<table>
<thead>
<tr>
<th>Title</th>
<th>On induced representations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okamoto, Kiyosato</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 4(1) P.85–P.94</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1967</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5601</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5601</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Let G be a locally compact topological group and K a compact subgroup of G. For any irreducible unitary representation σ of K, we denote by $U(\sigma)$ the induced representation generated by σ (see §1). In general, $U(\sigma)$ is not irreducible.

The purpose of this paper is to give a method of extracting the irreducible components of $U(\sigma)$ when G is one of the special types of Lie groups.

1. Let G be a connected non-compact semisimple Lie group with a finite dimensional faithful representation and K a maximal compact subgroup of G. We assume that $\text{rank } G = \text{rank } K$. For any given irreducible unitary representation σ of K on a representation space V, we can construct a unitary representation $U(\sigma)$ of G as follows. Let $\mathcal{H}(\sigma)$ be the set of all “Haar-measurable” V-valued functions f which satisfy the following conditions:

$$f(kx) = \sigma(k)f(x) \quad (k \in K, x \in G)$$

and

$$\|f\|^2 = \int_G \|f(x)\|_V^2 \, dx < \infty$$

where $\| \|_V$ denotes the norm in V.

Then $\mathcal{H}(\sigma)$ is a Hilbert space if we identify functions which differ only on subsets of G of Haar measure zero. The inner product $(,)$ in $\mathcal{H}(\sigma)$ is given by

$$(f_1, f_2) = \int_G (f_1(x), f_2(x))_V \, dx \quad (f_1, f_2 \in \mathcal{H}(\sigma))$$

where $(,)_V$ denotes the inner product in V. Finally for any $g \in G$, $U_g(\sigma)$ is defined by

$$(U_g(\sigma)f)(x) = f(xg) \quad (f \in \mathcal{H}(\sigma), \ x \in G).$$

Thus we obtained the induced representation $U(\sigma)$ generated by σ (cf. [7] (d)).

Our aim is to find out an irreducible closed subspace of $\mathcal{H}(\sigma)$.

* The author is partially supported by the Sakkokai Foundation.
2. Let \(\mathfrak{g} \) (resp. \(\mathfrak{h} \)) be the Lie algebra of \(G \) (resp. \(K \)) and \(\mathfrak{p} \) the orthogonal complement of \(\mathfrak{h} \) in \(\mathfrak{g} \) with respect to the Killing form of \(\mathfrak{g} \). Then \(\mathfrak{g} = \mathfrak{t} + \mathfrak{p} \) is a Cartan decomposition of \(\mathfrak{g} \). Let \(T \) be a maximal torus in \(K \) and \(\mathfrak{h} \) the Lie algebra of \(T \). Then since \(G \) has a finite dimensional faithful representation and rank \(G = \text{rank } K \), \(T \) is a Cartan subgroup of \(G \); i.e.

\[
T = \{ g \in G; \ Ad(g)H = H \quad \text{for all } H \in \mathfrak{h} \}
\]

where \(Ad \) denotes the adjoint representation of \(G \). Let \(\mathfrak{g}^C \) denote the complexification of \(\mathfrak{g} \). Let \(\Sigma \) be the set of all non-zero roots of \(\mathfrak{g}^C \) with respect to the Cartan subalgebra \(\mathfrak{h}^C \) (\(\mathfrak{h}^C \) is the subspace of \(\mathfrak{g}^C \) spanned by \(\mathfrak{h} \)). We denote by \(\Sigma_\mathfrak{k} \) the set of all compact roots (see for definition [8]). Let \(\mathcal{F} \) be the vector space over \(\mathbf{R} \) (the field of real numbers) consisting of all purely imaginary valued linear forms on \(\mathfrak{h} \). Then \(\Sigma \subset \mathcal{F} \). Introduce a linear order in \(\mathcal{F} \) and let \(\mathcal{P} \) (resp. \(\mathcal{P}_\mathfrak{k} \)) be the set of all positive roots in \(\Sigma \) (resp. \(\Sigma_\mathfrak{k} \)). We denote by \(\mathfrak{S} \) the universal enveloping algebra of \(\mathfrak{g}^C \). As usual we regard elements of \(\mathfrak{S} \) as left-invariant differential operators on \(G \). Since \(V \) is finite dimensional, it has the canonical structure of an analytic manifold. We denote by \(C^\infty(G, V) \) the vector space of all continuous mappings from \(G \) to \(V \). For any \(f \in C^\infty(G, V) \) and \(v \in V \), we put

\[
 f_v(x) = (f(x), v) \quad (x \in G).
\]

Let \(C^\infty(G) \) be the vector space of all infinitely differentiable complex valued functions on \(G \). We denote by \(C^\infty(G, V) \) the set of all \(f \in C^\infty(G, V) \) such that

\[
f_v \in C^\infty(G) \quad \text{for all } v \in V.
\]

We often call \(f \in C^\infty(G, V) \) a \(V \)-valued \(C^\infty \)-function. Define

\[
(U_\chi(\sigma)f)(g) = \lim_{t \to 0} \frac{1}{t} \left(f(g \exp t\chi) - f(g) \right) \quad (g \in G)
\]

for \(\chi \in \mathfrak{g} \) and \(f \in C^\infty(G, V) \). Then we have a representation \(X \rightarrow U_\chi(\sigma) \) of \(\mathfrak{g} \) on \(C^\infty(G, V) \). This extends uniquely to a representation of \(\mathfrak{S} \). It is obvious that

\[
(U_\omega(\sigma)f)_v = uf_v \quad \text{for all } u \in \mathfrak{S}.
\]

In the following, we shall simply write \(uf \) instead of \(U_\omega(\sigma)f \). Let \(\mathfrak{B} \) be the center of \(\mathfrak{S} \) and \(\Omega \) the Casimir operator of \(\mathfrak{g} \). Then \(\Omega \in \mathfrak{B} \). For any \(g \in G \), we define

\[
(R(g)f)(x) = f(xg) \quad (x \in G, f \in C^\infty(G)).
\]

Then an element \(u \) of \(\mathfrak{S} \) belongs to \(\mathfrak{B} \) if and only if \(R(g)u = uR(g) \) for all \(g \in G \). Fix a subalgebra \(\mathfrak{A} \) of \(\mathfrak{B} \) such that \(\Omega \in \mathfrak{A} \). We denote by \(\text{Hom}(\mathfrak{A}, C) \) the set of all homomorphisms of \(\mathfrak{A} \) into \(C \). For any \(\chi \in \text{Hom}(\mathfrak{A}, C) \) we put...
Induced Representations 87

\[\Phi(\sigma, X) = \{ f \in \mathfrak{g}(\sigma) \cap C^\infty(G, V); zf = \chi(z)f \text{ for all } z \in \mathbb{H} \}. \]

Then we have

Proposition 1. \(\Phi(\sigma, X) \) is a closed invariant subspace of \(\mathfrak{g}(\sigma) \). Moreover, every element of \(\Phi(\sigma, X) \) is an analytic mapping from \(G \) into \(V \).

Proof. Let \(B \) be the Killing form of \(g^c \) and put

\[\langle X, Y \rangle = -B(X, \theta(Y)) \quad (X, Y \in g^c) \]

where \(\theta \) denotes the conjugation of \(g^c \) with respect to the compact real form \(g_0 = \mathfrak{k} + \sqrt{-1} \mathfrak{p} \). Then \(\langle , \rangle \) is an inner product in \(g^c \). Select orthonormal bases \((X_1, \ldots, X_m)\) and \((Y_1, \ldots, Y_n)\) for \(\mathfrak{k} \) and \(\mathfrak{p} \), respectively. Then, it follows from the definition of the Casimir operator \(\Omega \) that

\[\Omega = -(X_1^2 + \cdots + X_m^2) + Y_1^2 + \cdots + Y_n^2. \]

We put

\[\Omega_t = X_1^2 + \cdots + X_m^2, \quad \Omega_p = Y_1^2 + \cdots + Y_n^2. \]

For any \(X \in \mathfrak{g} \), let \(X' \) denote the right invariant vector field on \(G \) given by

\[(X'f)(x) = \left[\frac{d}{dt} f(\exp(tX)x) \right]_{t=0} \quad (x \in G, f \in C^\infty(G)). \]

Then the mapping \(X \rightarrow X' \) \((X \in \mathfrak{g})\) can be extended uniquely to an anti-homomorphism of \(\mathfrak{g} \) onto the algebra of right-invariant differential operators on \(G \).

It is easy to see that \(\Omega' = \Omega \) as differential operators on \(G \). For any \(\lambda \in \mathcal{F} \), we shall denote as usual by \(H_\lambda \) an element of \(\mathfrak{h}^c \) such that \(\lambda(H) = B(H_\lambda, H) \) for all \(H \in \mathfrak{h} \); the inner product \(\langle \lambda, \mu \rangle \) of two linear forms \(\lambda, \mu \in \mathcal{F} \) means the value \(\langle H_\lambda, H_\mu \rangle \). We denote by the same notation the infinitesimal representation of \(\sigma \). Let \(\Lambda \in \mathcal{F} \) be the highest weight of \(\sigma \). Then it is well known that

\[\sigma(\Omega_\mu) = -\langle \Lambda + 2\rho_\mu, \Lambda \rangle I \]

where \(\rho_\mu = \frac{1}{2} \sum_{\alpha \in \Delta^{+}_\mu} \alpha \) and \(I \) denotes the identity operator on \(V \). Fix any \(f \in \Phi(\sigma, X) \) and \(v \in V \). Then

\[\Omega'_t f_v(x) = (\sigma(\Omega_t) f(x), v)_V = -\langle \Lambda + 2\rho_\mu, \Lambda \rangle f_v(x) \]

where \(f_v(x) = (f(x), v)_V \). It follows that

\[\Omega'_t f_v(x) = 2\langle \Lambda + 2\rho_\mu, \Lambda \rangle f_v(x) + (\Omega'_t + \Omega'_p)f_v(x). \]

On the other hand,

\[\Omega f_v(x) = (\Omega f(x), v)_V = \chi(\Lambda) f_v(x) \]

Therefore, we have
Since $\Omega'_t + \Omega'_\nu$ is obviously an elliptic differential operators on G, we conclude that f_ν is an analytic function. This shows that f is an analytic mapping from G to V. Moreover, owing to the ellipticity of $\Omega'_t + \Omega'_\nu$, all solutions of the above equation (1) in the distribution sense are analytic. It is an immediate consequence of this fact that $\mathcal{D}(\sigma, \chi)$ is closed in $\mathcal{D}(\sigma)$. Since $R(g) \circ z = z \circ R(g)$ for all $g \in G$, we see that $U_g(\sigma) U_\nu(\sigma) = U_\nu(\sigma) U_g(\sigma)$. It follows immediately that $\mathcal{D}(\sigma, \chi)$ is an invariant subspace of $\mathcal{D}(\sigma)$. This completes the proof of the proposition.

We denote by $U(\sigma, \chi)$ the subrepresentation of $U(\sigma)$ obtained by restricting $U(\sigma)$ on $\mathcal{D}(\sigma, \chi)$. In the following, we shall discuss when $U(\sigma, \chi)$ is non-trivial and irreducible.

3. Let \mathcal{E} (resp. \mathcal{E}_K) be the set of all equivalence classes of irreducible unitary representations of G (resp. K). For any irreducible unitary representation π of G, let $\pi | K$ denote the restriction of the representation π to the subgroup K. For any $\omega \in \mathcal{E}_K$, we denote by $(\pi | K: \omega)$ the multiplicity with which the representation ω occurs in $\pi | K$. $(\pi | K: \omega)$ depends only on the equivalence class ω which contains π. In this case, we also write $(\omega | K: \omega)$ instead of $(\pi | K: \omega)$. Let ξ_σ be the character of σ. We define a projection operator E_σ by

$$E_\sigma = d(\sigma) \int_K \overline{\xi_\sigma(k)} U_k(\sigma, \chi) dk$$

where $d(\sigma)$ denotes the degree of σ and dk is the normalized Haar measure of K. We denote by $[\sigma]$ the class in \mathcal{E}_K to which σ belongs.

Proposition 2. If $(U(\sigma, \chi) | K: [\sigma]) = 1$, then $U(\sigma, \chi)$ is irreducible.

Proof. It is sufficient to prove that every non-zero closed invariant subspace of $\mathcal{D}(\sigma, \chi)$ contains $E_\sigma \mathcal{D}(\sigma, \chi)$. Let \mathcal{D} be an arbitrary non-zero closed invariant subspace of $\mathcal{D}(\sigma, \chi)$. Fix a non-zero element $f \in \mathcal{D}$. Then from Proposition 1, f is analytic. Hence there exists a $g_0 \in G$ such that $f(g_0) \neq 0$. Put $f_0 = U_{g_0} f$. Then it is obvious that $f_0(1) = f(g_0) \neq 0$ (1 is the identity element of G) and that f_0 is analytic on G. Notice that

$$(E_\sigma f_0)(1) = d(\sigma) \int_K \overline{\xi_\sigma(k)} U_k(\sigma, \chi) f_0(1) dk$$

$$= d(\sigma) \int_K \overline{\xi_\sigma(k)} f_0(k) dk$$

$$= d(\sigma) \int_K \xi_\sigma(k) \sigma(k) d f_0(1)$$

$$= f_0(1) \neq 0.$$
Then since $E_{\sigma}f_0$ is again analytic, we can conclude that $E_{\sigma}f_0 \neq 0$. Moreover, since \mathcal{S} is closed invariant subspace, we have $E_{\sigma}f_0 \in \mathcal{S}$. It follows from the assumption $(U(\sigma, \chi)|K: [\sigma]) = 1$ that $E_{\sigma}\mathcal{S}(\sigma, \chi) \subset \mathcal{S}$. This proves the proposition.

We denote by $\text{End}(V)$ the algebra of all linear endomorphisms of V. An $\text{End}(V)$-valued C^∞-function φ on G is called a zornal spherical functions of type (σ, χ) if it satisfies the conditions

\begin{align*}
(1) \quad & \varphi(k, g_k) = \sigma(k_1)\varphi(g)\sigma(k_2) \quad (k_1, k_2 \in K, g \in G) \\
(2) \quad & z\varphi = \chi(z)\varphi \quad \text{for all} \quad z \in \mathbb{A}.
\end{align*}

Let φ be a zornal spherical function of type (σ, χ). We call φ square-integrable if

$$\int_G \|\varphi(g)\|_V^2 \, dg < +\infty$$

where $\| \|_V$ is the Hilbert-Schmidt norm of $\text{End}(V)$. Here we mean by the Hilbert-Schmidt norm of an element of $A \in \text{End}(V)$ the square root of the trace of the operator A^*A, where A^* denotes the adjoint operator of A.

Proposition 3. If there exists a non-zero square-integrable zornal spherical function of type (σ, χ), then $U(\sigma, \chi)$ is not trivial (i.e. $\mathcal{S}(\sigma, \chi) \neq \{0\}$).

Proof. Let φ be a non-zero square-integrable zornal spherical function of type (σ, χ). Then there exists $v \in V$ such that $\varphi_0 \neq 0$ where $\varphi_0(g) = \varphi(g)v$. It is easy to see that $\varphi_0 \in \mathcal{S}(\sigma, \chi)$. This completes the proof of the proposition.

4. Now we need some results of F.I. Mautner. For any unitary representation π of G or K, we denote by the $[\pi]$ equivalence class to which π belongs. Then it is easy to see that $[U(\sigma_i)] = [U(\sigma_i)]$ if $[\sigma_i] = [\sigma_i] \in \mathcal{C}_K$. In case $\sigma \in \mathfrak{b}$, we shall write $U(b)$ instead of $[U(\sigma)]$.

Lemma 1. Put $\mathcal{E}(\sigma) = \{\omega \in \mathcal{E}; (\omega|K: [\sigma]) \neq 0\}$. Then

$$[U(\sigma)] = \int_{\mathcal{E}(\sigma)} (\omega|K: [\sigma]) \omega d\mu(\omega) \quad \text{(direct integral)}$$

where μ is the Plancherel measure for G. This means that the multiplicity with which ω occurs in $U(\sigma)$ coincides with the multiplicity with which $[\sigma]$ occurs in $\omega|K$.

For a proof, see [7] (c), and notice the following. Let R (resp. r) be the right-regular representation of G (resp. K). Then owing to the Peter-Weyl theorem, one knows that

$$[r] = \sum_{b \in \mathcal{C}_K} m(b)b \quad \text{(direct sum)}$$
where \(m(b) \) is the multiplicity with which \(b \) occurs in \(m(b) = \deg b \). It follows from the theorem on inducing a representation "in stages" (see \([7] (d)\)) that

\[
[R] = \sum_{b \in \mathcal{C}} m(b)U(b) \quad \text{(direct sum)}.
\]

This shows that \([U(\sigma)]\) is a subrepresentation of the regular representation of \(G \).

Now we shall need another lemma due to F.I. Mautner.

Consider the decomposition in Lemma 1. Then there exists a choice of representatives \(\pi_\omega \in \omega \) \((\omega \in \mathcal{E}(\sigma))\) with the following property. Let \(\mathcal{H}_\omega \) denote the representation space of \(\pi_\omega \). We denote by \(\pi_\omega \) the \((\omega | K : [\sigma])\)-times direct sum of \(\pi_\omega \) and let \(\mathcal{H}_\omega \) be the representation space of \(\pi_\omega \). Then we have

\[
\mathcal{H}_\omega = \mathcal{H}_\omega \oplus \cdots \oplus \mathcal{H}_\omega \quad ((\omega | K : [\sigma])\)-times direct sum).
\]

Then we have

\[
\mathcal{H}(\sigma) = \int_{\mathcal{E}(\sigma)} \mathcal{H}_\omega d\mu(\omega) \quad \text{(direct integral)}.
\]

For any \(f \in \mathcal{H}(\sigma) \), let \(f_\omega \) denote the "component" of \(f \) in \(\mathcal{H}_\omega \). We denote by the same notations the infinitesimal representations of \(\mathcal{H} \) for \(U(\sigma) \) (resp. \(\pi_\omega \)) on the Gårding subspaces \(\mathcal{H}(\sigma) \) (resp. \(\mathcal{H}_\omega \)) where \(\omega \in \mathcal{E}(\sigma) \) (cf. \([7] (a)\))

Lemma 2. For any \(f \in \mathcal{H}(\sigma) \) and \(u \in \mathcal{G} \), we have

\[
(U(u)(\sigma)f)_\omega = \pi_\omega(u)f_\omega
\]

for almost every \(\omega \in \mathcal{E}(\sigma) \).

For a proof, see \([7] (a), (b)\).

Let \(\chi_\omega \) be the infinitesimal character of \(\omega \in \mathcal{E} \). For any \(\chi \in \text{Hom}(\mathcal{H}, \mathcal{C}) \), we denote by \(\chi|_\mathcal{J} \) the restriction of \(\chi \) on \(\mathcal{J} \). Then \(\chi|_\mathcal{J} \in \text{Hom}(\mathcal{J}, \mathcal{C}) \). For any \(\chi \in \text{Hom}(\mathcal{J}, \mathcal{C}) \), we put

\[
\mathcal{E}(\chi) = \{ \omega \in \mathcal{E}; \chi_\omega|_\mathcal{J} = \chi \}.
\]

Let \(\mathcal{E}_d \) be the set of all discrete classes in \(\mathcal{E} \) (see \([4] (d)\)). We denote by \(L \) the set of all \(\lambda \in \mathcal{E} \) such that

\[
\frac{2\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z} \quad \text{for all } \alpha \in \Sigma,
\]

where \(\mathbb{Z} \) is the set of all integers. Let \(L' \) be the set of all \(\lambda \in L \) such that \(\langle \lambda, \alpha \rangle \neq 0 \) for all \(\alpha \in \Sigma \). Then owing to the profound result of Harish-Chandra \(([4] (d) \text{ Theorem 16, p. 96})\), one has that for any \(\lambda \in L' \), there corresponds an element \(\omega(\lambda) \in \mathcal{E}_d \) such that

\[
\chi_{\omega(\lambda)}(\Omega) = |\lambda|^2 - |\rho|^2
\]
where \(|^2=\langle , \rangle \) and \(\rho=\frac{1}{2} \sum_{\alpha} \alpha \). As is easily seen, \(\lambda \rightarrow |\lambda|^2 - |\rho|^2 \) \((\lambda \in \mathcal{F})\) is a polynomial of degree 2 and its homogeneous part of degree 2 is a positive definite quadratic form. It follows that \(\mathcal{E}(\chi) \cap \mathcal{E}_d \) is finite set.

Theorem 1. Let \(\mathcal{A}\) be an arbitrary subalgebra of \(\mathfrak{B}\) such that \(\Omega \subseteq \mathcal{A}\) and let \(\chi\) be a homomorphism of \(\mathcal{A}\) into \(\mathbb{C}\). Then \(\mathcal{E}(\chi) \cap \mathcal{E}_d \) is a finite set. Moreover, let \(\sigma\) be an irreducible unitary representation of \(K\) such that

\[
(A) \quad \mathcal{E}(\sigma) \cap \mathcal{E}(\chi) - \mathcal{E}_d
\]

is of measure zero with respect to the Plancherel measure for \(G\). Then we have

\[
[U(\sigma, \chi)] = \sum_{\omega} (\omega | K : \sigma) \omega \quad (\omega \in \mathcal{E}(\sigma) \cap \mathcal{E}(\chi) \cap \mathcal{E}_d).
\]

Proof. We have already proved the first assertion. We consider the decompositions in Lemma 1 and 2 and use the notations in Lemma 2. Fix any \(f \in \mathfrak{S}(\sigma, \chi) \cap \mathfrak{S}(\sigma)\). Then we know that

\[
U_\sigma(\sigma)f = \chi(z)f \quad \text{and} \quad \pi_\sigma(z)f_\omega = \chi_\omega(z)f_\omega \quad \text{for all} \quad z \in \mathcal{A}.
\]

On the other hand, from Lemma 2 we have

\[
(U_\sigma(\sigma)f)_\omega = \pi_\omega(z)f_\omega
\]

for almost every \(\omega \in \mathcal{E}(\sigma)\). Hence, there exists a subset \(\mathcal{N} \subseteq \mathcal{E}(\sigma)\) of measure zero such that

\[
(\chi(z) - \chi_\omega(z))f_\omega = 0 \quad \text{for all} \quad \omega \in \mathcal{E}(\sigma) - \mathcal{N}.
\]

In general, \(\mathcal{N}\) depends on \(z\) as well as \(f\). But one knows that \(\mathcal{A}\) is finitely generated. Therefore, every \(\chi \in \text{Hom} (\mathcal{A}, \mathbb{C})\) is uniquely determined by its values at a finite number of elements of \(\mathcal{A}\). Hence, we can assume that \(\mathcal{N}\) does not depend on \(z\). It follows immediately from the assumption \((A)\) in the theorem that

\[
f = \sum_\omega f_\omega \quad (\omega \in \mathcal{E}(\sigma) \cap \mathcal{E}(\chi) \cap \mathcal{E}_d).
\]

This completes the proof of the theorem.

Remark 1. For any real number \(c\), define

\[
\mathcal{E}_c = \{\omega \in \mathcal{E}; \chi_\omega(\Omega) = c\}.
\]

Then in case \(\text{rank } G/K = 1\), we can show that \(\mathcal{E}_c - \mathcal{E}_d\) is of measure zero with respect to the Plancherel measure for \(G\), using the explicit form of the Plancherel measure given in [4] (c), [8]. We have a conjecture that it holds in general. If this is true, then the condition \((A)\) in Theorem 1 is always satisfied.
for all σ.

Now we have assumed that G has a compact Cartan subgroup T. Owing to Harish-Chandra [4] (d), one sees that $E_d \neq \emptyset$. Fix an $\omega \in E_d$ and put $\chi = \chi_\sigma | \mathfrak{A}$. Then it is obvious that there exists a $[\sigma] \in E_K$ such that $\omega \in E(\sigma) \cap E(\chi) \cap E_d$. It follows from Theorem 1 that ω is a subrepresentation of $U(\sigma, \chi)$. If $\pi \in \omega$, we say that "π is a realization of ω" or that "ω is realized by π.

Corollary. Let \mathfrak{A} be a subalgebra of \mathfrak{B} such that $\Omega \in \mathfrak{A}$. Fix an $\omega \in E_d$ and put $\chi = \chi_\omega | \mathfrak{A}$. Assume that there exists an irreducible unitary representation σ of K which satisfies the following conditions (A1)-(A3).

(A1) $E(\sigma) \cap E(\chi) \cap E_d = \{ \omega \}$.

(A2) $(\omega | K: \sigma) = 1$.

(A3) $E(\sigma) \cap E(\chi) \cap E_d$ is of measure zero with respect to the Plancherel measure for G.

Then ω is realized by $U(\sigma, \chi)$.

5. Consider the special case that $\mathfrak{A} = \mathfrak{B}$. Then it is known (see [4] (a)) that $E(\sigma) \cap E(\chi)$ is always a finite set. Hence, in case $\mathfrak{A} = \mathfrak{B}$, the assumption (A) in Theorem 1 and the assumption (A.3) in the corollary to Theorem 1 are always satisfied.

Theorem 2. Fix any $[\sigma] \in E_K$ and $\chi \in \text{Hom} (\mathfrak{B}, C)$. Then $U(\sigma, \chi)$ is non-trivial and irreducible if and only if σ and χ satisfy the following condition (C).

(C) $E(\sigma) \cap E(\chi) \cap E_d$ consists of only one element ω such that $(\omega | K: \sigma) = 1$.

Moreover, the condition (C) implies that $U(\sigma, \chi)$ is a realization of ω.

Remark 2. Since $K \setminus G$ is simply connected, $\mathfrak{S}(\sigma)$ can be realized as V-valued square-integrable functions on a certain submanifold of G with respect to a certain measure. If the rank of the symmetric space $K \setminus G$ is equal to be one, the radial components of $U_\mathfrak{d}(\sigma) (z \in \mathfrak{B})$ coincide with ordinary differential equations (see [9] and cf. [4] (b)). It is very cumbersome to calculate the radial components of $U_\mathfrak{d}(\sigma) (z \in \mathfrak{B})$ even if G is the lower dimensional Lie group such as the universal covering group of De Sitter group. However, R. Takahashi [9] computed the radial component of $U_\mathfrak{d}(\sigma)$ in a very ingenious manner, making use of the quaternion field. Thus he proved that $U(\sigma, \chi)$ is non-trivial and irreducible for a certain $[\sigma] \in E_K$ and $\chi \in \text{Hom} (\mathfrak{A}, C)$ in case $\mathfrak{A} = C[\Omega]$ (the algebra of all polynomials of Ω).

Now we shall give here another proof of this fact, making use of the corollary to Theorem 1 and the result of J. Dixmier [1] (b). In the following,
we use the notations of [1] (b) and [9]. Let G be the universal covering group of De Sitter group. We consider the irreducible unitary representation ρ_K^0 of the maximal compact subgroup K of G (where $2n \in \mathbb{Z}$ and $n \geq 1$). Put $\sigma_n = \rho_K^0$. Then it follows immediately from Fig. 2–3–4–5 ([1] (b) p. 24) that

$$\mathcal{E}(\sigma_n) = \left\{ \pi_{n,q}^+; q = n, n-1, \ldots, 1 \text{ or } \frac{1}{2} \right\} \cup \{ \nu_{n,s}; s > 0 \}.$$

On the other hand, from (12) (in [1] (b) p. 12) and (53), (55) in ([1] (b) p. 27) one gets that

$$\chi_{n,q}^+ (\Omega) = n^2 + n + q^2 - q - 2,$$

$$\chi_{n,s} (\Omega) = n^2 + n - s - 2.$$

We denote by $\chi_{n,p}$ the unique element of Hom (\mathfrak{g}, \mathbb{C}) such that $\chi_{n,p}(\Omega) = n^2 + n + p^2 - p - 2$. Then it is clear that $\mathcal{E}(\sigma_n) \cap \mathcal{E}(\chi_{n,p}) = \{ \pi_{n,q}^+ \}$ for any p such that $2p$, $n-p \in \mathbb{Z}$ and $n \geq p \geq 1$. Since every $b \in \mathcal{E}_K$ is contained at most once in each $\omega \in \mathcal{E}_d$, it follows from the Corollary to Theorem 1 that $[U(\sigma_n; \chi_{n,p})] = \pi_{n,p}^+$. This shows that $U(\sigma_n, \chi_{n,p})$ is non-trivial and irreducible. If we take $\sigma_n = \rho_K^0$, similarly we have $[U(\sigma_n; \chi_{n,p})] = \pi_{n,p}^-$ These facts together with Theorem 1 and 2 in [1] (b) prove the following.

Proposition 4. (R. Takahashi) Let G be the universal covering group of De Sitter group. Then every irreducible unitary representation of discrete class $\omega \in \mathcal{E}_d$ can be realized by $U(\sigma, \chi)$ for some $[\sigma] \in \mathcal{E}_K$ and $\chi \in \text{Hom} (\mathfrak{g}, \mathbb{C})$ where $\mathfrak{g} = \mathbb{C}[\Omega]$ (the algebra of all polynomials of Ω). More precisely, ω is realized by

$$U(\rho_K^0, \chi_{n,p}) \text{ (resp. } U(\rho_K^0, - \chi_{n,p}) \text{)}$$

if $\omega = \pi_{n,p}^+$ (resp. $\omega = \pi_{n,p}^-$)

where $\chi_{n,p}$ is the unique element of Hom (\mathfrak{g}, \mathbb{C}) such that

$$\chi_{n,p}(\Omega) = n^2 + n + p^2 - p - 2.$$

Remark 3. It is interesting to observe the fact that the theory of unitary representations has an application to the theory of partially differential equations; i.e. the differential equation (31) on page 399 in [9] has non trivial solutions in H_0^p (for the notations, see [9]).

6. Finally, we shall apply the above theory to the group $SU(m, 1)$ and the universal covering group of $SO_o(2m, 1)$ where m is an arbitrary positive integer (for the notations, see [5]). Let G be any one of these groups. Then it is known that every $b \in \mathcal{E}_K$ is contained at most once in each $\omega \in \mathcal{E}_d$ (cf. [1] (b), [2], [3]). We fix an element χ of Hom (\mathfrak{g}, \mathbb{C}). If $\omega_1, \omega_2 \in \mathcal{E}(\chi) \cap \mathcal{E}_d$, then
$\omega_1|K$ and $\omega_2|K$ are disjoint, that is, $\omega_1|K$ and $\omega_2|K$ have no irreducible components in common (see for proof, [2], [6]). Therefore, if $\omega \in \mathcal{E}(\sigma) \cap \mathcal{E}_d$, then we have $\mathcal{E}(\sigma) \cap \mathcal{E}(\chi_{\omega}) \cap \mathcal{E}_d = \{\omega\}$. Making use of Theorem 2 we obtain the following proposition.

Proposition 5. Let G be either $SU(m, 1)$ or the universal covering group of $SO_{d}(2m, 1)$ where m is an arbitrary positive integer. Then every $\omega \in \mathcal{E}_d$ is realized by $U(\sigma, \chi_{\omega})$ for any $[\sigma] \in \mathcal{E}_K$ such that $\langle \omega | K : [\sigma] \rangle \neq 0$.

References

[1] J. Dixmier:

[4] Harish-Chandra:
(c) *Two theorems on semisimple Lie groups*, Ann. of Math. 83 (1966), 74–128.

[7] F.I. Mautner:
(a) *Unitary representations of locally compact groups II*, Ann. of Math. 52 (1950), 528–556.
(b) *On the decomposition of unitary representations of Lie groups*, Proc. Amer. Math. Soc. 2 (1951), 490–496.
