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1. Introduction

The equation of acoustic, electromagnetic and elastic waves can be con-
sidered as first order symmetric hyperbolic systems of partial differential equa-
tions for C^-valued function u of the form

(1.1) Dtu = Λu,

where

Λ = £(*)-'ΣMA

Here Dt=(\/i)(d/Qt) and Dy=(l/ί) (d/dxj), ^4/s are constant mxm hermitian
matrices, and E(x) is a positive definite hermitian matrix. It is measurable and
satisfies

0<c1I^E(x)^c2I for some cλ and c2.

We shall consider the case that there exists a constant matrix EQ and a
positive number δ such that

\E(*)-E,\ £C<*>- «*> = (i+1*!2)"*) .
Then the equation (1.1) is regarded as the perturbation of the equation

Dtu = Λ°M ,

where

Λ° = Eϊ1 Σ A j D j .

When δ<l, the perturbation is said to be short-range, and when δ^l, it is
said to be long-range. In this paper we shall consider a class of first order
systems with long-range perturbations.

Now we put J=E~1/2Eΰ1/2. The operator W± is called the wave operator
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if the limit

(1.2) W±u = lim *'•< V*

exists. From the point of view of the existence and the completeness of wave

operators we can say that the general theory of systems with short-range per-

turbations is at the satisfactory stage (for example [1], [8]). When the perturba-

tion is long-range, as is known for the case of Schrϋdinger operators, the limit

(1.2) does not exist generally, that is, Λ° cannot be regarded as the free operator.

Thus our problem is to construct another operator W± (so-called modified wave

operator) which satisfies the intertwining property

The fundamental problems of the theory of long-range perturbations are the

existence and the completeness of W±. In connection with these problems H.

Tamura first proved the limiting absorption principle for uniformly propagative

systems with long-range perturbations ([5]). This result has been extended to

wide classes ([6], [7], [8] and [9]). For the case of 2-body Schrϋdinger operators

the limiting absorption principle alone enables us to prove the existence and

completeness of (modified) wave operators even in the case of long-range per-

turbations. This is also the case for first order hyperbolic systems when all
characteristic roots of the unperturbed operator are simple. However, if we

consider the case that characteristic roots are non smooth, for example the

Maxwell equation in a crystal optics, we encounter serious difficulties in devel-

oping the scattering theory by using the above mentioned stationary results.

In this paper we prove the existence of the modified wave operator for

some classes of systems by using the time dependent method. In section 2 we

shall state the exact conditions for Λ°, which includes the Maxwell equations

in biaxial crystals. Their characteristic roots are non smooth, and our theory
admits including such equations.

Now we want to define the modified wave operator as the limit

(1.3) WD

±u = lim eitAJX(t)u

for some partial isometric operator X(ί) instead of e~itf^. In the construction
of X(t) we shall use the solution of the Hamilton- Jacobi equations

(1-4)
oΐ

where \k(x, ξ )'s are the eigenvalues of the principal symbol of Λ (an mxm

matrix).

In [2] Lars Hϋrmander has proved the existence of the modified wave
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operators for Schrϋdinger equations with long-range potentials. Here he solved

the Hamilton-Jacobi equation and used the stationary phase method on Rn.

But in our case, since \k(
χ> I) is positively homogeneous of degree 1 with

respect to ξ , its Hessian vanishes everywhere. Hence we cannot apply the
Hϋrmander calculus, and we shall use the stationary phase method on a hyper-

surface. Then our calculus is rather different from that of [2].
This paper is organized as follows. In section 2 we shall give the exact

assumptions for Λ° and some preliminary results. In section 3 we shall define

the operator X(t) and show some properties. In section 4 we shall prove the

existence of the limit (1.3) by the use of the stationary phase method on a hyper-

surface.
The author would like to express his sincere gratitude to Prof. Mitsuru

Ikawa and Dr. Tomio Umeda for their encouragements and useful suggestions.

2. Assumptions and some preliminary results

We are now treating the case that the perturbation is long-range. More

precisely we assume

ASSUMPTION (E) E(x) <Ξ C°°(Rn) and

forδ>0and |α|^0.

On Λ° we also require some assumptions. We put

Λ°(£) = Eϊ1 Σ Afa (the symbol of Λ°)

and

p0 = max $ {positive eigenvalues of

Then

ASSUMPTION (F) 1) Λ° is strongly propagative, that is, for some d

rank A°(£) = m-d (for £=j=0) .

2) Po = (m

Here d is called the deficit. The condition 2) of (F) is equivalent to that

the multiplicities of non-zero eigenvalues are all simple outside a conic unll

set. As an example we consider the Maxwell equations in crystals:

,
ot ot
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Here £ — (£,v) is a tensor dielectric constant and μQ is a scalor magnetic per-
meability. Let 619 62 and £3 be eigenvalues of 8. We may assume that

There are three classes which are defined by the condition (1) £1>£2>£3, (2)
ξl'^>ξ9=ξ3 or 61=€2>63 and (3) £1=r£2=£3 (isotropic). The cases of (1) and (2)
are covered in our class, and the case of (3) is not covered (refer to C.H. Wilcox

Similar to the case of Λ° we put

Λ(*, ξ) = E(x}-1 Σ Ajξj (the symbol of Λ)

and
ρ(x) — max # {positive eigenvalues of Λ(# , ξ )} .

The eigenvalues of Λ°(f) and A(x, ξ) can be enumerated as follows:

(2.1)

and

(2.2) χpω(*, D^ ^λΛ*,

respectively. If λy(( ) = λί(| ) (\j(x, ξ) = \k(x, ξ) for fixed x), thenj=k.
Here we note that 2) of (F) guarantees that \k(x, ξ) is smooth for large

I x \ when \l(ξ) is smooth. It is not the case if 2) of (F) is not satifised, and
(1.4) does not have classical solutions in general. Hence it seems to be difficult
to remove the condition 2) of (F) as long as our method is used.

To study Λ° and Λ in one Hubert space M=L\R*\ Cm) with the usual inner

product

(u, v) = I u(x)*v(x)dx
JR"

(note that Λ° and Λ are not self-adjoint in M), we set

and

A = Ex

which are self-adjoint operators in Si with domains

.®(λ0) = 5)(A) - {u^Si\ teu

Now we can reduce our problem to studying Λ° and A in SI (see for example
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[9]), and then our purpose is now to construct a partial isomteric operator

in Si and to show the existence of the limits

Note that the eigenvalues of &°(ξ) and Λ(#, ξ ) (symbols of Λ° and A) coincide

with those in (2.1) and (2.2). Clearly E satisfies the Assumption (E) with
E0=I, and A° satisfies the Assumption (F). Then we can replace EQ with /

without loss of generality, and hereafter we shall omit the sign "~" for sim-

plicity.

Here we give some fundamental concepts which are important to develop the

theory of first order symmetric hyperbolic systems. (About these concepts

refer to C.H. Wilcox [10] and K. Kikuchi [3]). Let Pj(f ) and Pk(x, ξ) be

orthogonal projections on the eigenspaces corresponding to λX(f) and \k(x, ξ),

respectively. The properties of \l(ζ) and Pj(f) are given in [3, (2.5)^(2.13)].

\k(x, ξ) and Pk(x, ξ) also satisfy the same properties. Especially \k(x> f)'s are

positively homogeneous of degree 1 with respect to ξ. The slowness surface for

Λ° is den defined by

The condition 1) of the Assumption (F) is equivalent to the fact that 5 is bounded.

we put

Sk = {ξ^Rn\ λϊ(f) = 1} , j = 1, 2, ..-, po .

and then 5— U Sk. Let Z(

5

υ be a set of all algebraic singularities of S. \l(ξ)

may not be smooth on Z(

5

υ. Z(

5

2) denotes a set defined in [3, page 579], which

contains all points at which the Gaussian curvature vanishes. (For the definition

of the Gaussian curvature see [4]). And we put

In this paper we shall denote for MdR"

and

For example Zs={ξ =rs; s^Zs and r^R}. (Note that Zs is a closed null set).

The similar concepts are defined for Λ, for example Sx, ZSχ and ZSχ.

About the eigenvalues and projections we have the following proposition.

Proposition 2.1. Under the Assumptions (E) and (F) the following facts
hold:

i) There exists an R>0 such that
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p(x) = pQ when \ x \ >R .

ii) Let KdR"\Zs be compact. Take R large enough. Then \k(x, ξ)
and Pk(x, ξ) are smooth for (x, ξ ) e { | x \ >R} x K and satisfies

for any a, /3, | x\ >R and

for any a, β, \x\ >R a
Here C is uniform for (x, ξ) e { | x \ >R} X K.

Proof. Since p0= (m— d)/2, the algebraic equation with respect to λ

det(λ/-Λβ(£)) = 0

does not have a double root other than λ = 0 when ξ^ Zφ Then the con-
tinuity of the roots gives i) and

as

uniformly for ξ in a compact set KdR*\Zφ The rest of the assertions are
easily proved by a straightforward calculation. Q.E.D.

In the rest of this section we state a theorem of the stationary phase method
on a hypersurface. It will play an important role in the argument of section 4.

Let {St}tzτ be a family of smooth hypersurfaces. For each t a comapct
support smooth function μt(s) defined on St is given. Suppose that they satisfy

i) For sufficiently small domain U of Rn there exist smooth functions {φt}

such that

ii) There exists another smooth function φ such that

|9>,-9VI^CΛrδ for |α|^0.

iii) The Gaussian curvature Kt(s) of St satisfies

c2 for ί^supp μt ,

where cx and c2 are constants independent of t.
iv) The derivatives of μt(s) are uniformly bounded with respect to t.

We consider here the integral
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/,(*)= eixsμt(s)έSt, x
JSt

(έSt = (2π)-<

Let ίj(z?)'s be the points where the exterior unit normal of St is ϋ, and let pt(9}
be the number of {*?#} . Put

(2.3) *?(,) = exp {±Orί/4) Q>?(ί)-j>7('))} .

where p*(s) denotes the number of positive (negative) principal curvatures of St

at s. Now the following fact holds.

Theorem 2.2. If {St}t^τ and {μt}t>τ

 are g^ven as above, then It(x)
satisfies the following expansion formula :

γ=ι

Σ *ίιsc+(ί, *) I ΛΓ,(ί) I -"Vf (*) I...?(«I * I

Σ e?* C-(t,s)\K,(s)\
γ=ι

,*)I^C Σ

|C*(ί,ί)|^C Σ |
|Λ|=0,1

(σ w a local coordinate)

for some constant C independent of t.

The proof of Theorem 2.2 can be carried out in the same line of the proofs
written in many literatures (see, for example, M. Matsumura [4, §4 and §5]).

3. Definition and properties of X(t)

We denote the set {u^C°*(RH); ύ^Co(R"\Zs)} by <SS. The unitary group

e-itΛ* js given for u^<Ss by

(3.1) *-«Δ°tι = Pl(Dx)u+ Σ ( β"«-«
1*1 = 1 JRn
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We must replace e~itA° in the definition of the wave operator by another operator
X(t). So we shall seek X(t) in the form

(3.2) X(f)u =
l*i

where Wk(t,ξ) satisfies the Hamilton-Jacobi equation (1.4) and Ω/ satisfies
\JΩt=Rn\Zs. The solutions of the Hamilton-Jacobi equations are obtained

in a standard way. (Here we state only the case of ί->-f-oo).

Lemma 3.1. Under the Assumptions (E) and (F), let {£/}7=ι be a given
sequence with ί1<ί2< and lim ΐl=oo. Then there exist a sequence of conic open

'+-
sets {Ω,}r»o with ΩoCΩ^ and U Ω/=R"\Z(£\ and C°°-functions Wk(x, ξ)

1=0

(\k\=l, , Po) defined on U [tl9 °o) X Ω/ having the following properties:

i) W*(ff, ?) satisfies

(3.3) = λ*(Vf W*, ξ) on

For any compact set Kc:Rn\Z(s}

ii) \d*(Wk(t,ξ)\^Cat for |α|

iii) 1 8T(rW4(ί, f)-λj(£)) I + 1 9?(λ,
/or |α|^0 and ξ(ΞK

iv) For r>0 Wk(t,rξ)=rWk(t,ξ)

v)

The proof of this lemma is similar to that of Lemma 3.8 of [2]. Assertions
iv) and v) follow from the fact that \k(x, ξ)ys have the same properties.

From Lemma 3.1 ii) and iii) for \a\ =1 we have

(3.4) C't^\VWk(t,ξ}\^Ct.

Now we define X(t) by (3.2) for u^Ss with functions Wk constructed in
Lemma 3.1 and domains Ω, given by

(3.5) Ω, -Ω; for t£Ξ[th tl+1) .

Let IWk(t) be operators defined by

Iw(t)u=\ eiχt-iw*(t &ύ(ξ)dξ for u^Ss,JΩ/

and we put Xk(f)=IWk(t)Pl(Ds). Then X(t)=^Xt(t). Y»(ί) and Y(t) are

other operators given by Yk(t) = IWt(f)Pk(VWk(Dί), D,) and
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Here note that from Proposition 2.1 and Lemma 3.1 the matrices Pk(VWk, ξ)'s

are smooth on supp ύ when t is large.
Let p(r)&C"(Rl) be a function satisfying

j 1 if r^l
P(r}== { o if rSl/2,

and we put

(3.6) %(f,*) = p(2CV |* |/0'

where CV is a constant which satisfies

(3.7) Cϊl£\V\l(ξ)\£Cw for |*|=1, 2, -,Po.

The existence of such constant easily follows from 1) of Assumption (F).

Now we have

Lemma 3.2. i) Let u^<Ss be fixed. Take sufficiently large t. Then
for any s>0

ii) z/ and t are the same as above. Then for any s>0

iii) Xk(t) — Yk(t)-+0 strongly ast-*oo.

Proof i) Lemma 3.1 iii) gives

and this implies

when ί is large and (£, Λ?) is in the support of 1— %(£, Λ;). Then the assertion
easily follows from the equality

and integration by parts.
ii) The assertion follows from the equality

the inequality (3.4) and integration by parts.
iii) The assertion follows from (3.4) and Proposition 2.1 iii). Q.E.D.

It is easy to see that X(i) is a partial isometry as an operator from
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M(=L\R"\ C1")) to M with the domain Ss. Since Ss is dense in M, X(t) can

be extended to an operator whose domain is the whole space M. We denote this

operator also by X(t).

4. The existence of the modified wave operators

The purpose of this section is to prove the main theorem:

Theorem 4.1. The modified wave operator

(4.1) WΪ = s-limeitAX(t)
f->±e»

exists, and it is a partially isometric operator with the intertwining property

eisAWίu = WD

±eis^u stΞR and

Proof If the limit

exists for a dense set of u^JHy it exists for every u^<4ί. Hence we may assume

u^Ss. If t is so large that supp ώcΩ,, we may consider Ωt—Rn in (3.2).

Then we shall take such t for any fixed u.

Here we consider only the case of W+. (W^ can be treated in the same
way).

In the same way as in the proof of intertwining property for the case of the

Schrϋdinger operators (see [2]) we have

limX(t+s)*X(t)e-itA°u = (I-Pl(Dx}}u ,

and the intertwining property has been proved. (Note that Pc(Λ?)=Pac(AQ)=

/-PoW).
Now we prove the existence of the limit (4.1). From Lemma 3.2 iii) the

existence of W+u is equivalent to the existence of

(4.2) s-lim e»*Yk(t}u
*->• + «»

When we have for some T

at

we know that the limit (4.2) exists. Here note the equality
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at dt

= f e"«-'"'.«.ί)[(Λ(*, ξ)-
J R

+R(t, x, ξ)ύ(ξ)]έξ

where

From Lemma 3.2 ii) we easily have

Let %(£, x) be of (3.6). From Lemma 3.2 i) we have

Hence we have only to consider

(4.3)

, x) = J**-'w*«-*>X(t9 x)
Rn

ot

Our purpose is to prove that the L2-norm of I(t, x) is integrable with respect to

t.
Here we introduce a new surface which is like the slowness surface:

Sk(t) = {£eΩ,; ΓlWk(t, ξ) = 1} (Ω, is of (3.5)) .

Put ^=suppώ and R={ξ=rξ' \r<=R and ξ'^K}. It follows from (3.4) that
Sk(t) Π K is a smooth hypersurface when we take sufficiently large t (depending on

R). WeputΣ,=S*(*)n^.
In (4.3) we make the change of variables ξ-*(r, s) (r>0, s^Σt) by ξ=rs.

From Lemma 3.1 iv) and v) this transformation is surely one to one. We put

(4.4) Ffa x, ζ) = X(ί, *) (Λ(*. ξ)-*(t, ξ))^Wt, ξ) .
Ot

In the same way as [10, §4] we have

/(ί, x) = Γ ( ( ei(rxs-w^^Fk(t, x, rs)ύ(rs) \ Tt(s) \ ~lέS(t)) \ r
J-oo J?,t

= Γ e-Mr I r \ -\ \ Jr»Fk(t, x, ήύ(rs) \ Tt(s) \ ->
J-oo J Z f
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where dS(t) is the surface element of Σf and

(4.5) Tt(s) = ΓlVWk(t, s) for

Now we put

*>(t, x, y, r) = ( e>«Fk(t, y, ήά(rs) \ Tt(s) \ ~
J2,

Then

(4.6) 7(f , x) = ( e~irtvk(t, rx, x, r ) r \ r \ n~ldr .
J -00

We shall use the stationary phase method (Theorem 2.2) for the integral on Σt

For any parametrization s=s(σ) the gradient of the phase x s(σ) with respect to σ
satisfies Vσ(x s)=x Vσs. Here note that the column vector of V<Xσ) construct
the tangent plane of Sk(t) at s(σ). Hence the stationary points are the points s
where x is normal to Sk(t), that is, Nt(s)=±$ (& = x l \ x \ ) . We denote the
Gaussian curvature of Sk(t) by Kt(s). Since KdRn\Zs, it easily follows that
Kt(s) does not vanish for sufficiently large t in Σt. This fact implies that the
Gauss map Nt(s) on Σ, is a C°°-injective map into S"'1. We put ωt=Nt(Σt).
Then Nt is bijective from 2/ to ωt. We denote the inverse map of this map by
st.

It is easy to see that the integral of vk satisfies all assumptions of Theorem
2.2. Hence we have

vk(t, x, y, r) = e" ψk(t, y, s)ύ(rή \ Tt(s) \ ̂  | Kt(s) \ ~^

•Ψί(*) I .-«(« I * I -(-1)/2+ei* ̂ (ί) y, s)ύ(rs)

• I T,(s) I -1 1 K,(s) I ~^T(ή I ._„(_« I * I -(«-1)/2

(4-7) +ei* *C+(t, y, r, s) \ Kt(s) \ -^(s) \ . -ί((Λ I * | ~"'2

+ei* *C-(t, y, r, s)\Kt(ή \ -^ΐ(ή\t..Λ.Λ\x\-^

+q(t, x, y, r)

where

I q(t, x, y,r)\^ C« j>-δ+r δ) | * | -(»

and

(4.8) I C^t, y, r, s) | ̂  C Σ I {8?W) I ί-J I
|α5|=0,l

with constants independent of ί. It is easy to see that the supports of C± and
q with respect to r are compact in R\ {0} .

From (4.6) and (4.7)
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where

7Λ±(ί, x) = Γ e-MVj.±(t, rx, x, r)r\r\^dr (j = 0, 1)
J -00

and Q(t, x) is defined similarly. Q satisfies the estimate

Now we put

Φi(τ, s ; χ , t ) = Fk(t, x, s) I Tt(s) I -11 Kt(s) \ ̂

( ' ' l eirfrr\r\^-l^ύ(rs)^f^(±r\s)dr

and

/, 1 1 N Φ^T> '; ̂  ') = I ̂ 'W I "V2 Γ e"T C±(^ ^> '>(4.11) J-°°

•Irl^-V?1*11^0^)^-

(Recall that -ψ ? is defined in (2.3)). Then /y>± are written as

) ; x, t)
/ Jt X) = ,
'-V ; 0 (otherwise).

It easily follows from Lemma 3.1 iv) and (4.5) that Tt(s) = (s Nt(s))-1Nt(s).
This equality implies

x st(-ff)-t = -\x\(-0).Sl(-0)-t = - 1*1 I TM-

Hence we have

(4.12) !«.,,(_,>)_, i >c |*| +ί.

On the other hand integration by parts gives

(4.13) Φί(τ, *; *, ί) = {...}(- l/iτ)» f~ e-(9/3r)2{ }̂  .
J —00

Then from (4.12) and (4.13) Iίt_(t, x) (j=Q, 1) satisfy the same estimate of (4.9).
Now we write

(4.14) 7(ί, x) = I0f++Ilt++Q ,

where ζ5 = /0>_+/u_+<5. Since Q satisfies the same estimate of (4.9) and
\x\>(l/4Cw)t on the support of %(£, Λ:), we have

(4.15)

Next we calculate the L2-norm of 7y§+:
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= Γ( Φ{(*.ίf(t?)-ί,ίt(ι?);*,
JO Jω/

*.

Now we make a change of variables s=s,($) (d^.ωt). It is well-known that

AS"-'= I *,(*)! <»(*)•

It is easy to see that ΰ>st(9)= \ T,(st(ΰ)) \ -1 and x= \ x \ ϋ= \ x \ Nt(st(ΰ)). Thus

H (̂ί, )H1» = Jβ" JS ίΦi(l*l lϊ'Xί)!-1-*, ί; |*|ΛΓ,(ί), 0*

Φi(|*| IΓ.WI-'-ί,*; |*|ΛΓ,(ί), ί) | Kt(s) \ dS(t)d \x \ .

Here we make another change of variable \x\ — >τ by

Then d I * | = | Tt(s) \ dr, and we have

(4.16) ll/y +(ί> ')ll i2 = J", LΦ{(r' S'

Φί(τ, *; (τ+ί)Γ,(ί), ί)| Tt(s)\ \Kt(s)\dS(t)dτ .

First we consider the case of j=0. Recall the definition (4.10) of Φ°. We
begin with F,,. From (3.3) and (4.4)

Fk(t, x, *) = χ(ί, *) (Λ(«, *)-λ*(VΪΓ., 5))P»(VίΓ»,

= X(ί, *) (A(*, *)-Λ(VϊF4

= x(ί, *) Γ Σ (*- v^M
Jθ/*-l

From (4.5) we have

Fk(t, (τ+t)Tt(s), *) = X(ί,

• t1 Σ τ(Γ((ί))μ(9 Λ) (τΓ,(ί)tf+ίΓf(ί), ήd#>P(tTt(s), s).
Jθ/* = l μ

This gives
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Integration by parts gives for any non-negative integer /

τ'(l+τ2/2) Γ ef"r I r \
J-

= \ e>>T(-Z)r)'(l+Z)^/
J-oo

Clearly the right hand side of (4.18) is bounded. Then we easily have for any

(4.19) |τ(l+τ2/2) Γ eirrr
J-oo

If we estimate the right hand side of (4.10) by using (4.17) and (4.19) with
$=(l—δ)/2, we obtain

|ΦUτ, *; (r+t)Tt(s), w^ct-i-'iri-w* .

Thus from (4.16) we have

(4.20) ||/«(+(f, )l l i ^C"r2<1+"*>.

For the case of j=l note the inequality (4.8) and the equality

d{,Fk(t, x, ξ) = X(f, *)[{(8lμA) (*, f)-(6eMA) (VWk, ξ)

- Σ 9fμ9fv^ (9IVΛ) (V^t, f)}P»(VΪF4, ξ)

+(A(*. f)-Λ(VPF4, f))8tM(P,(VΪΓ4, 1))] ,

and in the same way as in the proof of the case of j=Q we have

(4.21) ||/1§+(ί, Olli ^C'r^w.

Thus the proof is complete. Q.E.D.
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