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Chapter 1 

General Introduction. 

Supramolecular chemistry based on molecular recognition 

Various kinds of body tissue, such as epidermis, gene, and muscle are highly organized 

by biological molecules.  Organizational structures are derived from non-covalently 

molecular recognitions such as hydrogen bond, coordination bond and hydrophobic 

interaction.  The mechanism of molecular recognitions should be cleared to understand for 

not only for materials science but also for biochemistry.  Science of molecular recognitions 

led to Supramolecualr chemistry in material science.  Supramolecular chemistry was defined 

by Lehn as “a chemistry beyond molecules”.  After that, Cram,
1–3

 Lehn,
4–10

 and Pedersen,
11, 

12 
who won the Nobel Prize for their works in the division of chemistry in 1987.  The field of 

supramolecular chemistry started from the concept of “receptor” and “lock and key”.
13

  In 

supramolecular chemistry, study the interactions between cyclic host molecule and guest 

molecule was called “host–guest chemistry”.  Crown ethers and cryptands selectively 

include alkali metal cations (Figure 1-1).  Calixarenes
14–17

 and cavidands
18–22

 form inclusion 

complexes with aliphatic guest molecules such as adamantane and fullerene C60.  The 

formation of inclusion complexes based on the molecular recognition.  Recently, 

supramolecular chemistry has become a tool to introduce function into polymers and 

biomaterials.   

 

Figure 1-1.  Structures of a) crown ether, b) cryptand and c) calixarene.  
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Cyclodextrines 

 

 

 

 

Figure 1-2.  Properties and chemical structures of cyclodextrins. 

 

Cyclodextrins (CDs, Figure 1-2)
23–28

 are cyclic oligosaccharides comprising d-glucose 

units, linked by a 1,4-glycosidic bond.  The three most important members of CD family are 

αCD, βCD, and γCD, which possess, respectively, six, seven, and eight glucose units, 

respectively.  CDs take torus cone shape due to the hydrogen bonds among hydroxyl groups.  

Therefore, CDs have two different faces, one is the hydrophilic outer surface of the cavity and 

the other is the hydrophobic cavity.  In aqueous media, CDs selectively form inclusion 

complexes with hydrophobic guest compounds that match the hydrophobic cavity sizes.  

Cramer
29–30

 and Bender
31, 32 

reported that CDs form inclusion complexes with various kinds 

of molecules with different molecular weights in water.  Later, Breslow
33–36

 utilized CDs as 

artificial hydrolysis enzymes for activated esters.   
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Supramolecular polymers 

Many supramolecular polymers have been prepared using noncovalent interactions 

such as hydrogen bonding,
37–39

 metal-coordination,
40

 π–π interaction
41–43

 electrostatic 

interactions,
44

 and hydrophobic interaction
45, 46

 (Figure 1-3a–c).  Harada et al. reported 

linear,
47–49

 helical polymer
50

 and interlocked poly-[2]rotaxane
51

 based on aliphatic moiety 

modified CDs (Figure 1-3d, e).  Recently, supramolecular polymerization with living 

mechanism has been reported.
52

 

 

Figure 1-3.  Molecular structure and formation of supramolecular polymers generated by a) 

metal coordination, b) hydrogen bonding, c) π–π interaction, d) host–guest interaction and e) 

mechanically inter locked supramolecular polymer. 

  

a) b)

c)

d) e)

Metal coordiation36

π-π interaction41

host-guest interaction50 interlocked poly [2]rotaxane51

hydrogen bonding37
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Molecular topology; Rotaxanes, catenanes and knots 

Rotaxanes (Figure 1-4a) and catenanes (Figure 1-4b) are mechanically interlocked 

molecular architecture consisting of two or more interlocked ring and axis components.  The 

interlocked components cannot be dissociated without breaking covalent bonds of molecules.  

Names of structure were derived from Latin words: rota = ring, axis = axle, and catena = 

chain.  Molecular knots are globular shape interlocked architecture consisting of only one 

linear molecule (Figure 1-4c).   

 

Figure 1-4.  Structure images of a) rotaxane, b) catenane and c) knot. 

First synthesis of rotaxane was reported by Harrison
53

 in 1967.  They premeditate to 

obtain the axle introduced macrocycle.  After that, preparation methods of rotaxanes in high 

yield were reported by using hydrogen bonding,
54–56

 π–π interaction,
57–59

 coordination 

bonding
60, 61

 and hydrophobic interaction.  Ogino
62

 prepared a rotaxane containing CD and 

alkyl chain which was stabilized by bulky metal crathlate stoppers (Figure 1-5a).  Kaifer
63

 

reported the rotaxane stabilized by ammonium cation stopper (Figure 1-5b).  Harada
64

 used 

2,4,6-trinitrobenzenesulfonic acid as a stopper (Figure 1-5c).  
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Figure 1-5. Structures of a) Ogino,
62

 b) Kaifer
63

 and c) Harada
64

’s rotaxane containing CDs.   

 In 1992, Harada and Kamachi
65–68

 first reported polyrotaxane with polyethylene 

glycol threaded by many αCD units.  Moreover, they obtained a tubular polymer called 

molecular tube derived from polyrotaxane by cross-linking hydroxyl groups of CDs using 

epichlorohydrin (Figure 1-6).   

 

Figure 1-6.  Synthetic route of polyrotaxane
66, 67

 and molecular tube.  

a) b)

c)
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Catenanes were first synthesized by Wasserman
69

 in 1960.  To increase the isolated 

yield of catenans, Sauvage used coordination complexes as a template
70

 (Figure 1-7a).  

Stoddart reported using donner–acceptor interaction between bipyridinium cation and 

dioxynaphthalene for temporary joint of two rings before final closing reaction
71

 (Figure 

1-7b).  Borromean links
72

 was a kind of catenanes which rings were interlocked each other. 

 

Figure 1-7.  Structures of catenane which was reported by a) Sauvage
70

 and b) Stoddart.
71

 

Molecular knots with coordination complex consisting of cupper (I) and 

phenanthroline as a template were synthesized by Sauvage in 1999.
73

  The trefoil knot has 

chirality (Figure 1-8a).  Later, Leigh
74

 used two types of metal complex as template to 

prepare the molecular knot (Figure 1-8b)  

 

Figure 1-8.  Structure of a) Sauvage’s trefoil knot
73

 and b) Leigh’s trefoil knot by using 

metal template.
74

  

a) b)

b)a)
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Molecular machines 

Molecular motors in biological systems are roughly distinguished between linear 

molecular motors, such as myosin, kinesin and dynein
75–78

 from rotary motors, such as 

F0F1-ATP synthase and F1-ATPase.
79–81

  Rotaxanes are considered to be a good example of 

controlled molecular movement in both linear and rotary molecular motor systems.  Recently, 

studies on controlled synthetic linear
82, 83

 and rotary molecular motors have been reported by 

using rotaxane as building blocks, which have achieved by controlling rotary movement.
84–87

  

Harada et al. have previously reported that the linear movement of α-cyclodextrin (α-CD) in 

pseudo-[2]rotaxane with dicationic axle molecules should be controlled by the terminal group 

of axle molecules.
88, 89

  Various biological molecular motors, such as myosin, kinesin, and 

dynein, can convert energy from ATP hydrolysis into a linear motion.  Myosin and actin 

filaments in muscle cells insert into each other to form an alternating layered structure and 

slide to demonstrate contraction and expansion behaviour in the power stroke process.
90–92

  

The sliding of myosin and actin filaments has inspired the realization development of 

artificial linear motors using supramolecular complexes (Figure 1-9).   

 

Figure 1-9.  Illustration of biological molecular motor green line is actin, and orange line is 

myosin. 

 

The concept of artificial molecular machines was proposed in historic lecture “There's 

Plenty of Room at the Bottom” by Feynman in 1959.  General preparation method of 

molecular machines is the introducing residues responsive to external stimuli.  Aida et al. 

reported photo-generated molecular pedal driven by photo-isomerization of azobenzene.
93

  

The molecular pedal shows mechanical twist of the second molecule in a controlled and 
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reversible manner (Figure 1-10a).  Kelly
94

 and Feringa
95, 96

 reported that molecular motors 

showed photo and thermal responsive rotary motion (Figure 1-10b, c).   

Figure 1-10.  Examples of molecular machine generated by external stimuli.  a) Aida’s 

molecular pedal
93

, b) Kelly’s
94

 and c) Feringa’s
95

 molecular motors.  

 

Mechanically interlocked molecules are used transduction of micro-Brownian motion 

to linear motion.  Molecular shuttles are rotaxanes in which the ring component moves from 

are position to another axis and vice versa.  Stoddart
97, 98

 reported stimuli responsive 

molecular shuttles (Figure 1-11a).  Sauvage
99

 and Leigh
100

 manipulated the orbit of motion 

of cyclic molecules in catenane systems (Figure 1-11b, c).    

 

a) b) c)
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Figure 1-11.  a) Supramolecular elevator reported by Stoddart
97

 and b) molecular shuttle 

reported by Sauvage.
99

  c) Rotating catenane in one direction reported by Leigh.
100

  

b)a)

c)

(1) 350 nm, CH2Cl2, 5 min, 67%; 

(2)     254 nm, CH2Cl2, 20 min, 50%; 

(3)     heat, 100 °C, C2H2Cl4, 24 h, 100%; catalytic ethylenediamine, 50 °
C, 48 h, 65%; or catalytic Br2, 400–670 nm, CH2Cl2, -78 °C, 10 min, 100%.
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[c2]Daisy chains 

[c2]Daisy chains (doubly-threaded rotaxane) incorporated two cyclic and axis 

components are one of mechanically interlocked molecules (Figure 1-12).  The 

doubly-threaded rotaxane shows the contraction and expansion behaviour through sliding 

motion by changing affinity between ring and axis components by external stimuli.  The 

sliding motion reminds supramolecular chemists the motion of muscle fibril.  In the field of 

supramolecular chemistry, [c2]daisy chains are important components to realize artificial 

molecular muscles.
101

  The specific sliding actuation of [c2]daisy chains based on host–guest 

conjugates is controlled by external stimuli, e.g., chemicals,
102, 103

 pH,
104, 105

 redox
106

 and 

light.
107–110

   

 

 

Figure 1-12.  Schematic illustration of expansion and contraction of [c2]daisy chain. 

 

Previously, Harada developed the [c2]daisy chain formed from αCD and an axis 

component, i.e., cinnamic acid residue modified with an oligomethylene chain.
111

  Position 

of αCD units in [c2]daisy chain is controlled by solvent polarity.  In DMSO solution, 

[c2]daisy chain takes an expanded state via the formation of the inclusion complex of αCD 

with cinnamic acid.  Increasing the water volume % of solvent, [c2]daisy chain takes 

contracted because of the hydrophobic oligomethylene chain (Figure 1-13a).  Furthermore, 

to realize larger contraction and expansion property, poly(ethylene glycol) (PEG) chain is 

used in photo-responsive [c2]daisy chain (Figure 1-13b).
112

  The heptamethylene chain at the 
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end of PEG chain functions as the second station for αCD units.  The association constant 

(K) of αCD with trans-azobenzene (2000 M
-1

) is larger than that with cis-azobenzene (50 M
-1

).  

On the other hand, K with heptane is 630 M
-1

.  The [c2]daisy chain takes an expanded state 

due to the formation of inclusion complex between αCD and trans-azobenzene.  After UV (λ 

= 365 nm) light irradiation, trans-azobenzene isomerizes to cis-form.  The αCD unit includes 

the heptamethylene chain more preferably than the cis-azobenzene unit.
 
 

 

 

Figure 1-13.  [c2]Daisy chain based on αCD and hydrophobic guest molecules.  a) Change 

in the water proportion in the medium using cinnamic acid as guest molecule.
110

  b) 

Association and dissociation of αCD with azobenzene by light irradiation system.
112 

a) 

b) 
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Sauvage
111

 reported “molecular muscle’’ formed from crown ether containing 

phenanthroline components and terpyridine components.  The exchange of transition-metals 

triggered the contraction and expansion properties
 
(Figure 1-14). 

Figure 1-14.  Sauvage
111

’s molecular muscle.  The interconversion between contraction and 

expansion states was induced by the exchange of metal ion.  

 

Easton also reported a photo-responsive [c2]daisy chain based on αCD and a stilbene 

derivative.
113

  trans-Stilbene forms the inclusion complex with αCD in aqueous solution.  

After UV (λ = 340 nm) irradiation, the inclusion complex dissociates due to the low affinity 

for cis-stilbene.  The change in the length of the [c2]daisy chain is triggered by association 

and dissociation of the inclusion complex between the stilbene unit and αCD (Figure 1-15).   

 

Figure 1-15.  The two state of the [c2]daisy chain elaborated and studied by Easton et al.
113   
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Kaneda prepared αCD and azobenzene based on oligo-[c2]daisy chain by 

cross-linking with α,α’-dibromo-p-xylene.
107

  Under UV (λ = 365 nm) irradiation,  

trans-azobenzene isomerizes to cis-azobenzene and the obtained oligomer contracts due to 

dissociation of the inclusion complex of αCD with azobenzene residues.  Under continuous 

Vis (λ = 430 nm) light irradiation, the contracted oligomer is restored to the initial form.  

After that, Stoddart reported a polymer of pH-responsive [c2]daisy chain consisting of crown 

ether and ammonium cation.  The [c2]daisy chains in polymer takes an expanded state in 

organic media due to high affinity between crown ether and ammonium cation.  When the 

ammonium units are deprotonated, the crown ether includes the bipyridinium units more 

favorably than the amine units.  Because an affinity of crown ether and bipyridinium is 

higher than that crown ether and nonionic amino group.  Upon addition of an acid, the length 

of polymer restores to initial state again (Figure 1-16).
114

  These structural change causes the 

contraction of polymers.  However there is no report of the materials based on the [c2]daisy 

chain polymers. 

 

Figure 1-16. Contraction and expansion of [c2]daisy chain polymer based on the 

non-covalent interaction between crown ether and ammonium cation units.
114
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Actuation of materials caused by structural change of polymers 

The expansion of artificial molecular machines in the field of nanotechnology into 

macroscopic scale is an important research subject.  Researchers in supramolecular 

chemistry have been tried to introduce the molecular machines into polymer networks.  

Stoddart reported a [3]rotaxane which were connected on the gold surface (Figure 1-17a).
115

  

The gold substrate was bent by the sliding motion of [3]rotaxanes according responsive to 

redox stimulus.  Leigh reported movement of drops on the glass substrate driven by the 

structural change of [2]rotaxanes (Figure 1-17b).
116

  Recently, Giussepone et al. showed the 

contraction of organogel caused by rotating motion of molecular motor inspired by Feringa 

(Figure 1-17c).
117

   

 

Figure 1-17.  a) Gold surface actuation caused by shuttling of [3]rotaxane.
115

   

b) Photo-induced transport of diodemethane drop.
116

  c) Macroscopic contraction of gel 

caused by rotation of molecular motor.
117

  

a)

b) c)
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Macroscopic self-assembly though molecular recognition 

Molecular recognition properties in macroscopic scale is reported by Harada in 2011 

(Figure 1-18a).
118–120

  They prepared host gels (CD gels) and guest gels by modification of 

polyacrylamide-based gel with CD and guest residues, respectively.  When both gel were 

through in contact under wet conditions, αCD gel adhered to n-butyl gel.  βCD gel adhered 

to adamantane gel (Ad gel).  These selectivities depend on the association constant of CD 

with guest molecules.  The association constant of αCD with n-butyl group higher than that 

of the Ad group.  βCD shows a high affinity for the Ad group.  External stimuli such as 

photo,
121

 chemical,
122–124

 temperature,
125

 pH
126

 and hydrogen bonding
127

 controlled the 

formation of macroscopic assemblies through molecular recognition.  When 

trans-azobenzene modified hydrogel (Azo gel) was shaken with αCD gel and βCD gel on 

water, Azo gel selectively adhered to αCD gel (Figure 1-18b).  Because the affinity of αCD 

with trans-Azo is higher than that of βCD.  In contrast, after UV light irradiation, Azo gel 

selectivity adhered to βCD gel due to the high affinity between βCD and cis-Azo.   

In the previous works, host and guest molecules were introduced into the different 

polymer scaffold.  CDs recognize guest molecules on the hydrogel surfaces.  The complex 

formation produces the selective adhesion properties like cell adhesion and cell-sorting 

systems.  If host and guest units are introduced into the same hydrogel, the complex 

formation inside the host–guest gel will realizes functional properties, such as, highly elastic, 

tough, and self-healing through the molecular recognition.  In particular, host–guest 

interactions are advantageous due to their reversibility and responsiveness to various external 

stimuli.  Harada et al. have developed self-healing supramolecular hydrogels based on host–

guest interactions at the side chain of water-soluble polymers.  Harada et al. have proposed 

two different effective approaches to prepare supramolecular self-healable materials through 

host–guest interactions: (1) from a mixture of host and guest polymers and (2) from 

polymerization of host and guest monomers.  The self-healing ability of supramolecular 
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hydrogels based on poly(acrylic acid) modified host and guest molecules (βCD polymer and 

ferrocene (Fc) polymer exhibits a redox responsive sol–gel transition.
128

  Even if the gel is 

cut in two using a razor, the cut surface disappears and self-healing is completed in several 

hours.  After 24 hours, the gel recovers 85% of the initial strength (Figure 1-18c).
129

  To 

obtain effective self-healing materials, the complex with the βCD monomer and the Ad 

monomer can be copolymerized with acrylamide to give a self-healable hydrogel.  When 

two freshly cut surfaces come into contact, the two pieces adhere to form a single gel, and the 

initial gel strength is almost completely recovered after 24 hours (Figure 1-18d).
130

  In 

contrast, when lower molar contents of βCD and Ad (< 1mol%) gave a high elastic hydrogel 

(Figure 1-18e).
130

  Moreover, βCD-Ad gel which is prepared under over 2 mol/kg, showed 

high stretching properties (more than 1000%)  (Figure 1-18f).
131

  The tough and flexible 

hydrogel can be used to a scratch coat. 
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Figure 1-18.  a) Visualization of selective molecular recognition on a macroscopic scale.
118

  

b) Photo-switchable gel assembly through isomerization of Azo.
127

  c) Redox generated 

self-healing gel through change of oxidation state of Fc.
128

 d) Self-healing gel through 

formation of inclusion complex between βCD and Ad.
129

 e) Highly stretchable hydrogel 

consisting of βCD and Ad.
130

  f) Tough and flexible hydrogel prepared from high molar 

content of monomers.
131

 

  

a)

b)

c)

d)

e)

f)
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Supramolecular hydrogels cross-linked by host guest inclusion complex 

 The supramolecular hydrogels were formed by mixing of CD polymer and guest 

polymer in aqueous media.  The mixture of Azo modified poly(acrylic acid) and αCD 

modified curdlan formed a photo-responsive sol–gel switching system (Figure 1-19a).
132

  

Before UV light irradiation, the αCD unit recognizes the Azo unit to form an inclusion 

complex which functions as a reversible cross-linker.  Irradiating with UV light converts the 

gel into a sol.  However, visible light or heating (60 °C) induces back isomerization of the 

cis-Azo group to the trans-Azo group.  The viscosity changes of the polymer mixture can be 

repeatedly induced using UV and visible lights. 

Inclusion complexes act as cross-linking points between the polymers to yield 

supramolecular hydrogels.  This material does not have any covalent cross-links.  If 

introducing covalent cross-links partly into materials, the supramolecular materials will show 

an expansion–contraction behaviour by external stimuli.  On the basis of the concept, stimuli 

responsive contraction and expansion hydrogels are designed.  The hydrogel with the 

contraction and expansion properties were prepared by the copolymerization of azobenzene 

and αCD monomers with a covalent cross-link molecule (Figure 1-19b).
133

  When the 

αCD-Azo gel was irradiated with UV light, the volume of the hydrogel was increased.  

Subsequently, irradiating with Vis light restores the initial volume due to the reformation of an 

inclusion complex with the αCD and Azo units.  The αCD-Azo gel bends in the same 

direction as the incident light because the volume of the surface exposed to UV light increases, 

while non-exposed surface remains unchanged.  Hence, the strain deformation between the 

exposed and unexposed areas creates the flex behaviour of αCD-Azo gels.  This concept can 

adapt other supramolecular actuator by choosing suitable stimuli-responsive molecules.  

When introducing βCD as a host and Fc as guest molecules, the βCD-Fc gel exhibited the 

contraction–expansion behaviour responsive to redox stimulus (Figure 1-19c).
134
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Figure 1-19.  a) Photo-generated sol–gel transition.
132

  b) Photo-responsive actuator 

consisting of αCD and Azo.
133

  c) Redox responsive gel actuator consisting of βCD and 

Fc.
134

  

a)

b)
c)
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Scope and outline of this thesis 

 The present thesis focuses on the preparation of supramolecular molecules and 

materials with the contraction and expansion properties based on photo-responsive [c2]daisy 

chain molecule.  The sliding motion of [c2]daisy chain is caused by a change in the affinity 

between αCD and azobenzene via photo-isomerization.  When introducing the [c2]daisy 

chain units in supramolecular materials, the supramolecular materials with [c2]daisy chain is 

expected to demonstrate the contraction and expansion properties like biological skeletal 

muscle.  To demonstrate the actuation mechanism, the author investigates mechanical 

properties of the gel materials resulting from the sliding motion of [c2]daisy chain.   

 In Chapter 2, the [c2]daisy chain consisting of Azo and αCD ([c2]DMTAzoCD2) was 

prepared to investigate the sliding motion and the photo-isomerization properties.  

[c2]DMTAzoCD2 was derived from diethylene glycol (DEG) with the amino group at the end 

and Azo modified αCD (AmAzoCD).  Under irradiation with UV (λ = 365 nm) for 60 min, 

the trans-Azo units in [c2]DMTAzoCD2 is isomerized to the cis-isomers.  In contrast, 

cis-[c2]DMTAzoCD2 came back to trans-[c2]DMTAzoCD2 within 80 s by under Vis light 

irradiation because the isomerization efficiency of Azo in the αCD cavity is suppressed.  As 

a result, after UV light irradiation, the αCD unit of [c2]DMTAzoCD2 move onto the 

azobenzene unit of the DEG chain. 

 

 In Chapter 3, the supramolecular hydrogel was prepared by polycondensation 

between four-arm poly(ethylene glycol) (tetraPEG) and inclusion complex of AmAzoCD in 

water.  The hydrogel with the [c2]daisy chain ([c2]AzoCD2 hydrogel) showed the 
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contraction behaviour by UV light irradiation.  Subsequence, Vis light irradiation, the 

contracted [c2]AzoCD2 hydrogel was restored to the initial form.  Irradiating the UV light, 

the plate shape [c2]AzoCD2 hydrogel bent toward to the light source.  In contrast, the 

azobenzene gel (Azo hydrogel) showed opposite behaviour to that of the [c2]AzoCD2 

hydrogel.  Young’s moduli of each hydrogels before and after UV irradiation were 

characterized by evaluated by tensile test.  The contraction and expansion properties of the 

[c2]AzoCD2 hydrogel was caused by the sliding motion of [c2]daisy chain.  On the other 

hand, the expansion and contraction behaviour of the Azo hydrogel was caused by change in 

the cross-linking density. 

   

In Chapter 4, The [c2]AzoCD2 xerogel lyophilized from the [c2]AzoCD2 hydrogel 

shows rapid actuation by UV irradiation.  In contrast, the Azo xerogel did not show the 

behaviour.  The results of tensile test indicate that the [c2]AzoCD2 xerogel which irradiated 

by UV light a higher rupture strain than non-irradiated one.  In contrast, rupture strength of 

each xerogels did not change. 

 

 

 



  22  

 

References 

1. Timko, M. J., Helgeson, R. C., Newcomb, M., Gokel, G. W., Cram, D. J. Structural 

parameters that control association constants between polyether host and 

alkylammonium guest compounds. J. Am. Chem. Soc. 183, 7097–7099 (1974).   

2. Cram, D. J., Karbach, S., Kim, Y. H., Baczynskyj, L., Kallemeyn Cram, G. W. Shell 

closure of two cavitands forms carcerand complexes with components of the medium 

as permanent guests. J. Am. Chem. Soc. 219, 2575–2576 (1983). 

3. Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes. (Nobel 

Lecture) Angew. Chem., Int. Ed. Engl. 27, 1009–1112 (1990). 

4. Lehn, J.-M. Cryptates: inclusion complexes of macropolycyclic receptor molecules. 

Pure Appl. Chem. 50, 872–892 (1978).  

5. Lehn, J.-M. Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. 

Chem. Res. 11, 49–57 (1978).  

6. Lehn, J.-M. Supramolecular Chemistry: Receptors, Catalysts, and Carriers. Science 

227, 849–856 (1985).  

7. Lehn, J.-M. Supramolecular Chemistry- Scope and Perspectives: Molecules- 

Supermolecules- Molecular Devices J. Incl. Phenom. 6, 351-396 (1988).  

8. Lehn, J.-M. Perspectives in Supramolecular Chemistry-From Molecular Recognition 

towards Molecular Information Processing and Self-organization. Angew. Chem., Int. 

Ed. Engl. 27, 1304–1319 (1990).  

9. Lehn, J.-M. Supramolecular chemistry: Concepts and Perspectives; VCH: New York, 

(1995).   

10. Lehn, J.-M. Toward complex matter: Supramolecular chemistry and self-organization. 

Proc. Natl. Acad. Sci. U.S.A. 99, 4763–4768 (2002). 

11. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. 

Soc. 89, 7017–7036 (1967).  

12. Pedersen, C. J. The Discovery of Crown Ethers (Noble Lecture). Angew. Chem., Int. 

Ed. Engl. 27, 1021–1027 (1988). 

13. Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Deutsch. 

Chem. Ges. 27, 1894, 2985–2993 (1984). 

14. Gutsuche, C. D. Calixarenes. Acc. Chem. Res. 16, 161–170 (1983).   

15. vanDienst, E., Bakker, W. I. I. Engbersen, J. F. J., Verboom, W., Reinhoudt, D. N. 

Calixarenes, chemical chameleons. Pure Apply. Chem. 65, 387–392 (1993).  

16. Lhoták1, P., Shinkai, S. Calix[n]arenes-Powerful Building-Blocks of Supramolecular 

Chemistry. Terahedron 53, 963–974 (1993). 

17. Haino, T., Kobayashi, M., Chikaraishi M., Fukazawa, Y. A new self-assembling 

capsule via metal coordination. Chem. Commun. 18, 2321–2323 (2005) 

18. Rudkevich, D. M., Hilmersson, G., Rebek, J. Jr. Intramolecular Hydrogen Bonding 



  23  

 

Controls the Exchange Rates of Guests in a Cavitand. J. Am. Chem. Soc. 41, 9911–

9912 (1997).  

19. Purse, B. W., Ballester, P., Rebek, J. Jr. Reactivity and Molecular Recognition:  

Amine Methylation by an Introverted Ester. J. Am. Chem. Soc. 125, 14682–14683 

(2003). 

20. Gissot, A., Rebek, J. Jr. A Functionalized, Deep Cavitand Catalyzes the Aminolysis 

of a Choline Derivative. J. Am. Chem. Soc. 126, 7424–7425 (2004) 

21. Yamanaka, M., Toyoda, N., Kobayashi, K. Hybrid Cavitand Capsule with Hydrogen 

Bonds and Metal−Ligand Coordination Bonds: Guest Encapsulation with Anion 

Assistance. J. Am. Chem. Soc. 131, 9880–9881 (2009). 

22. Yamanaka, M., Kawaharada, M., Nito, Y., Takaya, H., Kobayashi, K. Structural 

Alteration of Hybrid Supramolecular Capsule Induced by Guest Encapsulation. J. 

Am. Chem. Soc. 133, 16650–16656 (2011). 

23. Szejtli, J. Cycrodextrins and Their inclusion complexs. Akadémiai Kiadó: Budapest, 

(1982).   

24. Connors, K. A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 97, 

1325–1352 (1997).  

25. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 

98, 1743–1752 (1998).  

26. Dodziuk, H., Cyclodextrins and Their Complexes. Wiley-VCH: Weiheim, (2006).  

27. Easton, C. J.; Lincoln, S. F. Modified cyclodextrins: scaffolds and templates for 

supramolecular chemistry. Imperial College Press; Distributed by World Scientific 

Pub. Co.: London River Edge, NJ, (1999).   

28. Cramer, F. Über Einschlußverbindungen, I. Mitteil.: Additionsverbindungen der 

Cycloamylosen. Chem. Ber. 84, 851–851 (1951). 

29. Cramer, F., Einschlußverbindungen der Cyclodextrine. Angew. Chem. 64, 136 

(1952).  

30. Cramer, F., Über Einschlußverbindungen, V. Mitteil.: Basenkatalyse durch 

innermolekulare Hohlräume. Chem. Ber. 86, 1576–1581 (1953). 

31. Bender, M. L. Cycloamyloses as Catalysts. Adv. Catal. 23, 209–261 (1973). 

32. Bender, M. L., Komiyama, M. Cyclodextrin Chemistry. Springer-Verlag: Berlin; New 

York, (1978).  

33. Breslow, R. Biomimetic control of chemical selectivity. Acc. Chem. Res. 13, 170–

177 (1980). 

34. Breslow, R. Artificial enzymes. Science 218, 532–537 (1982). 

35. Breslow, R. Artificial Enzymes. Chem. Ber. 19, 126 (1983). 

36. Breslow, R. Biomimetic Chemistry and Artificial Enzymes: Catalysis by Design. Acc. 

Chem. Res. 28, 146–153 (1995). 

37. Lehn, J.-M., Rigault, A., Siegel, J., Harrowfield, J., Chevrier, B., Moras, D. Proc. 



  24  

 

Natl. Acad. Sci. USA. 84, 2565 (1987). 

38. Beijer, F. H., Kooijman, H., Spek, A. L., Sijbesma, R. P., Meijer, E. W., 

Self-Complementarity Achieved through Quadruple Hydrogen Bonding. Angew. 

Chem. Int. Ed. 37, 75–78 (1998). 

39. Sijbesma, R. P., Beijer, F. H., Brunsveld, L., Folmer, B. J. B., Hirschberg, J. H. K. K., 

Lange, R. F. M., Lowe, J. K. L., Meijer, E. W. Reversible polymers formed from 

self-complementary monomers using quadruple hydrogen bonding. Science 278, 

1601–1604 (1997). 

40. Piepenbrock, M. O. M., Lloyd, G. O., Clarke, N., Steed, J. W. Metal- and 

Anion-Binding Supramolecular Gels. Chem. Rev. 110, 1960–2004 (2010). 

41. Hasegawa, M., Iyoda, M. Conducting supramolecular nanofibers and nanorods. 

Chem. Soc. Rev. 39, 2420–2427 (2010). 

42. Haino, T., Matsumoto, Y., Fukazawa, Y. Supramolecular Nano Networks Formed by 

Molecular-Recognition-Directed Self-Assembly of Ditopic Calix[5]arene and 

Dumbbell [60]Fullerene. J. Am. Chem. Soc. 127, 8936–8937 (2005). 

43. Haino, T., Hirai, E., Fujiwara, Y., Kashihara, K. Supramolecular Cross-Linking of 

[60]Fullerene-Tagged Polyphenylacetylene by the Host–Guest Interaction of 

Calix[5]arene and [60]Fullerene. Angew. Chem., Int. Ed. Engl. 49, 7899–7903 

(2010). 

44. Danjo, H., Hirata, K., Yoshigai, S., Azumaya, I., Yamaguchi, K. Back to Back Twin 

Bowls of D3-Symmetric Tris(spiroborate)s for Supramolecular Chain Structures. J. 

Am. Chem. Soc. 131, 1638–1639 (2009). 

45. Liu, Y., Yu, Y., Gao. J., Wabg, Z., Zhang, X., Water-Soluble Supramolecular 

Polymerization Driven by Multiple Host-Stabilized Charge-Transfer Interactions. 

Angew. Chem. Int. Ed. 49, 6726–6729 (2010). 

46. Zhang, Z, Luo. Y., Chen, J., Dong, S., Yu, Y., Ma, Z., Huang, F., Formation of Linear 

Supramolecular Polymers That Is Driven by C[BOND]H⋅⋅⋅π Interactions in Solution 

and in the Solid State. Angew. Chem. Int. Ed. 1433–1437 (2011). 

47. Miyauchi, M., Harada, A. Construction of Supramolecular Polymers with Alternating 

α-, β-Cyclodextrin Units Using Conformational Change Induced by Competitive 

Guests. J. Am. Chem. Soc. 126, 11418–11419 (2004). 

48. Ohga, K., Takashima, Y., Takahashi, H., Kawaguchi, Y., Yamaguchi, H., Harada, A., 

Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic 

Guest Molecules: Control of Structure by Linker Flexibility. Macromolecules. 38, 

5897–5904 (2005). 

49. Miyauchi, M., Hoshino, T., Yamaguchi, H., Kamitori, S., Harada Harada, A. A 

[2]Rotaxane Capped by a Cyclodextrin and a Guest:  Formation of Supramolecular 

[2]Rotaxane Polymer. J. Am. Chem. Soc. 127, 2034–2035 (2005) 

50. Miyauchi, M., Takashima, Y., Yamaguchi, H., Harada, A. Chiral Supramolecular 



  25  

 

Polymers Formed by Host−Guest Interactions. J. Am. Chem. Soc. 127, 2984–2989 

(2005) 

51. Miyawaki, A., Miyauchi, M., Takashima, Y., Yamaguchi, H., Harada, A. Formation 

of supramolecular isomers; poly[2]rotaxane and supramolecular assembly. Chem. 

Commun. 4, 456–458 (2008). 

52. Kang, J., Miyajima, D., Mori, T., Inoue, Y., Itoh, Y., Aida, T. A rational strategy for 

the realization of chain-growth supramolecular polymerization. Science 347, 646–

651 (2015). 

53. Harrison, I. T., Harrison, S. Synthesis of a stable complex of a macrocycle and a 

threaded chain. J. Am. Chem. Soc. 89, 5723–5724 (1967). 

54. Rowan, S. J., Cantrill, S. J., Stoddart, J. F., Triphenylphosphonium-Stoppered 

[2]Rotaxanes. Org. Lett. 1, 129–132 (1999). 

55. Andreas F. M. Kilbinger, A. F. M., Cantrill, S. J., Waltman, A. W., Day, M. W., 

Grubbs, R. H., Magic Ring Rotaxanes by Olefin Metathesis. Angew. Chem. Int. Ed. 

42, 3281–3285 (2003). 

56. Langton, M. J., Robinson, S. W., Marques, I., Félix, V., Beer, P. D. Halogen bonding 

in water results in enhanced anion recognition in acyclic and rotaxane hosts. Nat. 

Chem. 6, 1039–1043 (2014). 

57. Anelli, P. L., Asakawa, M., Ashton, P. R., Bissell, R. A., Clavier, G., Gbrski, R., 

Kaifer, A. E., Langford, S. J., Mattersteig, G., Menzer, S., Philp, D., Slawin, A. M. Z., 

Spencer, N., Stoddart, J. F., Tolley, M. S., Williams, D. J. Toward Controllable 

Molecular Shuttles. Chem. Eur. J. 3, 1113–1135 (1997). 

58. Li, H., Fahrenbach, A. C., Dey, S. K., Basu, S., Trabolsi, A., Zhu, Z., Botros, Y. Y., 

Stoddart, J. F. Mechanical Bond Formation by Radical Templation. Angew. Chem. Int. 

Ed. 49, 8260–8265 (2010). 

59. Li, Z. T., Stein, P. C., Becher, J., Jensen, D. Msrk, P. Svenstrup, N. Chem. Eur. J. 2, 

624 (1996). 

60. Mobian, P., Collin, J. P., Sauvage, J. P. Efficient synthesis of a labile copper 

(I)-rotaxane complex using click chemistry. Tetrahedron Lett. 47, 4907–4909 (2006). 

61. Aucagne, V., Berná, J., Crowley, J. D., Goldup, S. M., Hänni, K. D., Leigh, D. A., 

Lusby, P. J., Ronaldson, V. E., Slawin, A. M. Z., Viterisi, V., Walker, D. B. Catalytic 

“active-metal” template synthesis of [2] rotaxanes,[3] rotaxanes, and molecular 

shuttles, and some observations on the mechanism of the Cu (I)-catalyzed 

azide-alkyne 1, 3-cycloaddition. J. Am. Chem. Soc. 129, 11950–11963 (2007). 

62. Ogino, H. Relatively high-yield syntheses of rotaxanes. Syntheses and properties of 

compounds consisting of cyclodextrins threaded by. alpha.,. omega.-diaminoalkanes 

coordinated to cobalt (III) complexes. J. Am. Chem. Soc. 103, 1303–1304 (1981). 

63. Castro, R., Cuadrado, I., Alonso, B., Casado, C. M., Moran, M., Kaifer, A. E. 

Multisite Inclusion Complexation of Redox Active Dendrimer Guests. J. Am. Chem. 



  26  

 

Soc. 119, 5760–5761 (1997). 

64. Harada, A. Li, J. Kamachi, M. Non-ionic [2]rotaxanes containing methylated α –

cyclodextrins. Chem. Commun. 1413–1414 (1997). 

65. Harada, A.; Kamachi, M. Complex Formation between Poly(ethylene glycol) and α –

Cyclodextrin. Macromolecules 23, 2821–2823 (1990). 

66. Harada, A., Li, J., Kamachi, M. The molecular necklace: a rotaxane containing many 

threaded α-cyclodextrins. Nature 356, 325–327 (1992). 

67. Harada, A., Li, J., Kamachi, M. Synthesis of a tubular polymer from threaded 

cyclodextrins. Nature 364, 516–518 (1993). 

68. Harada, A., Li, J., Kamachi, M. Double-stranded inclusion complexes of 

cyclodextrin threaded on poly (ethylene glycol). Nature 370, 126–128 (1994). 

69. Wasserman, E. THE PREPARATION OF INTERLOCKING RINGS: A 

CATENANE1. J. Am. Chem. Soc. 82, 4433–4434 (1960). 

70. Dietrich-Buchecker, C., Sauvage, J. P. Templated synthesis of interlocked 

macrocyclic ligands, the catenands. Preparation and characterization of the 

prototypical bis-30 membered ring system. Tetrahedron 46, 503–512 (1990). 

71. Anelli, P. L., Asakawa, M., Ashton, P. R., Bissell, R. A., Clavier, G., Gbrski, R., 

Kaifer, A. E., Langford, S. J., Mattersteig, G., Menzer, S., Philp, D., Slawin, A. M. Z., 

Spencer, N., Stoddart, J. F., Tolley, M. S., Williams, D. J. Toward Controllable 

Molecular Shuttles. Chem. Eur. J. 3, 1113–1135 (1997). 

72. Chichak, K. S., Cantrill, S. J., Pease, A. R., Chiu, S. H., Cave, G. W., Atwood, J. L., 

Stoddart, J. F. Molecular borromean rings. Science 304, 1308–1312 (2004). 

73. J. –P. Sauvage., Dietrich-Buchecker, C., Molecular Catenanes, Rotaxanes and Knots. 

Wiley-VCH: Weiheim, (1999). 

74. Barran, P. E., Cole, H. L., Goldup, S. M., Leigh, D. A., McGonigal, P. R., Symes, M. 

D.,Wu, J., Zengerle, M. Angew. Chem. Int. Ed. 50, 12280–12284 (2011). 

75. Goodsell, D. S. Our Molecular Nature: The Body’s Motors, Machines and Messages; 

Copernics: New York, (1996). 

76. Vale, R. D., Milligan, R. A. The way things move: looking under the hood of 

molecular motor proteins. Science 288, 88–95 (2000). 

77. Howard, J. Mechanics of Motor Proteins and the Cytoskelton; Sinauer Associates: 

Sunderland, MA, (2001). 

78. Frey, E. Physics in cell biology: on the physics of biopolymers and molecular motors. 

Chem. Phys. Chem. 3, 270–275 (2002). 

79. Boyer, P. D. The binding change mechanism for ATP synthase—some probabilities 

and possibilities. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1140, 215–250 

(1993). 

80. Boyer, P. D. Energy, life, and ATP (Nobel lecture). Angew. Chem. Int. Ed. 37, 2296–

2307 (1998). 



  27  

 

81. Walker, J. E. ATP Synthesis by Rotary Catalysis. Nobel Lecture, Dec, 8 (1997). 

82. Linke, M., Chambron, J. C., Heitz, V., Sauvage, J. P., Semetey, V. Complete 

rearrangement of a multi-porphyrinic rotaxane by metallation–demetallation of the 

central coordination site. Chem. Commun. 2469–2470 (1998). 

83. Blanco, M. J., Jimenez, M. C., Chambron, J. C., Heitz, V., Linke, M., Sauvage, J. P. 

Rotaxanes as new architectures for photoinduced electron transfer and molecular 

motions. Chem. Soc. Rev. 28, 293–305 (1999). 

84. Shukla, R., Deetz, M. J., Smith, B. D. [2] Rotaxane with a cation-binding wheel. 

Chem. Commun. 2397–2398 (2000). 

85. Koumura, N., Zijlstra, R. W., van Delden, R. A., Harada, N., Feringa, B. L. 

Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999). 

86. Koumura, N., Geertsema, E. M., Meetsma, A., Feringa, B. L. Light-Driven 

Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Center. 

J. Am. Chem. Soc. 122, 12005–12006 (2000). 

87. Feringa, B. L. In control of motion: from molecular switches to molecular motors. 

Acc. Chem. Res. 34, 504–513 (2001). 

88. Oshikiri, T., Takashima, Y., Yamaguchi, H., Harada, A. J. Am. Chem. Soc. 127, 

12186–12187 (2005). 

89. Oshikiri, T., Takashima, Y., Yamaguchi, H., Harada, A. Face-Selective [2]‐and [3] 

Rotaxanes: Kinetic Control of the Threading Direction of Cyclodextrins. Chem. Eur. 

J. 13, 7091–7098 (2008).  

90. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. Molecular 

Biology of the Cell, 5th ed.; Garland Science: New York, (2008). 

91. Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M., Gelles, J. 

Transcription against an applied force. Science 270, 1653–1657 (1995). 

92. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of 

organelle transport. Science 279, 519–526 (1998). 

93. Muraoka, T., Kinbara, K., Aida, T. Mechanical twisting of a guest by a 

photoresponsive host. Nature 440, 512–515 (2006). 

94. Kelly, T. R., De Silva, H., Silva, R. A. Unidirectional rotary motion in a molecular 

system. Nature 401, 150–152 (1999). 

95. Koumura, N., Zijlstra, R. W., van Delden, R. A., Harada, N., Feringa, B. L. 

Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999). 

96. Fletcher, S. P., Dumur, F., Pollard, M. M., Feringa, B. L. A reversible, unidirectional 

molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005). 

97. Badjić, J. D., Balzani, V., Credi, A., Silvi, S., Stoddart, J. F. A molecular elevator. 

Science 303, 1845–1849 (2004). 

98. Badjic, J. D., Ronconi, C. M., Stoddart, J. F., Balzani, V., Silvi, S., Credi, A. 

Operating molecular elevators. J. Am. Chem. Soc. 128, 1489–1499 (2006). 



  28  

 

99. Durola, F., Lux, J., Sauvage, J. P. A Fast-Moving Copper-Based Molecular Shuttle: 

Synthesis and Dynamic Properties. Chem. Eur. J. 15, 4124–4134 (2009). 

100. Leigh, D. A., Wong, J. K., Dehez, F., Zerbetto, F. Unidirectional rotation in a 

mechanically interlocked molecular rotor. Nature 424, 174–179 (2003). 

101. Niess, F., Duplan, V., Sauvage, J. P. Molecular Muscles: From Species in Solution to 

Materials and Devices. Chem. Lett. 43, 964–974 (2014). 

102. Amirsakis, D. G., Elizarov, A. M., Garcia-Garibay, M. A., Glink, P. T., Stoddart, J. F., 

White, A. J., Williams, D. J. Diastereospecific Photochemical Dimerization of a 

Stilbene-Containing Daisy Chain Monomer in Solution as well as in the Solid State. 

Angew. Chem. Int. Ed. 42, 1126–1132 (2003). 

103. Clark, P. G., Day, M. W., Grubbs, R. H. Switching and extension of a [c2] 

daisy-chain dimer polymer. J. Am. Chem. Soc. 131, 13631–13633 (2009). 

104. Wu, J., Leung, K. C. F., Benítez, D., Han, J. Y., Cantrill, S. J., Fang, L., Stoddart, J. F. 

An Acid–Base-Controllable [c2] Daisy Chain. Angew. Chem. Int. Ed. 47, 7470–7474 

(2008). 

105. Coutrot, F., Romuald, C., Busseron, E. A new pH-switchable dimannosyl [c2] daisy 

chain molecular machine. Org. Lett. 10, 3741–3744 (2008). 

106. Bruns, C. J., Frasconi, M., Iehl, J., Hartlieb, K. J., Schneebeli, S. T., Cheng, C., Stupp, 

S. I., Stoddart, J. F. Redox Switchable Daisy Chain Rotaxanes Driven by Radical–

Radical Interactions. J. Am. Chem. Soc. 136, 4714–4723 (2014). 

107. Tsuda, S., Aso, Y., Kaneda, T. Linear oligomers composed of a photochromically 

contractible and extendable Janus [2]rotaxane. Chem. Commun. 3072–3074 (2006). 

108. Onagi, H., Easton, C. J., Lincoln, S. F. An hermaphrodite [2] rotaxane: Preparation 

and analysis of structure. Org. Lett. 3, 1041–1044 (2001). 

109. Yamauchi, K., Takashima, Y., Hashidzume, A., Yamaguchi, H., Harada, A. Switching 

between supramolecular dimer and nonthreaded supramolecular self-assembly of 

stilbene amide-α-cyclodextrin by photoirradiation. J. Am. Chem. Soc. 130, 5024–

5025 (2008). 

110. Tsukagoshi, S., Miyawaki, A., Takashima, Y., Yamaguchi, H., Harada, A. Contraction 

of supramolecular double-threaded dimer formed by α-cyclodextrin with a long alkyl 

chain. Org. Lett. 9, 1053–1055 (2007). 

111. Jiménez, M. C., Dietrich-Buchecker, C., Sauvage, J. P. Towards synthetic molecular 

muscles: Contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 

39, 3284–3287 (2000). 

112. Li, S., Taura, D., Hashidzume, A., Harada, A. Light-switchable Janus [2] rotaxanes 

based on α-cyclodextrin derivatives bearing two recognition sites linked with oligo 

(ethylene glycol). Chem. Asian J. 5, 2281–2289 (2010). 



  29  

 

113. Dawson, R. E., Lincoln, S. F., Easton, C. J. The foundation of a light driven 

molecular muscle based on stilbene and α-cyclodextrin. Chem. Commun. 3980–3982 

(2008). 

114. Fang, L., Hmadeh, M., Wu, J., Olson, M. A., Spruell, J. M., Trabolsi, A., Yang, Y. W., 

Elhabiri, M., Gray, A. M. A., Stoddart, J. F. Acid−Base Actuation of [c 2] Daisy 

Chains. J. Am. Chem. Soc. 131, 7126–7134 (2009). 

115. Liu, Y., Flood, A. H., Bonvallet, P. A., Vignon, S. A., Northrop, B. H., Tseng, H. R., 

Jeppesen, J. O., Huang, T. J., Brough, B., Baller, M., Magonov, S., Solares, S. D., 

Goddard, W. A., Ho, C. M., Stoddart, J. F. Linear Artificial Molecular Muscles. J. Am. 

Chem. Soc. 127, 9745–9759 (2005) 

116. Bernál, J., Leigh, D. A., Lubomska, M., Mendoza, S. M., Pérez1, E. M., Rudolf, P., 

Teobaldi, G., Zerbetto, F. Macroscopic transport by synthetic molecular machines. 

Nat. Mater. 4, 704–710 (2005). 

117. Li, Q., Fuks, G., Moulin, E., Maaloum, M., Rawiso, M., Kulic, I., Giuseppone, N. 

Macroscopic contraction of a gel induced by the integrated motion of light-driven 

molecular motors. Nat. Nanotechnol. 10, 161–165 (2015). 

118. Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A., Yamaguchi, H. 

Macroscopic self-assembly through molecular recognition. Nat. Chem. 3, 34–

37(2011). 

119. Yamaguchi, H., Kobayashi, R., Takashima, Y., Hashidzume, A., Harada, A. 

Self-assembly of gels through molecular recognition of cyclodextrins: Shape 

selectivity for linear and cyclic guest molecules. Macromolecules 44, 2395–2399 

(2011). 

120. Zheng, Y., Hashidzume, A., Takashima, Y., Yamaguchi, H., Harada, A. Macroscopic 

observations of molecular recognition: Discrimination of the substituted position on 

the naphthyl group by polyacrylamide gel modified with β-cyclodextrin. Langmuir, 

27, 13790–13795 (2011). 

121. Yamaguchi, H., Kobayashi, Y., Kobayashi, R., Takashima, Y., Hashidzume, A., 

Harada, A. Photoswitchable gel assembly based on molecular recognition. Nat. 

Commun. 3, 603 (2012). 

122. Zheng, Y., Hashidzume, A., Takashima, Y., Yamaguchi, H., Harada, A. Switching of 

macroscopic molecular recognition selectivity using a mixed solvent system. Nat. 

Commun. 3, 831(2012). 

123. Kobayashi, Y., Takashima, Y., Hashidzume, A., Yamaguchi, H., Harada, A. 

Reversible self-assembly of gels through metal-ligand interactions. Sci. rep. 3, 1243 

(2013). 

124. Nakamura, T., Takashima, Y., Hashidzume, A., Yamaguchi, H., Harada, A. A metal–

ion-responsive adhesive material via switching of molecular recognition properties. 

Nat. Commun. 5, 4622 (2014). 



  30  

 

125. Zheng, Y., Hashidzume, A., Takashima, Y., Yamaguchi, H., Harada, A. 

Temperature-sensitive macroscopic assembly based on molecular recognition. ACS 

Macro Lett. 1, 1083–1085 (2012). 

126. Zheng, Y., Hashidzume, A., Harada, A. pH‐Responsive Self‐Assembly by 

Molecular Recognition on a Macroscopic Scale. Macromol. Rapid Commun. 34, 

1062–1066 (2013). 

127. Nakahata, M., Takashima, Y., Hashidzume, A., Harada, A. Macroscopic Self‐

Assembly Based on Complementary Interactions between Nucleobase Pairs. Chem. 

Eur. J. 21, 2770–2774 (2015). 

128. Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A. Redox-responsive 

self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511 

(2011). 

129. Kakuta, T., Takashima, Y., Nakahata, M., Otsubo, M., Yamaguchi, H., Harada, A. 

Preorganized Hydrogel: Self-Healing Properties of Supramolecular Hydrogels 

Formed by Polymerization of Host-Guest-Monomers that Contain Cyclodextrins and 

Hydrophobic Guest Groups. Adv. Mater. 25, 2849–2853 (2013). 

130. Kakuta, T., Takashima, Y., Harada, A. Highly elastic supramolecular hydrogels using 

host–guest Inclusion complexes with cyclodextrins. Macromolecules 46, 4575–4579 

(2013). 

131. Harada, A., Macromol. Rapid Commun. 2015, Early View. 

132. Tamesue, S., Takashima, Y., Yamaguchi, H., Shinkai, S., Harada, A. Photoswitchable 

supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. 

Chem. Int. Ed. 122, 7623–7626 (2010). 

133. Takashima, Y., Hatanaka, S., Otsubo, M., Nakahata, M., Kakuta, T., Hashidzume, A., 

Yaaguchi, H., Harada, A. Expansion–contraction of photoresponsive artificial muscle 

regulated by host–guest interactions. Nat. Commun. 3, 1270 (2012). 

134. Nakahata, M., Takashima, Y., Hashidzume, A., Harada, A. Redox-Generated 

Mechanical Motion of a Supramolecular Polymeric Actuator Based on Host–Guest 

Interactions. Angew. Chem. Int. Ed. 52, 5731–5735 (2013). 

  



  31  

 

 

Chapter 2 

Photo-generated [c2]daisy chain of C2 symmetric doubly-threaded 

rotaxanes for contraction and expansion structures. 

Introduction 

 Biological molecular motors such as muscle fibers, flagella and cilia
1–8

 are precisely 

designed in nature, and are reminiscent of microscale electronic and mechanical devices  

The actin and myosin convert chemical energy from ATP hydrolysis to the linear movement 

as mechanical work, which produce contraction and expansion of sarcomar.  Inspired by the 

linear movement of biological systems, supramolecular researchers have tried to prepare 

artificial molecular motors using cyclic molecules.  Rotaxanes are considered to be a good 

example of controlled molecular movement in linear molecular motor systems.  Recently, 

studies on controlled synthetic linear molecular motors have been reported by using rotaxane, 

which are achieved by controlling linear movement.  Design of artificial molecular motors 

regards ring, axis, and bulky stopper molecules of rotaxan as myosin, actin, and Z-discs.
1, 2 

Previously, there are linear type artificial molecular motors with [c2]daisy chain.
3–16  

Photo-stimulus is useful energy to generate  the linear motion due to tunable wavelength and 

switching.  Photo-generated linear motion using [c2]daisy chain was developed by Kaneda 

et al.
1, 2  

They introduce a long linker molecule to control the molecular motion by using the 

isomerization of an azobenzene (Azo) moiety in the [c2]daisy chain unit because the 

dissociated αCD unit from the Azo unit moves onto the linker molecule.  The association 

constant of α-cyclodextrin (αCD) for trans-Azo is larger than that for cis-Azo (trans-Azo; Ka 

= 12,000 M
-1

, cis-Azo; Ka = 4.1 M
-1

).  Harada et al. reported [c2]daisy chain based on αCD 

and Azo derivative with a poly(ethylene glycol) linker.  The [c2]daisy chain shows 

photo-isomerization and the contraction–expansion behaviour in water.
3
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In this chapter, the author demonstrates the preparation and structural analysis of the 

[c2]daisy chain with αCD and Azo derivative ([c2]DMTAzoCD2).  [c2]DMTAzoCD2 

exhibits the sliding properties in response to photo-stimulus in water (Figure 2-1).  The 

experimental procedures of AmAzoCD, [c2]DMTAzoCD2 were shown at page 45–61.  

 

 

Figure 2-1.  Chemical structure of [c2]DMTAzoCD2 
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Results and discussion 

Preparation and structural characterization of [c2]daisy chain 

 
1
H NMR measurements of 3A-αCD with the amino-Azo derivative (AmAzoCD) 

determines the supramolecular structure of [c2]daisy chain in D2O or DMSO-d6 (2.0 mM in 

700 μL).  The peaks of the Azo unit split symmetrically in D2O but asymmetrically in 

DMSO-d6 (Figure 2-2).  
1
H 2D ROESY NMR spectrum shows the correlation signals 

between the Azo protons and the inner protons of αCD ((C
3
H, C

5
H)) in D2O (Figure 2-3).   

However the ROESY NMR spectrum in DMSO does not.  These results indicate that the 

AmAzoCD forms a symmetric inclusion structure in water. 

 

Figure 2-2.  
1
H NMR spectra of AmAzoCD in a) D2O, and b) DMSO-d6. * is partial formed 

AmAzoCD inclusion complexes.  
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Figure 2-3.  2D ROESY NMR spectra of AmAzoCD in a) D2O, and b) DMSO-d6. 

No Correlation peak 

No Correlation peak 
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The introduction of bulky stopper into AmAzoCD 

On the basis of the above results, AmAzoCD forms a symmetric supramolecular 

structure in aqueous solution.  But the species of the supramolecular structure is not 

observed by mass spectroscopy due to dissociation of the [c2]daisy chain structure by laser 

impact of mass spectrometer.   

To observe the species of the [c2]daisy chain structure,  bulky stopper are introduced 

into the terminal group of the amino group of AmAzoCD, which forms a mechanically 

interlocked molecule ([c2]DMTAzoCD2).  2-Chloro-4,6-dimethoxy-1,3,5-triazine (DMT-Cl) 

as a bulky stopper was introduced into AmAzoCD by nucleophilic imidoyl substitution in 

water.  [c2]DMTAzoCD2 was purified by reversed phase HPLC with an MS detector (Figure 

2-4).   

 

 

Figure 2-4.  HPLC-MS chromatogram of the reaction mixture of AmAzoCD and DMT-Cl. 

 

Figure 2-4 shows that the crude product contains two products.  One is dimer of 

AmAzoCD ([c2]DMTAzoCD2), and the other was monomeric AmAzoCD with DMT-Cl, 

called DMTAzoCD.  [c2]DMTAzoCD2 and DMTAzoCD were collected in 24 and 9% yield, 

respectively (Scheme 2-1).  The MALDI-TOF mass spectra of these products display 

dimeric and monomeric peaks.   
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Scheme 2-1.  Preparation of mechanically interlocked supramolecular structure by 

nucleophilic imidoyl substitution. 

 

Structural analysis of [c2]DMTAzoCD2 

The author investigated the spectroscopic analysis for [c2]DMTAzoCD2.  The 
1
H 

NMR spectrum of [c2]DMTAzoCD2 in D2O was characterized by 2D H-H TOCSY, COSY, 

and ROESY NMR spectra (Figure 2-5, 2-6, and 2-7).  The results indicate that the structure 

of [c2]DMTAzoCD2 a C2 symmetric doubly-threaded dimer structure.  There are two 

estimated structure of [c2]DMTAzoCD2.  One is the doubly-threaded and the other is linear 

dimer.  2D ROESY NMR spectrum (Figure 2-8) indicates that the correlation between all 

Azo protons (a, b, c, d) and inner protons of αCD (C3, A3, C5, A5).  Therefore, the 

[c2]DMTAzoCD2 has a C2 symmetric doubly-threaded dimer structure. 
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Figure 2-5.  2D TOCSY NMR spectra of [c2]DMTAzoCD2.  a) Schematic illustration of 

the correlation of TOCSY spectrum.  Pink arrows mean the rage of indirect spin coupling.  

b) full and c) a partial spectrum.  Dots (CD), dashed circles (Azo), and circles (DEG) mean 

the deference of spin coupling.   

  

a b 

c 
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Figure 2-6.  2D COSY NMR spectra of [c2]DMTAzoCD2.  a) Schematic illustration of the 

correlation of COSY spectrum.  Pink arrows mean the rage of direct spin coupling.  b) full 

and c) a partial spectrum.  Dashed circles mean the deference of spin coupling.  

  

a b 

c 
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Figure 2-7.  2D ROESY NMR spectra of [c2]DMTAzoCD2.  a) Schematic illustration of 

the correlation of ROESY spectra.  Pink arrows mean the rage of spatial spin coupling.  b) 

full and c) a partial spectrum.  

 

  

a b 

c 
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Figure 2-8.  A partial structure of [c2]DMTAzoCD2 to indicate the correlation between Azo 

protons and inner protons of αCD.  The structure of [c2]DMTAzoCD2 is C2 symmetric 

doubly-threaded rotaxane. 

 

1
H Variable Temperature NMR measurement of [c2]DMTAzoCD2. 

 To investigate the sliding motion of [c2]DMTAzoCD2, 
1
H variable temperature (VT) 

NMR spectra were measured at the temperature range of 293–353 K in D2O and DMSO-d6.  

The molar content of [c2]DMTAzoCD2 was 2 mM in 700 μL in D2O or DMSO-d6.  In D2O, 

all signals of [c2]DMTAzoCD2 did not change in the range of temperature.  On the other 

hand in DMSO-d6, the signals of b protons in the methylene were broad whereas those of a 

protons were not observed (Figure 2-9).  It is suggested that the αCD unit of 

[c2]DMTAzoCD2 shows the sliding motion in DMSO-d6, The sliding speed may be similar to 

the time scale of 
1
H NMR measurements at lower temperatures, but the speed may be higher 

at higher temperatures.  The αCD residue in [c2]DMTAzoCD2 shuttles from the Azo residue 

to the oligomethylene residue and vice versa.  
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Figure 2-9.  
1
H VT NMR spectra of [c2]DMTAzoCD2 in a) D2O and b) DMSO-d6 the range 

of temperature was between 293–353 K. 

 

Photo-isomerization of [c2]DMTAzoCD2. 

 UV-Vis spectroscopy tracks the photo-isomerization of the Azo group in 

[c2]DMTAzoCD2 (Figure 2-10).  Generally, Azo derivatives show trans- and 

cis-photo-isomerization by UV and Vis light irradiation, respectively.  The absorption band 

ascribable to the π–π* transition decreased upon irradiation with UV light (λ = 365 nm) and 

an n–π* transition band appears until 20 min.  Conversely, the absorption band ascribable to 

the π–π* transition restored upon irradiation with Vis light (λ = 430 nm) and an n–π* 

transition band disappears until 80 s.  These results indicate that UV irradiation causes the 

trans-Azo group of [c2]DMTAzoCD2 to isomerize into the cis-form, whereas Vis irradiation 

causes the cis-Azo group to restore into the trans-form (Scheme 2-2).  

ab
b a
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Figure 2-10.  Time-resolved absorption spectra for [c2]DMTAzoCD2 under 

photo-irradiation with a) UV and b) visible lights, respectively. 

 

Scheme 2-2.  Schematic illustration of photo-isomerization of [c2]DMTAzoCD2.   

a) 

b) 
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Photo actuation of [c2]AzoCD2 

Finally, contraction and expansion crystals of [c2]AzoCD2 were prepared.  

AmAzoCD formed needle crystals consisting of [c2]daisy chain structure by lyophilized from 

aqueous solution of AmAzoCD.  The size of crystals nearly 100 × 50 μm
2
.  When the 

crystals irradiated by UV light following irradiating Vis light, the crystal expanded. 

Subsequent, the Vis light irradiation, the length of crystals restored.  

 

 

Experimental 

Materials. Acetone, triethylamine (Et3N), tetrahydrofuran (THF), dimethyl sulfoxide 

(DMSO), N,N-dimethyl formamide (DMF), chloroform (CHCl3), dichloromethane (CH2Cl2), 

methanol (MeOH), N,N´-dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide (HOSu), 

acetic acid (AcOH), 12 M hydrochloric acid (HCl aq.), ammonia water, and sodium sulfate 

(Na2SO4) were obtained from Nacalai Tesque.  Di-tert-butyl dicarbonate was obtained from 

Peptide Institute Inc.  4-(4,6-Dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride 

(DMT-MM) was obtained from Wako Pure Chemical Industries.  

(Benzotriazol-1-yloxy)-tris(dimetylamino)phosphonium hexafluorophosphate (BOP), 

2-chloro-4,6-dimethoxy-1,3,5-triazine (DMT-Cl), and 3A-amino-3A-deoxy-(2AS, 

3AS)-α-cyclodextrin were purchased from Tokyo Kasei.  

4,7,10-Trioxa-1,13-tridecanediamine (DEG) was obtained from Sigma-Aldrich.  A highly 

porous synthetic resin (DIAION HP-20), which was used for reverse-phase column 

chromatography, was purchased from Mitsubishi Chemical.  SNAP Ultra 50 g was 

purchased from Biotage
®

.  Water used to prepare aqueous solutions (except for NMR 

measurements) was purified with a Millipore Elix 5 system.  Other reagents were used 

without further purification.   
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Measurements 

Photo-isomerization.  Azobenzene moieties were isomerized by photo-irradiation using a 

300 W Xenon lamp (Asahi spectra MAX-301) equipped with suitable mirror modules (UV 

mirror module, λ = 250–385 nm; Vis mirror module, λ = 385–740 nm).  Moreover, to extract 

a specific wavelength, a band-pass filter (LX0365) for UV light and a band-pass filter 

(LX0430) for visible light were placed on the Xenon lamp.  The intensities of the transmitted 

UV light (λ = 365 nm) through the band-pass filters (LX0365) using a suitable mirror module 

were similar to those of Vis light (λ = 430 nm) using the band-pass filter (LX0430).  The 

distance between the sample cell and the lamp was fixed at 10 cm.  

NMR spectrometer.  
1
H, 

13
C, and 2D NMR spectra were recorded with JEOL ECA500 

NMR spectrometer and VARIAN VNMRJ 600 NMR spectrometers at 30 °C.  Chemical 

shifts were referenced to the solvents (δ = 2.49 ppm for DMSO and δ = 4.79 ppm for HOD).   

UV-Vis absorption spectrometer.  The UV-Vis absorption spectra were recorded with 

JASCO V-650 and Hitachi U-4100 spectrometers in water with a 1 mm quartz cell at room 

temperature.   
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Preparation of Am-DEG-Boc  

 

Scheme 2-3.  Preparation of Am-DEG-Boc. 

DEG (30 g, 140 mmol) was dissolved in THF (65 mL).  Di-tert-butyl dicarbonate (5.3 mL, 

23 mmol) dissolved in THF (65 mL) was slowly added to the THF solution of DEG over 5 

min.  The resulting mixture was stirred at room temperature for 16 hours.  The pale-yellow 

solution was evaporated.  The oil was poured into water (150 mL) and extracted with 50 mL 

CH2Cl2 three times.  The organic layer was washed by water and dried over Na2SO4.  After 

filtration, the solvent was evaporated to give Am-DEG-Boc as colorless oil (7.5 g, quant.).  

1
H NMR (500 MHz, DMSO-d6): δ (ppm) 6.73 (br, 1H), 3.51–3.40 (m, overlaps with H2O), 

3.37(t, J = 6.4 Hz, 2H), 2.94 (dd, J = 6.7 Hz, 6.2 Hz, 2H), 2.55 (t, J = 6.8 Hz, 2H), 1.58 

(quintet, J = 6.8 Hz, 6.4 Hz, 2H), 1.54 (quintet, J = 6.6 Hz, 2H), 1.36 (s, 9H).  
13

C NMR 

(125 MHz, DMSO-d6): δ (ppm) 155.55, 77.33, 69.79, 69.77, 69.53, 69.49, 68.46, 68.08, 38.80, 

37.21, 33.31, 29.69, 28.22.  MALDI-TOF MS: m/z Calcd. for C16H32O5N2 ([M + H]
+
): 

321.2; Found: 321.1. 
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a 

  

b 

 

 

Figure 2-11.  a) 500 MHz 
1
H and b) 125 MHz 

13
C NMR spectra of Am-DEG-Boc in 

DMSO-d6.  "*" denotes the signals due to the solvent used.  
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Preparation of compound Azo-DEG-Boc  

 

Scheme 2-4.  Preparation of Azo-DEG-Boc. 

4-(4-Carboxyphenyl)-azo-benzoic acid (2.4 g, 9.0 mmol), DCC (0.74 g, 3.6 mmol), HOSu 

(0.42 g, 3.6 mmol) and Et3N (2.9 mL, 21 mmol) were added in DMF (40 mL).  The solution 

was added to the DMF (20 mL) solution of Am-DEG-Boc.  When stirred at 70 
o
C, the 

solution charged to the suspension to form N,N´-dicyclohexylurea.  After 2 hours, AcOH 

(3.0 mL) was added.  The solvent was evaporated from resulting mixture.  The residue was 

dispersed in MeOH.  After filtration, the filtrate was poured into water (50 mL) and crude 

product was extracted with CHCl3 (100 mL).  The organic layer was washed with water and 

dried over Na2SO4.  After evaporating the organic layer, the residue was applied to a 

Biotage
®
 SNAP Ultra 50 g column.  The desired product was obtained in a fraction which 

was eluted with a mixed solvent of CHCl3 and MeOH (0/100–5/95, v/v).  Azo-DEG-Boc 

was obtained as a red solid (1.1 g, 66%).  
1
H NMR (500 MHz, DMSO-d6): δ (ppm) 8.61 (t, J 

= 5.4 Hz, 1H), 8.15 (d, J = 8.7 Hz, 2H), 8.05 (d, J = 8.7 Hz, 2H), 7.99–7.88 (m, 4H), 6.70 (br, 

1H), 3.52–3.43 (m, 10H), 3.37–3.31 (m, overlaps with H2O), 2.95 (dd, J = 6.7 Hz, 6.3 Hz, 

2H), 1.78 (quintet, J = 6.7 Hz, 2H), 1.58 (quintet, J = 6.5 Hz, 2H), 1.35 (s, 9H).  
13

C NMR 

(125 MHz, DMSO-d6): δ (ppm) 166.63, 165.31, 155.55, 154.23, 153.15, 137.37, 133.21, 

130.65, 128.51, 122.71, 122.60, 77.36, 69.79, 69.75, 69.57, 69.52, 68.28, 68.08, 37.22, 36.84, 

29.69, 29.28, 28.23.  MALDI-TOF MS: m/z Calcd. for C29H39O8N4Na ([M+Na]
+
): 594.3;  

Found: 595.2.  
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a 

 

b 

 

 

Figure 2-12.  a) 500 MHz 
1
H and b) 125 MHz 

13
C NMR spectra of Azo-DEG-Boc in 

DMSO-d6.  "*" denotes the signals due to the solvent used.  
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Preparation of compound Boc-AmAzoCD  

 

Scheme 2-5.  Preparation of Boc-AmAzoCD. 

Azo-DEG-Boc (0.36 g, 0.63 mmol) and 3A-amino-3A-deoxy-(2AS, 3AS)-α-CD (0.61 g 0.63 

mmol) were dissolved in dry DMF (6.3 mL).  DMT-MM (0.26 g, 0.95 mmol) was added to 

the DMF solution.  After stirring for 13 hours at room temperature, the suspension changed 

to the homogeneous solution.  The solvent was evaporated from resulting mixture and 

residue was dispersed in water to remove Azo-DEG-Boc.  The filtrate was applied to a 

Diaion HP-20 resin column (15 × 13 cm
3
) running using a mixed solvent of H2O and MeOH 

with a gradient of the volume ratio.  The desired product, Boc-AmAzoCD, was obtained in a 

fraction which was eluted with a mixed solvent of H2O and MeOH (3/7–7/3, v/v).  The 

obtained solution was lyophilised to give Boc-AmAzoCD as a pale-orange powder (0.76 g, 

80%).  
1
H NMR (500 MHz, DMSO-d6): δ (ppm) 8.61 (br, 1H), 8.22 (d, J = 9 Hz, 1H), 8.06 

(t, J = 9 Hz, 4H), 7.97 (dd, J = 9 Hz, 2 Hz, 4H), 6.70 (br, 1H), 5.90 (d, J = 6 Hz, 1H), 5.70 (d, 

J = 2 Hz, 1H), 5.61–5.54 (m, 3H), 5.40 (d, J = 7 Hz, 1H), 5.32–5.31 (m, 2H), 5.25–5.21 (m, 

3H), 4.92 (t, J = 5 Hz, 1H), 4.86 (d, J = 4 Hz, 1H), 4.81-4.79 (m, 4H), 4.68 (d, J = 7 Hz, 1H), 

4.58 (t, J = 6 Hz, 1H), 4.53-4.40 (m, 5H), 4.00 (br, 1H), 3.86-3.26 (m, overlaps with H2O), 

2.94 (q, J = 7 Hz, 2H), 1.78 (quintet, J = 7 Hz, 2H), 1.58 (quintet, J = 7 Hz, 2H), 1.35 (s, 9H).  
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13
C NMR (125 MHz, DMSO-d6): δ (ppm) 165.38, 155.60, 153.19, 137.21, 137.19, 128.76, 

128.56, 122.62, 122.57, 104.48, 102.56, 102.16, 102.03, 101.62, 101.15, 83.00, 81.88, 81.73, 

81.70, 80.72, 79.78, 77.42, 77.04, 73.71, 73.69, 73.43, 73.25, 72.91, 72.89, 72.54, 72.40, 

72.32, 72.22, 72.19, 72.16, 72.08, 72.02, 71.78, 71.57, 70.92, 69.81, 69.79, 69.61, 69.55, 

68.28, 68.10, 60.24, 60.17, 60.13, 60.12, 60.04, 60.00, 37.24, 36.85, 29.72, 29.32, 28.27.  

MALDI-TOF MS: m/z Calcd. for C65H99N5O36Na ([M + Na]
+
): 1548.6;  Found: 1548.2; 

Calcd. for C65H99N5O36K ([M + K]
+
): 1564.6;  Found: 1564.2.  
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Figure 2-13.  500 MHz 
1
H NMR spectra of Boc-AmAzoCD in DMSO-d6.  a) Full range 

spectrum.  Partial spectra of b) 8.75–4.25 ppm and c) 4.10–1.10 ppm.  "*" denotes the 

signals due to the solvent used.  

a 

b 

c 
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Figure 2-14.  125 MHz 
13

C NMR spectra of Boc-AmAzoCD in DMSO-d6.  a) Full range 

spectrum.  Partial spectra of b) 168.0–92.0 ppm and c) 88.0–24.0 ppm.  "*" denotes the 

signals due to the solvent used.  

a 

b 

c 
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Preparation of AmAzoCD   

 

Scheme 2-6.  Preparation of AmAzoCD. 

Boc-AmAzoCD (0.31 g, 0.20 mmol) dissolved in 5 M HCl aq. (1.6 mL) was stirred for 5 min 

at room temperature.  After adding Et3N (2.0 mL, 270 mmol) to the HCl aq. solution, the 

solution was diluted with water (10 mL).  The solution was applied to a Diaion HP-20 resin 

column (15 × 13 cm
3
) running using a mixed solvent of H2O and MeOH with a gradient of the 

volume ratio.  The crude product was obtained in a fraction which was eluted with a mixed 

solvent of H2O and MeOH (3/7, v/v).  The solution was lyophilized to give AmAzoCD as a 

pale-orange powder (0.15 g, 52%).  
1
H NMR (500 MHz, DMSO-d6): δ (ppm) 8.63 (br, 1H), 

8.25 (d, J = 8.3 Hz, 1H), 8.07 (d, J = 8.7 Hz, 2H), 8.05 (d, J = 8.7 Hz, 2H), 7.97 (d, J = 8.3 Hz, 

4H), 4.86-4.79 (m,  4H), 4.68 (d, J = 6.9 Hz, 1H), 4.40 (t, J = 10.2 Hz, 1H), 4.00–2.96 (m, 

overlaps HOD), 2.58 (t, J = 6.4 Hz, 2H), 1.78 (quartet, J = 6.4 Hz, 2H), 1.56 (quintet, J = 6.0 

Hz, 2H).  
1
H NMR (500 MHz, D2O): δ (ppm) 8.49 (d, J = 8.0 Hz, 2H), 8.31 (d, J = 8.0 Hz, 

2H), 8.09 (d, J = 7.9 Hz, 2H), 7.96 (d, J = 8.0 Hz, 2H), 5.20 (d, J = 20.9 Hz, 2H), 5.01 (s, 1H), 

4.88 (br, 2H), 4.67 (d, J = 5.7 Hz, 1H), 4.59–4.44 (m, 3H), 4.38–4.23 (m, 4H), 4.08–3.39 (m, 

37H), 3.30–3.14 (m, 5H), 3.01–2.78 (m, 6H), 1.98 (quintet, J = 6.2 Hz, 2H), 1.83 (quintet, J = 
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6.1 Hz, 2H).  
13

C NMR (150 MHz, DMSO-d6): δ (ppm) 165.86, 153.61, 137.61, 129.16, 

128.94, 122.96, 104.95, 102.97, 102.57, 102.43, 102.02, 101.54, 83.37, 82.15, 82.09, 81.14, 

77.42, 74.09, 73.88, 73.67, 73.49, 73.34, 73.30, 72.96, 72.83, 72.74, 72.62, 72.60, 72.48, 

72.42, 72.19, 72.12, 72.00, 71.28, 70.24, 70.21, 70.01, 69.91, 68.79, 68.74, 60.68, 60.49, 

51.27, 38.99, 37.32, 32.96, 29.71.  MALDI-TOF MS: m/z Calcd. for C60H92N5O34 ([M + 

H]
+
): 1426.56;  Found: 1426.62. Calcd. for C60H91N5O34Na ([M + Na]

+
): 1448.54;  Found: 

1448.56.  HR MS (ESI+): m/z Calcd. for C60H92O34N5 ([M+H]
+
): 1426.5621;  Found: 

1426.5622 (Δppm 0.189).  

 

 

Figure 2-15.  500 MHz 
1
H NMR spectrum of AmAzoCD in DMSO-d6.  "*" denotes the 

signals due to the solvent used. 
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Figure 2-16.  500 MHz 
1
H NMR spectra of AmAzoCD in D2O.  a) Full range spectrum.  

Partial spectra of b) 8.60–4.66 ppm and c) 4.65–1.60 ppm.  "*" denotes the signals due to the 

solvent used. 

  

b 

c 

a 



  56  

 

 

Figure 2-17.  150 MHz 
13

C NMR spectra of AmAzoCD in DMSO-d6.  a) Full range 

spectrum.  Partial spectra of b) 131.6–97.6 ppm and c) 78.5–68.0 ppm.  "*" denotes the 

signals due to the solvent used. 

  

a 

b 

c 
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Figure 2-18.  High resolution mass spectrum of AmAzoCD.  a) Observed mass 1426.5622 

Da (Δppm 0.189).  b) m/z Calcd. for C60H92O34N5 ([M+H]
+
): 1426.5621 Da. 

 

Preparation of [c2]DMTAzoCD2.   

 

Scheme 2-7.  Preparation of [c2]DMTAzoCD2. 

a 

b 
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Et3N was added to aqueous solution (5.0 mL) of AmAzoCD (0.11 g, 73 μmol) until reaching 

to pH = 9.  DMT-Cl (0.014 g, 79 μmol) was then added to the aqueous solution.  The 

resulting suspension was stirred for 24 hours.  After the prescribed time the reaction mixture 

was filtered and dispersed in water.  Resulting mixture was subjected to preparative 

reverse-phase HPLC running with an H2O/MeCN gradient.  The desired fractions were 

lyophilised to give [c2]DMTAzoCD2 as a pale-orange powder (27 mg, 24%).  
1
H NMR (500 

MHz, DMSO-d6): (ppm) 8.74–7.79 (br, 11H), 6.78–2.73 (br, overlaps with HOD) 1.83 (br, 

2H), 1.75 (quintet, J = 5.8 Hz, 2H).  
1
H NMR (500 MHz, D2O): δ (ppm) 8.49 (d, J = 8.5 Hz, 

4H), 8.31 (d, J = 8.5 Hz, 4H), 8.09 (d, J = 8.5 Hz, 4H), 7.95 (d, J = 8.5 Hz, 4H), 5.21 (dd, J = 

19 Hz, 3.7Hz, 4H), 5.02 (d, J = 3.7 Hz, 2H), 4.88 (br, 4H), 4.66 (d, J = 5.7 Hz, 2H), 4.59–4.44 

(m, 6H), 4.38–4.22 (m, 8H), 4.08–3.40 (m, 84H), 3.32–3.13 (m, 10H), 3.01 (d, J = 10.5 Hz, 

2H), 2.93 (t, J = 9.3 Hz, 2H), 2.81 (t, J = 11.3 Hz, 4H), 1.95 (quintet, J = 6.0 Hz, 4H), 1.88 

(quintet, J = 6.4 Hz, 4H).  
13

C NMR (150 MHz, DMSO-d6): δ (ppm) 172.42, 171.97, 168.06, 

165.90, 153.23, 137.02, 128.91, 128.53, 124.63, 122.89, 106.89, 102.67, 102.41, 102.02, 

101.84, 101.81, 82.06, 82.01, 81.98, 81.83, 79.76, 79.72, 74.22, 74.14, 73.27, 72.65, 72.48, 

72.44, 72.33, 71.99, 71.71, 70.24, 70.19, 70.02, 69.94, 68.82, 68.56, 61.06, 60.49, 60.42, 

60.31, 60.29, 60.25, 54.42, 51.32, 38.15, 38.03, 29.89, 29.48.  MALDI-TOF MS: m/z Calcd. 

for C130H192N16O72Na ([M + Na]
+
): 3152.18;  Found: 3152.88. Calcd. for C130H192N16O72K 

([M + K]
+
): 3168.15;  Found: 3168.82.  HR MS (ESI+): m/z Calcd. for C125H192O72N16Na3 

([M+3Na]
3+

): 1066.0510;  Found: 1066.0518 (Δppm 0.755).  
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Figure 2-19.  500 MHz 
1
H NMR spectrum of [c2]DMTAzoCD2 in DMSO-d6.  "*" denotes 

the signals due to the solvent used. 
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Figure 2-20.  150 MHz 
13

C NMR spectra of [c2]DMTAzoCD2 in DMSO-d6.  a) Full range 

spectrum.  b) Partial spectrum of 51.8–88.4 ppm.  "*" denotes the signals due to the solvent 

used. 

 

  

a 

b 
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Figure 2-21.  High resolution mass spectrum of [c2]DMTAzoCD2.  a) Observed mass 

1066.0518 Da (Δppm 0.755).  b) m/z Calcd. for C125H192O72N16Na3 ([M+3Na]
3+

): 1066.0510 

Da.  

a 

b 
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Chapter 3 

Photo-generated actuation of supramolecular artificial muscle 

materials with [c2]daisy chains. 

Introduction 

Myosin and actin filaments in muscle cells insert into each other to form alternating 

layered structures and slide to demonstrate contraction and expansion behaviour in the power 

stroke process.
1–4

  The sliding motion, which is reminiscent of the muscle fibril, has inspired 

researchers in supramolecular chemistry to realize artificial linear motors using 

supramolecular complexes.  Polyrotaxanes and [c2]daisy chains (doubly-threaded dimers) 

are important components to create supramolecular artificial muscles.
5–12

  Stimuli-responsive 

[c2]daisy chains based on host–guest conjugates can display specific sliding actuation 

controlled by external stimuli, e.g., chemicals,
13–17

 pH,
18, 19

 redox
20

 and light.
21–23

 

Sauvage
13

 et al. found nanoscale conformational change.  Stoddart
24–28

 et al. have 

prepared poly-[c2]daisy chains using crown ethers and found that the poly-[c2]daisy chains 

show contraction and expansion behaviour by addition of an acid.  Grubbs et al. also 

reported poly-[c2]daisy chains containing crown ether-based [c2]daisy chains, which expand 

and contract in response to pH change.
29

  Some cyclodextrin (CD)-based [c2]daisy chains 

show expansion and contraction motions due to the solvent polarity change
17

 or 

photo-stimuli
21–23

 in aqueous solutions.  However, macroscopic supramolecular actuators 

remain a challenge not only in supramolecular chemistry but also in materials science, and 

such actuators consisting of [c2]daisy chains should be reported. 

 Two structural approaches may realize supramolecular actuators through host–guest 

interactions: a method with a linear main chain and one with a side chain in the polymer 

structure.  Previously, poly-[c2]daisy chains have been reported by several groups as 
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linear-type supramolecular actuators that show a contraction–expansion behaviour responsive 

to external stimuli.
24–29

  Harada’s research employs the polymer side chain method because 

various functions (e.g., selective adhesion,
30

 self-healing,
31, 32

 and atuation
33, 34

) are relatively 

easy to be introduced into materials (Figure 3-1).  Harada et al. have previously reported 

photo or redox responsive supramolecular actuators by integrating host–guest interactions on 

the polymer side chains.
33, 34

  The association and dissociation of inclusion complexes as 

cross-linking units on the polymer side chains demonstrate contraction and expansion motions 

due to changes in the cross-linking density.  A plate-shaped actuator bent against the incident 

ultraviolet (UV) light.
33

 

 

 

Figure 3-1.  Supramolecular actuator using host–guest interactions on the polymer side 

chain.  On the macroscale, the volume of the supramolecular actuator expands by external 

stimuli.  In the case of photo-responsive actuator, exposing the left side to UV light causes 

the plate-shaped actuator to bend to the right side.
33  
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 However, the author hypothesized that polymer chains cross-linked with [c2]daisy 

chains would realize a novel supramolecular actuator whose volume contracts upon UV light 

irradiation but expands upon visible (Vis) light irradiation.  This contraction would bend the 

flat plate actuator toward the incident UV light because UV irradiation causes the shrinkage of 

the end-to-end distance of the [c2]daisy chain to shrink polymeric materials due to desorption 

of the solvent on the exposed surface (Figure 3-2).   

 

 
Figure 3-2.  Supramolecular actuator using a polymer cross-linked with [c2]daisy chain at 

the polymer side chains.  On the macroscale, the volume of the supramolecular actuator 

contracts by UV light irradiation; exposing the left side to UV light, the plate-shaped actuator 

bends to the left side.   

 

In this Chapter, the author report that supramolecular hydrogels containing CD-based 

[c2]daisy chains as cross-linkers contract and expand through photo-responsive sliding of the 

[c2]daisy chain to the incident light (Figure 3-3) and successfully prepare a photo-responsive 

trans cis
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supramolecular actuator. 

 

 

 

Figure 3-3.  Chemical structure and scheme of photo-isomerization of αCD-based [c2]daisy 

chain with an azobenzene derivative as the axis. 
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Preparation of hydrogels in this study 

Based on the formation of [c2]AzoCD2, the author prepared a supramolecular 

hydrogel ([c2]AzoCD2 hydrogel) cross-linked with four-armed poly(ethylene glycol) with 

succinimidyl ester groups at the end (TetraPEG, Mw = 10,000).  To prepare a 

photo-responsive supramolecular actuator, TetraPEG was selected as polymer backbone 

because it is highly water soluble, lacks absorption bands at λ = 365 and 430 nm, which are 

correlated to the photo-isomerization of Azo, and the interaction of its PEG unit with CDs or 

Azo units is weak.  Additionally, we are fascinated by the highly symmetric structure of 

TetraPEG.  The [c2]AzoCD2 hydrogel was prepared by polycondensation of the amino 

group in [c2]AzoCD2 and succinimidyl ester groups at the end of TetraPEG in an aqueous 

solution (Scheme 3-2).  On the other hand, hydrogel was not formed from AmAzoCD with 

the TetraPEG in DMSO, in which AmAzoCD existed as monomer.  To characterize the 

topological effect of the [c2]AzoCD2 gel, we prepared two types of covalently cross-linked 

TetraPEG gel as references: an Azo gel covalently cross-linked with 

4,4´-bis(diamino-diethylene glycol)-azobenzene (Am-DEG-Azo-DEG-Am) and the 

succinimidyl ester groups of TetraPEG (Scheme 3-3) and a PEG gel covalently-cross-linked 

with poly(ethylene glycol)-bis-(3-aminopropyl)ether (DE-10PA) (Scheme 3-4). 
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Characterization of [c2]AzoCD2, Azo- and PEG- hydrogels 

 Hydrogels were characterized by 
1
H field gradient magic angle spining (FGMAS) 

NMR spectroscopy (Figure 3-4, 3-5 and 3-6) and IR spectroscopy (Figure 3-7).  The molar 

ratios of functional cross-linkers ([c2]daisy chain, Azo, and PEG) in hydrogels were 

determined.  The conversion of N-hydroxysuccinimidyl group (NHS) to amide bond (Camide) 

and ratio of hydrolyzed NHS group (CCOOH) were calculated by following equation. 

Camide = 

𝑃𝑎

Ideal 𝑃𝑎 (4.0)
         … (1) 

CCOOH =100-Camide           … (2) 

Where Pa is the area intensity of signals due to the propylene protons in cross-linker. 

The formation ratio of [c2]daisy chain (Fc2) cross-linker was calculated by the following 

equations. 

Pm = Pb-Pc               … (3) 

Fc2 = 
𝑃𝑚

𝑃𝑐
× 100              … (4) 

Where Pm and Pb are the area intensities of the monomeric AmAzoCD residue, the total Azo 

residue, respectively, and Pc is the calculated area intensity of total Azo residues. 
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Figure 3-4.  400 MHz 
1
H FGMAS NMR spectra of the [c2]AzoCD2 hydrogel in D2O.  a) 

Full range spectrum to quantify the conversion of NHS group on PTE-100GS.  The 

conversion of NHS to amide was 95%.  b) Partial spectrum of 7.60–9.00 ppm to quantify the 

ratio between [c2]AzoCD2 dimer unit and monomeric AmAzoCD unit. The ratio of 

[c2]AzoCD2 dimer was 90%.  The ratio of [c2]AzoCD2 did not dimerized AmAzoCD : 

partly-hydrolyzed NHS = 85.5 : 9.5 : 5.  A sample spinning rate was 10 kHz by using a nano 

probe.  "*" denotes the signals due to the solvent used. 

a 

b 
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Figure 3-5.  400 MHz 
1
H FGMAS NMR spectrum of the Azo hydrogel to quantify the 

conversion of NHS group on PTE-100GS in D2O.  The conversion of NHS to amide was 

93%.  The ratio of Azo : partly-hydrolyzed NHS = 93 : 7.  A sample spinning rate was 10 

kHz by using a nano probe.  "*" denotes the signals due to the solvent used. 

 

Figure 3-6.  400 MHz 
1
H FGMAS NMR spectrum of the PEG hydrogel to quantify the 

conversion of NHS group on PTE-100GS in D2O.  The conversion of NHS to amide was 

94%.  The ratio of PEG : partly-hydrolyzed NHS = 94 : 6.  A sample spinning rate was 10 

kHz by using a nano probe.  "*" denotes the signals due to the solvent used.  
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Figure 3-7.  FT-IR spectra (ATR method) of a) the [c2]AzoCD2 xerogel, b) the Azo xerogel, 

and c) the PEG xerogel. 

 

These spectroscopic data indicate that the [c2]AzoCD2, Azo, and PEG moiety are 

incorporated in hydrogels. 

  

a 

b 

c 
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Results and discussions 

Effect of the solvent polarity in the polycondensation 

 The author investigated the effect of the solvent polarity (water or DMSO) on the 

polycondensation of TetraPEG and [c2]AzoCD2.  The physical properties of the hydrogels 

were characterized by storage elastic modulus (G') and loss elastic modulus (G").  Figures 

3-8–3-11 show G' and G" for the [c2]AzoCD2 hydrogel prepared in a) water and b) DMSO 

for an angular frequency range of 0.1–10 rad s
-1

.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8.  Data of dynamic viscoelastic measurements.  Dependency of the storage and 

loss moduli, G' and G'' on angular frequency (ω) for an aqueous solution of the mixture of the 

a) [c2]AzoCD2 hydrogel and b) a DMSO solution of the mixture of [c2]AzoCD2 and 

PTE-100GS on polycondensation. 

  

a 

b 
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Figure 3-9.  Data of dependency of the storage and loss moduli, G' and G'' on angular 

frequency (ω) for the Azo hydrogel prepared in a) water and in b) DMSO. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10.  Data of dependency of the storage and loss moduli, G' and G'' on angular 

frequency (ω) for the PEG hydrogel prepared in a) water and in b) DMSO.  

a 

b 

a 

b 
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Figure 3-11.  Storage elastic modulus of [c2]AzoCD2 hydrogel in H2O, a DMSO solution of 

the mixture of [c2]AzoCD2 and PTE-100GS, Azo hydrogel in H2O, Azo organogel in DMSO, 

PEG hydrogel in H2O, and PEG organogel in DMSO.  Insets are photographs of reaction 

mixtures.   

 The values of G' for the [c2]AzoCD2 hydrogel prepared in water do not relax (G' > 

G"), suggesting that the obtained hydrogel is similar to a chemically cross-linked gel.  In 

contrast, the values of G" for the product with [c2]AzoCD2 reacted in DMSO are larger than 

those of G', which suggests the formation of an unstable state with relaxation.  However, the 

polycondensation solvent does not affect the storage elastic modulus of the Azo hydrogel and 

the PEG hydrogel due to the formation of covalent cross-linked structures (Figure 3-11).  

The elastic viscosity of the product with [c2]AzoCD2 prepared in DMSO was significantly 

lower than that prepared in water because [c2]AzoCD2 dissociates in DMSO prior to 
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polycondensation reaction.  In other words, [c2]AzoCD2 functions as an interpenetrated 

cross-linker, resulting in the formation of supramolecular hydrogel. 

 

Photo-responsive volume change of the [c2]AzoCD2 hydrogel 

Then, the author investigated the volume change of the [c2]AzoCD2 hydrogel and the 

Azo hydrogel by UV light (λ = 365 nm) and Vis light (λ = 430 nm) irradiation.  Figure 3-12a 

shows the experimental conditions for photo-irradiation of a cuboid gel.  The rod lens with 

the a Xenon lamp was located above the hydrogels.  

 

Figure 3-12.  Photo-responsive properties of the [c2]AzoCD2 hydrogel and the Azo 

hydrogel.  a) Irradiation experimental setup of the cuboid gels (5 × 5 × 1 mm
3
) in water.  b) 

and c) Photographs of the volume changes of the [c2]AzoCD2 hydrogel and the Azo hydrogel 

upon irradiation with UV (λ = 365 nm) and Vis light (λ = 430 nm) for three hours, 

respectively. 

Figures 3-12b and 3-12c show photographs of volume changes of the [c2]AzoCD2 

hydrogel and the Azo gel upon UV and Vis light irradiation, respectively.  Irradiating the 

cuboid [c2]AzoCD2 hydrogel with UV light for 3 hours decreases the volume, whereas 

continuously irradiating the shrunken gel with Vis light for 3 hours recovers the initial volume 

(Figure 3-12b).  On the contrary, irradiating the Azo hydrogel with UV light increases the 

a b [c2]AzoCD2 hydrogel

   initial
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   initial
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volume, and continuously irradiating with Vis light restores the initial volume (Figure 3-12c).  

Figure 3-13 shows the correlation between the weight ratio and irradiation wavelength.  As 

seen above, the [c2]AzoCD2 hydrogel and the Azo hydrogel show opposite contraction and 

expansion behaviour.  Of course, irradiation does not change the volume of the PEG 

hydrogel at all.  The contraction–expansion motion of [c2]AzoCD2 induces a volume change 

in the [c2]AzoCD2 hydrogel.   

 

Figure 3-13.  Weight change of the [c2]AzoCD2 hydrogel, Azo hydrogel, and PEG hydrogel 

before and after photo-irradiation with UV and Vis light.  The weight ratio (%) is measured 

with a scale. 

The conformational change induced by UV light irradiation discharges the adsorbed 

water of the [c2]AzoCD2 hydrogel, shrinking the gel pore (Figure 3-14a).  The contracted 

state of [c2]AzoCD2 is restored to the initial expanded state.  The recovering the 
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conformation causes the absorption of water upon Vis irradiation due to the swelling of the 

gel pore.  On the other hand, the Azo hydrogel prior to UV irradiation forms the contracted 

state because the hydrophobic trans-Azo groups assembles to function as noncovalent 

cross-linkers (Figure 3-14b).  After UV irradiation, the assembly decomposes to decrease the 

cross-link density with photo-isomerization from trans- to cis-Azo. 

 

Figure 3-14.  a) Schematic illustration of the expansion–contraction of the [c2]AzoCD2 

hydrogel upon photo-irradiation.  UV irradiation induces isomerization of the Azo unit from 

the trans- to cis-form.  The structure of [c2]AzoCD2 changes from the expanded state to the 

contracted state upon UV irradiation.  Vis irradiation causes isomerization from the cis- to 

trans-form, and the contracted state of [c2]AzoCD2 recovers to the initial expanded state due 

to Vis light irradiation.  b) Schematic illustration of the expansion–contraction of the Azo 

hydrogel upon photo-irradiation.  The trans-Azo units associate hydrophobically to act as 

cross-linkers.  After UV irradiation, the assembly dissociates to increase the volume of the 

Azo hydrogel.  

a 

b 
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Photo-isomerization of azobenzene moieties in the gel 

Azo derivatives are known to show the trans-to-cis and cis-to-trans 

photo-isomerization under irradiation with UV and Vis light, respectively.  UV-Vis 

spectroscopy and 
1
H FGMAS NMR spectrometry were carried out by the photo-isomerization 

of the azobenzene group in the gels (Figure 3-15, 3-16 and 3-17).  As similar to the 

photo-isomerization of [c2]DMTAzoCD2, the intensity of π-π* transition band of the 

trans-Azo group decreases and an n-π* transition band appears upon UV light irradiation.   

 

Figure 3-15.  Time-resolved absorption spectra for the [c2]AzoCD2 hydrogel under 

photo-irradiation with a) UV (λ = 365 nm) and b) visible (λ = 430 nm) lights respectively.   
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Conversely, Vis light irradiation recovers the intensity of π-π* transition band and the 

n-π* transition band disappears.  These results indicate that the Azo units in the [c2]AzoCD2 

gel and the Azo gel have the reversible photo-isomerization ability inside the gels. 

 

Figure 3-16.  Time-resolved absorption spectra for the Azo hydrogel under photo-irradiation 

with a) UV (λ = 365 nm) and b) visible (λ = 430 nm) light respectively.   

  



  81  

 

The degree of photo-isomerization ratio of Azo moiety in the [c2]AzoCD2 hydrogel 

was evaluated by 
1
H FGMAS NMR spectrometry.  Figure 3-17 shows the 

1
H NMR spectra 

of [c2]AzoCD2 hydrogel.  Before UV irradiation, the ratio of trans- and cis-Azo was 99.9 : 

0.1.  After UV irradiation, the ratio of trans- and cis-isomers was changed to 98.4 : 1.6.  

Subsequent Vis light irradiation, the ratio was restored to the initial one.   

 

 

 

 

 

 

 

 

 

 

Figure 3-17.  
1
H FGMAS NMR spectra of the [c2]AzoCD2 hydrogel a) before UV 

irradiation, b) after UV (λ = 365 nm) irradiation, and c) after Vis (λ = 430 nm) irradiation.  

The degree of photo-isomerization ratios of Azo groups were evaluated by the integral value 

before and after light irradiations. 
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Photo-responsive actuation of the [c2]AzoCD2 hydrogel 

The correlation between the direction of the incident light and the deformation 

directions with UV light (λ = 365 nm) and Vis light (λ = 430 nm) was investigated.  The 

[c2]AzoCD2 hydrogel or the Azo gel actuator composed of the plate gels (20 × 10 × 12 

mm
3
) were immersed in water.  A rod lens with a xenon lamp was placed on the right side of 

the gel.  When the [c2]AzoCD2 hydrogel was bent to the right side upon UV light irradiation, 

subsequent under irradiation with Vis light from the right side, the hydrogel restored to the 

initial condition (Figure 3-18a).  Similarly, irradiation of the [c2]AzoCD2 hydrogel from the 

left side with UV light causes the hydrogel to bend to the left, and the initial state is restored 

upon irradiation of the bent hydrogel with Vis light.  By contrast, irradiation of the Azo 

hydrogel with UV light from the right side bends the hydrogel to the left, and irradiation of 

the bent Azo hydrogel with Vis light restores the initial condition (Figure 3-18e).  These 

results demonstrate that the flexion behaviour of the [c2]AzoCD2 hydrogel and Azo hydrogel 

have opposite motions dependence on the light direction.  Figures 3-18b and 3-18f show the 

flexion angle (θ) of hydrogels irradiated with UV and Vis light, respectively, for 3 hours.  

The (θ) value becomes saturated after ca. 3 hours of UV irradiation and does not significantly 

decrease upon standing under its own weight for 1 hour in the dark.  By contrast, irradiation 

with Vis light immediately restores the bent gel to the initial state.  It takes shorter time than 

that bending of [c2]AzoCD2 gel by UV light irradiation.  Because the photo-isomerization 

speed of Azo units which are outside of CD cavity is faster than its inside one.  Figure 3-16c 

shows the repetition experiment for the [c2]AzoCD2 hydrogel upon alternating irradiation 

with UV and Vis light for 1 hour.  The plate hydrogel exhibits a back-and-forth motion that 

depends on the wavelength regardless of the irradiation history.  The bending behaviour of 

the [c2]AzoCD2 gel can be repeated for at least ten cycles with various strains.    
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Figure 3-18.  a) Photographs of the [c2]AzoCD2 hydrogel irradiated with UV and Vis light.  

Upon UV irradiation, the [c2]AzoCD2 hydrogel bends to the right but continuous Vis light 

irradiation results in recovery of the initial form.  b) Plot of the flexion angle (θ) as a 

function of irradiation time of the [c2]AzoCD2 hydrogel.  The blue, red, and white areas 

denote UV irradiation, Vis irradiation, and dark storage without light exposure, respectively.  

The flexion angle (θ) was measured using snapshots.  c) Repetition experiment of the 

[c2]AzoCD2 hydrogel irradiated with UV and Vis light for 1 hour.  The plot shows the 

correlation between the irradiation time and flexion angle (θ).  d) Schematic illustration of 

the bending mechanism of the [c2]AzoCD2 hydrogel upon photo-irradiation.  UV light 

decreases the volume of the exposed surface of the [c2]AzoCD2 hydrogel, and the volume of 

the non-exposed side remains constant.  The strain between the exposed and unexposed 

areas results in flexion.  e) Photographs of the Azo hydrogel irradiated by UV and Vis light.  

UV light irradiation bends the Azo hydrogel but continuous Vis light irradiation results in 

recovery of the initial form.  f) Plot of the flexion angle (θ) as a function of irradiation time 

for the Azo hydrogel. 
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These results indicate that the flex behaviour of the [c2]AzoCD2 hydrogel is the 

opposite that of the Azo hydrogel.  θ of the [c2]AzoCD2 hydrogel is positive (Figure 3-18b) 

but θ of the Azo hydrogel is negative (Figure 3-18f).  Because, the flexion mechanism of the 

[c2]AzoCD2 hydrogel and Azo hydrogel were different.  The [c2]AzoCD2 hydrogel bends 

towards the light source because the exposed surface of the hydrogel preferentially absorbs 

UV light energy.  The conformation change of the [c2]AzoCD2 unit induced by UV light 

irradiation and the gel was shrunk by discharge of water from the [c2]AzoCD2 gel.  UV light 

irradiation decreased the volume of the exposed surface, and the non-exposed side remained 

constant (Fig. 3-18d).  In contrast, the Azo hydrogel bends away from the light source 

because prior to UV irradiation, the trans-Azo units associate hydrophobically to act as 

cross-linkers.  After UV irradiation, the assembly dissociates, and the cross-linking density 

was decreased.  Then, the volume of the exposed surface increased upon 

photo-isomerization from trans- to cis-Azo.   

 

Response rate of the [c2]AzoCD2 hydrogel  

As can be seen in Figures 3-18b and 3-18f, the initial bending rate (V0) of the 

[c2]AzoCD2 and the Azo hydrogel are clearly different.  To determine the initial bending rate 

(V0) of the [c2]AzoCD2 and Azo hydrogel, the author compared the bending efficiency of the 

[c2]AzoCD2 and the Azo hydrogel.  V0 of the Azo hydrogel (V0 = 1.7×10
-2

 deg s
-1

) is faster 

than that of the [c2]AzoCD2 hydrogel (V0 = 1.7×10
-3

 deg s
-1

).  The [c2]AzoCD2 hydrogel 

and the Azo hydrogel have different contraction–expansion mechanisms.  The contraction–

expansion mechanism of the [c2]AzoCD2 hydrogel is based on the change in the end-to-end 

distance of the [c2]daisy chain and desorption of water upon irradiation with UV light.  On 

the other hand, contraction–expansion mechanism of Azo hydrogel is based on the change in 

the cross-linking density.  These are related to the swelling pressure (absorption and 
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desorption of water) and isomerization of the Azo unit.  As shown in Figure 3-15, the 

isomerization rate of the Azo unit in the [c2]AzoCD2 hydrogel is slower than that in the Azo 

hydrogel because the formation of the inclusion complex suppresses the isomerization of the 

Azo unit.  In regards to the thickness of the [c2]AzoCD2 hydrogel, V0 of the [c2]AzoCD2 

hydrogel decreased with the thickness (Figure 3-19).  If the hydrogel is more than 4 mm 

thick, the [c2]AzoCD2 hydrogel does not exhibit any bending behaviour upon irradiation with 

UV light.  In addition, the strain between the exposed and unexposed areas creates the 

flexion behaviour of the [c2]AzoCD2 hydrogel and Azo hydrogel.   

 

Figure 3-19.  Plot of the flexion angle versus irradiation time in the case of the [c2]AzoCD2 

hydrogel with different thicknesses.  Thickness; 1 mm (◆), 2 mm (■) and 3 mm (▲). The 

initial rate (V0) was calculated from the slopes.  Each initial velocities were 1.7×10
-3

 deg s
-1

 

(1 mm), 5.8×10
-4

 deg s
-1

) (2 mm) and 1.0×10
-4

 deg s
-1

.  
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Mechanical property of [c2]AzoCD2 hydrogel 

The author evaluated the change in the cross-link density in response to photo-stimuli 

by using stress–strain measurements.  In general, the Young’s modulus is related to the 

cross-link density of materials.  Figure 3-20 shows stress-strain curves with the UV light 

irradiation.  The rupture stress of the [c2]AzoCD2 hydrogel does not change because a 

number of the covalent cross-link points are not fundamentally influenced by 

photo-irradiation.  However, the rupture strain value of the [c2]AzoCD2 hydrogel increased 

with UV light irradiation.  Continuous irradiation with Vis light recovered the initial rupture 

strain.  The Young’s modulus of the [c2]AzoCD2 hydrogel decreased slightly after UV 

irradiation for 3 hours.   

Upon comprehensive consideration of the rupture stress, strain, and Young’s modulus, 

the expanded state of the [c2]AzoCD2 unit with the trans-Azo forms a relatively stable 

inclusion complex that functions as a non-covalent cross-linker because the association 

constant of αCD with trans-Azo is higher than that of cis-Azo.  After UV light irradiation, 

the cis-Azo unit leaves the cavity of αCD, which increases the sliding mobility of the 

AmAzoCD unit and leads to an increased rupture strain (stretching property) and decreased 

Young’s modulus (decreasing cross-link density).  By contrast, the Azo hydrogel exhibits 

different material properties in response to photo-irradiation.  The Young’s modulus and 

rupture stress of the Azo hydrogel (20 kPa and 20 kPa) decreased to 5.0 kPa and 14 kPa, 

respectively, after UV light irradiation for 3 hours, indicating that UV light irradiation 

decreased the cross-linking density.  The change in the cross-linking density in response to 

the photo-stimuli leads to uptake and release of water in the Azo hydrogel.  The decreasing 

cross-link density results in a decrease in the rupture stress and an increase in the rupture 

strain.  These results demonstrate that the [c2]AzoCD2 hydrogel has an entirely different 

contraction–expansion mechanism from that of the Azo hydrogel. 
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Figure 3-20.  Stress–strain curves of a) the [c2]AzoCD2 and b) Azo hydrogel.  Before UV 

irradiation (―), after UV (λ = 365 nm) irradiation (―) and after Vis (λ = 430 nm) irradiation 

(―).  (---) indicates theoretical curve following affine network model.  
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Mechanical works of [c2]AzoCD2 hydrogel 

The conversion of the photo-irradiation energy to mechanical work is important for 

estimating the mechanical work conversion efficiency of the [c2]AzoCD2 hydrogel (Figure 

3-21) upon UV irradiation.  A weight (34.4 mg) was attached to the bottom of a rectangular 

gel (size: 10×5×1 mm
3
).  UV light irradiation results in the contraction of the gel, lifting the 

weight.  Figure 3-22 shows the position of the weight as a function of irradiation time.  

During UV light irradiation, the weight undergoes a mechanical work (W), which is 

determined by W = (m-ρV) gx (m: the mass of weight; ρ: the density of buffer; V: the volume 

of weight; g: the gravitational acceleration; x: the difference in height of the weight).  The 

mechanical work of the [c2]AzoCD2 hydrogel and xerogel was estimated to be ca. 0.12 µJ.   

 

Figure 3-21.  Experimental setup of the [c2]AzoCD2 hydrogel actuator in response to 

photo-stimuli.  After UV light irradiation, the length of the hydrogel shorten and the weight 

became up.  Subsequent Vis light irradiation restored the weight to the original position.  

Here m, ρ, V, g and x denotes the mass of weight, the density of buffer, the volume of weight, 

the gravitational acceleration and the difference in height of the weight, respectively. 
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Figure 3-22.  a) Plot of the relative position of the weight versus irradiation time in the case 

of the [c2]AzoCD2 hydrogel with a weight (34.4 mg).  The mechanical work of the 

[c2]AzoCD2 hydrogel was estimated to be ca. 0.12 µJ.  The energy density was 12 µW/ cm
2
.  

b) Photographs of before UV and after UV irradiated [c2]AzoCD2 gel attached copper weight. 

  

b a 
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Experimental 

Materials. Four-armed poly(ethylene glycol) (PTE-100GS) and poly(ethylene 

glycol)-bis-(3-aminopropyl)ether DE-10PA were obtained from NOF American Corporation.  
 

Measurements 

Photo-isomerization. The azobenzene moieties in hydrogel were isomerized by the same 

Xenon lamp (Asahi spectra MAX-301) in Chapter 2.  The distance between the sample cell 

and the lamp was fixed at 10 cm.  The bending experiments of [c2]AzoCD2 xerogel 

irradiated with UV light (λ = 365 nm) were carried out by a 1 W LED lamp (Asahi spectra 

POT365).   

NMR spectrometer. The solid-state 
1
H FGMAS NMR spectra were recorded at 400 MHz 

with a JEOL JNM-ECA 400WB NMR spectrometer.  The sample spinning rate was 10 kHz 

with a relaxation delay of 10 s at 30 °C.  Chemical shifts were referenced to adamantane as 

an external standard (δ = 1.91 ppm). 

IR spectrometer. The IR spectra were measured using a JASCO FT/IR-410 spectrometer. 

UV-Vis absorption spectrometer. The UV-Vis absorption spectra were recorded with a 

JASCO V-650 and a Hitachi U-4100 spectrometer in water with a 1-mm quartz cell at room 

temperature.   

Dynamic viscoelasticity measurements. 

Dynamic viscoelasticity of hydrogels were measured by an Anton Paar MCR301 rheometer at 

strain of 0.1%. 

Mechanical properties measurements. 

Mechanical properties of hydro- and xerogels were measured by a rupture tensing system 

(Creep meter, RE-33005B, Yamaden Ltd. and Autograph AG-X plus, Shimadzu).   
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Preparation ofAm-DEG-Azo-DEG-Am  

Scheme 3-1.  Preparation of Boc-DEG-Azo-DEG-Boc and Am-DEG-Azo-DEG-Am. 

Boc-DEG-Azo-DEG-Boc. Am-DEG-Boc (1.5 g, 4.8 mmol), 4-(4-carboxyphenyl)-azo-benzoic 

acid (0.54 g, 2.0 mmol) and triethylamine (1.4 mL 10 mmol) were dissolved in DMF (10 mL).  

BOP (3.0 g, 4.8 mmol) was added to the DMF solution at room temperature.  After stirred 

for 12 hours, the reaction mixture was poured into water (100 mL) to remove the reacted BOP 

reagent.  The desired compound was extracted with CHCl3 (60 mL).  The CHCl3 layer was 

washed with 0.1 M NaHCO3 aq., 0.1 M HCl aq., and water several times.  The solution was 

dried over Na2SO4.  After evaporation, the residue was dispersed into n-hexane.  The 

precipitate was separated from organic layer by centrifugalization.  After drying the 

precipitate, the resulting mixture was applied to a Biotage SNAP Ultra 50 g column running a 
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CHCl3 / MeOH gradient.  The crude product eluted in the range of 0–10% CHCl3 / MeOH.  

The solvents in desired fractions were evaporated to give Boc-DEG-Azo-DEG-Boc as a 

pale-orange solid (1.4 g, 79%).  
1
H NMR (500 MHz, DMSO-d6): δ (ppm) 8.60 (t, J = 5.4 Hz, 

2H), 8.04 (d, J = 8.6 Hz, 4H), 7.97 (d, J = 8.4 Hz, 4H), 6.70 (br, 2H), 3.53-3.44 (m, overlaps 

with H2O), 2.95 (q, J = 6.7 Hz, 6.3 Hz, 4H), 1.78 (quintet, J = 6.7Hz, 6.5 Hz, Hz, 4H), 1.58 

(quintet, J = 6.7 Hz, 6.6 Hz, 4H), 1.35 (s, 9H).  
13

C NMR (125 MHz, DMSO-d6): δ (ppm) 

165.31, 155.55, 153.15, 137.14, 128.50, 122.51, 77.35, 69.75, 69.57, 69.52, 68.25, 68.07, 

37.20, 36.81, 29.69, 29.28, 28.22.  MALDI-TOF MS: m/z Calcd. for C44H70N6O12Na ([M + 

Na]
+
): 897.5;  Found: 897.5; C44H70N6O12K ([M + K]

+
): 913.5;  Found: 913.5. 

Am-DEG-Azo-DEG-Am. Boc-DEG-Azo-DEG-Boc (1.2 g, 1.4 mmol) was dissolved in 

1,4-dioxane (9.0 mL).  HCl aq. (12 M) (6.0 mL, 68 mmol) was added to the 1,4-dioxane 

solution.  After stirred at r.t. for 2 hours, the solvent in the mixture was evaporated to give 

Am-DEG-Azo-DEG-Am as a pale-orange powder (1.0 g, quant.).  
1
H NMR (500 MHz, 

DMSO-d6): δ (ppm) 8.72 (br, 2H), 8.08 (d, J = 8 Hz, 4H), 7.99 (br, 3H), 7.96 (d, J = 8 Hz, 

4H), 3.53–3.31 (m, overlaps with H2O), 2.82 (t, J = 7 Hz, 4H), 1.79 (m, 8H). 
 13

C NMR (125 

MHz, DMSO-d6): δ (ppm) 165.31, 153.15, 137.10, 128.56, 122.50, 69.76, 69.65, 69.54, 69.44, 

68.26, 67.31, 36.80, 36.58, 29.30, 27.11.  MALDI-TOF MS: m/z Calcd. for C34H55N6O8 ([M 

+ H]
+
): 675.4;  Found: 675.2; C34H54N6O8Na ([M + Na]

+
): 697.4;  Found: 697.2; 

C34H54N6O8K ([M + K]
+
): 713.4;  Found: 713.2. 
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a 

 

b 

 

Figure 3-23.  a) 500 MHz 
1
H and b) 125 MHz 

13
C NMR spectra of 

Boc-DEG-Azo-DEG-Boc in DMSO-d6.  "*" denotes the signals due to the solvent used.  
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Figure 3-24.  a) 500 MHz 
1
H and b) 125 MHz 

13
C NMR spectra of 

Am-DEG-Azo-DEG-Am in DMSO-d6.  "*" denotes the signals due to the solvent used.  
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Preparation of a [c2]AzoCD2 hydrogel 

 

Scheme 3-2.  Preparation of the [c2]AzoCD2 hydrogel. 

PTE-100GS (100 mg, 10 μmol) was dissolved in water (706 μL).  An aqueous solution (706 

μL) of AmAzoCD (57 mg, 40 μmol) was added to the aqueous solution of PTE-100GS at 0 
o
C.  

After stirring for an hour, the mixture was warmed to room temperature.  After stirring for 

13 hours, the obtained hydrogel was washed with DMSO and water several times to give a 

red-colored [c2]AzoCD2 hydrogel.   

1
H FGMAS NMR (400 MHz, D2O): δ (ppm) 8.59 (d, J = 32 Hz, 2H), 8.40 (d, J = 32 Hz, 2H), 

8.20 (d, J = 32 Hz, 2H), 8.14 (br, 0.8H), 8.05 (d, J = 32 Hz, 2H), 5.31–2.91 (m, overlaps with 

H2O), 2.57–2.54 (m, 2H), 242–2.38 (m, 2H), 2.10–1.88(m, 6H). 

  



  96  

 

Preparation of an Azo hydrogel   

 

Scheme 3-3.  Preparation of the Azo hydrogel. 

PTE-100GS (100 mg, 10 μmol) was dissolved in water (515 μL).  An aqueous solution (515 

μL) of Am-DEG-Azo-DEG-Am (15 mg, 20 μmol) and 2,6-lutidine were added to the aqueous 

solution of PTE-100GS at room temperature  After stirring for 13 hours, the obtained 

hydrogel was washed with DMSO and water several times to give a red-colored Azo 

hydrogel.   

1
H FGMAS NMR (400 MHz, D2O): δ (ppm) 7.91 (br, 4H), 4.94–3.22 (m, overlaps with H2O), 

2.40(br, 2H), 2.23 (br, 2H), 1.92–1.76(m, 6H). 
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Preparation of a PEG hydrogel   

 

Scheme 3-4.  Preparation of the PEG hydrogel. 

PTE-100GS (100 mg, 10 μmol) was dissolved in water (540 μL).  An aqueous solution (540 

μL) of DE-10PA (20 mg, 20 μmol) was added to the aqueous solution of PTE-100GS at room 

temperature  After stirring for 13 hours, the obtained hydrogel was washed with DMSO and 

water several times to give a colorless PEG hydrogel.   

1
H FGMAS NMR (400 MHz, D2O): δ (ppm) 4.94–3.36 (m, overlaps with H2O), 2.57(t, J = 8 

Hz, 2H), 2.41 (t, J = 8 Hz, 2H), 2.03 (quintet, J = 4 Hz, 2H), 1.91 (quintet, J = 8 Hz, 2H). 
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Chapter 4 

Dry artificial muscle materials with [c2]daisy chains. 

Introduction 

The construction of artificial muscle actuators is an important target in medical 

physics, and materials science.  A research topic to realize muscle-like movements in 

actuators are consuming input energies (electric, thermal, change, photo energies) into 

demonstrated movements (deformation, transformation, pressure, etc.).  There are many 

attempts to realize actuators using organic, inorganic, electrostrictive, and piezoelectric 

materials.  Stimuli-responsive polymeric materials have attracted attentions due to the 

active-control of the functional properties and biological compatibility.  Hydro- or 

organogels are very useful materials for stimuli-responsive actuators.  The absorption and 

desorption of solvents as driving principles affect polymeric gels with the contraction and 

expansion properties.  However, the swelled gels have low mechanical strengths and the 

other reason is slow response speed using gel actuators because the rate determining step of 

gel actuators is absorption and desorption of solvent from gels.   

Previously, stimuli-responsive actuators prepared from acrylic polymer,
1-5

 polymer 

brush,
6
 and poly pyrole,

7
 etc.  Ikeda et al. prepared azobenzene-based liquid crystalline films, 

which exhibit rotating motions under dry state.
8
  However, supramolecular actuators 

consisting of [c2]daisy chains in macroscopic scale is still a challenging subject not only in 

chemistry but also in materials science especially under dry conditions.  In this Chapter, the 

author realizes a dry polymeric actuators with photo-responsive [c2]daisy chains (Figure 

4-1a).  In the previous chapter, a symmetric polymer network cross-linked with [c2]daisy 

chains demonstrated a responsive efficient molecular actuator responsive to UV and Vis light 

irradiation under wet conditions.  The author chooses a four-arm poly(ethylene glycol) 
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(TetraPEG) cross-linked into a symmetric polymer network (Figure 4-1b).  Herein, we 

prepare a supramolecular xerogel containing of CD-based [c2]daisy chains as cross-linkers.  

Irradiating with UV light under dry conditions induces a flexion in the supramolecular xerogel.  

More importantly, the response speed of the [c2]daisy chain xerogel is very fast.  Although 

the hydrogel takes requires 3 hours to bend 7 degrees, whereas the xerogel only required 1 s.  

The response speed of the xerogel is over more than 10,800 times faster than that of the 

hydrogel.   

 

  

Figure 4-1.  a) Chemical structure and photo-isomerization scheme of an αCD-based 

[c2]daisy chain with an azobenzene derivative as the axis.  b) Chemical structure of a 

[c2]AzoCD2 xerogel consisting of TetraPEG.  
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Photo-responsive actuation of the [c2]AzoCD2 xerogel 

The [c2]AzoCD2 hydrogel or the Azo hydrogel was slowly frozen on an ice plate.  

Then, the frozen hydrogels were slowly lyophilized to afford the [c2]AzoCD2 xerogel or the 

Azo xerogel.  To avoid the thermal expansion effect, a 1 W- light-emitting diode (LED) lamp 

was used to generate UV light (λ = 365 nm).  The [c2]AzoCD2 xerogel immediately 

responded to the UV light irradiation in the dry state and bends toward the light source.  

Approximately 3.6 s was required to reach a 52 degrees bending angle, which is ca. 30 times 

faster than that of the [c2]AzoCD2 hydrogel (Figure 4-2).  More importantly, the response 

speed of the [c2]AzoCD2 xerogel is faster than that of the [c2]AzoCD2 hydrogel.  Although 

the [c2]AzoCD2 hydrogel requires ca. 3 hours to bend 7.2 degrees, the [c2]AzoCD2 xerogel 

requires only 1 s to bend, thus resulting in a response speed that is more than 10,800 times 

faster than that of the [c2]AzoCD2 hydrogel.  Continuous irradiation with Vis light (λ = 430 

nm) from the same side of the [c2]AzoCD2 xerogel does not restore the initial form because 

the hydrophobic interaction (the CD unit / the trans-Azo unit) and the swelling pressure fail to 

function in the dry state.  However, irradiation of the opposite side with UV light restores the 

initial position.  The size is reduced by the sequence of right and left UV light irradiation.   

  



  104  

 

 

 

Figure 4-2.  Photo-responsive xerogel actuators under dry conditions.  a) Photographs of 

the [c2]AzoCD2 xerogel irradiated with UV light from the right side.  The [c2]AzoCD2 

xerogel bends to the right but continuous UV light irradiation from the left side restores the 

initial form.  b) Photographs of the [c2]AzoCD2 xerogel, which was alternately irradiated 

with UV light from the right and left sides resulting in the formation of a zigzag 

conformation.   

 

Figures 4-3 and 4-4 show the relation between the flexion angle (θ) of the xerogel 

irradiated with UV light and the irradiation time.  The bending angle immediately increased 

and does not decay against its own weight.  However, the Azo xerogel does not exhibit a 

photo-responsive properties under dry conditions.  The bending mechanism of the 

[c2]AzoCD2 xerogel involves the sliding motion of [c2]AzoCD2 unit, which shrinks the 

end-to-end distance of the [c2]daisy chain and reduces the form of xerogel (Figure 4-3).  

However, Vis light irradiation does not restore the initial form even when the Azo unit 

isomerizes from the cis- to the trans-form because swelling and hydrophobic interactions do 

not occur under dry conditions.  The cis-Azo exists outside the αCD cavity because the low 

affinity of cis-Azo and αCD after UV light irradiation.  However, after subsequent Vis light 

irradiation, the CD unit on the PEG unit does not recognize the trans-Azo unit due to the 

weak hydrophobic interaction in the dry state.   
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To compare the bending speed (V0) of the [c2]AzoCD2 hydrogel and Azo hydrogel, V0 

was determined based on the results in Figure 4-4.  V0 of the Azo hydrogel (V0= 1.7×10
-2

 deg 

s
-1

) is faster than that of the [c2]AzoCD2 hydrogel (V0= 1.7×10
-3

 deg s
-1

).  The [c2]AzoCD2 

hydrogel and the Azo hydrogel have different contraction–expansion mechanisms.   

 

Figure 4-3.  Plots of the flexion angle (θ) as a function of the irradiation time of the 

[c2]AzoCD2 xerogel.  The blue areas denote UV irradiation.  The white area indicates no 

irradiation under dry conditions.  

  

Figure 4-4.  Plot of the flexion angle versus irradiation time in the case of the [c2]AzoCD2 

xerogel The initial velocity (V0) was calculated from slope of lines. The initial velocity of 

[c2]AzoCD2 xerogel was 7.1 (deg s
-1

)  
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Mechanical properties of the [c2]AzoCD2 xerogel before and after UV light irradiation 

Stress–strain measurements were used to evaluate the mechanical property of the 

[c2]AzoCD2 xerogel in response to photo-stimuli.  In general, the Young’s modulus is 

correlated with the cross-link density of materials.  Photo-irradiation does not change the 

rupture stress of the [c2]AzoCD2 xerogel because a number of the covalent cross-link points 

are not fundamentally influenced by photo-irradiation.  However, the rupture strain value of 

the [c2]AzoCD2 xerogel increased after irradiation with UV light irradiation.  Before UV 

light irradiation, the rupture strain value of the [c2]AzoCD2 xerogel is significantly low (30%) 

because the αCD unit have no space to slide on the axis molecule.  After UV light irradiation, 

the cis-Azo unit dethreads from the cavity of αCD, which increases the sliding mobility of the 

AmAzoCD unit and leads to an increased rupture strain (1140%) (Figure 4-5a) and a 

decreased Young’s modulus (decreasing cross-link density) because the [c2]daisy chain unit 

functions as a dynamic interpenetrated cross-linker.  However, the rupture stress of the 

[c2]AzoCD2 xerogel does not change due to the number of covalent cross-link points 

remaining the same.  However, the order of the Young’s modulus of the Azo xerogel does 

not change before or after UV irradiation (Figure 4-5b).   
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Figure 4-5.  Stress–strain curves of the a) [c2]AzoCD2 and b) Azo xerogel.  Before UV 

irradiation (―) and after UV (λ = 365 nm) irradiation for 20 s.(―). 

 

a 

b 
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SEM images of [c2]AzoCD2 and Azo xerogels 

Figure 4-6 shows that the SEM image of the [c2]AzoCD2 xerogel show clear fine 

mesh network before UV light irradiation.  After UV irradiation for 10 s, the network 

structure of [c2]AzoCD2 xerogels disappeared (Figures 4-6 a and b).  In contrast, the 

structure of Azo xerogel did not change (Figures 4-6 c and d).  These results indicate that 

only [c2]AzoCD2 xerogel offer a response to UV light.   

 

Figure 4-6.  SEM images of [c2]AzoCD2 xerogel a) before and b) after UV irradiation (λ = 

365 nm) for 10 s.  c) and d) show the SEM images of the Azo xerogel before and after UV  

irradiation for 10 s.    

(a) (b) 

(c) (d) 
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Thermal properties of the [c2]AzoCD2 xerogel 

The thermal properties of the [c2]AzoCD2 xerogel as well as Azo xerogel by DSC.  

Melting point (Tm), the Tm and of xerogels were observed.  All xerogels were heated from 25 

o
C to 140 

o
C and quenched by liquid nitrogen for -50 

o
C.  The cooling ratio is 30 

o
C / min.  

The glass transition temperature (Tg) was observed by the slow heating (10 
o
C / min.) of 

cooled xerogel.  As a result the Tg and Tm of the [c2]AzoCD2 xerogel were determined to be 

6.6 
o
C and Tm was 32.6 

o
C respectively (Figure 4-7a).  On the other hand, Tg and Tm of Azo 

xerogel were determined to be 4.1 
o
C and 43.6 

o
C, respectively (Figure 4-7b).  In the both 

cases, Tm values are significantly higher than the measurement temperature (i.e., room 

temperature).  These results indicate that bending of the [c2]AzoCD2 xerogel is not caused 

by the melting. 

 

 

Figure 4-7.  Tg and Tm measurements of a) the [c2]AzoCD2 and b) the Azo xerogel. 

a) 

b) 
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Mechanical works of [c2]AzoCD2 xerogel 

A weight (37.8 mg) was attached to the bottom of a rectangular xerogel (size: 10×5×1 

mm
3
).  UV light irradiation results in the contraction of the xerogel, lifting the weight 

(Figure 4-8).  Figure 4-9 shows the position of the weight as a function of irradiation time.  

During UV light irradiation, the weight undergoes mechanical work (W), which is determined 

by W = (m-ρV)gx (m: mass of the weight, g: acceleration of gravity, x: length of the weight 

that is lifted).  The mechanical work of the [c2]AzoCD2 hydrogel and xerogel was estimated 

to be ca. 0.12 µJ.   

 

Figure 4-8.  Experimental setup of the [c2]AzoCD2 xerogel actuator in response to photo- 

stimuli.  After UV light irradiation, the length of the xerogel shorten and the weight became 

up.  Subsequent Vis light irradiation restored the weight to the original position.  Here m, g 

and x denotes the mass of weight, the gravitational acceleration and the difference in height of 

the weight, respectively. 
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Figure 4-9.  a) Plot of the relative position of the weight versus irradiation time in the case 

of the [c2]AzoCD2 xerogel with a weight (37.8 mg).  The mechanical work of the 

[c2]AzoCD2 xerogel was estimated to be ca. 0.12 µJ.  The energy density was 12 µW/ cm
2
.  

b) Photographs of before UV and after UV irradiated [c2]AzoCD2 gel attached copper weight. 

 

Finally, we conducted a lifting experiment using a match and the [c2]AzoCD2 xerogel.  

Figure 4-10a shows the setup, which consists of a hand with stimuli-responsive fingers 

([c2]AzoCD2 xerogel) and an iron plate.  When reaching the hand position, the xerogel was 

irradiated to grip the match.  The hand successfully pinches and lifts up the object, 

confirming that the fingers of the [c2]AzoCD2 xerogel have sufficient stiffness to provide 

weight resistance for a match of 107.8 mg (Figure 4-10b). 

 

  

a b 
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Figure 4-10.  a) Schematic of the experimental setup.  b) Photograph of a hand with 

stimuli-responsive fingers (the [c2]AzoCD2 xerogel) and an iron plate.  After UV light 

irradiation, the clipped object is not dropped.  

 

Experimental 

Measurements 

Photo-isomerization.  The distance between the sample cell and the lamp was fixed at 10 

cm.  The bending experiment of [c2]AzoCD2 xerogel irradiated with UV light (λ = 365 nm) 

was carried out by a 1 W LED lamp (Asahi spectra POT365).   

Mechanical properties measurements. 

Mechanical properties of hydro- and xerogels were measured by a rupture tensing system 

(Creep meter, RE-33005B, Yamaden Ltd. and Autograph AG-X plus, Shimadzu).   
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Chapter 5 

Conclusions. 

In this study, various stimuli responsive supramolecular materials composed of 

C2-symmetric double threaded rotaxanes ([c2]daisy chains) have been prepared utilizing 

recognition characteristics of host–guest complexes. 

In Chapter 2, the author prepared photo-responsive reversible contraction–expansion 

molecular muscles consisting of αCD and Azo ([c2]DMTAzoCD2).  The [c2]DMTAzoCD2 

shows the sliding behaviour in water and DMSO.  When, the aqueous solution of 

[c2]DMTAzoCD2 was irradiated by UV (λ=365 nm) light, [c2]DMTAzoCD2 was contracted.  

Whereas continuous Vis (λ=430 nm) light irradiation, the formation was restored to initial 

form. 

In Chapter 3, the author prepared photo-responsive reversible expansion–contraction 

hydrogel actuators.  The design and motion of the [c2]AzoCD2 gels are reminiscent of a 

natural muscle fibril system.  The author hypothesized that polymer chains cross-linked with 

[c2]daisy chains would realize a novel supramolecular actuator whose volume contracts upon 

UV light irradiation but expands upon visible (Vis) light irradiation.  This contraction would 

bend the flat plate actuator toward the incident UV light because UV irradiation causes the 

shrinkage of the end-to-end distance of the [c2]daisy chain to shrink polymeric materials due 

to desorption of the solvent on the exposed surface. 

In Chapter 4, although the [c2]AzoCD2 hydrogel exhibits a photo-stimuli-induced 

back and forth motion, photo-responsive actuation in a [c2]AzoCD2 xerogel was thought to 

been difficult.  In this Chapter the author demonstrated that photo-responsive actuation was 

possible.  The author hypothesized that both the structure of TetraPEG and the flexible 

property of PEG chains play important roles in achieving photo-responsive actuation in the 
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dry state.  Although the [c2]AzoCD2 xerogel does not achieve reversible deformation control 

and cycling by UV light irradiation, the ability to slide is important for the photo-driven 

movement of a xerogel on a macroscopic scale in the dry state.   
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