

Title	Development of plasma-assisted polishing for highly efficient and damage-free finishing of single-crystal SiC, GaN and VD-SiC
Author(s)	鄧, 輝
Citation	大阪大学, 2016, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/55988
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

論文内容の要旨

氏名 (鄧輝)	
論文題名	Development of plasma-assisted polishing for highly efficient and damage-free finishing of single-crystal SiC, GaN and CVD-SiC (プラズマ援用研磨法を用いた単結晶SiC、GaN及びCVD-SiC基板の高能率・ダメージフリー研磨プロセスの開発)
<p>A novel finishing technique named plasma-assisted polishing (PAP) was proposed for the damage-free, slurryless and low-cost finishing of difficult-to-machine materials such as 4H-SiC, GaN and CVD-SiC. A symmetric PAP machine, a two-step PAP process and a prototype PAP machine were developed. The usefulness of PAP was confirmed using the symmetric PAP machine. The surface modification and material removal mechanisms in PAP were clarified by the two-step PAP process. The slurryless and whole-surface polishing of large substrates with high efficiency was realized using the prototype PAP machine.</p> <p>In Chapter 1, the background to this study, the properties and applications of the difficult-to-machine materials polished in this study, and the aims of this study were introduced.</p> <p>In Chapter 2, PAP was proposed and its concepts were introduced. To realize the highly efficient, cost-effective and damage-free polishing of the difficult-to-machine materials, which cannot be realized by conventional polishing techniques, PAP, which combined AP-plasma based surface modification and soft abrasive polishing, was proposed. In this chapter, some conventional polishing techniques, the basics of the generation of AP-plasma, and the concepts and strategies of PAP were introduced.</p> <p>In Chapter 3, the development of the PAP machines was discussed. PAP was developed from a symmetric machine used for fundamental study to a prototype for practical application. In this chapter, the background to the development of the PAP machines and the details of the prototype PAP machine were introduced.</p> <p>In Chapter 4, PAP was applied to 4H-SiC (0001). The surface modification of SiC by the irradiation of AP-plasma was confirmed. It was found that water-vapor-containing plasma had a higher surface modification efficiency than that of oxygen-containing plasma. With the application of the symmetric PAP machine, a scratch-free, damage-free and atomic-scale flat SiC surface with a well-ordered step-terrace structure was obtained. It was proved that a transition layer (silicon oxycarbide) between SiO₂ and SiC was generated after plasma irradiation. Even though this layer could not be removed by etching in HF solution, it was removed by polishing using CeO₂ abrasives and resulted in the generation of a uniform step-terrace structure of 4H-SiC.</p> <p>In Chapter 5, a probable mechanism for controlling the surface atomic structure of 4H-SiC (0001) was proposed and experimentally clarified. The generation of the a-b-a*-b* type, a-b type and a-a type step-terrace structures of 4H-SiC could be controlled by adjusting the balance between chemical modification and physical removal in polishing processes. When the removal rate (r_{pol}) for abrasive polishing was lower than the rate of surface modification, the a-b-a*-b* type step-terrace structure was generated. When the pad rotation speed was increased and r_{pol} for abrasive polishing became comparable to the rate of surface modification, the step-terrace structure changed from the a-b-a*-b* type to the a-b type. When r_{pol} for abrasive polishing was higher than the rate of surface modification, a uniform a-a type step-terrace structure was generated. On the basis of this mechanism, the results of polishing using existing polishing techniques in which chemical reactions and abrasive polishing were combined could be explained.</p> <p>In Chapter 6, PAP was applied to GaN (0001) to resolve the problems of the conventional CMP processes such as the low MRRs and the formation of etch pits. The surface softening of GaN by the irradiation of AP-plasma was confirmed. The application of the two-step PAP process and the prototype PAP machine were separately investigated. The CMP of GaN with plasma pretreatment was conducted and a pit-free surface was obtained with time-controlled slurry polishing. Combination of plasma irradiation and CeO₂ grinding stone dry polishing was also conducted. A scratch-free and pit-free surface with a well-ordered step-terrace structure was obtained. The plasma generation conditions were optimized, such as the water vapor concentration, gas flow rate and the type of the carrier gas, was conducted to improve the surface modification efficiency in PAP.</p>	

The prototype PAP machine was used to polish the whole surface of 3 inch GaN substrates. With intermittent dressing using a diamond plate, a high MRR of PAP of 193 nm/h was obtained.

In Chapter 7, the combination of plasma chemical vaporization machining (PCVM) and PAP was applied to realize the damage-free figuring and finishing of CVD-SiC substrates, which were used as materials for space telescope mirrors and glass molds. As reported in this chapter, the properties of the CVD-SiC substrates used in this study were investigated. PCVM was performed for the removal of the SSD layer while PAP was performed for damage-free surface finishing. In the case of conventional CMP, the polishing efficiency was very low. PCVM was conducted on a diamond-lapped CVD-SiC surface. After PCVM for a short time of 5 min, scratches and the SSD layer formed by lapping were completely removed, although the surface roughness was deteriorated. PAP using a resin-bonded CeO₂ grinding stone was conducted to decrease the surface roughness of CVD-SiC processed by diamond lapping and PCVM for 5 min. The loose-held-type CeO₂ grinding stone was demonstrated to be very useful. A flat and scratch-free surface with an rms roughness of 0.6 nm was obtained.

In this study, PAP was applied to 4H-SiC, GaN and CVD-SiC. When PAP was applied to 4H-SiC (0001), a scratch-free and damage-free surface with a well-ordered step-terrace structure was obtained. Also, the mechanism for controlling the surface atomic structure of 4H-SiC (0001) was proposed and experimentally confirmed. When PAP was applied to GaN (0001), the problem of etch pit formation in the conventional CMP process was successfully resolved. The polishing conditions of PAP were optimized and a high MRR of 277 nm/h for a 3 inch GaN substrate was obtained. By the combination of PCVM and PAP, the slurryless and damage-free figuring and finishing of CVD-SiC was realized.

PAP is a slurryless and dry polishing technique in which damage-free and atomic-scale flat surfaces can be obtained. This is the greatest advantage of PAP compared with conventional polishing techniques such as CMP, in which a large amount of expensive slurry is required. On the basis of the results of PAP described in this study, the industrial application of PAP to wide-gap semiconductor substrates, glass lens molds and telescope mirrors is strongly expected and will be attempted in future studies.

論文審査の結果の要旨及び担当者

氏名 (鄧 輝)		(職)	氏名
論文審査担当者	主査	准教授	山村 和也
	副査	教授	遠藤 勝義
	副査	教授	山内 和人
	副査	教授	森田 瑞穂
	副査	教授	安武 潔
	副査	教授	桑原 裕司
	副査	教授	森川 良忠
	副査	教授	渡部 平司

論文審査の結果の要旨

単結晶 SiC、GaN は広いバンドギャップ、高い熱伝導率、高い絶縁破壊電界などの優れた電気特性を有することから、次世代のパワーデバイス用の半導体材料として大きく期待されている。単結晶 SiC、GaN が有する優れた特性を十分に発揮するため、ダメージフリーかつ原子レベルで平滑な表面が必要である。また、高精度ガラスマールド用の金型材料には、耐摩耗性、耐熱性、化学的安定性などが要求されるため、CVD-SiC の適用が有用である。金型の寿命に大きく影響する表面下変質層 (SSD) の導入を避けるため、ダメージフリーな加工プロセスが必要である。しかしながら、単結晶 SiC、GaN 及び CVD-SiC は硬度が高く、化学的にも安定であるため、化学的及び機械的な加工が困難である。これらの難加工材料の精密加工技術として、化学機械研磨 (CMP) は仕上げ研磨における現在の主流技術のひとつであり、工業的に広く応用されている。しかしながら、CMP の加工能率は極端に遅く、スラリーなどのケミカルが用いられるためコストが高く、エッチピットが形成されるなどの問題が存在する。

本研究では、大気圧水蒸気プラズマによって生成した反応種を難加工材料の表面に作用させて軟質化し、母材よりも硬度が小さな砥粒を用いて研磨を行って改質層を除去することで、スクラッチフリーかつ平滑な表面を高能率に形成する新しいプラズマ援用研磨プロセス (PAP) を提案している。また、基礎研究用及び 3 インチサイズ基板の全面が研磨できる PAP 装置を開発するとともに、本装置を 4H-SiC、GaN 及び CVD-SiC の研磨に適用した成果をまとめている。本研究で得られた主な成果は以下の通りである。

- (1) 水蒸気を含む大気圧プラズマを照射することにより、4H-SiC (0001) の表面が酸化されて軟化したことをナノインデンテーション試験で確認した。酸素プラズマと比べて、水蒸気プラズマは高い改質速度を有し、また、水蒸気プラズマの改質速度は水蒸気分圧に大きく依存することが分かった。4H-SiC に対して、対称型の PAP 装置を適用した結果、スクラッチフリーかつ均一なステップ／テラス構造を有する表面が得られ、4H-SiC に対する PAP の有効性が実証された。そして、二段階 PAP プロセスを用いて、PAP における SiC の酸化及び研磨メカニズムを解明した。水蒸気プラズマを用いて 4H-SiC を酸化した場合、 SiO_2 酸化膜と SiC 母材の間に、フッ化水素酸では除去できない中間層 (Si-C-O) が形成されるが、PAP においては、酸化層と Si-C-O 層の両方が軟質なセリア砥粒研磨により完全に除去されることにより、ステップ／テラス構造が見られる原子オーダで完全な平滑面が得られ、複合研磨の優位性を示した。
- (2) 4H-SiC の結晶構造に基づいて、4H-SiC の Si 面におけるステップ／テラス構造の制御メカニズムを提案した。セリアスラリー研磨において、研磨ヘッドの回転速度を変えることによって研磨における酸化作用と研磨作用のバランスを調整し、4H-SiC の表面における 3 種類のステップ／テラス構造 (4 回周期、2 回周期、均一) の制御が可能になった。研磨後の表面に残留した酸化物の量を測定した結果、提案したメカニズムと合致した。

(3) GaN に対して、O₂ プラズマ及び CF₄ プラズマの表面改質速度を比較した結果、改質速度は CF₄ プラズマの方が速いことが分かった。また、CF₄ プラズマ照射による GaN の表面改質において、基板加熱の有効性を実証した。CF₄ プラズマ照射後の表面に対して、CMP の加工時間を制御することによって、エッチピットフリーな表面を得ることに成功した。固定タイプのレジンボンドのセリア砥石を用いて、二段階のドライ PAP プロセスを適用した結果、ピットフリーかつ均一なステップ／テラス構造を有する原子レベルで平滑な表面を得ることに成功した。開発した 3 インチサイズ基板の全面が研磨可能な PAP 装置を GaN の研磨に適用した結果、砥石表面の摩耗のため、PAP 加工の進行に伴う加工速度の低減が確認された。PAP とドレシングを交互に適用したところ、193 nm/h の研磨レートが得られた。本研磨レートは従来の CMP におけるレートの約 2.5 倍である。

(4) CVD-SiC 製の金型加工法として、大気圧プラズマを用いたエッチング法である PCVM と PAP を融合した二段階のダメージフリー加工プロセスを開発した。機械加工後の CVD-SiC 基板に対して、PCVM によるスクラッチと加工変質層の高速除去を行った後、PAP による表面のダメージフリー仕上げを行う二段階加工プロセスを適用した。5 分間の PCVM 加工によって、機械加工で導入されたスクラッチと加工変質層を完全に除去し、その後、3 時間の PAP 仕上げ研磨によって、表面粗さを 0.69 nm rms まで改善し、スクラッチフリーかつダメージフリーな表面を得た。本結果は、CVD-SiC に対する二段階加工プロセスの有用性を実証するものである。

以上のように、本論文はドライ研磨プロセスであるプラズマ援用研磨法を提案するとともに、開発した基礎研究用及び 3 インチサイズ基板の全面研磨が可能な PAP 装置を用いて、4H-SiC、GaN 及び CVD-SiC に対する PAP の有用性を実証している。本研究で提案・開発されたプラズマ援用研磨法は薬液や砥粒を含むスラリーなどを一切使わないドライプロセスであり、環境負荷が極めて低いエコフレンドリーな加工技術として期待できる。よって本論文は博士論文として価値あるものと認める。