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Fig. 1.1 Influence of welding residual stress on fatigue strength .
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Fig. 1.2  Stress corrosion cracking due to three factors, material, environment and stress'®.
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Fig. 1.3 Influence of welding residual stress on brittle fracture?V.
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Fig. 1.4 Penetration depth for iron and beam irradiation area size of quantum beam.
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YAy FNCKT D OTHOEE YA 20 D& LTE b, IWhEEHT 22 TFETHS.
FEERL 2 20 N <, I HIEIRTH DG, 20 & sinfy ITRIEBIfRZH L, sinfy Z(bizxtd 5 20
DECOERHZ) SIS EF R TE LS. L L, HKRRCEAMBENE CIGE, 20 & sinty
ORIZERA fATL, HIEREME T 5. LUFISHIRKE « Gk X BUS I RETE~ DB
WTC, 20-sin?y iEA 2 —fil L U CREINIC R~ 5.

131 EKRHOFEE

X i Has U7-B%, BREGEIRNIC & £ D fEaki0 H1C, Bragg O 52 e L= Sk o o
IREHE X B S, FHAZ7HMETE 5. 207w, REFEANIC Bragg O 4 %1 9 5 b
RIS ZNE E T X AROTRE I L, WEREE XA B9 2. KRR VIE 21T 5 72 D113 R fE
BT ET IS 59 D ARz A% 5000 fEIE EAFAET 2 L RWE SN TWD D, LasL, HRKIAE
U724, MRSEE N OfE SRR ASAR R A L, Bragg O 5k 23 7= 4 s Sk NS5, D
R, TOBEORYT X a5 Z L 38 L <, Fig.l.5 [ZRT X 5 IZEHTA 20 & sinty & DR
RIZIEL O NAET S, IEHOENAE LT 20-sin2y FRX SR O B IEITITRRENAE T H 2 LI
5. HIKRIOREIT IR L, £ DR OFESRLO VA XIZBIRT 2 M3 2fETH Y, H
AREF ST, REERIESK 30 pm,  FRSTAEIEL 14 x 10 mm? Z ML RKRLOFEHE L LT 50,

260

sin2y sinZy
(@) Isotropic elastic body (b) Large grains

Fig. 1.5 Schematic illustration of influence of large grains for 26-sin?y diagram.
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132 SK&etBoxE

20-sin®y 1E1T w AT BT 20 O Z IS MEICRE T 20 THh D, =72 L, [l 20
OB Z I NEIHE T 5 BT, BT 20 & sinfy & ORRITHREZRELRIC 2T T 57, #EE
BRSOV SEODITFETT R DB TH L. — 77, LML Clchs, RGN T, Fig. 1.6
(R KD ICTEHTA 20 1T sinfy IZR L TO RV EZHT 5. ZORER, HRROSGE & RERIZHE S
NDITNIRRENAEL S.

[ ]
[ ]
[ ]
SN SN
N N °
[ ]
[}
sin2y siny
(a) Isotropic elastic body (b) Texture

Fig. 1.6  Schematic illustration of influence of texture for 26-sin?y diagram.
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X BUETTREEZ NS BT, MOk L ES MRk OREOMIC, 3 S RIES, FRIE O RE
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9, 3 S REIIAMEHER IS W TIMEM R ENEL 2 HBITELD. b2 dh, ER=E
THWD X 5 72 X BT B EI~DR AT 25 S 23D T <, MEMBE I OIS/ 2 JIE LT\ b
7o, X B ABEE CIEEHEIGVIREEZRET 5 ON—KATH 5. LiL, MEMREEIZ/TTE
MIDTFAES DIHEITIE, EANF OISR ST, MRERETEHT b330 53 3 #ilG IR g
(272D T L IE STV 29, 1220, 3ES AR L CTIZREC Dolle X° Hauk 5128 % 3
B I RATIE 590, Hanabusa (& & 2 MR ETPHIC I 2 2 6, 3#GIPRIED 2 T A 7V A %D
MEBREINTVD. ST, MEMOYA ZDB/NSWGE, 3 M HREBIFAE TRz %),
— AT AEIE RO 2t B & T 57 01X, 3 S IENA U S AlgetEiEn & & 2 b
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WAZ, FIST) OB BN EE O G T HEEIE L L. BEOMEET DMEHT X # 2 TR
FUTZ5E, SMIXERZR D CMEREE A3 5729, Fig. 1.7 ISR T X212, B2 EPA BT
SR ARG DD . ENENOBEIPTIRE R 515 DA IS NIEFITENENIND DT TH
D, IR EMEN D, MISIIEM BRI 5~ 2 a RSN HBOMEERIC L 5 7 vl
IETI(NEE NN EE LIS TH D7, w7 alEhid—% Ly B9, 2o, HEO
FADMFAET DAENT R L X BUS HREEZ A2 558, JE RS R OIWEe 2 FLIE ORI E R R & —
L. MIGAOBBICH L UIEARIPER SN TR Y, SHOIG & RN D~ 7 nigii
NRTEHND Z ENFEBRITIEH S TWD B850, 72721, IS OFENEEIZH A DL 2FH A
TV AHD KO IZEMHDERNIEWIGE TH Y B9, T OR(IEHDOEGE L 512, 52 FHOMKEH
NS VEAITIHIE L A CEE LRV O, 207, — RS M EOBEBEIC W THIG
DORIEEDE U 5 A RMEIEW T 72 n e B 2 b s.

400000

ferrite (211)

Cr Ka 0.229100 nm
300000 | Cr KB 0.208487 nm

200000

Intensity (count)

100000

austenite (311)

145.000 150.000 155.000 160.000
20 (degree)

Fig. 1.7 Diffraction peak from the composite material composed of austenite and ferrite.

Vb X 50T, 3SR &ARIS S O RTBUIE X #RIE D HEE 2 IV 2 TR R AR &
[FIRRICEE % iim S AL D25, T b O RTED — R 7o i3 A B OB HERIC I W CRIBEIC 72 5 P REME
i, HRRREAMEMEDOG A LD E/hESNEBEZXLEND. 6T, Z0 2 >ORMBITHIERE
AR B2 527, SIS HMT-CEHE RN &0 HIER R 2 B Uikt 5. —FT,
FLKL & AR AR T ERS IS EH S DT H Y, WERDT —Z 2 BT 5 Z & TR
THILIFTE R, 61T, MR L EGHBOMBITEEM TLTECLLIMETH L. 20T
B, X MRS IELE 2 R U Cl A 32 L CEIERICARR 9~ & BB IORL & £ ARk~
DIREF A D, €I T, ABFETIIHAKRR & ELEMBKITER L TR zED 5
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14 KR - KREHBZE T EMHAD X RS HBIEEZDERICA T -EEDHAR

141 HMRMZET DMBIZE T D X RIS HBIEE

FARKLZ AT 28BN U TIEENESRE SN TV D, FEEIOEFER S LR F# S
B2 L TR EORKMNEEZILR S, BEHTCH ST R 2 EINSE 5 2 & THIERE D
M B2 9 FETH D, fZENEIT AN X #fRdhs &R EEIC I S.

A X SEEENEIL Fig. L8 IR K 9 I AN X A EHIx L CHREI T2 HiETh 5. B4 8)
NIRRT LD RBDOEEREED S L COBEANRETH D, L, AR XBeF#hsts
7D DRI T =F A= BLETH Y, PHMEICXITS.

Incident X-ray Reflected X-ray

~
N

N
N

Specimen

Fig. 1.8 Schematic image of incident X-ray oscillation technique.

AUBHRENA ORI LAtk 2 28 S ¥ 5 516 TH 5. Fig. 1.9 (), (O)ITRT X 512, #UEHEE)
BB 2 BN T EATBE S L < BREsSE 55k s, mA T IR S ¥ 5 HIEICOESh
5. Bl T =A4 A =235, WHNRFGIETH Y, ITFEOISRIEEE I SRR ICEA
SNTWS. LrL, Btz S5 08N H 5720, RIMORBREIIS L TIEH 2 NETH
5.



Incident X-ray Reflected X-ray ~ Incident X-ray Reflected X-ray

Specimen Specimen

(a) Plane oscillation (b) Out-of-plane oscillation

Fig. 1.9 Schematic image of specimen oscillation technique.
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EHLTBY, FEEOEEZHEL TS 19, £7-, Miyagawa b ITEHORE# MG HE
A FEENEZ R 150 um DM KR Z AT D4 — AT A FRAT UV AHICHEA L, &HER
XIS HHE 2 FER ST D )., 512, Saito HIEHPE TS HEIEICTREIEZ A L, f&K 1mm
DHKRIEHAT DTV =0 ABEDIEHEEIT> TN D ),

LLED X 91, KRR L CIHEBNESIRE SN TR Y, MBI 56 U7 R Bk 4
T 5 Z & TRIROM AR OBEITMR TE 5. S 61T, HNREIZERTIE, FRENEITG oS0k
RBROFEZIZLEAEZITT, IROICHGIZEDLLTHEADN AR TH L. ZDD, EHEBIZAT
HHRHLUZDONT S, 20sin?y IRICERENEZ A A DY D 2 & & FARIC I L7 T & T
THZELETRILTEDEEZEZR DD,

142 KEHMBZHEITOIMMICET D XRICHREZE
AR LTI 20-sin?y JEIT8 D D IS HIEER B WV < O RR STV D, LIFICZIhE
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Fig. 1.10 26-sin?y diagram from different diffraction plane®.
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Fig. 1.11 26-sin?y diagram from different diffraction plane in texture™.

(d) BIEEHICEC-EEEREERT HFE

Kurita & 138EAMAEZ AT 2 EHIx L, 26-sin?y 520 L72BR 0D 26-sin2y FREDZEIZ-D0
THEL TRV, WENS, BESRMFICG CMEERE M2 FEEZRELTVWD P —RICE
Bk E AT MBI OSE, & w MK D EIHTA 20 13 sinfy 12k L THRFT D23, % 513 20 & sin?y
& DRARIZH Ui/ ZRIEIC L > ThH TR EMOAELIL, ARG E & b ICERICENT S
ZEERLTNVD. SLITEEDOAR ZINZTZEED 26-sindy BRIX O E DAL BARD X BRI
AR, PIESRME, WEMGITIE T D X SEEEER A EMN T2 2 LT, AfS L3
U2 2 2R LTS, ZOFEEZAVIUTESHEREZ AT 2B O5A T b IEICIG )
FHBAFTRETH DA%, WIESLME, WIEMRITIE U X MRAUIEEE B — T 2 0 ER S 5. &
DEZITE, b L<ITA—0RGMMEZ AT 28Y o 7 i b ol izl 4 fff 3RO 72D 0
R ZAFRT DL ER DD, Eiz, BHEMICEN T 258, WESRMFITHIROME, ik, HE
RER O IR 22 & ORI & 0 HIE Z LB T D720, ILORE LI FIEEL BRI L T2 D

FHEAT L0 EZBND.

_13_



- 0.25+ ane
161.2F 5115304 (220) plane o0 SUS30+ (2e0)plane
VK a radiation 3 VK a radiation
161.0F Applied stress s o
: g 7o, MPa £ ¢ 95% confidence
56 P 2 0 g interval
S 1608} ° ¥ 42 S -0.25
g 84 >
= 1606k ?5% confidence 127 "‘E ~0.5F
§ | interval 170 -
(o]
= [ Maximum « 210 o
. & -0.75¢
& 1604 I Minimum 70,
]602'— 1 j I— 1 1 1 i 1 1 _] 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 0 50 100 150 200 250
sin? ¢ Applied stress 0, MPa
(@) Relationship between load stress and 26-sin?y (b) Relationship between load stress and slope
diagram of 26-sin?y diagram

161.1F SUS304 (220)planc
VK a radiation

161.0

T

160.9

T

; ¢ 95% confidence
interval

Intercept of sin> ¢ diagram N, deg

160.8

0 50 100 150 200

250
Applied stress I, MPa

(c) Relationship between load stress and 20 at =0

Fig. 1.12 Measuring of X-ray elastic constant of texure’.
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Fig. 1.13 Flowchart of this study.
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Fig. 2.1 X-ray diffracted from crystal satisfying Bragg’s condition.
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Fig. 2.2 Change of the lattice spacing in the polycrystalline material.
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Fig. 2.3 Coordinate system of stress and strain direction.
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Fig. 2.5 Principle relation of stress strain and orientations in single crystal.
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Fig. 2.6  Averaging lattice strain in polycrystal metal.
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Fig. 2.7 Axis distribution charts representing the preferred orientation in specimen.
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Fig. 2.8 Schematic illustration of determining the value function of crystal proposed by Honda.
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Fig. 2.9 Rotation in the definition of Euler angles.
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Fig. 2.10 Transformation vectors from the crystal coordinate system and the specimen coordinate system.
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Fig. 2.11 Schematic image of scanning crystal orientation.
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Fig. 2.12 Definition of the specimen coordinate system.
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WIZ, AOTZEE{hKI}OERRAS 7 SV % P(pipaps), [EIHTH OUEMRR Y N VIZ B E 72T 5 O BT
N7 MV Q(ube0s) & 35 &, ERRST ML P(papapa)lZEL FO L HIcFRS D,

p, =h/Jh? + K2 + 17 (2.54)
p, =k/Vh? + k2 +12 (2.55)
p, =1/Vh? + K2 +12 (2.56)

¥, N7 FVP, QIS RIZKIT DT FATHY, 5507 Euler 4 (p1Pp2) % W TH
NT MV RBEAR R I B A 5. ZORy, BRI R~ DEIEABITII R IZLLTO X 512k
SN5.

COS ¢, COS ¢ —COS Dsing, sing, —sing,cosg —cosdsing cosg, sSindsing
R=|cos¢,sing +cosdcosg Sing, —sing,sing +cosdcosg cos¢y, —sSindcosg,
sing, sin® CoS ¢, sin ® cos ®

(2.57)

Z DOJEFEIEEATEIRIZ XY, Fig 213 (2R T X S ITHWZEHTHE OERR 7 Fb, KT RLR
B R ICE R END . T ORF, JEIEZSHAEE OERR T SV P (p’p’ps’) & X7 MV NGHIET D
OTHDOFHM) D BT DN ENEHERT D, ok, X7 MV PEXT MUNDB—HTH L,
JEREIS A% DAL MV Q (qrq2’ds)) & Y #il & D723 o 13RS OlElER A KT Z O1E¥E% EBSD
IZE > THRLNATZT X TORESRITK LTI, X7 bV PPERT FL N BR—ET Dm0 %
[FlAf T L ICRER L, N7 b P, N —ET OREMOBERET 5. kIS, FEEI- TR
DI % BE R ORI TR 5 2 & THMOFIERESEN R E 5.
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Z(001)
P’(py pyp3)
N(n;n,n;)

5 _
'f%% N
AN Y(010)
Specimen pN
‘ / 0'(d,d,d5)

X(100)

Fig. 2.13 Transformation vectors from the crystal coordinate system to the specimen coordinate system.

B) R LMILPEARY KILND—HBEH

LRI R & U CREEZ WD 7o), EEEAHAL DIERT MV P L7 PN LR —E§
DO HBN T FRENE DB L ZBE T HMENDHDH. £ T, X7 MBR—ET 50 EN0H
WHIRD & 51247 9.

R MO —BEMERT D10, LWL DIEHT MV P (prpps) % Yl e ~27 LN %
G E(LLT Y-N ) BICB T 5. Fig. 214127 M OFREDOA A—VhERT. £7,
NLVP % Y filiJE 01290 — w deg 72 AR S 5. KIZ, BHEZONZ hLZ Y-N Vi EIC#E
L8, ARG OR7 MV N &Y filiE ST EE T XY FEE B LTV DH I, BEHORT L
P” (pr7p2"pa” XKD L S IZRKEN 5.

p", = p’,cos(90 -y ) + p';sin(90 —y) (2.58)
P, =P’ (2.59)
p;=0 (2.60)

BAZIZ Y BE D12 90 - wdeg 72 WiAME S5 2 & T Y-NEii EIZ_7 VP EERE LT b
VP (PP P )G ZEMNTED. NI MVPPIILU O L Y IZERIND.

p", = p"; cos(90—y) — p";sin(90—y) (2.61)
p",=p", (2.62)
p"'y=p";Sin(90—w) + p"';cos(90 —y) (2.63)
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ZOBREHDRY MV P LY FUN ORT A% B, FRBHEIEER IS S OB RV
PLEELEDONT NUPDed iy b35L, Z0D2ODHENRRT MUR—KT 0B O
FIWTAT R 72 5.

ZC, X-Z VR EE Y-ZFEH ETENT N 4 & 0o ODRESOHEIMEENEZIT S & LIZGA, i)
DRE ST EHTNCHFE ST Df@mMAENT 5. 207D, X7 ML P ey ML N O—ESEMIC
bulollltRREeRE0E DL, AETIEIBR o AT THY, 232, y Bull TTHD
a7 VP X MAUNDB—ET D& LT,

Z(001) Z(001)
P
N P

X(100) Xa00) ™
pivot on Y-axis §
-
Y(010) ¥(010)
J
90 - y deg
project P’ vector on Y-N plane
zoo1) o Z(001)
7|
X(100) ™, X(100) j
" pivot on Y-axis P
-
Y(010) Y(010) 1

Y
- (90 - ) deg

Fig. 2.14 Project P’ vector on the Y-N plane.

2.4 1EHSIREDBEBADETHMROER

fREN{EPR LU Honda & O FIELEBEBICEM L, MIEHER EEBEBICE U s N2 ik 5 2 &
T, KL - AR 5 AT RIS L CH B FTRE TH 2 it 5. AT
£, LEUSTRIRBOBEEERIC S L TR 21T 5. WIEBIERE OIS 2E L S 5720, AER
TR EARE DR GRG0 A 200 L, 4 R BRE21TS. S HIT, WEER
(CAHZEREANAE U DAk & A2 U2k 2 A, R O J 72 2 BRI 637 2 Jed T R O B0 R 2 s
T5.
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241 XEREIF
(a) HEMHEB LU 4 SFHES

VRBERF IZARZSREAN A U D BEE L CIR BRI I EAESMES SMA90YB %, FHZSHEA A U7e W kL &
LTHA—=RTF A FRAT L AH SUS3L6L & Hv 7=, Table 2.1, Table 2.2 {Z SM490YB D1t i
Rk & HERI R 2, Table 2.3, Table 2.4 (2 SUS316L O AL2EFA AR & MR AVREIE 2 7§, TaRstBRIk o
SHAIZ 100 mm x 150 mm x 6 mm TH V), SBRIET R E— AT b— b 2T o 1o AR,
WHEEDT 100A, 7—27 K 3mm, v —/L RH AL Ar, HAFEEIL 025 s THDH. EWHEHEITES
RN AETRLTNE D Lmmis & L7z, EHHEIZ GTARE TH Y, EMILER 2.4 mm Offix > 7
AT UL, ZEHLESIE3Imm & Lo, B, Fig. 215 12T K 918, Stk X
IR T E R TN 8T 25 L 51 4 S RB T 2B U7e. 4 S sBr o~HEIX 10
mmx60mmx2mm Th v, EE, MEHEHIOT AT =220, 2ods, 4 5l
BR O BN AR RIS /)23 10 MPa Kiii T 5 Z & Zfifgsd L T\ 5.

Table 2.1 Chemical composition of SM490Y B used. (mass %)

C Si Mn P S
0.15 0.25 1.42 0.02 0.004

Table 2.2 Mechanical properties of SM490YB used.

Yield stress (MPa)  Tensile strengh (MPa) Elogation (%)
597 506 22

Table 2.3 Chemical composition of SUS316L used. (mass %)

C Si Mn P S Ni Cr Mo
0.014  0.69 1.09 0032 0.005 1213 1742 206

Table 2.4 Mechanical properties of SUS316L used.

Yield stress (MPa)  Tensile strengh (MPa) Elogation (%)
260 538 58
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Four point binding test specimen

N1
—>

100
unit: mm

Fig. 2.15 Schematic image of four-point bending test specimen.

(b) X #RFS BIE &

X i I E G % Table 2.5 1239, X #G AHIEIZ X Rigaku £H8D AutoMATE & Vv, X #
FESHPEIIIE A Lmm O3 U A —Z 2 X O HIBR L7z, B X #1% Cr FERD Ko #% AV, [T &
L T SM490YB (=%t L CTid{211}fi &, SUS316L (it U Cix{220} @ & FAvy, JIE XA 48 E ok
2% L TIT o7z, Table 2.6 IZ WV HfE S L 7T 4 7 0 2 B8O L X RIBMEES A R~T. X
BREOEME ERIE, RS o T T A4 T A L Kroner BTV X0 RFES o 72 EE AV, £z,
FENEL LT, +1deg DIIMAMEE) & IAHER T B ~Dx 2 mm O NEEE & M A - S e Ehis
ZEH L.

Table 2.5 X-ray stress measurement conditions.

SM490YB SUS316L
Wave length (nm) 0.22911 0.22911
Diffraction plane {211} {220}
Collimater (mm) 1 1
Measuring frame (frame/point) 10 10
Measuring frame (s/frame) 300 100

Oscillation

Analysis model

off-plate + 1 deg
in-plane + 2 mm

26-sin’y method

off-plate + 1 deg
in-plane +2 mm

20-sin’y method
Honda's method
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Table 2.6 Mechanical properties for X-ray stress measurement.

SM490YB SUS316L
Elastic compliance (TPa™)
Su 7.622 9.839
S -2.795 -3.86
Su 8.584 8.403
X-ray elastic constant (Kroner)
X-ray Young's modulus (GPa) 223 209
X-ray Poisson's ratio 0.28 0.28

(c) 4 mehIFHBREEREH

4 g RBRIC X 0 250 MPa £ TOHAMTA 50 MPa Z LTI A 7=, ARG 4 38R I &
DARENTZOT IR Y 7R EFR LD ETHEIHL, Y 7 3E SMAOYB T
I3 220 GPa %, SUS316L T/ 193 GPa % v 7=.

(d) EBSD IZ& B#E&RARARTSEMG

FAREI LR, B L, fESOFEEMESR % EBSD (2 Xk » TIRET 5729, Fig. 2.16 12~ X 912, EBSD
M ORI 2 B EERBRIR L V1B U7, BB RIT 4 Sdh 5B f 2 ER L7 sBIR L R — D b
DTH%. R OBIEEIZK L 400, 800, 1500, 2400, 4000 & DOWFEEHE TIRAMIELZITV, T
D 20 WlilE A % 7 — V& FWCEMIIE 21T > 72, WHEEEIZxE LT EBSD (2 & 2 #& &b A AL ARHT
AT, fEATEEDO AT » 7 A XL 3um & LT, F7z, fESLOIFEMROPE L SUS316L D{220}
il & {311} 2 X RUTATVY, B L EHFEICK L TCHIRETFELEN TE L 2 L 2l Lz,

Specimen for EBSD analysis

N

Scanning area

10

Specimen for structure observation

Scanning area 5

N\

10

100
unit: mm

Fig. 2.16 Schematic image of specimens for EBSD.
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242 EERHER
() BHEDOMBBARER

Fig. 2.17 | ZIABE I Of5 S AL A X %, Fig. 2.18 ([CH S & /R d-. IRIEERF IS RENE U D
SM490YB Ti¥, Fig. 2.17 (@I K 91T, EEEERIIBOM 72 i dih & 50 um Z 8 % 2 MK 72256 Slkz
PIRAEL TS, F7z, Fig. 218 @IIRT L 218, fEMGIIET v & DepAi L 720, HIRBLO A
PFET DI TH L. — 7, WHERICHARRD A U72ey SUS3L6L T, Fig. 2.17 (b)IZd &
AT, FERCHLR R RIS KR4y 2 00 TV D %72, Fig. 2.18 (DS & 5 12, a7 013 [100]
FHICEIE L TH Y, HUAK &AM TR L Th 5.

Surface

e DR o

5 i 4 .‘_}_" Py %
bt ., At - ? ¥
q i .‘:' g . ‘,'? s

47‘1 :

el f
! T
(@) SM490YB

oA 101
(b) SUS316L
Fig. 2.17 Inverse pole figure map in weld metal.
1711 111
[001] \ [001] & g!
o
oG T
L : "' =
t * »
- @ )
001 101
(@) SM490YB (b) SUS316L

Fig. 2.18 Inverse pole figure in weld metal.
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(b)) BREFERICE>TRESN-BEROFEREL X REIHTEED HLE

T DIFERERITE ML OFERN EOBREFEL TWDENERT T AL ThbH. £i7, X}
OEHTHREIIEPTIZ TG T DR OENZ NI ERE 5720, MEOGFIEME L L v AT
T D X BREHTREICIIHBEA H 5 Z LA O TH D, £ 2T, ETIEIC L » THRE SNk
DIFAERESR & X BAETERE D 21T o 72, 7eds, XRREIHTHEE L6 S ORI BAR 72 <, FTC
FETHTXTORMENODEFTOBRIITH H7-0, WH % T 521X, fEfmOFIEfERE SN
ThitdnDEIERZ B, RITNLOR S OFIEMER ORI & Flgt L7z, SUS316L O Hea &l
JE Dk S DO TFAEMESR b X FREIHTIRIE % sinZy THEFR ULk L 7-#5 5 % Fig. 2.19 (2~ ¥. 728, Fig. 2.19
(a), (0)13{220}if & %412, Fig. 2.19 (c), (d)IZ{311}if & *IRICHE LI-fE R TH 0, #bihOFIEMESR
& X BREIHTREE OFHHALEIZRI L Th 5.

Fig. 2.19 (@) £V, EEHRIT M CII{220}E O il OIFEMERIL siny = 0 & 0.5 (I TR 22 fE%
RLTWD. XHREFTHRE S FEEIZ sinfy =0 & 05 fHE CREREZRLTEY, MEITRE2—
HAERLTWD. E£72, Fig. 219 (b) £V, TEEERRE A H 2BV T H{220}E O s O A EER & X
FRIBIFTERE N Z NN R E 2 R T AEIXIRIEE L <, M OFEMESE & X BRETE L 1A X
ICBW—& /R L TWA. A, Fig. 2.19 (¢), (IR T {311 E OFE RICB W T, B 72
EM—HLTEY, HfhOFEMERE X BREEEIIAETIC RN —HE2 R L TWn5.

LLbED X512, B HEHHEICEW TS, EFIEIC Lo TRE SN iEd O FEMER & X #tE
ProREE (TR — B L TR Y, MEFIEIC L VR OTFEMREL B CX /2 Lt 5.

X X
0.025 210* 3 0.1 2510°g
_ @ X-ray diffraction peak intensity l :_ —_ @ X-ray diffraction peak intensity :_
S W Value fraction of the crystal Eﬂ 9 M Value fraction of the crystal =
£ 0.02 = © 0.8 =
5 15103 5 3
g = 8 =,
o o

c ! <
$0.015 1 > = 006 3
° o
° 110" ° a
c ) c o
o ~ o ~
S 0.01 = S 0.04 =
3 :
= 5000 > = >
a) @, @ Q,
So0.005 Z S 002 Z
S 5 = 5
8 8
0 - - 0 c 0 = == c
0 0.1 0.2 03 0.4 0.5 S 0 0.1 0.2 0.3 0.4 0.5 =]
) = 2 G}

sin“y sin“y
(@) {220} longitudinal direction (b) {220} transvers direction

Fig. 2.19 Comparison of value fraction of the crystal and X-ray diffraction peak intensity in weld metal.
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1 7000
@ X-ray diffraction peak intensity

1 7000
@ X-ray diffraction peak intensity

W Value fraction of the crystal
0.8 - | ]
N
\

-1 6000 M Value fraction of the crystal _| 6000

0.8 -

-{ 5000 -{ 5000

0.6 -

4000 - 4000

3000 04|

2000

-4 1000

Value fraction of the crystal
Value fraction of the crystal

0 0.1 02 03 0.4 05

0 0.1 0.2 03 0.4 05

(quno2) Ansuaiul yead uonoeaylp Ael-x
(3unod) Ansuaiul yead uonoeayip Ael-x

sinzy/ sinzy/
(c) {311} longitudinal direction (d) {311} transvers direction

Fig. 2.19 Continued.

() 20-sin*y EZZERAWVIRD X RIS HAERER & BFES N OERF

4 FHNTREBRIC L VLB OAW N X, FEENEE o 20-sin2y YEIZ X0 G HH1E L2 B lE
FE R L ARSI OBMR A Fig. 2.2 125, 7238, Fig. 2.20 (a) 1 LI EHE 5 & A 110 B4R %, Fig. 2.20
()X ERER & ARSI DFEE R L T 5. SMAYB & SUS3L6L TIERE < BB kEREN b
TW5.

Fig. 220 £ 0, SM490YB TITAMIG S DK E SIZHhi 57 20-sinty 1512 & 2 JIERE F & Afir
JENTI BRI B L TEY, RERZETL 20 MPa K Th-o7=. —J5, SUS316L TITHIERHE &
BARISINIRELSTHEL TRV, ARISHINPKEL RDITONTEIFIREL 2oTND.

PLbED X 51z, MRRIOZNAE L Tz SMAOYB Tit, fREhiEE WD 2 & THIEHEE N M b
L, X ARIEIC & 0BT Ui & IEREICEHI C & 7o, — 07, MR & G EE:
L7z SUS316L T, fEENEAEA L TV DI bbb T HEREOM LITMRATE 2. 20
728, FEEMBIKT D BEEO IR, EEHEBENELD5E, BIHEL VTS 20-sin%y
B K DI PENHR RN LIFA 60 Th D, £ 2 TIKRIZ, SUS316L DOEEHERIZ%T L Honda
SOFELBEN L, D TS &7l L7z,

_48_



300 300

_ i
= B SM490YB = S B SM490YB
%% ® sus316L S S .50 | L@ sussieL
&= 200 1 - 5 ~
X c - ]
2.9 = £ © 200 |
25 100 L .- c 2
92 e’ ]
2 % %J 2150 |
> pad
3T Of o x
g c ﬁ T 100
@ 5 100 =
8 o B [ % 50 |
= C L O i
n o E = R

-200 PN R R R R R av o oy oy, - -m
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Load stress in longitudinal direction (MPa) Load stress in longitudinal direction (MPa)

(a) Relationship between load stress and measured  (b) Difference between load stress and measured
stress stress

Fig. 2.20 Relationship between load stress and measured stress by 26-sin?y method.

(d) Honda >DFEZALIED X #I6HAEER & ARFEHOBEIE

Honda & M FEIZ LY SUS316L @ 4 sl FRERA R 2 ekl L7z, 7Z2ds, MIEOBIZITRITE
RIS DFEN AT > T D, 20-sinfy ETHIE L7cfER & Honda HOFIETHIE Lo/ RE
Fig. 2.21 2779 Fig. 2.21 £ U, Honda & O FikE WG, HIER S & ARSI D753+ 25 MPa
Kl & 720, 20-sin?y EZ BT L7e a2, HIERERRE S WHEL TVD Z LR TE 5.
DFED, MR L LA E AT 5 SUS3L6L BRIV T, FRENE L Honda B O Tk Hv
52 LT, XBUSTEEIC X0 RO RIC ) 2 EMEICTHMECE 5 Wi 5.

300 300

® 20-sin?w method
O Honda’s method

® 26-sin?y method _o
O Honda’s method o
200 P

250 |

200 |-
100 ~~

150 |-

100 |-

-100

a1
o
T

o—
o o -
-200 L I I 1 [ Y 0 N St A T S
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Load stress in longitudinal direction (MPa) Load stress in longitudinal direction (MPa)

stress and X-ray stress (MPa)

Stress measured by X-ray in
longitudinal direction (MPa)
o
T
K
Difference between mechanical

(a) Relationship between load stress and measured  (b) Difference between load stress and measured
stress stress

Fig. 2.21 Relationship between load stress and measured stress by 26-sin?y method and Honda’s method.
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25 ZEILNREOBFEHANOLTHMEDER

AIET I, 1 ST RRREDEERIC R LT, MRR.ORZH T L WIS ITmENED, FRL L
EEMBAE AT 2EBETICITEENE L Honda © O FEZ ARG DY HIEPRIRNTHLZ L %
ARLTz L, —RICEEEIIZEIG T RRBIC 2 0 0T W e, EEHEE OIS IRIEE & LT X
JETTRELE 2 W 7221, SIS TREEDIEEEI T L T S D FIEIC L - T, HEES
Honda & DTk & RIBRONRDGE ST T2 570,

ZIT, EENAICOWTIE, AS X BREENE & EAMERN IR OISR OZEZ 1T L A T
T, ERNREE L AROGREEZBEETVTERARETH L. fIE, = RFEFr 7 L— b afilT
U 7 MRS IR Tl BRI ES R T AN Ui J) D E WIS A U D T2, BHaR 7 st
LIFERRBI 2N A D 2 3RS, D7, LS IRRE O FHEER I3 LT b fR#hik I3 I RE
THY, WHEMICACDMIRLIRmENEIC L VAR TE 5. —J7, Honda & O FiEIF 1 s /JIR%E
DEAMMEZFRIZLTE Y, ZEUSTIREBOESMMRIT S L TEADBFRETH 2 0I5 &
NTWRW. £ 2T, AHEITIHMEEOLEIS IREOEGMkZ A D e mIi L, s/
RREDEEEEERIZ KT L TH Honda & D F{EA M TE 20 85T L7,

251 ZEISHREOEEHEBEET HHBRFOER

ZHhSIPIREEDE SRR Z BT 2720, AWFE TITEEHERBA) Ak L7z Lz 3B A & Hv
5. Lz R IE LRSI L > TRESNEHBRIETH Y 29, Fig. 2.22 (- & 918, RBED L
OB 290 2 & T, W GT IS OIS I DBIER SRR 2 E T2 2 LR TE 5.
S HI, LziBRATx U, 4 Sl sBRIC & 0 R E A T AR 2N A 2 2 & T, fEEDIRT
IWHREDES MM A A T DI 2T 5.

2

K7\

100

100

unit: mm
Fig. 2.22 Schematic image of Lz specimen.
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252 EREH
(a) LzHBRFDERL

Lz Bk 2 ek K 0 Epk L7z, EEBRIKIT A — AT A FRAT L A4 SUS316L (2
HLE—=RA T L= &2To7bDTHY, 24 BiLRIUEMETTERLE. Lz BB o-Tk
1% 100 mmx 12 mmx 2 mm T Y, {EpktL, Fig. 223 1077 X 912, BESBIICOTHRTY —V %
B0 D7z, Fiz, BWHREERTICREY M0 A7 =G, RIEHICEE T D8R R Ok
FiF-130MPa TH D Z L 2R L TV 5.

et

Strain gauge Measurement point
Q Z o [[ = Iﬁ = ]]
| @) (@) l —
t Load t Specimen - Strain gauge -

Fig. 2.23 Schematic image of four-point binding test.

(b) X RIS RIESH

JETTRIE DRE, KR & U CRENEZ V25235, ABIWER L7 Lz 3B TRy mic
FEFEDNE L A BT, WWHERRENIATHT, £ 1deg OHIMEEN D AZIT > 7. MOPERMAIT 2.4
fHiERLTHS.

(c) 4 =EhTFHEREY

Lz 3RBR T VBT, TRBERRIE A 7 MI21- 100 MPa FRE OFR RIS I 3 R Sz, £ 2C, BEE
ELA 7 A 100 MPa #iitg D BAM A M2 7203 6 X RIS K D HE &2 IV, BEHEHIE M 5 )
D 20-sin?y FXOMEZ ML 01D 52 LT, 2 LT, 20-sin?y SKOBEZMIFTF 0 & 725
Gl FEUELC 4 ih TR BR 2 BHAG L, 50 MPa, 100 MPa OfifEEZ 1z 7=. & LC, Fig.2.24 |2~
KON, VEEERELA T TN AR ) 2 N 2 T BR OB EERR DT W) & B BEHRIEL A J7 [/ O )& /) % Honda & 0
FEICE VI L2, ARSI 4 ST REBRIC K 0 AR SN2 O T AT e v o 7R 2 T
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HZ L THEEL, A 7 2L 193 GPa & AU,

Load stress Load stress Load stress Load stress
= =\ ‘ NS NN
%| Z| ]
Measuring stress by X-ray X Measuring stress by X-ray
Measuring longitudinal (x) direction Measuring transverse (y) direction

Fig. 2.24 Relationship between load stress and measured stress.

253 HERFER

Fig. 2.25 ([ZIRBERR ST IR )G 11 % Honda & D TFHEIC L 0 340 L 7-fE 4, Fig. 2.26 (ZIABSRRE M )7
[ DI % 5 L 72 B2 7R3, 7238, Fig. 2.25 (a), Fig. 2.26 (Q)IX& ARSI 2 HIER R &
WREEER OIS I OREfR %, Fig. 2.25 (b), Fig. 2.26 (b)IX&A MG /I 1T BB ERE R & AR DI 1D
Feh ENEINRLTND.

Fig. 2.25 X 0, EEERE A HR~OAMIS 5 0 MPa TH 5854, Honda H O FiE%E WV CIER:
MRITIE) DI S % Al U7 SR, IR OIG 1 S 1ZIER U-130 MPa 2 7R L7o. L L, IREERRIE A
TN S35 % & JIERSSL1%-100 MPa Bt 271 L, BRSSO ) & B 7e B % 7= LTz, RERIS,
Fig. 2.26 LV, IAHEREMA T ~DATR 23 0 MPa TH 5854, Honda & O Fi5% VW TIRBERR
B A8 S5 1R DI 1 % 5l L 72 f5 31 0 MPa 2 7R L7223, ARSI KR E R DI2o4, HERRITA
P ST E 0 BIRVEZ R L, ARISHNBRELSRDIZONT, EZFRE< ot

PLED X5\, LS kB Z A4 & L7z Honda & O L TIEZ S NIRIEDE SR E AT 5
R )G T 2 IEMENZ AT C & 7Zpp o 7.
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€ 5 -100 | e
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w :.: C (ﬁ
02 o)
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- Mechanical stress in longitudinal direction E s
-150 . 1 . 1 av o L 1 . |
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(a) Relationship between load stress and measured  (b) Difference between load stress and measured
stress stress

Fig. 2.25 Relationship between load stress and measured stress by Honda’s method in longitudinal direction.

150 50

40 |-

100
30

20

a1
o
T

10

stress and X-ray stress (MPa)

Stress measured by X-ray in
transverse direction (MPa)
Difference between mechanical

L A 0 1 1 L 1
o = 00 0 S 100
Load stress in transverse direction (MPa) Load stress in transverse direction (MPa)

0

(a) Relationship between load stress and measured  (b) Difference between load stress and measured
stress stress

Fig. 2.26 Relationship between load stress and measured stress by Honda’s method in transvers direction.

26 XBISHAEEZBERIERAT 52 LTORE

24 HiOFBRN O O o7 K 91T, 1S PIREEDTEHEE I L CIddEEE & Honda &
FIELZBEM TR TH Y, MK Z AT DEHEEICS L COEEEL VWD 2 & T, MR L EGH
WA AT DRI L CIEEENE & Honda & O FikE V5 2 & T, XHRIT K D06 710E 23 vl hE
Lipolo. E6IT, FBEHAITIROISTIREBIZZE S LW, WHERICA T 2 M3 fEEhik
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EHWAHZETHRRTED EWVWZ D, LvL, 25 HIOFERNHLH LN/ -57-X 512, Honda ©
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S LTc. FICAETHE N R R 2R,
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31 #¥E

RTEIZ BT, ZHIGIPRIEO LA A A 9 2 BHEICKT LTl Honda & 0 FiEA AT 5 =
CIIREETH D Z E AL L, WHEMRICK LT X BUSTTEEZEH T 2 72 0121%, Zflis 7
WRBOEGHEMIZIB T DI EEOHEPN LI IR THDL L anRm L. £2T, KETITF
Ik O B DE 207 2 VEHIce L CE A L, 2l /P REE O LSRRI e LT b @ A3 AT he
B LW X BUSTTRIEEEERL T 52 L2 B 5. 7, 2SI PREBOESHMICE £ 2 bk
DEFEIZONT, F2EEFEL Lz B 28 H LR 21795 . £ LT, fMahoZREE 4
EB LI LWISHRENEZ S, SIS RIEOE SR Z A9 2 % LT b 23 AT he
AL X BUSHETE OS2 ik 7 5 .

32 ZHMNANENOERSHEBICETINLIBRAUOERERICET SR

PRGSO A L0, X BRI BEE IS & N 2505 0 T oW © X BREHTIC T 53 5 # Skl
PHETH0THOFEHETHY, XBEHTTHOLNLIOTHE BT L. ZOFEKTOTHES
259 2T, MERERIIINb S~ 7 vt « OFHE X BUGHHEE TS D X 7 v gk
7+ OFHOBIRMEICOWTHRE T 2 Z L REETH S, €2 T, LEMKICHEND 1 2D
BLOEFEICONTEZ D, FERALOEEECONTEZ DI 2T, EANREZHFEL T2
DDETNADPEAXRNOND. —T5E, TNTORMEBRO I 7 n RSN~ 7 n st FE L L
T 5 Reuss EZNMVTHY, b 9—FHiX, TRTOMBROI 7 a20FTHNR~ 7 velOT e
LWET 5 Wigt E7/VATHD. ZDEE, TNTNDRED S & TRD b~ 7 m7ppiezs
ISR IROEMERE O ER, FRERD I 1 HES I REEOESMkIC L TX, 4HET
[ZHET V& VTR BBECATON TE Y, 1 HEls RO E SIS Eh 5kl 0L
ZB) X Reuss BT /VICHE D LT DHFRRENMIT LA ETH D 4D, 2w Tih /=X 512, Honda &
H Reuss E7 VAL TEY, HOEDREFIEIBNTS 1 DORERLO T A & 7 O3
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LU, ERROBEHIT T 1#ESREBOESMII T2 HF TH Y, SIS /IREOES
MRCH T 2 REHTI 2 E TRYATZ B, 2 2T, WEEIICA U S E AR ZHhis o3 b -
T BEDFESRL D ZETEZEENC OV O IRET 217 5. MEt T, 55 2 mEE RIS, EEsliRikn» s
TERR L7z Lz B 2 W 5. Lz BRI I BT 2 N 2 T2 BE O[B4 20 D25 kD268 2 8142 L, Resuu
ET L, Voigt BT VAW TEHE SN IR A OT AL VRED 20 LIET 22 LT, Zihx
TPREBOESHMIZE ENDREMRLOETREHN EH 6 OET WL WER 2R )R T 5.

321 Reuss ETILE LU Voight ETILZEA LIBROEHEFOTAHDEH
52 B L [EREIS, Fig. 3.1 O X 9 IS SR A (X-y-2 JEAER) & GURHEEAE R (X-Y-Z JEAER) & EFE L
B, BAMMICE £ D 1 OO OTHIIXEGBLD L D1, P FOTHITRB2)D L
IZRIND.

1 .
&, = SO(Mllo-l +My,0, + 2M12712)+ S12(0'1 + 0'2)"'5 S440'11Slnz "4 (3.1)
J-Zﬂ p,.&,da

&, =g (32)
I pwda

M; =u?Ll; +v?mm, +w’nn, (3.3)
1

S0 = S11 - Slz _5844 (3.4)

I, HHLEMBICAELDI 7 a5 )) - OFH EMERERIIND S ~ 27 a2t Ji(on,00,08)
OF P (er,e0,88) DBIRA B 2N 220UE, ~ 7 mRIES) « OFH L OTFEMFE X (@B.1), (3.2)
2525 2 L TR FOTHBRE D, SEEEFOT H & XBREPTIZ L > TR LSBT & D
RE4R1Z Bragg DRIFTSENH XL TFO Lo lc£ENn 5.

A=2dsing (3.5)
A0=(9,-6,)=—tang, 2, (3.6)
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cot 4,

g, =(26,-24,) (3.7)

HET NEEA L TRD BT O30T, RE)EVEYH 20 ([CE|TE, ZhiEH
ENEHTA 20 L T 5. BLTFIC, Reuss E7 /L & Voight &7 /L& V72358 O SE R - O 7
DORDFIZHONWTIRARA,

93 Z(l3mgns)
4

P(uvw)
(\E A fa0n)
v
) .
03
: a S Y(myn,)
! > Q(rst)
A x(100)
01/ .
X(l;myny)

Fig. 3.1 Principle relation of stress strain and orientations in single crystal.

(@) EEHEBICEENIHBRADEREEID Reuss ETILIZK S HE
AR DG SR DT 2B )% Reuss BT /VICHED & LTzia, MmN ET 57 iRt
oi ITM BRI B~ 7 a s o £ L< 720, KED)DOEICINIFMICHRER E 2 D720

K(3.1)I1%
_ (_b_b_b) (b b)l b ;2
g, =5, \Myo, +My0, +2My,7y, |+ S\, + 0, +§S44c71 Sin“ (3.8)
27rp M d
_ M, da
Mijzoz/—J (3.9)
Io dea

b, FO, RO~ 7 vt RO EER%E 5 %25 2 £ TR(3.8), 39LV, FHy
T OTHPRES.
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(b) EEHEBICEEFNIFERROERZEHMN Vight ETILIZHKSIBE

EAHRR T ORI DT 28D Voight 7 /VIZHE D & LTcE, X@LFOKIEDITFERD S
M AFT 5. 2072, K(3.1), (B.2)LVFEHETFOTHERDDHITIE, BEFDO~ 7 vlaOd 7
WOEFTNDOREEDIS N 2RO DULENH L. £ 2T, Voight EF /VITHED EIRELTZEDOI 7 =
mish e~ 7m0 THORKREES.

EFT, 1OOFERICIERL, ZORRICE I 7 e RIENE oy & T 5. 72720, IRZAF pg 1Tk
BHEIERIZBIT 2 TmMERY. 20L& &, MBEIER TOIRT] op & b FEEE R TOIRT] gy & DI
N2/ & W) L RVAH

=l 1,0, +mm,co +npnqa3+(lpmq+mplq)r12+(mpnq+npmq)z-23+(nplq+lpnq)f31

(3.10)

F 72, Hooke DVERI L U L EBESRICH T D5 )-OFT REMRITHIEART 4 7 X X Cya VT 1K
NTHRTZENTE, LHRERERNRLE T 2HEZORPMENDRO L DI 3EOHMERT 47
FADHTREFZRSIT HND.

0, Ch C, C, 0 0 0})g
0, C, Cy C, 0 0 0 | &
0| [Ch €y Cy 0 0 04 i)
,| |0 0 0 C, 0 0 |,
.l |0 0 0 0 C, 0 |y
Ta1 0 0 0 0 0 Cul\ra
(311 L v, H(3.10)i%
Oy = Cp Ml e +momye, +non g, )+ Cp,(l 1, +mm, +n.n, Ne +é&, +&,)
(3.12)
+2C44{(Ipmq+mp q)rlz (m n +npmq)f23 nplq+lpnq)r31}

Leh., IbiZ —, FEIElr ODU\@—A Eij nit*’l'r @U‘@—ﬁ Eij ODBQ'f‘f‘ %ﬁﬁ%#’i’ﬂﬂb\“(i’%ﬁ‘
&, TNTNRD LI %.
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& =liljg; (3.13)
&, = mimjgijb (3.14)
&3 = ninjgijb (3.15)
i =lme,” (3.16)
Vs =M, (3.17)
v =nle,” (3.18)

#(3.13)~(3.18) & (31T fRA LIEFRT 2 L K (3.19) 18 5 .

3 3

Opg = ZZ{Coquu +CpN N +C44(N piNg + NPiNqi)}giib (3.19)
i-1 j=1
Lo =11 Ll +mom mm; +n n nn; (3.20)
N; =L, +mm; +nn;
=1(i = j) (3.21)
=0(i = ))
gijb :gib(i: )] (3.22)
= 7ijb (i=])
7272 L,
(p=0q)
b b b b b b
G0 = Collpatrs’ +Logntnr’ +Loastas’ +2L e 812" + 2L e’ +2L e 11" | 62
+Cp, (gllb + gzzb + gssb) + 2C445qu .
(p=0q)
b b b b b b b
To0 = Colloastss’ + Lyanafor +Loasstas’ +2Lp 61" +2Lspent” + 2L, 2" |+ 2C,08,,
(3.24)

Thsn. RELYEIMEIREIZID S~ 7 00T e 1 SDOfEEICIND S I 7 vlelhd) & ORf%
ARIANTHHEO, BBHO~ 7 a2 OTHNLEFAORMEO I 7 b hz5E L, X(B.1)ft
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AL, K@KV LT HZ LT, FKTFOTHIKRED.

322 EBREIF
(a) Lz HERA DERK

H2EmEMKRIS, LzRBRAITA—AT A FRAT UL AHH SUS3L6L (23 L B — KA 7T L —
N ZAT o TS HERRBR IR 10 AERL U 7o, (LSRR, BEARA R, TR SITE 2 LA —Th 5.
Lz &R O ~1EIE 100 mmx 15 mmx 2 mm TH Y, EHESBIIZR D (S 20T BT =V b, Lz
PR VR ORPERR T M DIESIH3- 130 MPa TH 5 Z & R L T 5.

(b) XH#REHFEHE

REFRCTIT L EREZREIITA 20 2455 72, 0 Kook itigs & #5345 L 7= Rigaku #1840 MSF % Hv
7o BIEE y —EEIZ XD WETITV, A Ldeg Y —F — R U » k& ASHA & SAHANZ 7%
o, [T FEOFREERIE 0.01 deg & L7z, Rk X BRI Cr-Kp #ta -V ETiE & L C{311}E %= AV 7-.
X BRORKMEEIY, B =17 =72 AW TEER T MARL LR DK 9121 x 4 mmIZHRL
7o MK R & U CRENEZE M T 525, BB 0 4 Sl T8 & OF W2 kT 2729+ 1deg
OEAEEIE L7z, 7235, SUS316L HF5AE O = 7T A 7 2 AT SCHE 9(Su = 9.839 TPat,
S12=-3.860 TPa?l, Su =8.403 TPal)% L 7=,

(c) 4 mHhFHRBREH

52 L FRRIS, 20-sinfy BRXIOMEE 2NEIE 0 &7 D52 U 4 AhFRBRZBIfA L, 50
MPa, 100 MPa DfifE Z ANz 7=, A /i3 4 sl ERERIC L0 A SN2 O3 BT 72 v o
JHEEFUSZ L CHIML, HMAY L 73T 193 GPa % 7z,

(d <o0RGH - VFHOEHEH

EEREFOT HZRODERCEG R D~ 7 migitd), b LL<IE, OTHIE, OTHT—IUn6E0
MDA E AT, SRR T PS5 L Cid-130 MPa % 5- %, IEERRIELAZ S AN 6 LTI 4 s 58
WX DAMIENE 2T, B, ~ 7 a0 I~ 7 aziin))E Hooke DIERINLRDTIZ. Fiz,
FEAOFIEMERIT, 8 2 BICB W TIRE LI FELZ W TIRIE L 7 {311} i DR fis D FEME R 4 5

z 7.
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324 BRZEMRIEED 26-sin?y HEEDZE1E

A RERMTEIZB T 2RI 20 & sinfy DR Z, XREFTIZ X > TE O[B4 &, Reuss &
7 /b, Voight £ 7 /L& W CEE S BIHTMA & A bl L7ofEd & L C Fig. 3.2 IR 7.

Fig. 3.2 L 0, FEBREICITE B 20-sinfy I EZEH L7ZERICA OGNS X5 72 5 b UIAMZIES
DEHMERTE DD, ZHUIREEEI /NS <, BENEDIRD TSI/ ONRP oD L EZD
LD, FKRRIOFEEIZ LY 20 & sinfy ORRIZZ D DXL DENH LD BDD, sin?y 730~05
FCEIET BBED 20 DEBRIEDOEALIE, Reuss EF /LI &> THE ST 20 O L HEBIL TE
D, Woight E7 /W Lo Tt SN2 20 LITTEBEL TV 5. S 61T, AMGSADEKRT 5 &, Voight
BTN EOTEMEITIRE SR, FRCEEHREAZ S IV T Voight 7 /L & OTEBENIHE TH 5.

LEDZ &b, BRI IR MRS ST IRRIZ R o 12858, € O ORE RO ZTE
ZEEN ISR DTN, IREERRE AT & I Reuss £ T MICITWV BN 2k LM CE 5. £ 2T,
Fig. 3.2 ORIRZEE 2, WHEIZEBW TEZHG RO R SHMEIZ 31T 2 IG5 HEHEIZ OV TGS

+5.
148.7 148.7

—~~ ~
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g .
S 1485 T 1485 | Voight model
2 3
N
o 1484 o M4 _ e e— ]
2 £ :
g 1483 G 1483 —___.-W—
c c ®
O 1482 | . O 1482 |
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© Reuss model ©
E 148.1 - = = = Voight model E 1481 -
@] @]

148 L 1 1 1 . | 1 | . 148 L 1 L 1 1 | . | .

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
sin’y sin’y
(a) Longitudinal direction (0 MPa) (b) Transverse direction (0 MPa)

Fig. 3.2 26-siny relation in measured diffraction angle and estimated diffraction angle by Reuss model

and Voight model.
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o 148.4 © 1484 . _ o e = ]
2 £ 103 .
S 1483 S 183
cC c ry @
O 1482 | - O 1482 [
— ° Experiment pra}
% Reuss model %
148.1 | 1481 |-
E 8 = = = Voight model !:E 8
(a) (a)
148 1 1 1 1 . 1 L | L 148 . | ! 1 L | . 1 .
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Fig. 3.2 Continued.

33 ZHLNREOESMBICEITINARHEDRE

RIET L 0, BEEICA U AR IS T IRREIC 7 o 7285, 2 DR ORGSR DA 2K Bh 10
HEMR AT I0), WHERELAZ G & BT Reuss BT /MICHED Z L3 fpinolz. 22T, TRHLOREREE
L7225, Honda & DIREFIEL LIS TNIREEOESHIKICEMN T 5 2 L 23 5.

HEE Tk 72 Xk 912, Honda & IXEAHMBET O 1 SOFESRRIICIER L, £ OZEEZE) )Y Reuss £
TIPS L LTERED S &, RBLTERIND I 7 v 20T EMBRKITIND L~ 7 vl 0T
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I % it e D AFAERER 2 AW TR 5 2 & T, 1 #lS IR OE AT IS HEHEZ1T -
TW5.

1 .
&g, = SO(MMJl +M,,0, + 2M122'12)+ 812(0'1 + 0'2)+ ESMO'lSIn2 V4 (3.25)
r” p, &, da
yva©ya
&, ==y (3.26)
I p,da

3.2 HiTHL NI -T2 K 21T, BEEEICA U BRI S TIREBIZ 72 > T2 55 A1V T
HZ DB ZEE ) Reuss €7 /VICHED DT, R(3.25)IC%F L, Reuss ET7 /LA HT 5 &~ vgli
HEI7aRENTELL Y, NEB)IRE2E 25,

g, = So(M11O'1b + M_zzazb + 2M_12112b )+ Sy, (alb + 0'2b )+ % 8440'1b sin’y (3.27)

RE2)DFHLE o1 THS & K (3.28) & 72 5.

|°‘:I

=S [M11+M22 +2M12 J+812(1+—j+1844sm v (3.28)
o, o, 2

0'1 O

Bragg D ZefF A& 0 IR O A & [mlifr # O BIFR I

A=2dsing (3.29)
AO=(0, —6,)=—tang, &, (3.30)
£, =(20,-20,) %% (33

ERTIENTELHDT, X(B26)2%H T 5 LK(3.32), BN LIHIITKEND.
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20, - {so(m—lpl MU R IS W}

, y (3.32)
+ {slz(a1 +o,)-26,% 0}

2

20) _— —
2 {%(MM+hmufé+2MuZ£j+%SMsm2w}

0, ]

(3.33)
v 2 s [1,0:) 20t
cot 6, o) o 2

22T, RBIYOALFE LIHEZ Ktex, AUF2HE C &< &

26, 2 2

T otg - cotd
o, coté, cot 6,

(3.34)

720, T K \ZRF L THEBRE 2D, Wil % Kiex TR 5 &

_cot, 926,
2 oK'

tex

o, (3.35)

L0, RO gdor & toloy H3RETHAUEN(3.35) L VIS IR FAREL 72 5.

LU, RIS 5T E SR I K VR IZ2 b L, I/ DHIE— I AT H 5
L, AR TIIREFFEIELZRH LKEENDIS S 3 ERD 5. FHHRO7e—F ¥ — b
% Fig. 3.3 |2/~ T

_66-



Input diffraction plate {hkl}, elastic compliance Sj
and existence probability of the crystal p,,

Measuring diffraction an

gle 20|, 20

by X-ray

oy

First
Determine Ny, N,

o,=N;o, 7,=N,0,

Determine specimen coordinate
system to match the X direction and
the direction of o, ... EQ. (3.36)

Determine  specimen  coordinate
system to match the X direction and
the direction of g, ... Eq. (3.37)

Second

Simplified for o, ... Eq. (3.38)
Simplified for g, ... Eq. (3.41)

Simplified for o, ... Eq. (3.39)
Simplified for g, ... Eq. (3.40)

Third

Substituting Eqg. (3.39) into Eq. (3.36),
and simplified for o, ... Eq. (3.45)

Substituting Eq. (3.40) into Eq. (3.36),
and simplified for o, ... Eq. (3.42)

Substituting Eqg. (3.38) into Eq. (3.37),
and simplified for o, ... Eq. (3.44)

and simplified for o, ... Eq. (3.43)

Substituting Eqg. (3.41) into Eq. (3.37),

No

Finaly
All values of 6,[N;,N,] and 5,[N;,N,] are equal

Yes

Determine o, o,, T

Xy

Fig. 3.3 Calculation flow of repeated calculation to determine plane stress in texture.
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ROBINTI % 0x, 0, g ETDH. FT, Fig. 3.4 @QD L H 2 ox DI & X FHial(y ZAET 5 T70])
N—FT D L) ICEER A EHRT D &, XEB32)ITXBID LI IcEEND. [FEEIC, Fig. 3.4 (b)
DE I oy FmE X FAR—ET 5 LD IEERZERT D L, X(B.32)I1TX(B.37) vLricks
ns.

2 (— — — ) 1 .
-20,| = otd, {SO Mll‘xax + Mzz‘xay + ZMlz‘Xz'xy +ES440'X sin 1//|X}
2 cot g (3.36)
+ S, \o, +o0, )20 0
cot 6, { 12( X y) 0T, }
20,| =2 Is,(M, M 2M S..o.sin?
— l//‘ Coteo 0 ll‘yo-y + 22‘yo_x 12‘ Txy +—= 44O_y SIn l//|y
2 cot & (3.37)
0
+ S, \o. +o0.)-26 0
cot 4, { 12( ! X) ° 2 }
Z(I3m3n;) Z(Imyny)
A A
P(uvw) P(uww)
2(001) y 2(001)
y(010)
Oy
Y(I,m,n,) Y(I,m,n,)
X(ymyny) X(lymyny)
(a) first measurement (b) second measurement

Fig. 3.4 Relationship of residual stress direction and measuring direction.
yj{c:) J‘_.\[;jj@tt O'y/O'x k Txy/O'x %%h%‘\h Nl(o-y = N]_ X O'x), Nz(Txy = N2 X UX) k j;S% ) %@B/%EOD Ox 7‘&

o« [N1, Nol, oy % oy [Ny, No] & 729 5. 3(3.36), #(3.37)% o lC DWW TIPS % L 4(3.38), #(3.39)
AEHND .
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cot g, 020, |

o, I[N, N, =~ > A — 1, (3.38)
0 so(lvlll\x+M22\XN1+2M12\XN2)+2544sm vl
cot 6, azgy/‘y
o IN;, N, =~ > — T 1 (3.39)
G{SO(MM‘yN1+M22‘y—2M12‘yN2j+2844le|n2w|y}
R, oy IZ DWW THEE 5 & X(3.40), (34L& 5.
cot 4, azewk
O-Y[NliNZ]:_ 2 _ _ 1 - NZ 1 D (340)
S, |\/|11y+|\/|22\yNl—zmm\le + Syl v,
cot 4 020,
O-V[NllNZ]:_ 2 d (341)

2 o 1 1 o= N, 1 .
G{SOKMH‘X+M22)(N1+2M12XNi]+2844N13|n2(//|X}

&5z, #K(3.38), K (3.41)% X (3.37)iz, #(3.39), X (3.40)% K (3.36)IZfXA L ox I HOWTHEFT S
£ (3.42), (3.43)71%, oy IZHOWTHEHIT 2 & :(3.44), K@BA)NENENENND. 72721, ZD
B2 1 oy = N1 X ox D BRI 5 .

O-x[Nl’NZ]
o{20,| +s Z(M_‘ o [N, N ]j+21s &, [N, N, ]sin?y]
_ cotg, vy S T%cotg, UMy Y Y ) et gy 2 YR y (3.42)
2 JR— -
G{SO(MZZ - 2M,| Nz)}
y y
Gx[Nl’NZ]
0126,| +$ L(M_\ o, [N;, N ])
__cotg, vix T T0%cotg,  Px YR (3.43)

2 6{SO(M_M‘X +2|v|_12\x N2)+;S44sin2w|x}
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O-y[Nl’ NZ]

2 . N
0120 +S(M o [N, N,1-2M_,| N,o[N,,N )
_ coté, { ""y ° cot 4, 22‘y (NN 12‘y [Ny 2]} (3.44)
2 — 1. .
a{soMll‘y+2844sm2W|y}
o,[N;,N,]
2 A -
29(// M +So Cow(Mll‘XO-x[Nl’ N2]+2M12‘XN20><[N11 Nz])
G T, (3.45)
+— N,,N,]sin
__cotb, cot 6, 2 1446[ sy,
2 a@mdﬁ

ZDEINT, RDISTEEN, No & 5252 LT, KEifhOFEMER L ERZT 2 2 (X, y 7)o
[E T ORTERER S 4 FEFAD ox [Ny, No], gy [Ny, N 233K E 5. 5121 4 T 0 [N1, N2], oy [N, No]
NENZNE LS RDEOISIIH N, Ny 2 SAEFHRIC K D IRET L, IEL W 6y, ox, 1y DIRES
nos.

34 RELEIGHEHEDRE

AR DOREFEZ M, 52 BO Lz i B ISk 5 4 Sl wEBR R R 24 dod TR 5.
F72, Honda &DFiEZ HWTZEROREERR & T 2 2 & T, AFROBERFIEDODRERL,
REFEEZNVD Z L TEMISIREBOE G Z AT 2 HEMOIN N 2 BRI TE 52 &
IR

341 ZEEREIR

RETFES LU Honda b DO FHEIZ KV IR FHET D BEDO T — # 0fb fl O A EMER I 2 5 L [F—
DHEDTHS. [FERIZ, Fig. 35 (TR & O ICAMIS T EMRIEA T I A, £ OBROEHER
D71 & R HERRE A T M DS ) 2 1R T K 0 -l L 7=,
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Load stress Load stress Load stress Load stress

==, ===

Measuring stress by X-ray Measuring stress by X-ray

Measuring longitudinal (x) direction Measuring transverse (y) direction

Fig. 3.5 Relationship between load stress and measured stress.

342 EER#ER

Fig. 3.6 [ ZIRBERR T OIS N1 2R T & Honda & DOFEIC X 0 3 L= R 2Rd. ks,
Fig. 3.6 (Q)IX & AMIG NI T DRERE R & FEER OIS & OBAfR %, Fig. 3.6 (b)IX& AR IIZ

BUFDRER R E W OISIMEDZEZ ZNZIVR LT WD, Fig. 36 LV, WESNIZAECTES
KRS Z IS SIRRE T d 255G, Honda & O FEA W ZERORERE R & Fig. 3.6 (a)F OHE#RE TR
T OIS T DRI ENE T Tz, —J, IREBEFIEE AW TCERORIER FITEHET OIS & 1%
ER UAEE R Lz, 518, WHERERFA~OARIS DR E L 725 THiRAIE 10 MPa &iili ©
HoTe.

WA, Fig. 3.7 \CIEEHRIE ST OIET 2 3l U2k R 2 n 3. IR ORER LR, %
BEEBIC A U AR A ZBlIS T IRAE T 256, Honda & DF k% W T BROJIERE R & B
~OBGIS N ORIZENELCTEBY, AMISHNRERDITOM, BIEREE ARSI OZENK
XL ot — 0, BETFEAWEEOERBRITAMNIS & BFIC—KLTRBY, AfSHNKR
< 2o THREFEIT 10 MPa Rifii TH - 7-.

LLbEo X5z, 1His/REEZ RiTHE & L7z Honda & O Tk TIEZ IS IRRED B E A5
VHEE OIS % IEREIZAHIE T X 2200 o 723, ARBFJE TIRE Lo LA A L 72 BRI ITE BRI
DI % ERECFHECE TR Y, B ORI 27T 2 Fik e L TOIEFICHRNTH D &4
Wrcxs.
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50

(_U ~

£ = B Proposed method © S B Proposed method
0o ® Honda’s method S=s ® Honda’s method
© = ~ 40 L
< S
X C ) %

o
=9 50| EQ
o ]
s S
o .= [} %
> o ; —
0T D
s 8 2 x
o .E -100 o)
ET o e

=t Q®
T S g

(@]
o c e R o 8
a o Mechanical stress in longitudinal direction E s —

-150 L | . 1 non 0 L 1 L ks
0 50 100 0 50 100
Load stress in taransverse direction (MPa) Load stress in taransverse direction (MPa)

—~
QD
=

Relationship between load stress and measured (b) Difference between load stress and measured
stress stress
Fig. 3.6 Relationship between load stress and measured stress by proposed method and Honda’s method in

longitudinal direction.

150 50

B Proposed method
® Honda’s method

B Proposed method
® Honda’s method

40 |-

100 |-

50

transverse direction (MPa)

Stress measured by X-ray in
stress and X-ray stress (MPa)

Difference between mechanical

0

1
0 50 100 0 50 100

Load stress in taransverse direction (MPa) Load stress in taransverse direction (MPa)

(@) Relationship between load stress and measured (b) Difference between load stress and measured
stress stress
Fig. 3.7 Relationship between load stress and measured stress by proposed method and Honda’s method in

transvers direction.
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35 REFZXIINITIHER

AR B CIXIRPHRICAE U B SRR S HIE 125N - T2 B OfE R O T3 >V TRFET L,
FEOFHRRIC B N D RSP OB T Reuss EF /MICHED L WO FEREET-. 72771, MEHZ4
U EAHEIE, MEINT.ORMSHER SICL 0 Eb L, EEMROERIN SRR LGS, £
EALRR OBMAVRE S 72 5. 2072, BEHMKICE ENDEMBLOETEET R0, MEHT
K o CIIZEIEE S Reuss &7 WHED R WFTHEME N B 5.

ZIT, BHEHOEGHIKICOVWTEZ D &, BHEMICAE LU SESMMRITREHRSIC L > TAEL

5. BEEIEARICISVT, HOREIIEERR T TH 5 {100} I ISR E T S0 0, EEETIC
B CLEGHMITIFENEZ R T 5. £07, AL CEEBICAE U7 £a/MkI o L TRET£1T
WS D TR RLE, OB L THEMNRAIRETH DL L ERXD.

UEDZ b, EEMMEAT 2EEROICHREHFEEHE T LT, 22T,
WEIZB W TR RIS LIRETIEA WA L, BETIEIC LV IEBREIE ) &2 /E L <FHET
EHT EETRT.

3.6 f#&:m

ARETL, FEIEFOTHOE 2 T5 % 8IS T HRE DO EEEI T LT 5720, wHisic A
U 7= SEBHMERR IS Sl 123030 T BE DS AR RL DS TSN W TR L2, & 512, fifkionZs
R ZZE LI LS HREREZRE L, REFEOPRIZOVWTHRELZ. BITFICELnT
AL 2R

1) WEEBRAE L VIER LT Lz BRBRA X L, EEOISNEMATZEORTA 20 & sinfy O Ef%
BYRBERAT I, VREERE AR LAl L& 25, EH5OFMICEW T biSMR OZE
ZH)X Reuss E7 /VIZHED & LICHEORERITEWEE Z/ R LTc. 2O &b, BWHEMICA
UGS & £ DR SRL DO ETEZEEN TG TR REIZ B 37 Reuss £ 7 /LITHE D &Ik T
2.
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FA4E RBEFEFZRVEBERFO XERBICDAE
41 #E

92 BT, MRKLZ AT 2B L UImEEN IR TH D Z L 2R L, 3 E T,
LM E AT 2EBEMICRIT DI HEMEZRE L2, £2 T, KB TIIEERICHERIET
ROBEL BEY, A UAMEHT GTA BHAIC L D B — R v 7 L — b &0 T Uiz iE iRt
L CHIE TIRE L7 X BUSHEEZEH L, W OKREICH 251+ 5. £ LT, XIS
ERER L OFT BT — VI L DI ARIEORE R A bl U, X SRS STEEIC K 0 EHEm O IG )
ZIEMEICFIMiC& 2 2 & 2T

42 ERBEHCIZEAE U UOMEES & UE L BHEIZE T 3 BEBORER AT

421 REREIF
(a) #HEaEtsH

ARE CITVEBES IR D 03 U B8k S U Clatets s LSBT SMA90YB %, VaHEsIc 4
AR E C DML LTA—RATF A FRAT 2 L AHH SUS316L % H 7=, Table 4.1, Table 4.2
|2 SM490YB DALZEFH K & Fhk 45 %, Table 4.3, Table 4.4 (2 SUS316L DAL & A b Rek
g

Fig. 4.1 (TR X 912, RBRIATEEIZ 100 mm x 150 mm x 6 mm T 5. ARG ) &
Y BR< T2 OBMLEE 24T > 7=, SM490YB |Zxt L CIFEVLEEE 600 °C, fRF#IFM 6 R & L,
SUS316L (T} L CITAVLIRE 1000 °C, fRFEFFRH] 16 53 & L7z, MHASRIHIE L L BIFMTHD.
BULPR#% 1T 80 T OB A I TIREAIG ) & 5 HI 2 REPH O P IRLIE 2 B0 PR . 2004,
WHEEIC L AN TIE A2 B0 Br< 728, Fig. 4.1 (RS #GHIC BRI 21T - 7=, BT SMA90YB
(126 LTI Rigaku #H3Ld E AR A % FAVy, SUS316L (2%t LTI 5 ildta e A % 7 — /L& -,
B IR A AER, X BUSIIEC X0 Kl OIS I23 10 MPa Kifi Tl 2 2 & A s L Tu
5.
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Table 4.1 Chemical composition of SM490Y B used. (mass %)

C Si Mn P S
0.15 0.25 1.42 0.02 0.004

Table 4.2 Mechanical properties of SM490YB used.

Yield stress (MPa)  Tensile strengh (MPa) Elogation (%)
597 506 22

Table 4.3 Chemical composition of SUS316L used. (mass %)

C Si Mn P S Ni Cr Mo
0012 041 084 0026 0001 1209 175  2.08

Table 4.4 Mechanical properties of SUS316L used.

Yield stress (MPa)  Tensile strengh (MPa) Elogation (%)
289 561 56

Electrolytic
polishing

unit : mm 6 I\l

Fig. 4.1 Schematic image and dimension of specimen to welded.

100

(b) BEEH

RERAOP IR BIZE— R4 7L — MR Z T o 72, ISt % Table 45 (2779, SM490YB
(2R U IR BRI 7 DFAERE A £ U S 572, IHEE 2 50A & 100A & L, SUS316L (2%} L
TR 4 100A & L7z, ZOMOEESIFE, wWEEE 1 mm/s, 7—27 &3 mm, ¥ —/L K
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H A% 100 BAr ZfEF L, MElX 025 Us & L7-. BWHEEIZGTARETH Y, FBMILEL 2.4 mm
DE T AT UL, BXHLESIZ3mm & Uz, T 77, BRI TGS 2 Z 24 5 mm
BL-REIE L.

Table 4.5 Welding conditions.

SM490YB SUS316L
Welding current | (A) 50, 100 100
Welding speed v (mm/s) 1 1
Arc length | (mm) 3 3
Shielding gas 100%Ar 100%Ar
Shield gas flow rate (0/s) 0.25 0.25

(c) MBS

SM490YB VAHEERICAE Uik A Bl T 2720, MMBIE AT o7z, BEE IR L CHREICK
B 2 U L, #B12m 2% L 400, 800, 1500, 2400, 4000 % OHFEEHE Tl EE 21T > 7%, 1um
HAXEY FRUS TNt BT 24757, BFEL7-mIcxf LT, 3 %A ¥ — iz T=yF
YT EATV, EFBARENC L VB L.

(d) FAhEREIC & BB AT

Fig. 42 (2R3 X912, 5mm R T 28HOT AR — %2455 L, £ DJEi4% 10 mm x 10 mm x 6
mm (Z G LRI ) & oR D 7o B Y~ 7 51 SMA90YB T1% 220 GPa %, SUS316L i 193 GPa
RV, BBHRT Y Ui 0.28 Wz, Zeds, WEHERR RO AL 3 AHIE L.

Ehf,"';": Strain gauge

100

unit : mm

Fig. 4.2 Measurement points in stress relief.
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(e) XHRIXBISHRITESRY

X M L DFERRIS M ESAE % Table 4.6 1279, X ARG MIE 21T Rigaku 48> AutoMATE %
ATz RetE X BRIE Cr A5 BR D Ka # % FHVY, wo —EVEIT K D AIMEE THRIE L7z, BlTHE 1L, SM490YB
13{211}%, SUS316L 13{220}% N LN W=, EEMEEIIEA S 7z SUS316L DIFHE4 B ERIC
KUTIEE 3ETIRELIZTIEL 20-sinfy IBIC X W ERRRISHZFHE L, 2L OEPTT 20-sin%y
LTI ZFN L. £70, EFETHOOESOFEMRRIIFH 2 ECTRE L FIEICLY
WiE L, EBSD 7 — & ITMIE R DUHRBRIAD H157-. Table 4.7 IZ AW B fhitk = o 75 47
VA ID L XM E S A RS, XRRTEEE ST, BRI 2 T A 7 R & Kroner £
WAL BREG ST-Ex A2, £, 8k L LT, £1deg OREAMEE) & EHHR ST ) ~D+ 10 mm
DR NEEE) & fL A G o 7o LB E 28 L.

Table 4.6  X-ray stress measurement conditions.

SM490YB SUS316L
Wave length (nm) 0.22911 0.22911
Diffraction plane {211} {220}
Collimater (mm) 1 1
Measuring frame (frame/point) 10 10
Measuring frame (s/frame) 300 100
Oscillation w (£ 1deg), x (x 10mm) | w (% 1deg), X (£ 10mm)
Analysis model 26-sin’y method 20-sin”y method

Proposed method

Table 4.7 Mechanical properties for X-ray stress measurement.

SM490YB SUS316L
Elastic compliance (TPa™)
S 7.622 9.839
S -2.795 -3.86
Su 8.584 8.403
X-ray elastic constant (Kroner)
X-ray Young's modulus (GPa) 223 209
X-ray Poisson's ratio 0.28 0.28
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422 BEMICHRNEART HEBRKICH T HBEZREG HEFTE
(a) fAMBTBZER
SMA490YB IR D Vickers il & 4347 % Fig. 4.3 12, MABIZRE R4 Fig. 44 1”7, Fig. 4.3 (TR
T E O ICHRBRIE DRI IIME S D RR MNP SN TV D, S HIZ, Fig. 4.4 (A%
ERERN D, WHEEDE 50 A THBEINTHRBRIETII~ AT oA RS, EEEDE 100 A TR
SNERBRATIITIINS =T 4 v 7 7= T4 RBKRERS 2 HD TV D LT LT

400

9 ® 50A
T 350
= . o O 100A
7] ¢ °°
3
c 300
o] o
3
€ 250 e
g poooqboo OCCOO
S °o
O 200 ° o
> “-... Oooooooo
..~0..“."...W
150 L ! ! 1
0 2 4 6 8 10

Distance from weld center (mm)
Fig. 4.3 Vickers hardness distribution in welds of SM490YB.

(b) 100A (c) Base metal

Fig. 4.4 Microstructure of weld metal and base metal in each specimens.

(b) X #RiGHAIERER

SMA490YB D788 Sl E#E 5% Fig. 4.5, Fig. 4.6 [Z779. 728, Fig. 4.5 [ZIRBEE T 50A Tia:
ENTBEORRE IS T155, Fig. 4.6 IXIEBEETT 100A TR SNTZBRORREIG 154 TH Y, Fig. 4.5
(@), Fig.4.6 QIXHER/HREZDOE Eb#L L2, Fig. 4.5 (b), Fig. 4.6 (D)1 ZIREEBITE ALK Lz s
T 7 Thb. Eiz, HPOBEE(HAZ)ZHEESETTWM) Z RO CEBE% IS Bk E L
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ERpSNDmEE LTERLE

VR T B OV EERR T G 1%, BRI BEIRISINTARAE L CRE 5723, Vickers i S (BeERIE )
Db ROk A T DR 50 A CIREE S o RBRIR OB/ 5 <k, WRHEEEDR 100 A
TR SN BRIRIC NS DR L 72 o TS T, HRIKIR T~ LT A NEREN
A U722 & TERBIRIC K - TS IR S NI Z L ICR D b0 EEZ Bb.

VLED X 51T, XBUSHRER RITAHEROZEL R LIZAER 7> TR Y, MIERRITEE
FREA G DA R B D 0ERMLITHE O fER & e o T2

700 — 700
600 ! | 600 |-
8 . ® O, 8 ® O,
o 500 _E E o g o 500 - o o
S 400 | | = 400
@ 300 I @ 300
(] . [¢]
S 200 | S 200
(,) : 1 (,)
< 100 | < 100 |
] o o _0--=0-_o___
o 0 ' 59 0000000~ - o _ _5---0--g---0 S 0)___0\ | o e} 0 -- ¢
Q 100 |} 3 Q100 4 - o7
o g HAZ o AN
-200 |~ -200 | ! :
V:\:WM BM WM | HAZ ! BM
300 L. 1 . 1 L 1 L 1 . -300 L] A . 1 . 1 L
0 10 20 30 40 50 o 2 4 6 8 10
Distance from weld center (mm) Distance from weld center (mm)
(@) General view (b) Enlarged view
Fig. 4.5 Residual stress distribution evaluated by the 26-sin?y method in SM490YB (50 A).
700 —— 700
600 | !
z ‘ * o z
$ 500 y 3
< 400 =3
<A 300 a
(] [¢]
5 200 =
(%2} (%2}
< 100 =
> >
S 0 --o =
é 100 | | © é
N
=200 |-~ HAZ -200 - | i
WM BM WM ; HAZ BM
-300 | . 1 L 1 L 1 . -300 . 1 L . L 1 L
0 10 20 30 40 50 o 2 4 6 8 10
Distance from weld center (mm) Distance from weld center (mm)
(@) General view (b) Enlarged view

Fig. 4.6 Residual stress distribution evaluated by the 26-sin?y method in SM490YB (100 A).
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WIZ, X BRI IHAIE I &I F1sthiRk o el & Fig. 4.7, Fig. 4.8 (Z/kd°. 728, Fig.4.7 (a), Fig.4.8
(@ITAIERE R E2Z O EFHE L=, Fig. 4.7 (b), Fig. 4.8 (b)i% X FIGAHIEE &G Fisthigik o ze
B3 iR HE 2 b 5 723, TREERIE AT IANCHKT L 10 mm OBEN O X B E s $ 2 P e L,
G L= Th D, IBIT, ISIHFREDOERRR R ORERIL 3 ROFEHHETHS.

VBN 50 A TR SN RBIATIL, WHeRJEE, BB, RMESIC VLT X UG HlE
TSR & J T AR L O RATEE BT IS ), WEHERRE A IR & b RAFIC—F L7z,

—77, VRABEFET 100 A T S M- RBRIKTIE, BB T X BUS AHIE R R &5 g ik Rk
BATIREER T ST, VB G & bIC B —E L722S, AR & BB B
T X BRERE RA T RE OB R E RESTHEL 72, ZOREICOWTIIRENC TELET 5.

700 —— 700
E E Measured by X-ray 3 3 Measured by X-ray (averaged)
800 e o, 0o 800 e 5 oo
‘5_5 500 i Measured by stress relief method EE 500 i Measured by stress relief method
s bl m o O o S bl m o O g
£ 400 L ! £ 400 L |
" e H |
v 300 |77 v 300 L |
o D o D
S 200 Lt S 200 F o
v D v L
c_::js 100 |- ‘_:? 100 | =
T 0% EOEHQ@WE@E@@
® -100 L\ : Q -100 ¢ HE gy
o @ | T HAZ
-200 200 [y BM
2300 L. 1 . 1 . ] 1 | . 2300 L. 1 . ] . 1 L 1 !
0 10 20 30 40 50 0 10 20 30 40 50
Distance from weld center (mm) Distance from weld center (mm)
(a) As measured (b) Averaged

Fig. 4.7 Residual stress distribution evaluated by X-ray stress measurement and the stress relief method in

SM490YB (50 A).
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Fig. 4.8 Residual stress distribution evaluated by X-ray stress measurement and the stress relief method in
SM490YB (100 A).
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Fig. 4.9 Residual stress distribution evaluated by the 26-sin?y method and the proposed method in

SUS316L.
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Fig. 4.10 Residual stress distribution evaluated by X-ray stress measurement and the stress relief method in

SUS316L.
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Fig. 4.11 Serial sectioning from back.
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Fig. 4.12 Change of residual stress distributions during successively removing.
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Fig. 5.1 Appearance of in-situ stress measuring system.
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Fig. 5.1 Continued.

(b) BHEHE

B, JENTBWET D728, cosa IED K 9T — A TR RERRETH 5 L%
VEER®H S, Lo, cosa RITHIERENMEL, Zefsn o, BHERHCITEWZIEIC X0 81 RS
AT D728, IEMEREOT O FmEMR(EITA) 2 BB LT 5 cosa EZTHND T EITEE LY.
ZDID, 52 DHMWOTHhT —X OEEN/NI 20-sinfy B K DI HEENPEE L. 727210
VEEE T O IE IS S X R & SRR LT B 7w, BEEIOFEEZ LE L 35 20-siny & T
OFFHHATHZ LT TERY. 2T, AFFETIEFig 5.1 12T X518, #HEO 2 koaokitias
kB L, BRI 20-sin2y BRI A2 VERL L, sinfy OZEAKIT 5 20 DAL &2 B RIFEEHL 4 5 =
& TLHEDFHAND 20-sin?y EIC K 2SR Z RS Lz, S 51T, BHSITITRFE eI 5
NDPILATUS Z W5 2 & T, AL 2R Lt 2 TYU 7 A DS HELEZBIETE 5.

20-sin?y 1L K 2 IS IFRATIC LB 72 BEL N 7 R V43R (Fig. 5.1 RO X-Y-Z FERER) &, 2 Kook
T CRRER S N T — Z OGN 27 R VoA (Fig. 5.1 100 X-Y -2 ER) D X L3A(5.1)IT &
DAL I D, Tek, RGDFD yw & wIxENENDOEIERICBT 5 wfl, o (XMEEROX
LA THY, Fig.5.2 DX 9 72BRICH S . AIFFETIE w=12~22 deg 72 & TNT y = 47~59 deg D #i[H
DR IS & B H LT

sin’y :1—(1—cosz¢5+sin2z//'-coszgﬁ)2 (5.1)

Flo, MERBEL 72T A4 NeA—ATF A O 2HIRBIZRDGHITIE, ENEND1%

_92-



Pl L72. ZZ°C, Fig. 5.3 IZRT & 51T, XEROMEE & o e BT 2 V7S DRE T, [E]
Pr¥ige & Bragg DR AE AW UL ZFHMT 5. 0w, EHROMERT IMEHIXIL, —&
DR OB Z B L85G, 8OOk TR LA EIZET X A3k b.
Z LT, 2z noElir X fitae TS HREZIT 5 Z & TEHADIE ) 2 U TRHlid2 2 & 23
TE%. AR Tl Detector 1, Detector 2 TRIFFIZIG H 11D af211} & p{BLLYD[EIFT 6 Z LD
OIS 2 5 L7z

.
R
oA
o
¢
X
¢
.
Y

Fig. 5.2 Relationship between coordinate system on the specimen and detectors.
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Fig. 5.3 Diffraction from a multi-phase material.
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Fig. 5.4 Relationship between CeO; diffraction and iron diffraction on the detector 1.
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Fig. 5.5 Fixing method for the welding specimen when weld cross synchrotron beam.
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Fig. 5.6 Fixing method for the welding specimen when weld along by synchrotron beam.
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Fig. 5.7 Appearance of elevated temperature tension testing machines.
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53 mmSIREERZAVLEHRIS R T LADRIEE X RAITE M E R DR E K F 45T

AHClEEIRG | R O AGE & 2 DG AT AOWERREHK T 52 LT, VAT
LORGEEAT S . 72720, miRRECIE X BRAVHMEEER S 2T 2720, X BRAYHMEEE O IR AT
MWERBERCTRWEE, IS NERIHTEn. 22T, WiRROARIRT) & 20-sin?y fRIXK O X % bt
L, WRBRIRES EF L CHmRE DS FIBRICH D 2 L 2R 5.

531 BESIEHBEMLLIHSRT LORI
() B

BERUBPEHZ 1% SMAY0A % il 7. BBABTEHO (LA A Table 5112, HeMitORHES Table 5.2 i
AT Fig 581 & 51T, SIRRFBUT IR ARIEME 20 mm, 420 4 mm, £/20.3 mm TH Y,
MM TS & 0 e L.

Table 5.1 Chemical composition of SM490A used. (mass %)

C Si Mn P S Ni Cr \
016 039 138 0.016 0.004 0.01 0.02 0.002

Table 5.2 Mechanical properties of SM490A used.

Yield stress (MPa)  Tensil strength (MPa)  Elongation (%)

381 524 25
60
‘R15
/ 20
''''' N 4 e
2— - — — — — — — — — — —
L] t=0.3
unit: mm

Fig. 5.8 Schematic illustration and size of the specimen for elevated temperature tensile test.
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(b) SREIRAABREN

RS IR F O E B ORAIX % Fig. 5.9 (7. @iEBIBEZIT O BRIZIZIT VT H A% T
T AEBREZITV, FNZEZRIE(K-50 kPa)lZ L7-1%, SIRREBRZIT 72,

RERLE % Table 5.3 1277, MIESIIERBRIT RT 7>5 800 °C £ T#% 100 °C [IfE CIT 7. BIE
ARBRIT AT EFIE TITV, WEHEZ LN & L, SSU— 7 WIS ET S £ TITo 7. SR
EGHE 10 °Cls TITVY, RBRIEEIZEL T 6 60 s fREF L2, SIERBRAZHG L. £/, AR
R & P e TIIBWZRIC K > TAELL2EBIR L i B L OMDOEOZ 2 < $FHIYT 1 ~ 2 N OFfif
HAEAR Ui 7. MEILFIRBMA S 5E& T £ T 05s R TiTo7-.

A ‘
Set temperature | |
~ | :
O ! 60s 400's !
~— | - | - |
5 |+ fore[Reain}> |
= 1 1 |
[40] i i
< | ‘
s Heating Process
g Heating rate |
= 10 °Cls
0 — 3 f >
mm) Heating start §
4—{ Measuring stress and strain }—»
‘ >
0 mm) Measuring start Time (s)

Fig. 5.9 Temperature history during temperature tension test.

Table 5.3 Conditions of elevated temperature tensile test.

Set temperature (°C)
25 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800
Load rate (N/s) 1
Heating rate (K/s) 10
Retain process (S) 60
Tension process (S) 600 400
Control Load control
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532 RER#ER
(8) BIRAERIER

Fig. 5.10 IZ&-REBREE OIS 1O Al 2 7~k 3°. Fig. 5.10 FIRTIES « OF HITFE O 513K ER
BRI K > THIE SV E & ALKV RD NI AFRIE ) & AHROTHTH D,

Fig.5.10 XV, SIREABE THAMON 2 AMOT ZHIFFHICRE RMELZRL TS, ZD XD
PRI DOFEHSE0C) &2 W= B b RN TR Y, —H T, 1 mm EORES 2 AW 7ERIZ
OFTHITEMICEHII S T\ e, 20720, OFHOFHIMEIER IC KR E /2R LI=DiX, K
HoF ML B T 57DIC8ERBRA ZMO THEI LEEZ L ORBTHLIEZEXDLNLD. 2121
B CH DIKOT A IS T OT AR ITEIRE IS W T BB L =L TEBY, T

RIS T DI OT B O ABLRe, FERAITRBIEE R EHT2L L bIETFLTWS. 2

13, BEO LR LI I RPBRISHIMET T L 00 ZhETORMREAELTEY, A
FOISINTEREICFHITETWD EB X BND. £D7), SIRMABROFERZ W T X #A M E
BOEHII+SAETHL EEZLND.

400 400
350 350 |-
T 300 © 300 L
a a
2 250 2 250 |
) )]
B 200 @ 200 |-
S S
— —
9 150 Y 50 |
o °
® @
O 100 o 100 L
- -
50 50 |-
0 0 1 1 ] ]
0 1 2 3 4 5
Strain (%) Strain (%)
(a) Comparison (b) 25°C

Fig. 5.10 Stress-strain curve at each temperature.
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Fig. 5.10 Continued.
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Fig. 5.10 Continued.

(b) ERIZEITSERFA EAEEDRERF
W LT 2 OBFHIS AT M K o TRl S av7z i /il & Affii /) & OBfR % Fig. 5.11 ()2
T ZOGRHAY AT LI & o TRl S L2 B0E & ARIS ) IFRVERER 2 A L, WA IXIEIERE T

EZE R LTW5D.

T LN, WELIZVAT AL IR EIEHEISGTHETE TV D 2 &0 ER

T&ED. F7z, 20-sin?y £ T 20-sin2y MK OH X SN EREZ R T HFETIONIPNER IS 20,
Fig. 5.11 (b)IZ/ "7 &L 912, 260-sin?y FRXDOEE L AMIS ) & ORI b AIERR A Y SED. £ 2 T,
W TIXEIRFFIZB VTS 20-sin2y SO & & ARFIS ) & ORI S BIZERDNK D N2 % e
L, HELEVAT ALY @RKICB W CHIE & EMEICFHECE T\ D Z L &R T 5.

Stress measured by X-ray (MPa)

(a) Relationship between load stress and measured

400

350

300

250

200

150

100

50

0

-0.05

-0.04 L

-0.03 -

-0.02 -

diagram (degree)

-0.01 -

Inclination of the 26—sin2y/

0 | | 1 | | 1 1

0 50

stress

100 150 200 250 300 350 400 0 50
Load stress (MPa)

100 150 200 250 300 350 400
Load stress (MPa)

(b) Relationship between load stress and

inclination of the 260-sin%y diagram

Fig. 5.11 Relationship between load stress and measured results at room temperature.
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() BBEICEITZEMGENE 20-sin%y REIDIEZE DORER

F BRI (T 1T 5 20-sin2y MO & & AIS T & DRk %A Fig. 5.12 1R d . sRBRIEE DS L5
THE, HE EATIST) & OBRICETOENPHER TE 578, HRERIEE 700 °C £ TIXW#EXE
BehfRRE R > Tna. RERIEEDS 800 °C IZ7ed &, WEHIZZ =T 4 MEL A —ATF
A MEDO 2R L 72 oo ARASTINEINT 5 &, A—ZA 7 A MEIKIFERS 23 Mo 0, 7=
TA MEZIEZBIRISN DM > TWD Z EBRHERTE, 7274 MEEA—AT T4 MEZILZEN
WM I8 2 ML L TR TE TW D 2 MR TE 5. 12720, A ESHITNbD 50577
(FEIS ) & DRERARIHMETH 5729, Fig. 5.12 ()2 5 IXHIEHRE RS IERED G O W X L,
728, WREBRIEE 400 °C 2B W THRBRIRE 500 °C DBA LV b/ S WARS I THEHE L ARSI
W OBIEBIR AN TVD A, ZHULRERFIC — O H #(Detector2) |l = 7 — 234 U, BT &2
HTERholzlzdTHD.

LEDZ Enn, BELZZOHFHL AT AMIE > T 700 °C £ TS & ERICFEHH T 5
EHrCE, ZNLUEDOREICBWTHLARETH S & THEINS.

-0.05 -0.05
S >
N N
% 004t % _
S S
~ 2 N
2§ 003t 2y
=3 =2
S g S g
c @ -0.02 - c®
£2 2
< .3 c .8
£C om| £0
(] Q
£ £
0 | 1 1 1 1 | | 0 | | | 1 1 | |
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Load stress (MPa) Load stress (MPa)
(@) 25°C (b) 100 °C

Fig. 5.12 Relationship between load stress and inclination of the inclination of the 26-sin?y diagram at

each temperature.
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Fig. 5.12 Continued.
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Fig.5.12 Continued.

5.3.3 SMA490A O X #RAV5E 4 T # DR AR F 1T E
RETCIEEIRSERBRORE R0 S HEMECH 5 SMA0A O X FRAGHIE 5k O IR FER A % 3F
i 5. X MRADHEE RO B HIEIZ AR OF IS 5 BT A O L O ) bR 5 Fik D,
BTSN T D 20-sin?y MO ZALOBEE 2 HRD D FEDRH 5. AR T, miRSIHERR
FREDAROT B EMICE DN o7 2 & h, ARSI HT 5 20-sin2y #RIX O Z L O >
HRDDFIEERA L.

() EREREIR
SleEEERF, SIEFERSE, WESRMFIIRTHEEF L TH D.

(b) X FREVEMETERDEHE

X BREYSRME EHU L 20-sin?y BRI DOAE & & B ORARIS TN 22 Om RS2 2 &2
TED. VHEHICREEZRETE D & &, BHrA 20 & EHTHEER & REHER O 23/ w ORRIX
KXGB2)D LT, X HHMEERZENT B0 L 70D, Z DK, 20-sinfy X O E M
FRGI) LD,

20,,.
——2(1+U*‘k')tan6?0 L oaSIN? Y + % tan O, + 26), (5.2)
hkl hkl

20 =
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_20Q+uy) ., 180

M = - NG, o, (5.3)
oa : BT w o [EIPTEER & SEHERR O 72

Ena : X BRH)Y o 773 0 : [E4r £

v @ X FREGRT V) b Oo : FEOT B ORI

T, EEOAMEINIIT D 20-sinty FEKIOEE M & w = 0 OFRFO[EIPTA 260, —o(20-sin?y 11X
DU ZRD, ZROOAMINT) oa lTxT 22 A KRD 5 LK (5.2)0HH(5.4), K (5.5)NKE
L. B, BERETVT NCEILSE DT /180 HZF L TN D.

2(1+—Uhkl)=—00t90 . oM i (5_4)
Eiu oo, 180
Vg _COLG, 020, = (55)

E. 2 0o, 180

M : 20-sin%y FRE D = 20,9 : 26-sinfy FRIX DY)

IbED XSz, XY 7R, XBEORT Y ot ARl & OBMRNKRE Y, ([EEDOATRT &N
Z T2 BE D 20-sin?y MX 2455 Z L ¢, X(5.4), X((B5)LD XYL 7R, XBHERT v iR
HHZENHKS.

(c) EER#ER

Fig. 5.13 12 3X(5.4), &(5.5) & v Kb 7= SMA0A 7 X HREGFAM: & Kk D IR E A7 % 71-9°. £ 7=, Dutta
BT Ko THERIE 7z S690QLI{211} i 0> X HRAHNEE L DI EAKAFNE 29, FEM AT IZ IV 2 Bk
W72 v 7R OB ERTE% Fig. 5.13 FIZ A T/RT . Fig.5.13 (@)L ¥, SM490A O X #iHy¥ >
TR Y o TR EIZEFR UEEZ R LTS Z ER 005, £z, BEO B LI X HRT
Yo RN o TEY, ZhiE Dutta b DFEERFER, FEM#T I O7 —2 L b 5E LT\ 5.
— 05, REBRNLELN XA T Y it Dutta B OFEBRFE R &35 T B 2 RN SO
T\W5. Fig.5.13 ()L v, Dutta b DEBRFERTITIRED LH L & HIC XBORT Y o kE<
2o TWD DKL, REBROMRITIRE IR IZEFR CEEZ R LTS, LavL, FEM g
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WCHWAE & XFE CEA 2R L7z, 7238 800 °C LLEDIREL & A4 — AT A MHOMEEH & R
flid 2 Z LR TERNoT2T2, T HITHR L TIIARMSE TiE Fig. 5.13 (I3 72 v o 73,
AT Y e AW,

300 0.5
®  X-ray Young’'s modulus of SM490A ®  X-ray Poisson’s ratio of SM490A
’('g O  X-ray Young’s modulus of S690QL1 (Dutta) O  X-ray Poisson’s ratio of S690QL1 (Dutta)
250 |-
o 04
S &4 ke
»n 200 Mechanical Young’s =
S |--&_____ L modulus of SUS316L S 03
S 0 R g H
g 180 | c . e B T % o o
O [m] [m} [m] ®
S @ 02|
v o100 L 2 Mechanical Poisson’s ratio
(@] DO. of SM490A and SUS316L
g S
O 50 | 01 -
> Mechanical Young’s
modulus of SM490YB
0 1 1 l 1 1 1 1 L 0 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Temperature (°C) Temperature (°C)
(@) X-ray Young’s modulus (b) X-ray Poisson’s ratio

Fig. 5.13 Temperature dependency of X-ray elastic constant.

54 BEDPORERBREDE

541 XEEREIH
(@) FEM IZ & % BUERRHT

KERFER & OHIROT= 12, VAR O TR R IR & BB ARATIC & 0 35 L 7=, i LU A R
PLRVEMRNT = — K ABAQUS ver. 6.13 Z HW 7 A TR ESEIE(FEM)IZ & o TIT o 72, %443 Fig. 5.14 I
AT FETHY, ZOEFHNCHWERBRE LR C-HETH L. ARERET VTR L B RE
L12E7 e L, RBRIARE, 3 XOWHEIE CIEERESEIZ MM LTS, BURET VIZ
I% Okano & 2324 L 72 (5.6) DERE 7 /L 30% H 7o BT CH W= EE I Fig. 5.15 ©iE Y
THY, RFIETIRIAEELMEZMEEL, q=123450/s, r=2.7275mm & L7-.
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—vt)? 2
Q(x,y,t) = %exp {_ M} exp{_ y_z} (56)

r r
Q(x,y,t) : Fm AT R Vo IR
q: HALRER Y 720 O AZVE t: B

o B O

10

/\ unit: mm
Fig. 5.14 Finite element model for thermal conductivity analysis.

10

Density (X 106 kg/mm3)
8 L / 7\

u e i —
g "l e S
o I e \ ==
8— 6 | _ \ - -
s -7 Specific heat ( x 102 J/kg-K)
©
o 4r
7
>
£
o 2+
v I Lv v vy Lv v vy
0 500 1000 1500

Temperature (°C)

Fig. 5.15 Material properties used in thermal conductivity analysis.

(b) EBERIZKDEBIEH

R TR IR O MR AT % Fig. 5.16 139, IEHEMR T X 0 VAR ZS /7RI 4.5, 7, 15, 50 mm 0
MERIE LTz, 45 mm CTid R UEVGEXT %2, ZH LA Clid K RUBVGE &2 VY, IREEBRA & [RIREZ
ERBGL, 0.0sHRTHE L.
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Welding:direction £
o
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g O 1
S | [ 7 mm 45mm*- 7 mm?
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I\J\//\/\/\/\\/\_\//I
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Fig.5.16 Temperature history measuring points.

542 EE#R
() BEbthTEDLE

E— R4 7 b— MEHE i U722 U U, Faeiibrim o LIRAE S KO 3 %) o
=N Ty F U T%ITHZELICRVELNTEIAHZBIRE, FEMATIZ IV TH iR E
% 1500 °C & U 7-fm B /040 O Ll % Fig. 5.17 (S~ d. BT L CIaRmE ) OBk % B8
L TWRWEDEREIRICEITZD 5 b OO, FAEMRHT L 0156 I mA IR S & A BIEORE Rl %
FRICEVELNTEERE BIFIT LTV 5.

1500
1375
1250
1125
1000
875
750
625
500
375
250
125
0

Fig. 5.17 Comparison of experimental and analytical configuration of weld metal.

(b) BEEREDLLE
T 5 B T D SR ATT A SR & BAVEE I K 2 SIS SR D bhik 2 Fig. 5.18 12797, Fig. 5.18 (a) I XA 547
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s s 45 mm, 7mm BEN /- A TTORIETH Y, Fig. 5.18 (b)IZIERERR P25 15 mm, 50 mm B
NIERTORRTHD. FEHEN—FTIL0s @& bae, 40 s TR RIZET L. BAEMEITIC
Ko TR B AL 72 10 S S PRV S o e B T & e IR LS D HEE], D% OMAIREO X BB T
FERE L BAFIC KL TWD Z LR TE 5,

ULED LT, WABIREIREBREIZIRW—REZ R L2 006, REMEMITIC X0 S8R
IS G L BB TE TV D LT L, LA ORE CIRBUEMENT TR 72 IR I 2 7.

1600 1600
® 4.5 mm (experiment) ® 15 mm (experiment)
1400 —— 4.5 mm (analysis) 1400 — 15 mm (analysis)
(o] 7 mm (experiment) O 50 mm (experiment)
6 1200 | === 7 mm (analysis) 8 1200 -== 50 mm (analysis)
o o
N—r N—r
o 1000 o 1000
S S
2 500 2 800
© = © -
@ @
Q. 600 |- Q. 600
£ =
2 400 Q400 [
200 200

100 150 200 250 300 0 50 100 150 200 250 300
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(@ 45mmand7mm (b) 15 mmand 50 mm

Fig. 5.18 Comparison of experimental and analytical result of thermal history.

55 BEHIEER DT DIGETA

551 ZEBREIF
(a) MM

HEEBEHTIE Fig. 5.8 1278 L7 5 [5REREBR 7 & [A] U SM490A % v 7=, 3RBR{AR~121E 100 mm x 100
mmx 10 mm T& Y, IREE 600 °C, {RFEFIFMH 6 REfH] DSk TR 21T o 7. BULBRIRHICAE Uk
RIS 2 AT PERR CHI D % & L7etk, IS TIRE 247 5 5B A T 3 Z FEARBIT I 2 Jt L 3% it D B S g
L L.
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(b) wEEH

AR GTABREIC LA E— RA VT L — e L, BRIZER32mm O 2%t v AAD
B TAT oEBAEERL, ZEHLESIT5mm & Lo, BESMIIEHEEN 150 A, FHHE 1
mm/s, 7—27 3 mm, > —/L KA X100 %Ar, > —/L KA AR 025 t/s & Lz, X612, WAl
HEZIELS T2 B CRER IR & KB & OFICHRIE 3mm O AT > L AR E L BERATE.

(c) ZDimatRIEH

S 7D D % DSHAIE [TV B (T et P ), BB (A > & 4.5 mm), REBFEL (AR
FRAD 15 mm)Tkf L CTITVY, R IT 1A L R HERRIE A T T DG 2 E L. MIEIX7 —27 @
AN L [RIRFICBAZA L, 0.1s B8 T 300 s4T-72. JIEDE, Bk Z Ak ' — A% L 5 deg i)
TSN, HSTHEII A ERR T I 1 mm, EEERRELAZ S 05 mm 725 895 AU v Tl L
T WEET — 27 Omil & RIRFIZBIAA L, 0.1s [Hlk@ T 300 s HIE & 1T 7.

(d) SRXMIZKZBIEEME

Z R X U X DI FHENC 1 Rigaku #E8L D AutoMATE % Fuv 7=, Baigs i 1 ook 2R (PSPC)
THY, Cr-Ka BOL2IYETEHZ AW, BEEEEIT 2 ) A —% TEL Imm [ZHIBR L, 26-sin?y
Ea WS R 21T 7.

() BEDOHEEFBOHRAE

AAFZE TIXIRAM R O & 2 ¥ ORIFTHREE N2 ORFEIZ BT 5 Z E2FIA L, [EEE oL
Ens, 7274 MALA—=AT T A MEOERIL A L2, 7= MALA—AT T A b
FEOD 2 RN D 72 DIREMB DG A, SMHOERELE V,,Y,, RAEBEEOBRIUREE &35 &,
[EPTHRE 1, 1,13X((5.7), XGYD L HTKT LN TS,

I, = 2;\/ (5.7)
R7
I;f =K ZV}/ (5.8)
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K(5.7), RGEDILE LD L, R(B.ILARD.
(5.9)

ZIT, 2MHNLERSNDEAMEMTHDDOT, BHELOAFHIZNGL0)EFRT I ENTE S,
vV, +V, =1 (5.10)
THE, A—RATFA POEEE VITIXGINE L TRODZ ENTE S,

R
i:1+_}/
Y, R,

e

: II—"‘ (5.11)

7ok, RGBT O KIIMEHZIERBR 2 EHTH Y, RIZNGL)D X I ITERENS.

R=Vi2||:|2 PLP exp(—2M) (5.12)
v BLESF ORTE p: ZEEN T
F . &R 7 el . IR EE K] 7

XEL)DHFIIIRAOER K MR E u B3 EENRN T, R 72 < & b B
PN DR 2 RD D Z &2k 5.

AWFFE T, A D2 k% PILATUS-300K (Fig. 5.1 41> Ditecter 3) D4 & A CEEAH L 7=.
PILATUS-300K 7> 543 5415 Fig. 5.19 () D X 9 DT U > 7 Ot % 7 F o A O K ik
ESRF THF Sz 1IReB L2 Re DT — 2 fiftt 7w 77 Z LT db % Fitad % Hv T Fig. 5.19 (b)
DX LIIb Lz, 2o, A, MR ORELZBET 570, HEROBEHFTOMAE DY
D OIRFE 25 L, = OEMEE A=, A= i o200}, {2113, {220}, y{220}, {311},
{222}y CH Y, R I SCHE 2% vz,
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(a) Two-dimensional image (b) One-dimensional image

Fig. 5.19 Change of the diffraction image from two-dimensional image to one-dimensional image.

552 HERHER
(a) BEPOHEEEEE

PILATUS-300K T} b7z Bl 64— A7 A MAOKRRE AT L, REERE S OXfR %R
L7-7'7 7% Fig.5.20 |Z/R" 7. 728, Gk CToh % SMAQ0A TIIIREER IR A — AT+ A A
DRHEND Z L IXFEE A ERVA, Fig. 5.20 TIXHHAI SN B b A — 2T A FED 10 %FLfErk
BMLTWD. AL, BESBICA CRICRL ORI L0 BT e — 27 AL, B A3 & 2 v
ZA N EDORA DB & F— AT F A FOEFTE— 7 Z IEfEIZHBETE TW o 7o RN
WD, 72121, BHEBRIRIT LT A XTI L2, —A7 4 MEOEFT I e
Moz Z LD b, ABFIETIE 10 ARMIZIEHR L, 4 —AT A MEA 10 %A 22 > 2B H
ERENTET L& Lz,

Fig. 520 XV, AR HWM) TILERE h—F A FHITE EiBiE% 40 s), BEISN DI
#1620 °CHA—ATF A b>T =T A MALRENIEE Y, K436 °C THERENET L. —J, B
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Fig. 5.21 Residual stress distribution from weld metal to base metal evaluated by lab X-ray.
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Fig. 5.22 Change of stresses in longitudinal direction during TIG welding process in WM.
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Fig. 5.24 Change of stresses in longitudinal direction during TIG welding process in HAZ.
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