

Title	Brauer groups of algebraic function fields and their adèle rings
Author(s)	Yokogawa, Kenji
Citation	Osaka Journal of Mathematics. 1971, 8(2), p. 271-280
Version Type	VoR
URL	https://doi.org/10.18910/5605
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Yokogawa, K.
Osaka, J. Math.
8 (1971), 271-280

BRAUER GROUPS OF ALGEBRAIC FUNCTION FIELDS AND THEIR ADÈLE RINGS

KENJI YOKOGAWA

(Received November 25, 1970)

Introduction. Let K be an algebraic number field and $\{\mathfrak{p}\}$ be the valuations of K , then related to Takagi-Artin's class field theory, the following exact sequence is well-known (c.f. Hasse [5]);

$$(1) \quad 0 \rightarrow Br(K) \rightarrow \bigoplus_{\mathfrak{p}} Br(K_{\mathfrak{p}}) \rightarrow \mathbf{Q}/\mathbf{Z} \rightarrow 0$$

where $K_{\mathfrak{p}}$ is the completion of K with respect to \mathfrak{p} . In the Seminar 1966 at Bowdoin College, G. Azumaya [4] showed that the middle term of (1) is isomorphic to the Brauer group of the adèle ring A_K of K and that the following diagram with canonical arrows is commutative;

$$(2) \quad \begin{array}{ccccc} & & \bigoplus_{\mathfrak{p}} Br(K_{\mathfrak{p}}) & & \\ 0 \rightarrow Br(K) & \nearrow & \downarrow & \searrow & \rightarrow 0 \\ & & Br(A_K) & & \end{array}$$

But on an algebraic function field, the class field theory does not hold except the case of finite constant field (Artin-Whalpe [1]), so the analogies of (1), (2) must have fallen.

The purpose of this paper is to clarify the relations of the Brauer group of the adèle ring of a function field, to the Brauer group of a function field and to Galois cohomologies.

We use the following notations:

k : a perfect field

\bar{k} : the algebraic closure of k

F : an algebraic function field of one variable over k i.e. F/k is finitely generated, k is algebraically closed in F and the degree of transcendence of F/k is one

$F = F \cdot \bar{k}$: the field theoretic compositum of F and \bar{k}

\mathfrak{p} : a prime divisor of F over k

$F_{\mathfrak{p}}$: the completion of F with respect to \mathfrak{p}

$\mathfrak{O}_{\mathfrak{p}}$: the valuation ring of $F_{\mathfrak{p}}$

$k_{\mathfrak{p}}$: the residue class field of $F_{\mathfrak{p}}$ i.e. $\mathfrak{O}_{\mathfrak{p}}/\mathfrak{p}$
 G : the Galois group of \bar{k} over k and we shall identify G with the Galois group of \bar{F} over F
 $G_{\mathfrak{p}}$: the decomposition group of \mathfrak{p}
 $\chi(*)$: the character group of the group $*$
 $A_F = A_{F/k}$: the adèle ring of F i.e. the restricted direct product of $F_{\mathfrak{p}}$ with respect to $\mathfrak{O}_{\mathfrak{p}}$
 $Br(*)$: the Brauer group of the ring $*$.

The author would like to express his gratitude to Dr. Y. Watanabe for suggesting this problem, for helpful advices and for continuing encouragement.

1. The homomorphism of $Br(A_F)$ to $\bigoplus_{\mathfrak{p}} \chi(G_{\mathfrak{p}})$

It is well-known that $\mathfrak{O}_{\mathfrak{p}}$ coincides with the formal power series ring $k_{\mathfrak{p}}[[\pi_{\mathfrak{p}}]]$ with respect to some prime element $\pi_{\mathfrak{p}}$ and $F_{\mathfrak{p}}$ coincides with $k_{\mathfrak{p}}((\pi_{\mathfrak{p}}))$ (c.f. Serre [8] II, §4). Witt [10] and Shuen Yuan [11] showed the sequence

$$(3) \quad 0 \longrightarrow Br(k_{\mathfrak{p}}) \xrightarrow{\theta_{\mathfrak{p}}} Br(F_{\mathfrak{p}}) \xrightarrow{\eta_{\mathfrak{p}}} \chi(G_{\mathfrak{p}}) \longrightarrow 0$$

is exact, where $\theta_{\mathfrak{p}}$ is the one induced by the ring homomorphism $k_{\mathfrak{p}} \rightarrow F_{\mathfrak{p}}$. Azumaya [3] and Auslander-Goldman [2] showed that $Br(k_{\mathfrak{p}})$ is isomorphic to $Br(\mathfrak{O}_{\mathfrak{p}})$. From the sequence (3), considering the direct product for all \mathfrak{p} , we have the following exact sequence;

$$(4) \quad 0 \longrightarrow \prod_{\mathfrak{p}} Br(k_{\mathfrak{p}}) \xrightarrow{\prod_{\mathfrak{p}} \theta_{\mathfrak{p}}} \prod_{\mathfrak{p}} Br(F_{\mathfrak{p}}) \xrightarrow{\prod_{\mathfrak{p}} \eta_{\mathfrak{p}}} \prod_{\mathfrak{p}} \chi(G_{\mathfrak{p}}) \longrightarrow 0$$

Proposition 1. *There exists the epimorphism φ of $Br(A_F)$ to the direct sum $\bigoplus_{\mathfrak{p}} \chi(G_{\mathfrak{p}})$ of $\chi(G_{\mathfrak{p}})$.*

Proof. Let Λ be a central separable algebra over A_F and $\lambda_1=1, \lambda_2, \dots, \lambda_m$ be a set of generators of Λ over A_F . Since Λ is separable over A_F , there exist the elements $u_1, \dots, u_n; v_1, \dots, v_n$ in Λ satisfying the relations;

$$(*) \quad \left\{ \begin{array}{l} \sum u_i v_i = 1 \\ \sum_i x u_i \otimes v_i^0 = \sum_i u_i \otimes (v_i x)^0 \text{ in the enveloping algebra } \Lambda^e = \Lambda \otimes_{A_F} \Lambda^0 \text{ for any } x \text{ in } \Lambda. \end{array} \right.$$

Let us set $u_i = \sum_h a_{ih} \lambda_h$, $v_i = \sum_h b_{ih} \lambda_h$, $\lambda_i \lambda_j = \sum_h c_{ijh} \lambda_h$ where a_{ih}, b_{ih}, c_{ijh} are in A_F . Since a_{ih}, b_{ih}, c_{ijh} are adèles, $\{a_{ih}^{\mathfrak{p}}\}, \{b_{ih}^{\mathfrak{p}}\}, \{c_{ijh}^{\mathfrak{p}}\}$ are in $\mathfrak{O}_{\mathfrak{p}}$ for almost all \mathfrak{p} where $x^{\mathfrak{p}}$ is the $F_{\mathfrak{p}}$ -component of an element x in A_F . We shall set $\Lambda_{\mathfrak{p}} = \Lambda \otimes_{A_F} F_{\mathfrak{p}}$ and $u_i^{\mathfrak{p}} = u_i \otimes 1$, $v_i^{\mathfrak{p}} = v_i \otimes 1$, $\lambda_i^{\mathfrak{p}} = \lambda_i \otimes 1$ in $\Lambda_{\mathfrak{p}}$, and let $\Gamma_{\mathfrak{p}}$ be the $\mathfrak{O}_{\mathfrak{p}}$ -module generated

by $\lambda_1^p, \dots, \lambda_m^p$. Then $u_1^p, \dots, u_n^p; v_1^p, \dots, v_n^p$ satisfy the similar relations as (*). Thus Γ_p is a separable \mathfrak{O}_p -order in Λ_p for almost all p since $u_1^p, \dots, u_n^p, v_1^p, \dots, v_n^p$ are contained in Γ_p for almost all p and Γ_p forms a ring with identity for almost all p . Therefore, defining $\varphi_0: Br(A_F) \rightarrow \prod_p Br(F_p)$ to be the homomorphism induced by the projection $A_F \rightarrow F_p$, the image of φ_0 is contained in the restricted direct product of $Br(F_p)$ with respect to $Br(\mathfrak{O}_p) \cong Br(k_p)$. We define φ to be the composite $\prod_p \eta_p \circ \varphi_0$, then the image of φ is in $\bigoplus_p \chi(G_p)$.

To see φ is an epimorphism we need the following

Lemma 2. *Let Λ be an algebra over A_F which is a finitely generated free A_F -module with the free basis w_1, \dots, w_m . If $\Lambda_p = \Lambda \otimes_{A_F} F_p$ is a central separable algebra over F_p for all p and the \mathfrak{O}_p -module generated by $w_1^p = w_1 \otimes 1, \dots, w_m^p = w_m \otimes 1$ in Λ_p is a separable \mathfrak{O}_p -order for almost all p , then Λ is a central separable algebra over A_F .*

Proof of Lemma 2. As Λ_p is separable over F_p , there are the elements $u_1^p, \dots, u_{n_p}^p; v_1^p, \dots, v_{m_p}^p$ in Λ_p satisfying the similar relations as (*). Since $n_p \leq m$, we may assume without loss of generalities that $n_p = n$ is independent of p . Let us set $u_i^p = \sum_h a_{ih}^p w_h^p, v_i^p = \sum_h b_{ih}^p w_h^p$ where a_{ih}^p, b_{ih}^p are in F_p , then from the hypothesis we may assume that a_{ih}^p, b_{ih}^p are in \mathfrak{O}_p for almost all p . We shall put $u_i = \sum_h a_{ih} w_h, v_i = \sum_h b_{ih} w_h$ where $a_{ih} = (\dots, a_{ih}^p, \dots), b_{ih} = (\dots, b_{ih}^p, \dots)$ are in A_F , then the fact that $u_1, \dots, u_n; v_1, \dots, v_n$ satisfy the same relations as (*) is readily verified. Thus Λ is a separable algebra over A_F . The statement about the centrality is easily verified and we omit the proof.

Now let us return to the proof of Proposition 1. For any $\bigoplus_p \chi_p \in \bigoplus_p \chi(G_p)$, we can find a central separable algebra Λ_p over F_p such that the class of Λ_p in $Br(F_p)$ is mapped to χ_p by η_p in (3). For $\chi_p = 0$, we can take such that Λ_p is similar to F_p , hence we may assume $(\Lambda_p: F_p) = m$ is independent of p . For p such that Λ_p is similar to F_p , let w_1^p, \dots, w_m^p be matrix units and for another p let w_1^p, \dots, w_m^p be an arbitrary basis of Λ_p over F_p . We shall set $w_i^p w_j^p = \sum_h c_{i,j,h}^p w_h^p$, $c_{i,j,h}^p \in F_p$. We, now, construct an algebra Λ over A_F as follows; Let Λ be an A_F -algebra with an A_F -free basis w_1, \dots, w_m and with the structure coefficients $c_{i,j,h} = (\dots, c_{i,j,h}^p, \dots) \in A_F$, i.e. $w_i w_j = \sum_h c_{i,j,h} w_h$. Then by Lemma 2, Λ is a central separable algebra over A_F and the class of Λ in $Br(A_F)$ is mapped to the given $\bigoplus_p \chi_p$ by φ . Thus we have proved that φ is an epimorphism of $Br(A_F)$ to $\bigoplus_p \chi(G_p)$.

This construction of the epimorphism φ is essentially due to Azumaya [4].

REMARK 1. For any element $\prod_{\mathfrak{p}} cl(\Lambda_{\mathfrak{p}})$ in the restricted direct product of $Br(F_{\mathfrak{p}})$ with respect to $Br(k_{\mathfrak{p}})$ such that the set of Schur indexes of $cl(\Lambda_{\mathfrak{p}})$ is bounded, we can construct, by the similar argument as in the proof of Proposition 1, a central separable algebra over A_F whose class in $Br(A_F)$ is mapped to the given $\prod_{\mathfrak{p}} cl(\Lambda_{\mathfrak{p}})$ by φ_0 , where “ cl ” means the algebra class.

REMARK 2. Let $\prod_{\iota \in I} K_{\iota}$ be the direct product of fields K_{ι} , $\iota \in I$. For any element $\prod_{\iota \in I} cl(\Gamma_{\iota})$ in the direct product of $Br(K_{\iota})$ such that the set of Schur indexes of $cl(\Gamma_{\iota})$ is bounded, we can construct a central separable algebra over $\prod_{\iota \in I} K_{\iota}$ whose class in $Br(\prod_{\iota \in I} K_{\iota})$ is mapped to the given $\prod_{\iota \in I} cl(\Gamma_{\iota})$ by ψ' , where ψ' is the homomorphism of $Br(\prod_{\iota \in I} K_{\iota})$ to $\prod_{\iota \in I} Br(K_{\iota})$ induced by the projection $\prod_{\iota \in I} K_{\iota} \rightarrow K_{\iota}$.

The proof of this fact is also similar to that of Proposition 1.

To define the epimorphism φ , we used the homomorphism $\varphi_0: Br(A_F) \rightarrow \prod_{\mathfrak{p}} Br(F_{\mathfrak{p}})$. As to φ_0 we have the following

Proposition 3.a. *The homomorphism φ_0 is a monomorphism.*

Proof. Let Λ be a central separable algebra over A_F such that its class in $Br(A_F)$ is contained in the kernel of φ_0 , i.e. $\Lambda_{\mathfrak{p}} = \Lambda \otimes_{A_F} F_{\mathfrak{p}} \sim F_{\mathfrak{p}}$ (similar) for all \mathfrak{p} .

Let $\lambda_1 = 1, \lambda_2, \dots, \lambda_m$ be a set of generators of Λ as an A_F -module. By the proof of Proposition 1, for almost all \mathfrak{p} , the $\mathfrak{O}_{\mathfrak{p}}$ -module $\Gamma_{\mathfrak{p}}$ generated by $\lambda_1 \otimes 1 = \lambda_1^{\mathfrak{p}}, \dots, \lambda_m \otimes 1 = \lambda_m^{\mathfrak{p}}$ in $\Lambda_{\mathfrak{p}}$ is a separable $\mathfrak{O}_{\mathfrak{p}}$ -order, which is of split type since $\mathfrak{O}_{\mathfrak{p}}$ is a Dedekind domain, i.e. there exists a finitely generated free $\mathfrak{O}_{\mathfrak{p}}$ -module $E'_{\mathfrak{p}}$ such that $\Gamma_{\mathfrak{p}}$ is algebra-isomorphic to $\text{Hom}_{\mathfrak{O}_{\mathfrak{p}}}(E'_{\mathfrak{p}}, E'_{\mathfrak{p}})$. So we identify $\Gamma_{\mathfrak{p}}$ with $\text{Hom}_{\mathfrak{O}_{\mathfrak{p}}}(E'_{\mathfrak{p}}, E'_{\mathfrak{p}})$. We shall set $E_{\mathfrak{p}} = E'_{\mathfrak{p}} \otimes_{\mathfrak{O}_{\mathfrak{p}}} F_{\mathfrak{p}}$, then $\Lambda_{\mathfrak{p}} = \Gamma_{\mathfrak{p}} \otimes_{\mathfrak{O}_{\mathfrak{p}}} F_{\mathfrak{p}} = \text{Hom}_{F_{\mathfrak{p}}}(E_{\mathfrak{p}}, E_{\mathfrak{p}})$.

For another \mathfrak{p} , $\Lambda_{\mathfrak{p}}$ is algebra-isomorphic to $\text{Hom}_{F_{\mathfrak{p}}}(E_{\mathfrak{p}}, E_{\mathfrak{p}})$ for some finitely generated $F_{\mathfrak{p}}$ -module $E_{\mathfrak{p}}$. So we identify $\Lambda_{\mathfrak{p}}$ with $\text{Hom}_{F_{\mathfrak{p}}}(E_{\mathfrak{p}}, E_{\mathfrak{p}})$. Let $E'_{\mathfrak{p}}$ be an arbitrary $\mathfrak{O}_{\mathfrak{p}}$ -lattice of $E_{\mathfrak{p}}$, then $E'_{\mathfrak{p}}$ is a finitely generated free $\mathfrak{O}_{\mathfrak{p}}$ -module since $\mathfrak{O}_{\mathfrak{p}}$ is a discrete valuation ring. Let E be the restricted direct product of $E_{\mathfrak{p}}$ with respect to $E'_{\mathfrak{p}}$, then one can easily check that E is a finitely generated projective faithful A_F -module with the canonical A_F -module structure on E , since $1 \leq \text{rank}_{\mathfrak{O}_{\mathfrak{p}}} E_{\mathfrak{p}}' = \text{rank}_{F_{\mathfrak{p}}} E_{\mathfrak{p}} \leq \sqrt{m}$. We define the Λ -module structure on E via the canonical homomorphism $\Lambda \rightarrow \prod_{\mathfrak{p}} \Lambda_{\mathfrak{p}}$. Then we obtain an A_F -algebra homomorphism $\alpha: \Lambda \rightarrow \text{Hom}_{A_F}(E, E)$ by the homothety. To see α is an epimorphism, it suffices to show that $\text{Hom}_{A_F}(E, E)$ is generated by $\prod_{\mathfrak{p}} \lambda_1^{\mathfrak{p}}, \dots, \prod_{\mathfrak{p}} \lambda_m^{\mathfrak{p}}$ as an A_F -module.

For any $f \in \text{Hom}_{A_F}(E, E)$, we shall denote the restriction of f to $E_{\mathfrak{p}}$ by $f_{\mathfrak{p}}$. Then $f_{\mathfrak{p}}$ has the form $\sum_h a_h^{\mathfrak{p}} \lambda_h^{\mathfrak{p}}$ with $a_h^{\mathfrak{p}}$ in $F_{\mathfrak{p}}$ since $\text{Hom}_{F_{\mathfrak{p}}}(E_{\mathfrak{p}}, E_{\mathfrak{p}})$ is generated by $\lambda_1^{\mathfrak{p}}, \dots, \lambda_m^{\mathfrak{p}}$ as an $F_{\mathfrak{p}}$ -module. But $f_{\mathfrak{p}}$ sends $E'_{\mathfrak{p}}$ into $E'_{\mathfrak{p}}$ for almost all \mathfrak{p} ,

so a_h^p must belong to \mathfrak{O}_p for such a p . Thus $a_h = (\dots, a_h^p, \dots)$ is in fact an adèle. Hence f can be expressed by the form $\sum_h a_h \prod_p \lambda_h^p$, $a_h \in A_F$. Therefore α is an epimorphism, so an isomorphism by Corollary 3.2 of [2].

A central separable algebra Λ over A_F is a finitely generated A_F -module so Schur indexes of $\{\Lambda \otimes_{A_F} F_p\}_p$ are bounded. Combining this fact and the proof of Proposition 1, Remark 1 and Proposition 3.1, we get the following

Corollary 4.a. *By the monomorphism φ_0 , $Br(A_F)$ can be identified with the subgroup of the restricted direct product of $Br(F_p)$ with respect to $Br(k_p)$ consisting of the elements whose Schur indexes of p -components are bounded.*

By the similar argument to the proof of Proposition 3.a, we get

Proposition 3.b. *Let $\prod_{i \in I} K_i$ be the direct product of fields K_i (the cardinality of the index set $I = \{i\}$ is utterly arbitrary). Then the canonical homomorphism $\psi'_0: Br(\prod_{i \in I} K_i) \rightarrow \prod_{i \in I} Br(K_i)$ is a monomorphism.*

Similarly to the proof of Corollary 4.a, we get

Corollary 4.b. *By the monomorphism ψ'_0 , $Br(\prod_{i \in I} K_i)$ can be identified with the subgroup of $\prod_{i \in I} Br(K_i)$ consisting of the elements whose Schur indexes of i -components are bounded.*

As mentioned at the beginning of this section, k_p can be imbedded to \mathfrak{O}_p . So $\prod_p k_p$ can be imbedded to $\prod_p \mathfrak{O}_p \subset A_F$, using this imbedding we shall define the homomorphism $\psi: Br(\prod_p k_p) \rightarrow Br(A_F)$.

Theorem 5. *The following sequence is exact.*

$$0 \longrightarrow Br(\prod_p k_p) \xrightarrow{\psi} Br(A_F) \xrightarrow{\varphi} \bigoplus_p \chi(G_p) \longrightarrow 0$$

Proof. Let us consider the following diagram.

$$\begin{array}{ccccccc} 0 & \longrightarrow & Br(\prod_p k_p) & \xrightarrow{\psi} & Br(A_F) & \xrightarrow{\varphi} & \bigoplus_p \chi(G_p) \longrightarrow 0 \\ & & \downarrow \psi_0 & & \downarrow \varphi_0 & & \downarrow \\ 0 & \longrightarrow & \prod_p Br(k_p) & \xrightarrow{\prod_p \theta_p} & \prod_p Br(F_p) & \xrightarrow{\prod_p \eta_p} & \prod_p \chi(G_p) \longrightarrow 0 \end{array}$$

Then by the definitions of arrows, the above diagram is commutative with the exact lower row. From the commutativity of the above diagram, it follows that

ψ is a monomorphism since ψ_0 is a monomorphism by Proposition 3.b. Also it follows that the image of ψ is contained in the kernel of φ . Conversely, let Λ be a central separable algebra over A_F such that its class in $Br(A_F)$ is contained in the kernel of φ . We shall set $\Lambda_{\mathfrak{p}} = \Lambda \otimes_{A_F} F_{\mathfrak{p}}$, then the class of $\Lambda_{\mathfrak{p}}$ in $Br(F_{\mathfrak{p}})$ is contained in the kernel of $\eta_{\mathfrak{p}}$. So by the exactness of the sequence (3), there exists a central separable algebra $\Gamma_{\mathfrak{p}}$ over $k_{\mathfrak{p}}$ such that $\Gamma_{\mathfrak{p}} \otimes_{k_{\mathfrak{p}}} F_{\mathfrak{p}}$ is similar to $\Lambda_{\mathfrak{p}}$. The Schur indexes of $\Gamma_{\mathfrak{p}}$'s are bounded since those of $\Lambda_{\mathfrak{p}}$'s are bounded. So, according to Remark 2 we can construct a central separable algebra Γ over $\prod_{\mathfrak{p}} k_{\mathfrak{p}}$ in such a way that $cl(\Gamma) \in Br(\prod_{\mathfrak{p}} k_{\mathfrak{p}})$ is mapped to $\prod_{\mathfrak{p}} cl(\Gamma_{\mathfrak{p}}) \in \prod_{\mathfrak{p}} Br(k_{\mathfrak{p}})$ by ψ_0 . If we set $\Gamma' = \Gamma \otimes_{\prod_{\mathfrak{p}} k_{\mathfrak{p}}} A_F$, then $cl(\Gamma') \in Br(A_F)$ is mapped to $\prod_{\mathfrak{p}} cl(\Lambda_{\mathfrak{p}}) \in \prod_{\mathfrak{p}} Br(F_{\mathfrak{p}})$ by φ_0 .

Thus Λ and Γ' are similar since φ_0 is a monomorphism by Proposition 3.a. Therefore, the kernel of φ is contained in the image of ψ . And φ is an epimorphism by Proposition 1. This completes the proof of Theorem 5.

Corollary 6. *If k is a finite field, then $Br(A_F)$ is isomorphic to $\bigoplus_{\mathfrak{p}} \chi(G_{\mathfrak{p}})$ and isomorphic to $\bigoplus_{\mathfrak{p}} Br(F_{\mathfrak{p}})$, i.e. $Br(A_F) \cong \bigoplus_{\mathfrak{p}} \chi(G_{\mathfrak{p}}) \cong \bigoplus_{\mathfrak{p}} Br(F_{\mathfrak{p}})$.*

REMARK 3. Let A_K be an adèle ring of the algebraic number field K , then, replacing A_F by A_K and $F_{\mathfrak{p}}$ by $K_{\mathfrak{p}}$, Proposition 1 and Proposition 3.a still hold. Thus we get the isomorphisms $Br(A_K) \cong \bigoplus_{\mathfrak{p}} \chi(G_{\mathfrak{p}}) \cong \bigoplus_{\mathfrak{p}} Br(K_{\mathfrak{p}})$. So our results contain those of Azumaya [4] essentially.

2. The homomorphism of $Br(F)$ to $Br(A_F)$

The ring homomorphism $F \ni a \mapsto (\dots, a, \dots) \in A_F$ (diagonal) induces the homomorphism $\rho: Br(F) \rightarrow Br(A_F)$. In this section we shall determine the kernel of ρ .

Let K be a finite dimensional Galois extension of k with the Galois group G_K . We identify G_K with the Galois group of FK over F , where FK is the field theoretic composition of F and K . Let J_{FK} be the idèle group of FK over K , i.e. the group consisting of all the units of the adèle ring A_{FK} of FK . We fix a prime divisor \mathfrak{P} of FK over K lying above the prime divisor \mathfrak{p} of F over k . Let $G_{K\mathfrak{p}}$ be the decomposition group of \mathfrak{P} , and $\mathfrak{P}_1 = \mathfrak{P}, \dots, \mathfrak{P}_g$ be the complete set of prime divisors of FK over K lying above \mathfrak{p} . If we put $FK_{\mathfrak{p}}^* = \{(\dots, a_{\mathfrak{Q}}, \dots) \in J_{FK} \mid a_{\mathfrak{Q}} = 1 \text{ if } \mathfrak{Q} \neq \mathfrak{P}_1, \dots, \mathfrak{P}_g\}$ the G_K -subgroup of J_{FK} , then we have $H^q(G_K, FK_{\mathfrak{p}}^*) \cong H^q(G_{K\mathfrak{p}}, FK_{\mathfrak{P}}^*)$ by Shapiro's lemma (c.f. Serre [8], p. 128, Exercises) since $FK_{\mathfrak{p}}^* \cong FK_{\mathfrak{P}_1}^* \times \dots \times FK_{\mathfrak{P}_g}^* = \prod_{\bar{\sigma} \in G_K/G_{K\mathfrak{p}}} (FK_{\mathfrak{P}}^*)^{\bar{\sigma}}$ where $FK_{\mathfrak{P}_i}^*$ is the group of all the units of $FK_{\mathfrak{P}_i}$. We shall denote the valuation ring of $FK_{\mathfrak{P}_i}$ by

$\mathfrak{O}_{\mathfrak{P}_i}$, and we shall denote the group of all the units of $\mathfrak{O}_{\mathfrak{P}_i}$ by $U_{\mathfrak{P}_i}$. We shall set $U'_{\mathfrak{p}} = U_{\mathfrak{P}_1} \times \cdots \times U_{\mathfrak{P}_g}$. Then we have $H^q(G_K, U'_{\mathfrak{p}}) \cong H^q(G_K, U_{\mathfrak{P}})$ by the above isomorphism. Now, as J_{FK} can be considered to be the restricted direct product of the G_K -subgroup $FK_{\mathfrak{p}}^*$ with respect to $U'_{\mathfrak{p}}$, $H^q(G_K, J_{FK})$ is mapped surjectively to the restricted direct product $\prod'_{\mathfrak{p}} H^q(G_K, FK_{\mathfrak{p}}^*)$ of $H^q(G_K, FK_{\mathfrak{p}}^*)$ with respect to $H^q(G_K, U'_{\mathfrak{p}})$, since if the $FK_{\mathfrak{p}}^*$ -component of $f \in Z^q(G_K, \prod_{\mathfrak{p}} FK_{\mathfrak{p}}^*)$ is in $Z^q(G_K, U'_{\mathfrak{p}})$ for almost all \mathfrak{p} , then f is a cocycle in $Z^q(G_K, J_{FK})$. The homomorphism $H^q(G_{K_{\mathfrak{p}}}, K_{\mathfrak{P}}^*) \rightarrow H^q(G_{K_{\mathfrak{p}}}, FK_{\mathfrak{P}}^*)$ is a monomorphism for any \mathfrak{p} , since any \mathfrak{p} is unramified, where $K_{\mathfrak{P}}^*$ is the group of all units of $K_{\mathfrak{P}} = \mathfrak{O}_{\mathfrak{P}}/\mathfrak{P}$. Now, we suppose that for $f \in Z^q(G_K, J_{FK})$ there exists $g_{\mathfrak{p}} \in C^{q-1}(G_K, FK_{\mathfrak{p}}^*)$ such that $\partial g_{\mathfrak{p}} = f_{\mathfrak{p}}$ for all the $FK_{\mathfrak{p}}^*$ -component $f_{\mathfrak{p}}$ of f . Then we may assume that $g_{\mathfrak{p}}$ is in $C^{q-1}(G_K, U'_{\mathfrak{p}})$ for almost all \mathfrak{p} , since $H^q(G_{K_{\mathfrak{p}}}, K_{\mathfrak{P}}^*)$ is isomorphic to $H^q(G_K, U_{\mathfrak{p}}^*)$. We define $g \in C^{q-1}(G_K, J_{FK})$ that its $FK_{\mathfrak{p}}^*$ -component is equal to $g_{\mathfrak{p}}$. Then we get $f = \partial g$. Thus we have proved that $H^q(G_K, J_{FK})$ is isomorphic to $\prod'_{\mathfrak{p}} H^q(G_K, FK_{\mathfrak{p}}^*)$. Passing to direct limit and using the well-known isomorphisms: $Br(FK_{\mathfrak{P}}/F_{\mathfrak{p}}) \cong H^2(G_{K_{\mathfrak{p}}}, FK_{\mathfrak{P}}^*)$, $H^2(G_{K_{\mathfrak{p}}}, U_{\mathfrak{p}}) \cong H^2(G_{K_{\mathfrak{p}}}, K_{\mathfrak{P}}^*) \cong Br(K_{\mathfrak{P}}/k_{\mathfrak{p}})$, we get the following

Proposition 7.a. $H^2(G, \bar{J})$ is isomorphic to the subgroup of the restricted direct product of $Br(F_{\mathfrak{p}})$ with respect to $Br(k_{\mathfrak{p}})$, which consists of the elements $\prod_{\mathfrak{p}} cl(\Lambda_{\mathfrak{p}})$ satisfying the following condition: There exists a finite dimensional Galois extension K of k such that $FK_{\mathfrak{P}}$ splits the \mathfrak{p} -component $cl(\Lambda_{\mathfrak{p}})$ for every \mathfrak{p} , where \bar{J} is the idèle group of $\bar{F} = F \cdot \bar{k}$ over \bar{k} .

Similarly, we get the following

Proposition 7.b. $H^2(G, \bar{U})$ is isomorphic to the subgroup of the direct product $\prod_{\mathfrak{p}} Br(k_{\mathfrak{p}})$ of $Br(k_{\mathfrak{p}})$, which consists of the elements $\prod_{\mathfrak{p}} cl(\Gamma_{\mathfrak{p}})$ satisfying the same condition of Proposition 7.a, where \bar{U} is the group of idèle units in \bar{J} .

Now we are ready to prove the following

Theorem 8. The kernel of $\rho: Br(F) \rightarrow Br(A_F)$ is isomorphic to $H^1(G, \bar{CJ})$. More precisely, the following diagram with canonical arrows is commutative with exact rows and columns.

$$\begin{array}{ccc}
& 0 & \\
& \downarrow & \\
\vdots & H^1(G, \bar{H}) & 0 \\
& \downarrow & \downarrow \\
0 \rightarrow H^1(G, \bar{CU}) \rightarrow Br(k) & \rightarrow Br(\prod_{\mathfrak{p}} k_{\mathfrak{p}}) \\
& \downarrow & \downarrow \rho \quad \downarrow \psi \\
0 \rightarrow H^1(G, \bar{CJ}) \rightarrow Br(F) & \rightarrow Br(A_F) \\
& \downarrow & \downarrow \varphi \\
0 \rightarrow H^1(G, \bar{CD}) \rightarrow H^2(G, \bar{H}) \rightarrow \bigoplus_{\mathfrak{p}} \chi(G_{\mathfrak{p}}) \rightarrow \cdots \\
& \downarrow & \downarrow \\
\vdots & \vdots & 0
\end{array}$$

where we use the following notations:

\bar{D} : the divisor group of F/\bar{k}

\bar{H} : the group of principal divisors in \bar{D}

$\bar{CD} = \bar{D}/\bar{H}$: the divisor class group

$\bar{CJ} = \bar{J}/F^*$: the group of idèle classes

$\bar{CU} = \bar{U}/\bar{k}^*$: the group of idèle unit classes.

Proof. The commutativity is easy so we omit it. The exactness of columns is clear by Theorem 5 and by the following commutative diagram of G -modules and G -homomorphisms with exact rows and columns (c.f. Roquette [6], Scharlau [7]).

$$\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow \bar{k}^* \rightarrow \bar{U} \rightarrow \bar{CU} \rightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow \bar{F}^* \rightarrow \bar{J} \rightarrow \bar{CJ} \rightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow \bar{H} \rightarrow \bar{D} \rightarrow \bar{CD} \rightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}$$

The exactness of the lower row is clear by the above diagram since $H^2(G, \bar{D}) \cong \bigoplus_{\mathfrak{p}} \chi(G_{\mathfrak{p}})$ by Shapiro's lemma. Also the homomorphisms $H^1(G, \bar{CJ}) \rightarrow Br(F)$, $H^1(G, \bar{CU}) \rightarrow Br(k)$ are monomorphisms since $H^1(G, \bar{U}) = 0$, $H^1(G, \bar{J}) = 0$. By the following commutative diagrams,

$$\begin{array}{ccc}
 0 & & 0 \\
 \downarrow & & \downarrow \\
 H^1(G, \overline{CJ}) & & H^1(G, \overline{CU}) \\
 \downarrow & \xrightarrow{\rho} & \downarrow \\
 Br(F) & \longrightarrow Br(A_F) & Br(k) \longrightarrow Br(\prod_{\mathfrak{p}} k_{\mathfrak{p}}) \\
 \downarrow & \downarrow \varphi_0: \text{mono.} & \downarrow \downarrow \psi_0: \text{mono.} \\
 H^2(G, \bar{J}) \longrightarrow \prod_{\mathfrak{p}} Br(F_{\mathfrak{p}}) & \text{mono.} & H^2(G, \bar{U}) \longrightarrow \prod_{\mathfrak{p}} Br(k_{\mathfrak{p}}) \\
 & \text{mono.} & \text{mono.}
 \end{array}$$

and by Proposition 7.a, 7.b, we can easily see that the upper row and the middle row are exact. This completes the proof of Theorem 10.

By Tate [9], we have immediately

Corollary 9. *If k is a \mathfrak{p} -adic number field, then the homomorphism $\rho: Br(F) \rightarrow Br(A_F)$ is a monomorphism.*

REMARK 4. By Remark 1, 2 and Proposition 7a, 7b, we can define $\beta: H^2(G, \bar{J}) \rightarrow Br(A_F)$, $\gamma: H^2(G, \bar{U}) \rightarrow Br(\prod_{\mathfrak{p}} k_{\mathfrak{p}})$. With these homomorphisms, the following diagram is commutative with exact rows.

$$\begin{array}{ccccccc}
 0 & \longrightarrow & H^2(G, \bar{U}) & \longrightarrow & H^2(G, \bar{J}) & \longrightarrow & \bigoplus_{\mathfrak{p}} \chi(G_{\mathfrak{p}}) \longrightarrow \cdots \\
 & & \downarrow \gamma & & \downarrow \beta & & \parallel \\
 0 & \longrightarrow & Br(\prod_{\mathfrak{p}} k_{\mathfrak{p}}) & \xrightarrow{\psi} & Br(A_F) & \xrightarrow{\varphi} & \bigoplus_{\mathfrak{p}} \chi(G_{\mathfrak{p}}) \longrightarrow 0
 \end{array}$$

The homomorphism β is given by the crossed product. In fact, for any finite Galois extension K of k , A_{FK} is nothing else $A_F \otimes K$. So A_{FK}/A_K is Galois extension of rings. Since φ_0 is a monomorphism, the homomorphism β is completely determined by the composite $\varphi_0 \circ \beta: H^2(G, \bar{J}) \rightarrow \prod_{\mathfrak{p}} Br(F_{\mathfrak{p}})$. And the composite $\varphi_0 \circ \beta$ is obtained by the componentwise crossed product. So our assertion follows immediately. But the author does not know whether β is an epimorphism or not.

OSAKA UNIVERSITY

References

[1] E. Artin and G. Whaple: *Axiomatic characterization of fields by the product formula for valuations*, Bull. Amer. Math. Soc. **51** (1945), 469-492.

- [2] M. Auslander and O. Goldman: *The Brauer group of a commutative ring*, Trans. Amer. Math. Soc. **97** (1960), 367-409.
- [3] G. Azumaya: *On maximally central algebras*, Nagoya Math. J. **2** (1951), 119-150.
- [4] G. Azumaya: *The Brauer group of an adèle ring*, NSF Adv. Sci. Sem. Bowdoin Coll. (1966).
- [5] H. Hasse: *Die Struktur der R. Brauerschen Algebrenklassengruppe über einem algebraischen Zahlkörper*, Math. Ann. **107** (1933), 731-760.
- [6] P. Roquette: *Splitting of algebras by function fields of one variable*, Nagoya Math. J. **27** (1966), 625-642.
- [7] W. Scharlau: *Über die Brauer-Gruppe eines algebraischen Funktionenkörpers in einer Variablen*, J. Reine Angew. Math. **239/240** (1969), 1-6.
- [8] J.-P. Serre: *Corps locaux*, Hermann, Paris, 1962.
- [9] J. Tate: *WC-groups over p -adic fields*, Sém. Bourbaki **156** (1957).
- [10] E. Witt: *Schiefkörper über diskret bewerteten Körpern*, J. Reine Angew. Math. **176** (1937), 153-156.
- [11] S. Yuan: *On the Brauer group of local fields*, Ann. of Math. **82** (1965), 434-444.