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HOLOMORPHIC SEMI-GROUPS IN A LOCALLY
CONVEX LINEAR TOPOLOGICAL SPACE

Dedicated to Professor Kenjiro Shoda on his sixtieth birthday

By
Kosaku YOSIDA

The purpose of the present note is to show that the analytical theory
of holomorphic semi-groups in a Banach space, given in a preceding
note®. can be extended to locally convex linear topological spaces. The
result may thus be applied to the “abstract Cauchy problem” in such
spaces.

Let X be a locally conmvex, sequentially complete linear topological
space, and L(X, X) be the set of all continuous linear operators defined
on X into X. Let T,€L(X, X), =0, satisfy the conditions:

(i) T, T,=T,.(t, s=0), T,=I=the identity operator,
(ii) lim Tyx=T,x for all {,=0 and x€X,

t>to

(iii) {7,} is equi-continuous in f=0 in the sense that, for any con-
tinuous semi-norm p(x) on X, there exists a continuous semi-norm
g(x) on X such that p(T,x)<q(x) for all =0 and all x€X.

Such a system {7,} is said to constitute an equi-contituous semi-group
of class (C,). The infinitesimal generator A of T, is defined by

(iv) Ax=(D,Tx);—e= lim ¢(T,—1I)x, i.e., the domain D(A) of A is the
Vo
set of those x € X for which the right hand limit exists, and when
x€ D(A) we have Ax=lim ¢t (T,—1I)x.
t¥0
As in the case where X is a Banach space and sup || T;||< eo, such A
=0

is characterized by the following properties :

(v) A is a closed linear operator with dense domain D(A), i.e., D(A)*
:XZ),

1) K. Yosida: On the differentiability of semi-groups of linear operators, Proc. Japan
Acad. 34 (1958), 337-340. Cf. also E. Hille-R. S.Phillips : Functional Analysis and Semi-groups,
Providence (1957).

2) M* denotes the closure of MC X.
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(vi) the resolvent R(A; A)=(AI—A) '€ L(X, X) exists for Re(A) >0 and
the system of linear operators {(AR(\; A))"} is equi-continuous in
A=1 and in n=1, 2, ---

Moreover, the resolvent R(M; A) is obtained from the original group by

(Vi) RO A= 7“"1)‘ Swe‘“t”“T,xdt for Re(\)>>0 and x€ X.
n— 1Jo

After these preliminaries, we are ready to discuss those semi-groups
T, which can, as functions of the parameter #, be continued holomor-
phically into a sector of the complex plane containing the positive f-axes.

Lemma. Suppose that, for all t >0, T,XZD(A), Then, for any
x€ X, T,x is infinitely differentiable in t >0 and we have

(1) Twx = (TL)"x  for all >0,
where T,=D,T,, T!=D,T,, -, T®=D, T"™ "

Proof. It ¢>>¢,>0, then Ti(x=AT,x=7T, ,AT,x by the commuta-
tivity of A and 7,, which is an easy consequence from (i) and (iv).
Thus T' XS T, , XS D(A) when >0, and so T7x exists for all >0
and x€ X. Since A is a closed linear operator, we have T/x=D,(AT,)
x= A-lnipl W Tovcym— T)x = A(AT)x=AT,,ATy.x = (T1)’x.  Repeating

the argument, we obtain (1).

Theorem. For an equi-continuous semi-group T, of class (C,) in a
locally convex, sequentially complete linear topological space X, the follow-
ing three conditions are mutually equivalent.

@ For all t >0, T,X_D(A) and there exists a positive constant
C=1 such that the family of operators {CtT.)"} is equi-continuous in

n=1,2 - and 0<t<1.
(A) T, admits a holomorphic extension T, given by

(2) Toa =S (8" T®x/n! for |argn|< Tan"(Ce™),

n such a way that

(3) the family of operators {e*T,} is equi-continuous in A for |arg\|<_
Tan *(27'Ce™).

(III) Let A be the infinitesimal genevator of T. Then there exists
a positive constant C, such that the family of operators {(CAR(\; A))"}
is equi-continuous in n=1, 2, --- and N with Re(\) =1+¢, where & >0,
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Proof. The implication (I)—(II). Let p be any continuous semi-
norm on X. Then, by hypothesis, there exists a continuous semi-norm ¢q
on X such that p((¢T3)"x) < C "q(x) for 1=¢=0, n=0 and x€ X. Hence,
by (1), we obtain, for any ¢ >0,

Ty < At nt 1 t ’ ">
MO0 Tiwin) = PofE B () CTip)"x

< (_P»_;_ﬂ C“e)n q(x), whenever 0<_¢/n < 1.
Thus the right side of (2) surely converges for |larg A||< Tan *(Ce "), and
so, by the sequential completeness of X, T,x is well defined and is
holomorphic in A for |argA|< Tan *(Ce™*). Next put S,=¢*7T,. Then
St=—e'T,+e*T; and so, by 0<te <1 (0<¢) and (I), we easily see
that{(2-'CtS})"} is equi-continuous in #>0 and #=0, in virtue of the
equi-continuity of {7,}. The equi-continuous semi-group S, of class (C,)
satisfies the condition that S, XS D(A—I)=D(A), where (A—I) is the
infinitesimal generator of S,. Therefore, by the same reasoning as
applied to 7, above, we can prove that the holomorphic extension e *T,
of S,=e*T, satisfies the estimate (3).
By the way, we can prove the following

Corollary (due to E. Hille). If, in particular, X is a complex B-
space and 1im ||t T:||< e"," then X=D(A).
tyo

Proof. For a fixed ¢”>0, we have Iim ||(#/#)T}/.||< e”’, and so the

series

SOty Tafnt = n O (F oy )7
#=0 " n! \n

converge in some circle
Ny Iv—t|/t<1+6 witha &6 >0}
of the complex A-plane. This circle surely contains A=0 in its interior.

The implication (II)— (III). We have, by (vii),

0

(4) RO Az =2 Swe""t” Txdt for Re(\)>0, x€X.
n.
Hence

(6 +1+im)R(o+1+ir; A))*+x = W_lnle)i S TeermynS xdt . 00,
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Let #<70. Since the integrand is holomorphic, we can deform, by the
estimate (3) and Cauchy’s integral theorem, the path of integration:
0<t< o to the ray: re?® (0=r< co) contained in the sector 0< arg A<
Tan™'(2°Ce™) of the complex A-plane. We thus obtain

_ (e+1+in™"

((c+1+i7)R(o+1+ir; A)**'x 0 X

* ryreif .
S @~ THITT Ty gineG  ox eidr |
0

and so, by (3),
p((e+1+im)R(e+1+i; A)"'x)
'(O-+1—|—l.'7')ln+1 - — @ cos T sin 9)7 .7 .
< HERLEIDIT (% goeosorrsmorynp(s, ) dr

o1 4| "

< ,
=) |7 sin 8 —o cos 6|+

where ¢’ is a continuous semi-norm on X. A similar estimate is obtained
for the case = >0 also. Hence, combined with (vi), we have proved (III).

The implication (III)—(I). For any continuous semi-norm p on X,
there exists a continuous semi-norm ¢ on X such that

P(CAR(N; A))"x) < q(x) whenever Re(A) =1+6, € >0 and #=0.

Hence, if Re(A,)=1+¢&, we have

_ . n |7\.—7\,0]" —
D=2 )E( 5 A)) x)g_———(CllMl)" gx) (®=0,1,2-).

Thus, if |[A—2X,|/C,| A< 1, the resolvent R(\; A) exists and is given by
ROv: A)x =3 (—N)"R(; A’z such that

RO A)x) = (L—CT | T A =2 |) " g(R(N 5 A)x) -

Therefore, by (III) there exists an angle 8, with =/2< 6,< 7= such that
R(\; A) exists and satisfies the estimate

(5) RO A)x)= T>1T| g(x)

with a continuous semi-norm ¢’ on X in the sectors =/2<argA <6, and
—60,<arg A< —7/2 and also for Re(A) =0, when |)\| is sufficiently large.
Hence the integral
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(6) Tx = (2mi)™ Sc MRV Axdh (£ >>0, x€ X)

converges if we take the path of integration C,=\(¢), —oo <6< o0, in
such a way that l%m IMc)| =oo and, for some & >0,
[o7] 400

r/2+& < argMo) <6, and —6,<argA(c)< —7=/2—-¢

when o1 +o and o | — oo, respectively ; for not large |o|, A(o) lies in
the right half plane of the complex A-plane.

We shall show that 7, coincides with the semi-group 7, itself®.
We first show that lim T,x=x for all x€ D(A). Let x, be any element

t¥0
€ D(A), and choose any complex number A, to the right of the contour

C, of integration, and denote (A ,JJ—A)x,=y,. Then, by the resolvent
equation,

Tty = TROw; Ay, = @) | RO AROG; A)zedn

C2

= et | 0= RO Adr
C2
— (@mi)! S M=\ RO, ; A)y,dX.
Cz

The second integral on the right is equal to zero, as may be seen by
shifting the path of integration to the left. Hence

Ttxo = (Zﬂi)_l S eMO\'o_k’)_lRO\'; A)yodk‘v Yo = (A'OI_A)xo .
Cz

Because of the estimate (5), the passage to the limit £ 0 under the
integral sign is justified, and so

lim Fyx, = @) | Ou=2)"RO; A)mad, 3, = (I — A, .
£40 Cs

To evaluate the right hand integral, we make a closed contour out of
the original path of integration C, by adjointing the arc of the circle
N =7 which is to the right of the path C,, and throwing away that
portion of the original path C, which lies outside the circle |A|=7.
The value of the integral along the new arc and the discarded arc tends
to zero as 7| oo, in virtue of (5). Hence the value of the integral is
equal to the residue inside the new closed contour, that is, the wvalue

3) Adapted from P. D. Lax and A. N. Milgram: Parabolic equations, Contributions to
the Theory of Partial Differential Equations, Princeton (1954).
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R(\,; A)y,=x,. We have thus proved lim T,x,=x, when x,€ D(A).
t¥0

We next show that 7'x=ATx for £>0 and x€X. We have
R\ ; A)X=D(A) and AR»; A)=AR(\; A)—1, so that, by the convergence

factor ¢, the integral (Zﬂi)‘ls AR\ ; A)xd\ has a sense. This
Cz

integral is equal to Aff‘tx, as may be seen by approximating the integral
(6) by Riemann sum and using the fact that A is c/osed: lim x,=x and

nyoo

lim Ax,=y imply x € D(A) and Ax=y. Therefore

n-yoo

At = (Zzi)“g MARO; A)xdh, 0.
Cz

On the other hand, by differentiating (6) under the integral sign, we
obtain
(8) Tix = (zm')—lg MR A)xdh, 0.

Cz

In fact, the difference of these two integrals is (27:;')“5 eMxd\, and the
C2

value of the last integral is zero, as may be seen by shifting the path of
integration to the left.

Thus we have proved that £(¢f)= T.x,, x,€ D(A), satisfies i) ligl £()
=x,, i) d£(t)/dt=A%£(t) for £ >0, and iii) {£(¢)} is bounded when # { oo,
as may be seen from (6). On the other hand, since x,€ D(A) and since
{T;} is equi-continuous in #=0, we see that x(f)=T,x, also satisfies
lim x(¢)=x,, dx(¢)/dt=Ax(t) for t=0, and {x(#)} is bounded when #=0.

t¥ty

Let us put £(#)—x()=y(#). Then lifn y@#)=0, dyt)/dt=Ay(t) for £ >0

and {y(#)} is bounded when # 1 . Hence we may consider the Laplace
transform

Lov; 3) = | eatdt, Re)>0.
‘We have
B B B
g eMy(t) = S e MAy(t)dt = AS eMyt)dt, 0==a< B,

by approximating the integral by Riemann sum and using the fact that
A is closed. By partial integration, we obtain

Sﬂe—“y’(t) dt = e ¥y(B)—e y(@)+N gﬂe‘“y(t) dt

which tends to AL(A; y) as a0, 81 . For, »(0)=0 and {y(B)} is
bounded as 841 . Thus again, by using the closure property of A, we
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obtain
AL(\; y) = AL(A; ), Re(d) 0.

Since the inverse (A\/—A)~' exists for Re(A) >0, we must have L(A; »)=0
when Re(A)>0. Thus, for any continuous linear functional f€ X’, the
dual space of, we have

Swe‘“f( y())dt =0 when Re(\)>>0.

We set A=o-+¢r and put
g.() = e f(y(t)) or =0 according as =0 or #< 0.

Then, the above equality shows that the Fourier transform
2m)! Sw e i"g (f)dt vanishes identically in 7, —oo< 7 < o0,

so that, by Fourier’s integral theorem, g,(#)=0 identically. Thus f(y(2))
=0 and so we must have y(¢)=0 identically, in virtue of Hahn-Banach’s
theorem.

Therefore ff",x T,x for all £ >0 and x€ D(A). D(A) being dense in
X and Tt, T, both belong to L(X, X), we easﬂy conclude that Tx T,x
for all x€ X and # >0. Hence, by defining T =1, we have 7,= =T, for

all £=0. Hence, by (7). Tix=(2m)" Scze“m(x; A)xdt, >0, and so,
by (1) and (5), we obtain

(TL)'x = T®x = (2mi)~ Scze“m(x; A)xdn.
Hence

G T 'x = (2mi) SCZ I RO A)xdh.

Therefore, by (III),

PETYD = @M a() | 1o nma ).
The last integral is majoraized by C% with some positive constant C,,
when 1=¢_">0. Hence we have proved (I).

UNIVERSITY OF TOKYO
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