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Abstract

Anderson localization is one of the fundamental phenomenon in condensed
matter with disorder. More than 50 years have passed since P. W. Anderson
first suggested this phenomenon, Anderson localization has been studied in
a variety of fields of physics, such as disordered electrons, sound, light and
cold atoms. There have been many studies of the critical phenomena of the
Anderson transition, which occur between localized and extended phases,
because of their universal property. However, no theory gives quantitatively
satisfactory description of critical phenomena of the Anderson transition.

I reports several numerical and analytical studies about critical phenom-
ena of the Anderson transition.

The first half of these studies concerns the Anderson transition in the
orthogonal symmetry class. The critical exponent of the localization length
ν for the orthogonal symmetry class in 4 and 5 dimensionality is numerically
estimated precisely by transfer matrix method. A new technique for approx-
imate re-summation based on Bore-Padé analysis is developed to incorporate
information at infinite dimensionality to existing perturbation series of criti-
cal exponent ν obtained from field theoretical approach. It gives much better
agreement with numerical results compared with previous method.

The second half of these studies concerns the β functions in the Wigner-
Dyson classes. The β functions describing system size dependence of dimen-
sionless conductance are estimated by applying the improved Borel-Padé
analysis for Wigner-Dyson classes to the perturbative β functions obtained
from field theory. The critical exponents in the Wigner-Dyson classes and
the lower critical dimension dl of the symplectic class are estimated from
approximately re-summed β function. The β function for the 1 dimensional
symplectic symmetry class is numerically estimated using transfer matrix
method. The author found that the peak of the β function in the symplectic
symmetry class persists even in d = 1. These results suggests that an attrac-
tive critical fixed point peculiar to the symplectic symmetry class appears in
dl ≤ d < 2.
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3.1.3 Improved Borel-Padé analysis for the β function in the

symplectic symmetry class . . . . . . . . . . . . . . . . 37

i
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Chapter 1

Introduction

1.1 Short introduction to Anderson transi-

tions

In studies of solid state electron theory, it is often theoretically assumed that
crystal has perfect periodicity. Atoms composing such perfect crystal are
arranged so that the system possess spatial translational symmetry. Under
this assumption, eigenstate of electron is described with Bloch state char-
acterized by specific wave number, and we can study property of condensed
matter by so called band theory. However, solids existing in real world in-
cludes impurities and defects, or solid itself can be amorphous or glass. It
is practically impossible to remove impurities and defects perfectly due to
stability in thermodynamics. Besides such natural disorder, impurities are
sometimes artificially doped in semi-conductor to control its electric property.
Thus, real materials include disorder in some forms.

Due to existence of disorder in real material, if the materials are disor-
dered enough, eigenstate of electron cannot be well approximated by Bloch
state. In such strongly disordered systems, how does eigenstate of electron
change? In 1958, P. W. Anderson suggested that eigenstate of electron can
localize in space for the model with random potential (Anderson model of
localization) [1]. This phenomenon is now called Anderson localization and
regarded as one of the most fundamental phenomena in disordered systems.
Localization occurs if strength of disorder is sufficiently large or the Fermi en-
ergy is close to the band edges. The energy separating region of the spectrum
with localized and extended states is known as mobility edge [2, 3, 4]. In
three dimension for weak disorder, localization occurs near the band edges.
Near the band center, the states are extended. Two mobility edges exist,
which separate the regions of extended states and localized states. As the
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disorder increases, the mobility edges move towards band center, and for
sufficiently strong disorder all states are localized. The electrical property of
system changes from metal to insulator when the Fermi energy and mobility
edge cross. This quantum phase transition is called the Anderson transition.
The shape of averaged density of states (DOS) is also modified by disorder,
i.e., sharp band edges are replaced by Lifshitz tails [5].

The Anderson transition is a continuous quantum phase transition, criti-
cal phenomena [6] occur near the critical point similar to a continuous phase
transition in thermodynamics [7]. The word critical phenomena is widely
used to refer to characteristic phenomena near the critical point. For exam-
ple, various physical quantities such as conductivity σ, correlation length ξ
and so on obey power laws.

ξ ∼ |W −Wc|−ν (1.1.1)

σ ∼ |Wc −W |s (1.1.2)

s = (d− 2)ν (1.1.3)

Here, W , Wc express strength of disorder and its critical value, d is the
dimensionality of corresponding system. The two exponents ν and s called
critical exponents are related to each other by Wegner ’s scaling law [7].
Critical exponents are important for critical phenomena because they are
thought to be universal. In this context, the word universal means that
critical exponents depend only on fundamental property of the systems such
as symmetry or dimensionality, but not at all on details of the system. For
example, for Anderson model of localization, the distribution function of the
random potentials [8] and the boundary conditions [9] do not change the
value of the critical exponent.

Because the Anderson transition has universality, it is natural to define
classes of Hamiltonians in which symmetry and dimensionality are shared.
Such classes of Hamiltonians are called universality classes. It is known that
there are 10 such classes[10, 11]. Among them, 3 classes, called Wigner-
Dyson classes, are the most basic. The Wigner-Dyson symmetry classes are
a classified by time reversal (TRS) and spin rotation (SRS) symmetry (Table
1.1.1). The former corresponds to the presence or absence of magnetic field,
the latter corresponds to the presence or absence of spin orbit interaction.
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TRS SRS
Orthogonal ⃝ ⃝

Unitary × ⃝×
Symplectic ⃝ ×

Table 1.1.1: Wigner-Dyson symmetry classes

Critical exponent is often used to verify that a given Hamiltonian belongs
to certain universality class. However, at present, there is no theory which
gives reasonable and satisfactory estimate of critical exponents for Wigner-
Dyson classes. Critical exponents ν estimated numerically for Wigner-Dyson
classes are listed in Table 1.1.2.

Method Orthogonal Unitary Symplectic
TM 1.571[.563, .579] [12] 1.43[.39, .47] [13] 1.375[.359, .391] [14]
MA 1.590[.579, .602] [15, 16] 1.437[.426, .448][17, 18] 1.383[.359, .412] [17, 18]
LS 1.52 ± 0.06 [19]

Table 1.1.2: Critical exponents for Wigner-Dyson classes for d = 3 estimated
by various numerical methods. TA, MA and LS express transfer matrix
method, multifractal analysis and level statistics respectively.

As can be seen from Table 1.1.2, the change in the critical exponent when
TRS or SRS is broken is not large. This mean that precise estimate of critical
exponent are required for the purpose of classification into universality class.

Additional symmetry classes are classified by chiral symmetry and particle-
hole symmetry (See Appendix. A). Two dimensional case is well studied from
field theoretical approach using nonlinear sigma model as effective model. Be-
sides symmetry and dimensionality, nonlinear sigma model can have topolog-
ical term such as θ term [20], Z2 topological term [21, 22, 23], Wess-Zumino-
Witten (WZ) term [24, 25]. Without such topological terms, Wigner-Dyson
classes are not enough to explain some important physical phenomena. For
example, quantum hall transition is described by θ term [20]. The symplectic
class with Z2 topological term describes Dirac fermions with random scalar
potential which can suppress localization [21]. Dirac fermions in a random
vector potential are described by WZ term, such models are related to dirty
d-wave superconductors [24, 25].

In addition to symmetry, dimensionality determines the universality class.
The scaling theory proposed in 1979 by E. Abrahams, P. W. Anderson, D.
C. Licciardello and T. V. Ramakrishnan [26] shows clearly the importance
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of dimensionality. They focused on dimensionless conductance g of a d-
dimensional hyper cubic lattice of length L and mainly on dependence on
system size L. Where, g is DC conductance at 0[K]. Conductance g is prob-
abilistic quantity due to randomness of the system. Below, we define g as its
typical value for distribution function of g. One of most important quantity
proposed in their study is the β function which is defined as,

β(g) =
d ln g

d lnL
(1.1.4)

Where, we should pay attention that the β function depends on W,L only
through dimensionless conductance g. This can be explained straightfor-
wardly by current point of view in critical phenomena, Near critical point,
from general framework of renormalization group theory [6], g is expected to
obey following renormalization group equation,

g(w,L) = f(b1/νw, b−1L) (1.1.5)

Where, irrelevant scaling values which gives no effect at L → ∞ is omitted
for simplicity. An example of irrelevant scaling variable is the mean free path
l and we consider L≫ l. Here, b is scaling factor and w is defined as

w =
W −Wc

Wc

(1.1.6)

By performing renormalization group transformation n times until bn = 1,

g(w,L) = f(L1/νw, 1)

= f((Lwν)1/ν , 1)

= Φ± (L|w|ν) (1.1.7)

Where, Φ± are scaling function defined above(w > 0) and below(w < 0) the
critical point respectively. This expression means g is a function of a single
parameter L|w|ν , and this kind of scaling law is referred to as one parameter
scaling. If Φ± are monotonic functions, this scaling law make each value of
L|w|ν correspond to specific value of g one to one. The logarithmic derivative
of g is expressed as

d ln g(w,L)

d lnL
=

L

Φ±(L|w|ν)

dΦ±(L|w|ν)

dL

= L|w|ν
Φ′

±(L|w|ν)

Φ±(L|w|ν)
(1.1.8)
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Thus, the β function is expressed in terms of L|w|ν which is expected to have
to one to one correspondence with g in each phase. Therefore, the β function
can be well-defined as a function of g by Eq.(1.1.4)

Leading asymptotic behaviors of the β function in g → 0 and g → ∞ is
obtained by simple consideration. In the metallic limit of g → ∞, if system
size is much larger than correlation length, g obeys Ohm’s law

g(W,L) =
h

e2
σ(W )Ld−2 (1.1.9)

On the other hand, in the insulating limit of g → 0, wave function is localized
with localization ξ. Therefore, if system size is enough larger than localization
length, g is also expected to exponentially decay as system size L increases

g(W,L) ∼ exp (−L/ξ(W )) (1.1.10)

So, leading asymptotic from of the β function in metallic or insulating limit
is derived from corresponding behavior of g,

β(g) ∼ d− 2 (g → ∞) (1.1.11)

∼ ln g (g ↘ 0) (1.1.12)

For the orthogonal symmetry class, approximate shape of the β function
is obtained from smooth and monotonic interpolation from both limit (Fig
1.1.1)

From Fig 1.1.1, β(g) is always negative if d ≤ 2 and this leads that system
becomes insulator in the limit of L → ∞ and all states are thought to be
localized. Supremum of dimensionality that all states are localized is called
lower critical dimension. For the case of the orthogonal symmetry class, the
lower critical dimension is 2. On the other hand in d > 2, there exists special
value gc called fixed point such that

β(gc) = 0 (1.1.13)

β(g) is positive for g > gc and negative for small g < gc. This suggests
that there is both metallic and insulating phase in d > 2 and possibility
that the Anderson transition exists in the d > 2 orthogonal symmetry class
in the limit of L → ∞. Thus, scaling theory shows the importance of the
dimensionality for the Anderson transition. Scaling theory is also used to
extrapolate behavior of L→ ∞ from numerical data. Such finite size scaling
method have now become quite sophisticated. It is based on the framework
of renormalization group, and widely applied, not only to the conductance
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Figure 1.1.1: The β function for the orthogonal symmetry class in d = 1, 2, 3.
In d = 2, correction to the leading term in g → ∞ is calculated as negative for
the orthogonal symmetry class [26]. Sign of correction in next leading term is
known to be negative for the orthogonal and unitary symmetry classes, but
positive for the symplectic symmetry class from the study with nonlinear
sigma model [27, 28]. This implies that the β function in the symplectic
symmetry class is not monotonic function of ln g.

g. Finite size scaling plays essential role to show existence of the Anderson
transition and estimate critical exponent numerically [29, 30, 31, 32].

Many experimental realizations of the Anderson transition are known.
Anderson transition is originally studied as a problem of spin and electron’s
diffusion in solid. One example is the metal-insulator transition in doped
semi-conductors [33, 34, 35, 36, 37, 38]. In experiment, the critical exponent
is estimated from the zero-temperature conductivity σ extrapolated from
finite temperature.

σ(nD) ∼
∣∣∣∣nD − nc

nc

∣∣∣∣s (1.1.14)

where, nD and nc are impurity concentration and its critical value. Critical
exponent of correlation length ν is obtained from s by Wegner’s scaling law
of Eq. (1.1.3). It was reported that value of critical exponent can change
due to mutual interaction between electrons [39, 40]. Actually, there are a
discrepancy in value of critical exponent between numerical estimation for
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Anderson model of localization and experimental estimates. The question
how mutual interaction changes the Anderson transition is an important open
question. As foundation for such a difficult case, it is useful to understand
as much as possible the Anderson transition without mutual interaction.

Certain system of cold atoms which are the experimental realization of
quantum kicked rotor model (QKR) provide more ideal condition for obser-
vation of the Anderson transition [41, 42, 43, 44]. Such systems are driven
periodically with the strength of external impulsive force modulated in an
aperiodic way. Dynamical localization, which is the analogue of Anderson
localization in momentum space, is observed if the strength of the exter-
nal force is not too large. Diffusion in momentum space is observed when
the strength of the external force exceeds a critical value. An approximate
mapping from d-dimensional Anderson model of localization to QKR exists
[45, 46]. However, the Anderson model obtained by this mapping has a quasi-
periodic potential rather than a random potential. Because mapping between
these model is not exact, more conclusive evidence to identify two Anderson
transitions in Anderson model of localization and QKR is required. It was
obtained by comparing critical exponent ν for both models. Critical expo-
nent of ν for QKR is estimated as ν = 1.63 ± 0.05 [44] experimentally and
ν = 1.590 ± 0.006 [15, 16] numerically which are consistent with that of the
Anderson model of localization ν = 1.571±0.004 [12]. Approximate mapping
between Anderson model of localization and QKR can be constructed even
for d ≥ 4 and it is suggested that experimental observation of the Anderson
transition in higher dimensions is possible in systems of cold atoms [42].

Anderson localization is expected to be possible in the system which
combines wave characters and randomness. Other experimental realization
includes cold atoms in a speckle laser field [47, 48], light [49] and phonon
[50].

Finally, I refer Refs. [11, 51, 52, 53, 54] as review articles of Anderson
localization, and Anderson transition.

1.2 Some of the major problems in Anderson

transitions

Although Anderson localization has been studied for more than 50 years[1],
some fundamental problems remain unsolved. Below, I list some that are
closely related to the studies in this thesis.

First of all, there is no analytic theory which describes critical phenomena
of the Anderson transition quantitatively. One of the most important tasks
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for theory is the estimation of critical exponent for all classes. At present,
there is no theory which give satisfactory estimates of critical exponent in
all the Wigner-Dyson classes. For the orthogonal symmetry class, although
there are several theories giving estimate of the critical exponent, their value
are not consistent with each other and different from numerical estimates
(Table 1.2.3 and Table. 1.1.2).

ν
Self-consistent theory [55, 56] 1

Semi-classical theory [57] 3/2
Non-linear sigma model

(ϵ expansion and Borel-Padé analysis) [28] 0.731

Table 1.2.3: Theoretical estimates of critical exponent for the 3 dimensional
orthogonal symmetry class

Besides the problem of critical exponent, there is no consistency among
theories about the upper critical dimension du, which is the infimum dimen-
sion such that critical exponent ν becomes independent of dimensionality.
There are various predictions such as du = 4, 6, 8 [56, 58, 59, 60] and ∞
[61, 62] depending on each theory. Numerical study suggests that du is more
than 6, and the conjecture that du = ∞ seems the most likely at present
[19]. Numerical studies have played a role as touchstone and clue for various
theories and for understanding of the Anderson transition to progress.

Second problem is value of the lower critical dimension of the symplectic
symmetry class. In the orthogonal and unitary symmetry classes without
topological terms, the lower critical dimension dl is commonly understood as
2, i.e. there are no transition below d = 2 and all eigenstates are localized by
infinitesimally small strength of disorder. However, in the symplectic symme-
try class, Anderson transition occurs in d = 2 [27, 63, 64, 65]. Furthermore,
transition survive on fractal lattice with effective dimensionality less than 2
[66]. Therefore,

1 ≤ dl < 2 (1.2.1)

What is the value of the lower critical dimension for the symplectic symmetry
class? A recent study of Anderson transition on fractal [67] indicates that
Anderson transition occurs near d = 1.9 (Where, d means asymptotic value
of the β function in limit of g → ∞). There are no clear understanding how
Anderson transition in the symplectic symmetry class changes on approach-
ing to the lower critical dimension, and we may find new phenomena which
is specific to the symplectic symmetry class in d < 2.

8



Third problem is closely related with second problem. Although Anderson
transition exists in the symplectic symmetry class for d < 2, i.e. non-integer
dimensionality, we are not certain about suitable definition of dimensionality
for Anderson transition. There are many kind of definition of dimensionality
for fractals in mathematics. Among them, Hausdorff dimension and spectral
dimension (See Appendix B) are often used in study of physics. From numer-
ical study of Anderson transition in the orthogonal symmetry class on fractal
systems [68], it was found that critical exponent of the Anderson transition
depends on spectral dimension but not on Hausdorff dimension. From this
result, spectral dimensionality is one strong candidate for suitable definition
of dimensionality for the Anderson transition. However, there seems not to
be direct explanation for why only spectral dimensionality is relevant for
Anderson transition.

1.3 Overview and purpose of this study

The purpose of a series of studies written in this thesis is to explore some
fundamental aspects of the Anderson transition in the Wigner-Dyson classes
described in Sec. 1.2.

I studied the Anderson transition using both numerical and analytical
approaches. The numerical and analytical approaches complements each
other. Numerical calculation is limited to finite system sizes, while the exact
critical phenomena are realized only in infinite system size. The advantage
of numerical method is that error is estimated reliably. On the other hand in
the analytical approach, although we may avoid the limitation about system
size, estimation of error becomes very difficult. Typical example is the error
introduced by the truncation of perturbation series at finite order.

This study starts from the Anderson transition in the orthogonal sym-
metry class which is most basic class within Wigner-Dyson classes. For this
class, many previous studies are available. For example, more terms in per-
turbation series for the critical exponent ν in non-linear sigma model have
been calculated compared with other classes[28]. I focused on dimensional de-
pendence of the critical exponent ν. To investigate dimensional dependence
of the critical exponent ν, the critical exponent ν in d = 4, 5 were estimated
numerically with better precision than previous studies (Sec. 2.1). It turns
out that the critical exponent ν in d = 4, 5 are clearly different from esti-
mate by semi-classical theory[57]. Moreover, improved estimation is strong
evidence that the upper critical dimension of the Anderson transition is not
4 or 5 as suggested in some but not all theories. As I mentioned in Sec.
1.2 (See Table. 1.2.3), critical exponent ν estimated analytically does not
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agree with numerical estimate. Especially, estimation with non-linear sigma
model using ϵ expansion has biggest discrepancy from numerical estimate. I
reconsidered possible origin of this discrepancy and found that an approxi-
mate re-summation method Borel-Padé analysis used in previous study has
implicit assumption which causes contradiction in infinite dimension. To
modify previous method, new improvements of approximate re-summation
based on Borel-Padé analysis were suggested [69] (Sec. 2.2). The basic idea
is to incorporate both asymptotic behavior at d = 2 and d = ∞ simultane-
ously. The new framework of Borel-Padé analysis gives estimates of critical
exponent in d = 4, 5 that are closer to the numerical results. The estima-
tion is slightly worse than semi-classical theory in d = 3, but better between
2 < d < 3. From this comparison, new framework of Borel-Padé analysis is
expected to give best global estimate of the critical exponent among existing
analytical predictions at present.

Considering success of a new approximate re-summation for the orthog-
onal symmetry class, I extended similar ideas to the other Wigner-Dyson
classes. Different from case of the orthogonal symmetry class, perturbation
series for critical exponent ν is not available up to same order for the uni-
tary and symplectic symmetry classes at present. For this reason, I focused
on the β function instead of ϵ-expansion of ν. Asymptotic expansion from
metallic limit exists for all classes in the Wigner-Dyson symmetry classes[28].
Borel-Padé analysis is also developed to perform approximate re-summation
of the perturbative β function (Sec.3.1). Similarly to the improved Borel-
Padé analysis developed in Sec. Sec. 2.2, the improved Borel-Padé analysis
for the β function incorporates both asymptotic behavior in metallic and
insulating limit.

Dimensional dependence of the critical exponent ν in the Wigner-Dyson
classes is also estimated from the approximately re-summed β function.
In the orthogonal symmetry class, estimate of the critical exponent differs
slightly from the estimate obtained from ϵ-expansion of ν in Sec. 2.2 (at
most by about 0.2). In the unitary symmetry class, estimate of the critical
exponent is not in good agreement with the numerical results. This may be
due to lack of the number of available terms in Borel-Padé analysis. The
discrepancy is even worse for the symplectic symmetry class. Besides the
estimation of the critical exponent, the approximate β function for the sym-
plectic symmetry class gives an estimation of the lower critical dimension dl
of the symplectic symmetry class. However, the error of this estimation is not
clear. Apart from quantitative estimation, the β function in the symplectic
symmetry class has interesting character and it suggest that metallic phase
in d ≥ 2 changes into another new phase in dl < d < 2 as suggested in Ref.
[67].
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To verify analytical estimates and the character of the β function in the
symplectic class, I numerically estimated the β function for the symplectic
symmetry class in d = 1 using the transfer matrix method (Sec. 3.2). I found
the peak of the β function persists even in d = 1. This strongly suggests that
an attractive fixed point appears at finite g in dl < d < 2 as predicted in
a recent study of Anderson transitions on fractals [67]. Previous studies on
fractals already suggested the existence of a critical fixed point in d < 2[66].
The numerically estimated β function also provides estimate for the lower
critical dimension of the symplectic symmetry class.

In Sec. 4, I conclude and summarize the studies in this thesis. In some
of the appendices, the source codes used in numerical simulations are listed.
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Chapter 2

Dimensional dependence of
critical exponent of the
Anderson transition in the
orthogonal symmetry class

In this chapter, the Anderson transition in the orthogonal symmetry class
is studied. Compared with other symmetry classes in Wigner-Dyson classes,
more theoretical predictions are available for the orthogonal symmetry class.
However, consensus on some basic properties have not yet been reached be-
tween researchers as explained in Sec. 1.2. To make some contributions
to these problems, I studied dimensional dependence of the critical expo-
nent of correlation length ν both numerically and analytically. Furthermore,
the interest in the orthogonal symmetry class has increased due to recent
experimental realization of the Anderson transition in the system of cold
atoms[42, 43, 44]. In Sec. 2.1, I numerically estimated critical exponent ν
in d = 4, 5 more precisely than previous studies by transfer matrix method
and finite size scaling method. The numerical simulation used in Sec. 2.1
is based on Ref. [12]. In Sec. 2.2, I reconsidered and improved analytical
estimation of critical exponent ν by non-linear sigma model[28] by improving
method of approximate re-summation.
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2.1 Numerical estimation of critical exponent

ν in d = 4, 5

2.1.1 Anderson model of localization

The Hamiltonian of Anderson model of localization is

H =
∑

r ϵr|r⟩⟨r| +
∑

r,r′ Vrr′ |r⟩⟨r′| (2.1.1)

Vrr′ =

{
1 (r, r′are nearest neighbors)
0 (otherwise)

(2.1.2)

Where, r, r′ are lattice points of d-dimensional hyper cubic lattice. I consid-
ered a long (length Ld) quasi-one dimensional bar of finite cross section Ld−1

. I imposed periodic boundary conditions in the transverse directions. In
this model, hopping term exists only between nearest neighbors. The unit
of energy has been set equal to the hopping energy. I set E = 0 throughout,
which corresponds to the band center. The site energies ϵr are independently
and identically distributed according to following box distribution function,

p(ϵr) =

{
1/W (|ϵr| ≤ W/2)
0 (otherwise)

(2.1.3)

Where, we may choose other distribution function such as Gaussian distri-
bution or Lorentz distribution. However, kind of the probability density
function does not change the universality class[8, 12]. Therefore, choice of
box distribution function doesn’t lose generality in studying universal prop-
erties of Anderson transition. The strength of disorder is expressed by the
parameter W . I used MT2203 of the Intel MKL library to generate the re-
quired random numbers. MT2203 requires two pair of integer to generate a
series of random numbers, i.e., stream and seed to ensure independence of
two different series of random numbers. Random number with same seed
are generated for each system parameter using different integer for stream. I
mention sign of hopping energy does not change statistical property of model
because p(ϵr) = p(−ϵr), for example position of mobility edge is symmetry
about band center.

2.1.2 Calculation of Lyapunov exponent by transfer
matrix method

Arbitrary sate |ψ⟩ can be expanded by basis at each lattice points r

|ψ⟩ =
∑
r

ar|r⟩ (2.1.4)

14



Eigenvalue problem H|ψ⟩ = E|ψ⟩ expressed with basis |r⟩ is

ϵrar +
d∑

j=1

(ar+x̂j
+ ar−x̂j

) = Ear (2.1.5)

where, x̂j is primitive translation vector for j-th direction. This equation is
rewritten as

ar+x̂d
= (E − ϵr)ar −

d−1∑
j=1

(ar+x̂j
+ ar−x̂j

) − ar−x̂d
(2.1.6)

This is a recursive equation for ar for d-th direction. For simplicity and conve-
nience of numerical simulation, we define vector An for given n ∈ {1, · · · , Ld}
with i-th component

(An)q(r) = ar (2.1.7)

q(r) = 1 +
d−1∑
j=1

(mj − 1)Lj−1 for r =
d−1∑
j=1

mjx̂j + nx̂d (2.1.8)

Where, mapping q from d-dimensional vector r to natural number is artifi-
cially defined to transform original eigenvalue problem into form of matrix
which is suitable for numerical simulation. This mapping is obtained by
identifying lattice point of d-dimensional lattice as a graphical expression of
L-ary number. An is a vector made of all coefficients ar such that lattice
point r belongs in n-th hyper plane (i.e., Ld = n) perpendicular to x̂d. Si-
multaneous equations Eq.(2.1.5) can be expressed as single matrix equation
with An as (

An+1

An

)
= T (d)

n

(
An

An−1

)
(2.1.9)

Here, 2Ld−1 × 2Ld−1 matrix T
(d)
n is called as transfer matrix.

T (d)
n = T

(d)
n,diag + T

(d)
n,offdiag

(T
(d)
n,diag)ii =

{
E − ϵr ( i = q(r) )
0 ( i > Ld−1)

T
(d)
n,offdiag =

(
t
(d−1)
n,1 −ILd−1

ILd−1 0Ld−1

)
(2.1.10)
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Where, t
(j)
n,k(k = 1, · · · , L ; j = 1, · · · , d− 1) is recursively defined about j as

t
(1)
n,k = 0

t
(j)
n,k =


t
(j−1)
n,1 −ILj−1 −ILj−1

−ILj−1 t
(j−1)
n,2 −ILj−1

. . .

−ILj−1 −ILj−1 t
(j−1)
n,L

 (2.1.11)

ILj−1 , 0Lj−1 are Lj−1×Lj−1 unit matrix and zero matrix. Rest of components
which value is not given above is 0. Because most of components of transfer
matrix is 0, I used form of sparse matrix in practical numerical calculation.

We can calculate An for any n with successive multiplication of transfer
matrices for given A1,A2 in response to suitable or reasonable computational
time. (

AN+1

AN

)
= M

(d)
N

(
A1

A0

)
(2.1.12)

M
(d)
N =

N∏
n=1

T (d)
n (2.1.13)

Where, I mention that many times multiplication causes round-off error.
This is because difference between average of largest eigenvalues and one of
second largest eigenvalues increases exponentially about N . To avoid round-
off error, QR factorizations were performed once in four times transfer matrix
multiplications. To ensure that the precision of the Lyapunov exponents was
estimated correctly, I set r = 4 in Eq. (C.0.14) of App. C. Further detail of
numerical calculation will be explained in App. C.

We consider following matrix Ω

Ω = ln(M
(d)†
N M

(d)
N ) (2.1.14)

Lyapunov exponents are defined from each eigenvalues of this matrix λj(N),

γj = lim
N→∞

λj(N)

2N
(2.1.15)

Lyapunov exponents corresponds to decay ratio of existence probability per
lattice constant for d-th direction. Lyapunov exponents possess self-averaging
property, i.e. Ensemble average of enough many samples and single long sys-
tem (N → ∞) gives same estimate for Lyapunov exponents. Therefore, I
calculated Lyapunov exponent for single system which is enough long to get
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required precision. I mention that Lyapunov exponents calculated from our
transfer matrix have symmetry under sign inversion, i.e., Lyapunov expo-
nents can be rearranged in order of γLd−1 , · · · , γ1,−γ1, · · · ,−γLd−1 with all
γj > 0 (j = 1, · · · , Ld−1).

2.1.3 Parameters for numerical calculation by transfer
matrix method

Lyapunov exponents are calculated for W = 30, 31, · · · , 40, L = 4, 6, · · · , 20
for d = 4 and W = 52, 53, · · · , 64, L = 4, 5, · · · , 10 for d = 5. Almost all
of data have a precision of 1% which require transfer matrix multiplication
from 104 to 105 times.

2.1.4 Finite size scaling

Finite size scaling is used to analyze critical phenomena of the Anderson tran-
sition quantitatively, i.e. to estimate critical exponent ν and critical disorder
Wc and so on. I used smallest positive Lyapunov exponent γ as a function of
disorder and system size to perform finite size scaling. Reciprocal of small-
est positive Lyapunov exponent is usually identified quasi-one dimensional
localization length ξQ1d.

ξQ1d =
1

γ
(2.1.16)

Fitting was performed for dimensionless quantity

Γ = γL (2.1.17)

Our data have a tendency that correction due to irrelevant variables tends
to be less important as the dimensionality increases. Corrections due to
irrelevant variables were found to be not necessary for our data which relative
error is about 1%. I note that correction due to irrelevant variable is possible
to be necessary if precision of each data is increased. For my data, it was
sufficient to fit the data with relevant variable u(w)

Γ = F (ϕ(w,L)) (2.1.18)

where
ϕ(w,L) = u(w)L1/ν (2.1.19)

and

w =
W −Wc

Wc

(2.1.20)
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The scaling function F was expanded as

F (ϕ) =
n∑

j=0

aj ϕ
j (2.1.21)

Where, I set a1 = 1 because it can’t be determined. Actually, a1 can take
any value by changing definition of u(w) up to constant.

Non-linearity of the relevant scaling variable was considered using the
expansion

u(w) =
m∑
j=1

bj w
j (2.1.22)

The integers m and n define the order of expansions for relevant scaling
variable u and scaling function F respectively. Scaling function may be re-
written in following form depending on whether the phase is localized (w > 0)
or extended (w < 0).

Γ = F±

(
L

ξ(w)

)
(2.1.23)

where, the subscript ± refers to the sign of w and the correlation length is
given by

ξ(w) = ξ± |u(w)|−ν (2.1.24)

Similarly to indefiniteness of a1 in Eq. (2.1.21), coefficient ξ± can’t be deter-
mined from our fitting procedure. The functions F± are given by

F±(x) =
n∑

j=0

(±1)jajx
j/ν (2.1.25)

Above expressions makes it clear that ν is the correlation length critical
exponent. The best fit is found by minimizing the chi-squared statistic χ2

The quality of the fit is assessed by goodness of fit probability, which is
determined from the minimum value of χ2 and the number of the degree of
freedom in the fit.

For d = 4, I found m = 3 and n = 3 in Eqs. (2.1.21) and (2.1.22) gave
an acceptable fit. The number of parameters and the number of data used
in the finite size scaling analysis were respectively 8 and 99. For the best fit
χ2 = 91.6 which gives a goodness of fit of 0.46. The fit is displayed in Figs.
2.1.1 and 2.1.2. The estimates of the critical exponent ν, the critical disorder
Wc and the critical value Γc of Γ, together with the standard deviations of
these estimates, are

ν = 1.156 ± 0.014

Γc = 2.76 ± 0.01

Wc = 34.62 ± 0.03 (2.1.26)
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Where, Γc is defined by
Γc = F (0) (2.1.27)

Error bars expressing one standard deviation is obtained by the Monte Carlo
simulation of synthetic data sets (See Appendix. D).

For d = 5, m = 1 and n = 1 gave an acceptable fit. The number of
parameter and the number of data are 4 and 91. For the best fit χ2 = 84.0
and the goodness of fit is 0.57. The fit is displayed in Figs. 2.1.3 and 2.1.4.

ν = 0.969 ± 0.015

Γc = 3.41 ± 0.01

Wc = 57.3 ± 0.05 (2.1.28)

These results agree with numerical estimates reported in previous works [19,
71, 72] but are considerably more precise (See. Table. 2.2.1). In appendix
E, I compare this study with previous study in Ref. [72]. In appendix
F, I verified how much systematic error exists in finite size scaling analysis
by restricting range of parameters W and L respectively. Finite size scaling
analysis with restricted data gives consistent estimates for all Wc,Γc, ν within
one standard deviation in d = 4 and two standard deviation in d = 5. In
Appendix. G, I also estimated the critical exponent by two step finite size
scaling. No systematic error related with system size dependence was found.
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Γ 
=

 γ
 L

W

L = 20

L = 4

Figure 2.1.1: The data from the transfer matrix calculation and the finite
size scaling analysis for the Anderson transition in the d = 4 orthogonal
universality class. Here the data are plotted versus disorder and different
curves correspond to different system sizes. The common crossing point of
different curves indicates the critical disorder separating the localized and
diffusive regimes in d = 4. The increase in the slope at the critical disorder
with system size is related to the critical exponent.
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Figure 2.1.2: Here the data for the Anderson transition in the d = 4 orthog-
onal universality class are plotted versus system size. The different curves
correspond to different disorders. The change of sign of the slope indicates
the transition from localized to extended states in d = 4.
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Figure 2.1.3: The data from the transfer matrix calculation and the finite
size scaling analysis for the Anderson transition in the d = 5 orthogonal
universality class. Compared with d = 4 the transition occurs at a much
higher disorder consistent with it becoming progressively more difficult to
localize electrons in higher dimensions.

 2

 3

 4

 5

 4  6  8  10

Γ 
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Figure 2.1.4: Exactly similar to Fig. 2.1.2 except that here the data and fit
are for the Anderson transition in the d = 5 orthogonal universality class.
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2.2 Analytical estimation of critical exponent

2.2.1 Field theoretical prediction of critical exponent
by application of Borel-Padé analysis

In field theoretical approach, ϵ expansion has been used to study d-dimensional
Anderson transition. One of results of ϵ = d− 2 expansion was obtained for
non-linear sigma model which is effective field theory for the Anderson transi-
tion. Non-linear sigma model is believed to give exact qualitative framework
for critical phenomena of the Anderson transition. The β function for the
Wigner-Dyson classes are perturvatively calculated by 5-loop order so far
[28]. In case of the orthogonal and unitary symmetry classes, power series
expansion of critical exponent ν about ϵ = d − 2 is perturbatively calcula-
ble from corresponding β function. Dimensional dependence of the critical
exponent for the orthogonal symmetry class was perturbatively calculated as

ν =
1

ϵ
− 9

4
ζ(3)ϵ2 +

27

16
ζ(4)ϵ3 +O(ϵ4) (2.2.1)

Where, ζ(n) is Riemann zeta function. Above perturbation series is presumed
to be divergent power series with radius of convergence 0. Besides it, we have
limitation that finite number of terms is calculable in this expansion method.
Therefore, prediction by this method is approximate and two processes are
required to estimate critical exponent, i.e., calculation of perturbation series
up to finite order and approximate re-summation of such finite series. In
original paper by S.Hikami in 1992[28], Borel-Padé analysis was applied to
perform approximate re-summation.

ν ≃ 1

ϵ2

∫ ∞

0

dte−t/ϵ
1 + 3ζ(4)

16ζ(3)
t

1 + 3ζ(4)
16ζ(3)

t+ 3
8
ζ(3)t3

(2.2.2)

The values of critical exponents obtained from this Borel-Padé analysis for
the d = 3, 4, 5 and 6 dimensional orthogonal universality classes are listed
in Table 2.2.1. There is clear discrepancy compared with numerical results
(See. Fig. 2.2.5). Furthermore, this estimation of critical exponent ν seems
to approach to 0 as the dimensionality approaches to ∞.
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Figure 2.2.5: The dimensionality dependence of the critical exponent ν esti-
mated from Eq.(2.2.2). The points are numerical estimates in d = 3, 4, 5 ((◦)
Ref. [12] and this work) and d = 6 ((△) Ref. [19]). Error bars are standard
deviations. They are omitted when the error is smaller than the symbol size.

This poor agreement with numerical results may give impression that
quantitative estimate of critical exponent for order of ϵ ∼ 1 or higher di-
mension from non-linear sigma model seems to be hopeless more or less. As
alternative way, someone recommend to use only leading term of ϵ expansion
which gives ν = 1. However, there is no justification of truncating higher
order terms to improve theoretical estimate for ϵ = 1. We shouldn’t ignore
existence of higher order terms of divergent series without reasonable jus-
tification. More constructive idea is to improve approximate re-summation
method. There was study in this direction for the perturbative β function
in the symplectic symmetry class [73], but unfortunately estimate of critical
exponent ν was not satisfactory compared with numerical results [14, 65].
Thus, it was thought to be difficult to estimate critical exponent quantita-
tively from ϵ expansion for non-linear sigma model in previous studies.
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2.2.2 Asymptotic behavior at infinity and improved
Borel-Padé analysis

From careful observation of steep decrease of critical exponent in Eq.(2.2.2)
as d→ ∞, I noticed Eq. (2.2.2) has following limit behavior exactly,

lim
ϵ→∞

ν(ϵ) = 0 (2.2.3)

This limit behavior is unlikely to originate from the specific combination
of coefficients in original series of Eq. (2.2.1) because they are finite series
including ζ(n) for n = 3, 4. Actually, it can be easily confirmed that straight-
forward application of Borel-Padé analysis for any series which leading term
is O(ϵ−1) leads this limit behavior.

However, on the basis of several approaches[57, 61, 68, 74], it is widely
thought (though not universally[58]) that the upper critical dimension is
d = ∞ and that

ν(ϵ) ∼ 1

2
(ϵ→ ∞) (2.2.4)

Where, relation ∼ is defined by Eqns.(H.0.1) and (H.0.2) in App. H. This
suggests that possible origin of under estimate of critical exponent by Eq.
(2.2.2) could arise from discrepancy between asymptotic behavior for ϵ→ ∞.

Below, I explain how Borel-Padé analysis can be improved to incorporate
correct leading asymptotic behavior and demonstrate that it gives better
agreement with available numerical results. One of important character of
Borel-Padé analysis predicted from Eq. (2.2.3) is that perturbation series
at ϵ = 0 starting with O(ϵ−1) term and asymptotic behavior at ϵ → ∞ is
independent of each other. Where, independence of series for approximate
re-summation means that coefficients of either series can be changed without
changing other series. Therefore, it is expected to be possible to incorporate
asymptotic behavior of Eq. (2.2.4). It is realized by separating its asymptotic
behavior itself from Borel-Padé analysis. More concretely, original formal
power series of Eq. (2.2.1) is divided into term with leading asymptotic
behavior and remaining terms f(ϵ) before applying re-summation as

ν =
1

2
+

1

ϵ
f(ϵ) (2.2.5)

where

f(ϵ) = 1 − 1

2
ϵ− 9

4
ζ(3)ϵ3 +

27

16
ζ(4)ϵ4 +O(ϵ5) (2.2.6)

After this division, Bore-Padé analysis is applied only to f(ϵ) in standard
way,

f(ϵ) ≃ 1

ϵ
P
∫ ∞

0

dte−t/ϵh(t) (2.2.7)
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Here, P indicates the Cauchy principal value, and

h(t) =
1 +

(
3ζ(4)
16ζ(3)

− 1
2

)
t−
(

3
4
ζ(3) + 3ζ(4)

32ζ(3)

)
t2

1 + 3ζ(4)
16ζ(3)

t− 3
4
ζ(3)t2

(2.2.8)

Above expression can be re-written with exponential integral Ei as

ν ≃ 1

2
+

1 + ζ(4)
8ζ(3)2

ϵ
− 1

3ζ(3)ϵ2
g(ϵ) (2.2.9)

where

g(ϵ) = c+e
−t+/ϵEi

(
t+
ϵ

)
+ c−e

−t−/ϵEi

(
t−
ϵ

)
(2.2.10)

Here, c±, t± are given by

c± = 1 +
3ζ(4)2

64ζ(3)3
± 9ζ(4)√

768ζ(3)3 + 9ζ(4)2

(
1 +

ζ(4)2

64ζ(3)3

)
≃ 1.3, 0.7632 .

t± =
3ζ(4) ±

√
768ζ(3)3 + 9ζ(4)2

24ζ(3)2

≃ 1.151,−0.9637 (2.2.11)

The values of critical exponents obtained from new Borel-Padé analysis for
the d = 3, 4, 5 and 6 dimensional orthogonal universality classes are listed in
Table 2.2.1. In App. I, we confirm that this new Borel-Padé analysis has
required asymptotic behaviors, i.e. Eqs. (2.2.1) and (2.2.4).

2.2.3 Comparison with other analytical estimations of
critical exponent

In the following, we compare the various analytical results for the exponents
with the available numerical results.

The self-consistent theory[55, 56] of Anderson localisation predicts the
following dimensionality dependence of the critical exponent

ν =
1

ϵ
(2 < d < 4)

ν =
1

2
(d ≥ 4) (2.2.12)

Critical exponent obtained from self-consistent theory is rational number for
integer dimensionality. Comparison with numerical results from Table2.2.1
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shows immediately that, as expected, the predictions of the self-consistent
theory for critical phenomena are not quantitatively accurate. Moreover,
the numerical results leave no doubt that the dimensionality dependence of
the exponent persists beyond d = 4. The prediction that the upper critical
dimension is d = 4 is, therefore, not correct.

Reference to Table 2.2.1 and Fig. 2.2.6 shows that the predictions of the
Borel-Padé analysis of Ref. [28] given by Eq. (2.2.2) are in poor agreement
with the numerical results. The asymptotic behaviour for d → ∞ is clearly
incorrect. Moreover, the estimates for higher dimensions violate the well
known lower bound[75, 76] for the exponent

ν ≥ 2

d
(2.2.13)

According to the semi-classical theory of the Anderson transition pre-
sented in Ref. [57]

ν =
1

2
+

1

ϵ
(d > 2) (2.2.14)

The asymptotic behaviour for ϵ → ∞ agrees with Eq. (2.2.4). However,
the asymptotic series for ϵ → 0 is only leading term of field theoretical
estimation of Eq.(2.2.1). Nevertheless, reference to Table 2.2.1 and Fig.
2.2.6 shows that the agreement with the numerical results for d = 3, 4, 5
and 6, though certainly not exact, is much better than either the original
Borel-Padé analysis Eq. (2.2.2) or the self-consistent theory.

Finally, we turn to our new Borel-Padé analysis. Again by reference
to Table 2.2.1 and Fig. 2.2.6 we see that the agreement with the numerical
results is slightly worse for d = 3 but better for d = 4, 5 and 6 when compared
with the semi-classical theory,
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d = 3 d = 4 d = 5 d = 6

Eq. (2.2.12) 1 0.5 0.5 0.5
Eq. (2.2.2) 0.73 0.26 0.13 0.08
Eq. (2.2.14) 1.5 1.0 0.83 0.75
Eq. (2.2.9) 1.46 1.06 0.89 0.80

Eqns. (2.1.26), (2.1.28) 1.156 ± .014 0.969 ± .015
ref. [12] 1.571 ± .004
ref. [72] 1.12 ± .05 0.94 ± .05
ref. [16] 1.590 ± .006
ref. [19] 1.52 ± .06 1.03 ± .07 0.84 ± .06 0.78 ± .06
ref. [68] 1.35 ± .15 1.03 ± .17

refs. [71] and [77] 1.45 ± .08 1.1 ± .2

Table 2.2.1: Comparison between numerical and analytical estimates of the
critical exponent ν for d = 3, 4, 5, 6.

f
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Figure 2.2.6: The dimensionality dependence of the critical exponent ν of the
Anderson transition. The points are numerical estimates in d = 3, 4, 5 ((◦)
Ref. [12] and this work) and d = 6 ((△) Ref. [19]). Error bars are standard
deviations. They are omitted when the error is smaller than the symbol
size. The lines are analytical predictions: our new Borel-Padé analysis Eq.
(2.2.9) (solid), the semiclassical theory Eq. (2.2.14) (dash dot dot), the self-
consistent theory Eq. (2.2.12) (dash dot), and the Borel-Padé analysis of Eq.
(2.2.2) (dash).
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Figure 2.2.7: The dimensionality dependence of the critical exponent ν of the
Anderson transition for various fractals. The points are numerical estimates
((2) Ref. [78], (3) Ref. [79], (•) Ref. [68]) ). The lines have the same
meaning as in Fig. 2.2.6.
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Chapter 3

The β function of the Anderson
transition for conductance in
the Wigner-Dyson classes

In this chapter, I investigated the Anderson transition in all the Wigner-
Dyson classes. Different from the orthogonal symmetry class, the ϵ-expansion
for the critical exponent ν is not available in the symplectic symmetry class
and only two terms are available for the unitary symmetry class at present[28].
For this reason, I focused on the perturbative β function for conductance in-
stead of ϵ-expansion of ν. Once the β function is estimated, we can extract
many fundamental informations of the Anderson transition from it such as
critical exponent, lower critical dimension and so on. To estimate the β
function analytically, I take approach similar to Sec. 2.2. The β function
for the Wigner-Dyson classes is estimated by improved Borel-Padé analysis
to incorporate both existing asymptotic expansion from metallic limit and
asymptotic behavior in insulating limit. To verify results obtained analyti-
cally from the β function for the symplectic symmetry class, I numerically
estimate the β function in d = 1 using the transfer matrix method. It gives
estimate of the lower critical dimension for the symplectic symmetry class.

3.1 Analytical estimation of the β function

3.1.1 Re-summation required for the perturbative β
function

Asymptotic expansion at the metallic limit of the β function in Winger-Dyson
classes were calculated by ϵ(= d− 2)-expansion method for non-linear sigma
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model as [28]

βO(t, ϵ) = ϵt− 2t2 − 12ζ(3)t5 +
27

2
ζ(4)t6 + O(t7) (3.1.1)

βS(t, ϵ) = ϵt+ t2 − 3

4
ζ(3)t5 − 27

64
ζ(4)t6 + O(t7) (3.1.2)

βU(t, ϵ) = ϵt− 2t3 − 6t5 + O(t7) (3.1.3)

where, O, S, U indicates the orthogonal, symplectic and unitary symmetry
class respectively. t(> 0) is proportional to inverse of the dimensionless
conductance g.

t =
1

πg
(3.1.4)

Where, g includes the summation over degree of freedom about spin. We have
to pay attention that definition of the β function here is slightly different from
Eq.(1.1.4). Definition of the β function for non-linear sigma model is

β(t, ϵ) = − dt

d lnL
(3.1.5)

This β function is connected with the β function defined by Eq.(1.1.4) as
following,

βX(g) =
1

t
βX(t, ϵ) (3.1.6)

Where, X = O, S, U and dimensional dependence of left-hand side equation
is omitted for convenience to distinguish it from βX(t, ϵ).

I mention that any β function obtained from ϵ-expansion can be written
commonly in following form

β(t, ϵ) = ϵt− tf(t)

f(t) =
∞∑
k=0

fkt
k (3.1.7)

Where, coefficients fk depends on the universality class and function f(t)
is defined for later convenience. This expression indicates that dimensional
dependence of the β function βX(g) is expressed by parallel shift by ϵ from
2-dimensional β function. Fixed point tc of the β function satisfies following
equation,

β(tc, ϵ) = 0 ⇔ ϵ = f(tc) (3.1.8)

Critical exponents ν(ϵ) is calculated from slope of the β function at the fixed
point[28]

ν(ϵ) = − 1
∂β
∂t

∣∣
t=tc(ϵ)

(3.1.9)
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where, tc(ϵ) is fixed point calculated from Eq.(3.1.8) for given ϵ.
The β function calculated by ϵ-expansion is presumed to be divergent

series similar to the case explained in Sec.2.2.1. In consideration that asymp-
totic behavior both at origin and infinity are necessary for better estimate of ν
discussed in Sec. 2.2 , it must be important to develop another improvement
of Borel-Padé analysis for the β function incorporating asymptotic behav-
iors both at t = 0 and t → ∞. Asymptotic behavior of the β function at
t = 0 is nothing but perturbation series of Eqns. (3.1.1),(3.1.2) and (3.1.3).
Asymptotic behavior at t = ∞ may be estimated from asymptotic behavior
of critical exponent ν for ϵ→ ∞ of Eq. (2.2.4). From naive consideration on
dimensional dependence of the β function, fixed point tc is expected to in-
crease monotonically as ϵ increase, i.e., tc(ϵ) is expected to be monotonically
increasing function. Therefore, we assume

tc(ϵ) → ∞ (ϵ→ ∞) (3.1.10)

We also assume for the symplectic and unitary symmetry classes,.

ν(ϵ) ∼ 1

2
(ϵ→ ∞) (3.1.11)

Under these assumption and from Eqns.(3.1.9), (3.1.7), we obtained

t
∂f(t)

∂t

∣∣∣∣
t=tc(ϵ)

∼ 2 (tc(ϵ) → ∞) (3.1.12)

By integrating this expression about tc(ϵ), leading asymptotic behavior of
f(tc(ϵ)) is derived

f(tc(ϵ)) ∼ 2 ln tc(ϵ) (tc(ϵ) → ∞) (3.1.13)

This suggests,
f(t) ∼ 2 ln t (t→ ∞) (3.1.14)

Therefore, problem of approximate re-summation for the β function re-
duced to approximate re-summation of function f(t) incorporating corre-
sponding asymptotic series at t = 0 and logarithmic asymptotic behavior of
Eq.(3.1.14) at t→ ∞.

3.1.2 Improved Borel-Padé analysis for the β function
in the orthogonal symmetry class

In this section, I demonstrate how logarithmic asymptotic behavior at the in-
finity can be incorporated within framework of Borel-Padé analysis. Asymp-
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totic behaviors of f(t) of Eq.(3.1.7) for the orthogonal symmetry class is

fO(t) = 2t+ 12ζ(3)t4 − 27

2
ζ(4)t5 + O(t6) (t = 0) (3.1.15)

fO(t) ∼ 2 ln t (t→ ∞) (3.1.16)

These asymptotic series can be formally changed into power series by multi-
plying t after formally differentiating both series,

t
dfO(t)

dt
= 2t+ 48ζ(3)t4 − 135

2
ζ(4)t5 + O(t6) (t = 0) (3.1.17)

t
dfO(t)

dt
∼ 2 (t→ ∞) (3.1.18)

Therefore, we can perform similar technique used in Sec.2.2.2 for tf ′
O(t). By

separating asymptotic term 2 at t → ∞ from asymptotic series of tf ′
O(t) at

t = 0,

t
dfO(t)

dt
= 2 + hO(t) (3.1.19)

hO(t) = −2 + 2t+ 48ζ(3)t4 − 135

2
ζ(4)t5 + O(t6) (3.1.20)

Borel-Padé analysis is applied only to hO(t),

hO(t) =
1

t

∫ ∞

0

dte−x/t

(
−2 + 2x+ 2ζ(3)x4 − 9

16
ζ(4)x5 + O(x6)

)
≃ 1

t

∫ ∞

0

dte−x/tlO(x) (3.1.21)

where,

lO(x) =
−2 +

(
2 − 9ζ(4)

16ζ(3)

)
x+

(
2ζ(3) + 9ζ(4)

16ζ(3)

)
x2

1 + 9ζ(4)
32ζ(3)

x− ζ(3)x2 − ζ(3)x3
(3.1.22)

Note that Padé approximant chosen here does not accompany additional
assumptions at x → ∞ because separated term appear only in 0-th order
term (See Eq.(J.0.4) and discussions around it in Appendix. J). h(t) can be
re-written with exponential integrals Ei(x) and E1(z) for real argument and
complex argument respectively. By summarizing above calculations, tf ′(t) is
approximately re-summed as

t
dfO(t)

dt
≃ 2 +

3∑
j=1

c
(O)
j B

(
t/λ

(O)
j

)
(3.1.23)
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Where, function B(t/λ) for λ ∈ C \ {0} is defined as

B(t/λ) =

{
λ
t
e−λ/tEi

(
λ
t

)
(λ ∈ R \ {0})

−λ
t
e−λ/tE1

(
λ
t

)
(otherwise)

(3.1.24)

c
(O)
1 , c

(O)
2 , c

(O)
3 and λ

(O)
1 , λ

(O)
2 , λ

(O)
3 are given by

λ
(O)
1 ≃ −0.8759 + 0.5824i

λ
(O)
2 = λ

(O)∗
1

λ
(O)
3 ≃ 0.7519

c
(O)
1 ≃ −1.142 − 0.1773i

c
(O)
2 = c

(O)∗
1

c
(O)
3 ≃ 0.2844 (3.1.25)

Approximate re-summation of f(t) of Eqns.(3.1.15),(3.1.16) can be calculated
by performing inverse operation done before Borel-Padé analysis,

fO(t) ≃
∫ t

0

dt

t

[
2 +

3∑
j=1

c
(O)
j B

(
t/λ

(O)
j

)]

=
3∑

j=1

c
(O)
j

∫ t

0

dt

B
(
t/λ

(O)
j

)
t

− 1

t


=

3∑
j=1

c
(O)
j LB

(
t/λ

(O)
j

)
(3.1.26)

where, function LB(t/λ) for λ ̸= 0 is defined as

LB(t/λ) =
λ

t
B(t/λ) (3.1.27)

Thus, at least in this case, improved Borel-Padé analysis incorporating log-
arithmic asymptotic behavior is expressed only in terms of function series of
LB.

As a result, the β function of the orthogonal symmetry class is approxi-
mately re-summed by improved Borel-Padé analysis as

βO(t, ϵ) ≃ ϵt− t
3∑

j=1

c
(O)
j LB

(
t/λ

(O)
j

)
(3.1.28)

35



Using Eqns.(3.1.4) and (3.1.6), the β function βO(g) is plotted in Fig. 3.1.1.
Critical exponent ν can be calculated from Eq.(3.1.28) using Eqns.(3.1.8),(3.1.9).
Results for d = 3, 4, 5, 6 and 2 < d < 3 are listed in Tables. 3.1.1 and 3.1.2.
Difference between critical exponents ν from Eq.(2.2.9) and one obtained
from Eq.(3.1.28) is about 0.178 at most for integer dimension. Especially for
d ≤ 2.54 in Table. 3.1.2, these difference are less than 0.1. This indicates that
”error” of analytical estimate of Borel-Padé analysis is expected to be order
of 0.1 for this region (Note, rigorously speaking, true upper or lower bound
for this estimate can be estimated only when enough information about infi-
nite number of terms in expansion are obtained as principle.). This difference
becomes smaller as ϵ approaches to 2(See Table. 3.1.2). Value of fixed point
estimated from Eq.(3.1.28) is also listed in Tables. 3.1.1 and 3.1.2.

Figure 3.1.1: The β function βO(g) for d = 1, 2, 3, 4, 5 and6 obtained from
improved Borel-Padé analysis.
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d ν tc Eq.(2.2.9) numerical estimate
3 1.64 0.608 1.46 1.571 ± .004[12]
4 1.06 2.32 1.06 1.156 ± .014
5 0.775 5.68 0.89 0.969 ± .015
6 0.656 11.5 0.80 0.78 ± .06[19]

Table 3.1.1: Critical exponents and fixed points tc for the orthogonal sym-
metry class for d = 3, 4, 5 and 6 obtained from improved Borel-Padé analysis
(Eq.(3.1.28)) Critical exponents estimated from Eq.(2.2.9) is listed for com-
parison. Numerical estimates in d = 4, 5 are obtained in this study(Eqns.
(2.1.26), (2.1.28)).

d ν tc Eq.(2.2.9) Ref.[68, 78, 79, 80]
2.22 4.41 0.109 4.41 4.33 ± .18
2.226 4.29 0.112 4.28 2.82 ± .05
2.32 3.04 0.156 3.02 2.59 ± .19
2.33 2.95 0.161 2.94 2.92 ± .14
2.365 2.70 0.178 2.68 2.27 ± .06
2.41 2.46 0.200 2.44 2.50 ± .21
2.54 2.05 0.267 2.01 2.24 ± .31

Table 3.1.2: Critical exponents and fixed points tc for the orthogonal symme-
try class for 2 < d(= 2 + ϵ) < 3 obtained from improved Borel-Padé analysis
(Eq.(3.1.28)). Critical exponents estimated from Eq.(2.2.9) and numerical
estimates in Refs. [68, 78, 79] is listed for comparison. Values of critical
exponents in Ref.[68] is provided from M. Schreiber[80].

3.1.3 Improved Borel-Padé analysis for the β function
in the symplectic symmetry class

Similarly to the orthogonal symmetry class, improved Borel-Padé analysis in-
corporating logarithmic asymptotic behavior of Eq.(3.1.14) can be performed
for the symplectic symmetry class. However, we can calculate the β function
for the symplectic symmetry class from one of the orthogonal symmetry class
by following function relation[28]

βS(t, ϵ) = −2βO

(
− t

2
, ϵ

)
(3.1.29)
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Using this relationship, the β function of the symplectic symmetry class is
approximately re-summed by improved Borel-Padé analysis as

βS(t, ϵ) ≃ ϵt− t
3∑

j=1

c
(S)
j LB

(
t/λ

(S)
j

)
(3.1.30)

Where, c
(S)
j and λ

(S)
j are defined for j = 1, 2, 3 as

c
(S)
j = C

(O)
j

λ
(S)
j = −2λ

(O)
j (3.1.31)

Using Eqns.(3.1.4) and (3.1.6), the β function βS(g) is plotted in Fig. 3.1.2.
Critical exponent ν calculated from Eq.(3.1.30) are listed in Table. 3.1.3.
Estimates of critical exponents are rather small compared with numerical
estimates[14, 81]. Moreover, it violates inequality for critical exponents of
Eq.(2.2.13). One possible reason for these bad estimate may come from
that fixed point for the symplectic symmetry class is much far from origin
t = 0. Another possible reason will be lack of the number of terms in original
expansion to obtain enough estimate of the peak of the β function. Whether
height of peak of β function is underestimated or not is confirmed numerically
in Sec. 3.2.

The lower critical dimension dl for the symplectic symmetry class is ob-
tained from the approximately re-summed β function. If maximum of βS(g)
is smaller than 0, there is no fixed point. Therefore, the β function at the
lower critical dimension dl satisfies

max
g>0

βS(g) = 0 (3.1.32)

This condition is rewritten with the approximate β function of Eq. (3.1.30)
as

dl ≃ 2 − min
t>0

[
3∑

j=1

c
(S)
j LB

(
t/λ

(S)
j

)]
(3.1.33)

By finding minimum value in second equation numerically, the lower critical
dimension for the symplectic symmetry class is estimated as

dl ≃ 1.4 (3.1.34)

The β functions βS(g) at and near the lower critical dimension are shown
in Fig. 3.1.3 Unlike the orthogonal symmetry class, βS(g) has the peak for
finite g. For dl < d < 2, fixed point which originally corresponds metallic
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phase in d ≥ 2 can change into fixed point with finite g. Therefore, two fixed
points with finite g appear for dl < d < 2. At the lower critical dimension
(d = dl), these two fixed points merge. Below the lower critical dimension
(d < dl), these two fixed points annihilate, and all renormalization group flow
approaches unique fixed point of insulating phase, i.e., there is no transition
below lower the critical dimension.

Figure 3.1.2: The β function βS(g) for d = 1, 2, 3, 4 obtained from improved
Borel-Padé analysis.
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d ν tc Ref.[14, 81]
2 0.874 2.64 2.73 ± .02
3 0.565 5.19 1.375 ± .008
4 0.492 8.75
5 0.466 14.1
6 0.459 22.4
7 0.461 35.4
8 0.466 56.3
9 0.473 90.0
10 0.479 145

Table 3.1.3: Critical exponents and fixed points tc for the symplectic sym-
metry class from d = 2 to 10 obtained from improved Borel-Padé analysis
(Eq.(3.1.30)). We can see tendency that critical exponent approaches to 1/2
after it falls below 1/2 near d = 4.
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Figure 3.1.3: The β function βS(g) for d = 1.3, 1.6 and d = dl(≃ 1.444)
obtained from improved Borel-Padé analysis.

3.1.4 Improved Borel-Padé analysis for the β function
in the unitary symmetry class

Asymptotic behaviors of f(t) of Eq.(3.1.7) for the unitary symmetry class is

fU(t) = 2t2 + 6t4 + O(t6) (t = 0) (3.1.35)

fU(t) ∼ 2 ln t (t→ ∞) (3.1.36)

We consider following formally transformed function to apply Borel-Padé
analysis for asymptotic behaviors expressed only in terms of powers,

t
dfU(t)

dt
= 4t2 + 24t4 + O(t6) (t = 0) (3.1.37)

t
dfU(t)

dt
∼ 2 (t→ ∞) (3.1.38)
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By separating asymptotic term 2 at t→ ∞ from asymptotic series of tf ′
U(t)

at t = 0,

t
dfU(t)

dt
= 2 + hU(t) (3.1.39)

hU(t) = −2 + 4t2 + 24t4 + O(t6) (3.1.40)

Borel-Padé analysis is applied only to hU(t),

hU(t) =
1

t

∫ ∞

0

dte−x/t
(
−2 + 2x2 + x4 + O(x6)

)
≃ 1

t

∫ ∞

0

dte−x/tlU(x) (3.1.41)

where,

lU(x) = − 4

3x4 + 2x2 + 2
(3.1.42)

Instead of diagonal Padé approximant [2/2]lU , I chose above Padé approxi-
mant [0/4]lU to incorporate required logarithmic asymptotic behavior. This
leads following additional implicit assumption.

lim
x→∞

x2hU(x) = 0 (3.1.43)

Although it is desirable to remove this assumption from the whole analysis,
we can’t avoid this assumption in present method due to lack of the number
of term in original series. If next order term in Eq.(3.1.3) is given, [2/4]lU
becomes available and this implicit assumption can be removed. At present,
this seems the best way within improved Borel-Padé analysis described in
this section.

After expressing integration by exponential integral, we obtain following
approximation

t
dfU(t)

dt
≃ 2 +

4∑
j=1

c
(U)
j B

(
x/λ

(U)
j

)
(3.1.44)
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Here, c
(U)
j , λ

(U)
j for j = 1, 2, 3, 4 are given by

λ
(U)
1 ≃ −0.4915 + 0.7582i

λ
(U)
2 = λ

(U)∗
1

λ
(U)
3 = −λ(U)

1

λ
(U)
4 = λ

(U)∗
3 = −λ(U)∗

1

c
(U)
1 ≃ −0.5 − 0.2236i

c
(U)
2 = c

(U)∗
1

c
(U)
3 = c

(U)
1

c
(U)
4 = c

(U)∗
3 = c

(U)∗
1 (3.1.45)

Approximate re-summation of f(t) of Eqns.(3.1.35),(3.1.36) can be calculated
by performing inverse operation done before Borel-Padé analysis,

fU(t) ≃
∫ t

0

dt

t

[
2 +

3∑
j=1

c
(U)
j B

(
t/λ

(U)
j

)]

=
3∑

j=1

c
(U)
j

∫ t

0

dt

t

[
B
(
t/λ

(U)
j

)
− 1
]

=
4∑

j=1

c
(U)
j LB

(
t/λ

(U)
j

)
(3.1.46)

where, LB is same function defined in Eq.(3.1.27) As a result, the β func-
tion of the unitary symmetry class is estimated using improved Borel-Padé
analysis as

βU(t, ϵ) ≃ ϵt− t
4∑

j=1

c
(U)
j LB

(
t/λ

(U)
j

)
(3.1.47)

Using Eqns.(3.1.4) and (3.1.6), the β function βU(g) is plotted in Fig. 3.1.4.
Critical exponent ν can be calculated from Eq.(3.1.47) using Eqns.(3.1.8),(3.1.9).
Results for d = 3, 4, 5, 6 are listed in Table. 3.1.4. Estimate critical expo-
nent ν is not good enough for classification into universality classes. For the
unitary symmetry class, estimated critical exponent satisfies inequality for
critical exponents of Eq.(2.2.13). This would be because that the number of
terms in the β function in Eq. (3.1.3) is still lacked.
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Figure 3.1.4: The β function βU(g) for d = 1, 2, 3, 4 obtained from improved
Borel-Padé analysis.

d ν tc Ref. [17, 18]
3 0.97 1.1 1.437[.426, .448]
4 0.69 2.5
5 0.59 4.7
6 0.55 8.3

Table 3.1.4: Critical exponents and fixed points tc for the unitary symme-
try class for d = 3, 4, 5 and 6 obtained from improved Borel-Padé analysis
(Eq.(3.1.47))

44



3.2 Numerical estimation of the β function in

the symplectic symmetry class

3.2.1 SU(2) model

The Hamiltonian of SU(2) model[81] is given by

H =
∑
r,σ

ϵrc
†
r,σcr,σ −

∑
<r,r′>,σ,σ′

R(r; r′)σ,σ′c†r,σcr′,σ′ + h.c. (3.2.1)

Where, c†r,σ and cr,σ are creation and annihilation operator of an electron at
lattice point r with its z component of spin σ respectively. h.c. indicates
Hermite conjugate of hopping term. I considered quasi-one dimensional bar
of finite cross section Lx × Ly and length Lz. Periodic boundary conditions
are imposed for x and y directions.

ϵr obeys box distribution function of Eq.(2.1.3). Spin-orbit coupling be-
tween nearest neighbors is incorporated with 2 × 2 random hopping matrix
R(r; r′) belonging to the group SU(2).

R(r; r′) =

(
eiαr,r′ cos βr,r′ eiγr,r′ sin βr,r′

−e−iγr,r′ sin βr,r′ e−iαr,r′ cos βr,r′

)
(3.2.2)

Here, αr,r′ , γr,r′ are uniformly distributed on [0, 2π] and βr,r′ obeys following
probability distribution functions.

p(βr,r′) =

{
sin(2βr,r′) (0 ≤ βr,r′ ≤ π

2
)

0 (otherwise)
(3.2.3)

I used MT2203 of the Intel MKL library to generate required random num-
bers.

These probability distributions for αr,r′ , βr,r′ , γr,r′ are chosen such that
R(r; r′) are uniformly distributed with respect to Haar measure. Effect of
irrelevant scaling variables is known to become smaller for these random
matrices R(r, r′) [81, 82]. From this reason, SU(2) model has an advantage in
numerical simulation of the Anderson transition in the symplectic symmetry
class. On the other hand, a disadvantage of SU(2) model is that disorder
originated from R(r; r′) exists even for W = 0. This may makes it more
difficult to study some phenomena occurring only with small strength of
disorder.

For convenience of numerical simulation, following SU(2) gauge transfor-
mation is used (

cr,↑
cr,↓

)
= U(r)

(
c̃r,↑
c̃r,↓

)
(3.2.4)
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U(r) is defined by successive multiplication of R(r; r′) in z direction as

U(r) = (−1)l−1R(r; rl − 1)R(rl−1; rl−2) · · ·R(r2, r1) (3.2.5)

Here,
rn = jx̂x + kx̂y + nx̂z for r = jx̂x + kx̂y + lx̂z (3.2.6)

Under the gauge transformation U(r), R(r; r′) is replaced by R̃(r; r′) ac-
cording to

R̃(r; r′) = U(r)†R(r; r′)U(r) (3.2.7)

Hopping matrix for nearest neighbors in z-direction becomes unit matrix
and other R̃(r; r′) obeys same probability distribution function for R(r; r′).
Below, I use more simplified SU(2) model with its hopping in z-direction is
−1 instead of original model.

3.2.2 Calculation of conductance with transfer matrix
method

In this section, I explain method to calculate two terminal conductance G at
zero temperature using transfer matrix method and Landauer formula[83, 84].
The method explained in this section is based on Ref. [85, 86]

Similarly to Sec. 2.1.2, vector An is defined as

(An)qσ(r) = ar,σ (3.2.8)

q↑(r) = 2(j + (k − 1)Lx)

q↓(r) = q↑(r) + 1 for r = jx̂x + kx̂y + lx̂y (3.2.9)

Here, ar,σ is coefficient of eigenstate |ψ⟩ expanded with basis |r, σ⟩ = c̃†r,σ| ⟩
as (| ⟩ is vacuum state ).

Transfer matrix Tn for SU(2) model is defined as(
An+1

An

)
= Tn

(
An

An−1

)
(3.2.10)

Tn is 2N × 2N matrix and its components are given by

Tn =

(
T++,n −IN
IN 0N

)

(T++,n)ij =


E − ϵr ( i = j = qσ(r) )

R̃(r; r′)σ,σ′ (i ̸= j, i = qσ(r), j = q′σ(r′))
0 (otherwise)

(3.2.11)
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Where, N = 2LxLy and submatrix T++,n is Hermite matrix.
I consider two leads attached at left and right edge of corresponding

system to calculate two terminal conductance. Both leads does not include
disorder. Hopping matrix R̃(r; r′) for leads are replaced by R(r; r′) with
αr,r′ = π/3, βr,r′ = π/4, γr,r′ = π/6. Transfer matrix for left Mleft and right
Mright leads is given from Eq.(3.2.11) by such fixed R̃(r; r′).

For given energy E, eigenstates with its wavenumber in a lead are ob-
tained by diagonalizing Mleft and right Mright

Mleft = UΛU−1 (3.2.12)

Mright = U ′Λ′U ′−1 (3.2.13)

Where, U,U ′ are 2N×2N unitary matrix made of eigenvectors of Mleft,Mright

and Λ,Λ′ are diagonal matrix which components are corresponding eigenval-
ues λ = eik, λ′ = eik

′
. Probability current for z-direction Jk carried by

electron in eigenstate uk(or u′
k) is calculated as

Jk = u†
kΣyuk (3.2.14)

Σy =

(
0N −iIN

−iIN 0N

)
(3.2.15)

Current conservation condition for given uk(or u′
k) is

Jk = u†
kΣyuk = u†

k(M †
leftΣyMleft)uk

= (Mleftuk)†Σy(Mleftuk)

= |λ|2u†
kΣyuk

= |λ|2Jk (3.2.16)

In first line, we used Σy = M †
leftΣyMleft. This equality is easily confirmed for

our transfer matrix of Eq.(3.2.11).
This leads

Jk ̸= 0 ⇒ |λk| = 1 (3.2.17)

|λk| ̸= 1 ⇒ Jk = 0 (3.2.18)

These statements indicates that non-zero probability current is carried only
by eigenstate with |λk| = 1. Therefore, eigenstates with |λk| = 1 and |λk| ̸= 1
is called as propagating mode and evanescent mode respectively. Eigenval-
ues and eigenvectors of transfer matrix are further classified into 4 kinds of
modes with respect to value of |λ| and sign of Jk, i.e., right propagating,
left propagating, increasing and decreasing modes (See. Table. 3.2.5). To
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make calculation by transfer matrix clear, we order eigenvectors in U and
corresponding eigenvalues in Λ in same order as Table. 3.2.5.

mode eigenvalue wavenumber probability current number
right propagating |λ| = 1 Imk = 0 Jk > 0 Nprop

decreasing |λ| < 1 Imk > 0 Jk = 0 N −Nprop

left propagating |λ| = 1 Imk = 0 Jk < 0 Nprop

increasing |λ| > 1 Imk < 0 Jk = 0 N −Nprop

Table 3.2.5: Classification of eigenvalues and eigenvectors of transfer matrix
Mleft,Mright. The number of right and left propagating modes are equal and
it is Nprop. It is also true for the number of decreasing and increasing modes.

State vector in left or right lead can be expanded with these modes.

(
An

An−1

)
= UΛn−1


a(R)

a(D)

a(L)

a(I)

 (n ≤ 1) (3.2.19)

(
An

An−1

)
= U ′Λ′ n−1


a′(R)

a′(D)

a′(L)

a′(I)

 (n ≥ Lz + 1) (3.2.20)

Where, a(R), a(D), a(L), a(I) and a′(R), a′(D), a′(L), a′(I) are complex vectors made
of coefficients for expansion by 4 kinds of modes in left and right lead respec-
tively.

To ensure that probability amplitude doesn’t diverge as n → ±∞, fol-
lowing boundary condition are imposed for decreasing mode in left lead and
increasing mode in right lead.

a(D) = 0 (3.2.21)

a′(I) = 0 (3.2.22)

Probability current J in left lead for given state vector is expressed with
this expansion as

J = (A†
n A†

n−1)Σy

(
An

An−1

)

= (a(R)† a(D)† a(L)† a(I)†)


J+

0
−J−

0




a(R)

a(D)

a(L)

a(I)

(3.2.23)
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Where, submatrices J+, J− are

(J+)nm = u†
nΣyum (3.2.24)

(J−)nm = −u†
n+NΣyum+N (3.2.25)

Because J+, J− are positive definite, they can be factorized by Cholesky
decomposition.

J+ = θ†+θ+

J− = θ†−θ− (3.2.26)

Similar decomposition into θ′+, θ
′
− is available for right lead.

Vectors of incoming and outgoing probability currents in left lead i,o are
defined using θ+, θ−.

i = θ+a
(R)

o = θ−a
(L) (3.2.27)

Similarly, incoming and outgoing probability currents in right lead i′,o′ is
defined as

i′ = θ′+a
′(R)

o′ = θ′−a
′(L) (3.2.28)

With these vectors, probability current in the right and left lead is ex-
pressed as

J = i†i− o†o (3.2.29)

J ′ = i′†i′ − o′†o′ (3.2.30)

Scattering matrix S which relates vectors of incoming probability currents
with one of outgoing probability currents are defined as

S

(
i
i′

)
=

(
o
o′

)
(3.2.31)

Submatrices of scattering matrix S are divided intoNprop×Nprop submatrices,
i.e., transmission matrices t, t′ and reflection matrices r, r′.

S =

(
r t′

t r′

)
(3.2.32)

From current conservation, we have

i†i− o†o = i′†i′ − o′†o′ (3.2.33)
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This expression is rewritten as

(i†i′†)

(
i
i′

)
= (o†o′†)

(
o
o′

)
(3.2.34)

= (i†i′†)S†S

(
i
i′

)
(3.2.35)

This implies that scattering matrix S must be unitary matrix.

S†S = SS† = 12Nprop (3.2.36)

Unitarity of scattering matrix S leads following relations for transmission
and reflection matrices.

r†r + t†t = 1Nprop (3.2.37)

r†t′ + t†r′ = 0Nprop (3.2.38)

t′†t′ + r′†r′ = 1Nprop (3.2.39)

These conditions are important to verify t, r obtained from numerical calcu-
lation with transfer matrices.

Two terminal conductance G at zero temperature for electron incident
from left lead is calculated by Landauer formula[83, 84] from transmission
matrix t.

G =
e2

h
trtt† (3.2.40)

Below, I explain how transmission and reflection matrices are obtained
from transfer matrices. From Eq.(3.2.10), coefficients a(R), a(D), a(L), a(I) and
a′(R), a′(D), a′(L), a′(I) are related with transfer matrices as

a′(R)

a′(D)

a′(L)

a′(I)

 = T̂


a(R)

a(D)

a(L)

a(I)

 (3.2.41)

where
T̂ = Λ′−LU ′−1TLz · · ·T1U (3.2.42)

It is helpful to divide T̂ into following N ×N blocks.

T̂ =

(
T̂++ T̂+−

T̂−+ T̂−−

)
(3.2.43)
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To calculate transmission and reflection matrices for electrons incident
from right lead, we set i = 0 and Eq.(3.2.31) reduces to

t′i′ = o (3.2.44)

r′i′ = o′ (3.2.45)

From setting i = 0, we have a(R) = a(D) = 0 and(
a′(R)

a′(D)

)
= T̂+−

(
a(L)

a(I)

)
(3.2.46)(

a′(L)

a′(I)

)
= T̂−−

(
a(L)

a(I)

)
(3.2.47)

We rewrite these expressions as(
a′(R)

a′(D)

)
= T̂+−T̂

−1
−−

(
a′(L)

a′(I)

)
(3.2.48)(

a(L)

a(I)

)
= T̂−1

−−

(
a′(L)

a′(I)

)
(3.2.49)

With Eqns. (3.2.27) and (3.2.28), this expression reduces to

θ−1
− o = submatrix

(
T̂−1
−−; 1 : Nprop, 1 : Nprop

)
(θ′−)−1i′ (3.2.50)

(θ′+)−1o = submatrix
(
T̂+−(T̂−1

−−); 1 : Nprop, 1 : Nprop

)
(θ′−)−1i′(3.2.51)

where, submatrix(A; block) means submatrix of A for a given block. From
Eq. (3.2.31), transmission and reflection matrices t′, r′ are calculated as

t′ = θ−submatrix
(
T̂−1
−−; 1 : Nprop, 1 : Nprop

)
(θ′−)−1 (3.2.52)

r′ = θ′+submatrix
(
T̂+−(T̂−1

−−); 1 : Nprop, 1 : Nprop

)
(θ′−)−1 (3.2.53)

Thus, we need to calculate only T̂−1
−− and T̂+−(T̂−1

−−).
Therefore, without loss of generality, we can use following initial condition

Uinitial instead of U in Eq. (3.2.42).

Uinitial = U

(
0N

1N

)
(3.2.54)

T̂+−, T̂−− from Uinitial are calculated as

T̂+− = (0N 1N)T̂Uinitial (3.2.55)

T̂−− = (0N 1N)T̂Uinitial (3.2.56)
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Successive multiplication of transfer matrices in straightforward way causes
instability due to same reason for the case of calculation of Lyapunov expo-
nents. To avoid such instability, QR decomposition is performed after every
q = 10 times of transfer matrix multiplications. We express length of the
system Lz as an integer multiple p of l and reminder r.

Lz = pq + r (0 ≤ r < q) (3.2.57)

and iterate transfer matrix multiplication performing QR decomposition ac-
cording to

Tnq · · ·T(n−1)q+1Qn−1 = QnRn (1 ≤ n ≤ p) (3.2.58)

Q0 = Uinitial (3.2.59)

After p times QR decomposition, remaining transfer matrices and U ′−1 are
multiplied to Qp

Ufinal = U ′−1TLz · · ·Tqp+1Qp (3.2.60)

Using Eq. (3.2.42), this expression is rewritten with T̂

Λ′LT̂Uinitial = UfinalRp · · ·R1 (3.2.61)

By dividing Λ and Ufinal into N ×N blocks as

Λ′ =

(
Λ′

+ 0
0 Λ′

−

)
(3.2.62)

Ufinal =

(
U+

U−

)
(3.2.63)

T̂−1
−− and T̂+−(T̂−1

−−) in Eqns. (3.2.52), (3.2.53) are calculated from R1, · · · , Rp

and U+, U− as

T̂−1
−− = R−1

1 · · ·R−1
p U−1

− Λ′L
− (3.2.64)

T̂+−(T̂−1
−−) = Λ′−L

+ U+U
−1
− Λ′L

− (3.2.65)

3.2.3 The β function for d = 1

Dimensionless conductance g were calculated for Lx = Ly = 10,W = 1, E =
0, Lz = 10 ∼ 1000 and Lx = Ly = 14,W = 1, 5, E = 0, Lz = 18 ∼ 1000.
The number of samples is from 3 × 104 to 105 for Lz = 101 ∼ 103, and
2 × 104 for Lx = Ly = 14. The number of propagating modes Nprop is 136
for Lx = Ly = 10 and 244 for Lx = Ly = 14. Averaged dimensionless
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conductance ⟨g⟩ were calculated for these parameters. Standard deviation
of averaged dimensionless conductance is σ⟨g⟩ = 1.2 × 10−3 ∼ 2.5 × 10−3 for
Lx = Ly = 10 and σ⟨g⟩ = 2.6 × 10−3 ∼ 3.9 × 10−3 for Lx = Ly = 14.

⟨g⟩ approaches Nprop in the clean limit, i.e., W = 0 and hopping without
randomness. This resistance comes from the fact that the number of channels
in leads is finite. Therefore, it is necessary to correct ⟨g⟩ as

1

⟨g⟩corrected
=

1

⟨g⟩
− 1

Nprop

(3.2.66)

This correction is more important as ⟨g⟩ is larger or Nprop is smaller.
Calculated data are plotted in Figs. 3.2.5,3.2.6 and 3.2.7
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Figure 3.2.5: Averaged dimensionless conductance g and gcorrected by
Eq.(3.2.66) for Lx = Ly = 10,W = 1, E = 0.
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Figure 3.2.6: Averaged dimensionless conductance g and gcorrected by
Eq.(3.2.66) for Lx = Ly = 14,W = 1, E = 0.
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Figure 3.2.7: Averaged dimensionless conductance g and gcorrected by
Eq.(3.2.66) for Lx = Ly = 14,W = 5, E = 0.
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To estimate the β function, I fitted ln⟨g⟩ and ln⟨g⟩corrected to a function
of Lz. Cubic spline interpolation is used to evaluate logarithmic derivative
for data set (lnL

(I)
z , ln⟨g⟩(I), σ(I)

⟨g⟩). I used data fitting functions of Intel MKL

(See Ch.16 of reference manual for Intel Math Kernel Library). Piecewise
natural cubic interpolant is used to ensure that the β function is smooth
function.

Spline curve F (lnLz; {lnL
(J)
z , ln⟨g⟩(J)}) are constructed once positions of

knots and boundary condition are given. Knots are points piece-wise poly-
nomial connects smoothly. I set boundary condition for spline as not-a-knot
boundary condition which doesn’t impose any condition about derivative of
fitting model.

I chose horizontal position of knots {lnL
(J)
z } such that almost same num-

ber of data exists in the each section between nearest knots. Vertical position
of knots {ln⟨g⟩(J)} are optimized by minimizing χ2 defined by

χ2 =

Ndata∑
I=1

(
F (lnL

(I)
z ; {lnL

(J)
z , ln⟨g⟩(J)}) − ln⟨g⟩(I)

σ
(I)
+ − σ

(I)
−

)2

(3.2.67)

σ
(I)
± = ln(⟨g⟩(I) ± σ

(I)
⟨g⟩) (3.2.68)

Where, Ndata is the number of data.
For Lx = Ly = 10, E = 0,W = 1, spline interpolation with 6, 8, 10, 12, 14

knots were performed. The number of data is 83. Spline interpolation with
10 knots for ln⟨g⟩corrected(lnLz) is displayed in Fig. 3.2.8. For the best fit
χ2 ≃ 19.01. The β function was estimated from derivative of cubic spline,

β(⟨g⟩) =
d ln⟨g⟩
d lnLz

(3.2.69)

Results with and without correction by Eq.(3.2.66) is displayed in Fig. 3.2.9.
This figure clearly indicates that correction to averaged dimensionless con-
ductance is essential to estimate the β function correctly. From stability and
convergence of the estimated β function about the number of knots (See.
Figs. 3.2.10 and 3.2.11), I found suitable number of knots for our data is 10.
For the best fit χ2 ≃ 19.01

The β function estimated for Lx = Ly = 10, E = 0,W = 1 has a peak in
spite that dimensionality of the system is 1. For the β function from spline
with 10 knots, peak exists at ln⟨g⟩corrected ≃ 0.505 and maximum value of
the β function is about −0.803. This implies that the peak of the β function
persists in 1 ≤ d ≤ 2 and two fixed points gc1, gc2 < ∞ may appear in
dl ≤ d < 2. The β function slightly increases from ln⟨g⟩ ≃ 2 to ln⟨g⟩ ≃ 2.7.
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This may be because of the finite size effect and lack of the number of data
for small Lz due to discreteness of lattice points.
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Figure 3.2.8: Fitting by cubic spline for ln⟨g⟩corrected(lnLz) for Lx = Ly =
10, E = 0,W = 1.
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Figure 3.2.9: Comparison of the β function in d = 1 estimated with and
without correction by Eq.(3.2.66). This estimation was obtained from spline
curve constructed with 10 knots for Lx = Ly = 10, E = 0,W = 1.
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Figure 3.2.10: Dependence on the number of knots of the β function in
d = 1 estimated using spline for Lx = Ly = 10, E = 0,W = 1. χ2 ≃
76.99, 15.23, 19.01, 14.71, 13.76 for 6, 8, 10, 12, 14 knots respectively.
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Figure 3.2.11: Plot of the β function in d = 1 near its peak. Curves plotted
in this figure are same one in Fig. 3.2.10.

For Lx = Ly = 14, E = 0,W = 1, spline interpolation with 8, 9, 10, 11, 12
knots were performed. The number of data is 81. Spline interpolation with
8 knots for ln⟨g⟩corrected(lnLz) is displayed in Figs. 3.2.12. For the best fit
χ2 ≃ 9.948. The β function estimated with 8, 9, 10, 11, 12 knots are displayed
in Figs. 3.2.13 and 3.2.14. From stability and convergence of the estimated
β function about the number of knots (See. Figs. 3.2.13 and 3.2.14), I found
suitable number of knots for our data is 8. For the β function from spline
with 8 knots, peak exists at ln⟨g⟩corrected ≃ 0.474 and maximum value of the
β function is about −0.807.
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Figure 3.2.12: Fitting by cubic spline with 8 knots for ln⟨g⟩corrected(lnLz) for
Lx = Ly = 14, E = 0,W = 1.
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Figure 3.2.13: Dependence on the number of knots of the β function in
d = 1 estimated using spline for Lx = Ly = 14, E = 0,W = 1. χ2 ≃
9.948, 9.966, 10.09, 9.417, 9.091 for 8, 9, 10, 11, 12 knots respectively.
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Figure 3.2.14: Plot of the β function in d = 1 near its peak. Curves plotted
in this figure are same one in Fig. 3.2.13.

For Lx = Ly = 14, E = 0,W = 5, spline interpolation with 8, 9, 10, 11, 12
knots were performed. The number of data is 89. Spline interpolation with
9 knots for ln⟨g⟩corrected(lnLz) is displayed in Figs. 3.2.15 For the best fit
χ2 ≃ 14.35. The β function estimated with 8, 9, 10, 11, 12 knots are displayed
in Figs. 3.2.13 and 3.2.14. From stability and convergence of estimated the
β function about the number of knots (See. Figs. 3.2.16 and 3.2.17), I found
suitable number of knots for our data is 9. For the β function from spline
with 9 knots, peak exists at ln⟨g⟩corrected ≃ 0.487 and maximum value of the
β function is about −0.806.
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Figure 3.2.15: Fitting by cubic spline with 9 knots for ln⟨g⟩corrected(lnLz) for
Lx = Ly = 14, E = 0,W = 5.
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Figure 3.2.16: Dependence on the number of knots of the β function in
d = 1 estimated using spline for Lx = Ly = 14, E = 0,W = 5. χ2 ≃
15.35, 14.35, 14.14, 13.82, 13.50 for 8, 9, 10, 11, 12 knots respectively.
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Figure 3.2.17: Plot of the β function in d = 1 near its peak. Curves plotted
in this figure are same one in Fig. 3.2.16.

To obtain more precise estimate of the β function, I assume that averaged
dimensionless conductance obeys one parameter scaling of Eq.(1.1.7).

⟨g⟩corrected(Lz,W ;Lx) = Φ(L/ξ(W ;Lx)) (3.2.70)

Where, ξ(W ) is correlation length. we have one scaling function Φ because
there is no transition in d = 1. By re-writing this equation,

ln⟨g⟩corrected(lnL,W ;Lx) = Ψ(lnL− ln ξ(W ;Lx)) (3.2.71)

This suggests that ln⟨g⟩corrected for different W completely overlaps by parallel
shift in direction of lnLz axis. From this assumption, we can estimate the
β function using data for W = 1, 5 simultaneously. I found that our all
numerical data overlaps into curve for Lx = Ly = 14, E = 0,W = 1 by
suitable choice of ξ(W ;Lx) obeys Eq. (3.2.71)(See. Fig. 3.2.18). Parameters
for parallel shift are given by

ξ(1; 10) − ξ(1; 14) ≃ 0.703 (3.2.72)

ξ(5; 14) − ξ(1; 14) ≃ 0.244 (3.2.73)
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These parameter are found by fitting of both data once and minimizing χ2.
To estimate the β function more precisely, I used data for Lx = Ly = 14, E =
0,W = 1 and Lx = Ly = 14, E = 0,W = 5 shifted in parallel by Eq.(3.2.73).
Data for Lx = Ly = 10 is omitted from fitting procedure with parallel shift
because effect of finite size effect was large compared with Lx = Ly = 14.
Spline interpolation with 8, 10, 12 knots were performed for 170 data points.
The β function estimated for these knots are displayed in Figs. 3.2.20,3.2.21.
From these figures, I found that suitable number of knots for our data is 10.
Spline curve with 10 knots is displayed in Fig. 3.2.19 For the β function from
spline with 10 knots, peak exists at ln⟨g⟩corrected ≃ 0.453 and maximum value
of the β function is about −0.805. The β function estimated with data for
Lx = Ly = 14, E = 0,W = 1, 5 does not increase from g ≃ 2 to g ≃ 2.7.
This is because that the finite size effect is smaller for Lx = Ly = 14 and the
number of data for small Lz is effectively compensated by parallel shift by
Eq.(3.2.71) (See. Fig. 3.2.18).

-3

-2

-1

 0

 1

 2

 3

 2.5  3  3.5  4  4.5  5  5.5  6  6.5  7  7.5  8

ln
 g

c
o
rr

e
c
te

d

ln Lz - ln ξ (W ; Lx) + ln ξ (1;14)

Lx=14 W=1
Shifted Lx=10 W=1
Shifted Lx=14 W=5

Figure 3.2.18: Numerical justification of one parameter scaling for
ln⟨g⟩corrected. The data for Lx = Ly = 10, E = 0,W = 1 and Lx = Ly =
14, E = 0,W = 5 are shifted according to Eq.(3.2.72) and(3.2.73)
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Figure 3.2.19: Fitting by cubic spline with 10 knots for ln⟨g⟩corrected(lnLz)
for Lx = Ly = 14, E = 0,W = 1, 5.
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Figure 3.2.20: Dependence on the number of knots of the β function es-
timated from numerical data for Lx = Ly = 14, E = 0,W = 1, 5.
χ2 ≃ 81.59, 79.66, 79.73 for 8, 10, 12 knots respectively.
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Figure 3.2.21: Plot of the β function in d = 1 near its peak. Curves plotted
in this figure are same one in Fig. 3.2.20.

3.3 Comparison of the β function in the sym-

plectic symmetry class between numeri-

cal and analytical estimates

Between numerical and analytical method, there are several discrepancies in
1 dimensional β function in the symplectic symmetry class. First, position
and height of the peak of the β function is very different from each other
(See. Fig. 3.1.2 for analytic estimate and Fig. 3.2.21 for our numerical
estimate). Height of peak is about −0.4 for analytical estimate and −0.805.
This suggests that the peak of the β function in the symplectic symmetry
class obtained analytically is overestimated. Therefore, the lower critical
dimension for the symplectic symmetry class obtained from ϵ-expansion[28] is
thought to be underestimated. This is also possible reason for underestimate
of critical exponent. It must be important to calculate higher order terms of
Eq.(3.1.2) to describe the peak of the β function in the symplectic symmetry
class more correctly.
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From Eq. (3.1.7), dimensional dependence of the β function calculated
from ϵ-expansion[28] is obtained by parallel shift of the 2 dimensional β
function. If this relationship holds approximately in 1 ≤ d ≤ 2, the lower
critical dimension of the β function is estimated as

dl ≃ 1.8 (3.3.1)

This estimate is similar to one presumed from recent rough estimate of the
β function for some fractals (See. Fig.3 of [67]).

I think the discrepancy between the β functions estimated numerical and
analytical may arise from characteristic dependence on ϵ of the β function
in Eq. (3.1.7). From this character, the β function in d dimension is ob-
tained just by parallel shift of the two dimensional β function in vertical
direction. As explained in Sec. 3.1.1, if the upper critical dimension is ∞
for the symplectic symmetry class, the β function obtained from ϵ expansion
has asymptotic behavior of 2 ln g (ln g → −∞). However, exponential local-
ization of wave function suggests that true asymptotic behavior is expected
to be ln g (ln g → −∞). This naive consideration suggests that ϵ dependence
of the true β function persists in higher order term in asymptotic series at
metallic limit (not only leading term). Therefore present theoretical pre-
diction by ϵ-expansion would still have qualitative problem for large g or
strongly disordered system.

Finally, I summarize Sec. 3. New Borel-Padé analysis is developed to
incorporate logarithmic asymptotic behavior at t → ∞ with perturbation
series at t = 0. I applied improved Borel-Padé analysis to the series for the
β functions in the orthogonal, symplectic, and unitary symmetry classes and
critical exponents ν are estimated. The β function for the 1 dimensional
symplectic symmetry class was estimated using the transfer matrix method
and fitting by cubic spline. It gives indirect estimate of the lower critical
dimension and indicates that attractive fixed point appears at finite g in
dl ≤ d < 2 consistent with Ref. [67]. I also found discrepancy between
numerical result (Eq. (3.3.1)) and theoretical estimate (Eq. 3.1.34) by ϵ
expansion method of the lower critical dimensions. One possible origin of
this discrepancy was discussed above.
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Chapter 4

Conclusion

I studied some fundamental aspects of the Anderson transition in Wigner-
Dyson classes.

In Sec. 2.1, Anderson transition in the orthogonal symmetry class in
d = 4, 5 was studied by numerical simulation. Lyapunov exponents for the
Anderson model of localization were calculated by transfer matrix method.
From finite size scaling for smallest positive Lyapunov exponents, the critical
exponents and critical disorder is estimated more precisely compared with
previous studies (See. Table. 2.2.1). These results more strongly suggests
that the upper critical dimension of the Anderson transition in the orthogo-
nal symmetry class is more than 5. Recently, critical disorder was estimated
by forward approximation for the Anderson model of localization[87]. By
comparing our results (Eqns. (2.1.26), (2.1.28)) with results from forward
approximation, it seems that forward approximation becomes more precise
as the dimensionality increases. For example, critical disorder given by the
forward approximation differs from our numerical estimates by just 0.9% in
d = 5. Therefore, forward approximation is thought to be very effective
approximation for the Anderson transition in high dimension. Thus, precise
estimate of the critical exponents ν and critical disorder Wc is important as a
touchstone for the theories of Anderson transition or Anderson localization.
Our estimates of the critical exponents ν in d = 4, 5 will be useful for experi-
mental observation of Anderson transition in the orthogonal symmetry class
in quantum kicked rotor system in cold atomic gases.

I also presented a new improvement of Borel-Padé analysis in Sec. 2.2,
which incorporate the asymptotic behavior of the critical exponent ν as
d → ∞. This new technique for approximate re-summation was applied to
perturbation series obtained by ϵ-expansion. It gives better agreement with
numerical results compared with the original Borel-Padé analysis in Ref. [28]
(See. Table. 2.2.1). The improved Borel-Padé analysis uses information of
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the dimensional dependence near ϵ = 0 and ϵ = ∞. Therefore estimate of
the critical exponent could be improved more if either more terms in the ϵ-
expansion at ϵ = 0 or alternatively more terms in the asymptotic expansion
for ϵ → ∞ beyond leading order were known. Such information could be
incorporated in a further revision of the Borel-Padé analysis. Different ap-
proach might be to incorporate information about the asymptotic behavior
of the coefficients in the ϵ-expansion for larger order along the lines of Refs.
[88, 89].

In Sec. 3.1, I estimated the β function in the Wigner-Dyson classes
from perturbation series obtained by ϵ-expansion. Borel-Padé analysis is
further improved to incorporate logarithmic asymptotic behavior as t →
∞. It was applied to all perturbative β functions in the Wigner-Dyson
classes. I estimated the critical exponent ν and fixed point tc from these
approximately re-summed β functions. For the symplectic symmetry class, I
analytically estimate the lower critical dimension dl ≃ 1.4. Estimate of the
critical exponents ν is similar order to one of Eq. (2.2.9) which is obtained
from perturbation series for ν with improved Borel-Padé analysis. However,
the estimates of ν for the symplectic and unitary symmetry classes are not
in good agreement with numerical results (See. Tables. 3.1.3 and 3.1.4).
A possible origin of this poor agreement may be the lack of the sufficient
number of terms in original expansions of Eqns. (3.1.2) and (3.1.3). The
existence of a peak in the β function in the symplectic symmetry class seems
to make the estimate of the β function harder compared with the orthogonal
symmetry class. Besides this, as discussed in Sec. 3.3, the ϵ dependence of the
β function seems to lead to a contradiction with asymptotic value 1/2 of the
critical exponent at the infinite dimension. Therefore, further development
will be required for ϵ-expansion method or field theoretical approach to the
Anderson transition by non-linear sigma model.

In Sec. 3.2, I numerically estimated the β function for the averaged
dimensionless conductance in the symplectic symmetry class in d = 1 by
the transfer matrix method. To obtain a smooth β function, I used a spline
curve to fit the numerical data obtained from the transfer matrix method.
As a result, the β function for the symplectic symmetry class in d = 1 was
estimated precisely (See. Figs. 3.2.20 and 3.2.21). I found that the peak
of the β function in the symplectic symmetry class persists even in d = 1.
This result implies that the peak of the β function persists in 1 ≤ d ≤ 2 and
that two fixed points gc1, gc2 < ∞ may appear in dl ≤ d < 2 consistent with
the prediction of Ref. [67]. From a comparison between the numerical and
the analytical method, I found that height of the peak of the β function in
the symplectic symmetry class in d = 1 is overestimated in the Borel-Padé
analysis in Sec. 3.1. From the height of the peak, the lower critical dimension
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of the symplectic symmetry class is estimated as dl ≃ 1.8.
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Appendix A

Definition of chiral and
particle-hole symmetry

In this appendix, I explain definitions of chiral and particle-hole symmetry.
These definitions are based on Ch. IV of Ref. [11].

Hamiltonian H has chiral symmetry if

−τzHτz = H (A.0.1)

where, τz is the third Pauli matrix in a ”isospin” space. For example, tight-
binding model on a bi-particle lattice has chiral symmetry if randomness is
included only in hopping term.

Let ψ be eigenstate with energy E of H with chiral symmetry, τzψ become
eigenstate with energy −E. This is confirmed by following calculation.

Hψ = Eψ

⇐⇒ −τzHτzψ = Eψ

⇐⇒ H(τzψ) = −E(τzψ) (A.0.2)

Hamiltonian H has particle-hole symmetry if

−τxHT τx = H (A.0.3)

where, τx is Pauli matrix in the particle-hole space and HT is transpose
matrix of H. Hamiltonian with particle-hole symmetry appears in super
conducting systems for example.

Similarly to case of chiral symmetry, eigenstate make pair. Let ψ be
eigenstate with energy E of H with chiral symmetry, τxψ

∗ become eigenstate
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with energy −E. This is confirmed by following calculation.

Hψ = Eψ

⇐⇒ −τxHT τxψ = Eψ

⇐⇒ −τxHτxψ∗ = Eψ∗

⇐⇒ H(τxψ
∗) = −E(τxψ

∗) (A.0.4)
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Appendix B

Definition of spectral dimension

In this appendix, we review definition of spectral (or fracton) dimension d̃ of
given graph or lattice (See Ch. 9 and 12 of Ref.[90], III. B of Ref. [91]).

Graph (or lattice) G is a set of sites {i} and bond(or set of nearest neigh-
bor) {(i, j) = (j, i)}. Simple random walk on G is stochastic process that
walker starting from site i at a discrete time t = 0 jump to one of nearest
neighbors with equivalent probability at each time step.

Spectral (or fracton) dimension d̃ of given graph G is defined through
statistical property of random walk on G in long time. Let Pii(t) be the
return probability, i.e. probability that walker starting from site i at time 0
returns to same site i at time t. If Pii(t) obeys following power law behavior,
spectral dimension d̃ is called as spectral (or fracton) dimension.

Pii(t) ∼ t−d̃/2 for t→ ∞ (B.0.1)

If G is translation invariant lattice, spectral dimension d̃ is equal to Euclidean
dimension d. d̃ can take non-integer value if G for fractal lattices. Random
walks are recurrent if d̃ ≤ 2 and transient if d̃ > 2. Some asymptotic law
of other probability characterizing random walk also can be described using
spectral (or fracton) dimension (For example, see. Sec. 9 of Ref. [90]). The
fact that those asymptotic behavior changes whether d̃ is below or above 2
is fundamentally important.
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Appendix C

Technical detail of transfer
matrix method

In this appendix, I explain detail of numerical calculation of Lyapunov ex-
ponent.

By singular value decomposition of M
(d)
N of Eq.(2.1.13),

M
(d)
N = UΣV † (C.0.1)

where, U, V and Σ are 2Ld−1 × 2Ld−1 unitary matrices and Σ. Then, Ω of
Eq.(2.1.14) is related with these singular values,

V †ΩV = V † ln(M
(d)†
N M

(d)
N )V

= ln(V †M
(d)†
N M

(d)
N V )

= ln(Σ†Σ) (C.0.2)

From this expression, square of the diagonal components |σl|2 of diago-
nal matrix Σ is equal to exp(λl(N)). Here, we can assume that diagonal
components of Σ is arranged by order of its absolute value modulus, i.e.,
λ1(N) > λ2(N) > · · · > λ2Ld−1(N).

Below we express U, V with 2Ld−1 dimensional vectors ul,vl as

U = (u1, · · · ,u2Ld−1)

V = (v1, · · · ,v2Ld−1) (C.0.3)

For simplicity, we introduce following notation for initial condition in transfer
matrix method,

x1(N) =

(
AN+1

AN

)
(C.0.4)
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From Eq.(2.1.12), we obtain

x1(N) = M
(d)
N x1(1)

=
2Ld−1∑
j=1

exp(λj(N))(v†
jx1(1))uj (C.0.5)

∥x1(N)∥ =

√√√√2Ld−1∑
j=1

exp(λj(N))∥v†
jx1(1)∥2 (C.0.6)

Because λl(N) = O(N), right-hand side of above equation can be well ap-
proximated with a term including biggest factor λ1(N). Therefore, biggest
Lypunov exponents γ1 can be estimated as

γ1 =
λ1(N)

2N
+ O(

1

N
)

=
1

N
ln ∥x1(N)∥ + O(

1

N
) (C.0.7)

This expression indicates that Lyapunov exponents can be estimated from
norm of the vector x1(N) for enough large N . I mention that choice of initial
condition becomes less independent of estimation of Lyapunov exponents
as N increases more. In practical calculation of Lyapunov exponent, it is
not necessary to calculate and keep many times multiplication of transfer
matrices explicitly which requires more memory and computational time.

Other Lypounov exponents can be calculated in similar way. Because
Ω is orthogonal matrices, all Lyapunov exponents are real number. Besides
it, when det(M

(d)
N ) = 1, any Lyapunov exponent have its pair which sign

is inverse. Therefore, Lyapunov exponents form a monotonically decreasing
series γ1 > · · · > γLd−1 > −γLd−1 > · · · > −γ1. From this property, it
is enough to calculate half of Lyapunov exponents, i.e. Ld−1 numbers of
Lyapunov exponents. We prepare set of Ld−1 numbers of independent initial
vectors as

(x1(1), · · · ,xLd−1(1)) =

(
ILd−1

OLd−1

)
(C.0.8)

For each initial condition xj(1), we get expression similar to Eqns. (C.0.5),(C.0.6).
From the fact that uj commonly appears for any initial condition xj(1), we
can estimate other Lyapunov exponents using orthogonality of vectors {uj}
as

γj =
λj(N)

2N
+ O(

1

N
)

=
1

N
ln ∥qj∥ + O(

1

N
) (j = 1, · · · , Ld−1) (C.0.9)

80



where,

qj(N) =

{
x1(N) (j = 1)

xj(N) −
∑j−1

i=1 (xj(N) · q̂i(N)) (j ≥ 2)

q̂j(N) =
qj(N)

∥qj(N)∥
(C.0.10)

Thus, we obtain a expression to calculate Lyapunov exponents. However,
this expression still have problem of round-off error in practical numerical
calculation. This is because components of xj(N) exponentially increases
about N due to Eq. (C.0.5). QR decomposition is usually used to avoid this
problem.

Below, I explain how to caculate Lyapunov exponents with QR decom-
position. By QR decomposition after N times multiplication of transfer
matrices,

(x1(N), · · · ,xLd−1(N)) = QR (C.0.11)

Where, norm ∥qj(N)∥ required to estimate Lyapunov exponent is equal to
absolute value of j-th diagonal component of upper triangular matrix R.
This quantity can also be calculated by performing QR decomposition many
times on the way of N times multiplication of transfer matrices. It can be
confirmed from following calculation, when N is multiple of a natural number
q,

M
(d)
N

(
ILd−1

OLd−1

)
=

N∏
n=2

T (d)
n

(
ILd−1

OLd−1

)
= (T

(d)
N · · ·T (d)

N−q+1) · · · (T
(d)
q+1 · · ·T

(d)
2 )

(
ILd−1

OLd−1

)
= (T

(d)
N · · ·T (d)

N−q+1) · · · (T
(d)
2q+1 · · ·T

(d)
q+2)Q1R1

= · · ·
= QnRn · · ·R2R1 (C.0.12)

where, QR decomposition is performed once in q times of multiplication
of transfer matrices. Qj and Rj is calculated from QR decomposition after
multiplication of q number of transfer matrices with initial condition Qj−1. In
this method, we can avoid round-off error by exponential increase of ∥qj(N)∥
by QR decomposition before all xj becomes parallel due to round-off error,
i.e., by choosing small q. On the other hand, if we choose too small q,
computational time increases. Therefore, we have to find suitable value for
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q by trial and error, suitable value depends on transfer matrices for each
problem.

Because QR decomposition is unique if sign of diagonal component of R
is fixed, we get following expression

R =

N/q∏
i=1

Ri

(R)jj =

N/q∏
i=1

(Rq)jj (C.0.13)

Thus, Lyapunov exponents can be estimated from (Rq)jj. To estimate error
of Lyapunov exponents correctly, following quantity is introduced for given
natural number r,

D
(k)
i =

kr∑
j=(k−1)r+1

1

p
ln(Rj)ii (k = 1, · · · , s) (C.0.14)

where, p = qr and N = ps with natural number s. For enough large p, D
(k)
i is

regarded as statistically independent for different k. From Eqns.(C.0.9)and

(C.0.13),Lyapunov exponents are estimated by D
(k)
i as

γj =
1

s

s∑
k=1

D
(k)
j (j = 1, · · · , Ld−1) (C.0.15)

Standard deviation of γj is estimated as

σ2
γj

=
1

s

1

s

s∑
k=1

(D
(k)
j )2 −

(
1

s

s∑
k=1

D
(k)
j

)2
 (C.0.16)
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Appendix D

Error analysis in finite size
scaling

In this appendix, I explain how the standard deviation of Eqns. (2.1.26)
and (2.1.28) are calculated. We use i = 1, · · · , ND to index the data. Each
data points consists of four values disorder Wi and system size Li, Γi and
its standard deviation σi. To estimate error in fitting parameter, I used the
Monte Carlo method of synthetic data sets (See. Ch. 15.6 of Ref. [70] for
details). For simplicity, let us introduce notation {αj} (j = 1, · · · , Np) for
the set of fitting parameters.

The Monte Carlo method is divided into two steps. The first step is
determination of the fitting parameters in the finite size scaling from simu-
lated data set D(0) = {(Γ1, σ1), (Γ2, σ2), · · · , (ΓND

, σND
)}. By minimizing the

chi-squared statistic χ2, we obtain the fitting parameter {α(0)
j }.

The second step of the Monte Carlo method is the generation of the NS

synthetic data sets. Synthetic data sets are generated according to

Γ
(I)
i = F (wi, Li; {α(0)

j }) + σiϵ
(I)
i (I = 1, · · · , NS) (D.0.1)

D(I) = {(Γ
(I)
1 , σ1), (Γ

(I)
2 , σ2), · · · , (Γ(I)

ND
, σND

)} (D.0.2)

Here, F is the fitting model in finite size scaling, {ϵ(I)i } are independently
distributed random variables obeying standard normal distribution N(0, 1).
Throughout this study, NS = 1000. For each synthetic data set D(I), we
minimize chi-squared statistics χ2 and obtain {α(I)

j }. From this ensemble of
fitting parameters, we get the standard deviations of the fitting parameters.

I used program code for this method developed by Assoc. Prof. Keith
Slevin at Osaka university.
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Appendix E

Comparison with previous
study by P. Markos in 2006

I compare my numerical estimation of critical exponent by transfer matrix
method and finite size scaling with previous study by P. Markos in 2006[72].
In this study, the precisions of the estimates of critical exponents, i.e. stan-
dard deviations, are better by about factor of 3[72]. Numerical data used in
previous study is shown in Fig. 61 in Resf. [72] (Note that values for vertical
axis is twice of smallest positive Lyapunov exponent.). The main difference
between previous study and this study is summarized in Tables E.0.1 for
d = 4 and E.0.2 for d = 5.

this study previous study[72]
Lmax 20 10
Ndata 99 120 ∼ 130

precision ≈ 1% ≈ 0.1%(L = 4) ∼≈ 0.5%(L = 10)

Table E.0.1: Comparison of numerical data and fitting between this study
and previous study in Ref. [72]. Precision of data in previous study is
provided from P. Markos [92].

In d = 4, the range of disorder used in both studies is almost same.
However, the maximum system size is 20 in my study and 10 in the previous
study. (The computational time for the transfer matrix method is O(L10)
in d = 4.) Also, in the previous study, the data are weighted to the smaller
system sizes, i.e. the data for smaller system sizes have smaller standard
deviations and more numerous compared with larger system sizes. Whereas,
in this study, the number of data and standard deviations are uniform across
different system sizes.
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Besides differences in data sets, the fitting procedure is also different from
the previous study. Nonlinearity of relevant scaling variable and scaling
function is taken into account in my study. Quality of fit is assessed by
goodness of fit probability.

this study previous study[72]
Lmax 10 8
Ndata 91 ≈ 57

precision ≈ 1% ≈ 1%

Table E.0.2: Comparison of numerical data and fitting between this study
and previous study in Ref. [72]. Precision of data in previous study is
provided from P. Markos [92].

In d = 5, the range of disorder used in both studies is almost same.
However, the maximum system size is 10 in my study and 8 in the previous
study. (The computational time for the transfer matrix method is O(L13) in
d = 5.) The total number of data points is significantly larger in my study.
Also in the previous study, the data are weighted to the smaller system sizes.
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Appendix F

Verification of precision of
finite size scaling in terms of
systematic error

In this appendix, I verify how much systematic error exists in finite size
scaling analysis. Systematic error due to range of parameters for strength of
disorder W and system size L is investigated. For this purpose, finite size
scaling analysis is done for data restricted in narrow range of parameters.

For d = 4, results of finite size scaling with narrow range of W and L
are listed in Tables. F.0.1 and F.0.2 respectively. The order of expansion
for relevant scaling variable and scaling function (See. Eqns. (2.1.21) and
(2.1.22)) is fixed to m = 3, n = 3 for each fitting. Considering that results in
Tables. F.0.1 and F.0.2 are consistent with each other within one standard
deviation, I conclude systematic error in finite size scaling due to range of W
and L is not relevant compared with statistical error.

Range of W [30, 40] [31, 39] [32, 38]
Wc 34.62 ± .033 34.61 ± .035 34.60 ± .038
Γc 2.765 ± .011 2.766 ± .012 2.761 ± .013
ν 1.157 ± .014 1.166 ± .023 1.148 ± .039

Table F.0.1: Verification of effect from systematic error in finite size scaling
for d = 4 by restricting range of W .
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Range of L [4, 20] [6, 20] [8, 20] [10, 20]
Wc 34.62 ± .033 34.63 ± .041 34.64 ± .052 34.62 ± .068
Γc 2.765 ± .011 2.769 ± .015 2.774 ± .020 2.673 ± .028
ν 1.157 ± .014 1.173 ± .017 1.171 ± .021 1.152 ± .026

Table F.0.2: Verification of effect from systematic error in finite size scaling
for d = 4 by restricting range of L.

For d = 5, results of finite size scaling with narrow range of W and L
are listed in Tables. F.0.3 and F.0.4 respectively. The order of expansion
for relevant scaling variable and scaling function (See. Eqns. (2.1.21) and
(2.1.22)) is fixed to m = 1, n = 1 for each fitting. Considering that results in
Tables. F.0.3 and F.0.4 are consistent with each other within two standard
deviation, I conclude systematic error in finite size scaling due to range of W
and L is not relevant compared with statistical error.

Range of W [52, 64] [53, 63] [54, 62] [55, 61]
Wc 57.33 ± .05 57.35 ± .05 57.42 ± .06 57.45 ± .07
Γc 3.410 ± .009 3.414 ± .010 3.429 ± .011 3.434 ± .012
ν 0.970 ± .015 0.967 ± .018 0.955 ± .025 0.925 ± .033

Table F.0.3: Verification of effect from systematic error in finite size scaling
for d = 5 by restricting range of W .

Range of L [4, 10] [5, 10] [6, 10] [7, 10]
Wc 57.33 ± .05 57.34 ± .06 57.35 ± .09 57.29 ± .12
Γc 3.410 ± .009 3.412 ± .012 3.415 ± .018 3.402 ± .026
ν 0.970 ± .015 0.984 ± .019 0.986 ± .025 0.992 ± .035

Table F.0.4: Verification of effect from systematic error in finite size scaling
for d = 5 by restricting range of L.
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Appendix G

Finite size scaling for each
system size

In this appendix, I perform finite size scaling in two steps. First, I indepen-
dently fit data for each system sizes to polynomial. Second, using previously
estimated critical disorder, I calculated slope Γ vs W at the critical point for
each system size. I then fit the dependence of the slope on system size to
estimate the critical exponent. This method is similar to that described in
Sec. 12.1 of Ref. [72].

We fit the data for each system size to the following

Γ =
n∑

j=0

cj(L) wj (G.0.1)

Here, w = (W − Wc)/Wc, where Wc is the value obtained previously in
standard finite size scaling. From Eqns. (2.1.22) and (2.1.21), the slope at
the critical point should depend on L as follows

ln c1(L) = ln b1 +
1

ν
lnL (G.0.2)

Fitting this equations for the slope, I estimated the critical exponent. This
method helps to investigate possible systematic error in the estimate of crit-
ical exponent as system size increases.

In d = 4, I found an acceptable fit when I restricted data to within
W ∈ [32, 38]. Goodness of fit probability is 0.39. Using Wc = 34.62 estimated
in Sec. 2.1.4, the estimate of the critical exponent ν is

ν = 1.195 ± 0.021 (G.0.3)

This estimate is consistent with estimate of Eq. (2.1.26) in Sec. 2.1.4. No
systematic deviation from straight line is observed in Fig. G.0.1.
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Figure G.0.1: c1(L) and line of Eq. (G.0.2) estimated by finite size scaling
for each system size in d = 4.

In d = 5, I found an acceptable fit when I restricted data to within
W ∈ [54, 62]. Goodness of fit probability is 0.48. Using Wc = 57.3 estimated
in Sec. 2.1.4, I estimated the critical exponent ν as

ν = 0.954 ± 0.025 (G.0.4)

This estimate is consistent with estimate of Eq. (2.1.28) in Sec. 2.1.4. No
systematic deviation from straight line is observed in Fig. G.0.2.
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Figure G.0.2: c1(L) and line of Eq. (G.0.2) estimated by finite size scaling
for each system size in d = 5.
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Appendix H

Definition of asymptotic
behavior and asymptotic series

In this appendix, we review definition of definition of asymptotic behavior[93].
The function f is said to be asymptotic to the function g as x → x0 if and
only if

lim
x→x0

f(x)

g(x)
= 1 (H.0.1)

This equivalence relation is usually expressed with symbol ∼,

f(x) ∼ g(x) (x→ x0) (H.0.2)

A series
∞∑
n=0

an (x− x0)
n (H.0.3)

is said to be asymptotic to the function f(x) if[93]

f(x) −
N∑

n=0

an (x− x0)
n ∼ aM (x− x0)

M (x→ x0) (H.0.4)

where, aM is the first non-zero coefficient after aN .
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Appendix I

Confirmation of asymptotic
behavior of Eqs.(2.2.1) and
(2.2.4)

In this appendix, we confirm that improved Borel-Padé analysis used in
Sec.2.2.2 has correct asymptotic behavior for both ϵ → 0 and ϵ → ∞, i.e.
Eqns. (2.2.1) and (2.2.4) respectively..

Below, we confirm improved Borel-Padé analysis used in Sec.2.2.2 is
asymptotic to a series of Eq.(2.2.1). The exponential integral Ei(x) is de-
fined as[94]

Ei(x) = P
∫ x

−∞

et

t
dt (I.0.1)

and has the following asymptotic expansion for |x| → ∞

Ei(x) ∼ ex
∞∑
n=1

(n− 1)!

xn
(I.0.2)

Using this expansion in Eq.(2.2.10) we find for ϵ→ 0+,

g(ϵ) ∼
∞∑
n=1

gnϵ
n (I.0.3)

with

gn = (n− 1)!

(
c+
tn+

+
c−
tn−

)
(I.0.4)

For n = 1, 2 we have explicitly

g1 =
3ζ(4)

8ζ(3)
, g2 =

3ζ(3)

2
(I.0.5)
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Eq. (I.0.4) is the solution of a three term recurrence relation and we can use
this fact to calculate gn for n ≥ 3,

gn
(n− 1)!

=

(
t+ + t−
t+t−

)
gn−1

(n− 2)!
−
(

1

t+t−

)
gn−2

(n− 3)!

⇐⇒ gn = − 3ζ(4)

16ζ(3)
(n− 1)gn−1 +

3ζ(3)

4
(n− 1)(n− 2)gn−2 (I.0.6)

Using this formula, higher coefficients are more easily calculated,

g3 = 0

g4 =
27ζ(3)2

4

g5 = −81ζ(3)ζ(4)

16
(I.0.7)

Upon substitution in to Eq. (2.2.9), we find agreement term by term with
Eq. (2.2.1).

Subsequently, we will confirm asymptotic behavior of Eq. (2.2.4). The
exponential integral has the following asymptotic expansion for x→ 0,[94]

Ei(x) ∼ γ + ln |x| +
∞∑
n=1

xn

n · n!
(I.0.8)

where, γ is Euler-Mascheroni constant. After substitution in Eq.(2.2.10) we
obtain

g(ϵ) ∼ c+e
−t+/ϵ

(
γ + ln

∣∣∣∣t+ϵ
∣∣∣∣+

∞∑
n=1

tn+
n · n!

ϵ−n

)

+ c−e
−t−/ϵ

(
γ + ln

∣∣∣∣t−ϵ
∣∣∣∣+

∞∑
n=1

tn−
n · n!

ϵ−n

)
(I.0.9)

It follows that

lim
ϵ→∞

g(ϵ)

ϵ2
= 0 (I.0.10)

which leads to Eq. (2.2.4).
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Appendix J

Borel-Padé analysis with fewer
terms of ϵ-expansion of ν

In this appendix, I estimate critical exponent ν by improved Borel-Padé
analysis in Sec. 2.2.2 by restricting number of terms in ϵ-expansion of Eq.
(2.2.1).

Available way of restricting number of terms in improved Borel-Padé
analysis are

ν3 =
1

ϵ
− 9

4
ζ(3)ϵ2 +O(ϵ3) (J.0.1)

ν1 =
1

ϵ
+O(ϵ1) (J.0.2)

where, I add indexes of ν for convenience to distinguish each restriction.
Improved Borel-Padé analysis (See. Sec. 2.2.2) is performed for νj(j =

1, 3) as

νj =
1

2
+

1

ϵ

(
νj −

ϵ

2

)
≃ 1

2
+

1

ϵ2
P
∫ ∞

0

dte−t/ϵhj(t) (J.0.3)

where, hj(t) is Padé approximant of Borel transformed series of νj. Padé
approximant is chosen so as to minimize the number of assumptions for
asymptotic series at ϵ → ∞. For example, for ν3, the Padé approximant
[0/3](t) for h3(t) implicitly assumes following, which is independent of the
form of the asymptotic series of ν at ϵ = 0.

lim
t→∞

h3(t) = 0

lim
t→∞

th3(t) = 0

lim
t→∞

t2h3(t) = 0 (J.0.4)
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For this reason, diagonal Padé approximant for hj(t) does not include such
assumption without violating Eq. (2.2.4). Diagonal Padé approximant is
available only when power of known highest order term in ϵ-expansion of
ν is odd and its coefficient is not 0. Because we can’t use diagonal Padé
approximant for ν1, ν3, we can’t compare analytical estimate of ν in Sec.
2.2.2 and improved Borel-Padé analysis ν1, ν3 in same condition.

However, it might be a little helpful to know whether critical exponent ν
estimated by improved Borel-Padé analysis approaches to numerical results
or not as the number of given terms in ϵ-expansion of ν increases.

Improved Borel-Padé analysis for ν1, ν3 are

ν3 ≃ 1

2
+

2∑
k=1

c
(3)
k B

(
t/λ

(3)
k

)
(J.0.5)

ν1 ≃ 1

2
+B (−t/2) (J.0.6)

Where, function B(t/λ) is defined by Eq. (3.1.24) and

λ
(3)
1 ≃ −2.452

λ
(3)
2 ≃ 0.452

c
(3)
1 ≃ 1.035

c
(3)
2 ≃ −0.035 (J.0.7)

(J.0.8)

Critical exponents estimated from above approximations are listed in Ta-
ble. J.0.1. Estimated critical exponents ν in d = 3, 4, 5, 6 monotonically
approaches to numerical estimates as the number of term in ϵ-expansion
increases. This indicates that this estimate will improve if more terms in
ϵ-expansion in Eq. (2.2.1) is given. However, these estimation does not
give tendency for how fast estimation converges because diagonal Padé ap-
proximant is used only in Eq. (2.2.9) and this is only case where implicit
assumption such as Eq. (J.0.4) are not made.

d = 3 d = 4 d = 5 d = 6

Eq. (2.2.9) 1.460 1.061 0.891 0.798
Eq. (J.0.5) 1.279 0.831 0.694 0.631
Eq. (J.0.6) 1.223 0.798 0.672 0.615

numerical estimates 1.571 ± .004[12] 1.156 ± .014 0.969 ± .015 0.78 ± .06 [19]

Table J.0.1: Critical exponent ν estimated by improved Borel-Padé ν by
restricting the number of term in ϵ-expansion. Numerical estimates in d =
4, 5 are obtained in this study(Eqns. (2.1.26), (2.1.28)).
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Appendix K

Source code for calculation of
Lyapunov exponents

Listing K.1: LyapunovNov17.f90�
PROGRAM MAIN
USE KindNumbers
USE RandomNumbers
USE SimpleCubic
USE MatrixOperations2

IMPLICIT NONE
INTEGER::StatusRename,RENAME,

nLyapunovs,I,dim,SizeLayer,QRinterval,
SMPLinterval,SAVEinterval,L,MinIte,
MaxIte,M,Lini,II,J,info,lwork

DOUBLE PRECISION::E,W,
TargetPrecision,RandomCounter,t1,t2

INTEGER,DIMENSION(:),
ALLOCATABLE::Row,Col

DOUBLE PRECISION,DIMENSION(:),
ALLOCATABLE::work,tau,SumSMPL,
Lyapunov,Dev,Val

DOUBLE PRECISION,DIMENSION(:,:)
,ALLOCATABLE::A,B

CHARACTER(40)::OutputFileName
LOGICAL::PresentStatusExist

!PREPARATION OF INPUT DATA
OPEN(11,file=’Input.txt’,status=’old

’)
READ(11,’()’)
READ(11,∗) OutputFileName
READ(11,’()’)
READ(11,∗) I
READ(11,’()’)
READ(11,∗) dim
READ(11,’()’)
READ(11,∗) SizeLayer
READ(11,’()’)
READ(11,∗) E
READ(11,’()’)
READ(11,∗) W

READ(11,’()’)
READ(11,∗) QRinterval
READ(11,’()’)
READ(11,∗) SMPLinterval
READ(11,’()’)
READ(11,∗) SAVEinterval
READ(11,’()’)
READ(11,∗) L
READ(11,’()’)
READ(11,∗) MinIte
READ(11,’()’)
READ(11,∗) MaxIte
READ(11,’()’)
READ(11,∗) TargetPrecision

CLOSE(11)

SMPLinterval=SMPLinterval∗QRinterval!
SMPLinterval is always used in this form
of multiplication

IF((MOD(L,QRinterval)).NE.0)THEN
PRINT∗,’L is not multiple of

QRinterval’
STOP

ENDIF
IF((MOD(L,SMPLinterval)).NE.0)

THEN
PRINT∗,’L is not multiple of

QRinterval∗SMPLinterval’
STOP

ENDIF
IF((MaxIte.LT.L))THEN

PRINT∗,’MaxIte is smaller than
L’

STOP
ENDIF
IF(SMPLinterval.LT.10)THEN

PRINT∗,’QRinterval∗
SMPLinterval is smaller than
10’
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! STOP
ENDIF
M=2∗(SizeLayer∗∗(dim−1))

nLyapunovs=M/I
lwork=128∗nLyapunovs
IF((nLyapunovs.LE.0).OR.(nLyapunovs.

GT.M))THEN
PRINT∗,’I or nLyapunovs is

strange’
STOP

ENDIF

!INITIAL CONDITION FOR CALCULATION
PRINT∗,’Setting Initial Condition’

ALLOCATE(A(M,nLyapunovs),B(M,
nLyapunovs),tau(nLyapunovs),
SumSMPL(nLyapunovs),Lyapunov(
nLyapunovs),Dev(nLyapunovs),work(
lwork),Row(NonZero2(SizeLayer,dim)),
Col(NonZero2(SizeLayer,dim)),Val(
NonZero2(SizeLayer,dim)))

SumSMPL=0D0
B=0D0
INQUIRE(file=’PresentStatus ’//

TRIM(OutputFileName)//’.txt’,
EXIST=PresentStatusExist)

IF(PresentStatusExist)THEN
PRINT∗,’”PresentStatus ’//TRIM

(OutputFileName)//’.txt” exist.
Reading Previous state.’

OPEN(12,file=’PresentStatus ’//
TRIM(OutputFileName)//’.txt’
,status=’old’,form=’
unformatted’)
READ(12) Lini
READ(12) Lyapunov
READ(12) Dev
READ(12) A

CLOSE(12)
IF(MOD(Lini,SMPLinterval).NE.0)

THEN
PRINT∗,’Lini is not multiple

of SMPLinterval∗
QRinterval.’

STOP
ENDIF

ELSE
Lini=0
Lyapunov=0D0
Dev=0D0
A=0D0
DO I=1,nLyapunovs

A(I,I)=1D0
ENDDO
PRINT∗,’”PresentStatus’//TRIM(

OutputFileName)//’.txt” does
not exist... Start new
calculation.’

ENDIF

! Preparations for Calculation
Row=0

Col=0
Val=0d0

CALL SparseTM(Row,Col,Val,SizeLayer,
dim)

CALL RNGinitialize()
IF(Lini.NE.0) PRINT∗,’Restarting

Random Numbers’
DO I=1,Lini∗(M/2),1

CALL Random(RandomCounter)
ENDDO

!CALCULATION
PRINT∗,’Calculating now...’

DO I=Lini+1,Lini+L,2
II=I+1
CALL DiagRand2(Val,M,E,W)
CALL SparseMatMul(Row,Col,Val,A,

B)
CALL DiagRand2(Val,M,E,W)
CALL SparseMatMul(Row,Col,Val,B,

A)
IF(MOD(II,QRinterval).EQ.0)

THEN
! !!!!!!!! CALL cpu time(t1 )

CALL dgeqrf(M,nLyapunovs,A,M,
tau,work,lwork,info)

DO J=1,nLyapunovs,1
SumSMPL(J)=SumSMPL(J)+

LOG(ABS(A(J,J)))/
DBLE(SMPLinterval)

ENDDO
CALL dorgqr(M,nLyapunovs,

nLyapunovs,A,M,tau,work,
lwork,info)

! !!!!!!!! CALL cpu time(t2 )
! !!!!!!!! PRINT∗,’qrd time ’, t2−t1,’

sec ’!!!
! !!!!!!!! stop !!!

IF(MOD(II,SMPLinterval).EQ.0)
THEN

Lyapunov=Lyapunov+
SumSMPL

Dev=Dev+SumSMPL∗∗2
SumSMPL=0D0
IF(MOD(II,SAVEinterval∗

SMPLinterval).EQ.0)
THEN

StatusRename=RENAME(’
PresentStatus ’//
TRIM(OutputFileName
)//’.txt’,’OldStatus ’
//TRIM(
OutputFileName)//’.txt
’)

OPEN(13,file=’
PresentStatus ’//
TRIM(OutputFileName
)//’.txt’,status=’
replace’,form=’
unformatted’)
WRITE(13) II
WRITE(13) Lyapunov
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WRITE(13) Dev
WRITE(13) A

CLOSE(13)
ENDIF
IF(II.GE.Lini+MinIte)THEN

IF(ABS(SQRT((Dev(M/2)
/(Lyapunov(M/2)∗∗2)−
DBLE(SMPLinterval)/
DBLE(II)))).LT.
TargetPrecision)THEN

EXIT
ENDIF

ENDIF
ENDIF

ENDIF
ENDDO

DEALLOCATE(A,B,SumSMPL,tau,work,
Row,Col,Val)

IF(nLyapunovs.EQ.M)THEN
IF(ABS(SUM((SMPLinterval∗

Lyapunov)/DBLE(II))).GT.1d
−8)THEN

PRINT∗,’SUM of Lyapunov
exponents are bigger than
1d−8!’

ENDIF
ENDIF
IF(ABS(SQRT((Dev(M/2)/(Lyapunov(

M/2))∗∗2−DBLE(SMPLinterval)/
DBLE(II)))).LT.TargetPrecision)
THEN

PRINT∗,’−−−−−−−−−−Converge
−−−−−−−−−−’

ELSE
PRINT∗,’−−−−−−−−−−NOT

Converge−−−−−−−−−−’
ENDIF

Dev=SQRT(((DBLE(SMPLinterval)∗
Dev)/DBLE(II)−((DBLE(
SMPLinterval)∗Lyapunov)/DBLE(
II))∗∗2)∗(DBLE(SMPLinterval)/
DBLE(II)))

Lyapunov=(DBLE(SMPLinterval)∗
Lyapunov)/DBLE(II)

!OUTPUT LYAPUNOV EXPONENTS
PRINT∗,’Outputting’

OPEN(17,file=TRIM(OutputFileName)//’.
txt’, status=’replace’)

WRITE(17,∗) ’[INPUT
PARAMETERS]’

WRITE(17,∗) ’dimension:’,dim
WRITE(17,∗) ’SizeLayer:’,

SizeLayer
WRITE(17,∗) ’nLayer:’,II

WRITE(17,∗) ’E:’,E
WRITE(17,∗) ’W:’,W
WRITE(17,∗) ’’

WRITE(17,∗) ’QRinterval:’,QRinterval
WRITE(17,∗) ’SMPLinterval:’,

SMPLinterval/QRinterval
WRITE(17,∗) ’SAVEinterval:’,

SAVEinterval
WRITE(17,∗) ’MinIte:’,MinIte
WRITE(17,∗) ’MaxIte:’,MaxIte
WRITE(17,∗) ’

TargetPrecision:’,
TargetPrecision

WRITE(17,∗) ’’

WRITE(17,∗) ’[OUTPUT]’
WRITE(17,∗) ’Lyapunov

exponents: Standard
deviations(+−): Relative
errors(%)’

DO I=1,nLyapunovs,1
WRITE(17,∗) Lyapunov(I),Dev(I),(1

D2∗Dev(I))/ABS(Lyapunov(I))
ENDDO
WRITE(17,∗) ’’

WRITE(17,∗) ’[ADDITIONAL
IMFORMATION]’

WRITE(17,∗) ’’
IF(nLyapunovs.EQ.M)THEN

WRITE(17,∗) ’sum of
Lyapunov exponents=’,
SUM(Lyapunov)

WRITE(17,∗) ’’
ENDIF

WRITE(17,∗) ’(2A/eˆ2)/L’,M/2,’:’,(2d0
/(Lyapunov(M/2)∗((Dev(M/2)/
Lyapunov(M/2))∗∗2)))/DBLE(II)

WRITE(17,∗) ’’
WRITE(17,∗) ’W,A(+,−)’,W,1d0/(

Lyapunov(M/2)∗DBLE(SizeLayer))
,1d0/((Lyapunov(M/2)+Dev(M/2))∗
DBLE(SizeLayer)),1d0/((Lyapunov(
M/2)−Dev(M/2))∗DBLE(SizeLayer
))

WRITE(17,∗) ’W,L,Gamma,DevGamma’
,W,SizeLayer,Lyapunov(M/2)∗
DBLE(SizeLayer),Dev(M/2)∗
DBLE(SizeLayer)

CLOSE(17)
DEALLOCATE(Lyapunov,Dev)

PRINT∗,’All process has been
completed!’

STOP
END PROGRAM MAIN
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Listing K.2: SimpleCubic.f90�
MODULE SimpleCubic
USE KindNumbers
USE RandomNumbers
IMPLICIT NONE
PRIVATE
PUBLIC::NonZero2,SparseTM,

DiagRand2
CONTAINS
INTEGER FUNCTION NonZero2(

M,dim)!Count Nonzero component; M
=SizeLayer, for Sc Lattice

INTEGER,INTENT(IN)::M,dim
NonZero2=(2∗dim+1)∗(M∗∗(dim−1)

)
END FUNCTION NonZero2

SUBROUTINE SparseTM(Row,Col,
Val,M,dim)!make Sparse TM without
diagonal disorder; M=SizeLayer

INTEGER,INTENT(IN)::M,dim
INTEGER::I,J,L,K
INTEGER,INTENT(INOUT)::

Row(:),Col(:)
DOUBLE PRECISION,INTENT

(INOUT)::Val(:)

DO I=1,M∗∗(dim−1),1
Row(I)=I
Col(I)=I
Val(I)=0D0

ENDDO

I=M∗∗(dim−1)
DO J=1,M∗∗(dim−1),1

I=I+1
Row(I)=J
Col(I)=M∗∗(dim−1)+J
Val(I)=−1D0

I=I+1
Row(I)=M∗∗(dim−1)+J
Col(I)=J
Val(I)=1D0

ENDDO

IF(dim.GE.2)THEN
DO L=dim−1,1,−1

DO K=0,M∗∗(dim−1−L)−1,1
DO J=1,M∗∗L−M∗∗(L−1),1

I=I+1
Row(I)=J+M∗∗(L−1)+K

∗M∗∗L
Col(I)=J+K∗M∗∗L
Val(I)=−1D0

I=I+1
Row(I)=J+K∗M∗∗L
Col(I)=J+M∗∗(L−1)+K∗

M∗∗L
Val(I)=−1D0

ENDDO
DO J=1,M∗∗(L−1),1

I=I+1
Row(I)=J+M∗∗L−M∗∗(L

−1)+K∗M∗∗L
Col(I)=J+K∗M∗∗L
Val(I)=−1D0

I=I+1
Row(I)=J+K∗M∗∗L
Col(I)=J+M∗∗L−M∗∗(L

−1)+K∗M∗∗L
Val(I)=−1D0

ENDDO
ENDDO

ENDDO
ENDIF

END SUBROUTINE SparseTM

SUBROUTINE DiagRand2(Val,M,E,
W)

INTEGER,INTENT(IN)::M!.NE.
SIZE(Val,1)

INTEGER::I
DOUBLE PRECISION,INTENT

(IN)::E,W
DOUBLE PRECISION,INTENT

(INOUT)::Val(:)
DOUBLE PRECISION::Rand

DO I=1,M/2,1
CALL Random(Rand)
Val(I)=E+(Rand−0.5D0)∗W

ENDDO
END SUBROUTINE DiagRand2

END MODULE SimpleCubic
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Listing K.3: MatrixOperations2.f90�
MODULE MatrixOperations2
IMPLICIT NONE
PRIVATE
PUBLIC::SparseMatMul

CONTAINS
SUBROUTINE SparseMatMul(Row,Col

,Val,A,B)
INTEGER::I,J
INTEGER,INTENT(INOUT)::Row

(:),Col(:)
DOUBLE PRECISION,INTENT(

INOUT)::Val(:)

DOUBLE PRECISION,INTENT(
INOUT)::A(:,:),B(:,:)

B=0D0
DO J=1,SIZE(B,2),1

DO I=1,SIZE(Row),1
! B(Col( I ) , J )=B(Col(I ) , J )+Val( I )∗A

(Row(I),J )
B(row(I),J)=B(row(I),J)+Val(I)∗

A(col(I),J)
ENDDO

ENDDO
END SUBROUTINE SparseMatMul

END MODULE MatrixOperations2
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Appendix L

Source code for calculation of
conductance

Listing L.1: MainConductance.f90�
program MainConductance
use KindNumbers
use RandomNumbers
use SimpleCubic
use TransferMatrix
use HoppingMatrixSU2
use MatrixOperations
use FileOperations
implicit none
integer(KIND=WPI)::I,II,J,N,nBond,

MatSize,nCol,Lz,nSample,QRint,
MaxIte,newcalc,nProp,nSampleOld

integer(KIND=WPI),dimension(:),
allocatable::row,col

integer(KIND=WPI),dimension(:,:),
allocatable::bond

real(KIND=WP)::alpha,beta,gamma,W,
E,g,Devg,Aveg

complex(KIND=WP)::zdotc
complex(KIND=WP),dimension(:,:),

allocatable::JplusL,JminusL,
JplusR,invJminusR

complex(KIND=WP),dimension(:),
allocatable::val,val2,lambda

complex(KIND=WP),dimension(:,:),
allocatable::A,B,Ap,Am,UL,InvUR
,vr,temp,trans,reflec

complex(KIND=WP),dimension(:,:,:)
,allocatable::R

complex(KIND=WP)::FixedHopping(
nRowHopping,nColHopping)

character(40)::Filename
character(1),parameter::InfoLambda=’

Y’ !Calculate J+,J− using information
of lambda. ’N’ or other character
calculate all component directly .

real(KIND=WP),parameter::epsilon
=1d−8

real(KIND=WP)::t1,t2,t3,t4,tQR,tMul,
tCon,tR

call cpu time(t3)
call cpu time(t1)

! Preparing lattice .
print∗,’Preparing lattice...’
call RNGinitialize()
call ParaInitialize (Filename,W,E,Lz,

nSample,QRint,MaxIte,newcalc)
call MakeGraph(bond,nBond)

! Read Previous calc of Conductance .
Aveg=0. WP
Devg=0. WP
nSampleOld=0
if (newcalc.eq.1) call ReadConductance(

Aveg,Devg,nSampleOld,Lz∗(size(
bond,2)+3∗nBond),Filename,
newcalc)

! Initial vectors .
print∗,’Preparing intial vectors...’

! alpha =0.WP
! beta =0.WP
! gamma=0.WP

alpha=pi/3. WP
beta=pi/4. WP
gamma=pi/6. WP
call MakeHopping(FixedHopping,alpha,

beta,gamma)
call SparseTM(row,col,val,0. WP,E,bond

,nBond,FixedHopping) ! For fixed
given hopping .

! call SparseTM(row,col , val ,0.WP,E,bond,
nBond) ! For SU2 hopping.

MatSize=2∗nRowHopping∗size(bond,2)
print∗,’MatSize:’,MatSize
allocate(A(MatSize,MatSize))

105



call UnitMatrix(A,MatSize)
call MatMulTM(row,col,val,A)
call EigenProb(A,lambda,vr)
deallocate(A)
nCol=MatSize/2
allocate(A(MatSize,nCol),R(nCol,nCol

,2))
R(1:nCol,1:nCol,1:2)=0. WP

call SortEigenVectors(lambda,vr,nProp)
print∗,’sorted eigenvectors.’
do I=1,size(lambda),1

print∗,lambda(I),abs(lambda(I))
enddo
print∗,’’
allocate(UL(MatSize,nCol),InvUR(

MatSize,MatSize))
UL(1:MatSize,1:nCol)=vr(1:MatSize,nCol

+1:MatSize)
InvUR(1:MatSize,1:MatSize)=vr(1:

MatSize,1:nCol)
call zInverse(InvUR)

! Calculation of theta matrixies .
print∗,’Preparing theta matrixies...’
if (InfoLambda.eq.’Y’) then

call CurrentMatrix(vr,nProp,JplusL,
JminusL,lambda)

else
call CurrentMatrix(vr,nProp,JplusL,

JminusL)
endif
call CholeskyFact(JplusL)
call CholeskyFact(JminusL)

forall(I=1:nProp) vr(1:MatSize,I)=(
lambda(I)∗∗Lz)∗vr(1:MatSize,I) !
Right propagating mode at right lead

starting from left lead .
forall(I=1:nProp) vr(1:MatSize,nCol+I)

=(lambda(nCol+I)∗∗Lz)∗vr(1:
MatSize,nCol+I) !Left Propagating
mode at right lead starting from left
read .

if (InfoLambda.eq.’Y’) then
call CurrentMatrix(vr,nProp,JplusR,

invJminusR,lambda)
else

call CurrentMatrix(vr,nProp,JplusR,
invJminusR)

endif
call CholeskyFact(JplusR)
call CholeskyFact(invJminusR)
call InverseTri(invJminusR)

call cpu time(t2)
print∗,’preparation’,t2−t1,’sec’

! Main calculation .
tMul=0. WP
tQR=0. WP
tR=0. WP

tCon=0. WP
print∗, ’Calculating now...’
do N=1,nSample,1

A(1:MatSize,1:nCol)=UL(1:MatSize,1:
nCol)

call UnitMatrix(R(1:nCol,1:nCol,2),
nCol)

do I=1,Lz/2,1
call cpu time(t1)! !!!!!!!!!!!!
call MatMulTM2(row,col,val,W,E,

bond,nBond,A) !B=TA
! call MatMulTM2(row,col,val ,W,E,

bond,nBond,A(1:MatSize ,1: nCol) ,FixedHopping
(1: nRowHopping,1:nColHopping)) !B=TA for
FixedHopping

call cpu time(t2)!
!!!!!!!!!!!!!!!!!!!

tMul=tMul+t2−t1
! if (( N.eq .1) .and .( I .eq .1) ) print

∗,’ multiplication ’, t2−t1,’ sec ’ !!!!!!!!!!!!
II=2∗I
if (mod(II,QRint).eq.0) then

call cpu time(t1)
call QRfact(A(1:MatSize,1:

nCol),R(1:nCol,1:nCol,1))
call cpu time(t2)
tQR=tQR+t2−t1

! if (( N.eq .1) .and .( I .eq .1) )
print ∗,’ QR’,t2−t1,’ sec ’

call cpu time(t1)
call SolveTriEq(R(1:nCol,1:

nCol,1),R(1:nCol,1:nCol,2)
)

call cpu time(t2)
tR=tR+t2−t1

endif
enddo

call cpu time(t1)
! Calculation of (U−)ˆ−1 ∗ (Lambda−)ˆLz

allocate(B(MatSize,nCol))
call zMatMul(invUR,A,B) !invUR∗A=

B
allocate(Am(nCol,nCol))
Am(1:nCol,1:nCol)=B(nCol+1:2∗nCol

,1:nCol) ! Extract U−
call zInverse(Am) ! (U−)ˆ−1
forall(I=1:nProp) Am(1:nCol,I)=Am

(1:nCol,I)∗(lambda(nCol+I)∗∗Lz
) !invUminus=(U−)ˆ−1 ∗ (Lambda
−)ˆLz

! Calculation of r ’..
if (N.eq.1) then

print∗,’’
print∗,’−−− Check of

calculation −−−’
allocate(Ap(nCol,nCol))
Ap(1:nCol,1:nCol)=B(1:nCol,1:

nCol) ! Extract U+

! Calculation of T+−∗(T−−)ˆ−1.

106



allocate(temp(nCol,nCol))
call zMatMul(Ap,Am,temp) ! temp

= (U+) ∗ ( (U−)ˆ−1 ∗ (Lambda−)
ˆLz )

deallocate(Ap)
forall(I=1:nProp,J=1:nProp)

temp(I,J)=temp(I,J)/(lambda
(I)∗∗Lz) ! temp = (Lambda+)−̂
Lz ∗( (U+) ∗ (U−)ˆ−1 ∗ (Lambda
−)ˆLz )

allocate(reflec (nProp,nProp))
reflec (1:nProp,1:nProp)=temp(1:

nProp,1:nProp)
deallocate(temp)

allocate(temp(nProp,nProp))
call zMatMul(reflec,invJminusR,

temp)
call zMatMul(JplusR,temp,reflec)
deallocate(temp)

endif
deallocate(B)

! Calculation of (T−−)ˆ−1.
call zMatMulTriL(R(1:nCol,1:nCol,2)

,Am)
allocate(trans(nProp,nProp))
trans(1:nProp,1:nProp)=Am(1:nProp

,1:nProp)
deallocate(Am)

! Calculation of t ’.
allocate(temp(nProp,nProp))
call zMatMul(trans,invJminusR,temp

)
call zMatMul(JminusL,temp,trans)

g=0. WP
do I=1,nProp,1

g=g+real(zdotc(nProp,trans(1:
nProp,I),1,trans(1:nProp,I),1)
,KIND=WP)

enddo
Aveg=Aveg+g
Devg=Devg+g∗∗2
call OutputConductance(Filename,g,

Aveg,Devg,N,nSample,
nSampleOld,Lz,W,newcalc)

! Calculation of r ’Hr’+t ’Ht ’.
if (N.eq.1) then

call zMatMul(trans,trans,temp,’C’
) !temp=t ’ˆH∗t’

call zMatMul(reflec, reflec ,temp,’
C’ ,(1. WP,0. WP)) !temp=r’ˆ

H∗r’+temp
trans (1,1)=0. WP
do I=1,nProp,1

trans (1,1)=trans(1,1)+temp(I,I
)

if ((real(temp(I,I))−1.gt.
epsilon).or.(aimag(temp(
I,I)).gt.epsilon)) then

print∗,’diag(tH∗t+rH∗r)
/=1’

print∗,I,temp(I,I)
endif

enddo
print∗,’tr(tH∗t+rH∗r)=’,trans

(1,1)

trans (1,1)=0. WP
do J=1,nProp,1

do I=1,nProp,1
if (I .ne.J) trans (1,1)=trans

(1,1)+abs(temp(I,J))
enddo

enddo
print∗,’sum abs(offdiag(tH∗t+

rH∗r))’,real(trans(1,1),
KIND=WP)

print∗,’average abs(offdiag(tH
∗t+rH∗r))’,real(trans(1,1),
KIND=WP)/(nProp∗(nProp
−1))

print∗,’sum abs(r)’,sum(abs(
reflec))

print∗,’average abs(r)’,sum(abs
(reflec))/(nProp∗(nProp−1))

print∗,’’
deallocate(reflec)

endif
deallocate(trans,temp)
call cpu time(t2)
tCon=tCon+t2−t1

enddo
deallocate(UL,InvUR,A,row,col,val,R,

lambda)
deallocate(JplusL,JminusL,JplusR,

invJminusR)

call cpu time(t4)
print∗,’whole calc’,t4−t3,’sec’
print∗,’tQR’,tQR,’sec’
print∗,’tMul’,tMul,’sec’
print∗,’tCon’,tCon,’sec’
print∗,’tR’,tR,’sec’
print∗,’END of calulation!’
stop

end program MainConductance
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Listing L.2: SimpleCubic.f90�
module SimpleCubic
use KindNumbers
implicit none
private
public MakeGraph

contains
subroutine MakeGraph(bond,nBond)
integer(KIND=WPI),parameter::

unit=29
integer(KIND=WPI)::I,J,K
integer(KIND=WPI)::Lx,Ly,nSite
integer(KIND=WPI)::BoundaryCx,

BoundaryCy
integer(KIND=WPI)::BondCheck
integer(KIND=WPI),intent(out)::

nBond
integer(KIND=WPI),dimension(:,:)

,allocatable,intent(inout)::bond

if (allocated(bond)) deallocate(bond)
open(unit,file=’Input.txt’,status=’

old’)
read(unit,’()’)
read(unit,’()’) !FileName
read(unit,’()’)
read(unit,’()’) !W
read(unit,’()’)
read(unit,’()’) !E
read(unit,’()’)
read(unit,∗) Lx
read(unit,’()’)
read(unit,∗) Ly
read(unit,’()’)
read(unit,’()’) !Lz
read(unit,’()’)
read(unit,∗) BoundaryCx
read(unit,’()’)
read(unit,∗) BoundaryCy
read(unit,’()’)
read(unit,∗) BondCheck

close(unit)

!Check input parameters
if ((boundaryCx.ne.0).and.(

boundaryCx.ne.1)) then
print∗, ’BoundaryCx is not 0

or 1.’
stop

endif
if ((boundaryCy.ne.0).and.(

boundaryCy.ne.1)) then
print∗, ’BoundaryCy is not 0

or 1.’
stop

endif
if ((Lx.eq.1).and.(BoundaryCx.eq.1))

then
print∗,’BoundaryCx must be 0

for Lx=1’

stop
else if ((Lx.eq.2).and.(BoundaryCx.

eq.1))then
print∗,’BoundaryCx must be 0

for Lx=2’
stop

else if (Lx.le .0) then
print∗,’Lx<=0.’
stop

endif
if ((Ly.eq.1).and.(BoundaryCy.eq.1))

then
print∗,’BoundaryCy must be 0

for Ly=1’
stop

else if ((Ly.eq.2).and.(BoundaryCy.
eq.1))then

print∗,’BoundaryCy must be 0
for Ly=2’

stop
else if (Ly.le .0) then

print∗,’Ly<=0.’
stop

endif

!Give nSite ,nBond and initialize ’bond (:,:) ’
if ((Lx.eq.1).and.(Ly.eq.1))then

nSite=1
nBond=0
allocate(bond(1,1))
bond(1,1)=0
return

else
nSite=Lx∗Ly
nBond=2∗nSite−(1−BoundaryCx)∗

Ly−(1−BoundaryCy)∗Lx !For
two Layers with Fixed boudanry for
z direction

allocate(bond(4,nSite))
endif
print∗,’calc nBond:’,nBond
bond=0 ! Initialize bond (:,:)

!x direction
if (Lx.ne.1) then

do I=1,Lx−1,1
! call Connect( I , I−1,bond)

call AddBond(I,I+1,bond)
enddo

! if (BoundaryCx.eq .1) call Connect
(1, Lx,bond) !1=mod(Lx+1,Lx)

if (BoundaryCx.eq.1) call AddBond
(1,Lx,bond) !1=mod(Lx+1,Lx)

endif

!y direction
if (Ly.ge.2) then

call ShiftLattice (bond,Lx,Ly)
do I=1,Lx∗(Ly−1),1

call AddBond(I,I+Lx,bond)
! call Connect( I , I+Lx,bond)

enddo
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if (BoundaryCy.eq.1) then
do I=1,Lx,1

call AddBond(I,I+nSite−Lx,
bond)

! call Connect( I , I+nSite−Lx,
bond)

enddo
endif

endif

!Output information about Bonds
if (BondCheck.eq.1) call CheckBond(

bond,nBond)
return

contains
subroutine CheckBond(bond,nbond)
integer(KIND=WPI)::I,J,K
integer(KIND=WPI)::

BondsCounter,CheckDirection
integer(KIND=WPI),intent(in)::

nBond
integer(KIND=WPI),dimension

(:,:),intent(in)::bond

open(31,file=’InfoSimpleCubic.txt
’,status=’replace’)

BondsCounter=0
do I=1,size(bond,2),1

do J=1,size(bond,1),1
if (bond(J,I) .ne.0)then

BondsCounter=
BondsCounter+min(
bond(J,I),1)

! CheckDirection =0
! do K=1,size (bond ,1) ,1
! if (bond(K,bond(J , I ) ) .eq

. I ) CheckDirection =CheckDirection+1
! enddo
! if ( CheckDirection .ne .1)

then
! print ∗, I ,bond(J , I ) ,’ are

not connected from both side .’
! endif

else
exit

endif
enddo

enddo

if (BondsCounter.eq.nBond) then
write(31,∗) ’Counted bonds:’,

BondsCounter,’ −> Ok!’
else

write(31,∗) ’Counted bonds:’,
BondsCounter,’ −>
Inconsistent...’

endif

do I=1,size(bond,2),1
do J=1,size(bond,1)−1,1

if ((bond(J,I) .ge.bond(J+1,I)).
and.(bond(J+1,I).ne.0))
write(31,∗) ’incorrect
order’,bond(:,I)

enddo
enddo

do I=1,size(bond,2),1
do J=1,size(bond,1),1

if ((bond(J,I) .ne.0).and.(bond
(J,I).le . I)) then

write(31,∗) ’incorrect
direction’,bond(:,I)

endif
enddo

enddo

do I=1,size(bond,2),1
write(31,∗) I, ’−>’,bond(:,I)

enddo
close(31)
return

end subroutine CheckBond

subroutine ShiftLattice(bond,Lx,Ly)
integer(KIND=WPI)::I,K,J
integer(KIND=WPI),intent(in)::

Lx,Ly
integer(KIND=WPI),intent(inout

)::bond(:,:)

if (Ly.le .1) print∗,’Ly<=1 in ”
ShiftLattice”.’

do K=1,Ly−1,1
do I=1,Lx,1

do J=1,size(bond,1),1
if (bond(J,I) .ne.0) bond(J,I

+Lx∗K)=bond(J,I)+
Lx∗K

! print ∗, I+Lx∗K,’−>’,bond(J,
Lx)+Lx∗K

enddo
enddo

enddo
return

end subroutine ShiftLattice

subroutine Connect(I,II,Bond)
integer(KIND=WPI),intent(in)::I,

II
integer(KIND=WPI),intent(inout

)::Bond(:,:)

call AddBond(I,II,Bond)
call AddBond(II,I,Bond)
return

end subroutine Connect

subroutine AddBond(I,II,bond)!Add
bonds from site I to II

implicit none
integer(KIND=WPI)::swap1,swap2
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,J,K
integer(KIND=WPI),intent(in)::I,

II
integer(KIND=WPI),intent(inout

)::bond(:,:)
! integer , optional , intent ( in ) :: Ip , Ip

= InitialPoint ! for future improvement.

if (II .eq.0) return
if (II .eq.I) then

print∗,’I=II in AddBond.’
stop

endif

do J=1,size(bond,1),1
if (II .eq.bond(J,I)) return !avoid

double counting .( for
boundaryC=2)

enddo
if (bond(size(bond,1),I) .ne.0) then

print∗,’no more space to add
bond in AddBonds.’ !,Bond
(size(Bond,1),I)

stop
endif

do J=1,size(bond,1),1
if (( II . lt .bond(J,I)) .or.(bond(J,I

) .eq.0)) then
swap1=bond(J,I)
bond(J,I)=II
exit

endif
enddo

do K=J+1,size(bond,1),1
swap2=bond(K,I)
bond(K,I)=swap1
if (swap2.eq.0) exit
swap1=swap2

enddo
return

end subroutine AddBond
end subroutine MakeGraph

end module SimpleCubic
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Listing L.3: TransferMatrix.f90�
module TransferMatrix
use KindNumbers
use ProbabilityDistributions
use HoppingMatrixSU2
use MatrixOperations
implicit none
integer(KIND=WPI),dimension(:,:),

allocatable,save::Hconjugate
private
public SparseTM,UpdateTM,MatMulTM

,MatMulTM2,UnitMatrix,
SortEigenVectors,CurrentMatrix

contains
subroutine CurrentMatrix(vr,nProp,

Jplus,Jminus,lambda)
integer(KIND=WPI)::I,J,K,N
real(KIND=WP),parameter::

epsilon=1d−8
complex(KIND=WP)::zdotc
integer(KIND=WPI),intent(in)::

nProp
complex(KIND=WP),dimension(:),

optional,intent(in)::lambda
complex(KIND=WP),dimension

(:,:),intent(in)::vr
complex(KIND=WP),dimension

(:,:),allocatable,intent(inout)::
Jplus,Jminus

if (.not.allocated(Jplus)) allocate(
Jplus(nProp,nProp))

if (.not.allocated(Jminus)) allocate(
Jminus(nProp,nProp))

N=size(vr,1)/2
Jplus(1:nProp,1:nProp)=0. WP
Jminus(1:nProp,1:nProp)=0. WP

if (present(lambda)) then
do J=1,Nprop,1

do I=1,Nprop,1
if (abs(lambda(I)−lambda(J))

.lt.epsilon) Jplus(I,J)
=−(0. WP,1. WP)∗(
zdotc(N,vr(1:N,I),1,vr(N
+1:2∗N,J),1)−zdotc(N,vr
(N+1:2∗N,I),1,vr(1:N,J)
,1))

enddo
enddo
do J=1,Nprop,1

do I=1,Nprop,1
if (abs(lambda(N+I)−lambda(

N+J)).lt.epsilon)
Jminus(I,J)=(0. WP,1.
WP)∗(zdotc(N,vr(1:N,N
+I),1,vr(N+1:2∗N,N+J)
,1)−zdotc(N,vr(N+1:2∗N
,N+I),1,vr(1:N,N+J),1))

enddo
enddo

else
do J=1,Nprop,1

do I=1,Nprop,1
Jplus(I ,J)=−(0. WP,1. WP)

∗(zdotc(N,vr(1:N,I),1,vr(
N+1:2∗N,J),1)−zdotc(N,
vr(N+1:2∗N,I),1,vr(1:N,
J),1))

enddo
enddo
do J=1,Nprop,1

do I=1,Nprop,1
Jminus(I,J)=(0. WP,1. WP)

∗(zdotc(N,vr(1:N,N+I),1,
vr(N+1:2∗N,N+J),1)−
zdotc(N,vr(N+1:2∗N,N+
I),1,vr(1:N,N+J),1))

enddo
enddo

endif
return

end subroutine CurrentMatrix

subroutine SortEigenVectors(lambda,vr,
nProp)

integer(KIND=WPI)::I,J,N,nRPM,
nDM,nLPM,nIM !(R/L)PM=(Right/
Left) propagating mode,(D/I)=(
Decreasing/Increasing) mode

real(KIND=WP),parameter::
epsilon=(10. WP)∗∗−12

real(KIND=WP)::Current
complex(KIND=WP)::zdotc
complex(KIND=WP),dimension(:),

allocatable::TempLambda
complex(KIND=WP),dimension

(:,:),allocatable::TempVr
integer(KIND=WPI),intent(inout)

::nProp
complex(KIND=WP),dimension(:),

intent(inout)::lambda
complex(KIND=WP),dimension

(:,:),intent(inout)::vr

if (mod(size(lambda),2).ne.0) then
print∗,’The number of

eigenvalues is not even in
SortEigenVectors.’

stop
else

N=size(lambda)/2
endif

nProp=0
do I=1,size(lambda),1

if (abs(abs(lambda(I))−1. WP).lt.
epsilon) nProp=nProp+1

enddo
if (mod(nProp,2).eq.0) then

nProp=nProp/2

111



else
print∗,’The number of

propagating mode is not
even in SortEigenVectors.’

stop
endif
print∗,’nProp:’,nProp
if (nProp.eq.0) then

print∗,’nProp=0.’
stop

endif

allocate(TempLambda(2∗N))
TempLambda(1:2∗N)=lambda(1:2∗N)
allocate(TempVr(size(vr,1),size(vr,2))

)
TempVr(1:2∗N,1:2∗N)=Vr(1:2∗N,1:2∗N

)

nRPM=0
nDM=0
nLPM=0
nIM=0
do I=1,size(lambda),1

if ((abs(TempLambda(I))−1. WP).
gt.epsilon) then

nIM=nIM+1
lambda(N+nProp+nIM)=

TempLambda(I)
vr(1:2∗N,N+nProp+nIM)=

TempVr(1:2∗N,I)
else if ((abs(Templambda(I))−1.

WP).lt.−epsilon) then
nDM=nDM+1
lambda(nProp+nDM)=

TempLambda(I)
vr(1:2∗N,nProp+nDM)=TempVr

(1:2∗N,I)
else

Current=real(−(0. WP,1. WP)
∗(zdotc(N,TempVr(1:N,I),1,
TempVr(N+1:2∗N,I),1)−
zdotc(N,TempVr(N+1:2∗N,I
),1,TempVr(1:N,I),1)))

if (Current.gt.0) then
nRPM=nRPM+1
lambda(nRPM)=TempLambda

(I)
vr(1:2∗N,nRPM)=TempVr

(1:2∗N,I)
else if (Current.lt .0) then

nLPM=nLPM+1
lambda(N+nLPM)=

TempLambda(I)
vr(1:2∗N,N+nLPM)=TempVr

(1:2∗N,I)
else

print∗,’Current is exactly
equal to 0 in
SortEingenVectors.’

stop
endif

endif
enddo

if (nDM.ne.nIM) then
print∗,’nDM/=nIM in

SortEigenVectors. nDM,
nIM:’,nDM,nIM

stop
endif
if (nRPM.ne.nLPM) then

print∗,’nRPM/=nLPM in
SortEigenVectors. nRPM,
nLPM:’,nRPM,nLPM

stop
endif
deallocate(TempLambda,TempVr)
return

end subroutine SortEigenVectors

subroutine UnitMatrix(A0,nCol)
integer(KIND=WPI)::I
integer(KIND=WPI),intent(in)::

nCol
complex(KIND=WP),dimension

(:,:),intent(out)::A0

A0(1:,1:)=0. WP
forall(I=1:nCol) A0(I,I)=1. WP
return

end subroutine UnitMatrix

subroutine MatMulTM2(row,col,val,W,
E,bond,nBond,A,FixedHopping) !A=
T2∗T1∗A

integer(KIND=WPI)::nCol,N,J
integer(KIND=WPI),intent(in)::

nBond
integer(KIND=WPI),dimension(:),

intent(in)::row,col
integer(KIND=WPI),dimension(:,:)

,intent(in)::bond
real(KIND=WP),intent(in)::W,E
complex(KIND=WP),dimension(:),

intent(inout)::val
complex(KIND=WP),dimension

(:,:),intent(inout)::A
complex(KIND=WP),dimension

(:,:),optional,intent(in)::
FixedHopping

nCol=size(A,2)
if (present(FixedHopping)) then

call UpdateTM(val,W,E,bond,
nBond,FixedHopping)

else
call UpdateTM(val,W,E,bond,

nBond)
endif

A(nCol+1:2∗nCol,1:nCol)=−A(nCol
+1:2∗nCol,1:nCol)

do J=1,size(A,2),1
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do N=1,size(row),1
A(nCol+row(N),J)=A(nCol+row

(N),J)+val(N)∗A(col(N),J)
enddo

enddo

if (present(FixedHopping)) then
call UpdateTM(val,W,E,bond,

nBond,FixedHopping)
else

call UpdateTM(val,W,E,bond,
nBond)

endif

A(1:nCol,1:nCol)=−A(1:nCol,1:nCol)
do J=1,size(A,2),1

do N=1,size(row),1
A(row(N),J)=A(row(N),J)+val(

N)∗A(nCol+col(N),J)
enddo

enddo
return

end subroutine MatMulTM2

subroutine MatMulTM(row,col,val,A) !
A=TA

integer(KIND=WPI)::N
complex(KIND=WP),dimension

(:,:),allocatable::Ap,Bp,Am !p:
plus(upper),m:minus(lower)

integer(KIND=WPI),dimension(:),
intent(in)::row,col

complex(KIND=WP),dimension(:),
intent(in)::val

complex(KIND=WP),dimension
(:,:),intent(inout)::A

N=size(A,1)/2
allocate(Ap(N,N),Bp(N,N),Am(N,N))

Ap(1:N,1:N)=A(1:N,1:N)
Am(1:N,1:N)=A(N+1:2∗N,1:N)
A(N+1:2∗N,1:N)=Ap(1:N,1:N)
call SparseMatMul(Bp,row,col,val,Ap)
A(1:N,1:N)=Bp(1:N,1:N)−Am(1:N,1:N

)

if (size(A,2).eq.2∗N)then
Ap(1:N,1:N)=A(1:N,N+1:2∗N)
Am(1:N,1:N)=A(N+1:2∗N,N+1:2∗N

)
A(N+1:2∗N,N+1:2∗N)=Ap(1:N,1:N

)
call SparseMatMul(Bp,row,col,val,

Ap)
A(1:N,N+1:2∗N)=Bp(1:N,1:N)−Am

(1:N,1:N)
else if (size(A,2).ne.N) then

print∗,’The number of rows and
columns are invalid in ”
MatMulTM” of module
TransferMatrix.’

else
endif
deallocate(Ap,Bp,Am)
return

end subroutine MatMulTM

subroutine UpdateTM(val,W,E,bond,
nBond,FixedHopping) !This
subroutine must be called after SparseTM
.

integer(KIND=WPI)::nVal,I,J,K,L,N
,Counter,count,CountCol,
FixedRow

real(KIND=WP)::DiagComp
complex(KIND=WP),dimension

(:,:,:),allocatable::Hopping
integer(KIND=WPI),intent(in)::

nBond
integer(KIND=WPI),dimension(:,:)

,intent(in)::Bond
real(KIND=WP),intent(in)::W,E
complex(KIND=WP),dimension(:),

intent(inout)::val
complex(KIND=WP),dimension

(:,:),optional,intent(in)::
FixedHopping

!Update hopping matrixies
allocate(Hopping(nRowHopping,

nColHopping,size(bond,1)+1))
if (present(FixedHopping)) forall(I

=1:size(Hopping,3)) Hopping(1:
nRowHopping,1:nColHopping,I)=
FixedHopping(1:nRowHopping,1:
nColHopping)

!Update transfer matrix
CountCol=nColHopping∗size(bond,1)

+1
if (.not.allocated(Hconjugate)) print

∗,’UpdateTM have to be used
after calling SparseTM (in
module TransferMatrix).’

DiagComp=0. WP
N=0
do I=1,size(bond,2),1

do L=1,nRowHopping,1
FixedRow=(I−1)∗nRowHopping

+L

do J=1,Hconjugate(FixedRow,
CountCol),1 ! Lower
triangular part of upper part
of transfer matrix (Hermite

conjugate of corresponding
upper triangular part ) .

N=N+1
val(N)=conjg(val(Hconjugate

(FixedRow,J)))
enddo
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if ((.not.present(FixedHopping)
).and.(L.eq.1)) call
RandomBox(DiagComp,−
W/2. WP,W/2. WP)

Counter=0
do J=1,sum(min(1,bond(1:,I)))

,1 !Upto the number of sites
connected from site I .

if ((.not.present(
FixedHopping)).and.(L.
eq.1)) call
MakeHopping(Hopping
(1:nRowHopping,1:
nColHopping,J))

if (bond(J,I) .ge.1) then
if (bond(J,I) .gt.I) counter

=counter+1
if (counter.eq.1) then !

Diagonal component of
Transfer matrix

N=N+1
val(N)=E−DiagComp

endif

do K=1,nColHopping,1
N=N+1
val(N)=−Hopping(L,K,

J)
enddo

else
exit

endif
enddo
if (counter.eq.0) then !For last

diagonal component of Upper
Left of Transfer Matrix

N=N+1
val(N)=DiagComp

endif
enddo

enddo
deallocate(Hopping)

return
end subroutine UpdateTM

subroutine SparseTM(row,col,val,W,E,
bond,nBond,FixedHopping) ! In
updating only random components, ”row,
col” are not necessary .

integer(KIND=WPI)::nVal,I,J,K,L,N
,Counter,count,CountCol,
FixedRow

real(KIND=WP)::DiagComp
complex(KIND=WP),dimension

(:,:,:),allocatable::Hopping
integer(KIND=WPI),intent(in)::

nBond
integer(KIND=WPI),dimension(:,:)

,intent(in)::Bond
integer(KIND=WPI),dimension(:),

allocatable,intent(inout)::row,
col

real(KIND=WP),intent(in)::W,E
complex(KIND=WP),dimension(:),

allocatable,intent(inout)::val
complex(KIND=WP),dimension

(:,:),optional,intent(in)::
FixedHopping

! Intialize Hopping Matrixies
allocate(Hopping(nRowHopping,

nColHopping,size(bond,1)+1))
if (present(FixedHopping)) forall(I

=1:size(Hopping,3)) Hopping(1:
nRowHopping,1:nColHopping,I)=
FixedHopping(1:nRowHopping,1:
nColHopping)

! Initialize Transfer Matrix
nVal=nRowHopping∗size(bond,2)+(

nRowHopping∗nColHopping)∗(2∗
nBond) !size(bond,2) is the number of
sites for directed bond ( for
converting to CSR format)

! print ∗,’ nDiag :’, nRowHopping∗(2∗size(
bond,2) )

! print ∗,’ nOffDiag :’,( nRowHopping∗
nColHopping)∗(nBond+size(bond,2))

allocate(row(nval))
allocate(col(nval))
allocate(val(nval))
CountCol=nColHopping∗size(bond,1)

+1
if (.not.allocated(Hconjugate))

allocate(Hconjugate(
nRowHopping∗size(bond,2),
CountCol)) !Last component of
second variable will be used as a
counter .

Hconjugate(1:,1:CountCol)=0

!Make Transfer Matrix
DiagComp=0. WP
N=0
do I=1,size(bond,2),1

do L=1,nRowHopping,1
FixedRow=(I−1)∗nRowHopping

+L
do J=1,Hconjugate(FixedRow,

CountCol),1 ! Lower
triangular part of upper part
of transfer matrix (Hermite

conjugate of corresponding
upper triangular part ) .

N=N+1
row(N)=col(Hconjugate(

FixedRow,J))
col(N)=row(Hconjugate(

FixedRow,J))
val(N)=conjg(val(Hconjugate

(FixedRow,J)))
! print ∗,’ OffDiagL :’, row(N),

col (N) !!!!!!!!!!!
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enddo

if ((.not.present(FixedHopping)
).and.(L.eq.1)) call
RandomBox(DiagComp,−
W/2. WP,W/2. WP)

Counter=0
do J=1,sum(min(1,bond(1:,I)))

,1 !Upto the number of sites
connected from site I .

if ((.not.present(
FixedHopping)).and.(L.
eq.1)) call
MakeHopping(Hopping
(:,:,J))

if (bond(J,I) .ge.1) then
if (bond(J,I) .gt.I) counter

=counter+1
if (counter.eq.1) then !

Diagonal component of
Transfer matrix

N=N+1
row(N)=FixedRow
col(N)=row(N)
val(N)=E−DiagComp

! print ∗,’ Diag :’, row(N),
col (N)

endif

do K=1,nColHopping,1
N=N+1
row(N)=FixedRow
col(N)=(bond(J,I)−1)∗

nColHopping+K
val(N)=−Hopping(L,K,

J)

! print ∗,’ OffDiagU :’, row
(N), col (N)

Hconjugate(col(N),
CountCol)=
Hconjugate(col(N),
CountCol)+1 !
Save information
about hermite
conjugate .

Hconjugate(col(N),
Hconjugate(col(N),
CountCol))=N

enddo
else

exit
endif

enddo
if (counter.eq.0) then !For last

diagonal component of Upper
Left of Transfer Matrix

N=N+1
row(N)=FixedRow
col(N)=row(N)
val(N)=DiagComp

endif
enddo

enddo

if (N.ne.nVal) print∗,’N/=nVal in
SparseTM.(N,nVal)’,N,nVal

deallocate(Hopping)
return

end subroutine SparseTM
end module TransferMatrix
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Listing L.4: HoppingMatrixSU2.f90�
module HoppingMatrixSU2
use KindNumbers
use ProbabilityDistributions
implicit none
integer(KIND=WPI),parameter::

nRowHopping=2,nColHopping=2 !
nRowHopping=nColHopping

real(KIND=WP),parameter::pi
=3.1415926535897932384626433832795028
d0

real(KIND=WP),save::alpha,beta,
gamma

private
public MakeHopping,nRowHopping,

nColHopping,pi

contains
subroutine MakeHopping(Hopping,a,b,c

)
real(KIND=WP),optional,intent(in

)::a,b,c
complex(KIND=WP),intent(inout)

::Hopping(:,:)

! if (nRowHopping.ne.nColHopping)then
! print ∗,’ Hopping matrix is not

square matrix in ”HoppingMatrixSU2”.’
! stop
! endif

if (present(a).and.present(b).and.
present(c)) then

Hopping(1,1)=exp((0. WP,1. WP)∗
a)∗cos(b)

Hopping(1,2)=exp((0. WP,1. WP)∗
c)∗sin(b)

else
! Symplectic , randomized hopping

call RandomBox(alpha,0. WP,2.
WP∗pi)

call RandomBox(gamma,0. WP,2.
WP∗pi)

call RandomSin(beta)

Hopping(1,1)=exp((0. WP,1. WP)∗
alpha)∗cos(beta)

Hopping(1,2)=exp((0. WP,1. WP)∗
gamma)∗sin(beta)

! Identity matrix
! Hopping (1,1) =1.WP
! Hopping (1,2) =0.WP
! Hopping (2,1) =0.WP
! Hopping (2,2) =1.WP

! sigma x
! Hopping (1,1) =0.WP
! Hopping (1,2) =1.WP
! Hopping (2,1) =1.WP
! Hopping (2,2) =0.WP

! sigma y
! Hopping (1,1) =0.WP
! Hopping (1,2) =(0.WP,−1. WP)
! Hopping (2,1) =(0.WP,1. WP)
! Hopping (2,2) =0.WP

endif
Hopping(2,1)=−conjg(Hopping(1,2))
Hopping(2,2)=conjg(Hopping(1,1))
Hopping=−Hopping
return

end subroutine MakeHopping
end module HoppingMatrixSU2
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Listing L.5: MatrixOperations.f90�
module MatrixOperations
use KindNumbers
implicit none
private
public SparseMatMul,QRfact,EigenProb,

CholeskyFact,zInverse,InverseTri,
zMatMul,zMatMulTriL,SolveTriEq

contains
subroutine SolveTriEq(R,X)
character(1),parameter::side=’R’,

uplo=’U’,transa=’N’,diag=’N’
complex(KIND=WP)::alpha=(1. WP

,0. WP)
complex(KIND=WP),dimension

(:,:),intent(in)::R
complex(KIND=WP),dimension

(:,:),intent(inout)::X

call ztrsm(side,uplo,transa,diag ,size(
X,1),size(X,2),alpha,R,size(X,2),
X,size(X,2))

return
end subroutine SolveTriEq

subroutine zMatMulTriL(A,B) !B=AB
for A=triangular matrix.

character(1),parameter::side=’L’,
uplo=’U’,transa=’N’,diag=’N’

complex(KIND=WP),dimension
(:,:),intent(in)::A

complex(KIND=WP),dimension
(:,:),intent(inout)::B

call ztrmm(side,uplo,transa,diag ,size(
B,1),size(B,2) ,(1. WP,0. WP),A,
size(B,1),B,size(B,1))

return
end subroutine zMatMulTriL

subroutine InverseTri(A) !Inverse of
triangular matrix A.

character(1),parameter::uplo=’U’,
diag=’N’

integer(KIND=WPI)::info
complex(KIND=WP),dimension

(:,:),intent(inout)::A

call ztrtri (uplo,diag ,size(A,2),A,size
(A,1),info)

if (info .ne.0) print∗,’info/=0 in
ztrtri of MatrixOperations.
info=’,info

return
end subroutine InverseTri

subroutine zMatMul(A,B,C,transa,beta)
!C=A∗B+beta∗C

character(1)::tra
character(1),parameter::transb=’N’

complex(KIND=WP)::be
character(1),optional::transa
complex(KIND=WP),optional::beta
complex(KIND=WP),dimension

(:,:),intent(in)::A,B
complex(KIND=WP),dimension

(:,:),intent(inout)::C

if (present(transa)) then
tra=transa

else
tra=’N’

endif
if (present(beta)) then

be=beta
else

be=0. WP
endif
call zgemm(tra,transb,size(A,1),size(B

,2),size(A,2),1. WP,A,size(A,1),
B,size(B,1),be,C,size(C,1))

return
end subroutine zMatMul

subroutine zInverse(A)
integer(KIND=WPI)::info,lwork
integer(KIND=WPI),dimension(:),

allocatable::ipiv
complex(KIND=WP),dimension(:),

allocatable::work
complex(KIND=WP),dimension

(:,:),intent(inout)::A

allocate(ipiv(size(A,1)))
call zgetrf (size(A,1),size(A,2),A,size

(A,1),ipiv , info)
if (info .ne.0) print∗,’info/=0 in

zgetrf of MatrixOperations.
info=’,info

lwork=size(A,1)∗64
allocate(work(lwork))
call zgetri (size(A,1),A,size(A,1),ipiv

,work,lwork,info)
if (info .ne.0) then

print∗,’info/=0 in zgetri of
MatrixOperations.info’,info

else
if (real(work(1)).gt.lwork) print∗,’

work(1)>lwork in zgetri
of MatrixOperations.work
(1),lwork’,real(work(1)),
lwork

endif
deallocate(ipiv,work)
return

end subroutine zInverse

subroutine CholeskyFact(A)
character(1),parameter::uplo=’U’
integer(KIND=WPI)::info,I,J
complex(KIND=WP),dimension
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(:,:),intent(inout)::A

call zpotrf (uplo,size(A,1),A,size(A,1)
,info)

forall(I=1:size(A,1),J=1:size(A,2),I.
gt.J) A(I,J)=0. WP

if (info .ne.0) print∗,’info/=0 in
dpotrf in MatrixOperations.
info=’,info

return
end subroutine CholeskyFact

subroutine EigenProb(A,lambda,vr)
character(1),parameter::jobvr=’V’,

jobvl=’N’
integer(KIND=WPI)::ldvl,ldvr,lwork,

info
real(KIND=WP),dimension(:),

allocatable::rwork
complex(KIND=WP),dimension(:),

allocatable::work
complex(KIND=WP),dimension

(:,:),allocatable::vl
complex(KIND=WP),dimension(:),

allocatable,intent(inout)::
lambda

complex(KIND=WP),dimension
(:,:),allocatable,intent(inout)::
vr

complex(KIND=WP),dimension
(:,:),intent(inout)::A

ldvr=size(A,1)
ldvl=1
lwork=33∗size(A,1)
allocate(work(lwork))
allocate(rwork(2∗size(A,1)))
if (.not.allocated(lambda)) allocate(

lambda(size(A,1)))
if (.not.allocated(vl)) allocate(vl(

ldvl ,size(A,1)))
if (.not.allocated(vr)) allocate(vr(

ldvr,size(A,1)))

call zgeev( jobvl , jobvr ,size(A,1),A,
size(A,1),lambda,vl, ldvl ,vr , ldvr ,
work,lwork,rwork,info)

if (info .eq.0) then
if (real(work(1)).gt.lwork) print∗,’

work(1)>lwork in zgeev of
module MatrixOperations.
work(1),lwork’,real(work(1))
,lwork

else
print∗,’info=’,info, ’ in zgeev of

EigenProb of module
MatrixOperations.’

endif
deallocate(work,rwork,vl)
return

end subroutine EigenProb

subroutine QRfact(A,R)
integer(KIND=WPI)::I,J,lwork,info
complex(KIND=WP),dimension(:),

allocatable::work,tau
complex(KIND=WP),dimension

(:,:),intent(out)::R
complex(KIND=WP),dimension

(:,:),intent(inout)::A

lwork=size(A,2)∗128
allocate(tau(size(A,2)))
allocate(work(lwork))

call zgeqrf (size(A,1),size(A,2),A,size
(A,1),tau,work,lwork,info)

forall (I=1:size(A,1),J=1:size(A,2),I.
le .J) R(I,J)=A(I,J)

if (info .eq.0) then
if (real(work(1)).gt.lwork) print∗,’

work(1)>lwork in zgeqrf
of module
MatrixOperations.work(1),
lwork’,real(work(1)),lwork

else
print∗,’info=’,info, ’ in zgeqrf of

module MatrixOperations.
’

endif

call zungqr(size(A,1),size(A,2),size(A
,2),A,size(A,1),tau,work,lwork,
info)

if (info .eq.0) then
if (real(work(1)).gt.lwork) print∗,’

work(1)>lwork in zungqr.
work(1),lwork=’,real(work
(1)),lwork

else
print∗,’info=’,info, ’ in zungqr.’

endif
deallocate(work,tau)
return

end subroutine QRfact

subroutine SparseMatMul(B,row,col,val,
A) !B=TA

integer(KIND=WPI)::N,J
integer(KIND=WPI),dimension(:),

intent(in)::row,col
complex(KIND=WP),dimension(:),

intent(in)::val
complex(KIND=WP),dimension

(:,:),intent(in)::A
complex(KIND=WP),dimension

(:,:),intent(out)::B

B=0. WP
do J=1,size(A,2),1

do N=1,size(row),1
B(row(N),J)=B(row(N),J)+val(

N)∗A(col(N),J)
enddo
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enddo
return

end subroutine SparseMatMul

end module MatrixOperations
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Listing L.6: FileOperations.f90�
module FileOperations
use KindNumbers
use RandomNumbers
implicit none
private
public ParaInitialize ,

OutputConductance,CountLines,
ReadConductance

contains
subroutine ReadConductance(Aveg,

Devg,nSampleOld,nRN,Filename,
newcalc) !nRN is the number of random
numbers in transfer matrixies in a
sample .

integer(KIND=WPI),intent(in)::
nRN

integer(KIND=WPI),intent(inout)
::nSampleOld,newcalc

real(KIND=WP),intent(inout)::
Aveg,Devg

character(len=∗),intent(in)::
Filename

integer(KIND=WPI),parameter::
unit=25

integer(KIND=WPI)::I,N
real(KIND=WP)::g
logical ::StatusExist

inquire(file=trim(Filename)//’
AllConductance.txt’,EXIST
=StatusExist)

if (StatusExist) then
print∗,trim(Filename)//’

AllConductance.txt”
exists.’

print∗,’Restarting random
numbers...’

call CountLines(nSampleOld,trim(
Filename)//’
AllConductance.txt’)

print∗,’nSampleOld:’,nSampleOld
do I=1,nSampleOld∗nRN,1 !

RNcounter=(The number of
samples calculated in all
previous calc )∗(The number of
RN in a TM.)

call random(g) ! Restarting
Random numbers.

enddo

print∗,’Reading data from
previous calc...’

open(unit,file=trim(Filename)//’
AllConductance.txt’,
status=’old’)

do I=1,nSampleOld,1
read(unit,∗) N,g
Aveg=Aveg+g
Devg=Devg+g∗∗2

enddo
else

print∗,trim(Filename)//’
AllConductance.txt” does
not exists.’

print∗,’Start new calculation (
newcalc is replaced by 0).’

newcalc=0
endif
print∗,’’
return

end subroutine ReadConductance

subroutine CountLines(num,FileName)
character(len=∗),intent(in)::

FileName
integer(KIND=WPI),intent(inout)

::num

open(11,file=FileName,status=’old’)
num=0
do

read(11,’()’ ,end=100)
num=num+1

enddo

100 close(11)
return

end subroutine CountLines

subroutine OutputConductance(
Filename,g,Aveg,Devg,N,nSample,
nSampleOld,Lz,W,newcalc)

character(len=∗),intent(in)::
Filename

integer(KIND=WPI),intent(in)::Lz,
N,newcalc,nSample,nSampleOld

real(KIND=WP),intent(in)::W,g,
Aveg,Devg

integer(KIND=WPI),parameter::
unit1=23,unit2=24

integer(KIND=WPI),parameter::
SaveInterval=1000

real(KIND=WP)::ave,dev
integer(KIND=WPI)::M

M=N+nSampleOld
if ((N.eq.nSample).or.(mod(N,

SaveInterval).eq.0)) then
open(unit1,file=trim(Filename)//’

Conductance.txt’,status=’
replace’)

ave=Aveg/real(M,KIND=WP)
dev=sqrt((Devg/real(M,KIND=

WP))−ave∗∗2)
write(unit1,∗) ’Logarithm of

average conductance ln<g
>,error bar(+−)’

write(unit1,∗) ’ln(Lz):’ ,log(real(
Lz,KIND=WP)),log(ave),log
(ave−dev/sqrt(real(M,KIND
=WP))),log(ave+dev/sqrt(
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real(M,KIND=WP)))
write(unit1,∗) ’Lz:’ ,Lz,log(ave),

log(ave−dev/sqrt(real(M,
KIND=WP))),log(ave+dev/
sqrt(real(M,KIND=WP)))

write(unit1,∗) ’ W:’,W,log(ave),
log(ave−dev/sqrt(real(M,
KIND=WP))),log(ave+dev/
sqrt(real(M,KIND=WP)))

write(unit1,∗) ’ ’

write(unit1,∗) ’Average
conductance <g>,standard
deviation for <g>,
standard devition for g’

write(unit1,∗) ’ln(Lz):’ ,log(real(
Lz,KIND=WP)),ave,dev/sqrt
(real(M,KIND=WP))

write(unit1,∗) ’Lz:’ ,Lz,ave,dev/
sqrt(real(M,KIND=WP))

write(unit1,∗) ’ W:’,W,ave,dev/
sqrt(real(M,KIND=WP))

write(unit1,∗) ’ ’

write(unit1,∗) ’standard devition
for g’

write(unit1,∗) dev
write(unit1,∗) ’Total number of

calculated samples:’,M
close(unit1)

endif

if (N.eq.1) then
if (newcalc.eq.0) then

open(unit2,file=trim(Filename)
//’ AllConductance.txt’,
status=’replace’)

else if (newcalc.eq.1) then
open(unit2,file=trim(Filename)

//’ AllConductance.txt’,
position=’append’)

else
endif

endif
write(unit2,∗) N+nSampleOld,g
if (N.eq.nSample) close(unit2)
return

end subroutine OutputConductance

subroutine ParaInitialize(Filename,W,
E,Lz,nSample,QRint,MaxIte,
newcalc)

integer(KIND=WPI),parameter::
unit=31

character(len=∗),intent(out)::
Filename

integer(KIND=WPI),intent(out)::
Lz,nSample,QRint,MaxIte,newcalc

real(KIND=WP),intent(out)::W,E

open(unit,file=’Input.txt’,status=’
old’)

read(unit,’()’)
read(unit,∗) Filename
read(unit,’()’)
read(unit,∗) W
read(unit,’()’)
read(unit,∗) E
read(unit,’()’)
read(unit,’()’) !Lx
read(unit,’()’)
read(unit,’()’) !Ly
read(unit,’()’)
read(unit,∗) Lz
read(unit,’()’)
read(unit,’()’) !BoundaryCx
read(unit,’()’)
read(unit,’()’) !BoundaryCy
read(unit,’()’)
read(unit,’()’) !BondCheck
read(unit,’()’)
read(unit,∗) nSample
read(unit,’()’)
read(unit,∗) QRint
read(unit,’()’)
read(unit,∗) MaxIte
read(unit,’()’)
read(unit,∗) newcalc

close(unit)

if (mod(Lz,2).ne.0)then
print∗,’Lz is not even number.’
stop

endif

if (mod(QRint,2).ne.0)then
print∗,’QRint is not even

number.’
stop

endif

if (nSample.gt.MaxIte) then
print∗,’nSample>MaxIte.’
stop

endif

if (newcalc.eq.0)then
print∗,’newcal=0. start new

calculation.’
else if (newcalc.eq.1) then

print∗,’newcal=1. continue
previous calculation.’

else
print∗,’newcal is not 0 or 1.’
stop

endif
return

end subroutine ParaInitialize
end module FileOperations
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Listing L.7: ProbabilityDistribu-
tions.f90�

module ProbabilityDistributions
use KindNumbers
use RandomNumbers
implicit none
private
public RandomBox,RandomSin

contains
subroutine RandomBox(x,MinRange,

MaxRange) ! uniform random number
in [MinRange,MaxRange]

real(KIND=WP),intent(in)::
MinRange,MaxRange

real(KIND=WP),intent(inout)::x

call random(x)

x=x∗(MaxRange−MinRange)+
MinRange

return
end subroutine RandomBox

subroutine RandomSin(x) ! P(x)dx = sin
(2x)dx (0<=x<=pi/2), 0 ( otherwise )

real(KIND=WP),intent(inout)::x
! real (KIND=WP),intent(in) :: omega

call random(x)
x=acos(1. WP−2. WP∗x)/2. WP

! x=acos ((1. WP−2. WP∗x)∗cos(omega))/2.
WP

return
end subroutine RandomSin

end module ProbabilityDistributions
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Appendix M

Source code for correction to
conductance

Listing M.1: MainCorrection.f90�
program MainCorrection
use KindNumbers
implicit none
integer(KIND=WPI)::I,L,N,nLines
real(KIND=WP)::g,Devg,gc,DevgU,

DevgL
character(40),parameter::Filename1=’

GvsL’,FileName2=’lnGvslnL’
logical ::StatusExist
integer(KIND=WPI),parameter::

unit1=21,unit2=22,unit3=23,unit4
=24

inquire(file=trim(Filename1)//’.txt’,
EXIST=StatusExist)

if (.NOT.StatusExist) then
print∗,trim(Filename1)//’.txt does

not exists.’
stop

endif
call CountLines(nLines,trim(

FileName1)//’.txt’)

open(unit1,file=trim(FileName1)//’.
txt’,status=’old’)

open(unit2,file=trim(FileName2)//’.
txt’,status=’replace’)

open(unit3,file=trim(Filename1)//’
Corrected.txt’,status=’
replace’)

open(unit4,file=trim(Filename2)//’
Corrected.txt’,status=’
replace’)

do I=1,nLines,1
read(unit1,∗) L, g, Devg, N
write(unit2,’(E24.15e2,E24.15e2,E24

.15e2,E24.15e2,I8)’) log(real(L,
KIND=WP)), log(g), log(g−

Devg), log(g+Devg), N

gc=1. WP/( 1. WP/g − 1. WP/N )
DevgL=1. WP/( 1. WP/(g−Devg) −

1. WP/N )
DevgU=1. WP/( 1. WP/(g+Devg) −

1. WP/N )
write(unit3,’(I8,E24.15e2,E24.15e2,

E24.15e2,I8)’ ) L, gc, DevgL,
DevgU, N

write(unit4,’(E24.15e2,E24.15e2,E24
.15e2,E24.15e2,I8)’) log(real(L,
KIND=WP)), log(gc), log(
DevgL), log(DevgU), N

enddo
close(unit1)
close(unit2)
close(unit3)
close(unit4)

print∗,’END of calulation!’

stop
contains
subroutine CountLines(num,FileName)
character(len=∗),intent(in)::

FileName
integer(KIND=WPI),intent(inout)

::num

open(11,file=FileName,status=’old’)
num=0
do

read(11,’()’ ,end=100)
num=num+1

enddo

100 close(11)
return
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end subroutine CountLines end program MainCorrection
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Appendix N

Source code for data fitting
using spline

Listing N.1: MainFitting.f90�
Program MainFitting
use DataFitting
use KindNumbers
use RandomNumbers
use ProbabilityDistributions ,only:

RnGaussian
implicit none

! Parameters .
integer(KIND=WPI),parameter::

ndorder=2
! logical , parameter :: TestCalc =.FALSE. !

Test calc . If .TRUE., ” InputData . txt ” will
be replaced by test data .

! real (KIND=WP),parameter::Err=1d−3 !
Relative error of data for test calc .

!For Output .
character(40)::Filename
integer(KIND=WPI),parameter::

unit1=23
integer(KIND=WPI),dimension(:),

allocatable::unit
logical ::StatusExist

!Other variables .
integer(KIND=WPI)::I,J,K,L,M,nx,

nCut,nRefine,CountKnots
real(KIND=WP)::KnInterv,center,Chi,

ChiOld,ChiUB,ChiLB,yKnotNew!,
MaxSigma,MinSigma

real(KIND=WP),dimension(:),
allocatable::x,y,sigmaU,sigmaL

real(KIND=WP),dimension(:),
allocatable::xKnots,yKnots,UB,LB

real(KIND=WP),dimension(:),
allocatable::site

real(KIND=WP),dimension(:,:),
allocatable::f

! Setting Parameters (Read values from ”
SettingPara . txt ”)

integer(KIND=WPI)::nKnots,process,
division,nRefineMin,range,MinIte,
MaxIte,nSite,newcalc

real(KIND=WP)::CutRatio,CutProgress
,Precision0,Precision1

call ParaInitialize (nKnots,process,
division ,nRefineMin,range,
CutRatio,CutProgress,Precision0,
Precision1,MinIte,MaxIte,nSite,
newcalc)

! Test data
! if ( TestCalc ) then
! print ∗,’# Producing data for test

calc .’
! call RNGinitialize ()
! nx=120
! allocate (x(nx) ,y(nx) ,sigmaU(nx) ,

sigmaL(nx) )
!
! open( unit1 , file =’ InputData . txt ’,

status =’ replace ’)
! do I=1,nx,1
! x( I )= real ( I ,KIND=WP)/100.WP
! y( I )=(x( I ) ∗∗2)/2
! call RnGaussian(y( I ) ,y( I ) , Err∗y( I

) )
! sigmaU(I)=y(I )∗(1. WP+Err)
! sigmaL(I )=y(I )∗(1. WP−Err)
! write ( unit1 ,’( E24.15e2,E24.15e2,

E24.15e2,E24.15e2) ’) x( I ) ,y( I ) ,sigmaU(I) ,
sigmaL(I )

! enddo
! close ( unit1 )
! deallocate (x,y,sigmaU,sigmaL)
! endif

! Preparing input data
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inquire(file=’InputData.txt’,EXIST=
StatusExist)

if (StatusExist) then
print∗,’# ”InputData.txt” exists.

Start data fitting.’
print∗,’’

else
print∗,’# ”InputData.txt” does

not exists.’
stop

endif

call CountLines(nx,’InputData.txt’)
print∗,’ −−−−− Number of data

and Knots −−−−−’
print’(” The number of Data: ”,

I6 )’,nx
print’(” The number of knots: ”,

I6)’,nKnots
print∗,’

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’

print∗,’’
allocate(x(nx),y(nx),sigmaU(nx),sigmaL

(nx))
allocate(xKnots(nKnots),yKnots(nKnots

),UB(nKnots),LB(nKnots))
KnInterv=real(nx−1,KIND=WP)/(

nKnots−1) !Interval between knots.

print∗,’# Reading Input data.’
open(unit1,file=’InputData.txt’,

status=’old’)
do I=1,nx,1

read(unit1,∗) x(I) ,y(I) ,sigmaL(I),
sigmaU(I)

enddo
close(unit1)

! Preparing knots .
print’(” # newcalc: ”,I1)’,newcalc
select case(newcalc)

case(1,2,3)
inquire(file=’KnotsData.txt’,

EXIST=StatusExist)
if (StatusExist) then

print∗,’# ”KnotsData.txt”
exists. Data fitting
starts with previous
knots.’

open(unit1,file=’KnotsData.
txt’,status=’old’)

do I=1,nKnots,1
read(unit1,∗) xKnots(I),

yKnots(I),LB(I),UB(I)
enddo
close(unit1)

else
if (newcalc.eq.1) then

print∗,’# ”KnotsData.txt
” does not exist.
Data fitting starts

with initial knots.’
newcalc=0

else
print∗,’# ”KnotsData.txt

” does not exist. ’
stop

endif
endif

case(0)
case default

print∗,’# newcalc/=0,1,2,3’
stop

end select

if (newcalc.eq.0) then
J=1
xKnots(1)=x(1)
yKnots(1)=y(1)
UB(1)=y(1)+(sigmaU(1)−y(1))∗

range
LB(1)=y(1)+(sigmaL(1)−y(1))∗

range
do I=2,nx,1

if (I .gt.J∗KnInterv) then
J=J+1
xKnots(J)=x(I)
yKnots(J)=y(I)
UB(J)=y(I)+(sigmaU(I)−y(I))∗

range
LB(J)=y(I)+(sigmaL(I)−y(I))∗

range
endif

enddo
endif

! Replace search intervals of Knots by new one.
! All new intervals UB(/LB) are determined by

maximum(/minimum) of ”sigmaU−y”(/”sigmaL−y
”) and ”range”.

if (newcalc.eq.3) then
LB(1:nKnots)=yKnots(1:nKnots)+

range∗minval(sigmaL−y)
UB(1:nKnots)=yKnots(1:nKnots)+

range∗maxval(sigmaU−y)
call SaveKnots(xKnots,yKnots,LB,

UB)
! print ∗, range∗minval (sigmaL−y),range∗

maxval(sigmaU−y)
! do I=1,nKnots,1
! print ∗,LB(I)−yKnots(I) ,UB(I)−

yKnots(I)
! enddo
! stop

endif

! Optimization of knots Cutting UB and LB and
calculation of Chi square

allocate(f(nx,ndorder))
select case(newcalc)

case(2)
call DFspline(xKnots,yKnots,x,f)
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print∗,’’
print∗,’ −−−−− Chi square

for given knots −−−−−’
print’(” Chi: ”,F20.13)’,

ChiSquare(f(1:nx,1),y,sigmaL,
sigmaU)

print∗,’
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’

print∗,’’
case default

print∗,’’
print∗,’============

Optimizing knots
============’

call DFspline(xKnots,yKnots,x,f)
print’(” −−−−−”,I5,”−th

cutting iteration
−−−−−”)’,0

print’(” Chi: ”,F20.13)’,
ChiSquare(f(1:nx,1),y,sigmaL,
sigmaU)

print∗,’’
Process=0
nRefine=0
do K=1,MaxIte,1

nCut=0
do I=1,nKnots,1

center=yKnots(I)
yKnotNew=yKnots(I)
call DFspline(xKnots,

yKnots,x,f)
if (I .eq.1) ChiOld=

ChiSquare(f(1:nx,1),y,
sigmaL,sigmaU) !Chi in
(K−1)−th optimization .

Chi=ChiSquare(f(1:nx,1),y,
sigmaL,sigmaU)

do J=1,division,1
yKnots(I)=center+(LB(I)

−center)∗
TrialKnotsDist(J,
division,process,
nRefine)

call DFspline(xKnots,
yKnots,x,f)

ChiLB=ChiSquare(f(1:nx
,1),y,sigmaL,sigmaU
)

if (ChiLB.lt.Chi) then
yKnotNew=yKnots(I)
Chi=ChiSquare(f(1:nx

,1),y,sigmaL,
sigmaU)

endif

yKnots(I)=center+(UB(I)
−center)∗
TrialKnotsDist(J,
division,process,
nRefine)

call DFspline(xKnots,

yKnots,x,f)
ChiUB=ChiSquare(f(1:nx

,1),y,sigmaL,sigmaU
)

if (ChiUB.lt.Chi) then
yKnotNew=yKnots(I)
Chi=ChiSquare(f(1:nx

,1),y,sigmaL,
sigmaU)

endif
enddo
if (Process.eq.0) then !

Process=0 means
Optimization of knots
Cutting UB and LB

if (ChiLB.ge.2. WP∗
ChiOld) then

LB(I)=center+((LB(I)
−center))∗
CutRatio

nCut=nCut+1
endif
if (ChiUB.ge.2. WP∗

ChiOld) then
UB(I)=center+((UB(I

)−center))∗
CutRatio

nCut=nCut+1
endif

endif
yKnots(I)=yKnotNew

enddo
call DFspline(xKnots,yKnots,x,

f)
Chi=ChiSquare(f(1:nx,1),y,

sigmaL,sigmaU)
if (Process.eq.0) then

print’(” −−−−−”,I5,”−
th cutting iteration

−−−−−”)’,K
print’(” Chi: ”,F20.13)’,

Chi
print’(” Reduction rate

: ”,F20.13,”(%)”)’,abs
((Chi−ChiOld)/Chi)
∗100. WP

print’(” CutProgress:
”,f10.6,”(”,i5,”/”,i5,”)
”)’,1. WP−nCut/(2.
WP∗nKnots),nCut,2∗
nKnots

print∗,’’
if (1. WP−nCut/(2. WP∗

nKnots).gt.CutProgress
) then

if (abs((Chi−ChiOld)/
Chi).lt.Precision0)
Process=1

endif
else

nRefine=nRefine+1
print’(” −−−−−”,I5,”−
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th refining iteration
−−−−−”)’,

nRefine
print’(” Chi: ”,F20.13)’,

Chi
print’(” Reduction rate

: ”,F20.13,”(%)”)’,abs
((Chi−ChiOld)/Chi)
∗100. WP

print∗,’’
if ((K.ge.MinIte).and.(

nRefine.ge.nRefineMin)
) then

if (abs((Chi−ChiOld)/
Chi).lt.Precision1)
exit

endif
endif

enddo
call SaveKnots(xKnots,yKnots,UB

,LB)
print∗,’=========

Optimization finished
==========’

print∗,’’
end select
deallocate(f)

!Output results
print∗,’# Outputting results.’
print∗,’’
allocate(site(nSite))
forall(I=1:nSite) site (I)=((maxval(x)

−minval(x))/(nSite−1))∗(I−1)+
minval(x)

allocate(f(nSite ,ndorder))
call DFspline(xKnots,yKnots,site,f)
allocate(unit(ndorder))
forall(I=1:ndorder) unit(I)=30+I
do J=1,size(f,2),1

write (Filename, ’(”differential ”,
I1,”times.txt”)’) J−1

open(unit(J),file=trim(Filename),
status=’replace’)

do I=1,size(f,1),1
write(unit(J),∗),site(I) , f(I ,J)

enddo
close(unit(J))

enddo

open(unit1,file=’y vs dydx.txt’,status
=’replace’)

do I=1,size(f,1),1
write(unit1,∗),f(I ,1) , f(I ,2)

enddo
close(unit1)

deallocate(x,y,sigmaU,sigmaL,xKnots,
yKnots,UB,LB,site,f)

print∗,’−−−−−−−−−−− T H E E
N D −−−−−−−−−−−−’

stop
contains
pure integer(KIND=WPI) function

argmin(A,ArgLB,ArgUB)
integer(KIND=WPI),intent(in)::

ArgLB,ArgUB
real(KIND=WP),dimension(:),

intent(in)::A
integer(KIND=WPI)::I

argmin=argLB
do I=ArgLB,ArgUB,1

if (A(I).lt .A(argmin)) argmin=I
enddo

end function argmin

subroutine ParaInitialize(nKnots,
process,division,nRefineMin,range,
CutRatio,CutProgress,Precision0,
Precision1,MinIte,MaxIte,nSite,
newcalc)

integer(KIND=WPI),intent(out)::
nKnots,process,division,
nRefineMin,range,MinIte,MaxIte,
nSite,newcalc

real(KIND=WP),intent(out)::
CutRatio,CutProgress,Precision0,
Precision1

integer(KIND=WPI),parameter::
unit=20

logical ::StatusExist

inquire(file=’SettingPara.txt’,
EXIST=StatusExist)

if (.NOT.StatusExist) then
print∗,’”SettingPara.txt” does

not exist.’
stop

endif

open(unit,file=’SettingPara.txt’,
status=’old’)

read(unit,’()’)
read(unit,∗) nKnots
read(unit,’()’)
read(unit,∗) process
read(unit,’()’)
read(unit,∗) division
read(unit,’()’)
read(unit,∗) nRefineMin
read(unit,’()’)
read(unit,∗) range
read(unit,’()’)
read(unit,∗) CutRatio
read(unit,’()’)
read(unit,∗) CutProgress
read(unit,’()’)
read(unit,∗) Precision0
read(unit,’()’)
read(unit,∗) Precision1
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read(unit,’()’)
read(unit,∗) MinIte
read(unit,’()’)
read(unit,∗) MaxIte
read(unit,’()’)
read(unit,∗) nSite
read(unit,’()’)
read(unit,∗) newcalc

close(unit)

return
end subroutine ParaInitialize

pure real(KIND=WP) function
TrialKnotsDist(J,division,process,
nRefine)

integer(KIND=WPI),intent(in)::J,
division,process,nRefine

select case(process)
case(1)

TrialKnotsDist=(J/real(division
,KIND=WP))∗∗(2. WP+
sqrt(real(nRefine,KIND=
WP)))

! TrialKnotsDist =(J / real ( division
,KIND=WP))∗∗2/sqrt(nRefine+1.WP)

case default
TrialKnotsDist=J/real(division,

KIND=WP)
end select

end function TrialKnotsDist

pure real(KIND=WP) function
ChiSquare(f,y,sigmaL,sigmaU)

integer(KIND=WPI)::I
real(KIND=WP),dimension(:),

intent(in)::f,y,sigmaU,sigmaL

ChiSquare=0. WP
do I=1,size(y),1

ChiSquare=ChiSquare+((f(I)−y(I))
/(sigmaU(I)−sigmaL(I)))∗∗2

enddo
end function ChiSquare

subroutine SaveKnots(xKnots,yKnots,
UB,LB)

integer(KIND=WPI),parameter::
unit=20

real(KIND=WP),dimension(:),
intent(in)::xKnots,yKnots,UB,
LB

open(unit,file=’KnotsData.txt’,
status=’replace’)

do I=1,nKnots,1
write(unit,’(E24.15e2,E24.15e2,

E24.15e2,E24.15e2)’) xKnots(
I),yKnots(I),LB(I),UB(I)

enddo
close(unit)

return
end subroutine SaveKnots

end program MainFitting
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Listing N.2: DataFitting.f90�
include ”mkl df.f90”

module DataFitting
use KindNumbers
use MKL DF TYPE
use MKL DF
implicit none
private
public DFspline,CountLines

contains
subroutine DFspline(x,y,site,f)
integer(KIND=WPI)::I,J
integer(KIND=WPI)::nx,xhint,ny,

yhint
real(KIND=WP),dimension(:),

intent(inout)::x,y
! for dfdnewtask1d and so on

integer(KIND=WPI)::status
type(DF TASK)::task

! for dfdeditppspline1d
integer(KIND=WPI)::s order,s type,

bc type,ic type,scoeffhint
real(KIND=WP)::bc(2)
real(KIND=WP),dimension(:),

allocatable::ic
real(KIND=WP),dimension(:),

allocatable::scoeff
! dfdinterpolate1d

integer(KIND=WPI)::interp type,
method,nsite,sitehint,ndorder,
rhint

integer(KIND=WPI),dimension(:),
allocatable::dorder

integer(KIND=WPI),dimension(:),
allocatable::cell

real(KIND=WP),dimension(:),
intent(in)::site

real(KIND=WP),dimension(:,:),
intent(out)::f

real(KIND=WP),dimension(:),
allocatable::r,datahint

nx=size(x)
ny=1

! task creation and initialization ( dfdnewtask1d )
xhint=

DF NON UNIFORM PARTITION

yhint=DF NO HINT
status=dfdnewtask1d(task,nx,x,xhint,

ny,y,yhint)
call CheckStatus(task,.TRUE.)

! call CheckStatus ( task ,. FALSE.)
call CheckDF(status,’dfdnewtask1d’

)

! task configurations ( dfdeditppspline1d )
s order=DF PP CUBIC !Cubic spline.

s type=DF PP NATURAL !Natural
cubic spline. P’’(i−1)(x i)=P’’ i ( x i
)

! s type =DFPPAKIMA !Akima cubic
spline.

! bc type =DFNO BC !No boundary
conditions provided . NULL pointer to bc . This
probably does not work for natrucal cubic

spline .
! bc type =DFBC FREEEND !f’’(x 1)=f’’(

x n)=0. NULL pointer to bc .
bc type=DF BC NOT A KNOT !Not−

a−knot boudary conditions(P1=P 2,
P n−1=P n). NULL pointer to bc.

ic type=DF NO IC !pass NULL pinter to
ic for this value

scoeffhint=DF NO HINT
allocate(ic(nx−2))
allocate(scoeff(ny∗s order∗(nx−1)))
status=dfdeditppspline1d(task,s order,

s type , bc type ,null() , ic type ,
null() , scoeff , scoeffhint )

call CheckDF(status,’
dfdeditppspline1d’)

!Computation ( dfdconstruct1d )
status=dfdconstruct1d(task,

DF PP SPLINE,
DF METHOD STD)

call CheckDF(status,’
dfdconstruct1d’)

!Computation ( dfdinterpolate1d )
interp type=DF INTERP
method=DF METHOD PP
sitehint=DF SORTED DATA !

Interpolation sites must be soreted in
the ascending order (non−uniform
partition ) .

nsite=size(site)
ndorder=2
allocate(dorder(ndorder))
dorder(1:ndorder)=1
allocate(datahint(5))
rhint=

DF MATRIX STORAGE COLS
allocate(r(nsite∗ndorder))
allocate(cell(nsite))
status=dfdinterpolate1d(task,

interp type ,method,nsite, site ,
sitehint ,ndorder,dorder,datahint,
r , rhint , cell )

call CheckDF(status,’
dfdinterpolate1d’)

!Output results
forall(I=1:nSite,J=1:ndorder) f(I,J)=

r(I+nSite∗(J−1))

! Destruct task
status=dfdeletetask(task)
call CheckDF(status,’dfdeletetask’)
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deallocate(ic,scoeff)
deallocate(dorder)
deallocate(datahint)
deallocate(cell)
return

contains
subroutine checkDF(status,name)
character(∗),intent(in)::name
integer(KIND=WPI),intent(in)::

status

if (status.ne.DF STATUS OK)
then

print∗,’error in ’//trim(name
)//’. status=’,status

stop
endif

return
end subroutine checkDF

subroutine CheckStatus(task,check)
TYPE(DF TASK),intent(inout)::

task
integer(KIND=WPI)::val attr,val,

status
logical,intent(in)::check

val attr=DF CHECK FLAG

if (check) then
val=

DF ENABLE CHECK FLAG

else
val=

DF DISABLE CHECK FLAG

endif
status=dfieditval(task , val attr , val)

return
end subroutine CheckStatus

end subroutine DFspline

subroutine CountLines(num,FileName)
character(len=∗),intent(in)::

FileName
integer(KIND=WPI),intent(inout)

::num
integer(KIND=WPI),parameter::

unit=20

open(unit,file=FileName,status=’
old’)

num=0
do

read(unit,’()’,end=200)
num=num+1

enddo

200 close(unit)
return

end subroutine CountLines
end module DataFitting
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Appendix O

Source code for data fitting
using spline with Eq.(3.2.71)

Listing O.1: MainShiftFit.f90�
Program MainShiftFit
use DataFitting
use KindNumbers
use RandomNumbers
use ProbabilityDistributions ,only:

RnGaussian
implicit none

! Parameters .
integer(KIND=WPI),parameter::

ndorder=2
! logical , parameter :: TestCalc =.FALSE. !

Test calc . If .TRUE., ” InputData . txt ” will
be replaced by test data .

! real (KIND=WP),parameter::Err=1d−3 !
Relative error of data for test calc .

!For Output .
character(40)::Filename
integer(KIND=WPI),parameter::

unit1=21,unit2=22,unit3=23
integer(KIND=WPI),dimension(:),

allocatable::unit
logical ::StatusExist

!Other variables .
character(40),parameter::FileNameT=

’InputTrunk’,FileNameB=’
InputBranch’,FileNameO=’
OutputTree’,FileNameChi=’
ChiShift’

logical ::NewT,NewB
integer(KIND=WPI)::CRT,CRB,CWT

,CWB,nLinesT,nLinesB,nLinesO,
NT,NB

real(KIND=WP)::xT,yT,ErrLT,ErrUT
real(KIND=WP)::xB,yB,ErrLB,ErrUB
integer(KIND=WPI)::I,J,K,L,M,N,nx,

nCut,nRefine,CountKnots
real(KIND=WP)::KnInterv,center,Chi,

ChiOld,ChiUB,ChiLB,yKnotNew!,

MaxSigma,MinSigma
real(KIND=WP),dimension(:),

allocatable::x,y,sigmaU,sigmaL
real(KIND=WP),dimension(:),

allocatable::xKnots,yKnots,UB,LB
real(KIND=WP),dimension(:),

allocatable::site
real(KIND=WP),dimension(:,:),

allocatable::f
real(KIND=WP),dimension(:),

allocatable::ChiShift
! Setting Parameters (Read values from ”

SettingPara . txt ”)
integer(KIND=WPI)::nKnots,process,

division,nRefineMin,range,MinIte,
MaxIte,nSite,newcalc,nShift

real(KIND=WP)::CutRatio,CutProgress
,Precision0,Precision1,Shift,Start,
End

call ParaInitialize (nKnots,process,
division ,nRefineMin,range,
CutRatio,CutProgress,Precision0,
Precision1,MinIte,MaxIte,nSite,
newcalc,Start,End,nShift)

! Test data
! if ( TestCalc ) then
! print ∗,’# Producing data for test

calc .’
! call RNGinitialize ()
! nx=120
! allocate (x(nx) ,y(nx) ,sigmaU(nx) ,

sigmaL(nx) )
!
! open( unit1 , file =’ InputData . txt ’,

status =’ replace ’)
! do I=1,nx,1
! x( I )= real ( I ,KIND=WP)/100.WP
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! y( I )=(x( I ) ∗∗2)/2
! call RnGaussian(y( I ) ,y( I ) , Err∗y( I

) )
! sigmaU(I)=y(I )∗(1. WP+Err)
! sigmaL(I )=y(I )∗(1. WP−Err)
! write ( unit1 ,’( E24.15e2,E24.15e2,

E24.15e2,E24.15e2) ’) x( I ) ,y( I ) ,sigmaU(I) ,
sigmaL(I )

! enddo
! close ( unit1 )
! deallocate (x,y,sigmaU,sigmaL)
! endif

! Preparing input data
inquire(file=trim(FileNameT)//’.txt’,

EXIST=StatusExist)
if (StatusExist) then

print∗,’# ”’//trim(FileNameT)//’.
txt” exists.Start data
fitting.’

print∗,’’
else

print∗,’# ”’//trim(FileNameT)//’
txt” does not exists.’

stop
endif

inquire(file=trim(FileNameB)//’.txt’,
EXIST=StatusExist)

if (StatusExist) then
print∗,’# ”’//trim(FileNameB)//’.

txt” exists.Start data
fitting.’

print∗,’’
else

print∗,’# ”’//trim(FileNameB)//’
txt” does not exists.’

stop
endif

call CountLines(nLinesT,trim(
FileNameT)//’.txt’)

call CountLines(nLinesB,trim(
FileNameB)//’.txt’)

nx=nLinesT+nLinesB
print∗,’ −−−−− Number of data

and Knots −−−−−’
print’(” The number of Data: ”,

I6 )’,nx
print’(” of Trunk: ”,I6

)’,nLinesT
print’(” of Branch: ”,I6

)’,nLinesB
print’(” The number of knots: ”,

I6)’,nKnots
print’(” Shift Start: ”,

E24.15e2)’,Start
print’(” Shift End: ”,

E24.15e2)’,End
print’(” Num of Shift: ”,I5

)’,nShift
print∗,’

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’

print∗,’’
allocate(x(nx),y(nx),sigmaU(nx),sigmaL

(nx))
allocate(xKnots(nKnots),yKnots(nKnots

),UB(nKnots),LB(nKnots))
KnInterv=real(nx−1,KIND=WP)/(

nKnots−1) !Interval between knots.

allocate(ChiShift(nShift))
do N=1,nShift+1,1

if (N.le.nShift) then
if (nShift .eq.1) then

Shift=Start
else

Shift=Start+(End−Start)/(
nShift−1)∗(N−1)

endif
else if (N.eq.nShift+1) then

do I=1,nShift,1
if ( ChiShift(I) .eq. minval(

ChiShift) ) Shift=Start+(
End−Start)/(nShift−1)∗(I
−1)

enddo
endif

print’(”# ”,I6,”−th Shift: ”)’,N
open(unit1,file=trim(FileNameT)//’

.txt’,status=’old’)
open(unit2,file=trim(FileNameB)//’

.txt’,status=’old’)
open(unit3,file=trim(FileNameO)//’

.txt’,status=’replace’)
CWT=0
CWB=0
CRT=0
CRB=0
NewT=.False.
NewB=.False.
do I=1,nLinesT+nLinesB,1

! print ∗, I ,NewT,NewB
if (.not.NewT) then

if (CRT.lt.nLinesT) then
read(unit1,∗) xT,yT,ErrLT,

ErrUT,NT
CRT=CRT+1
NewT=.True.

else
if (CRB.ne.0) write(unit3,’(

E24.15e2,E24.15e2,
E24.15e2,E24.15e2,I8)’
) xB,yB,ErrLB,ErrUB,
NB

do J=CRB+1,nLinesB,1
read(unit2,∗) xB,yB,

ErrLB,ErrUB,NB
xB=xB+Shift
write(unit3,’(E24.15e2,

E24.15e2,E24.15e2,
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E24.15e2,I8)’) xB,
yB,ErrLB,ErrUB,
NB

enddo
exit

endif
endif

if (.not.NewB) then
if (CRB.lt.nLinesB) then

read(unit2,∗) xB,yB,ErrLB,
ErrUB,NB

xB=xB+Shift
CRB=CRB+1
NewB=.True.

else
if (CRT.ne.0) write(unit3,’(

E24.15e2,E24.15e2,
E24.15e2,E24.15e2,I8)’
) xT,yT,ErrLT,ErrUT,
NT

do J=CRT+1,nLinesT,1
read(unit1,∗) xT,yT,

ErrLT,ErrUT,NT
write(unit3,’(E24.15e2,

E24.15e2,E24.15e2,
E24.15e2,I8)’) xT,
yT,ErrLT,ErrUT,
NT

enddo
exit

endif
endif

if (xT.le.xB) then
if (NewT) then

write(unit3,’(E24.15e2,E24
.15e2,E24.15e2,E24.15
e2,I8)’) xT,yT,ErrLT,
ErrUT,NT

CWT=CWT+1
NewT=.False.

endif
else

if (NewB) then
write(unit3,’(E24.15e2,E24

.15e2,E24.15e2,E24.15
e2,I8)’) xB,yB,ErrLB,
ErrUB,NB

CWB=CWB+1
NewB=.False.

endif
endif

enddo
close(unit1)
close(unit2)
close(unit3)

print∗,’# Parallelly Shiftted
data was written in ”’//trim
(FileNameO)//’.txt”.’

call CountLines(nLinesO,trim(

FileNameO)//’.txt’)
print’(” # nLines of Output: ”,I4

)’,nLinesO
if (nLinesO.ne.nLinesT+nLinesB)

then
print∗,’”nLines of Output” is

not sum of nLines of
trunk and branch.’

stop
endif
open(unit3,file=trim(FileNameO)//’

.txt’,status=’old’)
do I=1,nx,1

read(unit3,∗) x(I) ,y(I) ,sigmaL(I),
sigmaU(I),NT

enddo
close(unit3)

! Preparing knots .
print’(” # newcalc: ”,I1)’,newcalc
select case(newcalc)
case(1,2,3)

inquire(file=’KnotsData.txt’,
EXIST=StatusExist)

if (StatusExist) then
print∗,’# ”KnotsData.txt”

exists. Data fitting
starts with previous
knots.’

open(unit1,file=’KnotsData.
txt’,status=’old’)

do I=1,nKnots,1
read(unit1,∗) xKnots(I),

yKnots(I),LB(I),UB(I)
enddo
close(unit1)

else
if (newcalc.eq.1) then

print∗,’# ”KnotsData.txt
” does not exist.
Data fitting starts
with initial knots.’

newcalc=0
else

print∗,’# ”KnotsData.txt
” does not exist. ’

stop
endif

endif
case(0)
case default

print∗,’# newcalc/=0,1,2,3’
stop

end select

if (newcalc.eq.0) then
J=1
xKnots(1)=x(1)
yKnots(1)=y(1)
UB(1)=y(1)+(sigmaU(1)−y(1))∗

range
LB(1)=y(1)+(sigmaL(1)−y(1))∗
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range
do I=2,nx,1

if (I .gt.J∗KnInterv) then
J=J+1
xKnots(J)=x(I)
yKnots(J)=y(I)
UB(J)=y(I)+(sigmaU(I)−y(I

))∗range
LB(J)=y(I)+(sigmaL(I)−y(I

))∗range
endif

enddo
endif

! Replace search intervals of Knots by new one.
! All new intervals UB(/LB) are determined by

maximum(/minimum) of ”sigmaU−y”(/”sigmaL−y
”) and ”range”.

if (newcalc.eq.3) then
LB(1:nKnots)=yKnots(1:nKnots)+

range∗minval(sigmaL−y)
UB(1:nKnots)=yKnots(1:nKnots)+

range∗maxval(sigmaU−y)
call SaveKnots(xKnots,yKnots,LB

,UB)
! print ∗, range∗minval (

sigmaL−y),range∗maxval(
sigmaU−y)

! do I=1,nKnots,1
! print ∗,LB(I)−

yKnots(I) ,UB(I)−yKnots(I)
! enddo
! stop

endif

! Optimization of knots Cutting UB and LB and
calculation of Chi square

allocate(f(nx,ndorder))
select case(newcalc)
case(2)

call DFspline(xKnots,yKnots,x,f)
print∗,’’
print∗,’ −−−−− Chi square

for given knots −−−−−’
print’(” Chi: ”,F20.13)’,

ChiSquare(f(1:nx,1),y,sigmaL,
sigmaU)

print∗,’
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’

print∗,’’
case default

print∗,’’
print∗,’============

Optimizing knots
============’

call DFspline(xKnots,yKnots,x,f)
print’(” −−−−−”,I5,”−th

cutting iteration
−−−−−”)’,0

print’(” Chi: ”,F20.13)’,

ChiSquare(f(1:nx,1),y,sigmaL,
sigmaU)

print∗,’’
Process=0
nRefine=0
do K=1,MaxIte,1

nCut=0
do I=1,nKnots,1

center=yKnots(I)
yKnotNew=yKnots(I)
call DFspline(xKnots,

yKnots,x,f)
if (I .eq.1) ChiOld=

ChiSquare(f(1:nx,1),y,
sigmaL,sigmaU) !Chi in
(K−1)−th optimization .

Chi=ChiSquare(f(1:nx,1),y,
sigmaL,sigmaU)

do J=1,division,1
yKnots(I)=center+(LB(I)

−center)∗
TrialKnotsDist(J,
division,process,
nRefine)

call DFspline(xKnots,
yKnots,x,f)

ChiLB=ChiSquare(f(1:nx
,1),y,sigmaL,sigmaU
)

if (ChiLB.lt.Chi) then
yKnotNew=yKnots(I)
Chi=ChiSquare(f(1:nx

,1),y,sigmaL,
sigmaU)

endif

yKnots(I)=center+(UB(I)
−center)∗
TrialKnotsDist(J,
division,process,
nRefine)

call DFspline(xKnots,
yKnots,x,f)

ChiUB=ChiSquare(f(1:nx
,1),y,sigmaL,sigmaU
)

if (ChiUB.lt.Chi) then
yKnotNew=yKnots(I)
Chi=ChiSquare(f(1:nx

,1),y,sigmaL,
sigmaU)

endif
enddo
if (Process.eq.0) then !

Process=0 means
Optimization of knots
Cutting UB and LB

if (ChiLB.ge.2. WP∗
ChiOld) then

LB(I)=center+((LB(I)
−center))∗
CutRatio
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nCut=nCut+1
endif
if (ChiUB.ge.2. WP∗

ChiOld) then
UB(I)=center+((UB(I

)−center))∗
CutRatio

nCut=nCut+1
endif

endif
yKnots(I)=yKnotNew

enddo
call DFspline(xKnots,yKnots,x,

f)
Chi=ChiSquare(f(1:nx,1),y,

sigmaL,sigmaU)
if (Process.eq.0) then

print’(” −−−−−”,I5,”−
th cutting iteration

−−−−−”)’,K
print’(” Chi: ”,F20.13)’,

Chi
print’(” Reduction rate

: ”,F20.13,”(%)”)’,abs
((Chi−ChiOld)/Chi)
∗100. WP

print’(” CutProgress:
”,f10.6,”(”,i5,”/”,i5,”)
”)’,1. WP−nCut/(2.
WP∗nKnots),nCut,2∗
nKnots

print∗,’’
if (1. WP−nCut/(2. WP∗

nKnots).gt.CutProgress
) then

if (abs((Chi−ChiOld)/
Chi).lt.Precision0)
Process=1

endif
else

nRefine=nRefine+1
print’(” −−−−−”,I5,”−

th refining iteration
−−−−−”)’,

nRefine
print’(” Chi: ”,F20.13)’,

Chi
print’(” Reduction rate

: ”,F20.13,”(%)”)’,abs
((Chi−ChiOld)/Chi)
∗100. WP

print∗,’’
if ((K.ge.MinIte).and.(

nRefine.ge.nRefineMin)
) then

if (abs((Chi−ChiOld)/
Chi).lt.Precision1)
exit

endif
endif

enddo
call SaveKnots(xKnots,yKnots,UB

,LB)
print’(”=========”,I6,”−th

Optimization finished
==========”)’,N

print∗,’’
end select
deallocate(f)
if (N.le.nShift) ChiShift(N)=Chi
if (nShift .eq.1) exit

enddo
open(unit3,file=trim(FileNameChi)//’.

txt’,status=’replace’)
do N=1,nShift,1

if (nShift .eq.1) then
Shift=Start

else
Shift=Start+(End−Start)/(nShift

−1)∗(N−1)
endif
if ( ChiShift(N) .eq. minval(ChiShift

) ) then
write(unit3,∗) ’ # ChiMin for’,

Shift
write(unit3,∗) ’ ChiSquare: ’,

ChiShift(N)
write(unit3,∗)

endif
enddo
write(unit3,∗) ’ # Shift, Chi’
do N=1,nShift,1

if (nShift .eq.1) then
Shift=Start

else
Shift=Start+(End−Start)/(nShift

−1)∗(N−1)
endif
write(unit3,∗) Shift , ChiShift(N)

enddo
close(unit3)
deallocate(ChiShift)

!Output results
print∗,’# Outputting results.’
print∗,’’
allocate(site(nSite))
forall(I=1:nSite) site (I)=((maxval(x)

−minval(x))/(nSite−1))∗(I−1)+
minval(x)

allocate(f(nSite ,ndorder))
call DFspline(xKnots,yKnots,site,f)
allocate(unit(ndorder))
forall(I=1:ndorder) unit(I)=30+I
do J=1,size(f,2),1

write (Filename, ’(”differential ”,
I1,”times.txt”)’) J−1

open(unit(J),file=trim(Filename),
status=’replace’)

do I=1,size(f,1),1
write(unit(J),∗),site(I) , f(I ,J)

enddo
close(unit(J))

enddo
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open(unit1,file=’y vs dydx.txt’,status
=’replace’)

do I=1,size(f,1),1
write(unit1,∗),f(I ,1) , f(I ,2)

enddo
close(unit1)

deallocate(x,y,sigmaU,sigmaL,xKnots,
yKnots,UB,LB,site,f)

print∗,’−−−−−−−−−−− T H E E
N D −−−−−−−−−−−−’

stop
contains
pure integer(KIND=WPI) function

argmin(A,ArgLB,ArgUB)
integer(KIND=WPI),intent(in)::

ArgLB,ArgUB
real(KIND=WP),dimension(:),

intent(in)::A
integer(KIND=WPI)::I

argmin=argLB
do I=ArgLB,ArgUB,1

if (A(I).lt .A(argmin)) argmin=I
enddo

end function argmin

subroutine ParaInitialize(nKnots,
process,division,nRefineMin,range,
CutRatio,CutProgress,Precision0,
Precision1,MinIte,MaxIte,nSite,
newcalc,Start,End,nShift)

integer(KIND=WPI),intent(out)::
nKnots,process,division,
nRefineMin,range,MinIte,MaxIte,
nSite,newcalc

real(KIND=WP),intent(out)::
CutRatio,CutProgress,Precision0,
Precision1

real(KIND=WP),intent(out)::Start,
End

integer(KIND=WPI),intent(out)::
nShift

integer(KIND=WPI),parameter::
unit=20

logical ::StatusExist

inquire(file=’SettingPara.txt’,
EXIST=StatusExist)

if (.NOT.StatusExist) then
print∗,’”SettingPara.txt” does

not exist.’
stop

endif

open(unit,file=’SettingPara.txt’,
status=’old’)

read(unit,’()’)

read(unit,∗) nKnots
read(unit,’()’)
read(unit,∗) process
read(unit,’()’)
read(unit,∗) division
read(unit,’()’)
read(unit,∗) nRefineMin
read(unit,’()’)
read(unit,∗) range
read(unit,’()’)
read(unit,∗) CutRatio
read(unit,’()’)
read(unit,∗) CutProgress
read(unit,’()’)
read(unit,∗) Precision0
read(unit,’()’)
read(unit,∗) Precision1
read(unit,’()’)
read(unit,∗) MinIte
read(unit,’()’)
read(unit,∗) MaxIte
read(unit,’()’)
read(unit,∗) nSite
read(unit,’()’)
read(unit,∗) newcalc
read(unit,’()’)
read(unit,∗) Start
read(unit,’()’)
read(unit,∗) End
read(unit,’()’)
read(unit,∗) nShift

close(unit)

return
end subroutine ParaInitialize

pure real(KIND=WP) function
TrialKnotsDist(J,division,process,
nRefine)

integer(KIND=WPI),intent(in)::J,
division,process,nRefine

select case(process)
case(1)

TrialKnotsDist=(J/real(division
,KIND=WP))∗∗(2. WP+
sqrt(real(nRefine,KIND=
WP)))

! TrialKnotsDist =(J / real ( division
,KIND=WP))∗∗2/sqrt(nRefine+1.WP)

case default
TrialKnotsDist=J/real(division,

KIND=WP)
end select

end function TrialKnotsDist

pure real(KIND=WP) function
ChiSquare(f,y,sigmaL,sigmaU)

integer(KIND=WPI)::I
real(KIND=WP),dimension(:),

intent(in)::f,y,sigmaU,sigmaL
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ChiSquare=0. WP
do I=1,size(y),1

ChiSquare=ChiSquare+((f(I)−y(I))
/(sigmaU(I)−sigmaL(I)))∗∗2

enddo
end function ChiSquare

subroutine SaveKnots(xKnots,yKnots,
UB,LB)

integer(KIND=WPI),parameter::
unit=20

real(KIND=WP),dimension(:),
intent(in)::xKnots,yKnots,UB,

LB

open(unit,file=’KnotsData.txt’,
status=’replace’)

do I=1,nKnots,1
write(unit,’(E24.15e2,E24.15e2,

E24.15e2,E24.15e2)’) xKnots(
I),yKnots(I),LB(I),UB(I)

enddo
close(unit)

return
end subroutine SaveKnots

end program MainShiftFit
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Listing O.2: DataFitting.f90�
include ”mkl df.f90”

module DataFitting
use KindNumbers
use MKL DF TYPE
use MKL DF
implicit none
private
public DFspline,CountLines

contains
subroutine DFspline(x,y,site,f)
integer(KIND=WPI)::I,J
integer(KIND=WPI)::nx,xhint,ny,

yhint
real(KIND=WP),dimension(:),

intent(inout)::x,y
! for dfdnewtask1d and so on

integer(KIND=WPI)::status
type(DF TASK)::task

! for dfdeditppspline1d
integer(KIND=WPI)::s order,s type,

bc type,ic type,scoeffhint
real(KIND=WP)::bc(2)
real(KIND=WP),dimension(:),

allocatable::ic
real(KIND=WP),dimension(:),

allocatable::scoeff
! dfdinterpolate1d

integer(KIND=WPI)::interp type,
method,nsite,sitehint,ndorder,
rhint

integer(KIND=WPI),dimension(:),
allocatable::dorder

integer(KIND=WPI),dimension(:),
allocatable::cell

real(KIND=WP),dimension(:),
intent(in)::site

real(KIND=WP),dimension(:,:),
intent(out)::f

real(KIND=WP),dimension(:),
allocatable::r,datahint

nx=size(x)
ny=1

! task creation and initialization ( dfdnewtask1d )
xhint=

DF NON UNIFORM PARTITION

yhint=DF NO HINT
status=dfdnewtask1d(task,nx,x,xhint,

ny,y,yhint)
call CheckStatus(task,.TRUE.)

! call CheckStatus ( task ,. FALSE.)
call CheckDF(status,’dfdnewtask1d’

)

! task configurations ( dfdeditppspline1d )
s order=DF PP CUBIC !Cubic spline.

s type=DF PP NATURAL !Natural
cubic spline. P’’(i−1)(x i)=P’’ i ( x i
)

! s type =DFPPAKIMA !Akima cubic
spline.

! bc type =DFNO BC !No boundary
conditions provided . NULL pointer to bc . This
probably does not work for natrucal cubic

spline .
! bc type =DFBC FREEEND !f’’(x 1)=f’’(

x n)=0. NULL pointer to bc .
bc type=DF BC NOT A KNOT !Not−

a−knot boudary conditions(P1=P 2,
P n−1=P n). NULL pointer to bc.

ic type=DF NO IC !pass NULL pinter to
ic for this value

scoeffhint=DF NO HINT
allocate(ic(nx−2))
allocate(scoeff(ny∗s order∗(nx−1)))
status=dfdeditppspline1d(task,s order,

s type , bc type ,null() , ic type ,
null() , scoeff , scoeffhint )

call CheckDF(status,’
dfdeditppspline1d’)

!Computation ( dfdconstruct1d )
status=dfdconstruct1d(task,

DF PP SPLINE,
DF METHOD STD)

call CheckDF(status,’
dfdconstruct1d’)

!Computation ( dfdinterpolate1d )
interp type=DF INTERP
method=DF METHOD PP
sitehint=DF SORTED DATA !

Interpolation sites must be soreted in
the ascending order (non−uniform
partition ) .

nsite=size(site)
ndorder=2
allocate(dorder(ndorder))
dorder(1:ndorder)=1
allocate(datahint(5))
rhint=

DF MATRIX STORAGE COLS
allocate(r(nsite∗ndorder))
allocate(cell(nsite))
status=dfdinterpolate1d(task,

interp type ,method,nsite, site ,
sitehint ,ndorder,dorder,datahint,
r , rhint , cell )

call CheckDF(status,’
dfdinterpolate1d’)

!Output results
forall(I=1:nSite,J=1:ndorder) f(I,J)=

r(I+nSite∗(J−1))

! Destruct task
status=dfdeletetask(task)
call CheckDF(status,’dfdeletetask’)
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deallocate(ic,scoeff)
deallocate(dorder)
deallocate(datahint)
deallocate(cell)
return

contains
subroutine checkDF(status,name)
character(∗),intent(in)::name
integer(KIND=WPI),intent(in)::

status

if (status.ne.DF STATUS OK)
then

print∗,’error in ’//trim(name
)//’. status=’,status

stop
endif

return
end subroutine checkDF

subroutine CheckStatus(task,check)
TYPE(DF TASK),intent(inout)::

task
integer(KIND=WPI)::val attr,val,

status
logical,intent(in)::check

val attr=DF CHECK FLAG

if (check) then
val=

DF ENABLE CHECK FLAG

else
val=

DF DISABLE CHECK FLAG

endif
status=dfieditval(task , val attr , val)

return
end subroutine CheckStatus

end subroutine DFspline

subroutine CountLines(num,FileName)
character(len=∗),intent(in)::

FileName
integer(KIND=WPI),intent(inout)

::num
integer(KIND=WPI),parameter::

unit=20

open(unit,file=FileName,status=’
old’)

num=0
do

read(unit,’()’,end=200)
num=num+1

enddo

200 close(unit)
return

end subroutine CountLines
end module DataFitting

141





Acknowledgements

I would like to express my sincere gratitude to my supervisor, Assoc. Prof.
Keith Slevin for his guidance to this interesting research subject, significant
advice and fruitful discussions throughout this study. I also would like to
thank Prof. Kazuhiko Kuroki, Prof. Kensuke Kobayashi, Prof. Hikaru
Kawamura and Assoc. Prof. Kenichi Asano for their supervision through
my PhD defense as the examination committee.

I am deeply grateful to Prof. Tomi Ohtsuki for important indication and
helpful discussion. I would like to thank Mr. Takeshi Sugimoto and Dr.
Yosuke Harashima for helpful advice about programming and instructive
discussions.

I thank Ms. Tomoko Shimokomaki, Miho Mitsuya and Ayako Saito for
their support. I also thank to all group member for good memories at Akai
and Kuroki laboratory.

Finally, I would like to appreciate my late grandmother Kaoru Ueoka,
my late grandfather Shigetaka Ueoka, my mother Masayo Takiyama, my
stepfather Shozo Takiyama, my sisters Kie Hashimoto and Rie Morimoto for
their encouragement and support for my life.





Bibliography

[1] P. W. Anderson. Absence of diffusion in certain random lattices. Phys.
Rev., 109:1492, 1958.

[2] N.F. Mott. Electrons in disordered structures. Advances in Physics,
16(61):49–144, 1967.

[3] N. F. Mott. Conduction in non-crystalline systems. Philosophical Mag-
azine, 17(150):1259–1268, 1968.

[4] E. N. Economou and Morrel H. Cohen. Localization in disordered mate-
rials: Existence of mobility edges. Phys. Rev. Lett., 25:1445–1448, Nov
1970.

[5] I.M. Lifshitz. The energy spectrum of disordered systems. Advances in
Physics, 13(52):483–536, 1964.

[6] Hidetoshi Nishimori and Gerardo Ortiz. Elements of phase transitions
and critical phenomena. Oxford University Press, New York, 2011.

[7] FranzJ. Wegner. Electrons in disordered systems. scaling near the mo-
bility edge. Zeitschrift f’́ur Physik B Condensed Matter, 25(4):327–337,
1976.

[8] Keith Slevin and Tomi Ohtsuki. Corrections to scaling at the anderson
transition. Phys. Rev. Lett., 82:382–385, 1999.

[9] Keith Slevin, Tomi Ohtsuki, and Tohru Kawarabayashi. Topology de-
pendent quantities at the anderson transition. Phys. Rev. Lett., 84:3915–
3918, Apr 2000.

[10] Alexander Altland and Martin R. Zirnbauer. Nonstandard symmetry
classes in mesoscopic normal-superconducting hybrid structures. Phys.
Rev. B, 55:1142–1161, Jan 1997.

145



[11] Ferdinand Evers and Alexander D. Mirlin. Anderson transitions. Rev.
Mod. Phys., 80:1355–63, 2008.

[12] Keith Slevin and Tomi Ohtsuki. Critical exponent for the anderson
transition in the three-dimensional orthogonal universality class. New
J. Phys., 16:015012, 2014.

[13] Keith Slevin and Tomi Ohtsuki. The anderson transition: Time reversal
symmetry and universality. Phys. Rev. Lett., 78:4083–4086, May 1997.

[14] Yoichi Asada, Keith Slevin, and Tomi Ohtsuki. Anderson transition
in the three dimensional symplectic universality class. Journal of the
Physical Society of Japan, 74(Suppl):238–241, 2005.

[15] Alberto Rodriguez, Louella J. Vasquez, Keith Slevin, and Rudolf A.
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Pascal Szriftgiser, and Jean Claude Garreau. Experimental observation
of the anderson metal-insulator transition with atomic matter waves.
Phys. Rev. Lett., 101:255702–4, 2008.
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[79] I. Travĕnec and P. Markos̆. Critical conductance distribution in various
dimensions. Phys. Rev. B, 65:113109, 2002.

151



[80] Michael Schreiber. (private communication).

[81] Yoichi Asada, Keith Slevin, and Tomi Ohtsuki. Anderson transition
in two-dimensional systems with spin-orbit coupling. Phys. Rev. Lett.,
89:256601, Dec 2002.

[82] G. Bergmann. Weak anti-localization - an experimental proof for the
destructive interference of rotated spin 12. Solid State Communications,
42(11):815 – 817, 1982.

[83] R. Landauer. Spatial variation of currents and fields due to localized
scatterers in metallic conduction. IBM Journal of Research and Devel-
opment, 1(3):223–231, July 1957.

[84] Daniel S. Fisher and Patrick A. Lee. Relation between conductivity and
transmission matrix. Phys. Rev. B, 23:6851–6854, Jun 1981.

[85] J. B. Pendry, A. MacKinnon, and P. J. Roberts. Universality classes
and fluctuations in disordered systems. Proceedings of the Royal So-
ciety of London A: Mathematical, Physical and Engineering Sciences,
437(1899):67–83, 1992.

[86] Keith Slevin. (private communication).

[87] Francesca Pietracaprina, Valentina Ros, and Antonello Scardicchio. The
forward approximation as a mean field approximation for the ander-
son and many body localization transitions. arXiv:1508.05097 [cond-
mat.mes-hall], 2015.

[88] Andrea Pelissetto and Ettore Vicari. Critical phenomena and
renormalization-group theory. Phys. Rept., 368:549, 2002.

[89] J. C. Le Guillou and J. Zinn-Justin. Critical exponents for the n-vector
model in three dimensions from field theory. Phys. Rev. Lett., 39:95,
1977.

[90] R Burioni and D Cassi. Random walks on graphs: ideas, techniques and
results. Journal of Physics A: Mathematical and General, 38(8):R45,
2005.

[91] Tsuneyoshi Nakayama, Kousuke Yakubo, and Raymond L. Orbach. Dy-
namical properties of fractal networks: Scaling, numerical simulations,
and physical realizations. Rev. Mod. Phys., 66:381–443, Apr 1994.

[92] Peter Markos. (private communication).

152



[93] Carl M. Bender and Steven A. Orszag. Advanced mathematical methods
for scientists and engineers. Springer, New York, 1999.

[94] Alan Jeffrey. Handbook of mathematical formulas and integrals. Elsevier
Academic Press, Amsterdam ; Boston, 3rd edition, 2004.

153


