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Let G be a locally compact topological group and K a compact subgroup
of G. For any irreducible unitary representation σ of K, we denote by U(σ)
the induced representation generated by σ (see §1). In general, U(σ) is not
irreducible.

The purpose of this paper is to give a method of extracting the irreducible
components of U(σ) when G is one of the special types of Lie groups.

1. Let G be a connected non-compact semisimple Lie group with a finite
dimensional faithful representation and K a maximal compact subgroup of G.
We assume that rank G=rank K. For any given irreducible unitary represen-
tation σ of K on a representation space F, we can construct a unitary represen-
tation U(σ) of G as follows. Let ξ>(σ) be the set of all "Haar-measurable"
V-valued functions / which satisfy the following conditions

f(kx) = σ(k)f(x) (k(=K,x<=G)

and

I l / H 2 = f \\f(x)\\2vdx<™
JG

where || \\v denotes the norm in V.

Then ξ)(σ) is a Hubert space if we identify functions which differ only on subsets
of G of Haar measure zero. The inner product (,) in ξ>(σ) is given by

σ..Λ) =

where (, ) v denotes the inner product in V. Finally for any g^G, Ug(σ) is
defined by

(Ug(σ)f)(x) = f(xg) (/<= ξ>(σ), *e= G).

Thus we obtained the induced representation U(σ) generated by σ (cf. [7] (d)).
Our aim is to find out an irreducible closed subspace of ξ>(σ).

* The author is partially supported by the Sakkokai Foundation.
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2. Let g (resp. ϊ) be the Lie algebra of G (resp. K) and p the orthogonal
complement of ϊ in g with respect to the Killing form of g. Then g=ϊ-f-p is
a Cartan decomposition of g. Let T be a maximal torus in K and fj the Lie
algebra of T. Then since G has a finite dimensional faithful representation and
rank G—rank K, T is a Cartan subgroup of G; i.e.

T = {geΞG;Ad(g)H=H for all H<=fy

where Ad denotes the adjoint representation of G. Let gc denote the com-
plexification of g. Let Σ be the set of all non-zero roots of gc with respect to
the Cartan subalgebra \f (£jc is the subspace of gc spanned by fy. We
denote by Σ/, the set of all compact roots (see for definition [8]). Let £? be
the vector space over R (the field of real numbers) consisting of all purely im-
aginary complex valued linear forms on fj. Then Σc£?. Introduce a linear
order in £F and let P (resp. Pk) be the set of all positive roots in Σ (resp. Σfe).
We denote by © the universal enveloping algebra of gc. As usual we regard
elements of @ as left-invariant differential operators on G. Since V is finite di-
mensional, it has the canonical structure of an analytic manifold. We denote
by C°(G> V) the vector space of all continuous mappings from G to V. For any

/GΞ C°(Gy V) and v<= V, we put

/„(*) = (/(*), v)v (*e=G).

Let C°°(G) be the vector space of all infinitely differentiable complex valued
functions on G. We denote by C°°(G, V) the set of all/eC°(G, V) such that

fυ&C~(G) for all n ε F .

We often call f<aC°°(G, V) a V-valued C°°-function. Define

(Ux(σ)f)(g) = lim 1 (/(£ exp f*)-/fe)) feeG)

for X e g and/eC°°(G, F). Then we have a representation X->Ux{σ) of g on
C°°(G, V). This extends uniquely to a representation of @. It is obvious that

{Uu{σ)f)υ = ufυ for all « e ® .

In the following, we shall simply write uf instead of Uu(σ)f. Let 3 be the center
of ® and Ω the Casimir operator of g. Then Ω e 3 For any ^GG,we define

Then an element M of © belongs to B if and only if R(g)ou=uoR(g) for all
£<=G. Fix a subalgebra St of B such that ΩeSί. We denote by Horn (SI, C)
the set of all homomorphisms of §ϊ into C. For any %e Horn (SI, C) we put
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Φ(σ, X) = { / G % ) n C~(G, V); zf=X(z)f for all se§I} .

Then we have

Proposition 1. ξ>(σ, X) is a closed invariant subspace of ξ>(σ). Moreover,

every element of $Q(<ry X) is an analytic mapping from G into V.

Proof. Let B be the Killing form of gc and put

y> = -B(X, Θ(Y)) (X,

where θ denotes the conjugation of gc with respect to the compact real form

Qu=t+^/ — lp. Then < , > is an inner product in gc. Select orthonormal bases

(Xly •• ,XW) and (Y19 •••_, Yn) for ϊ and p, respectively. Then, it follows from

the definition of the Casimir operator Ω that

n= -(xι+.
We put

For any Z e g , let X' denote the right invariant vector field on G given by

(X'f){x) = [^/(exp (**)*)]_, (*e G, f

Then the mapping X ^ X ' ( J e g ) can be extended uniquely to an anti-homo-

morphism of © onto the algebra of right-invariant differential operators on G.

It is easy to see that Ω'=Ω as differential operators on G. For any λ G Ϊ , we

shall denote as usual by Hλ an element of ί)c such that X(H)=B(Hλy H) for all

H^ί); the inner product <̂ λ, μ)> of two linear forms λ, / i G ? means the

value <//*, Hμy. We denote by the same notation the infinitesimal representa-

tion of σ. Let Λ G ? be the highest weight of σ. Then it is well known that

where P β = i Σ # a n ( i ^ denotes the identity operator on V. Fix any /eξ)(σ, %)

a n d ^ e F . Then

Ω ' f / » = (σ(Ω,)/(Λ). ϋ) v - -<A+2Pky A>fv(x)

where fυ(x)=(f(x), v)v ^ follows that

Ω'fo(x) = 2<Λ+2p,, A>fo(x)+(Ω

On the other hand,

afv(x) = (Ω/(x), v)v = X(Ω)fv(x)

Therefore, we have
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Since Ω ' J + Ω ' J , is obviously an elliptic differential operators on G, we conclude
that /„ is an analytic function. This shows that / is an analytic mapping from
G to V. Moreover, owing to the ellipticity of Ω'j+Ω'p, all solutions of the
above equation (*) in the distribution sense are analytic. It is an immediate
consequence of this fact that ξ>(σ, X) is closed in ξ>(cr). Since R(g)oz=zoR(g)
for all g^ G, we see that Ug{σ)Uz(σ)= Uz(σ)Ug{σ). It follows immediately that
ξ)(σ, X) is an invariant subspace of ξ>(σ). This completes the proof of the pro-
position.

We denote by U(σ, X) the subrepresentation of U(σ) obtained by restricting
U(σ) on ξ>(σ, X). In the following, we shall discuss when t/(σ, X) is non-trivial
and irreducible.

3. Let 8 (resp. 6K) be the set of all equivalence classes of irreducible
unitary representations of G (resp. K). For any irreducible unitary representa-
tion π of G, let π\K denote the restriction of the representation π to the sub-
group K. For any b^Sκ, we denote by (π\K: b) the multiplicity with which
the representation b occurs in π\K. (π\K: b) depends only on the equivalence
class ω which contains π. In this case, we also write (ω | K: b) instead of (π \ K:
b). Let ξσ be the character of σ. We define a projection operator Eσ by

K
ξ,(k)Uk(σ>X)dk

where d(σ) denotes the degree of σ and dk is the normalized Haar measure of K.
We denote by [σ] the class in Sκ to which σ belongs.

Proposition 2. // (£/(σ, X) \ K: [σ])= 1, then U(σ, X) is irreducible.

Proof. It is sufficient to prove that every non-zero closed invariant sub-
space of ξ)(σ, X) contains i?σξ>(σ, %). Let ξ> be an arbitrary non-zero closed
invariant subspace of $Q(σ, X). Fix a non-zero element/eξ). Then from Pro-
position 1, / is analytic. Hence there exists a go^G such that f(g0)Φ0. Put
fo=Ugof. Then it is obvious that/0(l)=/(<§f

0)Φθ (1 is the identity element of
G) and that f0 is analytic on G. Notice that

(EJ0)(l) = d{σ) \ UWUσ, X)fo(ί)dk

K

Uk)σ{k)dkU\)

= /o(l)Φ0.
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Then since Eσf0 is again analytic, we can conclude that Z?σ/0Φθ. Moreover,
since § is closed invariant subspace, we have Eσf0EzίQ. It follows from the
assumption (£/(σ, X)\K: [σ])=ί that £"σ£>(σ, %)cξ>. This proves the proposi-
tion.

We denote by End (V) the algebra of all linear endomorphisms of V. An
End (F)-valued C°°-function φ on G is called a zornal spherical functions of
type (σ, X) if it satisfies the conditions

(1) φ(klgk2) = σ{kMgy{K) (K *2<Ξ K, g<Ξ G)

(2) zφ = X(z)φ for all seSΪ.

Let φ be a zornal spherical function of type (σ, x). We call 9) square-integrable
if

where || \\v is the Hubert-Schmidt norm of End(F). Here we mean by the
Hubert-Schmidt norm of an element of AeEnd(V) the square root of the trace
of the operator A*A, where A* denotes the adjoint operator of A.

Proposition 3. If there exists a non-zero square-integrable zornal spherical

function of type (σ, X), then U(σ, X) is not trivial (i.e. ξ>(σ, %)Φ(0)).

Proof. Let φ be a non-zero square-integrable zornal spherical function of
type (σ, X). Then there exists v^V such that φΌ Φ 0 where φv(g)=φ(g)v.
It is easy to see that φυ^ίQ(σ, X). This completes the proof of the proposition.

4. Now we need some results of F. I. Mautner. For any unitary represen-
tation π of G or K, we denote by the [π] equivalence class to which π belongs.
Then it is easy to see that [U(σ1)] = [U(σ2)] if [ σ J = [ σ 2 ] G & In case σGb,
we shall write U(b) instead of [f/(σ)].

Lemma 1. Put β(σ)={ω^β\ (ω\K: [σ])Φθ}. Then

[U(σ)] = [ (ω\K: [σ])ωdμ(ω) (direct integral)
Jo 00

where μ is the Plancherel measure for G. This means that the multiplicity with

which ω occurs in U(σ) coincides with the multiplicity with which [σ] occurs in ω | K.

For a proof, see [7] (c), and notice the following. Let R (resp. r) be the
right-regular representation of G(resρ. K). Then owing to the Peter-Weyl
theorem, one knows that

[r] = 2 m(tyb (direct sum)
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where m(ϊ>) is the multiplicity with which b occurs in r (m(b)=degb). It follows
from the theorem on inducing a representation "in stages" (see [7] (d)) that

[R] = Σ m(b)U(b) (direct sum).

This shows that [£/(σ)] is a subrepresentation of the regular representation of G.
Now we shall need another lemma due to F.I. Mautner.
Consider the decomposition in Lemma 1. Then there exists a choice of

representatives τtω^ω (ωGίfσ)) with the following property. Let ξ>ω denote
the representation space of 7tω. We denote by πω the (ω\K: [σ])-times direct
sum of 7tω and let ξ>ω be the representation space of πω. Then we have

€>ω = €>ωθ* θl>ω ((ωIK: [σ-])-times direct sum).

Then we have

ξ>(σ) = \ ξ>ωrfμ,(ω) (direct integral).

For any/eξ>(σ), let/ω denote the "component" of/ in ξ>ω. We denote by the
same notations the infinitesimal representations of © for U(σ) (resp. πω) on the
Garding subspaces ξ>°(cr) (resp. ξ>®) where ω^(?(σ) (cf. [7] (a))

Lemma 2. For any f^ΪQ0(σ) and u^®, we have

for almost every

For a proof, see [7] (a), (b).
Let Xω be the infinitesimal character of ω^S. For any %eHom(,3, C),

we denote by % | SI the restriction of X on SI. Then X131 GΞ Horn (3ί, C). For
any X^Horn (2ί, C), we put

Let 6d be the set of all discrete classes in 6 (see [4] (d)). We denote by L the
set of all λG £F such that

2<λ,

where Z is the set of all integers. Let V be the set of all λ G i such that
<λ, αr>φθ for all α G Σ . Then owing to the profound result of Harish-Chandra
([4] (d) Theorem 16, p. 96), one has that for any λ e i ' , there corresponds an
element ω(λ)G(?rf such that

| λ | 2 - | p | 2
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where | | 2 = < , )> and P = ^ Σ a As *s easily seen, λ-»|λ | 2— \p\2 (XE?) is a

polynomial of degree 2 and its homogeneous part of degree 2 is a positive de-
finite quardatic form. It follows that 6{X) Π Gd is finite set.

Theorem 1. Let SI be an arbitrary subalgebra of 3 such that ΩeSί and
let Xbe a homomorphίsm of SI into C. Then 6(X) Π 6d is a finite set. Moreover,
let σ be an irreducible unitary representation of K such that

(A) £(σ)

is of measure zero with respect to the Plancherel measure for G. Then we have

[U(σ, X)] = Έ(ω\K: [σ])ω (ωS6{σ)Π£(%)Π6d) .
ω

Proof. We have already proved the first assertion. We consider the
decompositions in Lemma 1 and 2 and use the notations in Lemma 2. Fix any
/G§(σ, X) Π §°(σ). Then we know that

U2(σ)f=X(z)f and πω(z)fω = Xω(z)fω for all

On the other hand, from Lemma 2 we have

for almost every ω^β(σ). Hence, there exists a subset Jla£(σ) of measure
zero such that

(X(z)-Xω(z))fω = 0 for all ω^S(σ)-m .

In general, Jl depends on z as well as /. But one knows that SI is finitely
generated. Therefore, every XGHOIΪI (3t, C) is uniquely determined by its
values at a finite number of elements of SI. Hence, we can assume that Jl
does not depend on z. It follows immediately from the assumption (A) in the
theorem that

This completes the proof of the theorem.

REMARK 1. For any real number c, define

e c = {

Then in case rank G/i£=l, we can show that 6C—Gd is of measure zero with
respect to the Plancherel measure for G, using the explicit form of the Plan-
cherel measure given in [4] (c), [8]. We have a conjecture that it holds in
general. If this is true, then the condition (A) in Theorem 1 is always satisfied
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for all σ.
Now we have assumed that G has a compact Cartan subgroup T. Owing

to Harish-Chandra [4] (d), one sees that c?rfΦ0. Fix an ω^Sd and put
%=%ω|SX. Then it is obvious that there exists a [σ]^6κ such that ωG(?(σ)Π
£(X) Π £ r f. It follows from Theorem 1 that ω is a subrepresentation of U(σ, X).
If 7rG6), we say that "π is a realization of ω" or that "ω is realized by TΓ."

Corollary. Let % be a subalgebra of 8 s«£λ fλdtf ΩeSI. i*Y# an
and put %=%J5I. Assume that there exists an irreducible unitary representation
σ of K which satisfies the following conditions (A1)~(A3).

(A.2) (ω\K:σ)=l.

(A.3) β(σ) Π δ(X)—Sd is of measure zero with respect to the Plancherel measure
for G.

Then ω is realized by U(σy X).

5. Consider the special case that § ί = 3 . Then it is known (see [4] (a))
that S(σ)Γ\δ(X) is always a finite set. Hence, in case SX=,3, the assumption
(A) in Theorem 1 and the assumption (A.3) in the corollary to Theorem 1
are always satisfied.

Theorem 2. Fix any [σ]<^Sκ and X(=Hoin(,8, C). Then U(σ, X) is
non-trivial and irreducible if and only if σ and X satisfy the following condition
(C).

(C) 6{σ) Π β(X) Π 6d consists of only one element ω such that (ω | K: σ)=1.

Moreover, the condition (C) implies that U(σ> X) is a realization of ω.

REMARK 2. Since K\G is simply connected, ξ>(σ) can be realized as
V'valued square-integrable functions on a certain submanifold of G with respect
to a certain measure. If the rank of the symmetric space K\G is equal to be
one, the radial components of U2(σ) (#^,8) coincide with ordinary differential
equations (see [9] and cf. [4] (b)). It is very cumbersome to calculate the radial
components of U2(σ) (z^&) even if G is the lower dimensional Lie group such
as the universal covering group of De Sitter group. However, R. Takahashi
[9] computed the radial component of UΩ(σ) in a very ingenious manner, making
use of the quaternion field. Thus he proved that U(σ, X) is non-trivial and
irreducible for a certain [σ]^δκ and %eHom (SI, C) in case 3l=C[Ω] (the
algebra of all polynomials of Ω).

Now we shall give here an another proof of this fact, making use of the
corollary to Theorem 1 and the result of J. Dixmier [1] (b). In the following,
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we use the notations of [1] (b) and [9], Let G be the universal covering group
of De Sitter group. We consider the irreducible unitary representation pnχ0

of the maximal compact subgroup K of G (where 2n^Z and #>1). Put σn=
ρnκ°. Then it follows immediately from Fig. 2-3-4-5 ([1] (b) p. 24) that

ε{σH) = j < Q ; q = n, Λ - 1 , - , 1 or 1 } U {vny,

On the other hand, from (12) (in [1] (b) p. 12) and (53), (55) in ([1] (b) p. 27) one
gets that

= n2+n-s-2 .

We denote by Xn p the unique element of Horn (Si, C) such that Xn p(Ω)=n2-\-n
+p2—p—2. Then it is clear that β(σn) Π 6(XntP)={πtp} for any p such that 2/>,
n— p^Z znά n^p^λ. Since every b^6K is contained at most once in each
ω IK (ω(=S), it follows from the Corollary to Theorem 1 that [U(σM; Xn,p)]=πtp-
This shows that U(σm XnyP) is non-trivial and irreducible. If we take σn=P(κn,
similarly we have [U(σn> 'X>n,p)]=7tn,p These facts together with Theorem 1
and 2 in [1] (b) prove the following.

Proposition 4. (R. Takahashi) Let G be the universal covering group of De
Sitter group. Then every irreducible unitary representation of discrete class ωG<?rf

can be realized by U(σ,X) for some [σ]^βκ and X^.Horn (SI, C) where 31=
C[Ω] (the algebra of all polynomials o/Ω). More precisely, ω is realized by

Xn,P) (resp. tf(p$f, XnJ)

if ω = πn,P (resp. ω = πΰ,v)

where Xn p is the unique element of Horn (31, C) such that

%^(Ω) = n2+n+p2-p-2.

REMARK 3. It is interesting to observe the fact that the theory of unitary
representations has an application to the theory of partially differential equations
i.e. the differential equation (31) on page 399 in [9] has non trivial solutions in
Hpop (for the notations, see [9]).

6. Finally, we shall apply the above theory to the group SU(my 1) and the
universal covering group of SO0(2m, 1) where m is an arbitrary positive integer
(for the notations, see [5]). Let G be any one of these groups. Then it is known
that every b^8K is contained at most once in each ω\K (ωG<?) (cf. [1]
(b), [2], [3]). We fix an element X of Horn (8, C). If ωv ω3e£(%) Π βd, then
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ωι IK and ω2 \ K are disjoint, that is, ωx | K and ω21K have no irreducible com-
ponents in common (see for proof, [2], [6]). Therefore, if ωG6(σ)Πίrf, then
we have 6(σ)Π6(Xu)Γ\Gd={ω}. Making use of Theorem 2 we obtain the
following proposition.

Proposition 5. Let G be either SU(τn, 1) or the universal covering group of
SO0(2m, 1) where m is an arbitrary positive integer. Then every ω€Ξ<5d is realized
by U(σ, Xω)for any [σ]^βκsuch that (ω\K: [σ])φθ.
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