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Chapter 1  General introduction 

 

Nowadays, most of products used in our everyday life come from petroleum 

resources. With the development of the society, the requirement for petrochemical 

products would further increase.
1
 However, the petroleum will be depleted in an 

anticipated future. Furthermore, the petrochemical products are recalcitrant to the 

microbial attack, persisting for many years after disposal and causing serious 

contamination to the soil; the burning of wastes from petrochemical products releases 

greenhouse gas, resulting in global warming.
2,3

 These realistic problems urge people to 

develop renewable and biodegradable materials. To meet this purpose, various types of 

bioresources have been explored over the last decades, such as poly(lactic acid) (PLA), 

polyhydroxyalkanoates (PHA), plant oil, proteins, starch, cellulose, lignin, chitin, and 

chitosan.
4-12

  

 

 

Figure 1-1. Ideal circle of biobased and biodegradable materials 

 

In an ideal case (Figure 1-1), the biobased products are obtained from these 
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bioresources by synthesis or modification, and processing. After usage, the waste from 

these products are buried and degraded by the microbes in the soil, releasing carbon 

dioxide and water, which are converted to carbohydrate polymers by the photosynthesis 

again.
13,14

 This process is totally green and sustainable. In reality, however, these 

biobased and biodegradable products often display poor performances, which limit their 

practical applications. 

Plant oils and cellulose are regarded as two kinds of the most promising 

precursors, and receive increasing attention due to their abundant resources, 

extraordinary renewability, biodegradability, and unique molecular structure.
15-25

 

 

1.1 Polymers derived from ricinoleic acid  

Among different kinds of plant oils, castor oil is low cost, commercially 

available, and non-edible.
15,19,21

 Ricinoleic acid (RA) [(9Z, 

12R)-12-hydroxyoctadec-9-enoic acid] takes up of approximately 90 % of castor oil. 

Compared to other common fatty acid (Figure 1-2)
18

, RA possesses special structure: 

double bond, carboxylic and hydroxyl groups coexist in the molecular structure.
26

 The 

carboxylic and hydroxyl groups make RA polymerizable by the condensation reaction. 

Meanwhile, the unsaturated bonds render RA with cross-linkable properties.
27,28

  

 

 

Figure 1-2. Molecular structure of common fatty acids 
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1.1.1 Polyesters based on RA 

RA possesses poor reactivity due to the steric hindrance caused by the dangling 

chain. In most of previous researches, only estolides (oligomer) of RA were obtained 

from RA using the lipase as catalyst.
29-31

 Until 2007, Ebata and Matsumura et al. 

synthesized a high molecular weight polyester (1.0  10
5
 g/mol) from pure methyl 

ricinoleate using 50 wt% of immobilized lipase as catalyst, which was further cured to 

form a elastomer.
27,28

 The obtained elastomer was strengthened with carbon black and 

possessed good mechanical performance with a tensile strength at break of 6.9 MPa and 

an elongation at break of 350 %. Although the mechanical properties were attractive, the 

high cost of pure methyl ricinoleate and lipase would hamper the practical applications 

of this elastomer. 

 

1.1.2 Copolyesters based on RA and other monomers 

To develop the materials with good performance, RA was often copolymerized 

with other monomers bearing rigid molecular structure. Domb and coworkers did a lot 

of work in this area. In 1999, Teomim and Domb et al. synthesized polyanhydrides from 

pure RA haft-esters with maleic and succinic anhydrides, which possessed desired 

physicochemical and mechanical properties for usage as drug carriers.
32

 In 2003, 

Krasko and Domb et al. prepared new degradable poly(ester anhydride)s by the melt 

polycondensation of diacid oligomers of poly(sebacic acid) transesterified with RA. 

These polymers were degradable in vitro physiological conditions and could constantly 

release an incorporated drug for more than 2 weeks. The improved storage stability and 

possibility of sterilization by γ-irradiation made the polymers suitable for the 
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preparation of biodegradable drug-eluting devices.
33

 In 2005, Krasko and Domb 

investigated the degradation process of poly(ricinoleic-co-sebacic-ester-anhydride)s in 

buffer solution by following the composition of the degradation products released into 

the degradation medium and the degraded polymers. The two-stage in vitro degradation 

process was revealed.
34

 Except for sebacic acid, lactic acid (LA) was often used to 

copolymerize with RA. In 2005, Slivniak and Domb prepared macrolactones and 

polyesters from ricinoleic acid. Further, the macrolactones were copolymerized with LA 

by ring-opening polymerization. The results showed that the polymerization from the 

macrolacones only resulted in oligomers, in contrast, the copolymerization from 

macrolactones and LA led to relatively high molecular weights ranging from 5000 to 

16000 g/mol. And, the RA-LA copolymers showed positive effects on the in vitro 

degradation rate and the physical properties due to the incorporation of RA in the 

polymers.
35

 In 2005, Slivniak and Domb synthesized copolyester from purified RA and 

LA with different ratios of RA to LA by thermal polycondensation and by 

transesterification of high molecular weight PLA with RA and repolyesterification. The 

two different methods for the synthesis of copolymers of LA and RA led to random and 

multiblock copolymers, which showed significant differences in thermal properties even 

with similar composition and molecular weights.
36

 In 2011, Robertson and Hillmyer 

synthesized poly(ricinoleic acid) (PRA)-poly(L-lactide) (PLLA) diblock copolymers, 

which were used to compatibilize the PLLA/castor oil blends. The tensile toughness and 

morphology of the blends was improved with the addition of the block copolymers.
37

 In 

2013, Lebarbé and Cramail et al. prepared a set of ABA triblock PLLA-b-PRA-b-PLLA 

copolyesters by consecutive AB type self-condensation and ring-opening 

polymerization. The ,-hydroxy-terminated PRA with molecular weight of 11 kg/mol 
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was synthesized from 1,3-propanediol and methyl ricinoleate, followed by 

polymerization with LA. The final triblock copolymers were obtained with a 

composition ranging from 35 to 83 wt% of PLLA, and the thermal-mechanical 

properties were highly dependent on the chemical composition of the block 

copolymers.
38

 The copolymers of bile acid and RA were also reported. In 2008, Gautrot 

and Zhu synthesized high molecular weight copolyesters from bile acid and RA by 

entropy-driven ring-opening metathesis polymerizations, and the copolyesters displayed 

tunable mechanical properties and degradation behaviors.
39

 In the above researches, 

although the copolymers with good performance were successfully synthesized, RA was 

commonly used as a minor component to tune the properties of the copolymers. 

 

1.1.3 Hyperbranched polymers based on RA 

In recent years, hyperbranched polymers have received much attention due to 

their multiple functional groups, low viscosity, good film-forming properties, and easy 

crosslinking properties.
40-42

 Instead of linear types of polymers, hyperbranched 

polymers were also prepared from RA in the previous researches. In 2006, Kelly and 

Hayes prepared tetra-branched PRA with average molecular weight of 4850 g/mol from 

pentaerythritol and RA using the immobilized lipase as catalyst.
43

 Karak and coworkers 

also did some work in this area. In 2009, Karak and Cho et al. synthesized a series of 

castor oil-modified hyperbranched polyurethane via A2 + B3 approach. Except for castor 

oil, macroglycol poly(-caprolactone)diol or poly(ethylene glycol), and diphenyl 

methane diisocynate were used.
44

 In 2013, Pramanik and Karak et al. synthesized 

hyperbranched polyesteramide using N,N’-bis(2-hydroxyethyl) castor oil fatty amide, 

phthalic anhydride, maleic anhydride, and isophthalic acid as A2 monomers, and 
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diethanol amine as B3 monomer. The obtained hyperbranched polymers could be used 

advanced biodegradable surface coating materials.
45,46

 In 2014, De and Karak et al. 

synthesized a tough, elastic, biodegradable, and thermostable hyperbranched epoxy 

from castor oil based polyol, bis(hydroxyl methyl)propionic acid, and diglycidal ether 

of bisphenol A.
47

  A hyperbranched polymer was also synthesized from 

dipentaerythritol, dimethylopropionic acid, and ricinoleic acid, and used for tamoxifen 

and idarubicin delivery.
48

 There were a large portion of petroleum-based resources 

employed to construct the previous hyperbranched polymers, which will inevitably 

compromise the green concept. 

Although a variety of materials based on RA have been synthesized, it was 

found that either the content of RA was low, or no good mechanical performance was 

achieved with high content of RA. Herein, further researches need to be done to 

improve the mechanical performance of the materials with RA as the main component. 

 

1.2 Applications of cellulose 

Cellulose is the most abundant renewable and biodegradable polymer in the 

world. It is composed of polydispersed linear poly-(1,4)-D-glucose molecules with 

syndiotactic configuration (Fig. 1-3).
49

 There are six polymorphs of crystalline cellulose 

(I, II, IIII, IIIII, IVI, and IVII), which could be interconverted.
50

 Cellulose I is naturally 

produced by plants and bacteria, sometimes referred to as natural cellulose, and can be 

further divided to triclinic I and monoclinic I polymorphs: the former mainly comes 

from algae and bacteria; the latter chiefly derives from higher plants.
22,24,51

 Cellulose 

powder could be extracted from a wide range of plants, such as wood, hemp, cotton, and 

linen for material applications, and further processed to cellulose microfibrils and 
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cellulose nanocrystals.
23,24,52

 With the development of the technology, the applications 

of cellulose have not been limited to forest products, paper, textiles, etc, which have 

been used for thousands of years in human society. Advanced materials based on 

cellulose have been developed in recent years, such as cellulose film, hydrogel, aerogel, 

and composites. Because this thesis mainly deals with the fabrication of cellulose film 

and composites, the researches related to cellulose film and composites would be 

introduced in the following content.  

 

 

Figure 1-3. Molecular structure of cellulose 

 

1.2.1 Cellulose solvent 

Cellulose cannot melt under heating or dissolve in aqueous and orgainc 

solvents, due to strong hydrogen bonds exiting in the molecular structure.
53

 Dissolution 

of cellulose is an indispensable prerequisite for processing and fabricating cellulose 

products. The viscose process, invented by Cross and co-workers in 1982, is the first 

and most important route to cellulose solutions, and still practiced today with an output 

of about 3 million tons annually worldwide.
54

 The Cuam process, using aqueous 

solutions of cuproethylene diamine or cuprammonium hydroxide as cellulose solvent, is 

also well known for a rather long time and still maintains its importance for production 

of staple fibres, filaments, membranes, and the determination of the molecular weight of 

cellulose by viscometry.
54

 In recent decades, several different kinds of cellulose solvents 
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have been developed, which could be categorized to two main types of derivatizing and 

non-derivatizing solvents, and further classified to aqueous and non-aqueous solvents. 

The term “non-derivatizing” denotes that the solvents dissolve the cellulose by 

intermolecular interactions only, while the group of “derivatizing” solvents dissolves 

cellulose by forming ether, ester, or acetal derivatives with cellulose. Among these 

solvents, urea and sodium hydroxide solution and N-methylmorpholine-N-oxide 

(NMMO) monohydrate are famous for the applications in CarbaCell process and 

Lyocell process, which have been applied in industrial field.
22

 Besides, 

LiCl/N,N-dimethylacetamide (DMAc) solvent also has important applications for the 

analysis of cellulose structure and preparation of a wide variety of derivatives of 

cellulose due to the negligible degradation of cellulose during the dissolution and 

storage process.
54-56

 

 

1.2.2 Cellulose films 

Cellophane is the first reported cellulose film fabricated from the Viscose route, 

and nowadays still has important applications for food casing. Cuprophane is another 

old material prepared from Cuam process, and keeps important applications for 

dialysis.
57

 In recent years, the usage of Viscose and Cuam processes were suppressed 

due to the increasing environment concerning.
22,54

 Instead, less harmful CarbaCell and 

Lyocell processes were employed with an increasing trend.
22,53,57-62

 In 2007, Gindl and 

Keckes fabricated self-reinforced cellulose film by incomplete dissolution of 

microcrystalline cellulose in LiCl/DMAc solvent, subsequent regeneration, drawing in 

the wet state, and drying process.
63

 Except for these regeneration methods, other 

methods were also used to prepared cellulose film, such as the stacking of cellulose 
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nanofiber. In 2009, Nogi and Yano et al. fabricated a transparent film from nanofiber by 

the suspension of the nanofiber in water, slow filtration, drying, and polishing process. 

The obtained film possessed good transparency (72 % at a wavelength of 600 nm), high 

strength (223 MPa), high modulus (13 GPa), and minimal thermal expansion (8.5 

ppm/k).
64

 In the same year, Fukuzumi and Isogai et al. prepared transparent cellulose 

films from cellulose nanofiber by 2,2,6,6-tetramethylpiperidine-1-oxyl radical 

(TEMPO)-mediated oxidation. The final film possessed high oxygen barrier properties 

and extremely low coefficient of thermal expansion (2.7 ppm/k) caused by high 

crystallinity of native cellulose.
65

 Most of cellulose films prepared from regeneration 

method possessed cellulose II structure,
22

 while the cellulose films from nanofiber may 

remain the cellulose I structure of the original cellulose, and no amorphous cellulose 

films were reported. 

 

1.2.3 Composites based on cellulose 

A lot of researches focus on the applications of cellulose in composite materials, 

due to low density, high strength and stiffness of cellulose.
23,52,66,67

 Solution blending is 

one kind of methods for fabricating cellulose composites, and Nishio and Manley et al. 

did some pioneering work in this area. Between 1987 and 1990, Nishio and Manley et al. 

sequentially blended cellulose with polyacrylonitrile, poly(vinyl alcohol) (PVA), nylon 

6, and poly(-caprolactone) from LiCl/DMAc solution by coagulation in a 

non-solvent.
68-70

 In 1991, Masson and Manley prepared blend films of cellulose and 

poly(vinylpyrrolidone) from the mixing solution of cellulose solution in dimethyl 

sulfoxide-paraformaldehyde and poly(vinylpyrrolidone) solution in DMSO by slow 

casting under reduced pressure.
71

 The binary components in all of these blend films 
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showed good miscibility. In 2011, Kim and Park et al. prepared graphene oxide (GO) 

and cellulose composite films from NMMO solution by coagulation. The introduction 

of GO to the cellulose matrix made the composite film strong but brittle.
72

 In 2012, 

similarly, Zhang and Zhu et al. prepared GO and cellulose composite films from 

LiCl/DMAc solution by coagulation. The results showed that GO was nano-dispersed in 

cellulose matrix, and the thermal-mechanical properties and the electrical conductivity 

were improved.
73

 In 2012, Zhang and Zhu et al. prepared the thermoplastic 

polyurethane (TPU) elastomer and cellulose composite films, which displayed 

improved toughness and oxygen barrier properties with the addition of TPU.
74

 In 2012, 

Zhang and Zhu et al. also prepared PVA and cellulose composite films from ionic liquid 

1-ally-3-methylimidazolium chloride (AMIMCl) solution by coagulation. The 

composite films demonstrated improved mechanical properties and shrinkage compared 

to cellulose films.
75

 In 2011, Morgado and Coma prepared chitosan and cellulose blend 

films from NaOH/thiourea solution. The increase of chitosan in the composite films 

could promote the tensile strength and elongation at break.
76

 The abovementioned 

composite films share common features that all of them were prepared from solution 

blending and regeneration method, and good miscibility between the binary components 

could be achieved. However, this method is only applicable for the polar components 

that could be dissolved in cellulose solvents.  

As for composites of cellulose and non-polar components, the impregnation 

method was often used. In 2000, Williams and Wool successfully prepared composites 

from natural fiber and soybean oil resins by resin transfer molding process (RTM). The 

composites showed good mechanical performance with tensile strength of 30 MPa, 

tensile modulus of 5 GPa.
77

 In 2004, O’Donnell and Wool et al. made composites panels 
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out of acrylated epoxidized soybean oil (AESO) and natural fiber mats of flax, cellulose 

powder, pulp, and hemp by vacuum-assisted resin transfer molding or resin vacuum 

infusion process. The flexural modulus of the final composites with 10-50 wt% of 

natural fiber was increased to a range between 1.5 to 6 GPa depending on the nature of 

fiber mats.
78

 In the above researches, although the mechanical properties of composites 

were largely improved, the inhomogeneous distributions of natural fiber still need to be 

dissolved. In our lab, a cellulose hydrogel with uniform porous structure was prepared 

from Ca(SCN)2 aqueous solution by regeneration and washing. Subsequently the 

cellulose and Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) composite film 

was obtained by immersing the hydrogel into PHBH solution, followed by drying and 

hot pressing. The composite films showed good transparency and improved mechanical 

properties compared to PHBH.
79

 Except for the cellulose gel regenerated from cellulose 

solution, bacterials cellulose also possesses homogenous porous structure and can be 

used to strengthen resin matrix. In 2008, Nogi and Yano prepared highly transparent 

composite films from bacterial cellulose and acrylic resin by the impregnation method. 

The composite films possessed ultra low coefficient of thermal expansion, good 

flexibility, and thermal stability.
80

 In 2012, Retegi and Mondragon et al. obtained 

transparent composite films from bacterial cellulose and epoxidized soybean oil (ESO) 

using a similar method with that of Nogi and Yano. It can be known that the composite 

films with good optical and mechanical performance have been obtained by the 

impregnation method. However, the complexity of impregnation method would 

inevitably increase the cost and requirements for the instruments, and eventually limit 

the wide applications. Alternative methods still need to be explored. 
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1.3 Composition and functions of plant cuticle 

Plant cuticle covers nearly all aerial parts of terrestrial plants and forms the 

interface between plant and environment with the thickness varying widely among 

different plant species and different organs of the same plant (0.02  200 m).
81

 It is 

mainly composed of epicuticular and intracuticular waxes, cutin, polysaccharides, 

glycerol, and small amounts of phenolics. Cutin is a matrix of polyhydroxylated C16 

and/or C18 fatty acids cross-linked by ester bonds. The waxes deposit on the surface of 

cutin (epicuticular waxes) or embed in the cutin matrix (intracuticular waxes). The 

polysaccharides including cellulose, hemicellulose, and pectin mix with cutin and 

meanwhile connect to the outer epidermal cell walls (Fig. 1-4).
82,83

 The whole cuticle 

functions as a biological barrier to regulate gas exchange and protect the plants from 

water loss, mechanical injury, pathogen attack, and UV damage.
84

  

 

 

Figure 1-4. Schematic structure of plant cuticle 

 

From the perspective of materials science, the plant cuticle is an ideal 

bio-based packaging material with well-balanced performance. However, such materials 

could not be extracted from plants for practical applications due to the difficulty of 

extraction and processing, which encourages the biomimicry of plant cuticle. In 2004, 

Benítez and Heredia et al. synthesized an aliphatic polyester identical to natural cutin 

using the monomers extracted from tomato for the first time.
85

 In 2009, 

Heredia-Guerrero and Benítez et al. prepared a mimetic polymer of plant cutin from 
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9,10,16-trihydroxyhexadecanoic (aleuritic) acid through the polycondensation 

reaction.
86

 Although the plant cutin was successfully mimicked, there is still a long way 

to run until the practical application. Besides, the mimicry of plant cuticle was rarely 

reported. 

 

1.4 Purpose and outline of this thesis 

This thesis focuses on the preparation of biobased materials from RA and 

cellulose towards practical applications. First, the biobased materials were prepared 

separately from RA and cellulose, then the double layer composites of them was 

fabricated enlightened by plant cuticle. The good performance of the composites was 

expected to achieve by combination of the advantages of the RA and cellulose. This 

thesis consists of six chapters including general introduction (chapter 1) and concluding 

remarks (chapter 6). 

In chapter 2, a highly transparent cellulose film was fabricated from cellulose 

powder (cotton resource) by regeneration from the LiCl/DMAc solution. The structure 

and properties of cellulose film were investigated with various techniques. 

In chapter 3, linear polyricinoleic acid (LPRA) and tri-branched polyricinoleic 

acid (BPRA) were synthesized using immobilized lipase as catalyst, and were further 

incorporated separately into the matrix of trans-1,4-polyisoprene extracted from 

Eucommia ulmoides Oliver (EuTPI) as processing aid. The morphology, crystallization 

behaviors, thermal stability, mechanical and rheological properties of the blend films 

were systematically investigated. 

In chapter 4, a hyperbranched poly(ricinoleic acid) (HBPRA) was prepared 

based on polyglycerol (PGL) and RA with p-toulenesulfonic acid (PTSA) as catalyst. 



14 

 

The reaction conditions, structure, and properties of HBPRA were extensively studied. 

In chapter 5, a biomimic plant cuticle was successfully fabricated from HBPRA 

and cellulose film with the aid of UV-initiated thio-ene click reaction. The transparency, 

morphology, surface properties, and mechanical properties of biomimic cuticle were 

systematically investigated. 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

1.5 References 

(1)  Mülhaupt, R. Macromol. Chem. Phys. 2013, 214, 159-174. 

(2)  Khoo, H.; Tan, R. H. Int. J. Life Cycle Assess 2010, 15, 338-345. 

(3)  Sudesh, K.; Iwata, T. Clean 2008, 36, 433-442. 

(4)  Reddy, M. M.; Vivekanandhan, S.; Misra, M.; Bhatia, S. K.; Mohanty, A. K. Prog. 

Polym. Sci. 2013, 38, 1653-1689. 

(5)  Mekonnen, T.; Mussone, P.; Khalil, H.; Bressler, D. J. Mater. Chem. A 2013, 1, 

13379-13398. 

(6)  Babu, R.; O’Connor, K.; Seeram, R. Prog. Biomater. 2013, 2, 1-16. 

(7)  Satyanarayana, K. G.; Arizaga, G. G. C.; Wypych, F. Prog. Polym. Sci. 2009, 34, 

982-1021. 

(8)  DiGregorio, B. E. Chem. Biol. 2009, 16, 1-2. 

(9)  Chen, G.-Q. Chem. Soc. Rev. 2009, 38, 2434-2446. 

(10)  Dale, B. E. J. Chem. Technol. Biotechnol. 2003, 78, 1093-1103. 

(11)  Mohanty, A. K.; Misra, M.; Drzal, L. T. J. Polym. Environ. 2002, 10, 19-26. 

(12)  Chiellini, E.; Solaro, R. Adv. Mater. 1996, 8, 305-313. 

(13)  Gross, R. A.; Kalra, B. Science 2002, 297, 803-807. 

(14)  Tharanathan, R. N. Trends Food Sci. Technol. 2003, 14, 71-78. 

(15)  Kunduru, K. R.; Basu, A.; Haim Zada, M.; Domb, A. J. Biomacromolecules 2015, 

16, 2572-2587. 

(16)  Miao, S.; Wang, P.; Su, Z.; Zhang, S. Acta Biomater. 2014, 10, 1692-1704. 

(17)  Islam, M. R.; Beg, M. D. H.; Jamari, S. S. J. Appl. Polym. Sci. 2014, 131, 1-13 

(18)  Biermann, U.; Bornscheuer, U.; Meier, M. A. R.; Metzger, J. O.; Schäfer, H. J. 

Angew. Chem. Int. Ed. 2011, 50, 3854-3871. 



16 

 

(19)  Mutlu, H.; Meier, M. A. R. Eur. J. Lipid Sci. Technol. 2010, 112, 10-30. 

(20)  Seniha Güner, F.; Yağcı, Y.; Tuncer Erciyes, A. Prog. Polym. Sci. 2006, 31, 

633-670. 

(21)  Ogunniyi, D. S. Bioresour. Technol. 2006, 97, 1086-1091. 

(22)  Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Angew. Chem. Int. Ed. 2005, 44, 

3358-3393. 

(23)  Kalia, S.; Dufresne, A.; Cherian, B. M.; Kaith, B. S.; Avérous, L.; Njuguna, J.; 

Nassiopoulos, E. Int. J. Polym. Sci. 2011, 2011, 1-35. 

(24)  Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Chem. Soc. Rev. 

2011, 40, 3941-3994. 

(25)  Metzger, J. O.; Bornscheuer, U. Appl. Microbiol. Biotechnol. 2006, 71, 13-22. 

(26)  Lligadas, G.; Ronda, J. C.; Galià, M.; Cádiz, V. Mater. Today 2013, 16, 337-343. 

(27)  Ebata, H.; Yasuda, M.; Toshima, K.; Matsumura, S. J. Oleo Sci. 2008, 57, 

315-320. 

(28)  Ebata, H.; Toshima, K.; Matsumura, S. Macromol. Biosci. 2007, 7, 798-803. 

(29)  Yoshida, Y.; Kawase, M.; Yamaguchi, C.; Yamane, T. J. Am. Oil Chem. Soc. 1997, 

74, 261-267. 

(30)  Bódalo-Santoyo, A.; Bastida-Rodríguez, J.; Máximo-Martín, M. F.; 

Montiel-Morte, M. C.; Murcia-Almagro, M. D. Biochem. Eng. J. 2005, 26, 155-158. 

(31)  Bódalo, A.; Bastida, J.; Máximo, M. F.; Montiel, M. C.; Gómez, M.; Murcia, M. 

D. Biochem. Eng. J. 2008, 39, 450-456. 

(32)  Teomim, D.; Nyska, A.; Domb, A. J. J. Biomed. Mater. Res. 1999, 45, 258-267. 

(33)  Krasko, M. Y.; Shikanov, A.; Ezra, A.; Domb, A. J. J. Polym. Sci. Part A: Polym. 

Chem. 2003, 41, 1059-1069. 



17 

 

(34)  Krasko, M. Y.; Domb, A. J. Biomacromolecules 2005, 6, 1877-1884. 

(35)  Slivniak, R.; Domb, A. J. Biomacromolecules 2005, 6, 1679-1688. 

(36)  Slivniak, R.; Langer, R.; Domb, A. J. Macromolecules 2005, 38, 5634-5639. 

(37)  Robertson, M. L.; Paxton, J. M.; Hillmyer, M. A. ACS Appl. Mater. Interfaces 

2011, 3, 3402-3410. 

(38)  Lebarbe, T.; Ibarboure, E.; Gadenne, B.; Alfos, C.; Cramail, H. Polym. Chem. 

2013, 4, 3357-3369. 

(39)  Gautrot, J. E.; Zhu, X. X. Chem. Commun. 2008, 0, 1674-1676. 

(40)  Johansson, K.; Bergman, T.; Johansson, M. ACS Appl. Mater. Interfaces 2009, 1, 

211-217. 

(41)  Gao, C.; Yan, D. Prog. Polym. Sci. 2004, 29, 183-275. 

(42)  Yates, C. R.; Hayes, W. Eur. Polym. J. 2004, 40, 1257-1281. 

(43)  Kelly, A. R.; Hayes, D. G. J. Appl. Polym. Sci. 2006, 101, 1646-1656. 

(44)  Karak, N.; Rana, S.; Cho, J. W. J. Appl. Polym. Sci. 2009, 112, 736-743. 

(45)  Pramanik, S.; Konwarh, R.; Sagar, K.; Konwar, B. K.; Karak, N. Prog. Org. Coat. 

2013, 76, 689-697. 

(46)  Pramanik, S.; Hazarika, J.; Kumar, A.; Karak, N. Ind. Eng. Chem. Res. 2013, 52, 

5700-5707. 

(47)  De, B.; Gupta, K.; Mandal, M.; Karak, N. ACS Sustain. Chem. Eng. 2014, 2, 

445-453. 

(48)  Ortega, S.; Máximo, M. F.; Montiel, M. C.; Murcia, M. D.; Arnold, G.; Bastida, J. 

Bioprocess Biosyst. Eng. 2013, 36, 1291-1302. 

(49)  Hon, D. S. Cellulose 1994, 1, 1-25. 

(50)  Osullivan, A. C. Cellulose 1997, 4, 173-207. 



18 

 

(51)  Habibi, Y.; Lucia, L. A.; Rojas, O. J. Chem. Rev. 2010, 110, 3479-3500. 

(52)  Siró, I.; Plackett, D. Cellulose 2010, 17, 459-494. 

(53)  Zhang, L. N.; Ruan, D.; Zhou, J. P. Ind. Eng. Chem. Res. 2001, 40, 5923-5928. 

(54)  Heinze, T.; Koschella, A. Polímeros 2005, 15, 84-90. 

(55)  Dawsey, T. R.; McCormick, C. L. J. Macromol. Sci. Part C: Polym. Rev. 1990, 

30, 405-440. 

(56)  McCormick, C. L.; Callais, P. A.; Hutchinson, B. H. Macromolecules 1985, 18, 

2394-2401. 

(57)  Fink, H. P.; Weigel, P.; Purz, H. J.; Ganster, J. Prog. Polym. Sci. 2001, 26, 

1473-1524. 

(58)  Geng, H.; Yuan, Z.; Fan, Q.; Dai, X.; Zhao, Y.; Wang, Z.; Qin, M. Carbohydr. 

Polym. 2014, 102, 438-444. 

(59)  Yang, Q.; Fukuzumi, H.; Saito, T.; Isogai, A.; Zhang, L. Biomacromolecules 2011, 

12, 2766-2771. 

(60)  Yang, Q.; Qin, X.; Zhang, L. Cellulose 2011, 18, 681-688. 

(61)  Yang, Q.; Saito, T.; Isogai, A. Cellulose 2012, 19, 1913-1921. 

(62)  Qi, H.; Chang, C.; Zhang, L. Green Chem. 2009, 11, 177-184. 

(63)  Gindl, W.; Keckes, J. J. Appl. Polym. Sci. 2007, 103, 2703-2708. 

(64)  Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H. Adv. Mater. 2009, 21, 

1595-1598. 

(65)  Fukuzumi, H.; Saito, T.; Wata, T.; Kumamoto, Y.; Isogai, A. Biomacromolecules 

2009, 10, 162-165. 

(66)  Azizi Samir, M. A. S.; Alloin, F.; Dufresne, A. Biomacromolecules 2005, 6, 

612-626. 



19 

 

(67)  Bledzki, A. K.; Gassan, J. Prog. Polym. Sci. 1999, 24, 221-274. 

(68)  Nishio, Y.; Manley, R. S. Polym. Eng. Sci. 1990, 30, 71-82. 

(69)  Nishio, Y.; Manley, R. S. J. Macromolecules 1988, 21, 1270-1277. 

(70)  Nishio, Y.; Roy, S. K.; Manley, R. S. Polymer 1987, 28, 1385-1390. 

(71)  Masson, J. F.; Manley, R. S. Macromolecules 1991, 24, 6670-6679. 

(72)  Kim, C.-J.; Khan, W.; Kim, D.-H.; Cho, K.-S.; Park, S.-Y. Carbohydr. Polym. 

2011, 86, 903-909. 

(73)  Zhang, X.; Liu, X.; Zheng, W.; Zhu, J. Carbohydr. Polym. 2012, 88, 26-30. 

(74)  Zhang, X.; Zhu, J.; Liu, X.; Feng, J. Cellulose 2012, 19, 121-126. 

(75)  Zhang, X.; Zhu, J.; Liu, X. Macromol. Res. 2012, 20, 703-708. 

(76)  Morgado, D. L.; Frollini, E.; Castellan, A.; Rosa, D. S.; Coma, V. Cellulose 2011, 

18, 699-712. 

(77)  Williams, G.; Wool, R. Appl. Compos. Mater. 2000, 7, 421-432. 

(78)  O'Donnell, A.; Dweib, M. A.; Wool, R. P. Compos. Sci. Technol. 2004, 64, 

1135-1145. 

(79)  Hosoda, N.; Tsujimoto, T.; Uyama, H. ACS Sustain. Chem. Eng. 2014, 2, 

248-253. 

(80)  Nogi, M.; Yano, H. Adv. Mater. 2008, 20, 1849-1852. 

(81)  Nawrath, C. Curr. Opin. Plant Biol. 2006, 9, 281-287. 

(82)  Dominguez, E.; Heredia-Guerrero, J. A.; Heredia, A. New Phytol. 2011, 189, 

938-949. 

(83)  Buda, G. J.; Isaacson, T.; Matas, A. J.; Paolillo, D. J.; Rose, J. K. C. Plant J. 2009, 

60, 378-385. 

(84)  Dominguez, E.; Cuartero, J.; Heredia, A. Plant Sci. 2011, 181, 77-84. 



20 

 

(85)  Beniitez, J. J.; Garcia-Segura, R.; Heredia, A. BBA-Gen. Subjects 2004, 1674, 

1-3. 

(86)  Heredia-Guerrero, J. A.; Heredia, A.; Garcia-Segura, R.; Benitez, J. J. Polymer 

2009, 50, 5633-5637. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

Chapter 2  Preparation and characterization of a transparent 

amorphous cellulose film 

 

2.1 Introduction 

The molecular chains in amorphous cellulose are loosely arranged, unlike their 

tight compaction in cellulose's crystalline counterpart, which should cause a significant 

difference in some aspects, such as in its mechanical properties,
1
 reaction kinetics,

2
 and 

enzymatic hydrolysis rate.
3-5

 Some special applications, such as enzyme screening and 

displaying material, could be developed using amorphous cellulose film (ACF). 

Meanwhile, it is of great importance to investigate the behaviors of ACF for better 

utilization of this cellulose resource. However, most cellulose films reported to date 

possess the crystalline structure with cellulose II, since it is thermodynamically more 

stable than the other allomorphs.
6-8

 In contrast, ACF with a good performance has rarely 

been reported, even though many methods have been developed to prepare amorphous 

cellulose samples, such as ball milling,
9
 hydrolysis of cellulose triacetate,

10
 regeneration 

from cadmium ethylenediamine,
11

 sodium cellulose xanthates,
12

 cuprammonium 

hydroxide,
16

 dimethylsulfoxide/paraformaldehyde,
13

 phosphoric acid,
13

 and from 

SO2/diethylamine/dimethylsulfoxide solution.
14

 Moreover, most of these methods either 

used toxic reagents or inevitably caused degradation of the cellulose, which were the 

major disadvantages for scientific studies and for the practical application of ACF. 

The cellulose solvent of LiCl-N,N-dimethylacetamide (DMAc) was first 

reported by McCormick and Lichatowich in 1979.
15

 Initially, water swelled and opened 

the structure, and the intermolecular and intramolecular hydrogen bonds were replaced 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit5
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by hydrogen links with H2O. Then, methanol and DMAc were introduced subsequently 

to remove water and to impede the re-formation of the intermolecular and 

intramolecular hydrogen bonds. In the final step, the swollen sample was added into 

LiCl-DMAc solvent, with stirring until dissolved.
16,17

 Although the mechanism of 

dissolution remained controversial, one generally accepted principle was that [DMAcn + 

Li]
+
 macrocation evolved, leaving the chloride anion (Cl

-
) free. Thereby, Cl

-
, being 

highly active as a nucleophilic base, was able to play a major role by breaking up the 

intermolecular and intramolecular hydrogen bonds.
15-20

 The whole process was operated 

under mild conditions, and no appreciable degradation occurred. In addition, the 

cellulose solution in LiCl-DMAc was reported to be extremely stable,
16,17

 which made it 

attractive for practical application. However, only a few reports were related to the 

preparation of cellulose film from LiCl-DMAc solution.
21-28

 Moreover, none of them 

mentioned the fabrication of ACF. 

In this chapter, ACF with excellent transparency was prepared by regeneration 

from LiCl-DMAc solution. The relationships between the concentration of cellulose 

solution and the mechanical properties were systematically investigated. We also 

compared the enzymatic hydrolysis rate of ACF and commercially available cellophane. 

This chapter aims to provide a simple, less-destructive, and universal method to prepare 

amorphous cellulose film, and, in addition, to enhance our understanding about the 

behaviors of amorphous cellulose to open it up to new practical applications. 

 

2.2 Experimental section 

2.2.1 Materials 

Whatman CF11 fibrous medium cellulose powder (CF11, cotton origin, 50-350 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit20
http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit19
http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit20
http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit25
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μm, GE Healthcare Life Science Corp., Piscataway, NJ, USA), microcrystalline 

cellulose powder (Merck, cotton origin, 20-160 μm, ≥80%, Merck KGaA, Darmstadt, 

Germany), Avicel SF microcrystalline cellulose powder for thin layer chromatography 

(Avicel, pulp origin, mean particle size around 10 μm, Funakoshi, Co. Ltd., Tokyo, 

Japan), and bacterial cellulose prepared as described previously, except for under static 

condition (BC, Gluconacetobacter xylinus (Brown) Yamada et al. ATCC 53524),
29

 were 

used as the cellulose resource. For reference, an amorphous cellulose sample derived 

from CF11 was prepared by a vibrating ball-mill in a N2 atmosphere for 48 h by using 

ceramic balls (Ball-mill, Type MB-1 Vibrating mill, Chuo Kakohki, Co. Ltd., Nagoya, 

Japan).
9
 Cellophane (thickness ≈ 22 μm) without any additives and coating was 

supplied by Futamura Chemical Co. Ltd., Nagoya, Japan. N,N-Dimethylacetamide 

(DMAc, purity > 99%) was obtained from Tokyo Chemical Industry Co. Ltd., Japan. 

Anhydrous lithium chloride (LiCl), D-glucose, anhydrous citric acid, 

3,5-dinitrosalicylic acid (DNS), potassium sodium L-(+)-tartrate tetrahydrate (Rochelle 

salt), methanol, and acetone were obtained from Wako Pure Chemical Industries Ltd., 

Japan. Cellulase from Aspergillus niger (activity ≥ 60 000 units per mg) was obtained 

from MP Biomedicals, LLC., Santa Ana, CA, USA. All other reagents not specially 

mentioned were used as received. 

 

2.2.2 Preparation of cellulose solution 

The first step was the fabrication of cellulose solution from different cellulose 

resources. To facilitate mass production, the reported method
16,17

 was simplified (Fig. 

2-1). In a typical run, 3 g CF11 was immersed in deionized water for 4 h at room 

temperature (RT, 25 °C) and filtered to remove water, followed by successive solvent 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit33
http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit13
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exchange with methanol and DMAc, each for 2 h. Then, the activated cellulose was 

soaked in 47 g LiCl (8 wt%)-DMAc solution under the protection of a N2 atmosphere. 

After mechanical stirring for 12 h, a clear cellulose solution was obtained. To complete 

the dissolution of cellulose, the solution was kept overnight at 4 °C.
16

 Finally, a 

transparent cellulose solution with 6 wt% concentration was obtained. The solution was 

stored at 4 °C until use. For concentrations below 6 wt%, the solution became clear only 

after stirring for several hours. With respect to 8 wt%, 24 h were needed for complete 

dissolution. According to the same procedure, 6 wt% of Merck and 6 wt% of Avicel 

cellulose solutions were obtained. The dissolution time was less than 2 h for both 

samples. On the contrary, even for 1 wt% BC solution, the dissolution took at least 24 h, 

and the viscosity of the solution was higher than the other samples. 

 

 

Figure 2-1. Scheme of the fabrication of cellulose film 

 

2.2.3 Preparation of cellulose film 

The cellulose solution was degassed by centrifugation at 10 000 rpm for 10 min 

at RT, then cast on a glass plate. The thickness was controlled at 0.5 mm using an 

applicator. After the glass plate was gently immersed into 100 ml of acetone bath, a 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit20
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transparent cellulose gel was immediately formed. The cellulose gel was kept in acetone 

for 1 h, and washed with 100 ml deionized water five times to remove the salt 

completely, each time for 1 h. For the preparation of cellulose films, the usability of 

various kinds of organic solvents other than acetone was checked as regeneration 

solvents, with water, methanol, and ethanol. The washed sample was fixed on the 

poly(methyl methacrylate) (PMMA) plate with adhesive tape to prevent shrinkage
10

 and 

was then dried in the oven at 40 °C for 2 h. The glass and Teflon plates were also 

employed as the substrate for this drying process (Fig. 2-1). The sample was further 

dried in a desiccator containing phosphorus(V) oxide at RT for at least 48 h. Finally, for 

6 wt% of CF11 solution, a transparent cellulose film was obtained with a thickness of 

about 22 μm. In the following content, the samples prepared from different kinds and 

concentration of cellulose solutions are referred to as CF11 4%, CF11 5%, CF11 6%, 

CF11 7%, CF11 8%, Merck 6%, Avicel 6%, and BC 1%, respectively. 

 

2.2.4 Enzymatic hydrolysis of CF11 6% and cellophane 

CF11 6% and cellophane with similar thicknesses of 22-23 μm were treated 

with cellulolytic enzymes. Hydrolysis experiments were run concurrently. To minimize 

the difference in specific area, CF11 6% and the cellophane were cut into square shapes 

with the same size of about 2 cm × 2 cm. For each film, 150 mg of sample, 10 ml of 

sodium citrate buffer solution (0.05 M, pH 4.8), and 20 mg of cellulase were added in 

this order to a 50 ml vial. The vials were capped and put into a bioshaker at 40 °C with a 

shaking speed 200 rpm. To monitor the content of released reducing sugar, 100 μl of the 

supernatant was transferred from the vial to a test tube periodically and diluted with 2.9 

ml of Milli-Q water, followed by blending with 3 ml of DNS reagent, which was 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit10
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prepared according to the method reported by Miller.
30

 The test tubes were heated in a 

boiling water bath for 15 min. After the development of color, 1 ml of 40 wt% Rochelle 

salt solution was added immediately. The test tubes were rapidly cooled down to RT 

using running water. The absorbance of the solution was measured at 575 nm using a 

Hitachi U2810 UV-visible spectrophotometer. Finally, the released reducing sugar 

content was calculated as D-glucose. 

 

2.2.5 Characterization 

Fourier transform infrared (FT-IR) spectra in the attenuated total reflection 

(ATR) mode were recorded on a Nicolet iS5 FT-IR Spectrometer with iD5 ATR 

accessory (Thermo Fisher Scientific Inc., Waltham, MA, USA). The optical 

transmittance of the films were measured from 200 to 900 nm using a Hitachi U2810 

UV-visible spectrophotometer. Scanning electron microscopy (SEM) analysis was 

carried out by a HITACHI SU-3500 instrument (Hitachi High-Technologies Corp., 

Tokyo, Japan). Wide-angle X-ray diffraction (XRD) was performed on an X-ray 

diffractometer (Shimadzu XRD-6100) at a rate of 2° (2θ) min
−1

 over the 2θ range from 

5° to 40°. The X-ray radiation used was Ni-filtered CuKα with a wavelength of 0.15406 

nm. The voltage and current were set at 40 kV and 30 mA, respectively. 

Solid-state 
13

C-NMR spectra with cross polarization/magic angle spinning (CP/MAS) 

were recorded on a 600 MHz NMR spectrometer (150.95 MHz for 
13

C, Advance III, 

Brucker BioSpin GmbH, Rheinstetten, Germany) at RT. The chemical shift was 

calibrated by the carbonyl carbon of glycine at 176.46 ppm. The cellulose distribution in 

cellulose films was observed by an X-ray computed tomography (XCT) instrument at 

80 kV and 100 μA with an isotropic voxel of 600 nm (SKY Scan 1172, High resolution 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit34
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micro-CT, Brucker AXS GmbH, Karlsruhe, Germany). The tensile properties were 

measured by a Shimadzu EZ Graph instrument equipped with a 500 N load cell 

(Shimadzu Corp., Kyoto, Japan). A cross-head speed of 1 mm min
−1

 was used. The 

sample was cut into rectangular strips of 40 mm × 5 mm and tested with a span length 

of 10 mm. 

 

2.3 Results and discussion 

2.3.1 Characterization of cellulose film 

To prepare cellulose film with a good appearance, three substrates were 

employed during the drying process (Fig. 2-1). The film was well attached to the glass 

plate, but the bonding force between the surfaces was so strong that the film could not 

be peeled off from the plate. In contrast, the bonding force between the film and Teflon 

was too weak to maintain the shape of the film, which was easily deformed after drying. 

The best result was obtained by using the PMMA plate. The bonding force between the 

surfaces was strong enough to fix the cellulose film. Meanwhile, the film can be easily 

detached from the plate. Considering the cost and environmental friendliness, four 

common solvents: water, methanol, ethanol, and acetone, were chosen as the 

regeneration solvents. The first three kinds of solvents caused a drastic shrinkage of the 

cellulose film. Only in the case of acetone, however, was a transparent, flat and smooth 

cellulose film obtained. The usability of acetone as a regeneration solvent has been 

previously reported,
6,31

 but no description about the preparation of transparent films has 

been noted using the LiCl-DMAc solvent system. In addition, it was reported that 

acetone will lead to a better amorphous cellulose structure.
14

 Based on the above 

reasons, acetone was chosen as the regeneration solvent. All of the cellulose films 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit10
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regenerated individually from CF11, Merck, Avicel, and BC cellulose solutions in 

LiCl-DMAc by acetone possessed good optical appearance. Among them, CF11 6% was 

taken as a typical example, and its image is shown in Fig. 2-2.  

 

 

   Figure 2-2. Photo of transparent film of CF11 6% 

 

A smooth and dense surface was observed by SEM in the micron level (Fig. 

2-3). The thickness of the cellulose films increased with the increasing concentration of 

cellulose solution from 4 wt% to 7 wt% (16, 18, 22, and 29 μm, respectively), and a 

slight decrease appeared at 8 wt% (27 μm), because of the incomplete dissolution of 

cellulose into the solvent.  

 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#fig1
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Figure 2-3. SEM micrographs of the surface of BC 1% film, avicel 6% film, merck 6% film, CF11 

6% film, and Cellophane. 

 

The crystalline structure of the native CF11, Merck, Avicel, and BC samples 
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was studied by XRD (Fig. 2-4a). The typical diffractions due to Iβ-rich natural cellulose 

for the former three were observed at 2θ = 14.8°, 16.3°, and 22.6°, which corresponded 

to the (1 0), (110), and (200) planes,
32

 respectively. In the case of Iα-rich BC, three 

distinct diffractions (100), (010), and (110) were observed at 2θ = 14.6°, 16.9°, and 

22.7°, respectively.
29

 After regeneration, these diffractions disappeared, showing a broad 

peak at 2θ ≈ 20° (Fig. 2-4b), which indicated that the cellulose I structure was 

transformed to amorphous cellulose during the dissolution, regeneration, and drying 

process. Compared to Ball-mill cellulose, the regenerated samples showed similar 

diffractions, except that, for Avicel 6%, there were weak peaks appearing at around 2θ = 

12.1° and 22.0°. These diffractions were attributed to the cellulose II structure, 

indicating that a small amount of the cellulose II structure was also formed apart from 

just amorphous cellulose. 

 

 

Figure 2-4. X-ray diffractions of (a) native samples, (b) regenerated samples and ball-milled sample. 

 

The amorphous structure of the cellulose films was further confirmed by 

CP/MAS 
13

C-NMR (Fig. 2-5). The native cellulose showed characteristic signals 

assignable to cellulose I (Fig. 2-5a): the signals around 105 ppm were assigned to the 

most deshielded anomeric carbon atom C1; the sharp signal at 89 ppm and the broad 

signal between 86 ppm and 80 ppm were assigned to C4 in the crystalline and 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#fig2
http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit36
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amorphous regions, respectively; the signals from 79 ppm to 70 ppm belonged to C2, 

C3, and C5; similar to C4, C6 displayed a sharp signal at 65 ppm and a broad signal 

around 63 ppm, corresponding to the crystalline and amorphous regions, 

respectively.
33

 After regeneration (Fig. 2-5b), all the signals showed a decrease in 

sharpness, especially for C4. The sharp peaks at 89 ppm totally disappeared for CF11 

6%. With respect to the other regenerated samples, only two small signals appeared in 

this area because of the regeneration of a small amount of the cellulose II structure. 

Moreover, the strength of signals from 86 ppm to 80 ppm increased for all samples. 

These changes stemmed from the differences between the crystalline and amorphous 

structure, including conformational differences, differences in bond geometries, and 

non-uniformities of the neighboring chain environments.
34

 The results for the 

regenerated samples were similar to the ball-milled sample, indicating that highly 

amorphous cellulose films were obtained. Moreover, for CF11, the transformation from 

cellulose I to amorphous cellulose was more completely achieved by regeneration from 

the LiCl–DMAc solution, compared to the ball-milling method, since there were still 

two small signals around 89 ppm displayed for the ball-milled sample, due to the 

remaining cellulose I structure. 

 

 

Figure 2-5. CP/MAS
 13

C-NMR
 
spectra of (a) native samples, (b) regenerated samples and 

ball-milled sample 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit37
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Figure 2-6. FT-IR spectra of (a) native samples, (b) regenerated samples and ball-milled sample 

 

The FT-IR results (Fig. 2-6) also provided evidence of the transformation from 

the crystalline to the amorphous structure. The absorption at 1429 cm
−1

 was assigned to 

the CH2 symmetrical bending vibration, and the absorption at 897 cm
−1

 responded to the 

change in molecular conformation due to rotation about the β-(1 → 4)-D-glucosidic 

linkage.
35

 Normally, these two bands were used to measure the crystallinity of cellulose. 

In the native cellulose (Fig. 2-6a), a sharp absorption at 1429 cm
−1

 and a weak band at 

897 cm
−1

 appeared. In the regenerated cellulose film (Fig. 2-6b), on the other hand, only 

a broad absorption at 1429 cm
−1

 could be seen and the intensity of the absorption at 897 

cm
−1

 increased, proving the low crystallinity of the regenerated film. In addition, the 

intensity of the other peaks at 1335, 1315, 1111, 1057, and 1033 cm
−1

 decreased after 

the regeneration. The broad absorption in the 3600–3000 cm
−1

 region, due to the OH– 

stretching vibration, could reflect changes of the hydrogen bonds. A narrow peak 

appeared at 3340 cm
−1

 for native cellulose, which was caused by the regular 

arrangement of intramolecular and intermolecular hydrogen bonds. After regeneration, 

the regularity of hydrogen bonds was disturbed, and the peak shifts to a higher 

wavenumber at 3350 cm
−1

 and broadening were also detected. Since it was reported that 

unbounded or “free” OH groups absorb infra-red light at 3584 to 3650 cm
−1

,
36

 which 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#fig2
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was higher than that observed in the prepared films, we could conclude that the 

hydroxyl groups in the amorphous structure existed in an irregular arrangement of 

hydrogen bonds rather than in the free mode. 

All of the cellulose samples, namely CF11, Merck, Avicel, and BC, could be 

transformed from cellulose I to a highly amorphous structure. Among these, the best 

result was obtained with CF11, whereas there was only a small amount of cellulose II 

structure regenerated in the case of Merck, Avicel, and BC. Therefore, in the following 

content, the properties of the ACF derived from CF11 were investigated and compared 

with those of cellophane. 

 

2.3.2 Mechanism of the formation of ACF 

Cellulose is mainly composed of two parts, namely, crystalline and disordered 

regions (Fig. 2-7). In most cases, the latter is referred to as “amorphous”. Compared to 

the amorphous parts, the crystalline structure is more difficult to access and is the main 

obstacle to dissolution. First, water is used to swell the crystalline lattice, making the 

LiCl-DMAc solvent easy to penetrate. During the dissolution process, the [DMAcn + 

Li]
+
 macrocation is evolved, leaving the chloride anion (Cl

−
) free, which disturbs the 

intermolecular and intramolecular hydrogen bonds by forming new hydrogen bonds 

with the hydroxyl groups of the cellulose chain.
20

 Afterwards, the cellulose chains 

become much easier to tear off from the crystalline lattice and drag into solution. This 

process is repeated until the “true” solution is formed, in which the cellulose chains are 

freely extended, unlike in the other kinds of solvents such as aqueous 

NaOH/urea.
37

 When this cellulose solution is immersed into a poor solvent, cellulose is 

immediately reprecipitated from the solution through the entanglement of the molecular 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#cit24
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chains, leading to the formation of cellulose gel. Followed by the drying process, water 

quickly evaporates accompanying the collapse of the pores in the hydrogel, due to the 

high surface energy of water. In addition, regeneration of the hydrogen bonds between 

the cellulose chains provides another driving force. Finally, ACF with a dense structure 

was obtained. Although cellulose II is thermodynamically more stable, the drying 

process is so fast that the kinetic control takes advantage, and not enough time is left to 

rearrange the cellulose chains, which are more likely aligned in a bent and twisted 

conformation. A large amount of intramolecular hydrogen bonds replace the 

intermolecular hydrogen bonds existing in native cellulose to stabilize this conformation, 

making the ACF stable in common conditions unless exposed to high temperature, 

moisture, or pressure. 

 

 

Figure 2-7. Scheme of the formation of ACF 

 

The influence of the cellulose resources on its solubilization and formation of 

the amorphous structure is worth mentioning. Three plant celluloses with different 

particle sizes (CF11 > Merck > Avicel) were chosen. According to the XRD (Fig. 2-4) 

and 
13

C-NMR (Fig. 2-5) results, the sequence of the perfection of the amorphous 

structure was CF11 > Merck > Avicel, which is consistent with their particle size. To 

some extent, particle size is related with the molecular chain length or degree of 

polymerization (DP). In the case of Avicel, the short chain length causes a large specific 

surface area contactable with the solvent, which promotes their high mobility leading 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#fig2
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them to form the thermodynamically favored cellulose II structure during the 

regeneration and drying process. With respect to BC, because of its distinct complex 

entangled structure, the solubilization is difficult. Moreover, the viscosity of solution is 

obviously higher than those of the other three plant celluloses, reflecting the longest 

chain length of BC among the chosen cellulose resources. The molecular chains of BC 

probably still remain orientated, to some extent, in the solubilized state, which easily 

leads to the formation of the crystalline structure. Therefore, only for the sample with a 

median particle size, such as CF11, more perfect amorphous structure could be 

obtained. 

 

2.3.3 Transparency of CF11 and cellophane 

The transparency of cellulose films was investigated by UV-visible 

spectroscopy. All of the cellulose films from CF11 4% to CF11 8% possessed high 

transparency, not only in the visible region (transmittance is about 90%), but also in the 

near ultraviolet region (transmittance is above 70%), which was better than the 

commercial cellophane (Fig. 2-8) and other cellulose films.
6,38-39

  

 

 

Figure 2-8. Transmittance of CF11 6% and Cellophane at UV-visible wavelength region. 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#fig2


36 

 

The reason may be due to the difference of the crystalline structure between 

CF11 films and cellophane, the latter being characterized as cellulose II by XRD (Fig. 

2-9a) and 
13

C-NMR spectra (Fig. 2-9b). 

 

 

Figure 2-9. (a) X-ray diffractions of CF11 6% and Cellophane; (b) CP/MAS
 13

C-NMR
 
spectra of 

CF11 6% and Cellophane. 

 

 

Figure 2-10. XCT image of (a) CF11 6% and (b) Cellophane 

 

To further investigate the reason, XCT was measured, as it was recently used in 

the cellulose materials area.
40-42

 With the help of XCT, a volumetric map of the 

specimen in three dimensions could be obtained. Meanwhile, the distribution of 

different components and pores could be differentiated. As the XCT images (Fig. 2-10) 

showed, CF11 6% was more homogeneous compared with cellophane, in the order of 

≥600 nm. In the latter case, the presence of cloudy aggregates that may be composed of 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#fig2
http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#fig2
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the small crystal grains could be clearly detected. Such aggregates would cause the 

scattering of light, resulting in the inferior transparency of cellophane.  

 

2.3.4 Mechanical properties of CF11 and cellophane 

The tensile properties of cellulose films were investigated. For reference, 

cellophane was tested. Fig. 2-11 shows the typical stress–strain curves of cellulose 

samples. Table 2-1 summarizes the tensile properties of the measured samples.  

 

 

Figure 2-11. Stress-strain curves of CF11 6% and Cellophane. 

 

Table 2-1. Tensile properties of ACFs and cellophane. 

 ACF 4% ACF 5% ACF 6% ACF 7% ACF 8% Cellophane 

Elongation 

(%) 

15.9 

±1.1
* 

20.7 

±1.2 

23.9 

±3.2 

22.5 

±2.2 

17.6 

±3.3 

19.9 

±3.7 

Max stress 

(MPa) 

132 

±7 

161 

±8 

157 

±8 

145 

±9 

145 

±9 

135 

±6 

*Standard deviation (SD). For each group experiment, 10 samples were tested and at least 3 samples 

were chosen. 

 

The elongation at break and maximum stress for CF11 4% were 15.9% and 133 

MPa, respectively. With the increasing concentration of the cellulose solution, the 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#fig2
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elongation at break increased. After the maximum value of 23.9% was obtained for 

CF11 6%, an obvious decrease was shown for CF11 8%, because of the incomplete 

dissolution of cellulose, which was confirmed by the XRD results. The undissolved 

grain will function as a defect and is detrimental to the tensile performance. The largest 

maximum stress value was about 160 MPa, belonging to CF11 5% and CF11 6%. 

Because CF11 6% and cellophane possess similar thicknesses, the tensile properties of 

them were compared. The elongation at break (23.9%) and the maximum stress (157 

MPa) of CF11 6% were higher than those of cellophane (19.9% and 135 MPa, 

respectively). Although the cellulose resource would affect the mechanical properties, 

such a rarely reported performance is probably attributed to the distinctive amorphous 

structure of ACF. In the amorphous structure, cellulose chains are assumed to be bent 

and twisted, intermolecular hydrogen bonds are ripped off and regenerated under 

stretching, leading to the extension and rearrangement of cellulose chains in a regular 

way, and ultimately a higher elongation at break and maximum stress are desirably 

obtained.  

 

2.3.5 Enzymatic hydrolysis of CF11 6% and cellophane 

The results of the enzymatic hydrolysis of CF11 6% and cellophane are shown 

in Fig. 2-12. In the initial 8 h, the concentration of the reducing sugar released by CF11 

6% rapidly rose to 3.7 mg ml
−1

, showing a little lower rise in the following time. After 

48 h, the concentration increased up to 11.9 mg ml
−1

. Assuming that the released 

reducing sugar was only comprised of glucose, it can be calculated that about 107 mg of 

CF11 6% (71.5% of the total amount) was hydrolyzed. Moreover, it was observed that 

CF11 6% was partially hydrolyzed into small pieces after 48 h. In contrast, the 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c4ra14090g#fig2
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concentration of reducing sugar released by cellophane rapidly increased to 1.0 mg 

ml
−1

 in the initial 4 h, showing only a small increase to 1.7 mg ml
−1

 after 48 h. About 

15.0 mg of cellophane (10.0% of the total amount) was hydrolyzed. In addition, the 

films remained intact. The enzymatic hydrolysis rate of CF11 6% was above 7 times 

higher than that of cellophane.  

 

 

Figure 2-12. Time course of enzymatic degradation of CF11 6% and Cellophane 

 

To explain this phenomenon, the mechanism of enzymatic hydrolysis would be 

focused (Fig. 2-13). Generally, the activity of cellulolytic enzymes largely depends on 

their types (endo- and exo-glucanases) and accessibility on the surface of cellulose as a 

subtrate.
43,44

 Usually cellulase derived from Trichoderma and Aspergillus spp. are used 

for the degradation of natural cellulose I and more soft cellulosic materials, respectively. 

Here a cellulase originated from Aspergillus niger for testing the biodegradability of 

cellulose films was selected. For the cellophane (cellulose II), only cellulose chains on 

the surface are available for the attachment of the cellulase, since cellulose chains stack 

closely, and the film will be decomposed layer by layer. This process will greatly inhibit 

the hydrolysis of cellophane. The rapid increase in the beginning is attributed to the 
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amorphous region in the surface of cellophane. With respect to CF11 6%, cellulase does 

not only function on the surface but also acts on internal chains because of their more 

open and accessible structure. Under similar conditions, CF11 6% will provide more 

active sites and chain ends for attack by cellulase. Eventually, CF11 6% shows a higher 

efficiency of enzymatic hydrolysis. Therefore, it is reasonable to conclude that CF11 6% 

will be decomposed much faster in the natural world and be friendlier to the 

environment than cellophane or other crystalline types of cellulose products. Moreover, 

cellulosic waste derived from ACF can be recycled and converted to liquid fuels,
45

 due 

to its higher efficiency of enzymatic hydrolysis compared to the other cellulose resource, 

which will completely release the burden to the environment.  

 

 

Figure 2-13. Mechanism of enzymatic degradation of CF11 6% and Cellophane 

 

2.4 Summary 

Cellulose films with excellent transparency were regenerated from LiCl-DMAc 

solutions by using acetone as the regeneration solvent. The cellulose films were highly 

amorphous, which was confirmed by XRD, 
13

C-NMR, and FT-IR measurements. 
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According to the best of our knowledge, this was the first time that one had prepared 

such amorphous cellulose films with good performance through a simple, 

less-destructive, and universal method. Compared with commercial cellophane, ACF 

possessed a comparable mechanical performance, but much faster enzymatic hydrolysis 

rate, due to its distinctive amorphous structure, which is more open and accessible, 

indicating its prevailing environmental friendliness. Based on the present results, it can 

be concluded that the ACF possesses a great potential for replacing cellophane used in 

packaging materials. Moreover, it has importance to serve as a new standard sample for 

the study of cellulose structure and enzyme activity. 
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Chapter 3  Lipase-catalyzed synthesis of tri-branched 

poly(ricinoleic acid) and its application 

 

3.1 Introduction 

Trans-1,4-polyisoprene is a semicrystalline polymer, harder and less elastic 

than its stereoisomer cis-1,4,-polyisoprene (CPI, main component of natural rubber).
1,2

 

Trans-1,4-polyisoprene can be extracted from a small number of plant species, such as 

Eucommia ulmoides, Palaquium gutta, Manilkara bidentata, Achras zapota, Garrya 

flavescens and Garrya wrightii.
3-5

 Among them, Eucommia ulmoides is extensively 

cultivated in China as a source of a Chinese traditional medicine.
5,6

 Nowadays, there are 

several applications of natural trans-1,4-polyisoprene, e.g., golf balls and endodontic 

filling materials.
2,7

  

In recent years, natural trans-1,4-polyisoprene extracted from Eucommia 

ulmoides Oliver (EuTPI) attracts the researchers’ interests again due to the 

ever-increasing environmental awareness and fossil fuel crisis. Previously, the 

histochemical study of EuTPI accumulation in Eucommia ulmoides Oliver was 

conducted, revealing that EuTPI was initially synthesized as granules in non-articulated 

laticifers and changes form to fibers along with laticifer maturation.
3,6

 A bio-based 

polymer was also developed with dynamically crosslinked network structure from 

EuTPI.
8
 Zhang et al. studied the difference between EuTPI and synthetic 

trans-1,4-polyisoprene.
9
 Yan and Xue et al. developed a series of patented products of 

EuTPI, and also studied damping properties of EuTPI and its blends with other 

elastomers.
10,11

 Sarina et al. investigated the dynamic properties of EuTPI with different 
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degrees of crosslinking.
12

  

One of the crucial problems of EuTPI would be poor processing ability, which 

hampers widespread applications. Unlike CPI, EuTPI with high molecular weight (Mw > 

10
6
)
8
 did not flow and still possessed high modulus even above its melting point, which 

easily caused defects and failures during the extrusion and molding processes, 

eventually affected the performance and appearance of the products. Thus, the 

improvement of the processing ability of EuTPI becomes an urgent issue. 

Applications of ricinoleic acid have been extensively studied due to its 

abundant resource, excellent biodegradability, and multi-functional groups.
13-26

 

Ricinoleic acid, taking up 90% of castor oil, possesses hydroxyl and carboxyl groups as 

well as C=C bond, making it polymerizable and crosslinkable.
14

 Ebata et al. synthesized 

high molecular weight poly(ricinoleic acid) (PRA) from methyl ricinoleate (purity > 

99%) using immobilized lipase as catalyst.
19

 Such a polyester was a viscous liquid at 

room temperature, completely amorphous and biodegradable. Subsequently, they 

obtained a thermosetting elastomer from the vulcanization of PRA.
18

 Roberson et al. 

prepared a poly(L-lactide) (PLLA)/PRA diblock copolymer as compatibilizer to 

improve the toughness of PLLA.
16

 Lebarbe et al. prepared PLLA/PRA/PLLA triblock 

copolyester.
15

 By incorporation of 17 wt% of the PRA block, the ultimate strain 

increased from 5% to 98%. Gautrot et al. synthesized a high molecular weight 

copolyester based on bile acid and ricinoleic acid via entropy-driven ring-opening 

metathesis polymerization.
17

 The copolyester displayed tunable mechanical properties 

and heterogeneous degradation behaviors. The aforementioned researches incorporated 

flexible and amorphous properties of PRA into the rigid materials, such as PLLA and 

poly(bile acid). These previous studies inspire me to introduce PRA into EuTPI to 
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improve the properties. 

Herein, two types of crosslinkable polyesters were synthesized, a linear PRA 

(LPRA) and a tri-branched PRA (BPRA), as additives for improvement of the properties 

of EuTPI. LPRA was synthesized from cost-effective ricinoleic acid with an 

immobilized lipase as catalyst. Similarly, BPRA was synthesized using castor oil as 

molecular core (Fig. 3-1). Various amounts of LPRA and BPRA were separately 

introduced into EuTPI. The morphology, crystallization behaviors, thermal and 

rheological properties of the blend films were systematically investigated. This research 

aims to improve the processing ability of EuTPI by blending a crosslinkable polyester. 

 

 

Figure 3-1. Scheme of lipase-catalyzed synthesis of LPRA and BPRA 

 

3.2 Experimental procedure 

3.2.1 Materials  

Lipase (lipase PS IM Amano, immobilized on diatomaceous earth), ricinoleic 

acid (purity ≈ 80%), and castor oil were purchased from Wako Pure Chemical Industries, 

Ltd., Japan. Dicumyl peroxide (DCP) was purchased from Sigma-Aldrich. Molecular 

sieves 4 A 1/8 were purchased from Nacalai Tesque Inc., Japan, and activated in vacuo 

at 150 °C for 4 h before usage. All reagents without special mention were used as 

received. 
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EuTPI produced from the seeds of Eucommia ulmoides Oliver was supplied by 

Hitachi Zosen Co., Osaka, Japan, and purified according to the previous report.
8
 Briefly, 

5 g of crude sample was dissolved in 300 mL of toluene by vigorous stirring at 40 °C 

for 48 h. The undissolved impurity was removed by centrifugation. The pure EuTPI was 

obtained after evaporating the solvent under reduced pressure. Molecular weight of 

EuTPI (Mw = 1.2  10
6
, PDI = 1.8) was characterized by size exclusion 

chromatographic (SEC) analysis. 

 

3.2.2 Synthesis of LPRA  

Ricinoleic acid (2.0 g, 6.7 mmol) was added in a 100 mL of tube. Lipase PS 

(0.60 g, 30 wt% for ricinoleic acid) pre-dried for 2 h in vacuo at room temperature was 

carefully added at the bottom of the tube.
19

 The molecular sieves were sealed in the 

upper part of the tube (Fig. 3-2). The reaction was performed at 60 °C for 7 days. Then, 

20 mL of chloroform was added to dissolve the product, followed by filtration to 

remove lipase PS. The solution was concentrated under reduced pressure and the 

concentrate was dropped in 20 mL of methanol to remove the unreacted monomer and 

oligomer. The product precipitated at the bottom layer was collected and dried in vacuo 

at 60 °C until the weight was constant. The yield of LPRA was about 80%. 

 

 
Figure 3-2. Reaction tube for lipase-catalyzed synthesis of LPRA and BPRA 
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3.2.3 Synthesis of BPRA  

Ricinoleic acid (2.0 g, 6.7 mmol) and castor oil (0.16 g, 0.17 mmol) were 

added in a 100 mL of tube. The mixture was vigorously stirred at room temperature for 

15 min. Polymerization was carried out as described above for the synthesis of LPRA 

by using the pre-dried lipase PS as catalyst (0.65 g, 30 wt% for the total weight of 

ricinoleic acid and castor oil) and the molecular sieves as a water scavenger. After the 

reaction, the crude product was isolated by solubilization in chloroform (20 mL), 

removal of lipase PS, and evaporation of the solvent under reduced pressure. The 

product was dissolved in 10 ml of acetone by gentle heating. Then, the solution was 

sealed and kept overnight in an ice-water bath. The formed precipitates at the bottom 

layer were collected. The purification procedures were performed twice. Finally, a 

transparent viscous liquid was obtained after drying to constant weight in vacuo at 

60 °C. The yield of BPRA was about 70%.  

 

3.2.4 Preparation of the films from EuTPI/LPRA and EuTPI/BPRA  

Firstly, 0.050 g LPRA, 0.95 g EuTPI and 30 mL of chloroform were 

sequentially added in a 50 ml of vial. Then, the mixture was vigorously stirred for 24 h 

at room temperature, followed by casting the resulting solution to a Teflon mold and 

drying it for overnight. To completely remove the solvent, the sample was further dried 

in vacuo at room temperature for 24 h. Then, the sample was sandwiched by two 

stainless plates with a 100 μm of spacer. The hot-pressing process was performed at 100 

C under a pressure of 10 MPa for 10 min. Then, the film was naturally cooled down to 

room temperature. Finally, a blend film with 5 wt% of LPRA was prepared, which was 

referred as EuTPI-LPRA5%. According to the same procedure, EuTPI-LPRA10%, 
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EuTPI-LPRA15%, EuTPI-LPRA20%, EuTPI-BPRA5%, EuTPI-BPRA10%, 

EuTPI-BPRA15%, and EuTPI-BPRA20% were prepared. For comparison, the film 

from pure EuTPI was also prepared. The films were kept in vacuo for at least 24 h 

before any test. 

 The cured films were prepared using the similar procedures except for the 

addition of DCP (2.0 wt% for the total weight of BPRA and EuTPI) after EuTPI and 

BPRA were completely dissolved.
9
 The films were hot-pressed at 150 C under a 

pressure of 10 MPa for 30 min. The corresponding samples were referred as 

EuTPI-cured and EuTPI-BPRA15%-cured. 

 

3.2.5 Characterization  

1
H NMR spectra were recorded in CDCl3 using a Bruker DPX-400 instrument 

(Bruker BioSpin Co., MA, USA). Fourier transform infrared (FT-IR) spectra in the 

attenuated total reflection (ATR) mode were recorded on a Nicolet iS5 FT-IR 

spectrometer with iD5 ATR accessory (Thermo Fisher Scientific Inc., Waltham, MA, 

USA). SEC was performed on a TOSOH SC-8020 apparatus equipped with 

refractive-index (RI) and UV detectors (Tosoh Co., Tokyo, Japan). Two groups of 

columns TSKgel GMHHR-H (S) (for analysis of EuTPI) and TSKgel G4000HXL (for 

analysis of LPRA and BPRA) were used. Chloroform was used as an eluent at a flow 

rate of 1.0 mL/min at 40 °C. The molecular weight was calibrated by polystyrene 

standards. Thermogravimetric analysis (TGA) was conducted on a SII TG/DTA7200 

(Hitachi High-Tech Science Co., Tokyo, Japan) from 40 °C to 500 °C at a heating rate 

of 10 °C/min under nitrogen. Differential scanning calorimetry (DSC) thermograms 

were measured using a SII DSC6220 equipment (Hitachi High-Tech Science Co., Tokyo, 
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Japan) under nitrogen. The samples were first heated up to 100 °C from room 

temperature and held for 5 min to eliminate the thermal history, then cooled down to 

-100 °C and held for 5 min, subsequently heated up from -100 °C to 100 °C. Both of the 

heating and cooling processes were operated at the same scanning rate of 10 °C/min. 

Scanning electron microscopic (SEM) analysis was carried out by a Hitachi SU-3500 

instrument (Hitachi High-Technologies Co., Tokyo, Japan). Rheological measurements 

were performed on a Haake RheoStress 6000 Rheometer (Thermo Fisher Scientific Inc., 

Waltham, MA, USA) using 20 mm diameter of parallel plates. To ensure the adhesion of 

samples to the plates, 25 N of initial force was employed. A stress sweep test was 

initially performed to ensure that the stress used was within the linear viscoelastic range. 

Frequency sweeps were executed on each of samples over a frequency range of 0.1–100 

rad/s at 80 °C.  

 

3.3 Results and discussion 

3.3.1 Structural characterization of LPRA and BPRA 

LPRA was synthesized according to the reported method.
19

 The degree of 

polymerization of LPRA was around 10, which was calculated from 
1
H-NMR 

spectroscopic results (Fig. 3-3). For synthesis of BPRA, castor oil was used as 

multifunctional initiator, which is bio-based and well compatible with ricinoleic acid; 

castor oil possesses about 2.7 hydroxyl groups per molecule. The introduction of castor 

oil was expected to not only increase the molecular weight but also lead to a branched 

structure. To promote the reaction toward favored direction, the molar ratio between 

ricinoleic acid and castor oil was set as 40 to 1. By removing the unreacted monomer 

and oligomer, the product showed a unimodal peak in the SEC curve (Fig. 3-4). The 
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molecular weight was about 1.0  10
4
 (PDI = 1.8), and higher than that of LPRA (Mw = 

6.6  10
3
, PDI = 2.5). In the 

1
H-NMR spectrum of BPRA (Fig. 3-3), characteristic peaks 

derived from castor oil were found in the range from 4.0 ppm to 4.4 ppm (peaks d). 

From the ratio of the integrated area between these peaks and peak c due to ester bond 

at 4.9 ppm, it was confirmed that every branch of BPRA was composed of about 12 

monomers.  

 

 

Figure 3-3. 
1
H-NMR spectra of LPRA and BPRA 

 

 

Figure 3-4. SEC curves of LPRA and BPRA 

 

Moreover, the synthesis of LPRA and BPRA was confirmed by the FT-IR 
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spectroscopic analysis. The characteristic peaks of hydroxyl (3200  3650 cm
-1

) and 

carboxylate (1710 cm
-1

) groups found in the spectrum of ricinoleic acid disappeared in 

that of the product (Fig. 3-5 and Fig. 3-6), instead a strong peak owing to the ester 

carbonyl bond appeared at 1730 cm
-1

. The above spectroscopic data clearly support the 

formation of BPRA.  

 

 

Figure 3-5. FT-IR spectra of LPRA, EuTPI, EuTPI-LPRA5%, EuTPI-LPRA10%, EuTPI-LPRA15%, 

and EuTPI-LPRA20% 

 

 

Figure 3-6. FT-IR spectra of BPRA, EuTPI, EuTPI-BPRA5%, EuTPI-BPRA10%, 

EuTPI-BPRA15%, and EuTPI-BPRA20% 

 

3.3.2 Morphology of EuTPI, EuTPI/LPRA and EuTPI/BPRA blend films 
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LPRA and BPRA were separately introduced into EuTPI to examine their 

abilities for the improvement of EuTPI properties. For the EuTPI/LPRA blend films, 

uniform appearance was displayed when 5 wt% and 10 wt% of LPRA was introduced. 

With the increasing ratio of LPRA, the surface of the blend film became sticky, 

suggesting that macro-phase separation occurred. Fig. 3-7 shows the SEM images of the 

surface morphology of the EuTPI/LPRA blend films. For EuTPI-LPRA5%, small 

droplets with irregular shape in the EuTPI matrix were observed. As the mixed ratio of 

LPRA increased, the droplets coalesced and nonuniformly distributed in the matrix of 

EuTPI.  

 

 

Figure 3-7. SEM micrographs of surface of EuTPI-LPRA5%, EuTPI-LPRA10%, EuTPI-LPRA15%, 

and EuTPI-LPRA20% 

 

In contrast, all films consisting of EuTPI and BPRA showed uniform 

appearance and hard surface, suggesting that the macro-phase separation did not occur. 

Fig. 3-8 shows the SEM micrographs of pure EuTPI and EuTPI/BPRA blend films. In 

the case of Eu-BPRA5%, a similar morphology with pure EuTPI was shown, implying 

that BPRA was compatible with EuTPI. When 10 wt% of BPRA was added, small 
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droplets appeared and uniformly distributed in the EuTPI matrix. Up to 15 wt% of 

BPRA, the droplets still displayed uniform distribution with the increasing size of the 

droplets not only in the surface but also in the cross section. For EuTPI-BPRA20%, 

however, the coalescence became serious, and the droplets were nonuniformly 

distributed. Therefore, the mixing of 15 wt% BPRA should be the upper limitation for 

the blending. The above results indicate that BPRA possessed better compatibility with 

EuTPI than LPRA and could be uniformly distributed in the EuTPI matrix in the form 

of small droplets up to the content of 15 wt%. It was believed that the obvious 

differences between EuTPI/LPRA and EuTPI/BPRA blend films were caused by the 

different interfacial tension of EuTPI with LPRA and BPRA.
27

 The branched structure 

and more terminal hydroxyl groups of BPRA with respect to LPRA would result in 

larger interfacial tension with EuTPI matrix. The large interfacial tension leaded to the 

formation of small droplets of BPRA, which could steadily and uniformly exist in the 

EuTPI matrix up to the content of 15 wt%. In contrast, LPRA with smaller interfacial 

tension easily coalesced and nonuniformly distributed in the EuTPI matrix. 

The morphological change of the cured samples was investigated. Fig. 3-9 

shows the surface morphology of the EuTPI-cured and EuTPI-BPRA15%-cured 

samples. EuTPI-cured displayed the surface morphology similar to that of the pure 

EuTPI sample without crosslinking (Fig. 3-8). For EuTPI-BPRA15%-cured, however, 

the uniform droplets disappeared, displaying the homogenous surface compared to that 

of EuTPI-BPRA15% without crosslinking. These SEM images suggest that BPRA was 

chemically incorporated to the crosslinked network of EuTPI through the reaction of the 

C=C bonds of EuTPI and BPRA. Compared to other common additive such as glycerol, 

BPRA was much more difficult to escape from the EuTPI matrix, leading to the more 
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stable performance of the final product. 

 

 

Figure 3-8. SEM micrographs of surface of EuTPI, EuTPI-BPRA5%, EuTPI-BPRA10%, 

EuTPI-BPRA15%, EuTPI-BPRA20%, and cross section of EuTPI-BPRA15% 

 

 

Figure 3-9. SEM micrographs of surface of EuTPI-cured and EuTPI-BPRA15%-cured 

 

3.3.3 Rheology studies 

The rheological properties of EuTPI, EuTPI/LPRA and EuTPI/BPRA blend 

films were studied by rheometer. Fig. 3-10 shows the results of EuTPI/LPRA blend 
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films. The storage modulus (G′) and loss modulus (G″) of all films displayed plateaus 

across the entire frequency range () from 0.1 to 100 rad/s at 80 °C, suggesting the 

strong entanglement of molecular chains. With the increasing content of LPRA, G′, G″, 

and complex viscosity () showed decreased tendency. For EuTPI-LPRA20%, however, 

G′ and  were abnormally higher than those of EuTPI-LPRA10% and 

EuTPI-LPRA15%, which is probably due to much more serious coalescence and 

nonuniform distribution of LPRA in the EuTPI matrix. For all EuTPI/LPRA blend 

samples, G′ was higher than the corresponding G″, implying the elastic gel behavior of 

EuTPI/LPRA blend samples at 80 °C. These data indicate that LPRA was not effective 

to improve the processing ability of TPI. 

 

 

Figure 3-10. Rheological properties of EuTPI, EuTPI-LPRA5%, EuTPI-LPRA10%, 

EuTPI-LPRA15%, and EuTPI-LPRA20%: (a) frequency-dependent dynamic storage modulus G’ 

and loss modulus G’’ curves; (b) frequency-dependent complex viscosity  curves 

 

For EuTPI, EuTPI-BPRA5%, and EuTPI-BPRA10%, G′ was higher than G″, 

and all of them showed plateaus across the entire frequency range () from 0.1 to 100 

rad/s at 80 °C (Fig. 3-11a). These results suggest the existence of the strong 

entanglement between molecular chains, which made samples behave like elastic gels 

and lost mobility even above the melting point of TPI. Below 10 wt% of BPRA, G′, G″, 
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and  only displayed a slight decrease with the increasing content of BPRA. As for 

EuTPI-BPRA15% and EuTPI-BPRA20%, G′ was lower than G″ at low frequency (Fig. 

3-11a), displaying liquid behavior. Moreover, G′ and  were drastically reduced at low 

frequency. Taking EuTPI-BPRA15% for instance, G′ was lowered nearly three 

magnitudes and  was reduced to about 5% compared to those of pure EuTPI at  = 0.1 

rad/s.  

 

 
Figure 3-11. Rheological properties of EuTPI, EuTPI-BPRA5%, EuTPI-BPRA10%, 

EuTPI-BPRA15%, and EuTPI-BPRA20%: (a) frequency-dependent dynamic storage modulus G’ 

and loss modulus G’’ curves; (b) frequency-dependent complex viscosity  curves  

 

The mechanical properties of blends of immiscible materials were highly 

dependent on the morphology, such as the droplet size and the distance between the 

droplets.
28

 When the low content of BPRA was added, the BPRA distributed in the 

EuTPI matrix in the form of small size of droplets, and the distance between the 

droplets was long. The mechanical properties of EuTPI matrix were only slightly 

affected. With the content of BPRA increased, the size of droplets became larger, and 

the distance between the droplets became shorter, resulting in weakened mechanical 

strength of EuTPI matrix. The entanglements between the EuTPI chains could be easily 

released at the low frequency, and the mobility was improved. Moreover, the small 
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droplets of BPRA functioning as a lubricant to further improve the mobility of EuTPI 

phase. This also explains the behavior transformation from elastic gel to liquid with the 

increase of BPRA above melting point of EuTPI. When 20 wt% of BPRA was added, 

however, the coalescence became serious (Fig. 3-8). Therefore, around 15 wt% of 

BPRA would be the appropriate value for practical application as the processing aid of 

EuTPI. 

The above results indicate that BPRA was more effective to improve the 

processing ability of EuTPI compared to LPRA, because BPRA possessed better 

compatibility with EuTPI, and could exist in the EuTPI matrix as uniform droplets up to 

the content of 15 wt%.  

 

3.3.4 Thermal properties  

The thermal stability of EuTPI, BPRA, and EuTPI-BPRA15% was investigated 

by TGA. The results (Fig. 3-12) show that both of EuTPI and BPRA possessed good 

thermal stability.  

 

 

Figure 3-12. TGA curves of BPRA, EuTPI, and EuTPI-BPRA15%. 
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The decomposition temperature (Td5) of EuTPI and BPRA was 348 °C and 

329 °C, respectively. For EuTPI-BPRA15%, Td5 was around 338 °C, which indicates 

the introduction of BPRA would not compromise the thermal stability of EuTPI during 

the processing and usage.  

The crystallization behaviors of EuTPI, EuTPI/LPRA and EuTPI/BPRA blend 

samples were investigated by DSC. The crystallinity was calculated based on the 

reported melting enthalpy of 100% pure -form and -form crystals of 

trans-1,4-polyisoprene, which are 12.8 KJ/mol and 9.6 KJ/mol repeat unit, 

respectively.
9
 LPRA and BPRA were completely amorphous, because the regular 

arrangement was disturbed by the dangling chains of polymer. EuTPI showed a 

crystallization peak at 26 °C during the cooling scan (Fig. 3-13a). Two endothermic 

peaks locating at 46 °C and 54 °C were observed during the heating process (Fig. 

3-13b), which correspond to the transformation from β to α phase and the melting of α 

phase, respectively.
2,29-31

 BPRA and LPRA possessed similar effects on the 

crystallization of EuTPI (Fig. 3-13 and 3-14). Considering the nonuniform distribution 

of LPRA in the EuTPI matrix, the influence of BPRA on the crystallization behaviors of 

EuTPI was mainly discussed. As shown in Table 3-1, crystallinity (c) of EuTPI rapidly 

decreased from 32 % to 28 % by the addition of 5 wt% of BPRA, then displayed small 

decrease with the increasing content of BPRA. The blend film still retained high 

crystallinity (24 %) when 20 wt% of BPRA was introduced. It is believed that BPRA 

possessed two different effects on the crystallization of EuTPI with respect to the 

location distribution. Only a small part of BPRA located in the EuTPI phase due to the 

poor miscibility between BPRA and EuTPI. This part of BPRA functioned as the 

impurity, disturbing the regular arrangement of EuTPI chains. Most of BPRA existed as 
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separated droplets. These droplets exerted less influence on the crystallization of EuTPI.  

 

 

Figure 3-13. DSC traces of LPRA, EuTPI, EuTPI-LPRA5%, EuTPI-LPRA10%, EuTPI-LPRA15%, 

and EuTPI-LPRA20%: (a) cooling scan; (b) subsequent heating scan. 

 

 

Figure 3-14. DSC traces of BPRA, EuTPI, EuTPI-BPRA5%, EuTPI-BPRA10%, EuTPI-BPRA15%, 

and EuTPI-BPRA20%: (a) cooling scan; (b) subsequent heating scan. 

 

It is worthy to note that, with increasing the content of BPRA, the ratio of 

-phase crystallites first rapidly increased from 2 % to 31 %, finally reached 37 % 

(Table 3-1). As aforementioned, BPRA existed as two parts: one existed in the EuTPI 

phase; the other existed as separated droplets. The former part other than the latter part 

contributed to the increase of -phase crystallites. Although the former part would 

suppress the total crystallinity, it could improve the mobility of the EuTPI chains and 

favor the formation of more stable -phase crystallites, due to the high mobility, 

flexibility of BPRA. 
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Table 3-1. Non-isothermal crystallization of EuTPI and EuTPI-BPRA blend samples 

 Tc (C) c (%) %
a %

b 

EuTPI 26 32 2 98 

EuTPI-BPRA5% 20 28 15 85 

EuTPI-BPRA10% 22 26 31 69 

EuTPI-BPRA15% 23 26 33 67 

EuTPI-BPRA20% 26 24 37 63 

a, b 
Percentage of the crystallinity of -phase and -phase crystallites, respectively. 

 

3.4 Summary 

In this chapter, LPRA and BPRA were synthesized using immobilized lipase as 

catalyst, and both of them were separately introduced into EuTPI to improve the 

processing ability. BPRA possessed better compatibility with EuTPI compared to LPRA, 

and could exist in the EuTPI matrix as uniform droplets up to the content of 15 wt%, 

leading to obvious improvement of processing ability of EuTPI. BPRA also could be 

chemically incorporated into the crosslinked network of EuTPI through the reaction 

between C=C bonds of EuTPI and BPRA, which made BPRA difficult to escape from 

the EuTPI matrix and contributed to the stable performance of the final products. BPRA 

would serve as a crosslinkable processing aid for EuTPI. 
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Chapter 4  Acid-catalyzed synthesis and characterization of 

hyperbranched poly(ricinoleic acid) 

 

4.1 Introduction 

Ricinoleic acid (RA) takes up of approximately 90 % of castor oil, which is 

low cost and commercially available. RA could form the polyester by the condensation 

reaction of hydroxyl and carboxylic groups, meanwhile, the unsaturated bonds render 

RA with cross-linkable properties.
1,2

 The antibacterial properties of RA have also been 

verified by previous reports.
3,4

 In recent years, the polyesters from RA have been widely 

studied.
5-8

 It was found that poly(ricinoleic acid) (PRA) with good mechanical 

properties was difficult to obtain, due to the poor reactivity of RA.
9-11

 Although a 

elastomer was successfully prepared from pure methyl ricinoleate using high loading of 

lipase as catalyst,
12,13

 the high cost of monomer and lipase would inevitably hamper the 

practical applications. RA as a minor component often copolymerized with other 

monomers to tune the properties of materials.
3,10,14-19

 On the other hand, hyperbranched 

polymers attract many researchers’ attention due to their unique properties such as low 

viscosity, good film-forming and easy cross-linking properties.
20-22

 There were some 

papers concerning the synthesis of hyperbranched polymers based on castor oil,
8,23,24

 in 

which the content of castor oil was low. A hyperbranched macroinitiator would provide 

multiple active sites for the polymerization of RA to produce hyperbranched PRA 

(HBPRA) with high bio-based content. Taking the advantages of hyperbranched 

structure, the performance of HBPRA would be very interesting for materials science. 

In this chapter, HBPRA was synthesized by polycondensation reaction using 
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polyglycerol (PGL) as the macromolecular initiator and RA as the monomer with 

p-toluenesulfonic acid (PTSA) as catalyst (Fig. 4-1). The reaction conditions, structure, 

and properties of HBPRA were extensively studied. 

 

 

Figure 4-1. Synthetic scheme of HBPRA 

 

4.2 Experimental section 

4.2.1 Materials  

Ricinoleic acid (RA, > 80 %), trimethylolpropane tris(3-mercaptoproprionate) 

(TMPMP, > 85 %), and 2,2-dimethoxy-2-phenylacetophenone (DMPA, > 98 %) were 

purchased from Tokyo Chemical Industry Co, Ltd., Japan. The p-toluenesulfonic acid 

monohydrate (PTSA) was purchased from Wako Pure Chemical Industries, Ltd., Japan. 

Polyglycerol (PGL, Mn = 3  10
3
 g/mol, number of hydroxyl groups per molecule = 40) 

was obtained from Daicel Corporation, Japan. All reagents without special mention 

were used as received. 
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4.2.2 Synthesis of PRA  

The procedure for the synthesis of PRA was described as follows: RA (20 g, 67 

mmol) and PTSA (0.70 g, 3.35 mmol, 5 mol% of RA) were added to a 50 ml of flask 

with magnetic stirring bar. The flask was heated in 80 °C oil bath and simultaneously 

evacuated with oil pump for 24 h. Every four hours, the sampling was carried out to 

monitor the reaction process. After 24 h, the sample was dissolved in 30 ml of THF. The 

solution was dropped into 300 ml of NaHCO3 (0.56 g) aqueous solution to neutralize 

the PTSA. The oil layer was collected using separatory funnel and dissolved with 30 ml 

of THF, followed by reprecipitation in 300 ml of methanol to remove the unreacted 

monomer and oligomer. The mixture was allowed to stand for overnight at room 

temperature. Then, the precipitate formed at the bottom layer was collected and dried at 

60 °C in vacuo for 48 h. The final product was referred to as PRA. 

 

4.2.3 Synthesis of HBPRA  

The synthesis of HBPRA was similar to that of PRA. First, PGL (0.5 g, 6.7 

mmol of -OH groups), RA (20 g, 67 mmol, 10 times of the number of -OH groups of 

PGL), and PTSA (0.70 g, 3.7 mmol, 5 mol% of -OH groups of RA and PGL) were 

added to a 50 ml of flask with magnetic stirring bar, vigorously stirring for 30 min to 

fully mix the reactants. Afterwards, the flask was heated in 80 °C oil bath and 

simultaneously evacuated with oil pump for 30 h. At the initial stage, the pressure 

should be carefully controlled to prevent the eruption of the reactants. After the reaction 

was quenched by cooling down to room temperature with running water, 30 ml of THF 

was added to dissolve the crude product, followed by dropping into 300 ml of NaHCO3 

(0.62 g) aqueous solution to neutralize the PTSA. The oil layer was collected using 
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separatory funnel and dissolved with 30 ml of THF, followed by reprecipitation in 300 

ml of acetone to remove the unreacted monomer and oligomer. The mixture was 

allowed to stand for overnight at room temperature. Then, the precipitate formed at the 

bottom layer was collected and dried at 60 °C in vacuo for 48 h. The final transparent 

liquid product with light yellow color (Fig. 4-2) was obtained and referred to as 

HBPRA10. According to the same procedure, HBPRA5, HBPRA15, and HBPRA20 

were synthesized. As for HBPRA0.5, HBPRA1, and HBPRA3, methanol instead of 

acetone was used as solvent for the reprecipitation. 

 

 

Figure 4-2. Photos of the samples of HBPRA10 (a) after reaction and (b) after purification. 

 

4.2.4 UV-crosslinking of HBPRA10  

HPBRA10 (0.5 g), DMPA (5 mg, 1 wt% of HBPRA10), and TMPMP (15 mg, 

3 wt% of HBPRA10) were dissolved in 3 ml of CHCl3. The solution was casted on the 

various substrates (glass plate, Teflon plate, and aluminium foil) and allowed to dry at 

room temperature for overnight. Then, the sample was exposed to 365 nm of UV light 

for 30 min. The UV source was a UM-102 high-pressure UV lamp (100 W, from 

USHIO INC., Japan) equipped with a UV filter centered at 365 nm. The distance 

between the sample and the light source was set as 10 cm. The sample was postcured in 
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an air forced oven at 60 °C for 8 h to remove the unreacted TMPMP. 

 

4.2.5 Characterization  

Size exclusion chromatography (SEC) analysis was performed on a TOSOH 

SC-8020 apparatus equipped with refractive index and UV detectors (Tosoh Co., Tokyo, 

Japan). The column TSKgel G4000HXL was used. The chloroform was used as eluent at 

a flow rate of 1.0 mL/min at 40 °C. 
1
H NMR spectra were recorded in CDCl3 using a 

Bruker DPX-400 instrument (Bruker BioSpin Co., MA, USA). Fourier transform 

infrared (FT-IR) spectra in the attenuated total reflection (ATR) mode were recorded 

on a Nicolet iS5 FT-IR spectrometer with iD5 ATR accessory (Thermo Fisher Scientific 

Inc., Waltham, MA, USA). Thermogravimetric analysis (TGA) was conducted on a SII 

TG/DTA7200 (Hitachi High-Tech Science Co., Tokyo, Japan) from 40 °C to 500 °C at a 

heating rate of 10 °C/min under nitrogen. Differential scanning calorimetry (DSC) 

thermograms were measured using a SII DSC6220 equipment (Hitachi High-Tech 

Science Co., Tokyo, Japan). The samples were first heated up to 100 °C from room 

temperature and held for 5 min to eliminate the thermal history, then cooled down to 

-120 °C and held for 5 min, subsequently heated up from -120 °C to 100 °C at a 

scanning rate of 10 °C/min under nitrogen. Rheological measurements were performed 

on a Haake RheoStress 6000 Rheometer (Thermo Fisher Scientific Inc., Waltham, MA, 

USA) using 20 mm diameter of parallel plates. A stress sweep test was initially 

performed to ensure that the stress used was within the linear viscoelastic range. 

Frequency sweeps were executed on each of samples over a frequency range of 0.1100 

rad/s at 25 °C.  
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4.3 Results and discussion 

4.3.1 Structure characterization of PRA and HBPRA 

To suppress the side reaction, PRA was polymerized at low reaction 

temperature (80 °C) using an organic acid catalyst (PTSA). It was found that the 

reaction took much longer time with the content of PTSA lower than 5 mol%. The 

reaction time was set as 24 h according to the time courses (Fig. 4-3) of molecular 

weight and yield of PRA.  

 

 

Figure 4-3. Time course of (a) Mw and Mn of PRA and (b) yield of PRA. *The sample was purified 

by dissolving in small amount of CHCl3 and reprecipitating in 10 ml of methanol. 

 

 

Figure 4-4. 
1
H NMR spectrum of PRA 
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The 
1
H NMR spectrum of PRA (Fig. 4-4) shows that the integrated area ratio 

(3 : 2) of proton signals belonging to -CH3 (0.87 ppm) and -CH=CH- (5.2  5.5 ppm) 

remains unchanged after the reaction compared to the RA monomer, implying that the 

-CH=CH- structure remained intact as expected. 

PGL was used as the hyperbranched initiator to provide multiple reactive sites 

for the polymerization of RA. The SEC curves (Fig. 4-5) demonstrate that the samples 

from HBPRA0.5 to HBPRA15 display a unimodal peak and the peak position gradually 

shifts toward high-molecular-weight direction, indicating that the molecular weight of 

HBPRA steadily increased with the increasing ratio of RA to PGL. However, the peak 

of HBPRA20 almost superposes with HBPRA15 in high molecular weight direction and 

an obvious shoulder peak appears in low molecular weight direction, suggesting the 

molecular weight of HBPRA15 already reached the limitation. Above the ratio of 15, 

self-polymerization would become serious.  

 

 

Figure 4-5. SEC curves of PRA, HBPRA0.5, HBPRA1, HBPRA3, HBPRA5, HBPRA10, 

HBPRA15, and HBPRA20. 

 

Among the HBPRA samples, HBPRA10 was appropriate for further usage due 

to its high molecular weight and moderate yield (Table 4-1). With respect to the 
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bio-based PRA component in HBPRA10, PGL was synthesized from petroleum 

resources. Assuming that all PGL were incorporated into HBPRA10 structure without 

any loss, the content of PGL in HBPRA10 was calculated to be less than 4 % according 

to the weight of PGL and the final product, revealing that the bio-based content of 

HBPRA10 was more than 96 %.  

 

Table 4-1. Properties of PRA and HBPRA 

 NMR GPC 
Yield 

(%) 

Td 

(C) 

Tg 

(C) 
 Mn 

10
-3

 
DP

* 
Mw 

10
-3 

Mn 

10
-3

 
PDI 

PRA   4.1 2.0 2.1 85 323 -75 

HBPRA0.5   8.8 4.1 2.2 43 314 -63 

HBPRA1   14.1 7.0 2.0 62 298 -64 

HBPRA3 52.3 4.4 31.2 9.5 3.3 94 300 -72 

HBPRA5 74.8 6.4 44.0 19.5 2.3 80 310 -73 

HBPRA10 101 8.7 41.6 11.4 3.6 64 315 -74 

HBPRA15 122 10.6 43.1 15.7 2.7 40 319 -74 

* Average degree of polymerization of branch chains of HBPRA. 

 

Although HBPRA10 was not synthesized in a traditional way for the synthesis 

of hyperbranched polymers, in which small molecules are used as the initiator, and the 

monomers bear more than two reactive sites to make the chains propagate, the 

hyperbranched structure with PRA as the dominant component was successfully 

obtained. Theoretically, HBPRA was composed of a hyperbranched macro-molecular 

core and 40 branches, and every branch was composed of linear PRA. Since the 

structure of macro-molecular core would not change, all we need was to characterize the 

average degree of polymerization (DP) of PRA, which could be easily calculated from 
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the 
1
H NMR results (Fig. 4-6), according to the equation DP  [Af / (Ad + Aa/2) +1]. For 

HBPRA10, DP of PRA was 8.7. Further, the molecular weight of HBPRA10 was 

estimated to be 1.0  10
5
 g/mol according to the following equation:  

MHBPRA = {[Af / (Ad + Aa/2)] +1}  (MRA-Mwater)  40 + MPGL 

Here, MHBPRA, MPGL, MRA, and Mwater represent the molecular weight of 

HBPRA, PGL, RA, and water, respectively. Aa, Ad, and Af represent the integrated area 

of the proton signals belonging to Ha, Hd, and Hf of HBPRA, respectively. It is 

noteworthy that this equation is not suitable for the molecular weight calculation of 

HBPRA0.5, HBPRA1, and HBPRA20. In the case of HBPRA0.5 and HBPRA1, not all 

of the hydroxyl groups were reacted. As for HBPRA20, self-polymerization product 

existed.  

 

 

Figure 4-6. 
1
H NMR spectra of PRA and HBPRA3. 

 

The structure of HBPRA was also studied by FT-IR spectroscopy (Fig. 4-7). 

With the addition of RA, the peak strength of hydrogen bonds at 3357 cm
-1 

extensively 

decreases, and the characteristic peak belonging to the stretching mode of carbonyl 

groups of HBPRA at 1732 cm
-1

 appears. Meanwhile, the position of the characteristic 
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peak of hydrogen bonds gradually shifts toward high wavenumber, suggesting that the 

hydrogen bonds became weak with the increasing ratio of RA to PGL. From HBPRA3 

to HBPRA20, similar FT-IR spectra were obtained with a very weak peak appearing 

around 3534 cm
-1

, implying that the end hydroxyl groups of these samples existed as a 

free mode rather than hydrogen bonds. 

 

 

Figure 4-7. FT-IR spectra of PGL, HBPRA0.5, HBPRA1, and HBPRA3 

 

4.3.2 Thermal properties of HBPRA 

 The thermal stability of HBPRA samples was evaluated by TGA (Fig. 4-8). The 

thermal decomposition temperature (Td10, the temperature with 10 % of weight loss) of 

HBPRA samples gradually increases with the increasing ratio of RA to PGL, suggesting 

that the stability of PRA component of HBPRA was improved with the increasing 

branch chain length. The DTG results (Fig. 4-8b) show two main peaks from left to 

right correspond to the thermal decomposition of PRA and PGL component, 

respectively. The Td10 of HBPRA10 was 315 °C (Table 4-1), suggesting its good thermal 

stability.  
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Figure 4-8. (a) TGA curves and (b) DTG curves of PGL, HBPRA0.5, HBPRA1, HBPRA3, 

HBPRA5, HBPRA10, and HBPRA15. 

 

DSC was also used to study the thermal behaviors of HBPRA samples (Fig. 

4-9). With the increasing ratio of RA to PGL, glass transition temperature (Tg) signals of 

PGL belonging to different generation structure gradually disappear. Instead, the signals 

of of Tg assigned to PRA component appear, and decrease from the initial -63 °C 

(HBPRA0.5) to the final -74 °C (HBPRA10). The Tg of HBPRA10 was -74 °C (Table 

4-1), which indicates excellent molecular mobility of HBPRA10. 

 

 

Figure 4-9. DSC curves (the second heating scan) of PGL, HBPRA0.5, HBPRA1, HBPRA3, 

HBPRA5, HBPRA10, and HBPRA15. 

 

4.3.3 Rheological properties of HBPRA 
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 The rheological properties of HBPRA were systematically investigated. As 

shown in (Fig. 4-10), the relationship of the complex viscosity () versus the frequency 

() at 25 °C, for all samples from HBPRA0.5 to HBPRA15, displays nearly horizontal 

lines, suggesting that all HBPRA samples were Newtonian fluid. It was attributed to 

their hyperbranched structure. Although the molecular weight of HBPRA10 was as high 

as 1.0  10
5
 g/mol, the branch chain length was still not long enough to form 

entanglements. The  of HBPRA10 at 25 °C was approximately 10 Pa.s. It was believed 

that the disruption of hydrogen bonds and van der Waals interaction were responsible 

for the changes of  between different HBPRA samples.  

 

 

Figure 4-10. Frequency-dependent complex viscosity () curves of PGL, HBPRA0.5, HBPRA1, 

HBPRA3, HBPRA5, HBPRA10, and HBPRA15 

 

4.3.4 Coating film based on HBPRA10 

Benefiting from the mild catalyst and low reaction temperature, the double 

bonds of HBPRA10 were not damaged, and HBPRA10 remained transparent after the 

reaction. Moreover, by taking advantage of the merits of hyperbranched structure, 

HBPRA10 possessed good film-forming and easy cross-linking properties. Here, to cure 

HBPRA10, thio-ene click reaction was used, which is an efficient and robust reaction 
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system, insensitive to oxygen.
25

 HBPRA10 was cross-linked to form a transparent and 

smooth coating film under UV light for 30 min using catalytic amount of TMPMP (3 

wt%) and DMPA (1 wt%). The surface of the coating film was soft but not sticky 

(pencil hardness  B). Moreover, this coating film well attached to various substrates 

including glass plate, Teflon plate, and aluminium foil. 

 

4.4 Summary 

 Based on the above results, it is reasonable to conclude that HBPRA10 was a 

highly bio-based hyperbranched polymer (PRA component > 96 %), with good thermal 

stability (Td10 = 315 °C), excellent molecular mobility (Tg = -74 °C), low viscosity (  

10 Pa.s at 25 C), good film-forming and easy-crosslinking properties. HBPA10 could 

be used as promising additive, lubricant, and coating materials. 
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Chapter 5  Biomimic cuticle from hyperbranched 

poly(ricinoleic acid) and cellulose film 

 

5.1 Introduction 

The natural plant cuticle is chiefly composed of two layers. The upper layer is 

cutin, which is a cross-linked polyester derived from long chain fatty acids. The cutin 

protects the plant from outer water penetration and pathogen attack. The bottom layer is 

the polysaccharides, which endow the cuticle with strength and protection from 

mechanical injury.
1-4

 The cuticle structure well balances the advantages of the cutin and 

polysaccharide, providing the protection for inner plant structure. From the perspective 

of materials science, the plant cuticle is an ideal bio-based packaging material with 

well-balanced performance. However, such materials could not be extracted from plants 

for practical applications. To date, only a few researches were related to the biomimic 

cutin,
5,6

 and the biomimic cuticle has been rarely reported.  

For biomimicking cuticle, it is necessary to find suitable hydroxylated fatty 

acids and polysaccharide resources, which are the main composition of the plant cuticle. 

Through the thoughtful screening, ricinoleic acid (RA) and cellulose come into my sight. 

RA [(9Z, 12R)-12-hydroxyoctadec-9-enoic acid] takes up of approximately 90 % of 

castor oil, which is low cost and commercially available. RA could form the polyester 

by the condensation reaction of hydroxyl and carboxylic groups, meanwhile, the 

unsaturated bonds render RA with cross-linkable properties.
7,8

 The antibacterial 

properties of RA have also been verified by previous reports.
9,10

 In chapter 4, HBPRA10 

was successfully prepared with the content of RA above 96 wt%, which possessed low 
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viscosity, good film-forming and easy-crosslinking properties, while cellulose is a main 

kind of polysaccharide, and a transparent cellulose film has been fabricated in chapter 2, 

theoretically the structure of cuticle could be mimicked based on HBPRA10 and 

cellulose film (Fig. 5-1). 

 

 

Figure 5-1. Biomimic plant cuticle from RA and cellulose film. 

 

In this chapter, the biomimic cuticle was fabricated from HBPRA10 and 

cellulose film, with the aid of UV-initiated thio-ene click reaction. The transparency, 

morphology, surface properties, and mechanical properties of biomimic cuticle were 

systematically investigated. This study aims to develop a biomimic cuticle with high 

bio-based content and good performance. 

 

5.2 Experimental section 

5.2.1 Materials  

Ricinoleic acid (RA, > 80 %), trimethylolpropane tris(3-mercaptoproprionate) 

(TMPMP, > 85 %), N,N-dimethylacetamide (DMAc, > 99 %), and 

2,2-dimethoxy-2-phenylacetophenone (DMPA, > 98 %) were purchased from Tokyo 

Chemical Industry Co, Ltd., Japan. Anhydrous lithium chloride (LiCl) and 

p-toluenesulfonic acid monohydrate (PTSA) were purchased from Wako Pure Chemical 

Industries, Ltd., Japan. Polyglycerol (PGL, Mn = 3  10
3
 g/mol, number of hydroxyl 

groups per molecule = 40) was obtained from Daicel Corporation, Japan. Whatman 



83 

 

CF11 fibrous medium cellulose powder (CF11, cotton origin, 50-350 μm, GE 

Healthcare Life Science Corp., Piscataway, NJ, USA) was used as cellulose resource. 

All reagents without special mention were used as received. 

 

5.2.2 Fabrication of biomimetic plant cuticle  

Cellulose film with the thickness around 20 μm was fabricated according to the 

method described in chapter 2. The obtained cellulose film was fixed on a glass plate 

with adhesive tape (Fig. 5-2). HPBRA10 (0.5 g), DMPA (5 mg, 1 wt% of HBPRA10), 

and TMPMP (15 mg, 3 wt% of HBPRA10) were dissolved in 3 ml of CHCl3. The 

solution was casted on the cellulose film and allowed to dry at room temperature for 

overnight. Then, the sample was exposed to 365 nm of UV light for 30 min. The UV 

source was a UM-102 high-pressure UV lamp (100 W, from USHIO INC., Japan) 

equipped with a UV filter centered at 365 nm. The distance between the sample and the 

light source was set as 10 cm. The sample was postcured in an air forced oven at 60 °C 

for 8 h to remove the unreacted TMPMP. The thickness of sample was around 120 μm; 

therefore the sample was referred to as biomimic cuticle-120. Through changing the 

concentration of HBPRA, a sample with thickness about 60 μm was obtained and 

referred to as biomimic cuticle-60. 

 

 

Figure 5-2. Procedure of the biomimic cuticle fabrication. 
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5.2.3 Characterization  

Fourier transform infrared (FT-IR) spectra in the attenuated total reflection 

(ATR) mode were recorded on a Nicolet iS5 FT-IR spectrometer with iD5 ATR 

accessory (Thermo Fisher Scientific Inc., Waltham, MA, USA). The optical 

transmittances of the films were measured from 200 to 900 nm using a Hitachi U2810 

UV-visible spectrophotometer. Contact angles (CA) were measured with a Drop Master 

DM300 instrument (Kyowa Interface Science Co. Ltd, Saitama, Japan) using FAMAS 

Basic software. Scanning electron microscopic (SEM) analysis was carried out by a 

Hitachi SU-3500 instrument (Hitachi High-Technologies Co., Tokyo, Japan). Tensile 

properties were measured by a Shimadzu EZ Graph instrument equipped with a 500 N 

load cell (Shimadzu Corp., Kyoto, Japan). A crosshead speed of 1 mm/min was used. 

The sample was cut into rectangular strips 40 mm × 5 mm and tested with a span length 

of 10 mm. Seven samples were tested and at least 5 samples were chosen. 

 

5.3 Results and discussion 

5.3.1 Fabrication of biomimic cuticle 

In chapter 4, a transparent and smooth coating film was prepared from 

HBPRA10 through UV-initiated thio-ene click reaction, and the surface of the coating 

film was soft but not sticky. However, one problem frustrated me, which was that the 

intact film could not be peeled off from the substrates including Teflon plate, glass plate, 

and aluminium foil, due to the strong binding force of the HBPRA film to substrates. 

This is beneficial for usage in the coating or adhesive area. Nevertheless, it is not the 

final goal. 
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Instead of trying to obtain an intact HBPRA10 film to combine the cellulose 

for fabricating biomimic cuticle, we directly cured the HBPRA on the surface of 

cellulose film (Fig. 5-2). A highly transparent cellulose film was prepared according to 

our previous report,
35

 and fixed on the glass plate with adhesive tape. This cellulose film 

was used as a minor component, functioning as a substrate. Then, the CHCl3 solution 

containing HBPRA10, TMPMP, and DMPA was casted on the cellulose film surface. 

With the aid of UV-initiated thio-ene click reaction, HBPRA was cross-linked, and a 

highly transparent biomimic cuticle was obtained (Fig. 5-3). Through altering the 

concentration of HBPRA10 solution, the thickness of biomimic cuticle could be tuned. 

In this study, the biomimic cuticles with two different thickness were prepared, which 

were biomimic cuticle-120 and biomimic cuticle-60. Since the thickness of original 

cellulose film was around 20 m, the thickness of HBPRA10 layer was estimated to be 

100 m and 40 m, respectively. The cellulose layer and HBPRA10 layer could not be 

differentiated any more by naked eyes due to the high transparency of biomimic cuticle. 

 

 

Figure 5-3. Photo of biomimic cuticle-120. 

 

5.3.2 Transparency of biomimic cuticle 

The transparency of biomimic cuticle was studied by UV-visible spectroscopy. 
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Fig. 5-4 shows that the transmittance of biomimic cuticle-60 and biomimic cuticle-120 

is comparable (about 90 %) in the visible light range, and the transmittance of the 

former is only a little higher than that of the latter in the ultraviolet light range, which 

indicates that both of biomimic cuticle samples possessed high transparency that was 

less affected by the thickness of samples. Compared to cellulose film, the ultraviolet 

light was effectively blocked, suggesting that the biomimic cuticle could minimize the 

damage of UV light.  

 

 

Figure 5-4. Transmittance of cellulose film, biomimic cuticle-60, and biomimic cuticle-120 in the 

UV-visible wavelength. 

 

5.3.3 Micromorphology of biomimic cuticle 

The micromorphology was investigated by SEM. Both of the cellulose side and 

HBPRA10 side of biomimic cuticle displayed smooth surfaces (Fig. 5-5). No obvious 

difference was observed. The cross sections of the biomimic cuticle clearly 

demonstrated double-layer structure (Fig. 5-6), corresponding to the cellulose and 

HBPRA10 component, which were confirmed by FI-IR spectra (Fig. 5-7). The two 

layers were perfectly attached, and no gap or crack existed. Moreover, the thickness of 

the two layers based on the scale bar well matched the previous estimation.  
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Figure 5-5. SEM images of the biomimic cuticle surfaces of (a) cellulose side and (b) HBPRA side. 

 

 

Figure 5-6. SEM images of cross sections of (a) biomimic cuticle-60 and (b) biomimic cuticle-120. 

 

Figure 5-7. FT-IR spectra of the biomimic cuticle surfaces. 

 

The strong binding force to the substrates was an obstacle for us to get an intact 

film of HBPRA10, but here it contributed to the perfect attachment of the cellulose 

layer and HBPRA10 layer. Meanwhile, the perfect attachment together with dense 
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structure of the cellulose layer and HBPRA10 layer contributed to the excellent 

transparency of biomimic cuticle. 

 

5.3.4 Surface properties of biomimic cuticle 

The two surfaces of biomimic cuticle displayed significant differences. The 

cellulose side possessed hard and slippery surface (pencil hardness > 6H), whereas the 

HBPRA10 side was soft but not sticky (pencil hardness  B), and could attach to 

various substrates under gentle force, such as glass and metal. The biomimic cuticle 

could be used as a promising displaying material with the HBPRA10 side attached to 

the displaying screen and the cellulose side toward outside (Fig. 5-8).  

 

 

Figure 5-8. Photo of biomimic cuticle attached to the displaying screen of cell phone. 

 

In addition, the two surfaces of biomimic cuticle showed different CA of water, 

which were 44 and 91 (Fig. 5-9) corresponding to the cellulose side and HBPRA10 

side, respectively. This indicates that the cellulose side of biomimic cuticle was 

hydrophilic and the HBPRA10 side was hydrophobic. Such a structure is beneficial to 
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applications for packaging materials. For example, when biomimic cuticle is used as a 

packaging material of fruits, the HBPRA10 layer used as outer layer could prevent outer 

water and pathogen invasion, and the cellulose layer used as inner layer is helpful to 

provide strength and retain water from the fruits, just as the plant cuticle does. So, one 

can choose different side of biomimic cuticle as outer layer depending on the 

applications. 

 

 

Figure 5-9. Contact angle images of biomimic cuticle-120 surfaces of (a) cellulose side and (b) 

HBPRA side. 

 

5.3.5 Tensile properties of biomimic cuticle 

The mechanical properties of the biomimic cuticle were evaluated by tensile 

test (Fig. 5-10). The smooth tensile curves suggest that cellulose layer and HBPRA10 

layer remained the combining state during stretching process and no slide phenomenon 

occurred in the interface, which was attributed to the excellent adhesive abilities of 

HBPRA10. On the other hand, it was extremely difficult to quantitively analyze the 

interface interactions of the two layers due to the strong attachment. The biomimic 

cuticle behaved as a tough plastic material. The elongation at break and maximum stress 

of biomimic cuticle-60 were 39 %  3 % and 53  2 MPa, respectively. Those of 

biomimic cuticle-120 were 44 %  2 % and 29  1 MPa, respectively. With the 

HBPRA10 layer got thicker, the maximum stress of biomimic cuticle obviously 
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decreased, while only a slight increase was displayed for the elongation at break, 

suggesting that the mechanical properties of biomimic cuticles largely depended on 

cellulose film. Compared to the cellulose film (24%, 157 MPa), the maximum stress of 

bimimic cuticle-120 was lower, but the elongation at break was improved. It is worth 

noting that cellulose film was only used as a minor component in the biomimic cuticle. 

Additionally, compared to the major component of HBPRA10, the mechanical 

properties became much better, since we even cannot obtain the intact HBPRA10 film.  

 

 

Figure 5-10. Stress-strain curves of cellulose film, biomimic cuticle-60 and biomimic cuticle-120. 

  

5.4 Summary 

The biomimic plant cuticle was successfully fabricated from HBPRA10 

(bio-based content > 96%) and cellulose film through UV-initiated thio-ene click 

reaction. Cellulose layer provided the composite film with mechanical strength, while 

HBPRA layer protected the composite film from water invasion and possessed potential 

anti-bacterial properties.
9,10

 The biomimic cuticle had high transmittance in the visible 

light region, and the ultraviolet light with the wavelength between 200  300 nm was 

effectively blocked to minimize the damage caused by ultraviolet light. To the best of 
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our knowledge, it is the first time that a double-layer composite film having similar 

composition and functions with plant cuticle has been obtained. The biomimic cuticle 

would have potential applications for packaging and displaying materials. 
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Chapter 6  Concluding remarks 

 

The main topics of this thesis were related to the bio-base materials prepared 

from ricinoleic acid (RA) and cellulose (Fig. 6-1). 

 

 

Figure 6-1. Flow of main work of this thesis 

 

In chapter 2, a highly transparent cellulose film (ACF) was prepared from 

cellulose solution in LiCl/DMAc by regeneration with acetone. The obtained ACF 

possessed dense, smooth surface, and excellent transparency. The X-ray diffraction 

results indicated that ACF was highly amorphous, which was further confirmed by 

solid-state 
13

C-NMR and FT-IR spectra. Tensile analysis implied that the elongation at 

break (23.9%) and maximum stress (157 MPa) of ACF that derived from Whatman 

CF11 fibrous cellulose were higher than those of cellophane (19.9% and 135 MPa, 

respectively). In addition, enzymatic hydrolysis of ACF and cellophane showed higher 

hydrolysis rate of the former (about 7 times higher than the latter), indicating 
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outstanding environmental friendliness. This work provided a simple, less-destructive, 

and universal method to prepare transparent ACF, which may serve as a promising 

packaging material to replace cellophane. 

In chapter 3, a tri-branched poly(ricinoleic acid) (BPRA) was successfully 

synthesized using castor oil as the initiator and ricinoleic acid as the monomer with the 

lipase PS as the catalyst. For comparison, linear poly(ricinoleic acid) (LPRA) was also 

synthesized using similar method. An interesting application of BPRA was 

demonstrated, as a processing aid to effectively improve the processing ability of 

natural trans-1,4-polyisoprene extracted from Eucommia ulmoides Oliver (EuTPI). 

SEM observation suggested that BPRA was uniformly distributed in the EuTPI matrix 

in contrast to the poor distribution of LPRA, and BPRA was effectively incorporated 

into the crosslinked network of EuTPI by curing with dicumyl peroxide. Rheological 

studies indicated that BPRA was more effective to improve the processing ability of 

EuTPI than LPRA. The storage modulus, loss modulus, and complex viscosity () of 

EuTPI over the frequency () range from 0.1 to 100 rad/s at 80 C obviously decreased 

with the increasing content of BPRA. At low frequency, the rheological behavior of 

EuTPI changed from elastic gel to liquid when 15 wt% of BPRA was added. Moreover, 

 dramatically decreased to about 5% of that of the pure EuTPI at  = 0.1 rad/s. TGA 

results suggested that the blending of BPRA would not compromise the thermal stability 

of EuTPI. BPRA was found to promote the formation of more stable -phase 

crystallites of EuTPI by DSC analysis. 

In chapter 4, a hyperbranched poly(ricinoleic acid) (HBPRA) was prepared 

using PGL as the macro-molecular initiator and ricinoleic acid as the monomer with 

p-toulenesulfonic acid as the catalyst. HBPRA as a highly bio-based hyperbranched 
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polymer (biobased content > 96 wt%) may have promising applications for lubricant, 

additive, adhesive, and coating materials due to its good thermal stability (Td10 = 

315 °C), low Tg (-74 °C) and viscosity (  10 Pa.s at 25 C), easy cross-linking and 

good film-forming properties. 

In chapter 5, the biomimic plant cuticle was successfully fabricated from 

HBPRA and cellulose film with the aid of UV-initiated thio-ene click reaction. This 

biomimic cuticle possessed excellent transparency (transmittance  90 % in the visible 

light range). The SEM observation showed that the biomimic cuticle was composed of 

two layers, which were perfectly attached. The properties of two surfaces of biomimic 

cuticle displayed significant differences. Cellulose side was hydrophilic with contact 

angle (CA) around 44 and pencil hardness > 6H. On the contrary, HBPRA side was 

hydrophobic with CA about 91 and pencil hardness  B. With respect to the slippery 

cellulose side, HBPRA side could attach to various substrates under gentle force. In 

addition, the tensile test showed good mechanical properties. The elongation at break 

and maximum stress of biomimic cuticle were 44 % and 29 MPa, respectively. The 

above results suggest that the biomimic cuticle may have potential applications for 

packaging and displaying materials. 

The main achievements of this doctoral thesis list as follows: (1) the successful 

fabrication of ACF, which will be helpful for understanding the relationship between the 

structure and properties of cellulose; (2) the synthesis of a hyperbranched 

macromolecule composed of nearly hundred percent of RA, which shows the possibility 

that high performance materials could be prepared from low-cost biobased fatty acid, 

and encourages the wide applications of fatty acid in near future; (3) the design and 

realization of a double-layer composite film, which well balances the advantages of 
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ACF and HBPRA, and provides a alternative way for the fabrication of the composite 

film. The whole thesis surrounds the preparation and applications of biobased and 

biodegradable materials, and will contribute to the sustainable development of the 

human society. 
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