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Class numbers of pure quintic fields

Hirotomo Kobayashi

ABSTRACT. Let m be a fifth power free integer greater than one.
Let K be an algebraic number field generated by a fifth root of m
over the rational number field. If m has a prime factor p congruent
to —1 modulo five, the class number of K is a multiple of five.

1. Introduction

This thesis is a refined version of the paper [6]. To study class
numbers of algebraic number fields is one of the classical interest in
number theory. It is very difficult to grasp the general property for
an arbitrary algebraic number field, but it is known that some kind
of algebraic number fields have the class numbers acting predictably.
Motivation of our study is to find a new one of such knowledge. Let [
be a prime, K a pure field of degree [, i.e., K = Q(m!'/") where m is an
[-th power free integer greater than one, and L the Galois closure of K
over the rational number field Q. There is a question when the class
number hg of K is divisible by [. Genus theory gives an answer in the
case [ = 2. Honda [3] solved the cubic case and his method became
a model of researches on this subject. Subsequently to Honda’s study,
Parry [11] studied the case [ = 5 and found the difficulty in this case.
He presented the relation formula between the class numbers of K and
L:

5°hr = cmhi,
where hj, is the class number of L and ¢, is a divisor of 5°. He also
gave necessary and sufficient conditions for L to have the class number
divisible by 5, and left the six cases unclear whether hy is divisible
by 5 or not (see Theorem IV of [11]). For instance, the divisibility
remained unclear when m is a prime number p such that p = —1
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2 HIROTOMO KOBAYASHI

(mod 5). Iimura [4] showed that there are infinitely many fields K
with 51 hyx and 5 | hy. For a general odd prime [, Parry and Walter
[12] gave necessary and sufficient conditions for L to have the class
number divisible by [. They also derived necessary conditions for K
to have the class number divisible by [ when the class number of the
maximal real subfield of the [-th cyclotomic field is not divisible by (.

On the other hand, Ishida [5] showed that if [ is an odd prime and
m has a prime factor p with p = 1 (mod [), the class number of K
is divisible by [. He showed that the composite field of K and the
subfield of degree [ of the p-th cyclotomic field is unramified over K,
and then the divisibility follows from class field theory. Here, we pose
the following conjecture:

CONJECTURE 1. Let | be an odd prime greater than three and let
p be a prime such that p = —1 (mod l). If an l-th power free positive
integer m 1s divisible by p and K = Q(ml/l), then the class number of
K s divisible by (.

It is easy to see that Ishida’s method does not work in this case. In
this paper we prove this conjecture for [ = 5, i.e.,

THEOREM 1. Let m be a fifth power free positive integer and let
K = Q(m'®). If m has a prime factor p with p = —1 (mod 5), then
the class number of K 1is divisible by five.

As a consequence, we make clear three of the six cases left by Parry.
Our method is essentially based on an investigation of the Galois mod-
ule structure of the unit group of L, but our description is solely devoted
to the unit group of the maximal real subfield of L since it is sufficient
for our purpose.

We will describe an outline of the proof briefly. Let K = Q(m!/?)
where m is a fifth power free integer greater than one, and L the Galois
closure of K over the rational number field Q. Let L™ be the maximal
real subfield of L. In general, we show that 5 | hg if and only if 5 | hz+,
where hx and hp+ are the class numbers of K and L™ respectively.
Further assume that 51 hz+. Under this assumption, we determine a
set of fundamental units of L™ and investigate endomorphisms of the
unit group of L*. When m has a prime divisor p congruent to —1
modulo five, applying the investigation to an abstract unit constructed
by totally ramified primes in the extension L*/Q(+/5), we encounter a
contradiction with our assumption that 54 hz+.

Finally, we touch on the following useful theorem, which is used
twice as n = 1 in this paper.
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THEOREM 2. Let K be a real algebraic number field and K be the
set of positive elements of K. Denote the positive root of the equation
¥ =q" byq forqe K. andr =t/s € Q with t,s € Z. Let n be
a natural number and q,q1,...,q, € Ky and r,ry,...,1, € Q. Then
q € K(q*,...,q.) if and only if

q = qoq?el R q:;”en with g0 € K and eq,. .., e, € 7.

We prove this theorem in the appendix, which can be read indepen-
dently from the other parts of this paper. Besides, it does not require
any advanced knowledge.

2. Previous researches

In this chapter, we digest previous researches related to our study
roughly. Let Q denotes the rational number filed. Pure fields mean the
algebraic number fields generated by the positive I-th root of m over
the rational field when m is an [-th power free positive integer. Our
interest is in the class number of pure fields. We restrict ourselves to
the case where [ is a prime number. Pure fields of degree two over QQ are
real quadratic fields. The divisibility of the class number of quadratic
fields by two is completely determined as follows;

THEOREM 3. The quadratic fields with odd class number are the
following where p, p1, p2 denote primes with py # pa:

(i) Q(vV-1),
(ii) Q(v/p),
(iii) Q(v/—p) where p =2 orp = —1,
(iv) Q(\/p1pa) where py = —1 and pa =2 or py = —1.

Here all congruences are modulo 4.

This is one of the results from classical genus theory (see [2]).
Hereby, it is natural to think that the divisibility of class numbers
of pure fields by the degree may act predictably. As pure fields with
degree more than two are not abelian over the rational filed, the divis-
ibility might not be so simple. However, Honda obtained the following
result and completely determined the divisibility of class numbers of
pure cubic fields by three:

THEOREM 4. Let n be a third power free positive integer and let )
be the pure field by the cubic root of n over Q. The class numbers of
Q 1s not a multiple of three if and only if n has one of the following
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forms where p,q are primes with p # q and a,b =1 or 2:
(i) n = 3%,
(ii) n = p*, wherep=—1 (mod 3),
(iii) n = 3°p" where p=2 or5 (mod 9),
(iv) n = p°q*, wherep=2 and ¢q=5 (mod 9),
(v) n =p*q, wherep=q=2or5 (mod9)

This is taken from [3]. Honda’s method is roughly explained as
follows. Let €2 be as in Theorem 4. Let K be the cubic cyclotomic
field, that is, the algebraic number field generated by a primitive cubic
root of unity over Q. Let L be the composite field of 2 and K. Let
ar/k be the number of ambiguous classes for the cyclic extension L /K.
It is known that the ideal class number of L is a multiple of three if and
only if 3|az,/kx (we will prove Proposition 1 which gives this elementary
result as a corollary). There is a formula to compute ar,x, which is
called the ambiguous class number formula (see Theorem 9 later). By
this ambiguous class number formula, we see that

e—t—1
ar/Kk = 3

where e is the number of primes of K which are ramified in L and ¢t = 0
or 1 according as a primitive cubic root of unity is in the norm images
of L/K or not. It is easy to know the value of e from the number of the
prime divisor of n, and ¢ can be evaluated by investigating the Hilbert
symbol in K. Moreover, by Brauer-Kuroda relations (see Theorem 13
later), we see that the class number of € is a multiple of three if and
only if the class number of L is so.

Parry studied the quintic cases after Honda. Let m be a fifth power
free positive integer and let €2 be the algebraic number field generated
by the real fifth root of m over the rational number field. Let { be
a primitive fifth root of unity. Further, let £ and L be the algebraic
number fields generated by ( over Q and ) respectively. We shall
denote by h,s the class number of M if M is an algebraic number field.
Let ¢* = 0,1 or 2 according as none , exactly one or all of

¢, e1=(1+vV5)/2, (% (a=1,2,3 or 4)

are in the norm images of L/k. Parry’s main result is stated with these
notations as follows:

THEOREM 5. If m has a prime divisor p =1 (mod 5), then hg and
hr, are multiples of five. The class number hy, is not divisible by five if
and only if m takes on one of the following values where a,b=1,2,3 or
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4 and py,pe are distinct primes such that p; = 2 (mod 5) fori=1,2:
(I) m =5,

(IL) m = p,

(IIT) m = 5%p% where p} 1 (mod 25),

(IV) m = pip} where m* =1, pl #1, p3 #Z1 (mod 25).
For each of the above values of m, the class number hg is not a multiple
of five. For the following exceptional values of m, the class number hg
may or may not be a multiple of five where a,b,c =1,2,3 or4 and p;, q

are distinct primes each other such that p; = £2 (mod 5) fori=1,2,3
and that ¢ = —1 (mod 5):

(i) m = piph where m*, p3 Z1 (mod 25),
(ii) m = piph where p] =p5 =1 (mod 25),

(iii) m = pipbp§ where m* =1, p} #1  (mod 25) fori = 2,3,

(vii) m = pq® where m* =1, pt #1, ¢# —1 (mod 25),
(viii) m = 5%" where ¢ # —1 (mod 25),
(ix) m = ¢* where ¢ = —1 (mod 25).

For all other values of m, the class number hqg is a multiple of five.

This is taken from [11]. Note that the representation of this theo-
rem looks different from Parry’s original representation. The nine un-
certain cases above is classified into the six uncertain cases in Parry’s
original representation. Our representation actually follows after that
of limura. The first half part of this statement is obtained by ambigu-
ous ideal class number formula as in the cubic case. The second half
part states that the uncertainty occurs in the listed nine cases. This
is because it does not hold that 5|hy if and only if 5|hq, though the
similar statement holds in the cubic case. This difference occurs as
follows. In this quintic case, Brauer-Kuroda relations guarantee that

(E:¢)
55
where E denotes the full unit group of L, € denotes the subgroup of £
generated by the all conjugates of the units of 2 and (F : ) denotes

hp = hd
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the index of € in F. It is not difficult to see that
(E: 5)]56.

Thus, hg may not be a multiple of 5 even if 5|k, and then (E : ¢) = 5.

[imura studied these uncertain cases listed in Theorem 5 and gave a
necessary and sufficient condition for hq to be divisible by five in each
case, except for Case (ix). He explained that Case (ix) is hard to deal
with by means of his method and is excluded from his consideration.
We omit to explain his necessary and sufficient conditions in detail
here because it is a little bit complicated (see [4]). His necessary and
sufficient conditions seem difficult to use in many cases, but he showed,
using the condition, that there are infinitely many pure quintic fields
2 such that 5 1 hq and 5|k, which was not trivial from the Parry’s
study.

These series of study are considered to start with Honda’s idea
which combine with ambiguous ideal class number formula and Brauer-
Kuroda relations. However, there was a former study about such a class
number divisibility of pure fields by Ishida. Ishida studied such a class
number divisibility of wider fields by using elementary facts, and he
obtained the following result.

THEOREM 6. Let | be a odd prime and m be a l-th power free
positive integer with a prime divisor p =1 (mod [). Then the pure field
generated by an [-th root of m over Q has the class number divisible by
l.

This is taken from [5]. We note that this result are contained in
theorems stated above when [ = 3 or 5. Nevertheless, this results seems
hard to be covered by the above method derived from Honda, especially
for the higher degree cases. This is considered because Brauer-Kuroda
relations are harder to compute according as the degree of the pure
field becomes higher.

3. Elementary facts

We begin to prove the structure theorem for finitely generated
abelian groups for later use. We need the following lemma.

LEMMA 1. Submodules of finitely generated free Z-modules are also
free Z-modules.

PROOF. Let F be a free Z-module of rank n. We may assume that
n > 0. If n =1, we may regard F' = Z, and then submodules of F are
represented in the form aZ with a € Z, which shows our assertion in
the case where n = 1. We shall prove our assertion by the induction
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on n. Suppose that n > 1. Let N be a submodule of F'. If N =0, it is
clearly a free Z-module; therefore we may assume that N # 0. Take a

basis {fi,..., fn} of F' and call ¢ the projection from F' onto Z given
by

n
@ : Zaifi — a.
i=1

If necessary, we may reorder fi,..., f, so that p(IN) # 0. As p(IV) is
an ideal of Z, it is represented in the form aZ with a € Z, and we can
take © € N such that ¢(x) = a. Put Ny = Ker(p) "N N. If y € N,

y— (p(y)/a)z € Ny
and so

(1) N = (Zz) ® N,.

Obviously Ker(y) is a free Z-module of rank n — 1, and N; is the
submodule. Therefore, by the induction assumption, Ny is a free Z-
module, and so N is also a free Z-module by (1). O

If G is a finitely generated abelian group, there is a free Z-module
F' of finite rank r with a surjective homomorphism f : F' — G, and
then
G~ F/N
where N is the kernel of f. By means of this, we are able to know
sufficient structure information of a finitely generated abelian group
from the following theorem.

THEOREM 7. Let F be a free Z-module of rank n > 0 and N be a
submodule of F'. Then there are a basis {f1,..., fn} of F and a set of
non-negative integers {aq, ..., a,} with a;la;41 fori=1,...,n—1 such
that {ay f1,...,anfn} is a basis of N. Moreover the set {aq,...,a,} is
uniquely determined for N.

ProOOF. We shall prove their existence by induction on n. Suppose
that n = 1. Take an isomorphism
p:Z— Finw—nf,

where f; is a basis of F. Then p~!(N) is an ideal of Z, so that it is
represented in the form a,Z with some non-negative integer a;, which
shows that N has a;f; as a basis. Suppose that n > 1. Consider the
following set of ideals of Z

X ={h(z)Z|x € N,h € Hom(F,Z)}.

Here, Hom(F,Z) is the set of all homomorphisms of F' into Z. Take
X € N and n € Hom(F,Z) so that n(x)Z is the maximal element of
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X with respect to inclusion. We may represent n(F') = sZ with s € Z
and take u; € F' so that n(u;) = s. Put K = Ker(n). Then we get the
following direct decomposition

because f — (n(f)/s) -u; € K and n(f)/s € Z for any f € F. Since
n(N) = n(x)Z, we obtain similarly
(3) N =XZ® K,

where K1 = NN K. As K is a free module of rank n — 1 by Lemma 1,
we can apply the induction assumption to the submodule K; of K, and
so there is a basis {fs, ..., fn} of K and a set of non-negative integers
{ag, ..., a,} with a;la; 1 fori =2,... n—1 such that {asfs,...,anfn}
is a basis of K;. By the direct decomposition (2), we can take n; €
Hom(F,Z) such that n,(u;) = 1 and n(K) = 0, and we may represent

X =diuy +dafo+ -+ dnfy

with d; € Z for all i because {uy, fo, ..., fn} isabasisof F. Asm(x)Z =
d1Z € X and n(x)Z = dysZ is taken to be a maximal element of X
with respect to inclusion, we see that s = 1. It is obvious that we
may take s = 1. Let dy; be the greatest common divisor of d; and d;
for i = 2,....n. Then there are cy;, ¢; € Z such that

dy; = c1dy + ¢id;

for i = 2,...,n. Take a homomorphism 7; € Hom(F,Z) such that
ni(u1) = 0 and n;(f;) = 6;; for i, = 2,...,n. Here, d;; is Kronecker’s
delta. Then

(crm + emi) (X)Z = (cridy + ¢id;)Z = dyiZ,

which shows d; |dy; because dyZ is a maximal element of X’ with respect
to inclusion. As dy; is a divisor of d;, for i = 2,...,n, we obtain

d|d;.
Put
Ji=u1 + (do/dy) fo + -+ (dn/dy) fo
By (2) and (3), we see that {fi,..., f.} is a basis of F' and that
{dif1,asfs,...,anfn} is a basis of N. Let d be the greatest common

divisor of d; and as. There are p,py € Z such that d = p1d; + paas.
We can take 1y € Hom(F,Z) so that

no(f1) = p1, mo(f2) = p2, mo(fj) =0
for j = 3,...,n, and then

no(dyf1 + az f2) = p1di + pray = d.
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As dy fi + asfs is in N, we also see that d;|d by the maximality of d,Z
in X with respect to inclusion, so that d|as. Thus, we have shown our
assertion except for the uniqueness.

In order to prove the uniqueness of the set {ai,...,a,} in our as-
sertion, take the quotient group M = F'/N. Then it is obvious that
(4) M~Z/aZ& - DL/ a,Z.

The number of a;’s with a; = 0 is uniquely determined as the rank of
the Q-vector space M ®z Q. Therefore it is sufficient to prove that
the set {ai,...,a,} of positive integers is uniquely determined when
M is the finite group represented by (4). We shall prove that the
number of minimal generator of M as a Z-module is n — e, where e
is the number of a;’s with a; = 1. Note that a; = --- = a. = 1 and
aer1 7 1 then. It is obvious that M has n — e generators. If there is
a set {x1,...,2,} of generators of M whose cardinality m is less than
n — e, then, for any prime divisor p of a1, the quotient group M/pM
isomorphic to F;~° has the images of zy,..., 2, as the generators,
but it contradicts with the fact that an F,-vector space does not have
the set of generators whose cardinality is less than its rank. Here IF),
denotes the prime field Z/pZ. Thus we have shown that the number of
a;’s with a; = 1 is uniquely determined in (4), which is denoted by e.
Applying the same argument to a..1 M, we see that the number of a;
with a; = ae41 is uniquely determined in (4). Therefore we can prove

inductively that the set {ai,...,a,} of positive integers with a; | a;+1
in (4) is uniquely determined for the finite group M, and our assertion
is verified completely. O

The structure theorem for finitely abelian groups is usually stated
as the following form.

COROLLARY 1. Let G be a finitely generated abelian group. Then
there is a set of non-negative integers {aq,...,a,} with a; | a;41 for
1=1,...,n—1 such that

G2/ ® - DL/ a,Z.
Moreover this set {ay, ..., a,} is uniquely determined for G unless a; =
1.

PRrROOF. It follows immediately from Theorem 7 and the description
preceding that. O

The following theorem is Dirichlet’s units theorem. This theorem
gives the group structure of the full unit group of an algebraic num-
ber field. We will use this theorem without notice later. We refer to
Theorem 9 of Chap. IV-4 of [14] for the proof.
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THEOREM 8. Let K be an algebraic number field with r + 1 infinite
places and Wy be the group of the roots of unity in K. Then there are
units €1, ..., €. of K such that any unit € of K is uniquely represented
by

— al ar
6—71)61 "'67.

with w € Wy and ay, ..., a, € 7.

The units €, ..., €. in this theorem are called fundamental units of
K

4. Ambiguous ideals

Our purpose of this chapter is to prove Proposition 1. This chapter
presupposes the knowledge of class field theory with idele class group.
We will not use results obtained in this chapter later, but these results
were elementary in former studies. We note that the material treated
in this chapter is mainly taken from [2].

Let K be an algebraic number field. Let L/K be a cyclic extension
with Galois group G. Take a generator o of G. We shall denote the
ideal class group of L by CI(L). We say that an ideal class a of CI(L)
is ambiguous if

a’ =a.

It is equivalent to say that a'~° is the principal ideal class of CI(L).
More precisely, if a has an ideal a as a representative, then a is ambigu-
ous if and only if there is an element c¢ of L such that a” = ca. We shall
denote by L' the Hilbert class field of L, that is, the maximal abelian
extension over L unramified for all places of L. We call the maximal
abelian extension of K contained in L' the genus field of L/K and
denote it by G. The genus group &(L/K) is defined as

&(L/K) =CL/Na/(Cq).

Here Ng/r, : Cq — Cp is the norm map from the idele class group of
G to that of L. Class field theory says that &(L/K) is isomorphic to
the Galois group of G/L.

PROPOSITION 1. Let L/K be a cyclic extension with Galois group
G generated by an element o. Then

(5) ®(L/K) = CI(L)/Cl(L)"°.

If moreover the extension degree of L/ K is a power of a prime [, then
&(L/K), is trivial if and only if C1(L), is trivial, where A; denotes the
Sylow [-subgroup of an abelian group A.
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PRrROOF. Note that
CIL)'"7 = {a'"7 | a € CI(L)}.

Let Q = Gal(L'/K). Here L' be the Hilbert class field of L as above.
Moreover, put A = Gal(L'/L) and take ¢ € € such that the image
of cin Q/A = Gal(L/K) is 0. In the reciprocity isomorphism rp/x :
ClL) — A, when 7 x(a) = 7, we see that 71,k (a”) = ¢ ¢, which
is in A because A is a normal subgroup of Q, and so r,x(a'"7) =
7c 't~ 1. Since A is abelian and €2/A is the cyclic group generated
by o, it shows that r/x maps CI(L)'~7 onto the subgroup (A, Q) of
2, which is the subgroup of Q generated by aba='b~! for a € A,b € Q.
Let B be the kernel of the natural projection

CI(L) ~ OL/NLI/LCLI — CL/Ng/L<Cg) = @(L/K),

where G is the genus field of L/K. By the definition of G, the reci-
procity map 77,k maps B onto A N (€2, (), where (£2,Q) is the com-
mutator subgroup of Q. Now, since L/K is abelian, we see that
A D (£,9), and therefore the reciprocity map ri,x maps B onto
(2,€). We shall show that (A, Q) = (2,9). Since A C Q, it is clear
that (A, Q) C (£2,9). On the other hand, since Q2/A is the cyclic
group generated by o, each element a of € is of the form c'z with
i € Z,x € A. Moreover, for z € A, we may write for c'zc™ = z; with
x; € A uniquely. With this notation, when we represent a = c'z and
b=cywithi,j € Z,x,y € A for a,b € Q, we have

aba bt = cadyr ey e = ad Ty y e

= xidya; ey e = w(Ay) N y) T ( Ay ey e

= {zi(ya)x (y) T H(y)e (i) T e} € (A, Q),
which shows that (€2,2) C (A,Q). Hence (A,Q) = (£2,9), so that
CI(L)'~7 = B, which implies (5).

Next suppose that the extension degree of L/K is a power of [.
Let L' be the maximal unramified abelian [-extension of L. Note that
L' D [/ and I /K is a Galois extension. Put ' = Gal(L'/K) and A’ =
Gal(L'/L). Assume that &(L/K), is trivial. Since L/K is abelian, we
see that A" D (€2, €Y). The assumption that &(L/K); is trivial implies
that M/K is not abelian for any field M with L C M C L' so that
A" = (0, Q). As stated above, since (/A" is cyclic, we get

(@A) = (2, ) = A,
This shows that the lower central series of {2’ terminate at (', A") = A’.

On the other hand, the finite [-group ' is a nilpotent group. It is well
known that the lower central series of a nilpotent group terminates at
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the trivial subgroup. Hence, A’ is trivial, which implies that CI(L); is
trivial. The converse is obvious and the proof is completed. U

The following result is called ambiguous class number formula. Al-
though we will not use it in this paper, it is important for the study of
the class numbers of pure fields as stated in Chapter 2.

THEOREM 9. Let L/K be a cyclic extension of prime degree . Let
t be the number of ramified places in L/K and let Am(L/K) be the
subgroup of CI(L) consisting of the ambiguous ideal classes. The order
of Am(L/K) is given by
lt—l

(EK . EK N ]V'L/KLX)7

where h(K) is the class number of K, Ey is the unit group of K,
Ex N NpjgL* is the subgroup consisting of norm images of L and
(Ex : Ex NNy L*) is the index.

We refer the proof to [9].

h(K) -

5. Brauer-Kuroda relations

In this chapter, we will digest the proof of the Brauer-Kuroda rela-
tions, which was proved independently by Brauer and Kuroda (see [1]
and [7] respectively).

We start to define the Dedekind zeta function. Let K be an alge-
braic number field. The Dedekind zeta function is the meromorphic
function given for Re(s) > 1 by

C(s) =[] —=2(p)™) "

P

where p runs through all prime ideals of K and 91(p) denotes the norm
of p which is the number of elements of the residue field of p. Put

Gis) = 7T (s/2), Gals) = (2m)'~*I(s),

where I'(s) is the gamma function. It is well-known that I'(s) has no
zero and has simple poles at non-positive integers. Since I'(1/2) = 7'/2
and I'(1)=1, we have

G1(1/2) =1, Ga(1) = 1.
Then we have the following analytic class number formula.

THEOREM 10. Let K be an algebraic number field with r1 real places
and ro imaginary places. Put

Ex(s) = Gi(s)" Ga(s)" Cx (s).
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Then £k (s) is meromorphic in the entire s-plane, holomorphic except
for simple poles at s = 0 and s = 1, and satisfies the functional equation

Exc(s) = Dl *€x(1 - 9),
where Dy s the discriminant of K. Its residue at s =1 1is
2" (2m)"2h Ry
wi| D |12

where hy is the class number of K, Rk s the requlator of K and wg
15 the number of roots of unity in K.

The proof is referred to that of Theorem 3 in Chap. VII-6 in [14].
The functional equation gives the following corollary.

COROLLARY 2. (k(s) has a zero of order ro at s = —1 and has a
zero of order r1 +1ry at s = —2.

The next deep result is taken from Satz 171 of [8].

THEOREM 11. Let K be an algebraic number field and let T be a

positive number. Let N(T') be the number of zeros of (i (s) in the region
0 <Re(s) <1,0 <Im(s) <T. Then

log |Dk| — nx — ng log(2m)
2

where ny is the field degree of K over Q and Dy is the discriminant
of K.

Here, note that Landau symbol O(logT") denotes a function f(7)
such that
1/ (T)]

lim ~—— <
T logT >

We proceed to introduce the Artin L-series. Let K be an alge-
braic number field again and L/K be a finite Galois extension with the
Galois group G. A complex representation of G is a homomorphism
p: G — GL(V), where GL(V) denotes the automorphism group of a
finite dimensional complex vector space V. We shall represent it by the
pair (p, V). Let p be a prime ideal of K and B be a prime ideal of L
lying above p. Then the decomposition group G and the inertia group
Ty of P are defined as subgroups of G as usual, and the quotient group
Gy/Ty is the cyclic group generated by the Frobenius automorphism
oq. As oy is regarded as an automorphism of the fixed subspace V7%
of Ty, the characteristic polynomial

(6) det(1 — opt; V1¥)

N(T) = Z—:TlogT + T+ O(log T),
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is defined, where ¢ is an indeterminate and 1 denotes the identity map
of V¥, The polynomial (6) is determined only by p, that is, indepen-
dently on the choice of P lying above p . Indeed, if ' be another
prime ideal of L lying above p, then there is o € GG such that P’ = P
and
quf = O'ilej;O', Ts);;/ = UﬁqugO', Pp = 0'71@930',
and therefore
det(1 — pqt; VI¥) = det(o™ ' (1 — pypt)o; Vo Two)
= det(1 — pypt; V),

It is well-known that two complex representations p, p’ of G are equiva-
lent if and only if their characters x,, x,» are equal. For a representation
(p, V) of G with character y, the Artin L-series of p (or x) is defined
by

1

v cene 10 = g =mrvmy

where p runs through all prime ideals of K. It is not difficult to show
that the Artin L-series (7) converges absolutely and uniformly on the
half plane Re(s) > 14 ¢ for any 6 > 0.

To state the fundamental properties of Artin L-series, we need the
induced character. Let H be a subgroup of a finite group G and (p, V')
be a complex representation of H with character ¢». Then V may be
considered as a C[H]-module where C[H| denotes a group algebra of
H over C, and we put

Ind%(V) = C[G) ®cim V
which is a C[G]-module, and therefore we obtain a complex represen-
tation of G
Ind(p) : G — GL(Ind% (V).
We denote the character of Ind(p) by x, and call it the induced char-
acter of ¥ on G. In particular, we need the induced character i, of

1y on G. Here, 1y is the principal character of H, i.e., 15(h) =1 for
any h € H. We also call x;, the induced character of G for H.

LEMMA 2. Let G be a finite group and let H be a subgroup of G. If
Y is a character of H , then

Ind(1)(s) = 7 3 lest™)

teG

for s € G. Here |H| is the order of H and ¢(s) =0 if s ¢ H.
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Proor. Let {wy,...,w,} be a C-basis of W. Let (o,W) be a
representation with character ¢. Let {g1,...,9,} be a full set of rep-
resentatives of left coset modulo H in G. Then {g;*,...,g;'} is a full
set of representatives of right coset modulo H in G. Moreover

{g7'@uwili=1,...,m, j=1,...,n}
is a C-basis of C[G] @cimy W. If s € G, we have

s gi @w; = (sg; ) @ w; = (g;5)51) @ wy = giy) @ (sw;),

where i(s) € {1,...,n},s; € H such that sg; ' = gi_(sl)si. From this, for
s € G, we get

IIld Z '¢ Z ¢ gzs.gz

s=1i(s) s=i(s)

—Z@z) (gi59; ") = |Zw (tst™")

teG

when we extend ¢ to G so that ¢¥(s) =0if s ¢ H. O

The Artin L-series has the following fundamental properties. We
omit the proof and refer to Theorem 4.2 of Chap. V-4 of [10].

THEOREM 12. Let K be an algebraic number field and L/K be a
Galois extension.
(i) L(s,1,L/K) = (k(s) where 1 denotes the principal character of
Gal(L/K).
(ii) If L'/ K are also a finite Galois extension such that L' O L, then

L(s,xonm,L'/K)=L(s,x,L/K)

where 7 is the restriction map from Gal(L'/K) to Gal(L/K).
(iii) If x1, x2 are characters of Gal(L/K), then

L(s,x1+ X2, L/ K) = L(s,x1, L/ K) - £(s, X2, L/ K).

(iv) If M is an intermediate field of L/ K, 1 is a character of Gal(L/M)
and Xy is the induced character of ) on Gal(L/K), then

£(s, o L/ K) = L{5,, L/M).
The following theorem is our goal in this chapter.

THEOREM 13. Let K be a finite Galois extension over Q with Ga-
lois group G. If H s a subgroup of G, we denote H < G and the
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corresponding subfield of K by Q(H). Suppose that there is a linear
relation between the induced characters for the subgroups of G, that is,

Z agXiy =0

H<G
with ay € Z. Then
Raomnyhow \ "
(5) H(—%—u)=ﬁ
H<G Q(H)

Here Rq, hq and wq denote the requlator, the class number and the
number of the roots of unity in €0 respectively when € is a subfield of

K.

PRrROOF. We reproduce Brauer’s proof. By (iii) of Theorem 12, our
assumption about induced characters gives

H 'C(saXlHaK/Q)aH =1

H<G
and then we get
I c(s.1m, K/QH)) ™ =1
H<G
by (iv) of Theorem 12. Moreover, by (i) of Theorem 12, this means
9) I ¢oun(s) =1
H<G

and, by taking the residue at s = 1, we obtain

<2r1(Q(H)) (2m)"2 2 FD hey 1y Rayrry ) "
= 1.
H<G

10
( ) Wao(H) |DQ(H) \1/2

Here, for any algebraic field number field €2, we denote the number of
the real places and the imaginary places by r1(€) and 79(2) respec-
tively, and by Dgq the discriminant. Applying Theorem 11 to (9), we
obtain
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where n(Q2) denotes the degree of Q2 over Q for any algebraic number
field €2. Moreover, by Corollary 2, we also have

(12) > au(r(QH)) + r2(QH))) = 0,

H<G

(13) > anr(QH)) =0

H<G

from (9). These shows that
(14) > ayri(QH)) =0.

Substituting (11),(13),(14) for (10), we get the identity (8) in our as-
sertion. U

6. Main Results

We denote by Z,N,Q and R the ring of rational integers, the set
of all natural numbers, the rational number field and the real number
field respectively. We consider that 0 ¢ N. Let m be a fifth power free
integer greater than one. Denote the real fifth root of m by m!/>. Let
k= Q(g’))kar = Q(\/g)vK = @(m1/5)7L = K(§5) and L* = K(\/g)
where (5 is a primitive fifth root of unity. Note that Lt is a real
algebraic number field. Let hj; and R); denote the class number and
the regulator of an arbitrary algebraic number field M respectively. We
denote fundamental units of K by €, €5 and a fundamental unit of &*
by e. We may assume that €;,e,e > 0. Let G = Gal(L/Q). Define
7,0 € G by the following actions respectively:

Cg _ <§7 (m1/5)7‘ _ m1/5’
G5 =G (m'7)7 = Gm!.

These actions satisfy the following relations:

oT =T0%, TO = 0T
Moreover, it should be noted that 72 is the complex conjugate on L.
The multiplicative group L* of non-zero elements of L will be regarded
as a Z[|G]-module. Here Z[G] denotes a group ring of G over Z. In other
words, the result of the multiplication of © € L™ by > _,a,p € Z[G]|

is p2opeG WP — Hpec(xap)p.

peCG

LEMMA 3. Let {cy, ca,c3} be a coprime set of integers. Then €{'€5? e
is not a fifth power of a unit of L™.
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PROOF. Suppose that there is a unit u of L™ such that
(15) €1es2e™ = 1P,
Multiplying (15) by 2(1 + 7), we get
(16) €1y = (ut)0,

147

Since u 77 is a unit of K and €1, €5 are fundamental units of K, we may

represent

uttT = 481l
with a1, ay € Z. We substitute this for (16) and get

4cy 4co _ _10a; 10asg
€1 & =€ & 7,

which shows
4cy = 10aq, 4co = 10ay

because €1, €5 are fundamental units of K. From this, we see that ¢;
and ¢y are multiples of five. Therefore, by (15), we get
(17) e =°
where v is a positive unit of L. Multiplying (17) by o, we obtain
(18) e = (v7)°.
Combining (18) with (17), we have

(W) = o7,
which shows
(19) (v" 1) = 1.

Since L' contains only one fifth power root of unity, i.e., 1, it follows
from (19) that

v7 =,
and so v is a unit of k*. Therefore we may represent

’U:€b

with b € Z, and we also get

603 — 65b

by (17). Since e is the positive fundamental unit of k™, it follows that
c3 is a multiple of five. Thus we see that cq, ¢, c3 are all multiples
of five, and it contradicts with the coprimality of the set {c1, ¢, c3}.
Hence our assertion is valid. [l

LEMMA 4. There is a set of fundamental units of Lt which contains
€1,€2,€.
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PROOF. Suppose that the assertion is false. Applying Theorem 7
to the full positive unit group of L™ and the subgroup generated by
€1, €z and e, we get a positive unit of Lt such that

(20) €1e2e =y,

where the set {c1,c2,c3} is a coprime integer set and d is an integer
greater than one. Multiplying (20) by 2(1 4+ o + -+ + o), we get

10c3 —

cedot
e 1+o+-+0o )2d

(u )

which implies that d|5c3 since e is a fundamental unit of k™. Multiply-
ing (20) by 2(1 + 7), we get

61161642162 — (U1+T)2d’

which implies that d|2¢; and d|2¢y since €, €2 are fundamental units
of K. Since the integer set {c;,cq,c3} is coprime, we see that d is a
divisor of 10. If 5|d, we may represent d = 5d’ with d’ € N, and by
(20), we get

c1 c2

61 62 603 == (udl)5

Y

which contradicts with Lemma 3. Hence d = 2. Then ¢3 must be even,
and so we may represent c3 = 2¢ with ¢ € Z. By (20), we get

(21) €1e5? = (ue )%

From this, we obtain

(22) (e2€2)Y? = e~ e LT = K(V/5).
Applying Theorem 15 in the appendix below to (22), we get
(23) (efte5?) !/ = a5"/?,

(24) (51€5?) = a?5°,

where a € K and a € Z. It is easy to see that there is a prime ideal
P of the maximal order of K above the prime ideal 5Z such that P
has an odd ramification index in K/Q. Taking the value of the P-adic
exponential valuation at (24), we see that a is even. Hence, by (22) and
(23), we see that ue ¢ is a unit of K. Then it follows from (21) that
c1 and ¢y are even since €1, €5 are fundamental units of K. However,
it contradicts with the coprimality of the set {¢, ¢a, ¢3}, and therefore
the assertion is verified. O

Let €3, €4 be positive units such that €1, €9, €3, €4, € are fundamental
units of LT,
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PROPOSITION 2.
R+
R% - Ryr
PROOF. Recall that G = Gal(L/Q). For g € G, We denote the

conjugacy class of g by C(g). It is easy to see that the set of conjugacy
classes of G is

chpe = hZ.

{C(1). C(o), C(1), C(r%), C(r*)}.
The number of the elements of C(1) is one and that of C(c) is four.
The number of the elements of C(7°) is five for i = 1,2,3. On the other
hand, it is easy to see that
Gal(L/L*) = {1,7}, Gal(L/k) = {1,0,0% 0%, 0"},
Gal(L/k*) = (0,7%), Gal(L/K)={1,7,7%7°}.
Here, (o,72) is the subgroup of G generated by o,72. We denote by

X the induced character of G for subgroup Gal(L/M) where M is an
arbitrary subfield of L. Then we get Table 1.

TABLE 1
CQ1) Clo) C(r) C(r%) C()
XL 20 0 0 0 0
xo+ | 10 0 0 2 0
X+ 2 2 0 2 0
XK 5) 0 1 1 1
XQ 1 1 1 1 1

From this table, it is easy to see

2(XKx — XQ) = Xo+ — Xk+

and we obtain the regulator relation by Theorem 13. O

Let E+ denote the unit roup of Lt and £ the subgroup of Ep+

generated by —1 61,62,€1+J L€t e. Note that, for i = 1,2,
T = (@) = > 0

because 72 is the complex conjugate on L. It is important to consider
the index of £ in Ep+.

LEMMA 5. The quotient group Ep+/E has exponent 5, i.e., B3, C
E.



CLASS NUMBERS OF PURE QUINTIC FIELDS 21

ProoFr. We shall denote the norm map of L to K° by N; for
i = 1,2,3,4,5. Besides, we denote the norm map of L to k& by Np.
Let ¢ € Er+. Since the Galois group of L/K° is 0~ 'Gal(L/K)o® and
Gal(L/K) = {1,7,72, 73}, we obtain

—i 2. .3\ i i—2i 2 i—4i_ 3 _i—8i
NZ(S) — 0 (1+7+724+7°%)0 — €1+TU +740 +73%0

_ €1+7_o.—i+7_20.—3i+7_30.—27;

Since Gal(L/k) = {1,0,0% 0% 0%}, we obtain
No(e™) = 7 (14?52
Then

eHH(r+r? 478 (1o +o? +od+a) _ N1 () Ny () N3 () Ny(e) N5 ()
€(T+7'2+7'3)(1+0'+0'2+0'3+0'4) No(gT)NO(ETQ)NO(€T3)

(25) &° =

For i = 1,...,5, N;(¢) is in the unit group of K"i, which is generated
by o
_1a 6(1717 6317
and so N;(g) is represented by
Ni(e) = it e
with a;, b; € Z. Then we obtain

2

2 -1 2,3 2, —4 2.3y 4
N1<€)T — &0 (A+r+72+77)07? g7 A+r+r2+71%)0* N4(€)

Ng(g)TQ _ 60_2(1+T+7—2+T3)02T2 _ 8720_3(1+T+7'2+T3)0'3 _ N3(8>

because ¢ is real and 72 induces the complex conjugate map on L.
Hence, we have

N, (€)N4<€) _ €t111(0+a—1)€g1(0+cr—1)

NQ({':)N:}(E) = 6‘;2(02—&—0*2)632(024-0*2) — iel—az(l-&-a-}g*l)62_1)2(1_’_0_’_071)

because Ny(€;) = e§+(”+a_l)+(a2+g_2) = #+1 for i =1,2. Thus the numer-
ator of the right side of (25) equals to

iegasfaz)Jr(alfaz)(oJra‘l)egbrbz)Jr(blsz)(oJra‘l) ’

which is in £. Moreover the denominator of the right side of (25) is in
the unit group of k and

<N0(€T)N0(€T2)N0(€TS))72 _ €(T+72+T3)(1+0'+0'2+a3+0'4)7'2

_ €(T3+1+T)(1+U+U2+03+0’4) _ 6(7'3—5-7'2—1—7')(1—|—cr—&—cr2—|—a3—I—cr4)

= No(e")No(e7 ) No(™")
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because ¢ is real and 72 induces the complex conjugate map on L. This
shows that the denominator of the right side of (25) is in the unit group
of k™ which is generated by —1, e, and so it is in £. Thus €° € £ and
the proof is completed. O

We may represent

o+o~ o+o~

(26) (loger,loges, loge] ,lloge2 ,lloge) = (loge,logea,loges,logey loge) P
by an integer matrix P.

PROPOSITION 3.

h2. R+ 52

= = € N.
hL+ R%( : Rk+ |det(P)|

PROOF. The first equality follows directly by Proposition 2. We
shall show the second equality. From (26), we obtain a regulator rela-
tion as follows: |det(P)|- Rp+ =

log € 2log |€9| 2log e9” | 21log |€9| 210g|e‘1’2|
log €5 2log |€5| 2log |9 | 2log |€5] 2log 3"
det | logeZt ™" 2log|el T 2log el t7| 2log|el T7 | 2loglel Y| || =
loge ™ 2logled tY| 2logle T 2logled T | 2logleg Y|
loge 2loge 2loge —2loge —2loge
0 2logles|  2logled’| 0 0
0 2logleg]  2logled’ 0 0
2 3 3, 4 2 4,4 3
det| 0 2logled ™' 2logle] T 2log|ed T 77 7| 2logle T 9|
0 2logled’ ™Y 2logled t| 2logles T 7 | 2log|es T
5loge 2loge 2loge —4loge —4loge
_ ‘5loge-det<2log|€?| 210g|e‘1’z|) -det(210g|€(17_1‘ 2log|e}_gz|)
2logleg| 2log|eg’| 2logleg 1| 2loglel="]

o2 1—0?
— 5loge - det log €; 210g|612\ - det 5loge; 210g|ei_ 2\
loges 2log €3 | Sloges 2logle; |

=5 R+ - Ri”.
Thus the second equality of our assertion is verified. It is rest to prove
that 5%/|det(P)| € N. By Lemma 5, we see that €3, €} € £, and there-

fore there is an integer matrix () such as

(log €1,log €2,log €3, log €7, log e)=(log €1,log e2,log €]+, log €377, log €) Q.
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Then we have
(log €1, log €3, log €3, log €4, log €) A = (log €1, 1log €3, log €5, log €], log €)
= (log €1,10g €2,10g €777 ' log 377 log €)Q
= (log €1, log €5, log €3, log €4, log €) PQ),
where A = (a;;) is a five-by-five diagonal matrix with a;; = age = as; =
1 and azs = aqyy = 5. Since A = PQ, we get |det(Q)| = 52/|det(P)|.

Moreover, as @ is an integer matrix, we see that 5%/|det(P)| € N, which
completes our proof. O

COROLLARY 3. The class number hx is a multiple of five if |det(P)]
# 5%,

PRrOOF. It follows from Proposition 3 that |det(P)] is a divisor of
52, and so h%./hr+ is a multiple of five if |det(P)| # 5%, which implies
that 5’hK J

COROLLARY 4. The class number hy is a multiple of five if and
only if hp+ is a multiple of five.

PROOF. There is a prime ideal P of the maximal order of K above
57 whose ramification index is odd. Since the prime ideal of ™ above
57Z has an even ramification index, the prime ideal P is ramified in L™.
Therefore the quadratic extension L*/K is ramified, and so it follows
from Theorem 10.1 of [13] that 5|hp+ if 5|hk. Conversely, suppose
that 5|hz+. If |det(P)| # 5%, the class number of K is a multiple of
five by Corollary 3. If |det(P)| = 5%, it follows from Proposition 3 that
hp+ = h%, which shows that 5|hr. Thus, our assertion is completely
verified. O

Assume
(27) |det(P)| = 5°
from now on.

PROPOSITION 4. There are units u,,us € Er+ such that 6;”"_1*2 =
u? fori=1,2.

PROOF. From (27) and Lemma 5, there are units vy, v € Er+ such
that

bit+biz(0+0™1) biz+bia(o+o~1) b
(28) € nlote )62“ wlote )eb“:U?

for i = 1,2, where the integer matrix

bll b12 bl3 b14 b15
b21 b22 623 b24 625
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has rank 2 after reduction modulo 5. Further, we see that the matrix

bir b1z b1z by
29
(29) (bzl by by by
has rank 2 after reduction modulo 5. Indeed, if not so, we may consider
that by; = -+ = byy = 0 and bys = 1, and then (28) implies that e is a

fifth power element of some unit in L™, which contradicts with Lemma
4. Multiplying (28) by 2(c + o~ !) + 1, we obtain

(30) (6?1'2—21)1'1Egi4—2bi3)0+o’_1—2 _ (Eli“Egi3€bi51j;(2o+20—1+1))5

for i = 1,2. If the integer matrix

b12 - 2611 b14 - 2b13
31
(31) (b22 — by by - 2b23)

is regular modulo 5, the assertion follows from (30) immediately. There-

fore we may suppose that the matrix (31) has rank less than two.
Assume that the rank of the matrix (31) is zero. Then, it follows

from (28) that there are units vy, vy € Er+ such that

(32) b¢2(0'+0'_1—2) bi4(a'+0'_1—2) bi5 5

€1 €9 e =y,

for i = 1,2. Take ¢1,co € Z such that ¢1b15 + cabes = 0 (mod 5) and
(c1,¢2) Z (0,0) (mod 5). As the matrices (29) and (31) have rank two
and zero after reduction modulo 5 respectively, it is easy to see that

the matrix
bia big
baa Doy

has rank two after reduction modulo 5, and so the matrix
(dy,dy) = (01512 + cobay  c1b1y + 02524)

has rank one after reduction modulo 5. Hence, without loss of gener-
ality, we may assume that d; = 1 (mod 5) by retaking suitable ¢; for
i = 1,2 and exchanging the indices of €y, €5 if necessary. Then, by (32),
we see that there is a unit v € E;+ such that

(33) =,

where ¢; = 61632. It is obvious that &1, €5 are fundamental units of K.
Note that Lemma 4 holds even if we replace ¢; by ;. Moreover, we
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have
(loge1,log €2, log e log €777 log e)
=(log €1, log €2,1og €17 log €317 " log €) B
=(log €1, log €s, log €3, log €4, log ) PB
=(log ey, log €3, log €3,log €4, loge) D' PB
where
1 0 0 0O 1 0000
d 1 0 00 d 1 0 0 0
B=|10 01 00},D=]10 0100
0 0 do 1 0 0 001O0
0 0 0 01 0 00 01
Since
(34) |det(D™'PB)| = 5

by (27), our assumption (27) also holds even if we replace €; by ;.
Hence, by (33), (34) and Lemma 5, there are units 7;,7, € Er+ such

that
) e st g _ g

for © = 1, 2, where the integer matrix

P Pz P bis
(36) (ﬁm Baz P 525)

has rank 2 after reduction modulo 5. Obviously, we may assume that
Po1 = 0. Then, multiplying (35) by 1+ 7, we have

(37) 8%51163&3*/514 _ (7716,315)5(1+T)’
(38) 63523—,324 _ (772€ﬂ25)5(1+7)’

because efs(H7) = (—1)0s = 50s047) for § = 1,2, From Lemma 4,
the equation (38) implies that

2523 = 624 (mod 5)
Moreover, multiplying (37) by o + c~! — 2, we obtain

- _ 5
B) e (e )

by (33). Assume that 2613 = (14 (mod 5). Then it follows from (37)
and Lemma 4 that £1; = 0 (mod 5). Since the matrix (36) has rank
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two, we now see that the matrix

bia bis
(40) (524 525)

is regular modulo 5. By (35), we have

. -1_ . —Bi1 —Bia—928:
(41) 6524(‘74'0' 2) 6525 — 772561 611 62 523 21314

for i = 1,2. The right side of (41) is a fifth power element of a unit of
Lt because 81 = fiz + 284 = 0 (mod 5) for i = 1,2. As the matrix
(40) is regular modulo 5, it follows from (41) that e is a fifth power
element of a unit of L™, which contradicts with Lemma 4. Thus we get
2P13 # (14 (mod 5), and then it follows from (39) that there is a unit
us of LT such that €J77 2 = uj. As g, = 122, our assertion follows
from (33).

Assume that the rank of the matrix (31) is one. We may suppose
that the matrix

(di,dy) = (512 —2bi1 by — 2b13)

has rank one after reduction modulo 5 and d; # 0 (mod 5) by exchang-
ing the indices of €, €5 if necessary. Obviously, we may further assume
that dy =1 (mod 5). Then, by (30), there is a unit v € E+ such that

€¢17+U_172 — V5,
where £, = ¢;¢22. Thus we reach (33) of the rank zero case, and it is
easy to see that the rest of the proof for the rank zero case is also valid
for the rank one case. Therefore our assertion is true for this case, and
hence the whole proof is completed. O

It follows from (26) and (27) that £ is a subgroup of E;+ with index
52. Denote Ej by the subgroup of E;+ generated by —1, €1, €2, u1, us, €,
where uq, ug are taken as in Proposition 4. It follows from Proposition 4
that £ is a subgroup of E, with index 52. Hence, we see that Ey = Ep+,
i.e., €, €, U, us, e are fundamental units of LT. We set €3 = u; and
€4 = Uy from now on.

. —1_ 1 - .
PROPOSITION 5. €7 =€ " and €7y > =€, e % fori=1,2.

PROOF. For i = ]-7 27 mllltlplylng the equation €?+2 = 6?4_0—71_2 by
1+ 7 and o + 0! — 2, we obtain

(1) QU (oro ) _ ok o)
(43) efjr<f2+a*1_2) — 6l(cﬂrrl_2)2 _ 6§a+0*1)2_4(0+a*1)+4 _ 65_5((”071)

= (g g = (g
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1+o+0 o2 +072

respectively, because ¢, = 1. Moreover,

147 _—1 _ot+o71-2 _—1_-5 -

because they are invariant under 72. Therefore the assertion follows

immediately from (42) and (43) since L% is a real algebraic number

field. O

COROLLARY 5. The kernel of the norm homomorphism 1 + T be-
tween the unit groups of L™ and K is generated by —1,¢€1€3, €265 and

e2.

PROOF. It is obvious that —1 and e? are in the kernel. Since e,}i; =

e; ' for i = 1,2, the kernel also contains €2 and eye2. Conversely, take
. € Er+ such that /'™ = 1. We may represent

L= 0€1 €52 €5 gt e

where 6 = +1 and a; € Z for i = 1,...,5. Since t'*™ = 1, we have

1+7 __ _2a1 2a2 az(1+7) aa(1+7)
=€ € €3 €4 (

L

€1+T)a5

_ 2a1—a3 2az—a4 as __
=4 €2 (—1D* =1,

which shows that a5 is even and a;1o = 2a; for © = 1,2. Thus the
assertion is proved. U

LEMMA 6. Let p be a prime divisor of m. Then the prime ideal pZ
is totally ramified in K.

PROOF. Denote the maximal order of K by Og. We use the fol-
lowing ideal decomposition in Og:

(44) mOK = (m1/5(9K)5.

Take a prime ideal p of Ok above pZ. Taking the value of the p-adic
exponential valuation at (44), we see that the ramification index of p
in K/Q is a multiple of five since m is a fifth power free. This shows
that pZ is totally ramified in K. (Il

THEOREM 14. Suppose that m has a prime factor p with p = —1
(mod 5). Then the class number hx of K is a multiple of five.

PROOF. In this proof, we shall denote h;+ by h simply. Assume
that hg is not a multiple of 5. Then it follows from Corollary 4 that
the class number h of L™ is neither. It also follows from Corollary
3 that the condition (27) holds, and therefore we may take a set of
fundamental units €, €9, €3, €4, € of LT as above. Since the prime ideal
pZ totally ramifies in K by Lemma 6 and splits in k™, there are two
prime ideals B, B, of LT over pZ whose ramification indices over k™
are five. Denote by O, the maximal order of an arbitrary field M.
We may represent P? = 2,0+ with 21 € Op+. Let p; = B; N O+ for
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i = 1,2. Similarly we may represent p? = y;Op+ with y; € Op+. Set
Ty =x2],y2 = y] and z; = y; /) for i = 1,2. Since e/e” is negative, we
may assume that

(45) yl/yQ > 07

replacing y; by ey; if necessary. For ¢ = 1,2, as the ramification index
of B, over p; is five, we have

v Op+ = P?Oﬁ = ‘B?h = (xz‘OL+)5 = x?O“,

which shows that z; is a unit of L. Therefore z;/2, is also a unit of
L™, and moreover we have

(21/22)17 = (n1/22) - (2] /23) = (21/2) - (22/21) = 1
because 72 is the identity on L*. Hence, by Corollary 5, we may
represent

(46) 21/29 = £(e162)(€2€3) e,
where a,b, ¢ € Z. Multiplying 2;/zo by o + 0~ — 2, we have
(47) (21/22)0'-&-071—2 _ (xl/xQ)—S(a—&-a*l—Z)
since o is the identity on k™. Multiplying the right side of (46) by
o401 -2, we get
(48)  (H(er€3)"(e26})’e™) 77 2 = (6} €7 ) (e} - g e )’
= (' eye}’) ™

by Propositions 4 and 5, where we note that u; in the statement of
Proposition 4 is denoted by €;,5 for i« = 1,2 now. Hence, multiplying
(46) by 0 + o' — 2, we have

)5(a+a*172) 2a _5a _2b_5b

(z1/72 =€) €3 €5 ¢4

by (47) and (48), and so
E%legb _ ((xl/x2)0+"_1_2 . EgaEZb)57
which implies that 5 | @ and 5 | b. Since the left side of (46) is also
represented by (y1/ys) - (z2/21)°, the equation (46) implies that
e (1 /y2) = (e163)" (e2€3)" (w1 /2)°,
which shows that
(49) (€™ (pn/y2)"/® € LT =k (m'/?).

by the fact that a and b are multiples of 5. Since the fundamental unit
e of kT is taken to be positive, it follows from (45) that e 2°(y; /ys) is
also positive. Besides, recall that m is defined to be greater than one
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and hence positive. Applying Theorem 15 in the appendix below to
(49), we get

(50) e (y1 /) =y° - m?,

where y € kT and s € Z. Taking the value of the p;-adic exponential
valuation at (50), we obtain

h=ups (mod 5),

where p is the value of the p-adic exponential valuation at m, i.e.,
i =1,2,3 or 4. Taking the value of the ps-adic exponential valuation
at (50), we obtain

—h=ps (mod 5).

These congruence equations lead to 5 | h. It is a contradiction. U

REMARK 1. Our proof of Theorem 14 is valid as long as m has a
prime divisor p which splits in k. Since the prime number p splits in
kT if and only if p = £1 (mod 5), we also see that the class number of
Q(m'/?) is a multiple of five if m has a prime divisor p such that p = 1
(mod 5). This result is already obtained by Ishida [5], but his proof is
based on more class field theoretical arguments.

COROLLARY 6. Suppose that m has a prime factor p with p* = 1
(mod 5). Then the class number of L is divisible by 25.

PRrROOF. It follows from Theorem 1 of [5] (or Remark 1 above) and
Theorem V of [11]. O

7. Appendix

In this appendix, we study more general objects than in the previous
chapters. The purpose of this appendix is to prove Theorem 15 below,
which is used in the proofs of Lemma 4 and Theorem 14 above. We
prove it for all n € N, but we use it in this paper only as n = 1. One can
read this appendix independently from the other parts of this paper.

Let K be a real algebraic number field. We denote by K, the
set of positive elements of K. For a € K, and r = m/n € Q with
m,n € Z, we denote by a” the positive root of the equation x™ = ™.
We also denote by Tryx the trace from L to K for any finite algebraic
extension L/K.

LEMMA 7. Let K be a real algebraic number field. Let n € N and
o € K. Then o™ ¢ K if and only if Trpx(a™) = 0 for all finite
algebraic extensions L/K (a'/™).
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PROOF. Obviously it is sufficient to prove that TrK(al/n)/K(ocl/") =
0 when a'/" ¢ K. Let a*/™ ¢ K and m be the smallest natural number
such that a™/™ € K. Then the polynomial 2™ —a™/™ is irreducible over
K. Indeed, if the polynomial is reducible, the constant terms of the
proper factors are represented by (a/” € K with [ < m and (™ = 1,
and hence ( = +1 because ( is a real root of unity by the fact that
¢ € K(a'/™) C R, so that o/" € K, which contradicts the definition of
m. Thus the algebraic extension K (a'/")/K has the degree m. Then
La™, ... a™m /" is a basis of K(a!'/") over K. Therefore we have

Ozl/n(ljcgl/n"__’a(mfl)/n):(l’al/n’_“,a(m,l)/n> 10 ---0 0

00---1 0
This shows TrK(al/n)/K(al/”) =0. O

COROLLARY 7. Let a€ Ky andr€Q. If " ¢ K, then Trp k(a”) =
0 for any finite algebraic extension L/K(a").

PROOF. We may represent » = k/l with k € Z and | € N. Since
of € K and " = (o®)! ¢ K, we obtain the assertion. O

COROLLARY 8. Let ay,an€ K1 and ry,ro € Q such that af'ay? ¢ K.

Then Try k(o' ay?) = 0 for any finite algebraic extension L] K (of' o).

PROOF. We may represent r; = k;/l with [ € N and k; € Z for i =
1,2. Since of'ab? € K, and of'a}? = (of'ab?)/! ¢ K| the assertion

follows. U

THEOREM 15. Let n € N. Let K be a real algebraic number field.
Let q,q1,...,q, € Ky and ryry,...,1, € Q. Then q" € K(q{*,...,q")
if and only if

¢ =q- "
with qo € K and eq,...,e, € Z.

ProOF. The “if” part is clear. We shall prove the “only if” part
by induction on n € N. Let ¢" € K(q;*). Assume that
(51) ¢ gV ¢ K for all j € Z.

Let e be the smallest natural number such that ¢ € K. As ¢" €

K(qi"), we may represent

(52) ¢ =ap+aqt +--+ ae_lq?(e_l)

with a; € K for ¢ = 0,...,e — 1. Denote by d the degree of algebraic
extension K (qi')/K. Taking the trace of (52) in K(qj')/K, we obtain
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0 = d-ag by Corollary 7 because ¢", ¢} ¢ K fori=1,...,e—1. Hence
ap = 0. Suppose that ag = --- = a; = 0 with some 0 <[ < e — 1.

Dividing (52) by qu () e have

Taking the trace of (53) in K (q;*)/ K, we obtain a1 = 0 by Corollaries
7 and 8 because the left side of (53) is not in K by our assumption (51).
Thus we obtain inductively that a; = 0 for all 0 < i < e, and therefore
q" =0, i.e., ¢ = 0, which is absurd. Therefore our assertion is verified
for n = 1. Suppose that our assertion is valid for n < k with some
keN. Let ¢ € K(q",...,q%"). Assume that

(54) q gt q,:'_fl”k“ ¢ K for all jy,...,jk1 € Z.

Take e as the smallest natural number such that

T‘k+1€

qurl € K(q?v cee 7q£k)
Then we may represent
Tk e—1
(55) ¢ =a+aqy ++ ae_lqk’rf( )

where a; = a;(¢7",...,q}) € K(qi*,...,¢q) fori=0,1,...,e—1. Put
a_1 = 0. We prove that a; = 0 for i = —1,0,...,e — 1 inductively as
follows. Suppose that

a_1=ag=---=a; =0 with some —1 <[ <e—1.
Then, dividing (55) by q,:ﬁ’ll(lﬂ), we have
r —r +1 r e—1—2
(56) q - qkﬁﬂ( = = a1 + al+2qkk+l + ae—lelf:ll( )-
By (54), we have
r —r [+1 119 r.7 . .
(q ~qk+';“(+ )) cqt. ..qk’“]’“ ¢ K for all jq,...,jx € Z,
and hence, by our assertion for n = k, we get
r - l+1 T T
q ~qk+’i“ Ve K (g q)
because we may represent
r -7 l+1 S —t l 1 u l 1
¢ gy = (g gl TT)Y and then ¢ g Y € K

if r = s/u and 11 = t/u with some s,t,u € Z. On the other hand,
by the definition of e, we get

Ziﬁ”%[((q?,...,q,’;’“) fori=1,...,e—1-—2
because e — [ — 2 < e. Taking the trace of (56) in
K(q's - oa) /K (g - ),
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we obtain

a1 =0
by Corollaries 7 and 8. Thus we have shown that a; = 0 for i =
—1,0,...,e — 1, which implies ¢" = 0 by (55). It contradicts with
q € K. Therefore the assumption (54) is denied, and so our assertion
is also valid for n = k + 1. Hence, the proof is completed. O
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