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Class numbers of pure quintic fields

Hirotomo Kobayashi

Abstract. Let m be a fifth power free integer greater than one.
Let K be an algebraic number field generated by a fifth root of m
over the rational number field. If m has a prime factor p congruent
to −1 modulo five, the class number of K is a multiple of five.

1. Introduction

This thesis is a refined version of the paper [6]. To study class
numbers of algebraic number fields is one of the classical interest in
number theory. It is very difficult to grasp the general property for
an arbitrary algebraic number field, but it is known that some kind
of algebraic number fields have the class numbers acting predictably.
Motivation of our study is to find a new one of such knowledge. Let l
be a prime, K a pure field of degree l, i.e., K = Q(m1/l) where m is an
l-th power free integer greater than one, and L the Galois closure of K
over the rational number field Q. There is a question when the class
number hK of K is divisible by l. Genus theory gives an answer in the
case l = 2. Honda [3] solved the cubic case and his method became
a model of researches on this subject. Subsequently to Honda’s study,
Parry [11] studied the case l = 5 and found the difficulty in this case.
He presented the relation formula between the class numbers of K and
L:

55hL = cmh
4
K ,

where hL is the class number of L and cm is a divisor of 56. He also
gave necessary and sufficient conditions for L to have the class number
divisible by 5, and left the six cases unclear whether hK is divisible
by 5 or not (see Theorem IV of [11]). For instance, the divisibility
remained unclear when m is a prime number p such that p ≡ −1
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(mod 5). Iimura [4] showed that there are infinitely many fields K
with 5 ∤ hK and 5 | hL. For a general odd prime l, Parry and Walter
[12] gave necessary and sufficient conditions for L to have the class
number divisible by l. They also derived necessary conditions for K
to have the class number divisible by l when the class number of the
maximal real subfield of the l-th cyclotomic field is not divisible by l.

On the other hand, Ishida [5] showed that if l is an odd prime and
m has a prime factor p with p ≡ 1 (mod l), the class number of K
is divisible by l. He showed that the composite field of K and the
subfield of degree l of the p-th cyclotomic field is unramified over K,
and then the divisibility follows from class field theory. Here, we pose
the following conjecture:

Conjecture 1. Let l be an odd prime greater than three and let
p be a prime such that p ≡ −1 (mod l). If an l-th power free positive
integer m is divisible by p and K = Q(m1/l), then the class number of
K is divisible by l.

It is easy to see that Ishida’s method does not work in this case. In
this paper we prove this conjecture for l = 5, i.e.,

Theorem 1. Let m be a fifth power free positive integer and let
K = Q(m1/5). If m has a prime factor p with p ≡ −1 (mod 5), then
the class number of K is divisible by five.

As a consequence, we make clear three of the six cases left by Parry.
Our method is essentially based on an investigation of the Galois mod-
ule structure of the unit group of L, but our description is solely devoted
to the unit group of the maximal real subfield of L since it is sufficient
for our purpose.

We will describe an outline of the proof briefly. Let K = Q(m1/5)
where m is a fifth power free integer greater than one, and L the Galois
closure of K over the rational number field Q. Let L+ be the maximal
real subfield of L. In general, we show that 5 | hK if and only if 5 | hL+ ,
where hK and hL+ are the class numbers of K and L+ respectively.
Further assume that 5 ∤ hL+ . Under this assumption, we determine a
set of fundamental units of L+ and investigate endomorphisms of the
unit group of L+. When m has a prime divisor p congruent to −1
modulo five, applying the investigation to an abstract unit constructed
by totally ramified primes in the extension L+/Q(

√
5), we encounter a

contradiction with our assumption that 5 ∤ hL+ .
Finally, we touch on the following useful theorem, which is used

twice as n = 1 in this paper.



CLASS NUMBERS OF PURE QUINTIC FIELDS 3

Theorem 2. Let K be a real algebraic number field and K+ be the
set of positive elements of K. Denote the positive root of the equation
xs = qt by qr for q ∈ K+ and r = t/s ∈ Q with t, s ∈ Z. Let n be
a natural number and q, q1, . . . , qn ∈ K+ and r, r1, . . . , rn ∈ Q. Then
qr ∈ K(qr11 , . . . , q

rn
n ) if and only if

qr = q0q
r1e1
1 . . . qrnenn with q0 ∈ K and e1, . . . , en ∈ Z.

We prove this theorem in the appendix, which can be read indepen-
dently from the other parts of this paper. Besides, it does not require
any advanced knowledge.

2. Previous researches

In this chapter, we digest previous researches related to our study
roughly. Let Q denotes the rational number filed. Pure fields mean the
algebraic number fields generated by the positive l-th root of m over
the rational field when m is an l-th power free positive integer. Our
interest is in the class number of pure fields. We restrict ourselves to
the case where l is a prime number. Pure fields of degree two over Q are
real quadratic fields. The divisibility of the class number of quadratic
fields by two is completely determined as follows;

Theorem 3. The quadratic fields with odd class number are the
following where p, p1, p2 denote primes with p1 ̸= p2:

(i) Q(
√
−1),

(ii) Q(
√
p),

(iii) Q(
√
−p) where p = 2 or p ≡ −1,

(iv) Q(
√
p1p2) where p1 ≡ −1 and p2 = 2 or p2 ≡ −1.

Here all congruences are modulo 4.

This is one of the results from classical genus theory (see [2]).
Hereby, it is natural to think that the divisibility of class numbers
of pure fields by the degree may act predictably. As pure fields with
degree more than two are not abelian over the rational filed, the divis-
ibility might not be so simple. However, Honda obtained the following
result and completely determined the divisibility of class numbers of
pure cubic fields by three:

Theorem 4. Let n be a third power free positive integer and let Ω
be the pure field by the cubic root of n over Q. The class numbers of
Ω is not a multiple of three if and only if n has one of the following
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forms where p, q are primes with p ̸= q and a, b = 1 or 2:

(i) n = 3a,

(ii) n = pa, where p ≡ −1 (mod 3),

(iii) n = 3apb where p ≡ 2 or 5 (mod 9),

(iv) n = paqa, where p ≡ 2 and q ≡ 5 (mod 9),

(v) n = p2q, where p ≡ q ≡ 2 or 5 (mod 9)

This is taken from [3]. Honda’s method is roughly explained as
follows. Let Ω be as in Theorem 4. Let K be the cubic cyclotomic
field, that is, the algebraic number field generated by a primitive cubic
root of unity over Q. Let L be the composite field of Ω and K. Let
aL/K be the number of ambiguous classes for the cyclic extension L/K.
It is known that the ideal class number of L is a multiple of three if and
only if 3|aL/K (we will prove Proposition 1 which gives this elementary
result as a corollary). There is a formula to compute aL/K , which is
called the ambiguous class number formula (see Theorem 9 later). By
this ambiguous class number formula, we see that

aL/K = 3e−t−1

where e is the number of primes of K which are ramified in L and t = 0
or 1 according as a primitive cubic root of unity is in the norm images
of L/K or not. It is easy to know the value of e from the number of the
prime divisor of n, and t can be evaluated by investigating the Hilbert
symbol in K. Moreover, by Brauer-Kuroda relations (see Theorem 13
later), we see that the class number of Ω is a multiple of three if and
only if the class number of L is so.

Parry studied the quintic cases after Honda. Let m be a fifth power
free positive integer and let Ω be the algebraic number field generated
by the real fifth root of m over the rational number field. Let ζ be
a primitive fifth root of unity. Further, let k and L be the algebraic
number fields generated by ζ over Q and Ω respectively. We shall
denote by hM the class number ofM ifM is an algebraic number field.
Let q∗ = 0, 1 or 2 according as none , exactly one or all of

ζ, ε1 = (1 +
√
5)/2, ζaε1 (a = 1, 2, 3 or 4)

are in the norm images of L/k. Parry’s main result is stated with these
notations as follows:

Theorem 5. If m has a prime divisor p ≡ 1 (mod 5), then hΩ and
hL are multiples of five. The class number hL is not divisible by five if
and only if m takes on one of the following values where a, b = 1, 2, 3 or
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4 and p1, p2 are distinct primes such that pi ≡ ±2 (mod 5) for i = 1, 2:

(I) m = 5a,

(II) m = pa1,

(III) m = 5apb1 where p41 ̸≡ 1 (mod 25),

(IV) m = pa1p
b
2 where m2 ≡ 1, p41 ̸≡ 1, p42 ̸≡ 1 (mod 25).

For each of the above values of m, the class number hΩ is not a multiple
of five. For the following exceptional values of m, the class number hΩ
may or may not be a multiple of five where a, b, c = 1, 2, 3 or 4 and pi, q
are distinct primes each other such that pi ≡ ±2 (mod 5) for i = 1, 2, 3
and that q ≡ −1 (mod 5):

(i) m = pa1p
b
2 where m4, p42 ̸≡ 1 (mod 25),

(ii) m = pa1p
b
2 where p41 ≡ p42 ≡ 1 (mod 25),

(iii) m = pa1p
b
2p
c
3 where m4 ≡ 1, p4i ̸≡ 1 (mod 25) for i = 2, 3,

(iv) m = 5apb1 where p41 ≡ 1 (mod 25),

(v) m = 5apb1p
c
2 where p42 ̸≡ 1 (mod 25),

(vi) m = qa where q ̸≡ −1 (mod 25),

(vii) m = pa1q
b where m4 ≡ 1, p41 ̸≡ 1, q ̸≡ −1 (mod 25),

(viii) m = 5aqb where q ̸≡ −1 (mod 25),

(ix) m = qa where q ≡ −1 (mod 25).

For all other values of m, the class number hΩ is a multiple of five.

This is taken from [11]. Note that the representation of this theo-
rem looks different from Parry’s original representation. The nine un-
certain cases above is classified into the six uncertain cases in Parry’s
original representation. Our representation actually follows after that
of Iimura. The first half part of this statement is obtained by ambigu-
ous ideal class number formula as in the cubic case. The second half
part states that the uncertainty occurs in the listed nine cases. This
is because it does not hold that 5|hL if and only if 5|hΩ, though the
similar statement holds in the cubic case. This difference occurs as
follows. In this quintic case, Brauer-Kuroda relations guarantee that

hL =
(E : ε)

55
h4Ω

where E denotes the full unit group of L, ε denotes the subgroup of E
generated by the all conjugates of the units of Ω and (E : ε) denotes
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the index of ε in E. It is not difficult to see that

(E : ε)|56.
Thus, hΩ may not be a multiple of 5 even if 5|hL, and then (E : ε) = 56.

Iimura studied these uncertain cases listed in Theorem 5 and gave a
necessary and sufficient condition for hΩ to be divisible by five in each
case, except for Case (ix). He explained that Case (ix) is hard to deal
with by means of his method and is excluded from his consideration.
We omit to explain his necessary and sufficient conditions in detail
here because it is a little bit complicated (see [4]). His necessary and
sufficient conditions seem difficult to use in many cases, but he showed,
using the condition, that there are infinitely many pure quintic fields
Ω such that 5 ∤ hΩ and 5|hL, which was not trivial from the Parry’s
study.

These series of study are considered to start with Honda’s idea
which combine with ambiguous ideal class number formula and Brauer-
Kuroda relations. However, there was a former study about such a class
number divisibility of pure fields by Ishida. Ishida studied such a class
number divisibility of wider fields by using elementary facts, and he
obtained the following result.

Theorem 6. Let l be a odd prime and m be a l-th power free
positive integer with a prime divisor p ≡ 1 (mod l). Then the pure field
generated by an l-th root of m over Q has the class number divisible by
l.

This is taken from [5]. We note that this result are contained in
theorems stated above when l = 3 or 5. Nevertheless, this results seems
hard to be covered by the above method derived from Honda, especially
for the higher degree cases. This is considered because Brauer-Kuroda
relations are harder to compute according as the degree of the pure
field becomes higher.

3. Elementary facts

We begin to prove the structure theorem for finitely generated
abelian groups for later use. We need the following lemma.

Lemma 1. Submodules of finitely generated free Z-modules are also
free Z-modules.

Proof. Let F be a free Z-module of rank n. We may assume that
n > 0. If n = 1, we may regard F = Z, and then submodules of F are
represented in the form aZ with a ∈ Z, which shows our assertion in
the case where n = 1. We shall prove our assertion by the induction
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on n. Suppose that n > 1. Let N be a submodule of F . If N = 0, it is
clearly a free Z-module; therefore we may assume that N ̸= 0. Take a
basis {f1, . . . , fn} of F and call φ the projection from F onto Z given
by

φ :
n∑
i=1

aifi 7→ a1.

If necessary, we may reorder f1, . . . , fn so that φ(N) ̸= 0. As φ(N) is
an ideal of Z, it is represented in the form aZ with a ∈ Z, and we can
take x ∈ N such that φ(x) = a. Put N1 = Ker(φ) ∩N . If y ∈ N ,

y − (φ(y)/a)x ∈ N1

and so

(1) N = (Zx)⊕N1.

Obviously Ker(φ) is a free Z-module of rank n − 1, and N1 is the
submodule. Therefore, by the induction assumption, N1 is a free Z-
module, and so N is also a free Z-module by (1). □

If G is a finitely generated abelian group, there is a free Z-module
F of finite rank r with a surjective homomorphism f : F → G, and
then

G ≃ F/N

where N is the kernel of f . By means of this, we are able to know
sufficient structure information of a finitely generated abelian group
from the following theorem.

Theorem 7. Let F be a free Z-module of rank n > 0 and N be a
submodule of F . Then there are a basis {f1, . . . , fn} of F and a set of
non-negative integers {a1, . . . , an} with ai|ai+1 for i = 1, . . . , n−1 such
that {a1f1, . . . , anfn} is a basis of N . Moreover the set {a1, . . . , an} is
uniquely determined for N .

Proof. We shall prove their existence by induction on n. Suppose
that n = 1. Take an isomorphism

p : Z → F ;n 7→ nf1,

where f1 is a basis of F . Then p−1(N) is an ideal of Z, so that it is
represented in the form a1Z with some non-negative integer a1, which
shows that N has a1f1 as a basis. Suppose that n > 1. Consider the
following set of ideals of Z

X = {h(x)Z|x ∈ N, h ∈ Hom(F,Z)}.
Here, Hom(F,Z) is the set of all homomorphisms of F into Z. Take
χ ∈ N and η ∈ Hom(F,Z) so that η(χ)Z is the maximal element of
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X with respect to inclusion. We may represent η(F ) = sZ with s ∈ Z
and take u1 ∈ F so that η(u1) = s. Put K = Ker(η). Then we get the
following direct decomposition

(2) F = u1Z⊕K

because f − (η(f)/s) · u1 ∈ K and η(f)/s ∈ Z for any f ∈ F . Since
η(N) = η(χ)Z, we obtain similarly

(3) N = χZ⊕K1

where K1 = N ∩K. As K is a free module of rank n− 1 by Lemma 1,
we can apply the induction assumption to the submodule K1 of K, and
so there is a basis {f2, . . . , fn} of K and a set of non-negative integers
{a2, . . . , an} with ai|ai+1 for i = 2, . . . , n−1 such that {a2f2, . . . , anfn}
is a basis of K1. By the direct decomposition (2), we can take η1 ∈
Hom(F,Z) such that η1(u1) = 1 and η1(K) = 0, and we may represent

χ = d1u1 + d2f2 + · · ·+ dnfn

with di ∈ Z for all i because {u1, f2, . . . , fn} is a basis of F . As η1(χ)Z =
d1Z ∈ X and η(χ)Z = d1sZ is taken to be a maximal element of X
with respect to inclusion, we see that s = ±1. It is obvious that we
may take s = 1. Let d1i be the greatest common divisor of d1 and di
for i = 2, . . . , n. Then there are c1i, ci ∈ Z such that

d1i = c1id1 + cidi

for i = 2, . . . , n. Take a homomorphism ηi ∈ Hom(F,Z) such that
ηi(u1) = 0 and ηi(fj) = δij for i, j = 2, . . . , n. Here, δij is Kronecker’s
delta. Then

(c1iη1 + ciηi)(χ)Z = (c1id1 + cidi)Z = d1iZ,
which shows d1|d1i because d1Z is a maximal element of X with respect
to inclusion. As d1i is a divisor of di, for i = 2, . . . , n, we obtain

d1|di.
Put

f1 = u1 + (d2/d1)f2 + · · ·+ (dn/d1)fn.

By (2) and (3), we see that {f1, . . . , fn} is a basis of F and that
{d1f1, a2f2, . . . , anfn} is a basis of N . Let d be the greatest common
divisor of d1 and a2. There are p1, p2 ∈ Z such that d = p1d1 + p2a2.
We can take η0 ∈ Hom(F,Z) so that

η0(f1) = p1, η0(f2) = p2, η0(fj) = 0

for j = 3, . . . , n, and then

η0(d1f1 + a2f2) = p1d1 + p2a2 = d.
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As d1f1 + a2f2 is in N , we also see that d1|d by the maximality of d1Z
in X with respect to inclusion, so that d1|a2. Thus, we have shown our
assertion except for the uniqueness.

In order to prove the uniqueness of the set {a1, . . . , an} in our as-
sertion, take the quotient group M = F/N . Then it is obvious that

(4) M ≃ Z/a1Z⊕ · · · ⊕ Z/anZ.
The number of ai’s with ai = 0 is uniquely determined as the rank of
the Q-vector space M ⊗Z Q. Therefore it is sufficient to prove that
the set {a1, . . . , an} of positive integers is uniquely determined when
M is the finite group represented by (4). We shall prove that the
number of minimal generator of M as a Z-module is n − e, where e
is the number of ai’s with ai = 1. Note that a1 = · · · = ae = 1 and
ae+1 ̸= 1 then. It is obvious that M has n − e generators. If there is
a set {x1, . . . , xm} of generators of M whose cardinality m is less than
n− e, then, for any prime divisor p of ae+1, the quotient group M/pM
isomorphic to Fn−ep has the images of x1, . . . , xm as the generators,
but it contradicts with the fact that an Fp-vector space does not have
the set of generators whose cardinality is less than its rank. Here Fp
denotes the prime field Z/pZ. Thus we have shown that the number of
ai’s with ai = 1 is uniquely determined in (4), which is denoted by e.
Applying the same argument to ae+1M , we see that the number of ai
with ai = ae+1 is uniquely determined in (4). Therefore we can prove
inductively that the set {a1, . . . , an} of positive integers with ai | ai+1

in (4) is uniquely determined for the finite group M , and our assertion
is verified completely. □

The structure theorem for finitely abelian groups is usually stated
as the following form.

Corollary 1. Let G be a finitely generated abelian group. Then
there is a set of non-negative integers {a1, . . . , an} with ai | ai+1 for
i = 1, . . . , n− 1 such that

G ≃ Z/a1Z⊕ · · · ⊕ Z/anZ.
Moreover this set {a1, . . . , an} is uniquely determined for G unless a1 =
1.

Proof. It follows immediately from Theorem 7 and the description
preceding that. □

The following theorem is Dirichlet’s units theorem. This theorem
gives the group structure of the full unit group of an algebraic num-
ber field. We will use this theorem without notice later. We refer to
Theorem 9 of Chap. IV-4 of [14] for the proof.
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Theorem 8. Let K be an algebraic number field with r+1 infinite
places and WK be the group of the roots of unity in K. Then there are
units ϵ1, . . . , ϵr of K such that any unit ϵ of K is uniquely represented
by

ϵ = wϵa11 · · · ϵarr
with w ∈ WK and a1, . . . , ar ∈ Z.

The units ϵ1, . . . , ϵr in this theorem are called fundamental units of
K

4. Ambiguous ideals

Our purpose of this chapter is to prove Proposition 1. This chapter
presupposes the knowledge of class field theory with idele class group.
We will not use results obtained in this chapter later, but these results
were elementary in former studies. We note that the material treated
in this chapter is mainly taken from [2].

Let K be an algebraic number field. Let L/K be a cyclic extension
with Galois group G. Take a generator σ of G. We shall denote the
ideal class group of L by Cl(L). We say that an ideal class a of Cl(L)
is ambiguous if

aσ = a.

It is equivalent to say that a1−σ is the principal ideal class of Cl(L).
More precisely, if a has an ideal a as a representative, then a is ambigu-
ous if and only if there is an element c of L such that aσ = ca. We shall
denote by L1 the Hilbert class field of L, that is, the maximal abelian
extension over L unramified for all places of L. We call the maximal
abelian extension of K contained in L1 the genus field of L/K and
denote it by G. The genus group G(L/K) is defined as

G(L/K) = CL/NG/L(CG).

Here NG/L : CG → CL is the norm map from the idele class group of
G to that of L. Class field theory says that G(L/K) is isomorphic to
the Galois group of G/L.

Proposition 1. Let L/K be a cyclic extension with Galois group
G generated by an element σ. Then

(5) G(L/K) = Cl(L)/Cl(L)1−σ.

If moreover the extension degree of L/K is a power of a prime l, then
G(L/K)l is trivial if and only if Cl(L)l is trivial, where Al denotes the
Sylow l-subgroup of an abelian group A.
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Proof. Note that

Cl(L)1−σ = {a1−σ | a ∈ Cl(L)}.
Let Ω = Gal(L1/K). Here L1 be the Hilbert class field of L as above.
Moreover, put ∆ = Gal(L1/L) and take c ∈ Ω such that the image
of c in Ω/∆ = Gal(L/K) is σ. In the reciprocity isomorphism rL/K :
Cl(L) → ∆, when rL/K(a) = τ , we see that rL/K(a

σ) = c−1τc, which
is in ∆ because ∆ is a normal subgroup of Ω, and so rL/K(a

1−σ) =
τc−1τ−1c. Since ∆ is abelian and Ω/∆ is the cyclic group generated
by σ, it shows that rL/K maps Cl(L)1−σ onto the subgroup (∆,Ω) of
Ω, which is the subgroup of Ω generated by aba−1b−1 for a ∈ ∆, b ∈ Ω.
Let B be the kernel of the natural projection

Cl(L) ≃ CL/NL1/LCL1 → CL/NG/L(CG) = G(L/K),

where G is the genus field of L/K. By the definition of G, the reci-
procity map rL/K maps B onto ∆ ∩ (Ω,Ω), where (Ω,Ω) is the com-
mutator subgroup of Ω. Now, since L/K is abelian, we see that
∆ ⊇ (Ω,Ω), and therefore the reciprocity map rL/K maps B onto
(Ω,Ω). We shall show that (∆,Ω) = (Ω,Ω). Since ∆ ⊆ Ω, it is clear
that (∆,Ω) ⊆ (Ω,Ω). On the other hand, since Ω/∆ is the cyclic
group generated by σ, each element a of Ω is of the form cix with
i ∈ Z, x ∈ ∆. Moreover, for x ∈ ∆, we may write for cixc−i = xi with
xi ∈ ∆ uniquely. With this notation, when we represent a = cix and
b = cjy with i, j ∈ Z, x, y ∈ ∆ for a, b ∈ Ω, we have

aba−1b−1 = cixcjyx−1c−iy−1c−j = xic
i+jyc−ix−1

i y−1c−j

= xic
jyix

−1
i c−iy−1

i ci−j = xi(c
jyi)x

−1
i (cjyi)

−1(cjyi)c
−iy−1

i ci−j

= {xi(cjyi)x−1
i (cjyi)

−1}{(cjyi)c−i(cjyi)−1ci} ∈ (∆,Ω),

which shows that (Ω,Ω) ⊆ (∆,Ω). Hence (∆,Ω) = (Ω,Ω), so that
Cl(L)1−σ = B, which implies (5).

Next suppose that the extension degree of L/K is a power of l.
Let L′ be the maximal unramified abelian l-extension of L. Note that
L1 ⊇ L′ and L′/K is a Galois extension. Put Ω′ = Gal(L′/K) and ∆′ =
Gal(L′/L). Assume that G(L/K)l is trivial. Since L/K is abelian, we
see that ∆′ ⊇ (Ω′,Ω′). The assumption that G(L/K)l is trivial implies
that M/K is not abelian for any field M with L ⊊ M ⊆ L′, so that
∆′ = (Ω′,Ω′). As stated above, since Ω′/∆′ is cyclic, we get

(Ω′,∆′) = (Ω′,Ω′) = ∆′.

This shows that the lower central series of Ω′ terminate at (Ω′,∆′) = ∆′.
On the other hand, the finite l-group Ω′ is a nilpotent group. It is well
known that the lower central series of a nilpotent group terminates at
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the trivial subgroup. Hence, ∆′ is trivial, which implies that Cl(L)l is
trivial. The converse is obvious and the proof is completed. □

The following result is called ambiguous class number formula. Al-
though we will not use it in this paper, it is important for the study of
the class numbers of pure fields as stated in Chapter 2.

Theorem 9. Let L/K be a cyclic extension of prime degree l. Let
t be the number of ramified places in L/K and let Am(L/K) be the
subgroup of Cl(L) consisting of the ambiguous ideal classes. The order
of Am(L/K) is given by

h(K) · lt−1

(EK : EK ∩NL/KL×)
,

where h(K) is the class number of K, EK is the unit group of K,
EK ∩ NL/KL

× is the subgroup consisting of norm images of L and
(EK : EK ∩NL/KL

×) is the index.

We refer the proof to [9].

5. Brauer-Kuroda relations

In this chapter, we will digest the proof of the Brauer-Kuroda rela-
tions, which was proved independently by Brauer and Kuroda (see [1]
and [7] respectively).

We start to define the Dedekind zeta function. Let K be an alge-
braic number field. The Dedekind zeta function is the meromorphic
function given for Re(s) > 1 by

ζK(s) =
∏
p

(1−N(p)−s)−1

where p runs through all prime ideals of K and N(p) denotes the norm
of p which is the number of elements of the residue field of p. Put

G1(s) = π−s/2Γ(s/2), G2(s) = (2π)1−sΓ(s),

where Γ(s) is the gamma function. It is well-known that Γ(s) has no
zero and has simple poles at non-positive integers. Since Γ(1/2) = π1/2

and Γ(1)=1, we have

G1(1/2) = 1, G2(1) = 1.

Then we have the following analytic class number formula.

Theorem 10. Let K be an algebraic number field with r1 real places
and r2 imaginary places. Put

ξK(s) = G1(s)
r1G2(s)

r2ζK(s).
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Then ξK(s) is meromorphic in the entire s-plane, holomorphic except
for simple poles at s = 0 and s = 1, and satisfies the functional equation

ξK(s) = |DK |
1
2
−sξK(1− s),

where DK is the discriminant of K. Its residue at s = 1 is

2r1(2π)r2hKRK

wK |DK |1/2

where hK is the class number of K, RK is the regulator of K and wK
is the number of roots of unity in K.

The proof is referred to that of Theorem 3 in Chap. VII-6 in [14].
The functional equation gives the following corollary.

Corollary 2. ζK(s) has a zero of order r2 at s = −1 and has a
zero of order r1 + r2 at s = −2.

The next deep result is taken from Satz 171 of [8].

Theorem 11. Let K be an algebraic number field and let T be a
positive number. Let N(T ) be the number of zeros of ζK(s) in the region
0 ≤ Re(s) ≤ 1, 0 < Im(s) ≤ T. Then

N(T ) =
nK
2π

T log T +
log |DK | − nK − nK log(2π)

2π
T +O(log T ),

where nK is the field degree of K over Q and DK is the discriminant
of K.

Here, note that Landau symbol O(log T ) denotes a function f(T )
such that

lim
T→∞

|f(T )|
log T

<∞.

We proceed to introduce the Artin L-series. Let K be an alge-
braic number field again and L/K be a finite Galois extension with the
Galois group G. A complex representation of G is a homomorphism
ρ : G → GL(V ), where GL(V ) denotes the automorphism group of a
finite dimensional complex vector space V . We shall represent it by the
pair (ρ, V ). Let p be a prime ideal of K and P be a prime ideal of L
lying above p. Then the decomposition group GP and the inertia group
TP of P are defined as subgroups of G as usual, and the quotient group
GP/TP is the cyclic group generated by the Frobenius automorphism
φP. As φP is regarded as an automorphism of the fixed subspace V TP

of TP, the characteristic polynomial

(6) det(1− φPt;V
TP)
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is defined, where t is an indeterminate and 1 denotes the identity map
of V TP . The polynomial (6) is determined only by p, that is, indepen-
dently on the choice of P lying above p . Indeed, if P′ be another
prime ideal of L lying above p, then there is σ ∈ G such that P′ = Pσ

and

GP′ = σ−1GPσ, TP′ = σ−1TPσ, φP′ = σ−1φPσ,

and therefore

det(1− φP′t;V TP′ ) = det(σ−1(1− φPt)σ;V
σ−1TPσ)

= det(1− φPt;V
TP).

It is well-known that two complex representations ρ, ρ′ of G are equiva-
lent if and only if their characters χρ, χρ′ are equal. For a representation
(ρ, V ) of G with character χ, the Artin L-series of ρ (or χ) is defined
by

(7) L(s, χ, L/K) =
∏
p

1

det(1− φPN(p)−s;V TP)
,

where p runs through all prime ideals of K. It is not difficult to show
that the Artin L-series (7) converges absolutely and uniformly on the
half plane Re(s) > 1 + δ for any δ > 0.

To state the fundamental properties of Artin L-series, we need the
induced character. Let H be a subgroup of a finite group G and (ρ, V )
be a complex representation of H with character ψ. Then V may be
considered as a C[H]-module where C[H] denotes a group algebra of
H over C, and we put

IndGH(V ) = C[G]⊗C[H] V

which is a C[G]-module, and therefore we obtain a complex represen-
tation of G

Ind(ρ) : G→ GL(IndGH(V )).

We denote the character of Ind(ρ) by χψ and call it the induced char-
acter of ψ on G. In particular, we need the induced character χ1H of
1H on G. Here, 1H is the principal character of H, i.e., 1H(h) = 1 for
any h ∈ H. We also call χ1H the induced character of G for H.

Lemma 2. Let G be a finite group and let H be a subgroup of G. If
ψ is a character of H , then

Ind(ψ)(s) =
1

|H|
∑
t∈G

ψ(tst−1)

for s ∈ G. Here |H| is the order of H and ψ(s) = 0 if s /∈ H.
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Proof. Let {w1, . . . , wm} be a C-basis of W . Let (σ,W ) be a
representation with character ψ. Let {g1, . . . , gn} be a full set of rep-
resentatives of left coset modulo H in G. Then {g−1

1 , . . . , g−1
n } is a full

set of representatives of right coset modulo H in G. Moreover

{g−1
i ⊗ wj|i = 1, . . . ,m, j = 1, . . . , n}

is a C-basis of C[G]⊗C[H] W . If s ∈ G, we have

s · g−1
i ⊗ wj = (sg−1

i )⊗ wj = (g−1
i(s)si)⊗ wj = g−1

i(s) ⊗ (siwj),

where i(s) ∈ {1, . . . , n}, si ∈ H such that sg−1
i = g−1

i(s)si. From this, for
s ∈ G, we get

Ind(ψ)(s) =
∑
s=i(s)

ψ(si) =
∑
s=i(s)

ψ(gisg
−1
i )

=
n∑
i=1

ψ(gisg
−1
i ) =

1

|H|
∑
t∈G

ψ(tst−1)

when we extend ψ to G so that ψ(s) = 0 if s /∈ H. □

The Artin L-series has the following fundamental properties. We
omit the proof and refer to Theorem 4.2 of Chap. V-4 of [10].

Theorem 12. Let K be an algebraic number field and L/K be a
Galois extension.
(i) L(s, 1, L/K) = ζK(s) where 1 denotes the principal character of
Gal(L/K).
(ii) If L′/K are also a finite Galois extension such that L′ ⊇ L, then

L(s, χ ◦ π, L′/K) = L(s, χ, L/K)

where π is the restriction map from Gal(L′/K) to Gal(L/K).
(iii) If χ1, χ2 are characters of Gal(L/K), then

L(s, χ1 + χ2, L/K) = L(s, χ1, L/K) · L(s, χ2, L/K).

(iv) IfM is an intermediate field of L/K, ψ is a character of Gal(L/M)
and χψ is the induced character of ψ on Gal(L/K), then

L(s, χψ, L/K) = L(s, ψ, L/M).

The following theorem is our goal in this chapter.

Theorem 13. Let K be a finite Galois extension over Q with Ga-
lois group G. If H is a subgroup of G, we denote H ≤ G and the
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corresponding subfield of K by Ω(H). Suppose that there is a linear
relation between the induced characters for the subgroups of G, that is,∑

H≤G

aHχ1H = 0

with aH ∈ Z. Then

(8)
∏
H≤G

(
RΩ(H)hΩ(H)

wΩ(H)

)aH

= 1.

Here RΩ, hΩ and wΩ denote the regulator, the class number and the
number of the roots of unity in Ω respectively when Ω is a subfield of
K.

Proof. We reproduce Brauer’s proof. By (iii) of Theorem 12, our
assumption about induced characters gives∏

H≤G

L(s, χ1H , K/Q)aH = 1

and then we get ∏
H≤G

L(s, 1H , K/Ω(H))aH = 1

by (iv) of Theorem 12. Moreover, by (i) of Theorem 12, this means

(9)
∏
H≤G

ζΩ(H)(s)
aH = 1

and, by taking the residue at s = 1, we obtain

(10)
∏
H≤G

(
2r1(Ω(H))(2π)r2(Ω(H))hΩ(H)RΩ(H)

wΩ(H)|DΩ(H)|1/2

)aH

= 1.

Here, for any algebraic field number field Ω, we denote the number of
the real places and the imaginary places by r1(Ω) and r2(Ω) respec-
tively, and by DΩ the discriminant. Applying Theorem 11 to (9), we
obtain ∑

H≤G

aHn(Ω(H)) = 0

and

(11)
∑
H≤G

aH log |DΩ(H)| = 0,
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where n(Ω) denotes the degree of Ω over Q for any algebraic number
field Ω. Moreover, by Corollary 2, we also have∑

H≤G

aH(r1(Ω(H)) + r2(Ω(H))) = 0,(12) ∑
H≤G

aHr2(Ω(H)) = 0(13)

from (9). These shows that

(14)
∑
H≤G

aHr1(Ω(H)) = 0.

Substituting (11),(13),(14) for (10), we get the identity (8) in our as-
sertion. □

6. Main Results

We denote by Z,N,Q and R the ring of rational integers, the set
of all natural numbers, the rational number field and the real number
field respectively. We consider that 0 ̸∈ N. Let m be a fifth power free
integer greater than one. Denote the real fifth root of m by m1/5. Let
k = Q(ζ5), k

+ = Q(
√
5), K = Q(m1/5), L = K(ζ5) and L+ = K(

√
5)

where ζ5 is a primitive fifth root of unity. Note that L+ is a real
algebraic number field. Let hM and RM denote the class number and
the regulator of an arbitrary algebraic number fieldM respectively. We
denote fundamental units of K by ϵ1, ϵ2 and a fundamental unit of k+

by e. We may assume that ϵ1, ϵ2, e > 0. Let G = Gal(L/Q). Define
τ, σ ∈ G by the following actions respectively:

ζτ5 = ζ25 , (m
1/5)τ = m1/5,

ζσ5 = ζ5, (m
1/5)σ = ζ5m

1/5.

These actions satisfy the following relations:

στ = τσ2, τσ = σ3τ.

Moreover, it should be noted that τ 2 is the complex conjugate on L.
The multiplicative group L× of non-zero elements of L will be regarded
as a Z[G]-module. Here Z[G] denotes a group ring of G over Z. In other
words, the result of the multiplication of x ∈ L× by

∑
ρ∈G aρρ ∈ Z[G]

is x
∑

ρ∈G aρρ =
∏

ρ∈G(x
aρ)ρ.

Lemma 3. Let {c1, c2, c3} be a coprime set of integers. Then ϵc11 ϵ
c2
2 e

c3

is not a fifth power of a unit of L+.
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Proof. Suppose that there is a unit u of L+ such that

(15) ϵc11 ϵ
c2
2 e

c3 = u5.

Multiplying (15) by 2(1 + τ), we get

(16) ϵ4c11 ϵ4c22 = (u1+τ )10.

Since u1+τ is a unit of K and ϵ1, ϵ2 are fundamental units of K, we may
represent

u1+τ = ±ϵa11 ϵa22
with a1, a2 ∈ Z. We substitute this for (16) and get

ϵ4c11 ϵ4c22 = ϵ10a11 ϵ10a22 ,

which shows
4c1 = 10a1, 4c2 = 10a2

because ϵ1, ϵ2 are fundamental units of K. From this, we see that c1
and c2 are multiples of five. Therefore, by (15), we get

(17) ec3 = v5

where v is a positive unit of L+. Multiplying (17) by σ, we obtain

(18) ec3 = (vσ)5.

Combining (18) with (17), we have

(vσ)5 = v5,

which shows

(19) (vσ−1)5 = 1.

Since L+ contains only one fifth power root of unity, i.e., 1, it follows
from (19) that

vσ = v,

and so v is a unit of k+. Therefore we may represent

v = eb

with b ∈ Z, and we also get

ec3 = e5b

by (17). Since e is the positive fundamental unit of k+, it follows that
c3 is a multiple of five. Thus we see that c1, c2, c3 are all multiples
of five, and it contradicts with the coprimality of the set {c1, c2, c3}.
Hence our assertion is valid. □

Lemma 4. There is a set of fundamental units of L+ which contains
ϵ1, ϵ2, e.



CLASS NUMBERS OF PURE QUINTIC FIELDS 19

Proof. Suppose that the assertion is false. Applying Theorem 7
to the full positive unit group of L+ and the subgroup generated by
ϵ1, ϵ2 and e, we get a positive unit of L+ such that

(20) ϵc11 ϵ
c2
2 e

c3 = ud,

where the set {c1, c2, c3} is a coprime integer set and d is an integer
greater than one. Multiplying (20) by 2(1 + σ + · · ·+ σ4), we get

e10c3 = (u1+σ+···+σ4

)2d,

which implies that d|5c3 since e is a fundamental unit of k+. Multiply-
ing (20) by 2(1 + τ), we get

ϵ4c11 ϵ4c22 = (u1+τ )2d,

which implies that d|2c1 and d|2c2 since ϵ1, ϵ2 are fundamental units
of K. Since the integer set {c1, c2, c3} is coprime, we see that d is a
divisor of 10. If 5|d, we may represent d = 5d′ with d′ ∈ N, and by
(20), we get

ϵc11 ϵ
c2
2 e

c3 = (ud
′
)5,

which contradicts with Lemma 3. Hence d = 2. Then c3 must be even,
and so we may represent c3 = 2c with c ∈ Z. By (20), we get

(21) ϵc11 ϵ
c2
2 = (ue−c)2.

From this, we obtain

(22) (ϵc11 ϵ
c2
2 )

1/2 = ue−c ∈ L+ = K(
√
5).

Applying Theorem 15 in the appendix below to (22), we get

(ϵc11 ϵ
c2
2 )

1/2 = α5a/2,(23)

(ϵc11 ϵ
c2
2 ) = α25a,(24)

where α ∈ K and a ∈ Z. It is easy to see that there is a prime ideal
P of the maximal order of K above the prime ideal 5Z such that P
has an odd ramification index in K/Q. Taking the value of the P-adic
exponential valuation at (24), we see that a is even. Hence, by (22) and
(23), we see that ue−c is a unit of K. Then it follows from (21) that
c1 and c2 are even since ϵ1, ϵ2 are fundamental units of K. However,
it contradicts with the coprimality of the set {c1, c2, c3}, and therefore
the assertion is verified. □

Let ϵ3, ϵ4 be positive units such that ϵ1, ϵ2, ϵ3, ϵ4, e are fundamental
units of L+.
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Proposition 2.

RL+

R2
K ·Rk+

· hL+ = h2K .

Proof. Recall that G = Gal(L/Q). For g ∈ G, We denote the
conjugacy class of g by C(g). It is easy to see that the set of conjugacy
classes of G is

{C(1), C(σ), C(τ), C(τ 2), C(τ 3)}.
The number of the elements of C(1) is one and that of C(σ) is four.
The number of the elements of C(τ i) is five for i = 1, 2, 3. On the other
hand, it is easy to see that

Gal(L/L+) = {1, τ 2}, Gal(L/k) = {1, σ, σ2, σ3, σ4},
Gal(L/k+) = ⟨σ, τ 2⟩, Gal(L/K) = {1, τ, τ 2, τ 3}.

Here, ⟨σ, τ 2⟩ is the subgroup of G generated by σ, τ 2. We denote by
χM the induced character of G for subgroup Gal(L/M) where M is an
arbitrary subfield of L. Then we get Table 1.

Table 1

C(1) C(σ) C(τ) C(τ 2) C(τ 3)
χL 20 0 0 0 0
χL+ 10 0 0 2 0
χk 4 4 0 0 0
χk+ 2 2 0 2 0
χK 5 0 1 1 1
χQ 1 1 1 1 1

From this table, it is easy to see

2(χK − χQ) = χL+ − χk+

and we obtain the regulator relation by Theorem 13. □
Let EL+ denote the unit group of L+ and E the subgroup of EL+

generated by −1, ϵ1, ϵ2, ϵ
σ+σ−1

1 , ϵσ+σ
−1

2 , e. Note that, for i = 1, 2,

ϵσ+σ
−1

i = (ϵσi )
1+τ2 = |ϵσi |2 > 0

because τ 2 is the complex conjugate on L. It is important to consider
the index of E in EL+ .

Lemma 5. The quotient group EL+/E has exponent 5, i.e., E5
L+ ⊆

E.
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Proof. We shall denote the norm map of L to Kσi by Ni for
i = 1, 2, 3, 4, 5. Besides, we denote the norm map of L to k by N0.
Let ε ∈ EL+ . Since the Galois group of L/Kσi

is σ−iGal(L/K)σi and
Gal(L/K) = {1, τ, τ 2, τ 3}, we obtain

Ni(ε) = εσ
−i(1+τ+τ2+τ3)σi

= ε1+τσ
i−2i+τ2σi−4i+τ3σi−8i

= ε1+τσ
−i+τ2σ−3i+τ3σ−2i

.

Since Gal(L/k) = {1, σ, σ2, σ3, σ4}, we obtain

N0(ε
τ i) = ετ

i(1+σ+σ2+σ3+σ4).

Then

(25) ε5 =
ε5+(τ+τ2+τ3)(1+σ+σ2+σ3+σ4)

ε(τ+τ2+τ3)(1+σ+σ2+σ3+σ4)
=
N1(ε)N2(ε)N3(ε)N4(ε)N5(ε)

N0(ετ )N0(ετ
2)N0(ετ

3)
.

For i = 1, . . . , 5, Ni(ε) is in the unit group of Kσi
, which is generated

by

−1, ϵσ
i

1 , ϵ
σi

2 ,

and so Ni(ε) is represented by

Ni(ε) = ±ϵaiσi

1 ϵbiσ
i

2

with ai, bi ∈ Z. Then we obtain

N1(ε)
τ2 = εσ

−1(1+τ+τ2+τ3)στ2 = ετ
2σ−4(1+τ+τ2+τ3)σ4

= N4(ε)

N2(ε)
τ2 = εσ

−2(1+τ+τ2+τ3)σ2τ2 = ετ
2σ−3(1+τ+τ2+τ3)σ3

= N3(ε)

because ε is real and τ 2 induces the complex conjugate map on L.
Hence, we have

N1(ε)N4(ε) = ϵ
a1(σ+σ−1)
1 ϵ

b1(σ+σ−1)
2

N2(ε)N3(ε) = ϵ
a2(σ2+σ−2)
1 ϵ

b2(σ2+σ−2)
2 = ±ϵ−a2(1+σ+σ

−1)
1 ϵ

−b2(1+σ+σ−1)
2

because N0(ϵi) = ϵ
1+(σ+σ−1)+(σ2+σ−2)
i = ±1 for i =1,2. Thus the numer-

ator of the right side of (25) equals to

±ϵ(a5−a2)+(a1−a2)(σ+σ−1)
1 ϵ

(b5−b2)+(b1−b2)(σ+σ−1)
2 ,

which is in E . Moreover the denominator of the right side of (25) is in
the unit group of k and

(N0(ε
τ )N0(ε

τ2)N0(ε
τ3))τ

2

= ε(τ+τ
2+τ3)(1+σ+σ2+σ3+σ4)τ2

= ε(τ
3+1+τ)(1+σ+σ2+σ3+σ4) = ε(τ

3+τ2+τ)(1+σ+σ2+σ3+σ4)

= N0(ε
τ )N0(ε

τ2)N0(ε
τ3)
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because ε is real and τ 2 induces the complex conjugate map on L. This
shows that the denominator of the right side of (25) is in the unit group
of k+ which is generated by −1, e, and so it is in E . Thus ε5 ∈ E and
the proof is completed. □

We may represent

(26) (logϵ1, logϵ2, logϵ
σ+σ−1

1 , logϵσ+σ
−1

2 , loge)=(logϵ1,logϵ2,logϵ3,logϵ4,loge)P

by an integer matrix P .

Proposition 3.

h2K
hL+

=
RL+

R2
K ·Rk+

=
52

|det(P )|
∈ N.

Proof. The first equality follows directly by Proposition 2. We
shall show the second equality. From (26), we obtain a regulator rela-
tion as follows: |det(P )| ·RL+ =∣∣∣∣∣∣∣∣∣det


log ϵ1 2 log |ϵσ1 | 2 log |ϵσ2

1 | 2 log |ϵσ1 | 2 log |ϵσ2

1 |
log ϵ2 2 log |ϵσ2 | 2 log |ϵσ2

2 | 2 log |ϵσ2 | 2 log |ϵσ2

2 |
log ϵσ+σ−1

1 2 log |ϵσ
2+1

1 | 2 log |ϵσ
3+σ

1 | 2 log |ϵσ
3+σ−1

1 | 2 log |ϵσ
4+1

1 |
log ϵσ+σ−1

2 2 log |ϵσ
2+1

2 | 2 log |ϵσ
3+σ

2 | 2 log |ϵσ
3+σ−1

2 | 2 log |ϵσ
4+1

2 |
log e 2 log e 2 log e −2 log e −2 log e


∣∣∣∣∣∣∣∣∣ =∣∣∣∣∣∣∣∣∣det


0 2 log |ϵσ1 | 2 log |ϵσ2

1 | 0 0

0 2 log |ϵσ2 | 2 log |ϵσ2

2 | 0 0

0 2 log |ϵσ
2+1

1 | 2 log |ϵσ
3+σ

1 | 2 log |ϵσ
3+σ4−σ2−1

1 | 2 log |ϵσ
4+1−σ3−σ

1 |
0 2 log |ϵσ

2+1
2 | 2 log |ϵσ

3+σ
2 | 2 log |ϵσ

3+σ4−σ2−1
2 | 2 log |ϵσ

4+1−σ3−σ
2 |

5 log e 2 log e 2 log e −4 log e −4 log e


∣∣∣∣∣∣∣∣∣

=

∣∣∣∣5 log e · det(2 log |ϵσ1 | 2 log |ϵσ2

1 |
2 log |ϵσ2 | 2 log |ϵσ2

2 |

)
· det

(
2 log |ϵσ−1

1 | 2 log |ϵ1−σ21 |
2 log |ϵσ−1

2 | 2 log |ϵ1−σ22 |

)∣∣∣∣
=

∣∣∣∣5 log e · det(log ϵ1 2 log |ϵσ2

1 |
log ϵ2 2 log |ϵσ2

2 |

)
· det

(
5 log ϵ1 2 log |ϵ1−σ21 |
5 log ϵ2 2 log |ϵ1−σ22 |

)∣∣∣∣
= 52 ·Rk+ ·RK

2.

Thus the second equality of our assertion is verified. It is rest to prove
that 52/|det(P )| ∈ N. By Lemma 5, we see that ϵ53, ϵ

5
4 ∈ E , and there-

fore there is an integer matrix Q such as

(log ϵ1,log ϵ2,log ϵ
5
3,log ϵ

5
4,log e)=(log ϵ1,log ϵ2,log ϵ

σ+σ−1

1 , log ϵσ+σ
−1

2 , log e)Q.



CLASS NUMBERS OF PURE QUINTIC FIELDS 23

Then we have

(log ϵ1, log ϵ2, log ϵ3, log ϵ4, log e)A = (log ϵ1, log ϵ2, log ϵ
5
3, log ϵ

5
4, log e)

= (log ϵ1, log ϵ2, log ϵ
σ+σ−1

1 , log ϵσ+σ
−1

2 , log e)Q

= (log ϵ1, log ϵ2, log ϵ3, log ϵ4, log e)PQ,

where A = (aij) is a five-by-five diagonal matrix with a11 = a22 = a55 =
1 and a33 = a44 = 5. Since A = PQ, we get |det(Q)| = 52/|det(P )|.
Moreover, as Q is an integer matrix, we see that 52/|det(P )| ∈ N, which
completes our proof. □

Corollary 3. The class number hK is a multiple of five if |det(P )|
̸= 52.

Proof. It follows from Proposition 3 that |det(P )| is a divisor of
52, and so h2K/hL+ is a multiple of five if |det(P )| ̸= 52, which implies
that 5|hK . □

Corollary 4. The class number hK is a multiple of five if and
only if hL+ is a multiple of five.

Proof. There is a prime ideal P of the maximal order of K above
5Z whose ramification index is odd. Since the prime ideal of k+ above
5Z has an even ramification index, the prime ideal P is ramified in L+.
Therefore the quadratic extension L+/K is ramified, and so it follows
from Theorem 10.1 of [13] that 5|hL+ if 5|hK . Conversely, suppose
that 5|hL+ . If |det(P )| ̸= 52, the class number of K is a multiple of
five by Corollary 3. If |det(P )| = 52, it follows from Proposition 3 that
hL+ = h2K , which shows that 5|hK . Thus, our assertion is completely
verified. □

Assume

(27) |det(P )| = 52

from now on.

Proposition 4. There are units u1, u2 ∈ EL+ such that ϵσ+σ
−1−2

i =
u5i for i = 1, 2.

Proof. From (27) and Lemma 5, there are units v1, v2 ∈ EL+ such
that

(28) ϵ
bi1+bi2(σ+σ

−1)
1 ϵ

bi3+bi4(σ+σ
−1)

2 ebi5 = v5i

for i = 1, 2, where the integer matrix(
b11 b12 b13 b14 b15
b21 b22 b23 b24 b25

)
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has rank 2 after reduction modulo 5. Further, we see that the matrix

(29)

(
b11 b12 b13 b14
b21 b22 b23 b24

)
has rank 2 after reduction modulo 5. Indeed, if not so, we may consider
that b21 = · · · = b24 = 0 and b25 = 1, and then (28) implies that e is a
fifth power element of some unit in L+, which contradicts with Lemma
4. Multiplying (28) by 2(σ + σ−1) + 1, we obtain

(30) (ϵbi2−2bi1
1 ϵbi4−2bi3

2 )σ+σ
−1−2 = (ϵbi11 ϵbi32 ebi5v

−(2σ+2σ−1+1)
i )5

for i = 1, 2. If the integer matrix

(31)

(
b12 − 2b11 b14 − 2b13
b22 − 2b21 b24 − 2b23

)
is regular modulo 5, the assertion follows from (30) immediately. There-
fore we may suppose that the matrix (31) has rank less than two.

Assume that the rank of the matrix (31) is zero. Then, it follows
from (28) that there are units ν1, ν2 ∈ EL+ such that

(32) ϵ
bi2(σ+σ

−1−2)
1 ϵ

bi4(σ+σ
−1−2)

2 ebi5 = ν5i

for i = 1, 2. Take c1, c2 ∈ Z such that c1b15 + c2b25 ≡ 0 (mod 5) and
(c1, c2) ̸≡ (0, 0) (mod 5). As the matrices (29) and (31) have rank two
and zero after reduction modulo 5 respectively, it is easy to see that
the matrix (

b12 b14
b22 b24

)
has rank two after reduction modulo 5, and so the matrix

(d1, d2) =
(
c1b12 + c2b22 c1b14 + c2b24

)
has rank one after reduction modulo 5. Hence, without loss of gener-
ality, we may assume that d1 ≡ 1 (mod 5) by retaking suitable ci for
i = 1, 2 and exchanging the indices of ϵ1, ϵ2 if necessary. Then, by (32),
we see that there is a unit ν ∈ EL+ such that

(33) εσ+σ
−1−2

1 = ν5,

where ε1 = ϵ1ϵ
d2
2 . It is obvious that ε1, ϵ2 are fundamental units of K.

Note that Lemma 4 holds even if we replace ϵ1 by ε1. Moreover, we
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have

(log ε1, log ϵ2, log ε
σ+σ−1

1 , log ϵσ+σ
−1

2 , log e)

=(log ϵ1, log ϵ2, log ϵ
σ+σ−1

1 , log ϵσ+σ
−1

2 , log e)B

=(log ϵ1, log ϵ2, log ϵ3, log ϵ4, log e)PB

=(log ε1, log ϵ2, log ϵ3, log ϵ4, log e)D
−1PB

where

B =


1 0 0 0 0
d2 1 0 0 0
0 0 1 0 0
0 0 d2 1 0
0 0 0 0 1

 , D =


1 0 0 0 0
d2 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Since

(34) |det(D−1PB)| = 52

by (27), our assumption (27) also holds even if we replace ϵ1 by ε1.
Hence, by (33), (34) and Lemma 5, there are units η1, η2 ∈ EL+ such
that

(35) εβi11 ϵ
βi3+βi4(σ+σ

−1)
2 eβi5 = η5i

for i = 1, 2, where the integer matrix

(36)

(
β11 β13 β14 β15
β21 β23 β24 β25

)
has rank 2 after reduction modulo 5. Obviously, we may assume that
β21 = 0. Then, multiplying (35) by 1 + τ , we have

ε2β111 ϵ2β13−β142 = (η1e
β15)5(1+τ),(37)

ϵ2β23−β242 = (η2e
β25)5(1+τ),(38)

because eβi5(1+τ) = (−1)βi5 = e5βi5(1+τ) for i = 1, 2. From Lemma 4,
the equation (38) implies that

2β23 ≡ β24 (mod 5).

Moreover, multiplying (37) by σ + σ−1 − 2, we obtain

(39) ϵ
(2β13−β14)(σ+σ−1−2)
2 =

(
η
(1+τ)(σ+σ−1−2)
1 ν−2β11

)5

by (33). Assume that 2β13 ≡ β14 (mod 5). Then it follows from (37)
and Lemma 4 that β11 ≡ 0 (mod 5). Since the matrix (36) has rank
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two, we now see that the matrix

(40)

(
β14 β15
β24 β25

)
is regular modulo 5. By (35), we have

(41) ϵ
βi4(σ+σ

−1−2)
2 eβi5 = η5i ε

−βi1
1 ϵ−βi3−2βi4

2

for i = 1, 2. The right side of (41) is a fifth power element of a unit of
L+ because βi1 ≡ βi3 + 2βi4 ≡ 0 (mod 5) for i = 1, 2. As the matrix
(40) is regular modulo 5, it follows from (41) that e is a fifth power
element of a unit of L+, which contradicts with Lemma 4. Thus we get
2β13 ̸≡ β14 (mod 5), and then it follows from (39) that there is a unit

u2 of L+ such that ϵσ+σ
−1−2

2 = u52. As ε1 = ϵ1ϵ
d2
2 , our assertion follows

from (33).
Assume that the rank of the matrix (31) is one. We may suppose

that the matrix

(d1, d2) =
(
b12 − 2b11 b14 − 2b13

)
has rank one after reduction modulo 5 and d1 ̸≡ 0 (mod 5) by exchang-
ing the indices of ϵ1, ϵ2 if necessary. Obviously, we may further assume
that d1 ≡ 1 (mod 5). Then, by (30), there is a unit ν ∈ EL+ such that

εσ+σ
−1−2

1 = ν5,

where ε1 = ϵ1ϵ
d2
2 . Thus we reach (33) of the rank zero case, and it is

easy to see that the rest of the proof for the rank zero case is also valid
for the rank one case. Therefore our assertion is true for this case, and
hence the whole proof is completed. □

It follows from (26) and (27) that E is a subgroup of EL+ with index
52. Denote E0 by the subgroup of EL+ generated by −1, ϵ1, ϵ2, u1, u2, e,
where u1, u2 are taken as in Proposition 4. It follows from Proposition 4
that E is a subgroup of E0 with index 52. Hence, we see that E0 = EL+ ,
i.e., ϵ1, ϵ2, u1, u2, e are fundamental units of L+. We set ϵ3 = u1 and
ϵ4 = u2 from now on.

Proposition 5. ϵ1+τi+2 = ϵ−1
i and ϵσ+σ

−1−2
i+2 = ϵ−1

i ϵ−5
i+2 for i = 1, 2.

Proof. For i = 1, 2, multiplying the equation ϵ5i+2 = ϵσ+σ
−1−2

i by
1 + τ and σ + σ−1 − 2, we obtain

ϵ
5(1+τ)
i+2 = ϵ

(σ+σ−1−2)(1+τ)
i = ϵ

(σ+σ−1+σ2+σ−2−4)
i = ϵ−5

i ,(42)

ϵ
5(σ+σ−1−2)
i+2 = ϵ

(σ+σ−1−2)2

i = ϵ
(σ+σ−1)2−4(σ+σ−1)+4
i = ϵ

5−5(σ+σ−1)
i(43)

= (ϵ−1
i · ϵ2−σ−σ−1

i )5 = (ϵ−1
i · ϵ−5

i+2)
5
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respectively, because ϵ1+σ+σ
−1+σ2+σ−2

i = 1. Moreover,

ϵ1+τi+2 , ϵ
−1
i , ϵσ+σ

−1−2
i+2 , ϵ−1

i ϵ−5
i+2 ∈ EL+ for i = 1, 2,

because they are invariant under τ 2. Therefore the assertion follows
immediately from (42) and (43) since L+ is a real algebraic number
field. □

Corollary 5. The kernel of the norm homomorphism 1 + τ be-
tween the unit groups of L+ and K is generated by −1, ϵ1ϵ

2
3, ϵ2ϵ

2
4 and

e2.

Proof. It is obvious that −1 and e2 are in the kernel. Since ϵ1+τi+2 =

ϵ−1
i for i = 1, 2, the kernel also contains ϵ1ϵ

2
3 and ϵ2ϵ

2
4. Conversely, take

ι ∈ EL+ such that ι1+τ = 1. We may represent

ι = δϵa11 ϵ
a2
2 ϵ

a3
3 ϵ

a4
4 e

a5 ,

where δ = ±1 and ai ∈ Z for i = 1, . . . , 5. Since ι1+τ = 1, we have

ι1+τ = ϵ2a11 ϵ2a22 ϵ
a3(1+τ)
3 ϵ

a4(1+τ)
4 (e1+τ )a5 = ϵ2a1−a31 ϵ2a2−a42 (−1)a5 = 1,

which shows that a5 is even and ai+2 = 2ai for i = 1, 2. Thus the
assertion is proved. □

Lemma 6. Let p be a prime divisor of m. Then the prime ideal pZ
is totally ramified in K.

Proof. Denote the maximal order of K by OK . We use the fol-
lowing ideal decomposition in OK :

(44) mOK = (m1/5OK)
5.

Take a prime ideal p of OK above pZ. Taking the value of the p-adic
exponential valuation at (44), we see that the ramification index of p
in K/Q is a multiple of five since m is a fifth power free. This shows
that pZ is totally ramified in K. □

Theorem 14. Suppose that m has a prime factor p with p ≡ −1
(mod 5). Then the class number hK of K is a multiple of five.

Proof. In this proof, we shall denote hL+ by h simply. Assume
that hK is not a multiple of 5. Then it follows from Corollary 4 that
the class number h of L+ is neither. It also follows from Corollary
3 that the condition (27) holds, and therefore we may take a set of
fundamental units ϵ1, ϵ2, ϵ3, ϵ4, e of L+ as above. Since the prime ideal
pZ totally ramifies in K by Lemma 6 and splits in k+, there are two
prime ideals P1,P2 of L+ over pZ whose ramification indices over k+

are five. Denote by OM the maximal order of an arbitrary field M .
We may represent Ph

1 = x1OL+ with x1 ∈ OL+ . Let pi = Pi ∩ Ok+ for
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i = 1, 2. Similarly we may represent ph1 = y1Ok+ with y1 ∈ Ok+ . Set
x2 = xτ1, y2 = yτ1 and zi = yi/x

5
i for i = 1, 2. Since e/eτ is negative, we

may assume that

(45) y1/y2 > 0,

replacing y1 by ey1 if necessary. For i = 1, 2, as the ramification index
of Pi over pi is five, we have

yiOL+ = phiOL+ = P5h
i = (xiOL+)5 = x5iOL+ ,

which shows that zi is a unit of L+. Therefore z1/z2 is also a unit of
L+, and moreover we have

(z1/z2)
1+τ = (z1/z2) · (zτ1/zτ2 ) = (z1/z2) · (z2/z1) = 1

because τ 2 is the identity on L+. Hence, by Corollary 5, we may
represent

(46) z1/z2 = ±(ϵ1ϵ
2
3)
a(ϵ2ϵ

2
4)
be2c,

where a, b, c ∈ Z. Multiplying z1/z2 by σ + σ−1 − 2, we have

(47) (z1/z2)
σ+σ−1−2 = (x1/x2)

−5(σ+σ−1−2)

since σ is the identity on k+. Multiplying the right side of (46) by
σ + σ−1 − 2, we get

(±(ϵ1ϵ
2
3)
a(ϵ2ϵ

2
4)
be2c)σ+σ

−1−2 = (ϵ53 · ϵ−2
1 ϵ−10

3 )a(ϵ54 · ϵ−2
2 ϵ−10

4 )b(48)

= (ϵ2a1 ϵ
5a
3 ϵ

2b
2 ϵ

5b
4 )

−1

by Propositions 4 and 5, where we note that ui in the statement of
Proposition 4 is denoted by ϵi+2 for i = 1, 2 now. Hence, multiplying
(46) by σ + σ−1 − 2, we have

(x1/x2)
5(σ+σ−1−2) = ϵ2a1 ϵ

5a
3 ϵ

2b
2 ϵ

5b
4

by (47) and (48), and so

ϵ2a1 ϵ
2b
2 = ((x1/x2)

σ+σ−1−2 · ϵ−a3 ϵ−b4 )5,

which implies that 5 | a and 5 | b. Since the left side of (46) is also
represented by (y1/y2) · (x2/x1)5, the equation (46) implies that

e−2c(y1/y2) = ±(ϵ1ϵ
2
3)
a(ϵ2ϵ

2
4)
b(x1/x2)

5,

which shows that

(49) (e−2c(y1/y2))
1/5 ∈ L+ = k+(m1/5).

by the fact that a and b are multiples of 5. Since the fundamental unit
e of k+ is taken to be positive, it follows from (45) that e−2c(y1/y2) is
also positive. Besides, recall that m is defined to be greater than one
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and hence positive. Applying Theorem 15 in the appendix below to
(49), we get

(50) e−2c(y1/y2) = y5 ·ms,

where y ∈ k+ and s ∈ Z. Taking the value of the p1-adic exponential
valuation at (50), we obtain

h ≡ µs (mod 5),

where µ is the value of the p-adic exponential valuation at m, i.e.,
µ = 1, 2, 3 or 4. Taking the value of the p2-adic exponential valuation
at (50), we obtain

−h ≡ µs (mod 5).

These congruence equations lead to 5 | h. It is a contradiction. □

Remark 1. Our proof of Theorem 14 is valid as long as m has a
prime divisor p which splits in k+. Since the prime number p splits in
k+ if and only if p ≡ ±1 (mod 5), we also see that the class number of
Q(m1/5) is a multiple of five if m has a prime divisor p such that p ≡ 1
(mod 5). This result is already obtained by Ishida [5], but his proof is
based on more class field theoretical arguments.

Corollary 6. Suppose that m has a prime factor p with p2 ≡ 1
(mod 5). Then the class number of L is divisible by 25.

Proof. It follows from Theorem 1 of [5] (or Remark 1 above) and
Theorem V of [11]. □

7. Appendix

In this appendix, we study more general objects than in the previous
chapters. The purpose of this appendix is to prove Theorem 15 below,
which is used in the proofs of Lemma 4 and Theorem 14 above. We
prove it for all n ∈ N, but we use it in this paper only as n = 1. One can
read this appendix independently from the other parts of this paper.

Let K be a real algebraic number field. We denote by K+ the
set of positive elements of K. For α ∈ K+ and r = m/n ∈ Q with
m,n ∈ Z, we denote by αr the positive root of the equation xn = αm.
We also denote by TrL/K the trace from L to K for any finite algebraic
extension L/K.

Lemma 7. Let K be a real algebraic number field. Let n ∈ N and
α ∈ K+. Then α1/n /∈ K if and only if TrL/K(α

1/n) = 0 for all finite

algebraic extensions L/K(α1/n).
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Proof. Obviously it is sufficient to prove that TrK(α1/n)/K(α
1/n) =

0 when α1/n /∈ K. Let α1/n /∈ K and m be the smallest natural number
such that αm/n ∈ K. Then the polynomial xm−αm/n is irreducible over
K. Indeed, if the polynomial is reducible, the constant terms of the
proper factors are represented by ζαl/n ∈ K with l < m and ζm = 1,
and hence ζ = ±1 because ζ is a real root of unity by the fact that
ζ ∈ K(α1/n) ⊆ R, so that αl/n ∈ K, which contradicts the definition of
m. Thus the algebraic extension K(α1/n)/K has the degree m. Then
1, α1/n, . . . , α(m−1)/n is a basis of K(α1/n) over K. Therefore we have

α1/n(1, α1/n, . . . , α(m−1)/n)=(1, α1/n, . . . , α(m−1)/n)

0 0 · · · 0 αm/n

1 0 · · · 0 0
. . .

0 0 · · · 1 0

 .

This shows TrK(α1/n)/K(α
1/n) = 0. □

Corollary 7. Let α∈K+ and r∈Q. If αr /∈K, then TrL/K(α
r) =

0 for any finite algebraic extension L/K(αr).

Proof. We may represent r = k/l with k ∈ Z and l ∈ N. Since
αk ∈ K+ and αr = (αk)1/l /∈ K, we obtain the assertion. □

Corollary 8. Let α1, α2∈K+ and r1, r2∈Q such that αr11 α
r2
2 /∈K.

Then TrL/K(α
r1
1 α

r2
2 ) = 0 for any finite algebraic extension L/K(αr11 α

r2
2 ).

Proof. We may represent ri = ki/l with l ∈ N and ki ∈ Z for i =
1, 2. Since αk11 α

k2
2 ∈ K+ and αr11 α

r2
2 = (αk11 α

k2
2 )1/l /∈ K, the assertion

follows. □
Theorem 15. Let n ∈ N. Let K be a real algebraic number field.

Let q, q1, . . . , qn ∈ K+ and r, r1, . . . , rn ∈ Q. Then qr ∈ K(qr11 , . . . , q
rn
n )

if and only if
qr = q0 · qr1e11 · · · qrnenn

with q0 ∈ K and e1, . . . , en ∈ Z.

Proof. The “if” part is clear. We shall prove the “only if” part
by induction on n ∈ N. Let qr ∈ K(qr11 ). Assume that

(51) qr · qr1j1 /∈ K for all j ∈ Z.
Let e be the smallest natural number such that qr1e1 ∈ K. As qr ∈
K(qr11 ), we may represent

(52) qr = a0 + a1q
r1
1 + · · ·+ ae−1q

r1(e−1)
1

with ai ∈ K for i = 0, . . . , e − 1. Denote by d the degree of algebraic
extension K(qr11 )/K. Taking the trace of (52) in K(qr11 )/K, we obtain
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0 = d ·a0 by Corollary 7 because qr, qr1i1 /∈ K for i = 1, . . . , e−1. Hence
a0 = 0. Suppose that a0 = · · · = al = 0 with some 0 ≤ l < e − 1.

Dividing (52) by q
r1(l+1)
1 , we have

(53) qr · q−r1(l+1)
1 = al+1 + al+2q

r1
1 + · · ·+ ae−1q

r1(e−l−2)
1 .

Taking the trace of (53) in K(qr11 )/K, we obtain al+1 = 0 by Corollaries
7 and 8 because the left side of (53) is not in K by our assumption (51).
Thus we obtain inductively that ai = 0 for all 0 ≤ i < e, and therefore
qr = 0, i.e., q = 0, which is absurd. Therefore our assertion is verified
for n = 1. Suppose that our assertion is valid for n ≤ k with some
k ∈ N. Let qr ∈ K(qr11 , . . . , q

rk+1

k+1 ). Assume that

(54) qr · qr1j11 · · · qrk+1jk+1

k+1 /∈ K for all j1, . . . , jk+1 ∈ Z.
Take e as the smallest natural number such that

q
rk+1e
k+1 ∈ K(qr11 , . . . , q

rk
k ).

Then we may represent

(55) qr = a0 + a1q
rk+1

k+1 + · · ·+ ae−1q
rk+1(e−1)
k+1

where ai = ai(q
r1
1 , . . . , q

rk
k ) ∈ K(qr11 , . . . , q

rk
k ) for i = 0, 1, . . . , e− 1. Put

a−1 = 0. We prove that ai = 0 for i = −1, 0, . . . , e − 1 inductively as
follows. Suppose that

a−1 = a0 = · · · = al = 0 with some −1 ≤ l < e− 1.

Then, dividing (55) by q
rk+1(l+1)
k+1 , we have

(56) qr · q−rk+1(l+1)
k+1 = al+1 + al+2q

rk+1

k+1 + · · ·+ ae−1q
rk+1(e−l−2)
k+1 .

By (54), we have

(qr · q−rk+1(l+1)
k+1 ) · qr1j11 . . . qrkjkk ̸∈ K for all j1, . . . , jk ∈ Z,

and hence, by our assertion for n = k, we get

qr · q−rk+1(l+1)
k+1 ̸∈ K(qr11 , . . . , q

rk
k )

because we may represent

qr · q−rk+1(l+1)
k+1 = (qs · q−t(l+1)

k+1 )1/u and then qs · q−t(l+1)
k+1 ∈ K+

if r = s/u and rk+1 = t/u with some s, t, u ∈ Z. On the other hand,
by the definition of e, we get

q
rk+1i
k+1 ̸∈ K(qr11 , . . . , q

rk
k ) for i = 1, . . . , e− l − 2

because e− l − 2 < e. Taking the trace of (56) in

K(qr11 , . . . , q
rk+1

k+1 )/K(qr11 , . . . , q
rk
k ),
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we obtain
al+1 = 0

by Corollaries 7 and 8. Thus we have shown that ai = 0 for i =
−1, 0, . . . , e − 1, which implies qr = 0 by (55). It contradicts with
q ∈ K+. Therefore the assumption (54) is denied, and so our assertion
is also valid for n = k + 1. Hence, the proof is completed. □
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