous 

Streptomyces genomes have been sequenced and deposited in the databases. Streptomyces 

genomes have indicated that Streptomyces are still a promising source in the search for new 

bioactive secondary metabolites. It was revealed that Streptomyces possess the coding capacity to 

produce multiple secondary metabolites with as few as 20 biosynthetic gene clusters for 

secondary metabolites were found in the genome, the majority of which are silent under 

laboratory conditions. 

The capacity to produce multiple secondary metabolites might also reflect the selective use 

of particular secondary metabolite(s) depending on the primary metabolic flux and the 

availability of precursors, or a combination of these. It was also revealed that multiple regulatory 

genes are spread throughout the genome, confirming the complex regulatory networks for 

secondary metabolism in Streptomyces. In general, research on the genetics of Streptomyces can 
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be narrowed down to a few themes: (i) characterization of the regulatory mechanism for the 

production of secondary metabolites; (ii) the engineering of secondary metabolite pathways, 

including activation of the silent biosynthetic gene cluster and the heterologous expression of the 

biosynthetic gene cluster; and (iii) the engineering of regulatory cascades and networks 

controlling secondary metabolite production. 

 

1.3 The regulatory networks controlling secondary metabolism in Streptomyces 

The majority of the bioactive secondary metabolites produced by Streptomyces are toxic by 

nature, and their production must therefore be regulated to ensure the exact timing and quantity 

of production. The natural function of many Streptomyces secondary metabolites is thought to be 

antibiotics that thwart the growth of competing microorganisms. In the event of nutrient depletion 

or other types of physiological stress, Streptomyces undergoes a complex morphological 

differentiation, producing spores at the ends of aerial hyphae that grow out from the vegetative 

mycelial mass. The sporulation process is fueled by nutrients released from a portion of the 

mycelia. At this stage of differentiation, secondary metabolites such as antibiotics are produced 

as a defense mechanism and barrier against the scavenging activity of the competing organism. 

The timing and quantity of secondary metabolite production is strictly regulated in a 

complex manner, implicating numerous regulatory proteins forming regulatory networks. The 

regulatory networks for secondary metabolites are often organized in a hierarchical manner, in 

which high-level regulatory proteins modulate the expression of downstream low-level pathway-

specific regulatory genes that directly control the transcriptional activation and repression of 

biosynthetic genes for secondary metabolites. 

The high-level regulators are often regarded as global regulators that convert stimuli signals 

from the environment into cellular processes. Genes that encode global regulators are most 
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commonly located outside of the biosynthetic gene clusters for secondary metabolites, and they 

exert pleiotropic effects on the production of secondary metabolites and/or morphological 

differentiation. In Streptomyces, the most extensively studied high-level regulators are those 

belonging to the group of γ-butyrolactone autoregulators and their cognate receptor proteins 

(Takano 2006). Other high-level regulators belong to a group of bacterial two-component 

systems (TCSs) that respond to a variety of external stress signals (e.g., phosphate, carbon or 

nitrogen starvation). There are a large number of TCSs in Streptomyces. One of the best-studied 

is the phosphate control of Streptomyces metabolism by the PhoR-PhoP TCS (Martin 2004). 

Another important system in the control of secondary metabolite biosynthesis in Streptomyces is 

the nitrogen-source regulation mediated by the orphan response regulator GlnR (Wray et al. 1991 

& 1993). 

The low-level regulators, which are frequently regulated by global regulators, are usually 

transcriptional activators of a biosynthetic gene cluster for the secondary metabolite. Several 

families of these regulators exist, including the Streptomyces antibiotic regulatory protein 

(SARP) family (Arias et al. 1999), the StrR family (characterized by a helix-turn-helix DNA-

binding motif) (Retzlaff et al. 1995), and the large regulators of the LAL-family (Anton et al. 

2004). Genes encoding low-level regulators are usually found clustered together with 

biosynthetic genes for the transcription they regulate. 

The isolation and structure elucidation of secondary metabolites produced by 

microorganisms are often hampered due to tight regulation and low productivity. Therefore, the 

elucidation of regulatory mechanisms controlling the production of secondary metabolites is 

fundamental, as such studies could obtain the information necessary to overcome the difficulties 

of the isolation process and low productivity. In fact, studies of the regulation of secondary 

metabolite production have provided  (Viet et al. 2007; Malla et al. 2010) and will continue to 
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provide new strategies for “awakening” the production of secondary metabolites such as 

antibiotics, thereby allowing us to explore more effectively the rich stores of natural products 

encoded in the genome of Streptomyces. In Streptomyces, the regulation mechanism is often 

mediated by small signaling molecules, with its cognate receptor forming a regulatory cascade 

that converts signals from the environment into cellular processes. 

 

1.4 Signaling molecules in Streptomyces 

The signaling molecules in Streptomyces are low-molecular-weight “bacterial hormones” 

(also called autoregulators) that are essential for the regulation of secondary metabolites’ 

biosynthesis and/or morphological differentiation. Based on their chemical structure, the 

signaling molecules are classified into three types: (i) the γ-butyrolactone type, (ii) the furan type 

(Corre et al. 2008), and (iii) the recently identified butenolide type (Kitani et al. 2011). The 

signaling molecules modulate the secondary metabolites’ biosynthesis and/or morphological 

differentiation by binding with the cognate cytoplasmic receptor protein. The signaling molecules’ 

cognate receptors are usually repressors of secondary metabolism. The binding of the signaling 

molecules with the cognate receptor releases the repression activity of the receptor, and thus in 

general the signaling molecules act as activators. In Streptomyces, one particular type of widely 

distributed signaling molecule that has drawn a significant amount of attention due to its close 

association with antibiotic production is the γ-butyrolactone autoregulators. 

 

1.5 The γ-butyrolactone autoregulators and their cognate receptors 

The structures of 14 γ-butyrolactones autoregulators isolated from seven Streptomyces 

species have been determined as of this writing (Fig. 1.4) (Takano 2006). The structures are 

similar in that they have a 2,3-disubstituted butyrolactone skeleton in common. The structures 
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differ in length, branching, and the stereochemistry of their fatty acid side-chain (Takano 2002). 

The chemical structure of γ-butyrolactones is similar to that of N-acyl-homoserine lactones 

(AHLs) in proteobacteria except for the carbon side chain. However, due to the low similarity of 

these signaling molecule receptors, the γ-butyrolactone receptors do not bind to AHLs and vice 

versa. AHLs and γ-butyrolactones seem to have different functions, as AHLs show diverse 

properties whereas γ-butyrolactones mainly regulate the secondary metabolite production and 

morphological differentiation. 

 

 

Figure 1.4 Structures of γ-butyrolactone autoregulators from Streptomyces. 

 

Based on the stereochemistry of their fatty acid side chain, γ-butyrolactones can be 

classified further into the following three groups: (i) the Virginiae butanolide (VB) type, with a 6-

alpha-hydroxyl group, to which VBA–VBE of S. virginiae and Grafe’s three factors belong; (ii) 

the A-factor type, with a 6-keto group, to which only the A-factor of S. griseus belongs; and (iii) 

the IM-2 type, with a 6-beta-hydroxyl group, to which IM-2 of S. lavendulae FRI-5, SCB1 of 

S. coelicolor, and factor I belong. All of these factors regulate the production of secondary 

VB-A
(S. virginiae)
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metabolites; they are effective at nanomolar concentrations, and in some cases (such as in 

S. griseus), they regulate morphological differentiation. They are widely distributed in other 

Streptomyces species. Hashimoto et al. (1991) reported that at least 30-40 % of Streptomyces 

species would produce one of those autoregulators. 

 

 

Figure. 1.5 The molecular mechanism of an autoregulator signaling cascade. 

 

The γ-butyrolactone autoregulators bind specifically to cognate cytoplasmic receptor 

proteins and inhibit their binding to specific DNA targets (Fig. 1.5). Specific DNA targets are 

usually located in the promoter region of target genes, and therefore most of these receptor 

proteins act as transcriptional repressors by blocking the access of RNA polymerase to the 

promoter region to initiate transcription. Thus, the binding of receptor proteins to their cognate γ-

butyrolactone autoregulators induces the transcription of target genes. Target genes of the γ-

butyrolactone receptor proteins are usually pathway-specific transcriptional regulators that act at 

the lowest level of the regulatory cascade for secondary metabolism. 
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Table 1.1 Distribution of signaling molecules and their cognate receptors in Streptomyces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ND: not determined. 

 

Species  Receptor  Antibiotics  Signaling molecule  

S. virginiae barA Virginiamycins  VBs 

S. lavendulae farA 

D-cycloserine 

Blue pigment 

Showdomycin  

IM-2 

S. coelicolor scbR  

Actinorhodin 

Undecylprodigiosin 

SCB1, SCB2, 

SCB3 

S. natalensis sngR Natamycin  ND 

S. scabies NBRC12914 sscR ND ND 

S. avermitilis  

avaR3 

avaL1 

Avermectin 

ND 

Avenolide 

ND 

S. griseus arpA Streptomycin  A-factor 

S. fradiae tylP Tylosin  ND 

S. ambofaciens alpZ Alpomycin  ND 

S. clavuligerus scaR (brp) Clavam  ND 
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1.5.1 The A-factor signaling cascade 

The first γ-butyrolactone molecule and also the best characterized, the A-factor, was 

isolated and identified in 1967 from Streptomyces griseus by a group of Russian scientists. A-

factor is important in the stimulation of morphological differentiation and the production of the 

secondary metabolite streptomycin. In 1995, a Japanese research group led by Dr. Sueharu 

Horinouchi identified the A-factor receptor protein ArpA (Kudo et al. 1995) and the biosynthetic 

gene for the synthesis of A-factor (Kato et al. 2007), as well as the A-factor signaling cascade. In 

the absence of A-factor, ArpA protein binds to a specific sequence in the upstream region of a 

global regulatory gene, adpA. When A-factor is produced and reaches a critical threshold 

concentration, ArpA dissociates from the upstream region of adpA by binding with A-factor, 

thereby triggering the transcriptional activation of adpA. AdpA then activates the transcription of 

many genes required for secondary metabolism and morphological differentiation, including strR, 

which is the pathway-specific regulator for the streptomycin biosynthetic genes, and amfR, which 

is important for aerial mycelium formation. 

The A-factor signaling cascade follows the concept of a hierarchical regulatory mechanism, 

with A-factor and its cognate receptor ArpA situated at the highest level of the signaling cascade. 

The A-factor is the only γ-butyrolactone known to be involved in the developmental process of a 

Streptomyces species. 
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Figure. 1.6 The A-factor signaling cascade in Streptomyces griseus. 

 

1.5.2The Virginiae Butanolides (VB) signaling cascade 

In S. virginiae, the γ-butyrolactone virginiae butanolides (VB) and the cognate receptor 

BarA regulate the production of the virginiamycins VM and VS (Kim et al 1989, 1990; Nihira et 

al. 1988). Two genes encoding a barA homologue are present in the vicinity of the barA gene. 

One barA homologue gene, barB, is under the transcriptional control of the receptor BarA. BarB 

represses the expression of the remaining barA homologue barZ and a gene (vmsR) that belongs 

to the SARP family. VmsR acts as an activator of the biosynthesis of the virginiamycins VM and 

VS through the transcriptional activation of two pathway-specific regulatory genes, vmsS and 

vmsT (Pulsawat et al. 2009). VmsS, which belongs to the SARP family, is necessary for the 

production of both VM and VS. For the production of VM, only VmsT (which showed similarity 

to a response regulator of a bacterial two-component signal transduction system that appears to 

lack a cognate sensor kinase) is necessary. 
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Figure 1.7 The VB signaling cascade in Streptomyces virginiae. 

 

1.5.3 The SCB1 signaling cascade 

The IM-2 type γ-butyrolactone autoregulator of S. coelicolor, SCB1, acts to regulate the 

production of actinorhodin and undecylprodigiosin, the two pigmented antibiotics from 

S. coelicolor (Takano et al. 2001). Similar to other γ-butyrolactone autoregulators, SCB1 binds to 

its cognate receptor ScbR. Before SCB1 production, the ligand-free ScbR represses the 

transcription of its own gene and possibly that of scbA, an afsA homologue gene important for the 

biosynthesis of γ-butyrolactones. Under these conditions, ScbR represses the synthesis of an 

unidentified negative regulator for antibiotic production (RSM). 

ScbA is required for SCB1 production and also for the transcriptional activation of scbA by 

binding with ScbR, forming the ScbRA complex. In the transition phase, ScbA is accumulated to 
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Virginiamycin M (VM)
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a level sufficient to form a complex with ScbR. The ScbRA complex activates scbA transcription, 

which leads to a burst of SCB1 production. When SCB1 reaches the threshold concentration, it 

binds to ScbR, relieving self-repression and inactivating the ScbRA complex, which leads to a 

reduction in scbA transcription. This leads to a decline in SCB1 levels, which, coupled with the 

remaining high levels of ScbR, leads to the repression of RSM, thereby triggering the production 

of two pigmented antibiotics. 

 

1.5.4 The IM-2/FarA signaling cascade 

Among the known γ-butyrolactone autoregulator signaling systems, the IM-2 system with 

its cognate receptor FarA in S. lavendulae FRI-5 possesses unique characteristics with respect to 

the control of secondary metabolism. To date, IM-2 is the sole γ-butyrolactone autoregulator that 

serves not only as an inducer but also as a repressor of secondary metabolite production. IM-2 

triggers the production of blue pigment and the nucleoside antibiotics showdomycin and 

minimycin, but it represses the production of the antituberculosis antibiotic D-cycloserine, 

indicating that the IM-2/FarA signaling cascade employs a more sophisticated regulatory 

mechanism to control secondary metabolism. 

 

1.5.5 A brief history of the IM-2 signaling cascade 

Our research group has had a long history (over 25 years) of efforts to unravel the IM-

2/FarA signaling cascade (Fig. 1.11). It began in 1988 with the discovery of an inducing 

molecule designated as IM-2 that can induce blue pigment production in Streptomyces 

lavendulae FRI-5 at the concentration of 0.6 ng/mL (Yanagimoto et al. 1988). IM-2 production 

can be divided into three phases, pre-activation, activation, and post-activation. In the pre-

activation phase, IM-2 is not produced. In activation phase, IM-2 is started to produce at the 
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beginning of exponential phase and usually reaches a threshold concentration in the mid 

exponential phase (8h) and triggers blue pigment production roughly 2 hr later (Fig. 1.8). A 

bioassay-based IM-2 assay showed that in the post-activation phase, the IM-2 concentration 

rapidly decreased over time to a negligible level just shortly after reaching the threshold 

concentration (Yanagimoto et al. 1988). 

 

Figure. 1.8 Growth curves and indigoidine production in the wild-type strain. Growth was 

monitored by measuring the optical density at 600 nm (OD600). Green filled circles indicate 

growth curves. Green diamonds indicate production profiles of blue pigment. 

 

The structure of IM-2 was found to be (2R,3R,1’R)-2-1’-hydroxybutyl-3-hydroxymethyl-γ-

butanolide (Sato et al. 1989). IM-2 was also observed to induce the production of the nucleoside 

antibiotics showdomycin and minimycin, but it represses D-cycloserine production (Hashimoto et 

al. 1992). 
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A few years after the identification of IM-2, the IM-2 receptor protein designated as FarA 

(FRI-5 BarA homolog) was identified and purified, followed by the identification of the gene 

encoding the receptor protein and a putative biosynthetic gene for IM-2 biosynthesis, farX (Waki 

et al. 1997). FarA was found to act as a transcriptional repressor of farA itself, forming an 

autoregulatory circuit, and a gene replacement analysis revealed that FarA acts as a regulator in 

the secondary metabolism of S. lavendulae FRI-5 (Kitani et al. 1999, 2001). FarA positively 

regulates the biosynthesis of IM-2 and negatively regulates the biosynthesis of the blue pigment 

and nucleoside antibiotics (Fig. 1.9A). The intact FarA and the presence of IM-2 are necessary 

for the termination of D-cycloserine production, suggesting that the IM-2/FarA complex may 

have regulatory roles (Fig. 1.9B). 

 

 

Figure 1.9 The two modes of the IM-2 signaling cascade in Streptomyces lavendulae FRI-5. A: In 

the absence of IM-2. B: In the presence of IM-2. 
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Multiple putative regulatory genes were then found in the flanking region of farA, forming 

a regulatory island designated as a far-regulatory island (Fig. 1.10). In addition to farA and the 

putative IM-2 biosynthetic gene farX, there are five more putative regulatory genes, named farR1 

to farR5 (Kitani et al. 2008). farR1 encodes a homolog of response regulators of bacterial two-

component signal-transduction systems that appear to lack a cognate sensor kinase. farR2 is 

highly similar to the TetR family of transcriptional regulators, and it most closely resembles the 

γ-butyrolactone receptor. Two genes, farR3 and farR4, are homologous to the SARP family 

members, which usually act as pathway-specific transcriptional activators. farR5 shows similarity 

to transcriptional activators in the AraC family. 
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farC Epimerase 

Figure 1.10 Gene organization of the far-regulatory island and 

the proposed function of each gene. 

 

In 2010, we confirmed that farX, an afsA homologue, is essential as a biosynthetic gene for 

IM-2 production, and we demonstrated that IM-2 controls the transcription of farX, indicating a 

negative autoregulatory circuit for the production of γ-butyrolactone (Kitani et al. 2010). Taken 

together with the positive regulation of FarA in IM-2 biosynthesis, these findings suggested that 

S. lavendulae FRI-5 has a fine-tuning system to control γ-butyrolactone biosynthesis. Our data 

suggested that IM-2/FarA is situated at the highest level in the signaling cascade controlling the 

biosynthesis of blue pigment, showdomycin, minimycin and D-cycloserine, probably by 

regulating the transcriptions of low-level pathway-specific regulatory genes in the far-regulatory 

island. 
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Figure 1.11 Timeline of the research to clarify the IM-2 signaling cascade in S. lavendulae FRI-5. 

 

1.6 The aim of the present study 

As described in previous sections, the γ-butyrolactone signaling cascade in S. lavendulae 

FRI-5 is unique, complex, and largely still poorly understood. The functions of the receptor 

protein FarA and IM-2 have been extensively studied but provide no direct link with regard to the 

production of the secondary metabolites of S. lavendulae FRI-5, suggesting that several layers of 

regulation are present in the IM-2/FarA system. The IM-2/FarA system is situated at the highest 

level in the signaling cascade, and thus IM-2/FarA should elicit its function through the 

transcriptional regulation of low-level pathway-specific regulators. 

farR1 farR2 farR3 farR4 farX farA farR5

far-regulatory island

IM-2



24 

 

Our previous studies have shown two different roles of FarA in the transcriptional 

regulation of target genes. First, following the general molecular mechanism of autoregulator 

signaling cascades, the transcription of target genes is repressed through the binding of FarA to 

FAREs (FarA responsive element). The binding of IM-2 to FarA results in the dissociation of 

FarA from FAREs and allows the transcriptional activation of target genes. Secondly, the 

IM2/FarA complex itself has a DNA binding activity for controlling the expression of the target 

genes. 

Regulatory genes are usually located in the vicinity or in the middle of biosynthetic genes 

for secondary metabolites, and occasionally they form a regulatory island. This is the case with 

S. lavendulae FRI-5, in which we found five putative regulatory genes (farR1–farR5) in the 

flanking region of farA–farX, forming the far-regulatory island. The four genes farR1–R4 come 

from three different protein families which have been closely associated with the butyrolactone 

signaling cascade in other Streptomyces species. An in vitro binding assay and S1 nuclease 

mapping revealed that at least three regulatory genes, farR1, farR2, and farR4, are under the 

transcriptional control of FarA, suggesting that they may play important roles in the IM-2 

signaling cascade. 

Thus, a further understanding of what roles the regulatory genes in the far-regulatory island 

might play will provide greater insights into how the IM-2/FarA signaling cascade is activated 

and terminated to control secondary metabolism in S. lavendulae FRI-5.The objective of my 

study was thus to characterize the regulatory genes in the far-regulatory island that are probably 

involved in the IM-2 signaling cascade. An overview of the study is as follows. 

Chapter 2 describes the characterization of two genes, farR3 and farR4, tandemly located in 

the flanking region of farA. To investigate the functions of farR3 and farR4, I constructed three 

deletion mutants (i.e., the double disruptant farR3R4, the farR3 disruptant, and the farR4 
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disruptant) and assessed them for the production of blue pigment and IM-2. The results 

confirmed that FarR3 is a typical pathway-specific regulator that activates blue pigment 

production, and this regulator was later identified as indigoidine. FarR4 was found to be essential 

as a negative regulator of IM-2 biosynthesis, and this is therefore the first report that a SARP 

family regulator modulates the biosynthesis of a γ-butyrolactone molecule. 

Chapter 3 describes the characterization of farR2, a γ-butyrolactone receptor homolog gene. 

I performed in-frame gene deletion and complementation analyses to clarify its in vivo function. 

The results confirmed that FarR2 makes two different contributions to the signaling cascade: as 

an activator of the production of the blue pigment indigoidine and as a repressor important to the 

termination of IM-2 and indigoidine production. 

Lastly, in Chapter 4 I present a new working model of the IM-2/FarA signaling cascade that 

functions to control IM-2 and indigoidine production, as a general summary and conclusions. 
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Chapter 2 

Differential contributions of two SARP family-regulatory genes to blue-

pigment indigoidine biosynthesis in Streptomyces lavendulae FRI-5 

 

2.1 Introduction 

Members of the Gram-positive, soil-dwelling filamentous bacterial genus Streptomyces have 

been extensively studied due to their complex life cycle of morphological differentiation and their 

ability to synthesize antibiotics of structural and biological diversity possessing medical and 

industrial significance. The regulation of secondary metabolism in Streptomyces is a complex 

process controlled in a hierarchical manner at different levels: higher-level regulators, regarded as 

global regulators that transmit signals from the environment, activate lower-level pathway-

specific regulators which directly control the expression of gene clusters responsible for the 

biosynthesis of individual secondary metabolite(s) (Bibb 2005; Liras et al. 2008). Higher-level 

regulatory genes are most commonly localized outside of biosynthetic gene clusters, and exert 

pleiotropic effects on both secondary metabolism and morphological development, or influence 

the production of multiple secondary metabolites but do not affect morphological development. 

On the other hand, lower-level pathway-specific regulators act as a master switch for the 

biosynthesis of a single secondary metabolite, and these genes are usually found within the 

respective biosynthetic gene cluster. Among the pathway-specific regulators, the Streptomyces 

antibiotic regulatory protein (SARP) family regulators are well-studied (Wietzorrek and Bibb 

1997) and frequently used for deciphering the regulatory mechanisms of secondary metabolite 

production (Pulsawat et al. 2009; Tanaka et al. 2007). The SARP-family regulators are DNA-

binding proteins which share sequence similarities with members of the OmpR family DNA-
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binding proteins. In Streptomyces coelicolor A3(2), the SARP-family regulators control the 

production of both actinorhodin (ActII-ORF4) and undecylprodigiosin (RedD) (Arias et al. 1999; 

Takano et al. 1992). Because the number of SARP-family proteins registered to various databases 

is continuously increasing, knowledge of the regulation mechanisms by the SARP-family 

regulators is of great interest, and could potentially allow an increase in the yields of secondary 

metabolites in the producer strains. 

Streptomyces lavendulae FRI-5 produces blue pigment, nucleoside antibiotics, and the 

antituberculosis antibiotic D-cycloserine as secondary metabolites. The production of these 

secondary metabolites is controlled by IM-2, one of the small diffusible signaling molecules 

called “γ-butyrolactones” (sometimes, “γ-butyrolactone autoregulators”) (Hashimoto et al. 1992). 

Most of the γ-butyrolactones play a positive role in the regulation of secondary metabolite 

production, such as the production of streptomycin in Streptomyces griseus (Horinouchi 2007), 

the production of actinorhodin and undecylprodigiosin in Streptomyces coelicolor A3(2) (Takano 

et al. 2000), and the production of virginiamycin in Streptomyces virginiae (Yamada et al. 1987). 

In contrast to the solely positive effects exerted by other autoregulators, IM-2 has opposing 

effects on the regulation of secondary metabolism; namely, it not only switches on the production 

of blue pigment and nucleoside antibiotics, but also switches off the production of D-cycloserine 

(Hashimoto et al. 1992). IM-2 production is initiated before the mid-exponential phase, and the 

IM-2 concentration reaches a threshold at the mid-exponential phase, resulting in the onset of the 

secondary metabolism 1.5-2 h later (late-exponential phase) (Yanagimoto et al. 1988). After entry 

into the stationary phase, IM-2 production declined gradually in a growth-dependent manner. The 

IM-2-specific receptor (FarA), which exhibits DNA-binding activity toward FAREs (FarA-

responsive elements), plays a critical role in the biosynthetic regulation of the metabolites, 

including IM-2 itself (Kitani et al. 1999, 2008). FarA negatively controls the biosynthesis of blue 
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pigment and nucleoside antibiotics, and the IM-2-FarA complex is postulated to be the essential 

component in the termination of D-cycloserine production (Kitani et al. 2001). By contrast, FarA 

also has another function as a positive regulator of the biosynthesis of IM-2 (Kitani et al. 2001). 

Thus, FarA could be regarded as a higher-level regulator in the IM-2 signalling cascade.  

In Streptomyces species, multiple regulatory genes, directly or indirectly controlling the 

biosynthesis of a particular secondary metabolite(s), are frequently localized in the vicinity or in 

the middle of the biosynthetic gene cluster, and they occasionally form a regulatory island (Aigle 

et al. 2005; Pulsawat et al. 2007). We previously found that the farA-flanking region has seven 

regulatory genes, including farX, an IM-2 biosynthetic gene, and comprises a far regulatory 

island (Kitani et al. 2008, 2010). Two putative regulatory genes (farR3 and farR4) encoding the 

SARP-family protein are present in the far regulatory island together with two more putative 

transcriptional regulatory genes (farR1 and farR2) (Fig. 2.2a), all of which are considered to be 

the direct transcriptional targets of FarA. The transcription of farX starts at the early exponential 

phase, and increases gradually to initiate IM-2 biosynthesis. When IM-2 concentration reaches a 

critical level at the mid-exponential phase, IM-2 binds to FarA sitting on FAREs (FARE2 and 

FARE3, in the promoter of farR1 and farR2) and the IM-2-FarA complex dissociates from the 

FAREs, resulting in upregulation of transcriptions of farR1 and farR2 and the production of 

secondary metabolites including blue pigment at the late exponential phase. We previously found 

that FARE4 in the upstream region of farR4 is the FarA-binding site, and a FARE-like sequence 

is present in the upstream region of farR3 (Kitani et al. 2008). Phenotypic analysis of the IM-2-

deficient strain showed that the transcriptional upregulation of farR3 and farR4 at the late 

exponential phase is eliminated by gene deletion of farX, and thus the farR3 and farR4 genes are 

members of the IM-2 stimulon, although the direct transcriptional control of the two SARP-

family proteins by FarA remains unclear (Kitani et al. 2010). These findings led me to investigate 
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the roles played by farR3 and farR4 in the regulation of secondary metabolite production in S. 

lavendulae FRI-5. In this study, I characterized the functions of farR3 and farR4 in the IM-

2/FarA signalling cascade for secondary metabolism, and demonstrated that FarR3 positively 

controls the production of blue pigment indigoidine and FarR4 is negatively involved in the 

biosynthesis of IM-2, implying that the lower-level SARP-family regulators contributes 

differentially to the pyramidal cascade governing secondary metabolism. 

 

2.2 Materials and Methods 

2.2.1 Bacterial strains, plasmids, and growth conditions 

Streptomyces lavendulae FRI-5 (MAFF10-06015; National Food Research Institute, 

Tsukuba, Japan) was grown on ISP medium 2 (Becton, Dickinson and Company, Franklin Lakes, 

NJ) for spore formation. Escherichia coli DH5α was used for routine cloning procedures 

(Sambrook and Russel 2001) and the DNA methylation-deficient E. coli strain ET12567 

containing pUZ8002 (Paget et al. 1999) was used for E. coli/Streptomyces conjugation. The 

plasmids used were pBluescript II SK for general cloning, pKC1132 (Bierman et al. 1992) for 

gene disruption, and pSET152 (Bierman et al. 1992) for gene complementation. The phenotype 

of the S. lavendulae FRI-5 strains was analysed after growth in liquid medium B, contained yeast 

extract 7.5 g, glycerol 7.5 g and NaCl 1.25 g per liter (Hashimoto et al. 1992). The media 

conditions and general E. coli and Streptomyces manipulations were as described previously 

(Kieser et al. 2000).  

 

2.2.2 RNA isolation and gene expression analysis 

Total RNA was prepared from mycelium grown in 70 ml of liquid medium B as described 

above by using an RNeasy Mini kit (Qiagen), and treated with DNase I (Takara Bio). IM-2 was 
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added to a final concentration of 100 nM at 5 h of cultivation, and cultivation was continued. The 

cDNA was synthesized using a GoScript
TM

 Reverse Transcription System (Promega KK) and 

Random Primers (Invitrogen) according to the manufacturer`s instructions. The cDNAs were 

amplified from the transcripts of the far regulatory genes using the previously described primers 

(Kitani et al. 2010). The primers used for the detection of the hrdB transcript were hrdB-Fw and 

hrdB-Rev, as listed in Table 2.1. The PCR amplification was performed by using GoTaq Green 

Master Mix (Promega KK) under the following conditions: 98ºC for 2 min, followed by discrete 

cycles of 98ºC for 30 s, 60ºC for 30 s, and 72ºC for 1 min. The absence of DNA contamination 

was confirmed by RT-PCR without reverse transcriptase. 

Table 2.1 Oligonuclotides used in this study 

Primer Sequence (5’-3’)* 

For genetic complementation of the farR3/farR4 double disruptant 

farR3-Fw GCTCTAGACAGCGCTCGATCCTGATGAGCA 

farR3-Rev GCTCTAGAGGTCAGGTCGGTGAGTTCCAGC 

farR4-Fw GCTCTAGACGTCTGCCTACCGAAAGTGCAG 

farR4-Rev GCTCTAGAGAGAAGCGCCAGGATCTGACGC 

For RT-PCR analysis 
 

hrdB-Fw TTCGAGGCTGACCAGATTCCT 

hrdB-Rev TCGCCCTCGTCCAGGTCCTTCTT 

   Restriction sites are underlined 

2.2.3 Construction of the farR3/farR4 double disruptant 

The primers used for the construction of S. lavendulae FRI-5 mutant strains are listed in 

Table 2.1. The pMW102 (Kitani et al. 2008), including a 5.9-kb EcoRI fragment of the farR4 

downstream region, was cleaved by KpnI and treated with T4 DNA polymerase to yield blunt 
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ends, and then a 3.0-kb (blunt-ended) NcoI fragment of the farR4 upstream region obtained from 

the pMW101 (Kitani et al. 2001) was inserted into the EcoRV site of pBluescript II SK, resulting 

in pLT124. A 6.6-kb HindIII-NdeI fragment composed of regions upstream of farR4 and 

downstream of farR3, recovered from pLT124, was blunt-ended and inserted into the EcoRV site 

of pKC1132 to generate pLT125 for farR3/farR4 double disruption. E. coli ET12567 (pUZ8002) 

harbouring pLT125 was conjugated with S. lavendulae FRI-5 according to Kitani et al. (2000), 

and the wild-type gene was replaced with the disrupted allele [ΔfarR3ΔfarR4 (ΔΔ)] by 

homologous recombination. The genotype of candidates for disruption of the two genes was 

confirmed by PCR analysis with the primer pair farR3-Rev/farR4-Fw under the following 

conditions 98ºC for 2 min, followed by 30 cycles of 98ºC for 30 s, 55ºC for 3 mins, and 72ºC for 

1 min. 

 

Figure 2.1 Schematic representation of the strategy for disruption of farR3 and farR4. The red 

arrows represent the intact farR3 and farR4 gene. The red and blue bar represent KpnI and NcoI 

fragments. 
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2.2.4 Genetic complementation of the farR3/farR4 double disruptant 

For complementation with both farR3 and farR4 genes, a 2.6-kb fragment containing the 

entire farR3 and farR4 genes with the 408-bp upstream region of farR4 was PCR-amplified by 

the primer pair farR4-Fw/farR3-Rev, and then inserted into the EcoRV site of pBluescript II SK. 

The resulting plasmid was digested with XbaI, and then was cloned into the XbaI site of 

pSET152, resulting in pLT126. For complementation with either the farR3 gene or farR4 gene, 

the DNA fragments including the farR3 gene or farR4 gene with the 410-bp upstream regions of 

farR3 and 408-bp upstream region of farR4 were amplified by the primer pairs farR3-Fw/farR3-

Rev or farR4-Fw/farR4-Rev, respectively, and then inserted into the EcoRV site of pBluescript II 

SK. The resulting plasmids were digested with XbaI, and were then cloned into the XbaI site of 

pSET152, a non-replicative vector, resulting in pLT127 or pLT128, respectively. The constructed 

plasmids were introduced into the farR3/farR4 double disruptant by intergeneric conjugation and 

integration, mediated by intergeneric transfer of plasmids from E. coli to Streptomyces which 

integrate into the chromosome site-specifically at the фC31 attachment sites (Bierman et al. 

1992). Integration of the plasmid was confirmed by apramycin resistance and PCR analysis using 

primers listed in Table 2.1 under the following conditions: 98ºC for 2 min, followed by discrete 

cycles of 98ºC for 30 s, 60ºC for 30 s, and 72ºC for 1 min.  
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Figure 2.2 Schematic representation of the strategy for the simultaneous disruptions of the farR3 

and farR4 genes 

 

2.2.5 Analysis of blue pigment and other secondary metabolites 

Pre-culture (2.5 ml) was inoculated into 70 ml of liquid medium B for analysis of blue 

pigment. Culture supernatants were collected periodically and filtrated through 0.2-μm-pore size 

filters, and the absorbance at 590 nm was measured for the production of blue pigment. The 

production of D-cycloserine and nucleoside antibiotics was measured as described by Kitani et al. 

(2001). 

 

2.2.6 Isolation of the blue pigment 

The culture supernatant (70 ml) after 8 h of cultivation with the exogenous addition of 

synthetic IM-2-C5 (Hashimoto et al. 1992) at 5 h of cultivation was collected, and centrifuged 

(30,000 x g, 30 min) at 4
o
C to recover the precipitated blue pigment. The pigment was washed 

twice with water and methanol and dried in vacuo. After dissolving in DMSO, the solution was 

filtered, and 5 volumes of water were added. By centrifugation at 30,000 x g for 30 min, the 

precipitated blue pigment was collected, washed three times with water and twice with methanol, 
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(ΔR3R4 )
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dried in vacuo, and dissolved in DMSO. The molecular mass of the blue pigment was analysed 

with a JEOL JMS-700 spectrometer by electron impact-mass spectrometry (EI-MS). 

 

2.2.7 Analysis of IM-2 production 

The culture supernatant (60 ml), which was prepared from the same preculture for the 

analysis of blue pigment was collected at the indicated times and adjusted to pH 3.0 with HCl. 

The supernatant was extracted three times with an equal volume of ethyl acetate. The ethyl-

acetate extract was evaporated and dissolved in 3.5 ml of methanol as the sample for IM-2 assay. 

IM-2 activity was assayed by measuring the IM-2-dependent production of blue pigment 

(Yanagimoto and Enatsu 1983). One unit of IM-2 activity was defined as the minimum amount 

required for the induction of blue pigment production (Sato et al. 1989) and corresponded to 0.6 

ng IM-2-C5 ml
-1

 (2.97 nM). 

 

2. 3 Results 

2.3.1 Features of two putative regulatory genes, farR3 and farR4 

The putative regulatory genes farR3 and farR4 are in the centre of the 12.1-kb far regulatory 

island composed of seven regulatory genes (Kitani et al. 2008). FarR3 and FarR4 are 

significantly similar to the members of SARP-family regulatory proteins, which are characterized 

by an OmpR-type winged helix-turn-helix (HTH) DNA-binding domain at the N terminus 

containing two helical segments (α2 and α3) (Wietzorrek and Bibb 1997) and a bacterial 

transcriptional activator (BTAD) domain at the C terminus (Alderwick et al. 2006). SARP-family 

regulatory proteins generally act as activators for the production of secondary metabolites by 

directly activating transcription of the biosynthetic genes (Arias et al. 1999; Sheldon et al. 2002; 

Tanaka et al. 2007), and in most cases transcription of the regulatory gene is positively correlated 
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with that of the biosynthetic genes.  

Previously, we found that farR3 and farR4 are transcribed in a growth-phase-dependent 

manner, and demonstrated an IM-2-dependent upregulation of transcription of both genes 

through the analysis of a farX disruptant lacking the intrinsic ability to synthesize IM-2 (Kitani et 

al. 2010). Under normal growth conditions of the wild-type strain with no IM-2 addition (Fig. 

2.3b left, -IM-2), transcripts of both farR3 and farR4 were readily detected both at 6.5 h of 

cultivation (before IM-2 production at the early exponential phase) and at 8 h of cultivation, at 

which time points the blue pigment production had not yet been initiated, because the 

endogenous IM-2 concentration was insufficient for triggering secondary metabolism. The 

external addition of IM-2 at 5 h of cultivation (early-exponential growth phase) has been shown 

to induce blue pigment production from 7 h of cultivation (Kitani et al. 2001, 2010). With the 

external IM-2, the farR3 transcription was clearly observed at 6.5 h but was significantly reduced 

at 8 h, whereas the farR4 transcript became undetectable even at 6.5 h by the IM-2 addition (Fig. 

2.3b right, +IM-2). To determine whether farR3 and farR4 are transcriptionally regulated by the 

IM-2 receptor FarA, we investigated the transcriptional profile in the farA disruptant (Fig. 2.3c). 

farR3 was found to be transcribed at 5 h of cultivation in the farA disruptant, while the transcript 

was not detected in the wild-type strain. The transcriptional level of farR3 decreased after 6.5 h 

and 8 h of cultivation regardless of whether IM-2 was added. On the other hand, farR4 showed 

negligible transcription throughout the cultivation period in the farA disruptant. From these 

apparent influences of either IM-2 or the IM-2 receptor (FarA) on the transcription of farR3 and 

farR4, we conclude that both farR3 and farR4 genes are under the transcriptional control of the 

IM-2/FarA regulatory system, which strongly suggests that these two genes might be involved in 

the regulation of secondary metabolism. 
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Figure 2.3 Transcriptional regulation on farR3 and farR4 by IM-2 and farA. (a) Organization of 

the far gene cluster in S. lavendulae FRI-5. The genes are indicated by arrows. The farE gene 

encodes a putative enzyme. The farX gene encodes an enzyme involved in IM-2 biosynthesis, 

and the farA gene encodes an IM-2-specific receptor. The bent arrows indicate transcriptional 

units of the farR3 and farR4 genes. (b and c) Transcriptional profiles of the farR3 and farR4 

genes by semi-quantitative RT-PCR in the wild-type strain (b) and in the farA disruptant (c). 

Total RNAs were extracted from mycelia harvested at the indicated cultivation times without (-) 

or with (+) the exogenous addition of IM-2 at 5 h of cultivation. Indigoidine production was 

observed after incubation for 7 h with exogenous IM-2 addition. For PCR, 28 cycles of 

amplification were used for the transcripts of farR3, farR4, or the farR4-farR3 operon, and 27 

cycles for the hrdB transcript. The hrdB-like gene [hrdB encodes the major sigma factor in 

Streptomyces coelicolor A3(2)] was used as a control, because this gene is expressed fairly 

constantly throughout growth. 
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Because farR4 and farR3 run in the same transcriptional orientation with no plausible 

transcriptional terminator in the 3’ region of farR4 and the temporal expression profile of both 

genes are similar, as described above, the two genes may be organized in a bicistronic operon. 

RT-PCR analysis using RNA from the 6.5 h and 8 h mycelia with no addition of IM-2 revealed 

the expected transcripts containing the intergenic region of farR4-farR3 (Fig. 2.3b). By contrast, 

the farR4-farR3 transcript was not found in the RNA sample with the IM-2 addition, similar to 

the case of the farR4 transcript. These findings led me to conclude that farR4 is organized in a 

farR4-farR3 bicistronic operon but farR3 has an additional monocistronic mode of transcription 

by using its own promoter (Fig. 2.3a).  

 

2.3.2. FarR3 positively regulates production of the blue pigment 

To address the biological role of farR3 and farR4, we first constructed a farR3/farR4 double 

disruptant (Fig. 2.2) and compared its phenotypes to those of the wild-type S. lavendulae FRI-5. 

Growth in liquid culture and morphology on solid medium (formation of aerial mycelium and 

spores) of the double disruptant closely resembled those of the wild-type parent, indicating that 

FarR3 and FarR4 are not involved in primary metabolism or morphological development.  

 

Figure 2.4 Bioassay for detection of D-cycloserine and nucleoside activity with Bacillus subtilis 

Wild-type ∆farR3∆ farR4(∆ ∆)

a)

b)
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as indicator strain. a) D-cycloserine and b) nucleoside antibiotics production in the wild-type and 

and farR3/farR4 double disruptant. 

  

Via activation of secondary metabolism by the addition of external IM-2, the wild-type 

strain began to produce blue pigment at 7 h of cultivation and showed the maximum production 

at 8 h (Fig. 2.5a, red-filled squares). In clear contrast, in the farR3/farR4 double disruptant, the 

production of blue pigment was not detected at 7 h, but started at 8 h and reached a maximum at 

9 h (37% of the wild-type maximum at 8 h) (Fig. 2.5a, green-filled squares). Complementation 

with an intact copy of the farR3 and farR4 genes containing the farR4-upstream region restored 

the phenotypes in the double disruptant to a level similar to that of the wild-type strain (Fig. 2.5a, 

blue-filled triangles). With respect to the production of D-cycloserine and nucleoside antibiotics, 

there was no difference between the wild-type strain and the farR3/farR4 double disruptant (Fig. 

2.4). These results indicated that the phenotypic change in the double disruptant was due to the 

loss of the farR3/farR4 locus, implying that either farR3 or farR4, or both, play a positive role in 

the regulation of IM-2-dependent blue-pigment biosynthesis. The blue pigment extracted as 

described in the Materials and Methods had a maximum UV absorption at 607 nm, which was 

consistent with that of indigoidine (Fig. 2.6a) (Kuhn et al. 1965; Starr et al. 1966). Furthermore, 

the EI-MS spectrometry showed a molecular ion peak at m/z 248 [M]
+
 (Fig. 2.6b), corresponding 

to the molecular formula of indigoidine (C10H8N4O4), further confirming that the blue pigment 

produced in S. lavendulae FRI-5 is indigoidine.  
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Figure 2.5 Inactivation of the farR3 and farR4 genes and genetic complementation of the double 

disruptant. WT, wild-type strain (red-filled squares); ΔfarR3 ΔfarR4 (ΔΔ)/-, farR3/farR4 double 

disruptant (green-filled squares); ΔΔ/farR4, farR4-complemented ΔΔ strain (blue-filled 

diamonds); ΔΔ/farR3, farR3-complemented ΔΔ strain (purple-filled diamonds); ΔΔ/farR3 farR4, 

ΔΔ strain complemented with both farR3 and farR4 genes (blue-filled triangles). (a and b) 

Production profiles of indigoidine in the farR3/farR4 double disruptant (a) and the double 

disruptant complemented with either the farR4 or farR3 gene (b) with the addition of exogenous 

IM-2 at 5 h of cultivation. Arrows indicate the timing of the IM-2 addition, and error bars 

represent standard deviations from triplicate experiments. 

 

To determine which gene is responsible for the delayed and decreased production of 

indigoidine in the farR3/farR4 double disruptant, we reintroduced plasmids that contained farR3 
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or farR4, respectively, with each upstream region into the double disruptant (Fig. 2.5b). 

Indigoidine production was found to be restored in a double disruptant complemented with farR3 

(ΔΔ/farR3) (Fig. 2.5b, purple-filled triangles), the genotype of which is equivalent to that of a 

conventional farR4-deletion mutant (Fig. 2.2). On the other hand, a double disruptant 

complemented with farR4 (ΔΔ/farR4, a farR3-deletion mutant) still failed to produce indigoidine 

at 7 h and showed an indigoidine production profile similar to that of the farR3/farR4 double 

disruptant as a parental strain (Fig. 2.5b, blue-filled diamonds). These results established that the 

phenotypic changes observed in the farR3/farR4 double disruptant with respect to the indigoidine 

production came from the lack of farR3, not of farR4, and thus FarR3 can be concluded to 

function positively on the blue pigment (indigoidine) production temporally and quantitatively.  

a) 
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b)  

 

Figure 2.6 a) UV-Vis spectrum analysis of the blue pigment and b) EI-MS analysis of the blue 

pigment. The maximum UV absorption at 607 nm (black arrow) and peak m/z=248 were detected 

and was consistent with the maximum UV absorption and molecular weight of indigoidine 

(C10H8N4O4). 

 

2.3.3 Indigoidine production in the farR4-deficient strain 

As shown in Fig. 2.3b, farR4 was transcribed before IM-2 production. In addition, when IM-

2 was added, the ΔΔ/farR3 (equivalent to ΔfarR4) strain produced indigoidine at a level similar 

to the wild-type strain. These observations suggested that farR4 might exert its function primarily 

before the perception of IM-2. To further explore this possibility, indigoidine production in the 

ΔΔ/farR3 strain was investigated with no external IM-2. In the wild-type strain, indigoidine 

production started only at 10 h in response to the biosynthesis of endogenous IM-2, and declined 

in a growth-dependent manner (Fig. 2.7). However, the ΔΔ/farR3 strain showed indigoidine 

production at 8 h and reached a level of production similar to that of the wild-type strain at 9 h, 

indicating that the lack of farR4 caused 2-h earlier onset. The production of D-cycloserine and 
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nucleoside antibiotics both in the ΔΔ/farR3 strain and in the farR3/farR4 disruptant was identical 

to those of the wild-type strain. These results indicated that, unlike FarR3, FarR4 has a negative 

effect on the production onset of indigoidine.  

 

Figure 2.7 Production profiles of indigoidine in the farR3-complemented ΔΔ strain without the 

addition of exogenous IM-2. Red-filled squares, green-filled circles, and purple-filled triangles 

indicate the time courses of indigoidine production in the wild-type strain, ΔΔ strain, and farR3-

complemented ΔΔ strain, respectively. 

 

2.3.4 Transcriptional analysis of far regulatory genes in the farR4-deficient strain 

The effect of each regulatory gene on the expression of other regulatory genes in the far 

region was monitored by semiquantitative RT-PCR analysis in the farR3/farR4 double disruptant, 

in the ΔΔ/farR3 strain, and in the ΔΔ/farR4 strain, respectively (Fig. 2.8). Total RNA was 

isolated at 6.5 h of cultivation, at which time point the IM-2 concentration had not yet reached a 

threshold for triggering secondary metabolism. At the cultivation time, transcripts of farR1, farR3, 

farR4, and farA were detected in the wild-type strain, whereas the transcription levels of both 

farR1 and farR2 were significantly enhanced by gene deletion of farR3 and farR4. The double 
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disruptant also showed increased transcription of farA compared to that of the wild-type strain. 

Interestingly, in addition to the transcripts of these three regulatory genes, the farX transcript was 

apparent in the double disruptant but was not present in the wild-type strain. The gene expression 

profile of the ΔΔ/farR3 strain was identical to that in the double disruptant. In contrast, the 

transcription levels of these four genes in the ΔΔ/farR4 strain were almost the same as those in 

the wild-type strain, although the farR4 gene introduced by in trans complementation was 

expressed at a slightly higher level than that in the wild-type strain. These results indicated that 

transcriptional upregulation in the farR3/farR4 double disruptant was due to the lack of farR4, 

suggesting that FarR4 negatively controls the expression of three regulatory genes (farA, farR1, 

and farR2) and an IM-2 biosynthetic gene (farX) which are pivotal factors at the top of the IM-2 

signalling cascade.  

 

Figure 2.8 Gene expression analysis of far genes by semi-quantitative RT-PCR in the wild-type 

strain (WT), ΔΔ strain (ΔΔ), farR4-complemented ΔΔ strain (ΔΔ/farR4), and farR3-

complemented ΔΔ strain (ΔΔ/farR3). Total RNAs were isolated from mycelia harvested at 6.5 h 

of cultivation with no IM-2 addition. In the PCR, 26 cycles of amplification were used for the 

farX transcript, 28 cycles for the transcripts of the other genes and 27 cycles for the hrdB 

transcript.  
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2.3.5 Negative regulation of IM-2 biosynthesis by FarR4  

Because indigoidine production in the ΔΔ/farR3 (equivalent to ΔfarR4) strain started at an 

earlier cultivation time than that in the wild-type strain and lack of farR4 induced the expression 

of farX, the IM-2 biosynthesis was investigated (Fig 2.9).  

 

WT         ΔΔ       ΔΔ/farR3  ΔΔ/farR3 farR4 

Figure 2.9 IM-2 production of the S. lavendulae FRI-5 wild-type strain and a farR3/farR4 double 

disruptant. 

 

After 7 h of cultivation, no IM-2 activity (detection limit 0.6 nM) was detected in the culture 

broth of the wild-type strain (WT) or in the farR3/farR4-complemented farR3/farR4 double 

disruptant (ΔΔ/farR3 farR4). However, the ΔΔ/farR3 strain and the double disruptant (ΔΔ) 

produced IM-2 at 3.6 nM and 4.5 nM in the culture broth, respectively. After 8 h of cultivation, 

IM-2 activity was also detected in the samples of all four strains tested. These results indicated 

that the lack of farR4 elicited ectopic expression of FarX and earlier production of IM-2, which in 

turn resulted in earlier production of indigoidine. Thus, FarR4 should be concluded to act as a 

negative regulator of IM-2 production through the transcriptional control of the IM-2 biosynthetic 

gene, farX.  
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2.4 Discussion  

The isolation and functional analysis of regulatory genes operating in the IM-2-FarA 

stimulon from S. lavendulae FRI-5 have helped unravel the γ-butyrolactone autoregulator 

signalling cascades in streptomycetes. We previously showed that farR3 and farR4, encoding 

homologues of the SARP-family of antibiotic regulators, are present in the far regulatory island 

together with five other regulatory genes, and suggested that they are probable members of the 

IM-2 stimulon involved in the regulation of secondary metabolism (Kitani et al. 2008, 2010). In 

this study, I demonstrated that the expression of both FarR3 and FarR4 is under the control of the 

IM-2/FarA system, and verified that they have distinct contributions to the regulation of 

secondary metabolism: FarR3 is a positive regulator of indigoidine biosynthesis, and FarR4 plays 

a negative regulatory role in the IM-2 biosynthesis. However, it remains unclear whether FarR3 

or FarR4 act as a direct transcriptional activator or repressor on the biosynthetic genes for 

indigoidine or IM-2, respectively.  

The SARP-family regulators are known to be pathway-specific regulators that usually act as 

a master switch to initiate biosynthesis of individual secondary metabolites, and are regarded as 

the lowest-level regulators in the regulatory cascade. During the activation of secondary 

metabolism by IM-2, FarR3 positively controls not only the amount of indigoidine but also the 

onset of the indigoidine production (Fig. 2.5). Because lack of farR3 did not show any effect on 

the expression of farA and other regulatory genes (Fig. 2.10), FarR3 can be concluded to be a 

typical pathway-specific regulator for indigoidine production at the lowest-level of the IM-

2/FarA regulatory cascade.  
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Figure 2.10 Gene expression analysis of far genes in the wild-type strain (WT) and the farR4-

complemented ΔΔ strain (ΔΔ/farR4) with hrdB as positive control. Total RNAs were extracted 

from mycelia harvested at the indicated cultivation times with the exogenous addition of IM-2 at 

5 h of cultivation 

 

Unlike the function of FarR3, the function of FarR4 is to suppress biosynthesis of IM-2 by 

controlling transcription of the principal IM-2 biosynthetic gene, farX. To date, the molecular 

mechanisms underlying the control of γ-butyrolactone biosynthesis remain poorly understood, 

although pseudo γ-butyrolactone receptors have recently been reported to be involved in the 

control of γ-butyrolactone biosynthesis (Wang et al. 2011). This is the first report to note that a 

SARP-family regulator modulates biosynthesis of a signalling molecule such as γ-butyrolactone, 

which is situated at the highest level in the regulatory cascade of Streptomyces secondary 

metabolism, indicating an autoregulatory circuit for γ-butyrolactone biosynthesis.  

The genes encoding SARP-family regulators are frequently located inside or adjacent to 

their own biosynthetic gene clusters, and their products mediate the positive transcriptional effect 
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on the biosynthetic genes by binding to the promoter region of the target genes. We have already 

found that a putative indigoidine biosynthetic gene [significant identity (98%) and similarity 

(99%) with BpsA from Streptomyces lavendulae ATCC11924, which is involved in the 

biosynthesis of indigoidine (Takahashi et al. 2007)] is present in the left-hand region 

approximately 24 kb away from the farR3/farR4 locus (our unpublished data). During analysis of 

a farX promoter region, I identified the transcriptional start point of farX as G, situated at 116 nt 

upstream from the translational start codon of FarX (data not shown). However, the plausible 

binding site of the SARP-family regulators, which are direct heptameric sequences (TCGAGXX) 

spaced by 4 or 15 nt (Tanaka et al. 2007), is not found either in the upstream regions of the 

putative indigoidine biosynthetic gene nor in the promoter region of farX, suggesting that FarR3 

and FarR4 may operate via another regulator to regulate the biosynthesis of indigoidine and IM-2, 

respectively. However, I cannot rule out the possibility that FarR3/FarR4 might recognize a 

region distinct from the canonical binding sites of the SARP-family regulator, because there are 

some exceptions from this characteristic (Yu et al. 2012).  

IM-2 production is prominently observed in the late exponential phase and declined 

gradually in a growth-dependent manner (Yanagimoto et al. 1988). Before IM-2 production, the 

farR3 and farR4 genes were transcribed as a bicistronic operon. The exogenous addition of IM-2 

abolished the farR4-farR3 transcript, suggesting that the promoter activity of farR4 was 

downregulated by IM-2 when the IM-2 concentration reached a threshold level to trigger the 

production of secondary metabolites at the stationary phase. On the other hand, farR3 was still 

transcribed even when the bicistronic operon disappeared in the presence of IM-2. Taken together 

with the precocious expression of farR3 in the farA disruptant (Fig. 2.3c), these results suggest 

that the transcriptions of farR3 and farR4 are operated by several layers of regulation of the IM-

2/FarA system (see below), and farR3 expression is temporally governed by two different 
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promoter regions in response to IM-2 and FarA. Our previous studies have shown two different 

roles of FarA on transcriptional regulation of the target genes (Kitani et al. 2001, 2008). First, 

FarA represses the transcription of the target genes via binding to FAREs, and the binding of IM-

2 to FarA allows these genes to be unregulated via the release of the IM-2-FarA complex from 

FAREs. Secondly, the IM-2-FarA complex itself has a DNA-binding activity for controlling 

expression of the target genes, although the in vitro function of the IM-2-FarA complex remains 

to be clarified. With respect to the indigoidine production, FarA is the negative regulator 

suppressing the biosynthesis of indigoidine before the IM-2 production, which could be 

explained by the former regulatory mode of FarA.  

The far regulatory island showed a variety of putative gene functions similar to that found in 

Streptomyces aureofaciens (Fig. 2.11b) (Novakova et al. 2010). Interestingly, Aur1PR3, which 

presumably shares a common evolutionary origin with FarR4, controls the production of auricin 

quantitatively with a positive function, whereas Aur1PR2, the FarR3 homologue lacking several 

amino acids in the DNA-binding domain, has no function in the regulation of auricin production 

(Novakova et al. 2011). Despite the highly conserved gene arrangement and high similarity, 

regulatory proteins that belong to the same family exert different regulatory activities, suggesting 

that each of the Streptomyces species has its own complex regulatory mechanism for secondary 

metabolite production. Based on my current results, indigoidine biosynthesis is tightly regulated 

by two SARP-family proteins acting at different levels of the IM-2/FarA regulatory cascade. At 

early stages of growth before the IM-2 production, farA is autorepressed by FarA formed from 

basal-level transcription, forming an autoregulatory circuit (Kitani et al. 1999). At that time, FarA 

negatively regulates transcription of farR3 and therefore indigoidine production is not initiated. 

The expression of farR3 increases gradually in a growth-dependent manner by an unknown 

mechanism, and is notably relieved in response to IM-2 production at the late exponential phase 
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to initiate indigoidine biosynthesis.  

 

 

Figure 2.11 (a) Sequence alignment of the N-terminal regions of FarR3 with Aur1PR2 (upper 

panel) and of FarR4 with Aur1PR3 (lowerpanel). The numbers indicate the amino acid positions 

within each sequence. Identical residues are highlighted in black. The predicted secondary 

structure elements for the SARP family members are shown above their sequences. (b) 

Comparison of the far gene cluster in S. lavendulae FRI-5 with the S. aureofaciens CCM 3239 

chromosomal regionencoding regulatory proteins for auricin production. 

 

In contrast, transcription of farR4 seems to be positively regulated by the basal level of FarA 

at the early exponential phase, because the transcript disappeared in the farA disruptant (Fig. 

2.3c). At the mid-exponential phase, the transcription of farR4 increases gradually similar to the 

case of farR3, whereas another regulation should operate to override the repressing activity of 

FarR4 on farX to ensure sufficient production of IM-2 by FarX, which indicates an exquisite 

regulation in the early process of IM-2 production. Thus, FarR4 is an important determinant for 

controlling the initiation time of IM-2 production. Taken together with the model proposed 
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previously for a negative autoregulatory circuit for IM-2 production at the stationary phase 

(Kitani et al. 2010), my findings suggest that S. lavendulae FRI-5 has a fine-tuning system to 

control γ-butyrolactone biosynthesis. Further understanding how the farR3/farR4 genes are 

controlled by the IM-2/FarA system and how they regulate indigoidine production or IM-2 

biosynthesis will shed new light on the regulation of γ-butyrolactone biosynthesis as well as the 

regulatory networks for secondary metabolism in streptomycetes.  

 

2.5 Summary 

The Streptomyces antibiotic regulatory protein (SARP) family regulators have been shown 

to control the production of secondary metabolites in many Streptomyces species as the most 

downstream regulators in the regulatory cascade. Streptomyces lavendulae FRI-5 produces a blue 

pigment (indigoidine) together with two types of antibiotics: D-cycloserine and the nucleoside 

antibiotics. The production of these secondary metabolites is governed by a signaling system 

consisting of a γ-butyrolactone, IM-2 [(2R,3R,1’R)-2-1’-hydroxybutyl-3-hydroxymethyl-γ-

butanolide], and its cognate receptor, FarA.  

Here, I characterized two regulatory genes of the SARP family, farR3 and farR4, which are 

tandemly located in the proximal region of farA. farR3 is transcribed both as a monocistronic 

RNA and as a bicistronic farR4-farR3 mRNA, and the expression profile is tightly controlled by 

the IM-2/FarA system. Loss of farR3 delayed and decreased the production of indigoidine 

without any changes in the transcriptional profile of other far regulatory genes, indicating that 

FarR3 positively controls the biosynthesis of indigoidine, and is positioned in the downstream 

region of the IM-2/FarA signalling system. Meanwhile, loss of farR4 induced the early 

production of IM-2 by increasing transcription of an IM-2 biosynthetic gene, farX, indicating that 

FarR4 negatively controls the biosynthesis of IM-2. Thus, our results suggested differential 
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contributions of the SARP-family regulators to the regulation of secondary metabolism in S. 

lavendulae FRI-5. This is the first report to show that an SARP-family regulator is involved in 

the biosynthesis of a signaling molecule functioning at the most upstream region of the regulatory 

cascade for Streptomyces secondary metabolism.  

 

 

Figure 2.12 A simplified model of differential contributions by FarR3 and FarR4 to blue-pigment 

indigoidine biosynthesis. 
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Chapter 3 

Regulatory roles of a pseudo-γ-butyrolactone receptor on secondary 

metabolism of Streptomyces lavendulae FRI-5 

 

3.1 Introduction 

The Gram-positive, soil-inhabiting filamentous bacterial genus streptomyces has been 

well known for decades because of their complex life cycle and ability to synthesize a wide range 

of bioactive secondary metabolites possessing antibiotic or other useful pharmacologic activities, 

including anticancer, antitumor, and immunosuppressive activities. The production of these 

bioactive secondary metabolites is usually tightly regulated in a hierarchical manner at several 

layers. This involves higher-level regulators regarded as global regulators mediating stimuli from 

the environment, thus controlling the activity of the pathway-specific regulators that directly 

control the activation of biosynthetic genes for secondary metabolites (Bibb 2005; Liras et al. 

2008).  

In streptomyces, the γ-butyrolactone (GBL) system (Folcher et al. 2001, Bibb 2005), 

typically consisting of a GBL molecule and a cognate receptor protein, is of great interest by 

virtue of their significant roles in regulating the production of bioactive secondary metabolites. 

Despite their importance in regulating secondary metabolism, many aspects of the GBLsignal are 

still poorly understood. The best characterized component of the system is the A-factor−mediated 

signaling system in Streptomyces griseus (Horinouchi 2002). Before the A-factor is produced, the 

cognate receptor ArpA binds to the promoter region of a pleiotropic regulatory gene, adpA, and 

represses its transcription. When A-factor is produced and reaches a threshold concentration, 

ArpA dissociates from the promoter region of adpA by binding with A-factor, leading to the 
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transcription of adpA. AdpA then activates the transcription of many genes that are required for 

morphological differentiation and secondary metabolism (i.e., streptomycin production), forming 

an AdpA regulon.  

To date, many genes encoding autoregulator receptors have been reported to control the 

production of secondary metabolites (Nakano et al. 1998, 2000; Kitani et al. 2001; Takano et al. 

2001). In most cases, an autoregulator receptor gene, often accompanied by pathway-specific 

regulatory genes and genes encoding a homologue of the autoregulator receptor, is found within a 

biosynthetic gene cluster of secondary metabolite, and they operate at several regulation layers 

for the biosynthesis of the cognate secondary metabolite through the transcriptional regulation 

Genome information on the sequenced streptomyces revealed the existence of many GBL 

receptor homologues, and gives rise to the question of whether they are also involved in the 

GBL-mediated signaling cascade (Nishida et al. 2007). Some studies revealed that GBL receptor 

homologues participate in the regulation mechanism, mainly acting as a repressor of the 

biosynthesis of secondary metabolites (Novakova et al. 2010; Bunet et al. 2011). Interestingly, 

these GBL receptor homologues do not exhibit any gamma-butyrolactone binding ability and are 

thereby designated “pseudo” GBL receptors (Bunet et al. 2011). Apart from not having the ability 

to bind the GBL, pseudo-GBL receptors are also characterized by high pI values, in contrast to 

the low-acidic pI values of true GBL receptors. It has been reported that pseudo-GBL receptors 

coordinate antibiotic biosynthesis by binding and responding to antibiotic signals, suggesting that 

antibiotics can also act as intracellular signals to induce downstream processes (Xu et al. 2010). 

The same study also reported the possible correlation between pseudo-GBL receptors and silent 

antibiotic clusters, as the inactivation of two pseudo-GBL receptors led to the production of two 

cryptic metabolites. A more recent study reported a novel role for pseudo-GBL receptors: 

involvement in the control of GBL biosynthesis by directly repressing the transcription of genes 
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that encode the key enzymes for GBL biosynthesis (Wang et al. 2011). Due to the wide range of 

actions of pseudo-GBL receptors, a study on their roles in the GBL-mediated signaling cascade 

will be of great interest and will provide better knowledge of the GBL signaling cascade while 

also serving as an important tool with which to isolate novel but cryptic natural products. 

Streptomyces lavendulae FRI 5, which produces blue pigment indigoidine, nucleoside 

antibiotics, and the anti-tuberculosis drug D-cycloserine, employs a GBL system to control the 

production of the aforementioned secondary metabolites. The GBL system in S. lavendulae FRI 5 

consists of GBL molecule IM-2 and cognate receptor FarA (Hashimoto et al. 1992; Waki et al. 

1997). Unlike other GBL molecules that play positive roles in the regulation of secondary 

metabolite production, IM-2 exerts both positive and negative effects on the regulation of 

secondary metabolism; namely, it switches on the production of indigoidine and nucleoside 

antibiotics and switches off the production of D-cycloserine (Hashimoto et al. 1992). IM-2 

production preceded secondary metabolite production, initiated before the mid-exponential phase, 

reached the threshold concentration at the mid-exponential phase, and triggered secondary 

metabolite production at the late exponential phase (Yanagimoto et al. 1998). farA and a 

biosynthetic gene for IM-2 biosynthesis, farX, are located in the same locus in the 12-kb far-

regulatory region. In addition to the two regulatory genes, four more regulatory genes (farR1, 

farR2, farR3, and farR4) are present in the farA flanking region (Kitani et al. 2008). In chapter 2, 

I reported the differential contributions of FarR3 and FarR4, belonging to the Streptomyces 

Antibiotic Regulatory Protein (SARP), to the IM-2 signaling cascade; FarR3 positively controls 

indigoidine production and FarR4 negatively controls IM-2 biosynthesis (Kurniawan et al. 2014)  

In silico and phylogenetic analyses indicated that the product of farR2 is a pseudo-GBL 

receptor due to its high degree of similarity with FarA and its high pI value of 9.7. We previously 

found that farR1 and farR2 are the direct transcriptional targets of FarA through the binding of 
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FarA to FAREs (FARE2 and FARE3, in the promoter region of farR1 and farR2) (Kitani et al. 

2008). The binding was relieved by IM-2, as demonstrated by gel retardation assays in which the 

addition of synthetic IM-2 to a cocktail mixture of FarA and a labeled probe dissociated the IM-

2-FarA complex. Whereas in the wild-type strain farR2 was transcribed from the mid-exponential 

phase, the transcriptional analysis in a mutant strain lacking the ability to synthesize IM-2 

(obtained by deletion of farX) showed that the transcription of farR2 was completely abolished 

(Kitani et al. 2010). These findings promoted us to investigate the function of FarR2 in S. 

lavendulae FRI-5, which might form a more complicated γ-butyrolactone regulatory system for 

secondary metabolism compared to that of other Streptomyces species.  

In the present study, we characterized that FarR2 belongs to the pseudoreceptor regulator in 

the IM-2/FarA system, and demonstrated that FarR2 positively controls the initiation timing of 

indigoidine production in response to the presence of IM-2 and is involved in the transcriptional 

repression of the far regulatory genes at the late stage of secondary metabolism, implying the 

functional diversity of the pseudoreceptor regulator in streptomycetes.  

    

 

3.2 Materials and Methods 

3.2.1 Bacterial strains, plasmids, and growth conditions  

S. lavendulae FRI-5 (MAFF10-06015; National Food Research Institute, Tsukuba, Japan) was 

grown on ISP medium 2 (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) for spore 

formation. Escherichia coli DH5α was used for general DNA manipulation (Sambrook et al. 

2001), and the DNA methylation-deficient E. coli strain ET12567 containing the RP4 derivative 

pUZ8002 (Paget et al. 1999) was used for E. coli/Streptomyces conjugation. The plasmids used 

were pBluescript II SK and pUC19 for general cloning, pKC1132 (Bierman et al. 1992) for gene 
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disruption, pENTR (Invitrogen, CA, USA) and pLT101 (Pulsawat et al. 2009) for gene 

complementation. The phenotype of the S. lavendulae FRI-5 strains was analyzed after growth in 

liquid medium B (Hashimoto et al. 1992). The media conditions and general E. coli and 

Streptomyces manipulations were as described previously (Kieser et al. 2000). The primers used 

in this study are listed in Table 3.1, except for the primers described in the previous reports.  

 

Table 3.1. Oligonucleotides used in this study 

 

Primer Sequence (5’-3’)* 

For transcriptional analysis of truncated farR2  

tfarR2-Fw TGGCGGCCACCCTCGGCTTC 

For construction of farR2 disruptant and farR2-complemented strain 

farR2-up-Fw CCCAAGCTTTTCAACAGCGCTGGATTCAGGA 

farR2-up-Re ACATGCATGCACGGCGCGTTCTTGTTCAT 

farR2-down-Fw ACATGCATGCACTCAACCACCGCAACGTG 

farR2-down-Re GCTCTAGATGGACGTCCACACCTACGA 

farR2-comp-Fw CACCTGATACAGGAGCTATGCGTGA 

farR2-comp-Re TCAGCTCCCCCTTCCGGCCGTGTCC 

dfarR2Fw AATCGCCGTTGATCAGGCCACCAA 

dfarR2Re ACGGCAGAGAACGTGTCAGCT 

For overexpression of recombinant FarR2 and FarA proteins 

rFarR2-Fw GCATATGAAACAGGAACGCGCCGTCCGCAC 

rFarR2-Re CAAGCTTGCTCCCCCTTCCGGCCGTGTC 

rFarA-Fw GCATATGGCTGAACAGGTCCGAGCCATC 

rFarA-Re CAAGCTTGTCTTCCTCGTCCGCCTGCTCC 
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For gel shift assay 

F1-Re GGGATTCTGGCGCGTGCGGATGGCTC 

F11Fw GGAATTCGATACGAACGGGACGGACGG 

F12-Fw GATACGCGATAGACGGACGGTTTGCAG 

F13-Fw GGAATTCAGGGCTTCCGACGCTCCGAAC 

F2-Re GGAATTCGGTGGTGTGAGGTTCCAGTAC 

F21-Fw GGGGATCCCTGATCAACGGCGATTCGTGC 

F22-Fw GGGATCCTTTGACAAACCGACGAAGCG 

F23-Fw TTTGACGCGATAACGAAGCGGTTTG 

F24-Fw GGGATCCGTTGACGTTGGCTCAACTGAG 

F3-Re GGGGATCCTGACTCGAGCAGTGCTTGACG 

F31-Fw GGAATTCGTAGATCAAATCAGGCCACAGC 

F32-Fw GGAATTCCTCTTCCAATACCAACGGG 

F33-Fw GGAATTCCTCTTCCAATTGCAACGGG 

F34-Fw GGAATTCGAAACTGATACAGGAGCTA 

F4-Re GGGGATCCCCGTTCTCCCGCACGGTCAG 

F41-Fw GGAATTCCGCCCGATGATCGTCAGACC 

F42-Fw GGGATTCTATTGACAAACCGGCGCAGC 

F43-Fw TATTGACGCGATAGCGCAGCTGTTTTTCC 

F44-Re CCAAACCGGCTGTACCGTTTTTTGCTC 

F45-Re CCGGGAATGCTGTACCGTTTTTTGCTCC 

F46-Fw CCTCGTTCCAGCGAACTTCGAGGGTTC 

F6-Re GGGATCCGGGAAGCAGGAGTCGTGCAG 

F61-Fw GGAATTCGAAAAAACCGGTTGGTATAT 

F62-Fw GAAAGGGAATGTTGGTATATATTTTTCTG 

F63-Fw GGAATTCCTGAGCAGTCACACCTGTTAC 
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For 5’-RACE 

farX-GSP1 ATCCAGCCGCTGCCAGTCGGTGAG 

farX-GSP2 CGTGGACGTGCGGTGTACCAGTTC 

*Restriction sites are underlined 

 

3.2.2 Construction of the farR2 disruptant 

A 2.0 kb farR2-upstream fragment was amplified by the primer pair farR2-up-Fw/farR2-up-Re, 

and digested with HindIII and SphI. Similarly, a 2.2 kb farR2-downstream fragment was 

amplified by the primer pair farR2-down-Fw/farR2-down-Re, and digested with SphI and XbaI. 

The two resulting fragments were cloned together into the HindIII and XbaI sites of pUC19, and 

were recovered as a 4.2 kb HindIII/XbaI fragment. The fidelity of the amplified region was 

confirmed by DNA sequencing. The 4.2 kb fragment was inserted into the HindIII and XbaI sites 

of pKC1132 to generate pLT131 for farR2 disruption. E. coli ET12567 (pUZ8002) harboring 

pLT131 was conjugated with S. lavendulae FRI-5, and the wild-type gene was replaced with the 

disrupted allele (ΔfarR2) by homologous recombination. The genotype of the ΔfarR2 candidates 

was confirmed by PCR analysis with the primer pair dfarR2Fw/ dfarR2Re under the following 

conditions: a single round of 98
o
C for 2 min and 30 cycles of 98

o
C for 30 s, 55

o
C for 30 s, and 

72
o
C for 1 min. The S. lavendulae FRI-5 farR2 disruptant was abbreviated ΔfarR2. 
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Figure 3.1 Schematic representation of the strategy for disruption of farR2. The red arrows (long 

and short) represent the intact farR2 gene and the disrupted farR2 gene (ΔfarR2), respectively. 

Outward and inward blue arrows represent the primer pair used to analyze the genotype of 

ΔfarR2candidates. PCR analysis of chromosomal DNA from the wild-type strain (W), the ΔfarR2 

strain (lane 1). M= Marker; P= Control. 

 

3.2.3 Complementation of the farR2 disruptant 

A Gateway Reading Frame Cassette C.1 (Invitrogen) was cloned into the blunt-ended XbaI site 

of pLT101 to yield pLT114 as a destination vector. The entire farR2 gene with its 30-bp 

upstream region including the putative ribosome-binding site was amplified by using the primer 

pair farR2-comp-Fw/farR2-comp-Fw, and then cloned into a pENTR vector to generate an entry 

clone. The entry clone was used with pLT114 in an LR reaction (LR Clonase Enzyme Mix; 

Invitrogen), resulting in pLT132. The plasmid pLT132 was introduced into the ΔfarR2 strain by 

intergeneric conjugation and integration. Integration of the plasmid was confirmed by apramycin 

resistance and PCR analysis.  

 

3.2.4 Gene expression analysis by semiquantitative RT-PCR 

Total RNAs were extracted from mycelia grown in liquid medium B by an RNeasy Mini kit 

(QIAGEN Science, MD, USA) and treated with DNase I (Takara Bio, Shiga, Japan). The cDNA 

Wild-type

pMA1

ΔfarR2

farR1 farR2 farR3

DfarR2

aac(3)IV

M P W 1

730 bp

325 bp

(A) (B)
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was synthesized using SuperScript III RNase H
-
 reverse transcriptase (Invitrogen) and random 

primers (Invitrogen) according to the manufacturer’s instructions. The cDNAs were amplified 

from the transcripts of the far regulatory genes and the hrdB gene using the hrdB-Fw/hrdB-Re 

primers pair (28). The primers used for the detection of the transcript of the truncated farR2 gene 

were tfarR2-Fw and rFarR2-Re. The PCR amplification was performed by using GoTaq Green 

Master Mix (Promega KK, Tokyo, Japan) under the following conditions: a single round of 95
o
C 

for 2 min and discrete cycles (as described in the legend of each figure) of 98
o
C for 30 s, 65

o
C for 

30 s, and 72
o
C for 1 min, followed by a single extension of 72

o
C for 5 min. The PCR annealing 

temperature for the hrdB transcript was 55
o
C. The absence of DNA contamination was confirmed 

by RT-PCR without reverse transcriptase. These analyses were performed using total RNAs 

prepared form two or three independent cultivations to confirm the reproducibility.  

 

3.2.5 Analysis of blue pigment and other secondary metabolites 

Culture supernatants were collected periodically and filtrated through 0.2-μm-pore size filters, 

and the absorbance at 590 nm was measured for the production of blue pigment. The production 

of D-cycloserine and nucleoside antibiotics was measured as described by Kitani et al. (2001). 

 

3.2.6 Overexpression of farR2 and farA in E.coli and protein purification 

The farR2 and farA genes were PCR-amplified by the primer pairs rFarR2-Fw/rFarR2-Re and 

rFarA-Fw/rFarA-Re, respectively. Each fragment was digested with NdeI and HindIII and then 

cloned in pET-21b digested with the same enzymes, resulting in pLT133 for FarR2 

overexpression and pLT134 for FarA overexpression, respectively, which were verified by DNA 

sequencing. E. coli BL21(DE3)/pLysS harboring pLT133 or pLT134 was inoculated into 200 ml 

of 2xYT medium and the cultivation was continued at 37
o
C until the optical density at 600 nm 
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reached 0.6, at which time 0.5 mM IPTG (isopropyl-β-D-thiogalactopyranoside) was added for 

induction. After an additional 3 h of cultivation, the collected cells were washed with equal 

volume of 0.9% NaCl solution, and then resuspended in 10 ml buffer A [50 mM Tris-HCl (pH 

7.5) containing 60 mM KCl and 10% glycerol (v/v)]. After sonication and centrifugation (5,000 

X g, 5 min, 4
o
C), the supernatant was loaded onto a Ni Sepharose 6 Fast Flow column (GE 

Healthcare Bio-Sciences, PA, USA) equilibrated with buffer A. Proteins containing rFarR2 or 

rFarA were eluted with 5 ml of 100 or 250 mM imidazole (in buffer A), respectively, according 

to the manufacturer’s recommendations. The eluted proteins were dialyzed overnight at 4
o
C 

against buffer B [50 mM Tris-HCl (pH 7.5) containing 60 mM KCl and 20% glycerol (v/v)]. 

Protein concentration was measured with Bio-Rad protein assay kit using bovine plasma gamma 

globulin as a standard. Purity of rFarR2 or rFarA was analyzed by SDS-PAGE.  

 

3.2.7 PCR conditions for construction and amplification of FITC-labeled probe and gel-shift 

assay 

The fragments were amplified by PCR with the following primer pairs: F31-Fw and F3-Re for 

F3-1; F32-Fw and F3-Re for F3-2; F33-Fw and F3-Re for F3-3; F34-Fw and F3-Re for F3-4; 

F11-Fw and F1-Re for F1-1; F12-Fw and F1-Re for F1-2; F13-Fw and F1-Re for F1-3; F21-Fw 

and F2-Re for F2-1; F22-Fw and F2-Re for F2-2; F23-Fw and F2-Re for F2-3; F24-Fw and F2-

Re for F2-4; F41-Fw and F4-Re for F4-1; F42-Fw and F4-Re for F4-2; F43-Fw and F4-Re for 

F4-3; F41-Fw and F44-Re for F4-4; F41-Fw and F45-Re for F4-5; F46-Fw and F4-Re for F4-6; 

F61-Fw and F6-Re for F6-1; F62-Fw and F6-Re for F6-2; F63-Fw and F6-Re for F6-3. The 

amplified fragments were cloned into the EcoRV site of pBluescript II SK. The DNA probes 

were labeled by PCR using these plasmids as templates with an fluorescein isothiocyanate 

(FITC)-labeled M13-47 primer and RV primer. The FITC-labeled probes (10 ng) were incubated 
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with 0.5 μg of rFarR2 or rFarA at 25
o
C for 10 min in 15 μl of DNA binding buffer [25 mM Tris-

HCl (pH 7.5), 60 mM KCl, 1 mM EDTA, 1 mM dithiothreitol, 20% glycerol (v/v)] containing 1 

μg of poly(dI-dC). After incubation, solution was resolved on a non-denaturing 4% (w/v) 

polyacrylamide gel running for 2 hours (after 30 min pre-run at 100 volt) in buffer containing 50 

mM Tris, 380 mM glycine, and 2 mM EDTA, pH 8.5 at the same voltage. Labeled DNA 

fragments were detected using Typhoon 9210 variable mode imager (GE Healthcare Bio-

Sciences).  

 

3.2.8 Determination of transcriptional start site of farX 

Total RNA was isolated from mycelium harvested at 8 h of cultivation with the exogenous 

addition of IM-2 at 5 h of cultivation. Transcriptional start site of farX was analyzed by a 

GeneRacer kit (Invitrogen) for rapid amplification of 5’ cDNA ends (RACE) as described 

previously (Miyamoto et al. 2011).  

 

3.3 Results 

3.3.1 Features of farR2 

A phylogenetic tree of FarR2 with other autoregulator receptors and pseudoreceptor regulators in 

Streptomyces indicated that the FarR2 protein clearly belongs to the clade of pseudoreceptor 

regulators, rather than the clade of autoregulator receptors (Fig. 3.3). These two clades can also 

be distinguished by their pI values: autoregulator receptors have pI values of around 5 (pI 5.1 for 

ArpA and pI 5.3 for FarA), whereas most of pseudoreceptor regulators show more basic pI values 

(pI of 10.2 for BarB and pI 7.8 for JadR2). The pI value of FarR2 (9.7) is consistent with the 

results of phylogenetic analysis, implying that FarR2 is most likely to be a pseudoreceptor 

regulator in S. lavendulae FRI-5. 
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Figure 3.3 Phylogenetic tree of FarR2, pseudoreceptor regulators and autoregulator receptors. 

Multiple sequence alignment was conducted with the CLUSTALW program 

(http://www.genome.jp/tools/clustalw/). Phylogenetic trees were constructed by the unweighted-

pair group method with the arithmetic mean. 

 

Other than high pI values, pseudo-GBL receptor family proteins do not exhibit any GBL 

binding ability such as in the case of BarB from S. virginiae and ScbR2 from S. coelicolor (Xu et 

al. 2010), which were found not to bind virginiae butanolides (GBL in S. virginiae) and Scb1 

(GBL in S. coelicolor), respectively. More detailed analysis of the amino acid sequences 
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indicated that, although autoregulator receptors contain highly conserved residues Gln and Trp 

(both important for autoregulator binding) (Sugiyama et al. 1998) and another conserved residue 

Pro (important for DNA binding) (Onaka et al. 1997), FarR2 has an Ala at the position of Gln 

and a shorter α7-helix domain with the conserved Trp, similar to those of other pseudoreceptor 

regulators (Fig. 3.4). These findings suggested that FarR2 may be involved in the regulation of 

secondary metabolism as a pseudoreceptor regulator responding to secondary metabolites. 

 

Figure 3.4 Sequence alignment of the regions encoding helix-turn-helix DNA-binding domain, 

helices α4 and α7 of FarR2 with those of pseudoreceptor regulators and autoregulator receptors. 

Black boxes indicate positions in the alignment at which the same amino acid is found in at least 

six of the eleven sequences. The secondary structure elements of CprB are shown above its 

sequence. Numbers indicate amino acid positions within each sequence. The asterisk and the 

filled triangles indicate important residues for the binding to DNA and the formation of 

autoregulator-binding pockets, respectively. 

 

Under normal growth conditions of the wild-type strain, IM-2 concentration reaches a 

threshold to trigger secondary metabolism at around 8 h of cultivation, and indigoidine 

production is initiated at 10 h of cultivation (Chapter 1 Fig 1.8). In contrast, external addition of 
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IM-2 at 5 h of cultivation induces earlier production of indigoidine with growth retardation 

(Kitani et al. 2001). We previously found by high-resolution S1 nuclease mapping that the 

transcriptional level of farR2 is enhanced by the external addition of IM-2 (Kitani et al. 2008), 

and demonstrated that IM-2 is necessary for the transcription of farR2 through the analysis of a 

farX disruptant lacking the intrinsic ability to synthesize IM-2 (Kitani et al. 2010). To learn more 

about the regulation of farR2 transcription, farR2 transcription was analyzed in the farA 

disruptant by semiquantitative RT-PCR (Fig. 3.5B). In the wild-type strain, farR2 transcription 

was clearly detected at 8 h of cultivation. With the external IM-2, farR2 was transcribed at 6.5 h 

but the transcriptional level significantly decreased at 8 h, suggesting that temporal transcription 

of farR2 is positively regulated by IM-2. In the farA disruptant, regardless of IM-2 addition, 

constitutive expression of farR2 was observed, indicating that the farR2 transcription is 

negatively controlled by FarA. With the previous finding that FarA binds to the upstream region 

of farR2, these results demonstrated that farR2 is a direct transcriptional target of FarA in vivo, 

which strongly suggests that FarR2 exert a regulatory function in secondary metabolism 

governed by the IM-2/FarA system.  
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Figure 3.5 Transcriptional regulation on farR2 by IM-2 and FarA. (A) Growth curves and 

indigoidine production in the wild-type strain. Growth was monitored by measuring the optical 

density at 600 nm (OD600). Open-red and filled-red square indicate growth curves without and 

with the exogenous addition of IM-2 at 5 h of cultivation, respectively. Open-blue and filled-blue  

diamonds indicate production profiles of indigoidine without and with the addition of IM-2, 

respectively. (B) Transcriptional profiles of the farR2 gene by semiquantitative RT-PCR in the 

wild-type strain (WT) and in the farA disruptant (ΔfarA). Total RNAs were extracted from 

mycelia harvested at the indicated cultivation times without (-) or with (+) the addition of IM-2.  

 

3.3.2 Effects of farR2 disruption on the blue pigment indigoidine production in S. lavendulae 

FRI-5 

To elucidate the role of farR2 in the regulation of secondary metabolism, we generated a farR2 

disruptant (ΔfarR2) by in-frame deletion of 136 amino acids containing the DNA-binding domain 

and the α7-helix domain. In the absence of external IM-2 addition (Fig. 3.6), the ΔfarR2 strain 
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showed delayed production of indigoidine with similar growth profile to the wild-type strain.  

 

 

Figure 3.6 Growth curves (A) and indigoidine production (B) in the farR2 disruptant. WT, wild-

type strain (open circles); ΔfarR2, farR2 disruptant (filled circles). (A) Growth was monitored by 

measuring the optical density at 600 nm (OD600). (B) Production profiles of indigoidine in the 

wild-type strain and in the farR2 disruptant. 

 

To investigate whether the delayed production of indigoidine is due to delayed biosynthesis of 
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indigoidine at 7 h of cultivation, whereas the ΔfarR2 strain did not show any indigoidine 

production at 7 h but started at 8 h (Fig. 3.7), an 1-h delay identical to that observed without IM-2 

addition, indicating that FarR2 does not control the biosynthesis of IM-2 but functions in the 

regulatory network for indigoidine production. The growth curve of the ΔfarR2 strain was very 

similar to the wild-type strain (data not shown), and an intact copy of farR2 into the farR2 

disruptant (ΔfarR2/farR2) restored the production profile of indigoidine to that of the wild-type 

strain (Fig. 3.7). With respect to the production of D-cycloserine and nucleoside antibiotics, there 

was no difference between the wild-type strain and the ΔfarR2 strain (data not shown), 

suggesting that FarR2 is specifically involved in the indigoidine production, and we concluded 

that FarR2 is a pathway-specific regulator for positively controlling the initiation timing of the 

indigoidine production.  

 

Figure 3.7 Production profiles of indigoidine in the farR2 disruptant with the addition of 

exogenous IM-2 at 5 h of cultivation. WT, wild-type strain (open circles); ΔfarR2, farR2 

disruptant (filled circles); farR2-complemented ΔfarR2 strain (open triangles).  
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region, gene expression patterns in the wild-type strain and in ΔfarR2 were monitored by 

semiquantitative RT-PCR analysis under the external addition of IM-2 at 5 h, because farR2 

exerts its regulatory function primarily after the perception of IM-2. (Fig. 3.8). All of the 

investigated regulatory genes in the far region were found to be transcribed at low basal levels in 

the wild-type strain and ΔfarR2 at 5 h.  

 

Figure 3.8 Transcriptional analysis of far-regulatory genes in the wild-type andΔfarR2 strain. 

Total RNAs were extracted from mycelia harvested at the indicated cultivation times without (-) 

or with (+) the exogenous addition of IM-2 at 5 h of cultivation. For PCR, 28 cycles of 

amplification were used for the transcripts of all far-regulatory genes and 27 cycles for the hrdB 

transcript. The hrdB-like gene [hrdB encodes the major sigma factor in Streptomyces coelicolor 

A3(2)] was used as a control, because this gene is expressed fairly constantly throughout growth. 

 

The farR2 transcript was clearly detected after 5.5 h of cultivation in the wild-type strain and 

declined at 8 h of cultivation, indicating that the transcription of farR2 rapidly responds to the 

IM-2 concentration. Similar pattern of temporal expression was observed for farA, farR1, and 

farR3, namely increase at the 5.5-h cultivation and decline at the 8.0-h cultivation. However, in 

the ΔfarR2 strain, the expression at 8 h of these three regulatory genes still remained at the same 
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levels to those observed at 6.5 h of cultivation. Furthermore, farR4 and farX genes were also 

expressed at a constant expression level after 6 h and 6.5 h of cultivation, respectively, at which 

time point the wild-type strain showed the reduced transcription of farR4 and farX compared to 

that observed at 5.5 h of cultivation. Thus, FarR2 can be concluded to participate in the 

downregulation of expression for the far regulatory genes at the late stage of secondary 

metabolism activated by the IM-2 signaling cascade.  

 

3.3.4 Binding of FarR2 to FARE3 in the promoter region of farR2 

Because FarR2 negatively controls the late-stage expression of regulatory genes in the far 

region, it thus seemed possible that FarR2 might regulate its own synthesis. To investigate 

whether a negative autoregulatory mechanism operates on farR2, transcriptional analysis was 

performed with a pair of primer designed to detect transcript of the region (farR2*) downstream 

of the mutation (Fig. 3.9A). In the wild-type strain with the external addition of IM-2, the 

transcript of farR2* at 8 h of cultivation was faint, which is consistent with the transcriptional 

profiles of farR2 as shown in Fig. 3.5B and Fig. 3.8. However, the ΔfarR2 strain showed 

increased transcription of farR2* compared to that of the wild-type strain, indicating that FarR2 

negatively functions on the expression of farR2 itself.  
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Figure 3.9 SDS-PAGE analysis of rFarR2 and rFarA protein. The arrows indicate the position of 

target proteins (rFarR2=24.2 kDa; rFarA=25.85 kDa). Lane M: molecular mass marker; Lane 1: 

crude extract from IPTG-induced E. coli BL21(DE3)/pLysS harboring pET farR2/farA. Lane 2: 

purified rFarR2/rFarA. 

 

Recently, it has been reported that a few of pseudoreceptor regulators bind to ARE sequences that 

are recognized by autoregulator receptors (Wang et al. 2011; Mingyar et al. 2014) and are 

frequently found in the promoter region of the target genes. FARE3, one of FarA-binding sites, 

composed of 33-bp sequences including a palindromic structure overlaps with the promoter 

region of farR2 (Kitani et al. 2008), suggesting that FarR2 may bind to FARE3 to negatively 

control its own synthesis. To examine whether FarR2 has DNA-binding activity toward FARE3, 

we performed a gel shift assay using a purified C-terminal His-tagged FarR2 and DNA fragments 

encompassing FARE3 (Fig. 3.10B and 3.10C). C-terminal His-tagged FarR2 was produced in 

E.coli BL21/pLysS system and purified as a predominantly single band with an apparent 

migration at 24.2 kDa (Fig. 3.9 left). Two DNA probes tested, F3-1 and F3-2, including FARE3, 
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gave a single retarded signal, whereas no retarded signal was observed with a FARE3-deficient 

probe F3-4, suggesting that FarR2 recognizes FARE3 in the promoter region of farR2. To 

confirm the importance of the imperfect palindromic structure of FARE3, which consists of two 

conserved hexamers separated by six nucleotides as the FarR2-binding site, we introduced a 

mutation into the sequence, yielding probe F3-3 showing no significant palindromic structure 

(Fig. 3.10B).  

 

Figure 3.10 Binding of FarR2 to FARE3 located upstream of farR2. (A) Transcriptional analysis 
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of the farR2 gene in the farR2 disruptant. WT, wild-type strain; ΔfarR2, faR2 disruptant. Total 

RNAs were isolated from mycelia harvested at 8 h of cultivation with the exogenous addition of 

IM-2 at 5 h of cultivation. farR2* indicates the transcript from the truncated farR2 gene, which is 

still present in the farR2 disruptant. PCR of 27 cycles was used for the transcript of the truncated 

farR2 genes. (B) Location of probes used for the gel shift assay. The probes F3-1 to F3-4 used in 

the present study are shown. An arrowhead indicate the translational start codon of FarR2. 

Arrows above the FARE sequences indicate conserved 6-bp inverted repeats flanking a 6-bp 

linker region. mF3 represents the mutation introduced by PCR into FARE3. (C) Gel shift assay 

for the binding of purified His-tagged FarR2 (rFarR2) to probes containing intact or mutated 

FARE3. The probes F3-1 to F3-4 were incubated in the absence (-) or presence (+) of purified 

rFarR2.  

 

As shown in Fig. 3.10C, rFarR2 showed no binding to the probe F3-3, demonstrating that 

the imperfect palindromic structure is required for the binding of FarR2 to FARE3. These 

findings suggested that FarR2 acts as transcriptional repressor of its own synthesis by binding to 

its own promoter region. 

 

3.3.5 FarR2 binds to the FAREs located at upstream regions of far regulatory genes 

The transcriptional analysis in the farR2 disruptant indicated that the promoter activity of 

farA, farR1, farR3, farR4, and farX is negatively regulated by FarR2. The upstream regions of 

farA, farR1, and farR4 contain FARE1, FARE2, and FARE4 (Kitani et al. 2008), respectively, 

suggesting the possibility that FarR2 recognizes these FAREs to modulate the expression of the 

three regulatory genes. To further dissect the role of FarR2 in the transcriptional regulation, its 

ability to bind in vitro to the FAREs was investigated using gel shift assays (Fig. 3.11). rFarR2 

showed clear binding to DNA probes including FARE1, FARE2, and FARE4, whereas DNA-

binding activity of FarR2 was not detected with DNA probes containing mutated FARE or with 
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FARE-deficient probes. These results indicated that FarR2 directly controls transcription of farA, 

farR1, and farR4, via binding to their own promoter regions. In contrast, FarR2 showed no 

binding activity toward the upstream region of farR3 (data not shown), although this region 

includes ARE-like sequence, suggesting that transcription of farR3 may be under indirect control 

of FarR2. 



 

 

 

Figure 3.11 Three FAREs (FarA-binding sites) recognized by FarR2. The top panels show locations of probes used for the gel shift 

assays, the middle panels show intact or mutated FAREs, and the bottom panels show gel shift assays for the binding of rFarR2 to the 

FARE probes. Arrowheads indicate the translational start codons of FarA, FarR1, and FarR4, respectively. Arrows above the FARE 

sequences indicate conserved 6-bp inverted repeats flanking a 6-bp linker region. mF1, mF2, mF4-a, and mF4-b represent the mutation 

introduced by PCR into FARE1 (for mF1), FARE2 (for mF2), and FARE4 (for mF4-a and mF4-b), respectively. Gel shift assays were 

performed with F1 probes (A), F2 probes (B), and F4 probes (C). The probe was incubated in the absence (-) or presence (+) of rFarR2.
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We previously found that a candidate 26-bp ARE-like sequence is present in the 124-bp upstream 

region of the farX gene (Aroonsri et al. 2012), although whether FarA binds to the putative ARE 

sequence remains unclear. Gel shift analysis demonstrated that rFarR2 specifically binds to this 

ARE-like sequence, designated FARE6, encompassing an imperfect palindromic structure (Fig. 

3.12A). To analyze the promoter region of farX, 5’-RACE analysis was performed, which 

revealed that the transcriptional start site (tss) of farX was G, situated 116 nt upstream from the 

translational start codon of farX (Fig. 3.12B). In front of the tss, a possible -10 region was 

identified, which was similar to the consensus -10 region of streptomycetes Eσ
70

-like promoters, 

although no typical -35 region was detected. These results suggested that FarR2 negatively 

controls the expression of farX (the IM-2 biosynthetic gene) by the direct binding to FARE6 in 

the promoter region of farX. To examine the possibility that FarA has DNA-binding activity 

toward FARE6, a gel shift assay was performed using a purified C-terminal His-tagged FarA (Fig. 

3.9 right) and a DNA probe including FARE6 (Fig. 3.12C). Similar to recombinant FarR2 protein, 

recombinant FarA protein was produced in E. coli BL21/pLysS system and purified as a 

predominantly single band with an apparent migration at 25.85 kDa (Fig 3.9). A shifted signal 

was clearly visible with the incubation of rFarA and the probe, but the addition of IM-2 abolished 

the formation of the FarA-FARE6 complex, suggesting that, like FarR2, FarA might be involved 

in the direct regulation of IM-2 biosynthesis.  
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Figure 3.12 Binding of FarR2 to new FarA-binding site located upstream of farX. (A) Gel shift 

assay for the binding of rFarR2 to an ARE-like sequence (FARE6) in the upstream region of farX. 

An arrowhead indicate the translational start codon of FarX. Arrows above the FARE sequences 

indicate conserved 6-bp inverted repeats flanking a 6-bp linker region. mF6 represents the 

mutation introduced by PCR into the ARE-like sequence. The probe was incubated in the 

absence (-) or presence (+) of rFarR2. (B) Nucleotide sequences of the promoter and operator 

region of farX. The asterisk indicate the transcriptional start site of farX. The probable -10 region 

is shown in a box, and the putative ribosome-binding site (RBS) is underlined. The FarA-binding 

sequence (FARE6), which is bound to FarR2, is indicated with a dashed line. (C) Gel shift assay 

for the binding of rFarA to FARE6. When IM-2 was added to the reaction mixture at a final 

concentration of 350 nM, the mixture was incubated at 25
o
C for a further 5 min before the gel 

shift assay was performed. As a negative control, MeOH, which was used to dissolve IM-2, was 

added to the reaction mixture.  
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3.4 Discussion  

In Streptomyces sp., the GBL autoregulator-receptor pair that mediates regulation is widely 

employed to control the production of secondary metabolites and/or morphological 

differentiation. In our previous studies, we successfully unraveled some components of the GBL 

autoregulator signaling cascades in S. lavendulae FRI-5. In this study, I demonstrated that FarR2 

(a pseudoreceptor regulator) is under the tight and direct transcriptional control of the IM-2/FarA 

system, and revealed that FarR2 is acting as the pathway-specific activator on the onset of 

indigoidine production as well as the direct repressor of the far regulatory genes including farR2 

itself at the late stage of secondary metabolism. These findings suggest that FarR2 has distinct 

contributions to two physiological processes in the different stages of secondary metabolism.  

In chapter 2, I demonstrated that FarR3, a member of the SARP family regulators locating 

in the far regulatory island positively controls not only the amount of indigoidine but also the 

onset of the indigoidine production (Kurniawan et al. 2014), implying that two different types of 

regulators (FarR3 as a SARP family regulator and FarR2 as a pseudoreceptor regulator) in the 

IM-2/FarA system have redundant functions in the regulation of indigoidine production. At the 

beginning stage of secondary metabolism activated by IM-2, lack of farR2 did not show any 

effect on the expression of farR3 (Fig. 4) and vice versa (Kurniawan et al. 2014), thus indicating 

that two independent pathways in the IM-2/FarA regulatory cascade governs the onset of 

indigoidine production. 

 In clear contrast to the positive effect of FarR2 on the onset of indigoidine production, 

the transcriptional analysis of far-regulatory genes in the farR2 disruptant indicated that FarR2 

acts as a transcriptional repressor. As is the case with true GBL receptors, with pseudo-GBL 

receptor genes the product mediates the transcriptional effects on the target genes by binding to a 

specific sequence in the promoter region of each target genes. Many of the binding sequences of 
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pseudo-GBL receptors share high degrees of similarity with the binding sequences of their 

respective true GBL receptors. FarR2 demonstrated direct binding to FARE3 located upstream 

farR2, as observed through in vitro analysis of purified recombinant FarR2 in gel-retardation 

assays. Taken together with the transcription of farR2 in the farR2 disruptant, suggest that FarR2, 

similar to FarA, forms an autoregulatory circuit to control its own expression. The extensive gel 

shift assays also demonstrated that FarR2 recognizes FAREs locating at the promoter regions of 

the far regulatory genes that are transcriptionally repressed by FarR2. We have already found that 

a putative indigoidine biosynthetic gene [significant identity (98%) with BpsA from S. 

lavendulae ATCC11924, which is involved in the biosynthesis of indigoidine] is present in the 

left-hand region approximately 21 kb away from the farR2 locus (our unpublished data). 

However, no ARE-like sequence, characterized by two conserved hexamers forming a 

palindromic structure split by six nucleotides (5`-AWACSG-N6-CBGTTT-3`), is found in the 

upstream region of the putative indigoidine biosynthetic gene. The imperfect palindromic 

sequence are always found in the upstream region of target genes of the true GBL and pseudo-

GBL receptors family, suggesting the importance of the palindromic sequence for recognition by 

the DNA binding domain of the receptors (Folcher et al. 2001). Therefore, it is unlikely that 

FarR2 might recognize a region distinct from the FAREs conserved sequence, as my data (Fig. 

3.10-12) demonstrated that the palindrome sequences in the FAREs are essential for recognition 

by FarR2. Thus, taken together with the observation that the pseudoreceptor regulators act mainly 

as transcriptional repressors, we suggest that FarR2 operates via another regulator to positively 

regulate the indigoidine biosynthesis.  

Transcriptional upregulation of the majority of far-regulatory genes, in the farR2 

disruptant occurred after the production of indigoidine was initiated at the late exponential phase, 

indicating that the inhibition activity of FarR2 in the wild-type strain occurs after the late 
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exponential phase, in the entry into the stationary phase. Transcriptional repression of far-

regulatory genes at the stationary phase may lead to the termination of IM-2 production.  

 

In previous studies, the DNA binding activity of pseudo-GBL receptors is not inhibited by 

the GBL signaling molecule, which is an important characteristic of these so-called pseudo-GBL 

receptors. This is true for FarR2 because IM-2 showed no inhibitory activity on the formation of 

the FarR2-DNA complex (Fig. 3.13).  

 

Figure 3.13 Effect of IM-2 on DNA-binding activity of FarR2. When IM-2 was added to the 
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reaction mixture, the mixture was incubated at 25oC for 5 min. As a negative control, MeOH, 

which was used to dissolve IM-2, was added to the reaction mixture. A black triangle indicates 

the position of the rFarR2-DNA complex, and a white triangle indicates the position of the probe 

DNA only 

Previous reports demonstrated that secondary metabolites, production of which is controlled 

by these regulators, control the activity of pseudo-GBL receptors through binding to the ligand-

binding domain. FarR2 has a specific DNA-binding activity to 5 FAREs (FARE1, FARE2, 

FARE3, FARE4, and FARE6) in the promoter regions of the far regulatory genes. However, 

indigoidine did not affect the DNA-binding activity of FarR2 (Fig. 3.14). The far regulatory 

genes that are under the control of FarR2 are found to be transcribed in a growth-dependent 

manner (Fig. 3.8, left panel), suggesting that effective ligand (rather than IM-2 nor indigoidine) 

of FarR2 for affecting the DNA-binding activity might be present for modulating the expression 

of those genes. 
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Figure 3.14 Effect of indigoidine on DNA-binding activity of FarR2. When indigoidine was 

added to the reaction mixture, the mixture was incubated at 25oC for 5 min. As a negative control, 

DMSO, which was used to dissolve indigoidine, was added to the reaction mixture. A black 

triangle indicates the position of the rFarR2-DNA complex, and a white triangle indicates the 

position of the probe DNA only. 

 

In the absence of IM-2, FarA represses the transcription of farR2 via binding to FARE2, and 

the binding of IM-2 to DNA-bound FarA allows farR2 to be upregulated. Thereafter, FarR2 binds 

to FARE1 in the promoter region of farA to downregulate farA expression at the late stage of 

secondary metabolism, indicating a negative feedback mechanism to achieve adequate expression. 
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Intriguingly, the expression of farX, an IM-2 biosynthetic gene, is also negatively regulated by 

FarR2. IM-2 production is prominently observed in the late exponential phase and declined 

gradually in a growth-dependent manner (Yanagimoto et al. 1988). Because the production 

profile of IM-2 is almost similar to the expression profile of farX, the decreased production of 

IM-2 at the stationary phase can occur by the binding of FarR2 to FARE6 in the promoter region 

of farX to suppress its transcription. In S. coelicolor A3(2) and in S. venezuelae, ScbR2 and 

JadR2 bind to ARE-sequences in the promoter regions of the γ-butyrolactone biosynthetic genes 

for repressing the biosynthesis of the γ-butyrolactone autoregulators, respectively (Wang et al. 

2011). Therefore, negative transcriptional regulation for γ-butyrolactone biosynthesis appears to 

be a common feature of the pseudoreceptor regulators.  

The function of the pseudoreceptor regulators has been gradually unveiled in a few of 

Streptomyces species. JadR2 and Aur1R repress the production of jadomycin and auricin whose 

biosynthetic gene clusters include the jadR2 and aur1R gene, respectively, and the cognate 

antibiotic shows an inhibitory activity toward the formation of the pseudoreceptor regulator-DNA 

complex (Xu et al. 2010; Novakova et al. 2010). On the other hand, ScbR2 locating in the 

biosynthetic gene cluster of coelimycin plays a negative role in the production of coelimycin, and 

positively regulates the production of another antibiotic such as actinorhodin (Act) and 

undecylprodigiosin (Red) (Xu et al. 2010). Unlike the case of JadR2 and Aur1R, scbR2 locates 

far distal from the biosynthetic gene cluster of Act and Red, but Act and Red still affect the 

DNA-binding activity of ScbR2 for the regulation of antibiotic production. Our findings 

demonstrated that FarR2 facilitates the initiation timing for the production of indigoidine without 

controlling the yield of indigoidine, and thus FarR2 is regarded as an activator-type 

pseudoreceptor regulator for secondary metabolism. Moreover, it is of interest that indigoidine 

has no function for the formation of the FarR2-FARE complex. Further understanding of the 
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regulatory mechanism of FarR2 together with the identification of the FarR2-ligand will provide 

greater insights into common or unique features of the pseudoreceptor regulators in the regulation 

of secondary metabolism in streptomycetes.  

 

3.5 Summary  

The γ-butyrolactone autoregulator signaling cascade distributes widely among many 

Streptomyces species as an important regulatory system of secondary metabolism. The 

pseudoreceptor regulator, although highly homologous to the autoregulator receptor, has different 

mode of function in the regulation of secondary metabolism from that of the autoregulator 

receptor. In Streptomyces lavendulae FRI-5, a γ-butyrolactone autoregulator IM-2 and the IM-2 

specific receptor FarA control the production of blue pigment indigoidine together with two types 

of antibiotics: D-cycloserine and the nucleoside antibiotics. Here, we demonstrated that farR2 (a 

farA homologue) locating in the clustered regulatory genes including farA is classified as a gene 

of the pseudoreceptor regulator family by in silico analysis, and that the expression of farR2 is 

controlled by the IM-2/FarA regulatory system. Disruption of farR2 resulted in delayed 

production of indigoidine and in transcriptional derepression of the clustered far regulatory genes. 

Furthermore, FarR2 binds to the FarA-binding sequences in the promoter regions of the 

regulatory genes which are downregulated by FarR2. These findings suggested that FarR2 acts as 

a pleiotropic regulator that controls secondary metabolism under the IM-2 signaling cascade.  
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Chapter 4 

Conclusion 

 

Members of the Gram-positive, soil-dwelling filamentous bacterial genus Streptomyces 

have been extensively studied due to their complex life cycle of morphological differentiation, 

their ability to synthesize secondary metabolites with structural and biological diversity, and their 

secondary metabolites’ medical and industrial significance. The production of these secondary 

metabolites is tightly regulated in a hierarchical manner with several layers involving higher-

level regulators regarded as global regulators that mediate stimuli from the environment, 

controlling the activity of the low-level pathway-specific regulators that directly control the 

activation of biosynthetic genes for secondary metabolites. 

In Streptomyces, the most well-known hierarchical regulation is the γ-butyrolactone 

signaling cascade consisting of a γ-butyrolactone molecule and a cognate γ-butyrolactone 

receptor protein which is situated at the highest level of the hierarchy in the regulatory cascade 

(Folcher et al. 2001; Bibb 2005). In the absence of γ-butyrolactone, the γ-butyrolactone receptor 

protein binds to a specific DNA sequence in the promoter region of target genes and represses its 

transcription. When the γ-butyrolactone molecule is produced and reaches a critical threshold 

concentration, it binds the DNA-bound receptor and leads to the dissociation of the receptor 

protein from the promoter of target genes, thereby triggering the transcriptional activation of 

target genes and allowing the onset of secondary metabolism and/or morphological development. 

The γ-butyrolactone signaling cascade in Streptomyces lavendulae FRI 5 is composed of a 

γ-butyrolactone molecule, IM-2, and the cognate γ-butyrolactone receptor FarA. Unlike other γ-

butyrolactone molecules which usually play only positive roles in the regulation of secondary 
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metabolite production, IM-2 exerts both positive and negative effects on the regulation of 

secondary metabolism; namely, it switches on the production of blue pigment and nucleoside 

antibiotics and switches off the production of D-cycloserine. Although the function of the 

receptor protein FarA and IM-2 have been extensively studied and a model of their signaling 

cascade was created, there are still missing links regarding how they actually play their roles in 

the production of secondary metabolites. We previously found that the farA-flanking region has 

seven regulatory genes (including farX, an IM-2 biosynthetic gene) and comprises a far 

regulatory island (Kitani et al. 2008, 2010). Two putative regulatory genes (farR3 and farR4) 

encoding the Streptomyces antibiotic regulatory protein (SARP) family proteins are present in the 

far regulatory island together with two more putative transcriptional regulatory genes (farR1 and 

farR2), all of which are considered to be the direct transcriptional targets of FarA and therefore 

might be involved in the IM-2/FarA signaling cascade. 

In this dissertation, I focused on three regulatory genes in the far-regulatory island 

presumably involved in the IM-2/FarA signaling cascade. 

In Chapter 2, I characterized two regulatory genes of the SARP family, farR3 and farR4, 

which are tandemly located in the proximal region of farA. The SARP family regulators are 

DNA-binding proteins transcriptional regulators and in general act as activators for the 

production of secondary metabolites. farR3 is transcribed as both a monocistronic RNA and a 

bicistronic farR4-farR3 mRNA, and the expression profile is tightly controlled by the IM-2/FarA 

system. Loss of farR3 delayed and decreased the production of blue pigment without any changes 

in the transcriptional profile of other far regulatory genes, indicating that FarR3 positively 

controls the biosynthesis of blue pigment and is positioned in the downstream region of the IM-

2/FarA signaling cascade. 

The blue pigment was later identified as indigoidine, a pigment synthesized by a single 
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module non-ribosomal peptide synthetase (NRPS). Loss of farR4 induced the early production of 

IM-2 by increasing the transcription of an IM-2 biosynthetic gene, farX, indicating that FarR4 

negatively controls the biosynthesis of IM-2 temporally. Taken together with the model proposed 

previously for a negative autoregulatory circuit for IM-2 production at the stationary phase, the 

present findings indicate that FarR4 is an important determinant for controlling the initiation time 

of IM-2 production. 

This is the first report to show that a SARP-family regulator is involved in the biosynthesis 

of a signaling molecule functioning at the most upstream region of the regulatory cascade for 

Streptomyces secondary metabolism. Thus, my results suggest differing contributions of the 

SARP-family regulators to the regulation of indigoidine production in S. lavendulae FRI-5. 

In Chapter 3, I characterized a regulatory gene of the γ-butyrolactone receptor homologue 

family, farR2, which is located downstream of farR3. Due to the high pI value, FarR2 falls into 

the subclass of pseudo-γ-butyrolactone receptors. In general, pseudo-γ-butyrolactone receptors 

negatively control the production of secondary metabolites. Similar to farR3 and farR4, the 

transcription of farR2 is tightly controlled by the IM-2/FarA system. Loss of farR2 delayed the 

production of indigoidine, indicating a function similar to that of farR3 to positively control 

indigoidine production. 

In clear contrast of the delayed effect on indigoidine production, loss of farR2 caused the 

transcriptional upregulation of far-regulatory genes, indicating that FarR2 acts as a transcriptional 

repressor. The in-vitro analysis demonstrated that FarR2 binds to the FAREs located at upstream 

regions of far regulatory genes The transcriptional upregulation of the majority of far-regulatory 

genes in the farR2 disruptant occurred after the indigoidine production reached a maximum at the 

late exponential phase, indicating that FarR2 elicits its transcriptional inhibition in the later phase 

of indigoidine production, possibly in the transition phase between the late exponential phase and 
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the stationary phase. Transcriptional inhibition at this phase may lead to the termination of IM-2 

signaling cascade. 

Taken together with the positive effect on the onset of indigoidine production, the present 

findings demonstrate that FarR2 makes distinct contributions to two physiological processes in 

the different stages of secondary metabolism.  

All results presented here showed that the three newly characterized genes farR3, farR4, 

and farR2 are essential in the temporal regulation of IM-2 and indigoidine production. Lastly, 

although it is not easy to present a simple model for the regulation of indigoidine production and 

IM-2 biosynthesis, I constructed a new working model (Fig. 4.1) divided into 3 major phases 

with 4 sub-phases as follows by taking into account all observations described in this dissertation 

and our previous publications. 

Pre-activation phase, consist of only one sub-phase:   

Phase 1: At the early stages of growth before IM-2 production, the basal level transcription of 

farA provides sufficient ligand-free FarA to repress its own gene by binding to the FARE site 

upstream of farA, forming an autoregulatory circuit. At the same time, FarA represses the 

transcription of farR2 by binding to FARE3 and farR3, which are important for the onset and 

control of indigoidine production. IM-2 production is not initiated due to the repression of the 

IM-2 biosynthetic gene farX by the SARP-family regulator FarR4. 

Activation phase, consist of two sub-phases: 

Phase 2: At the middle of the exponential phase, the expression of farR3 increases gradually by 

an unknown mechanism while farR2 transcription is still repressed by FarA. FarA activates farX 

transcription to initiate IM-2 biosynthesis, possibly by overriding the repressing activity of FarR4 

to farX. 

Phase 3: When the IM-2 concentration reaches a threshold, it forms a complex with FarA, leading 
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to the dissociation of the IM-2-FarA complex from FARE3, allowing farR2 transcription to be 

initiated. Together with FarR3, FarR2 consequently initiates indigoidine production. 

Post-activation phase, consist of only one sub-phase 

Phase 4: The termination process. After indigoidine production reaches a maximum, free FarR2 

binds to the unoccupied FARE3 to repress its own gene transcription, leading to the initial step in 

the termination of IM-2 and indigoidine biosynthesis. At the same time, FarR2 directly binds and 

represses transcription of far-regulatory genes, including farX, leading to the complete 

termination of IM-2 signaling cascade. 

 

Figure 4.1 A new model depicting the IM-2/FarA signaling cascade for the regulation of the 

production of IM-2 and the blue pigment indigoidine. 

 

Overall, the new model demonstrates that the temporal regulation of IM-2 and indigoidine 

production is very exquisite and finely tuned. Further knowledge of how IM-2/FarA controls the 

production of the remaining secondary metabolites will clarify the regulatory network for 

secondary metabolism in Streptomyces. 
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