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INTRODUCTION

During the sixties, in his study of the Weil conjecture concerning the zeta functions of smooth
projective varieties over a finite field, Grothendieck introduced the notion of a Weil cohomology
(which is a cohomology theory on the category of smooth projective varieties over a field, is
equipped with the cycle class maps, and satisfies Poincaré duality and the Kiinneth formula) and
also described the theory of motives, which is conjecturally universal among Weil cohomology
theories. Deligne and Beilinson independently developed the theory of motives further and
described a conjectural abelian tensor category MMy, of mized motives over a field k, in analogy
to the category of mixed Hodge structures.

Even now, the existence of the category MM} of mixed motives remains conjectural. How-
ever, Hanamura [30], Huber [32], Kelly [39], Levine [41], and Voevodsky [52] defined triangulated
tensor categories that have many of the structural properties expected of the derived category
of MMy. Moreover, Levine [41] defined such a triangulated tensor category DM (S) of mixed
motives whose base scheme S is not only the spectrum of a field but also a reduced separated
Noetherian scheme.

The theme of this thesis is realizations of Levine’s motivic triangulated category. This thesis
consists of two parts: We study a construction of the realization of Levine’s motivic category in
Part 1, and study a relation between the realization and the Chern class map in Part 2. Part 1
and Part 2 are based on the papers [46] and [47] respectively.

Part 1: Realization of Levine’s Motives. Levine [41] defined a geometric cohomology
theory on a reduced separated Noetherian scheme S, and constructed the realization functor
on DM(S) for this geometric cohomology theory. Roughly speaking, Levine’s geometric coho-
mology theory is a contravariant functor I' from the product of the category Smg of smooth
quasi-projective schemes over S and the category Z to a category C of complexes of abelian
sheaves on a Grothendieck site,

I':Sm¢ xZ —C,

with a class of cycle classes and with a Kiinneth map, that satisfies the following conditions:
I" exhibits the compatibility with direct sums, semi-purity, homotopy invariance, the Gysin
isomorphism, and excision; and that I'(S) is quasi-isomorphic to the unit object of C.

On the other hand, cohomology theories such as de Rham, étale, etc. possess the canonical
additional structures, and such structures are essential to the study of the arithmetic or geometric
properties of algebraic varieties. Therefore, it is natural to try to construct a realization functor
for a generalized geometric cohomology theory that takes values in a category of complexes in
a tensor category. The first main theorem of this thesis, Theorem 3.5, is in this direction. We
state only the special case of this theorem here, since it is so complicated.

Theorem 0.1 (Corollary 3.8). Let C be an exact tensor category of which there exists the derived
category DVC of bonded below complexes. Let T’ be a geometric cohomology theory on S that takes
values in C. Suppose that the unit object of C is projective. Then, there exists a triangulated
functor Ry from DM(S) to the pseudo-abelian hull D*Cy of the triangulated tensor category
DTC that exhibits the following properties:

(1) The restriction of the functor Rr to the triangulated tensor subcategory DMy (S), which
is equivalent to DM(S), is a triangulated pseudo-tensor functor.



(2) The diagram

Fl R[‘l
ctc —— Dt

commutes up to a canonical isomorphism. Here, the top horizontal arrow sends the pair
(X,J) of a scheme in Smg and an integer to Levine’s motive Zx (j), and the bottom one
s the composite of the canonical functors

CtC — K*C— D'C— D"C;.

(3) The functor Rr is compatible with the class of cycle classes and the Kinneth map of the
geometric cohomology theory I.

Using the generalization of Theorem 0.1 (Theorem 3.5), we have a realization functor for the
geometric cohomology theory associated with the singular cohomology, the étale cohomology,
and the de Rham cohomology (see Section 4). We remark that Levine already pointed out
the existence of such realization functors and planned their constructions (cf. [40, Chapter V,
Section 2]).

We here mention main results on the study of the conditions under which we can extend a co-
homology theory to a realization functor on Voevodsky’s motivic category (cf. [52]). Huber [33],
[34] constructed the realization functor for a cohomology theory that takes values in an abelian
tensor category and that exhibits descent for open, proper and Galois covers, and homotopy
invariance. Cisinski and Déglise [17] constructed the realization functor for a cohomology the-
ory that takes values in a category of vector spaces and that satisfies milder conditions than ours.

In Part 1, we also study a geometric cohomology theory and a realization functor associated
with the p-adic Hodge cohomology, which is a p-adic analog of the Hodge cohomology.

Let O be a complete discrete valuation ring O of mixed characteristic with finite residue field.
To each smooth scheme X over O, we associate a triple that consists of the following data:

(1) The rigid cohomology of the special fiber of X with the Frobenius automorphism.
(2) The de Rham cohomology of the generic fiber of X with the Hodge filtration.
(3) The map between these cohomology groups, which is called the specialization map.

This triple can be regarded as a p-adic analog of the mixed Hodge structure for the variety X
over Q. In fact, if X is projective, then this triple forms a (n admissible) filtered ¢-module that
is defined by Fontaine [26]. Combining the studies of these triple, we see that the correspondence
from X to its triple is extended to a geometric cohomology theory I',z on Sme.

Because the unit object of the category of filtered ¢-modules is not projective, we cannot apply
Theorem 0.1 to this geometric cohomology theory I', . However, by forgetting the Frobenius au-
tomorphisms of this geometric cohomology theory I, we have another geometric cohomology
theory I'pp, that takes values in the exact category pH.Sy (defined in Definition 5.1). Because
the unit object of pH Sy is projective, we can apply Theorem 0.1 to this geometric cohomology
theory. We thus have a realization functor on the motivic category DM (Spec O) for I'pp,. This
result is the second main theorem of Part 1.

Theorem 0.2 (Theorem 5.19). There exists a triangulated functor Ryus, from the triangulated
category DM (Spec O) to the derived category DTpHSy of bounded below complexes of the exact
category pH Sy that exhibits the following properties:

(1) The restriction of the functor Rpms, to the subcategory DMqy(S) is a triangulated
pseudo-tensor functor.



(2) The composite

R
Sm% x Z — DM (Spec O) —22% DHpH S,
is canonically isomorphic to the composite of the functor I'yp, and the one

C+pHS[) — D+pHSO

(3) The functor Rpus, is compatible with the cycle classes and the Kinneth map of T'ph, .
(4) For any object D of DM(SpecO) and i € Z, the vector spaces HY(Rpms,(D))o and
H'(Rpus,(D))dr are of finite dimension, and they are zero if i > 0.

It is natural to expect that there should exist a realization functor for the geometric coho-
mology theory I',;. However, at present, the author cannot offer any proof of its existence.

The organization of Part 1 is as follows. In Section 1, we review the construction of Levine’s
motivic category DM(S), which we will use in latter sections. In the following section, we
provide the definition of our geometric cohomology theory, which takes values in some tensor
category. In Section 3, by assuming certain conditions, we construct the realization functor
from Levine’s motivic category for any geometric cohomology theory. In Section 4, using the
result in the previous section, we construct the realization functors associated with the Hodge
cohomology theory and with the étale cohomology theory. In the last section of this part, we
construct a geometric cohomology theory associated with the triple of the rigid cohomology, the
de Rham cohomology and the specialization map. We finally prove Theorem 0.2 as an example
of the application of Theorem 0.1.

Part 2: Chern Class Map. Beilinson [5] constructed the higher regulator chp, as the Chern
character to the Deligne-Beilinson cohomology group, and conjectured that this regulator de-
termines the special value of Hasse-Weil L-function of an algebraic variety over Q modulo
Q*. After that, Beilinson and Deligne gave a conjectural motivic interpretation of Beilinson’s
regulator chpe, which states that chpe coincides with the map from the extension group in the
conjectural abelian category of mixed motives to the one in the abelian category of mixed Hodge
structures induced by the Hodge realization (cf. [45, Section 9]). The main objective of this part
is to give such a motivic interpretation for the Hodge realization of Levine’s motivic category
and give its [-adic étale analog.
For a finite extension field k£ over Q, there exists the Hodge realization functor

RHst 'DM(k) — Di_‘k,R

from Levine’s triangulated category DM (k) of motives over k to the derived category D;:k R of

real mixed Hodge complexes over k (cf. Example 4.1). On the other hand, Levine constructed
the Chern character

chyd: Ki(X) — Homp (1, Zx (5)[2 — i])

on the higher K-group K;(X) for a smooth and quasi-projective scheme over k, where the object
1 is the unit. Furthermore, he proved his own Chern character induces an isomorphism

(K:(X) ® Q)Y = Homp (1, Zx (5)[25 — i]) ® Q,

where the left is the j-th eigenspace of K;(X) ® Q with respect to the Adams operators (cf.
Proposition 8.1). The first main result of Part 2 is the following theorem.
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Theorem 0.3. (Corollary 9.13). For a smooth and quasi-projective scheme X over k, and
1,7 € Z, the diagram

(—1)ichy? Nrey s
Ki(X) ——%  Homp (1, Zx ()25 — i])

chiy? l lRHs

HY; (X ©q C,R(j))GIC/R) = HomD;kR(l,RHs(Zx(j))[Zj — 1))

commutes, where the bottom arrow is the canonical isomorphism, and the map chgje is Beilinson’s
requlator.

We will prove this theorem along the flow below:

(1) Construct a Chern character for a certain cohomology theory (Section 6).

(2) Prove that Levine’s Chern character coincides with ours for a cohomology theory asso-
ciated with his motivic category DM (k) (Section 8).

(3) Prove that Beilinson’s regulator coincides with our Chern character for the Deligne-
Beilinson cohomology theory up to sign (Section 9).

(4) Prove that naturalities of our Chern character implies Theorem 0.3 (Section 7).

In Section 10, after proving Theorem 0.3, we will prove an [-adic étale analog of this theorem.
We have the [-adic étale realization functor

Rer: DM(k) — Dify

from Levin’s motivic category to the derived category D;rk of bounded below complexes of
continuous Z;[Gg]-modules, where G, is the absolute Galois group of a field k (cf. Section 4.2).
Soulé [50] constructed the Chern class map

7 Ki(A) — HZ ' (Spec A, Zy(5))

for a commutative ring A with unit. (It is necessary that A is a Dedekind domain if ¢ = 1.) The

associated Chern character chis’g is the l-adic étale analog of Beilinson’s regulator. The following
theorem is the second main result of Part 2.

Theorem 0.4. (Corollary 10.2). With notations as above, we assume that X is an affine scheme.
Then, the diagram

(~1)ichyd

Ki(X)®Q ——=  Homp (1, Zx(j)[2/ — i) © Q

onid | |Ra

Hggii(X, Z(j)®Q <—— HomDﬁk(lvRét(ZX(j))[Qj —i)®Q

commutes. Here, the bottom arrow is the map that is induced by identifying its domain with

Jannsen’s continuous étale cohomology HfgI;Z(X, Z(j)) tensored by Q.

We remark that Ivorra proved a similar result for his [-adic étale realization functor from
Voevodsky’s triangulated motivic category and for Gillet’s Chern character associated with the
l-adic étale cohomology theory (cf. [36, Section 3.3, Proposition 5]).

In Section 11 and 12, we will prove that our Chern character coincides with Asakura-Sato’s
[1], Besser’s [11], Gillet’s [27], and Huber’s [32] up to sign.

In the last section, we will construct another p-adic Hodge realization functor on a full subcat-
egory of mixed Tate motives over a finite extension field that is derived from the p-adic Hodge
theory. Using this p-adic Hodge realization, we will give a motivic interpretation of Besser’s reg-
ulator (Theorem 13.1). This interpretation tells us an another proof of that Besser’s regulator
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sends Huber-Wildeshaus’ motivic polylogarithm class [35] to a special value of Coleman’s p-adic
polylogarithm [19] up to some explicit constant.

We close the introduction with a remark about Theorem 0.3 and 0.4. These theorems have
already been used in papers by several authors. However, the present author could not find any
references where their proofs are given, and thinks that their statements are natural but the
proofs are not obvious. In fact, because we work in the level of dg categories (not only of derived
categories) to construct these Chern characters or regulators, we have to study in the same level
to compare these maps. Especially, to prove these two theorems, we have to work with Levine’s
motivic categories and with the realization functors on them in the level of dg categories. The
author thus believes that giving their proofs is beneficial to researchers around this field.
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NOTATION AND PRELIMINARIES

Throughout the paper, the term ring will refer to a commutative ring with unit. The term
scheme will refer to a Noetherian and separated scheme. We will denote the category of R-
modules by Modp, for a ring R, and set Ab = Modz.

The category of schemes over a scheme S will be denoted by Schg. The category of smooth
and quasi-projective schemes over S will be denoted by Smg. We denote by Smg® the full
subcategory of Schg whose objects are localizations of schemes in Smg. V will denote a strictly
full subcategory of Smg*® that contains S and is closed under finite products over S and finite
disjoint unions.

For a set S, we will denote ZS the free Z-module generated by S.

For a Gal(C/R)-module M, we will denote its invariant submodule by M.

For a simplicial (resp. cosimplicial) object A in an additive category, the associated chain
(resp. cochain) complex will be denoted by A, (resp. A*). For a chain complex A,, its normal-
ization N A, is the cochain complex defined to be (NA*)i =A_;.

We will regard Z as the category whose objects consist of all integers and whose morphisms
are the identities.

For a category C, we will denote C(—, —) the set of morphisms in C and denote s.C the category
of simplicial objects in C.

A subcategory C of a category will be called a strictly full subcategory if C is a full subcategory
and is closed under isomorphisms.

For an object X of Sm%® and ¢ > 0, Z9(X) will denote the group of universally integral
relative cycles of X over S (cf. [41, Appendix A, 2.1.2]).

The term tensor category will refer to a linear symmetric monoidal category with unit (cf.
[41, Part II, Chapter I, 1.3.6]). We will denote 1 the unit object of a monoidal category. All
semi-monoidal categories will be strictly associative (cf. [41, Part II, Chapter I, 1.1]). We regard
1 as the unit object of a monoidal category.

An exact category C with a tensor structure will be called an exact tensor category if the
class of short exact sequences in C is closed under the operation of taking tensor products for
all objects.
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An object C of an exact category C will be called projective if all quasi-isomorphisms from
each complex of C to C' admit right inverses.

Let A be an additive category. Then, Cd+g.A will denote the dg category of bounded below
complexes in A (cf. [41, Part II, Chapter II, 1.2.2]). If A is a tensor category (in the sense of
[41, Part II, Chapter I, 1.3.6]), then the dg category C’;rg.A has a dg tensor structure (cf. [41,

Part I, Chapter II, 1.2.2]) and its homotopy category KA has a triangulated tensor structure
(cf. [41, Part II, Chapter II, 2.1.6.4]).

Let C be a dg category. Then, Z°C (resp. H’C) will denote the zeroth cocycle (resp. cohomol-
ogy) category of C, (cf. [41, Part II, Chapter 11, 1.2.1]) and C’ggC will denote the dg category of
bounded complexes in C (cf. [41, Part IT, Chapter I, 1.2.7]). Now, we set K°C = HOC’ggC. IfCis
a dg tensor category, then ngC (resp. K®C) has a dg tensor (resp. triangulated tensor) structure
(cf. [41, Part II, Chapter II, 1.2.11, 2.1.6.4]). For a dg (resp. dg tensor) functor F': C — C’ of
dg (resp. dg tensor) categories, F' can be canonically extended to the triangulated (resp. trian-
gulated tensor) functor K°F: K°C — KC' (cf. [41, Part II, Chapter II, 2.1.7]). For an additive
category A, we note that ZOC';g.A is the usual category Ct A of bounded below complexes in A

and that H OC(;;A is the usual homotopy category KA of bounded below complexes in A.

Part 1. Realization of Levine’s Motives
1. LEVINE’'S MOTIVIC CATEGORY

In this section, we recall the construction of Levine’s motivic category DM(V). In later
sections, we not only will use this construction but also will need to refer to various steps of the
process. For details regarding the discussion presented in this section, we refer to [41, p. 9-19]
and to the references quoted in the paragraphs below.

1.1. Flow of the construction of DM(V). Since the construction of DM (V) is complicated,
we mention that the flow of its construction before recalling.
We firstly construct the categories in the sequence

V= LV) = A(V) = AV) = A3(V) = A(V) = A5(V) D Ape (V)
from left to right. Next, we have the triangulated tensor category D% (V) by localing the

mot
homotopy category K®A_ (V) of bonded complexes of the dg category A,,..(V) with respect
to some multiplicative set of morphisms. Finally, taking the pseudo-abelian hull (see Definition
1.33) of the category DP . (V), we obtain Levine’s motivic category DM (V). The construction
is quite technical; however, his conceptualization of this construction is described in [41, p. 7-9].
In parallel with this flow of the construction, we also construct the other categories with the
index sh, such as .A;b V), Agh (V), etc. These categories will be used when we construct the

realization functor in Section 3.

1.2. Construction of £(V)*. In this section, we will extend the symmetric monoidal category
V to the one L£(V)*. This extension will assist the cycle class maps that will be adjoined latter
(Definition 1.18) in performing their tasks (cf. [41, p. 8]).

Definition 1.1. Let £(V) denote the category defined as follows:
(1) The objects of L(V) are the equivalence classes of pairs (X, f), where X is an object of

V and f: X’ — X is a morphism in Sm¢® such that there exists a smooth morphism
s: X — X' that is a section of f; two pairs (X, f: X' — X), (Y,g: Y — Y) are
equivalent if X =Y and there exists an isomorphism h: X’ — Y’ with f = go h.

(2) For any objects (X, f: X' — X) and (Y, g: Y/ = Y) in L(V), the set of morphisms from
(X, f) to (Y,g) is the subset of V(X,Y) that is defined by the following condition: a



morphism ¢: X — Y in V yields a morphism ¢: (X, f) — (Y, g) in £(V) if there exists
a flat S-morphism ¢: X’ — Y’ with ¢o f =1 og.
(3) The composition of morphisms is induced from the one in Schg.

Definition 1.2. In the category £(V)°P x Z, we denote the object ((X, f),q) by X(q)s. For
each morphism ¢: (X, f) — (Y, g) in £(V) and for ¢ € Z, we denote the morphism ¢°P x id, :
X(a)f = Y(q)g by ¢~

Let X (q)f and Y (r)y be objects of L(V)°P x Z. We define the product of X(¢)s and Y (r), in
LV)P xZ as (X xgY)(q+7r)sx,g- This product provides a symmetric monoidal structure on
LOV)P x Z.

The integer g of an object X (q)s corresponds to the degree of Tate twist or the Adams degree.
The next lemma is essential for constructing Levine’s motivic category and for constructing
realization functors from this category.

Lemma 1.3 ([41, Part II, Chapter I, 2.1.2]). Let € denote the category of symmetric monoidal
categories, of tensor categories, or of dg tensor categories without unit.
(1) (Adjoining morphisms). Let C be an object of €, and let {Xy | ¢ € @} and {Y, | ¢ € O}
be sets of objects of C indexed by a set ®. Then, there exist an object Co of € and a
morphism 1g: C — Co in € that uniquely satisfy the following conditions:
(1) For all ¢ € ®, these ¢ are elements of Co(ta(Xy), ta(Yy)).
(2) For each morphism F: C — D in€, let ¥ be a subset of the morphisms of D indexed
by ® such that the 1Yy € ¥ are morphisms from F(Xy) to F(Yy) for all ¢ € @, i.e.,

U ={yg: F'(Xy) = F(Yy) | ¢ € P}

Then, there exists a unique morphism Fg: Co — D in € such that Fg oty = F and
Fu(¢) = vy.

(2) (Adjoining relations). Let C be an object of €, and let R = {(fa,94) | a € A} be a set
of pairs of morphisms of C with the same domain and range indexed by a set A. Then,
there exist an object Cr of € and a morphism tr: C — Cg in € that uniquely satisfy the
following conditions:

(1) Foralla € A, tr(fa) = tr(ga)-
(2) For each morphism F: C — D in € that satisfies F(f,) = F(ga) for alla € A, there
exists a unique morphism Fr: Cr — D in € such that Frotgp = F.

Definition 1.4. Using Lemma 1.3, we define the symmetric monoidal category L£(V)* by ad-
joining morphisms and relations to £())°P x Z as follows:

Let (X, f) and (Y, g) be objects of V, and let i be the natural inclusion X — X [[Y. Then,
we adjoin the morphism i.: X(q)y — (X[[Y)(q)f11q for all ¢ € Z. The relations among
morphisms that are thus imposed are as follows:

(1) Let i: X — X[[Y and j: X[[Y — X][Y][Z be the natural inclusions. Then,
(J01)x = Jx Oix.
(2) Let ¢;: X; — Y, i=1,2,and let i: X7 — X [[ X2 and j: Y1 — Y1 ][] Y2 be the natural
inclusions. Then, i, 0 ¢7 = (1 [ d2)* © ja.
(3) Let i: X — X ][]0 be the canonical isomorphism. Then, we have i* o i, = id.
To be precise, using Lemma 1.3(1) for the case in which

C=LOV)PxZ, &= {i|ic: X(g); = (X [[Y)(@)s110}

we obtain the symmetric monoidal category Cg. Next, using Lemma 1.3(2) for the case in which
C = Co and the set R = {(fa, 9a)} consists of ((j 01)s,jx 0ix) in (1), (ix 0 @7, (61 [[ p2)" 0 i) in
(2), and (i* o i4,1d) in (3), we obtain the category Cgr. Then, we define the category L£(V)* to
be this category Cg.
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1.3. Construction of A,(V). We will extend the symmetric monoidal category £(V)* to the
tensor category A, (V).

Definition 1.5. Let C be a category. Then, we define the additive category ZC as follows:

(1) The objects of ZC are the finite direct sums of objects of C.

(2) Let C and C' be objects of ZC. If both C and C’ consist of a single object of C, then we
define ZC(C, C") to be the free abelian group generated by the set C(C,C"). Otherwise,
we define ZC(C, C") bilinearly considering the above case.

Remark 1.6. If C is a symmetric monoidal category, then ZC is endowed with a natural tensor
structure.

Definition 1.7. We define the tensor category A;(V) by adjoining the following relations to
ZL(V)* by Lemma 1.3(2) (cf. Definition 1.4):

(1) Let 0 be the empty scheme. For each object L of L(V) of the form ()(g)s, the canonical
morphism from L to 0 is an isomorphism.

(2) Let (X, f) and (Y, g) be objects of L(V), and let i: X — X[[Y and j: Y — X [[Y be
the natural inclusions. Then, i, 0 i* + j, o j* is the identity of (X [[Y)(q)f4 for each
q€E€Z.

For each object X (q)f of L(V)*, we define the object Zx(q)s of A;(V) to be X(q)f, and we
denote Zx(q)iax by Zx(q) and the unit object Zg(0) by 1.

1.4. Construction of A,(V). This section begins with the definition of commutative external
products. This notion arises when we consider the Kiinneth maps

H*(X)® H*(Y) > H*(X xY)
of cohomology theories H® on the level of cochain complexes.

Definition 1.8 ([41, Part II, Chapter I, 2.4]). Let € be the category of symmetric monoidal
categories without unit, of tensor categories without unit, of dg tensor categories without unit,
or of triangulated tensor categories. Furthermore, let C and D be objects of €. A commutative
external product on C is a pair (F,0), where F': C — D is a functor in ¢ and 6 is a natural
transformation from ®p o (F' X F') to F o ®¢ in € such that 6 is associative and commutative.

For any commutative external product (F, ) on C, the natural transformation 6 is said to be
a commutative external product of F.

For any tensor category C without unit, the tensor category C®¢ without unit, the additive
functor & : C — C®°, and the commutative external product K¢ of i are defined in [41, Part II,
Chapter I, 2.4.3]. The category C®¢ is called the category of the universal commutative external
product on C. See [41, Part I, Chapter I, 1.4.3] for a simple explanation of this category C®=.
These satisfy the following properties.

Proposition 1.9 ([41, Part II, Chapter I, 2.4.4]). Let C be a tensor category. Then, the following
properties hold:

(1) The pair (i&: C — C®¢,K5) is the universal commutative external product on C; i.e., for
each commutative external product (F': C — D,0) on C, there exists a unique additive
functor G: C®¢ — D such that Goi§ = F and G(K§) = 6.

(2) The functor i§: C — C®° is fully faithful and is injective on the objects.

As previously stated in Section 1.1, we must also construct the categories with the index sbh.
Now, we prepare the dg tensor category C®*" without unit, which differs from C® for a tensor
category C without unit. First, however, we define the notion of a homotopy equivalence of dg
categories.
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Definition 1.10. A dg functor F': C — D of dg categories is called a homotopy equivalence if
F' is bijective on objects up to isomorphism and if the maps

FC,C": C(C7 C/) — D(F(C)a F(Cl))
are quasi-isomorphisms for all objects C' and C” of C.

For each tensor category C without unit, the dg tensor category C®* without unit, the
additive functor z'“g’: C — C®* the commutative external product &?’ of i¢c, and the dg tensor
functor c¢c: C®*Y — C®¢ are defined in [41, Part II, Chapter III, 2.1.5, 2.1.6]. They have the
following properties.

Proposition 1.11 ([41, Part II, Chapter III, 2.1.7]). Let C be a tensor category without unit.
Then, the following properties hold:

(1) i& = cc 0 i,

(2) Let Cy and C be objects of C. Then, X o o, = cc(ﬁ‘zhcl c,), where we regard Cy and
Cy as objects of C®¢ (resp. C®*Y) by the functor i& (resp. zéb)

(3) The dg tensor functor cc: C®*Y — C®€ is a homotopy equivalence.

Remark 1.12. According to the above proposition, the category C®* is close to the category C&-°.
Furthermore, Lemma 3.3 describes the property on C®*" that corresponds to the universality of
C®°. When we construct the realization functor that is compatible with the tensor structures
in Section 3, the difference between C®¢ and C®*Y is stated in Proposition 3.4.

Definition 1.13. We define the tensor category A,(V) to be the category of the universal

commutative external product on A;(V), and we define the dg tensor category .A;b(V) without
unit for (A; (V)% i.e.,

Ay (V) = (A1 (V)®€, AT (V) = (A,(V))2.
We denote the functor ¢4 (): AP (V) = Ay (V) by co.

Remark 1.14. In the remainder of this paper, we regard the category A, (V) as the subcategories
of Ay(V) and A3 (V) induced by the functors i) and ij)l(V)‘

1.5. Construction of A;(V). For ? = ) or sh, we construct the dg tensor category A%(V)
without unit by adjoining the cycle class maps to the category A; (V). We begin by introducing
the category E below.

Let E denote the homotopy one point dg tensor category, and let ¢ denote the generating
object of E. They are defined in [41, Part II, Chapter II, 3.1.11] and satisfy the properties
below.

Proposition 1.15 ([41, Part II, Chapter II, 3.1.12]). E is a dg tensor category without unit.
The object ¢ generates the objects of E through finite direct sums and finite tensor powers.

Proposition 1.16 ([41, Part II, Chapter II, 3.1.13]). Let D be a dg tensor category without
unit, and let 0 be an object of D such that the following statements hold:
(1) For each n > 0 and each o € &,,, we have
Te = idgen in HO(D(Z",0%7)),
where T, is the symmetry automorphism of 0™,
(2) For ¢ <0 and n >0, HI(D(®",0%")) = 0 and DI(0%",0%") is 2-torsion free.

Then, there exists a dg tensor functor E — D that sends ¢®" to 9™ for n > 0. In addition,
such a dg tensor functor is unique up to homotopy.
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Definition 1.17. Let (X, f: X’ — X) be an object of £(V). Then, we define the subgroup
Z9(X) s of 29(X) that consists of the cycles C in Z9(X) such that f*(C) is defined, i.e.,

codimx(f~* (supp(C))) > g,
where supp(C) is the support of the cycle C.

Definition 1.18. Let ? be () or sh. When ? = (), we regard A,()) as a dg tensor category
without unit, where all morphisms are of degree zero. The dg tensor category A;(V)[E] without
unit is defined as the coproduct of A%(V) and E as dg tensor categories without unit.

We define the dg tensor category Ag(V) without unit by adjoining morphisms and relations
to A5(V)[E] as follows: For each object (X, f) of £(V) and each ¢ € Z, let C be a cycle in
Z9(X)¢. Then, we adjoin the morphism [C]": e — Zx(q) ¢ of degree 2q. When 7 = sh , we set
d[C]*" = 0. If C is the zero element of Z9(X)y, then [C]’ is defined to be the zero morphism.

We extend the dg tensor functor co[E]: AY(V)[E] — Ay(V)[E] to the dg tensor functor
c3: AD(V) = Ay (V) by setting ¢3([C]*0) = [C].

Lemma 1.19. The dg functor ¢3 is a homotopy equivalence.
Proof. This lemma follows from [41, Part II, Chapter II, 2.2.4, and Chapter III, 3.1.12]. O

1.6. Construction of A,(V). For ? = () or sh, we will enlarge the dg modules of morphisms
in the category .A5(V) to obtain the dg tensor category .A}(V) without unit by adjoining the
relations (up to homotopy) that the cycle class maps should satisfy.

Definition 1.20. For ? = () or sh, we define the dg tensor category .A}(V) without unit by
adjoining morphisms and relations to .A%()) as follows:

(1) Let X(q)s be an object of L(V)*, and let C' and D be cycles in Z9(X)¢. We adjoin the
morphisms h’Zn,n,C’,D: ¢ = Zx(q)s of degree 2¢ — 1 via the relations

dhv?n,n,C,D = [mC +nD)* — [mC]* — [nD)"
for all m,n € Z.

(2) Let (X, f) and (Y,g) be objects of L(V), let ¢: Zx(q)f — Zy(q)y be a morphism
in A;(V), and let C' be a non-zero cycle in Z9(X);. Then, we adjoin the morphism
h;(,Y,Cw: ¢ = Zy(q)4 of degree 2¢g — 1 via the relation dhg(,y,c,qs =¢o[C] —[¢p*C]".

(3) Let X(q)r and Y(r)y be objects of L(V)*, and let C' and D be cycles of Z9(X); and
Z"(Y)g, respectively. Then, we adjoin the morphisms

hl)g,Y,C,D: eRe— Zxxsy(q + r)szga
h?(?,Y,C’,D: eRe— ZXXSY((] + 7")f><sg
of degree 2(q 4+ r) — 1 via the relations
dhyc.p =& o ([0 ® (D)) ~ &' o ([C x5 D" ® [S]"),
Wy e p="5"0(C) ©[D]") -8 o (|8]"® [C x5 DI'),
where C' xg D € Z97(X xgY)sx,q is the product of the two cycles C' and D (cf.

[41, Appendix A, 2.2.3(i)]) and X’ is the commutative external product on A} (V) (cf.
Propositions 1.9 and 1.11).

We extend the dg tensor functor cz: AY (V) — A3(V) to the dg tensor ¢s: AP (V) — A, (V)
by setting c4(h®") = h for all morphisms h’ that are adjoined to A5(V) above.

Remark 1.21. In the previous definition, we constructed the category .A,(V) by adjoining the
desired relations only up to homotopy. Levine also constructed a variant of the category A, (V)
by adjoining to A;(V) the same relations but not up to homotopy in [41, Part I, Chapter I,
1.4.12], and he studied the latter category.
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Lemma 1.22. The dg functor ¢4 is a homotopy equivalence.

Proof. From the fact that dh®® = 0 for all morphisms h*Y adjoined in Definition 1.20, [41, Part
I, Chapter V, 1.3.5], and [41, Part II, Chapter III, 3.1.12], we find that the functor ¢4 satisfies
the hypothesis of [41, Part II, Chapter II, 2.2.5]. Hence, ¢4 is a homotopy equivalence. O

1.7. Construction of A;(V). In this section, we construct the dg tensor category AZ (V) with-
out unit by adjoining the higher homotopies of the cycle class maps to A}(V) for ? = () or

sh.

Definition 1.23. Let ? be () or sh, and let k and r be positive integers. We will recursively
define the dg tensor categories AZ(V)(") and AZ(V)(F) without unit. Consider AZ(V)©) =
AZ(V). Suppose that we have formed the dg tensor category AZ(V)"~1) without unit; we
denote AZ(V)—1) by AL(V)"0).

AW = A V), AEW)TD = A{ (V).

Suppose further that we have formed the dg tensor category .AZ(V)
define the dg tensor category AE(V)(T”"’) without unit by adjoining morphisms and relations to
AL(V)TE=1) as follows:

For each object X (q) ¢ of L(V)*, let g: @k Zx(q) ¢ be a non-zero morphism of degree 2¢g —r
in AZ(V)"*=1 with dg = 0. Then, we adjoin the morphism hy: ¢®*¥ — Zx(q) s of degree 2q—r—1
with dh, = g. We define the dg tensor category AZ(V)(") as the direct limit of {AZ(V)"*)}>0,
and we define the dg tensor category A%(V) as the direct limit of {A(V)")},0, i.e.,

ALY = Lim AL(V) ), AZ(V) = lim AL (D))
k T

(k=1 without unit; we

Similarly, let cél ) be the dg tensor functor ¢4. Suppose that we have formed the dg tensor

functor c(r U, L AP (V)0 5 AL (V)0 we denote cé Y by (TO)

CéLO) — ¢y, cgr 0) Cér 1)

Suppose that we have formed the dg tensor functor c (rk=1) Aﬁh( V)rk=1) 5 A (V)R e

extend the functor cé rE1) o cs (rk), Aﬁh( V))& A (V)R by setting

r.k
" (hy) = Perr 0 )

for all morphisms h, that are adjoined to Agh (V)(k=1) above. We define the dg tensor functor
C5: A@b (V) = A;(V) as the direct limit of cér’k) with respect to positive integers k and 7:

") = ling cér’k), ¢5 = lim cér).
k r

Lemma 1.24. The dg functor c¢5 is a homotopy equivalence.

Proof. 1f cgr’k_l) is a homotopy equivalence, then cgr’k) is a homotopy equivalence by [41, Part I,

Chapter V, 1.3.5], [41, Part II, Chapter II, 2.2.5], and [41, Part II, Chapter III, 3.1.12]. Hence,
¢5 is a homotopy equivalence. ]

1.8. Construction of A, (V).

Definition 1.25. Let ? be §) or sh. We define the dg tensor category A’ (V) to be the dg tensor
full subcategory of A%(V), which is generated by objects of the form Zx(q) or e ® Zx(q)f,

and we define the dg functor cmeq: A% (V) = Ay (V) as the restriction of cs.

Lemma 1.26. The dg functor cmet %S @ homotopy equivalence.
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Proof. This lemma follows from [41, Part I, Chapter V, 1.3.5] and [41, Part II, Chapter II, 2.2.5
and Chapter III, 3.1.12]. O

1.9. Construction of DM (V). We first extend the coefficient of A’ (V) and consider the
homotopy category of this extended category.

Definition 1.27. For any dg tensor category A and any commutative ring R, the dg tensor
category Ap is defined as

Ob(Ag) = ObA, Ar(X,Y)=A(X,Y) ®z R.

Definition 1.28. Let R be a commutative ring. Then, we define the triangulated tensor cat-
egory Kb .(V)r as the zeroth cohomology category of ng(Amot(V) r) and define the tensor

mot
category Krbnotﬁh as the full image of the functor

K ot : KP(AD  (V)R) — Kb (V)g.

mot

Definition 1.29 ([41, Part II, Chapter I, 1.3.7]). A triangulated functor F': A — B between tri-
angulated tensor categories is a triangulated pseudo-tensor functor if there exists a commutative
external product # of F' such that 6 is an isomorphism and both F' and 6 are unital.

Proposition 1.30. Let R be a commutative ring that is flat over Z.

(1) The functor KPcpor: KP(AD (V)R) = K2,
gories.

(2) The tensor category Kfnotsh(l/)R is a full triangulated tensor subcategory of K2 . (V)r,

and the functor Kcpep: KP(AD  (V)R) — K?

mot motsh
triangulated tensor categories.

(V)r is an equivalence of triangulated cate-

(V)R is a pseudo-tensor equivalence of

Proof. See [41, Part II, Chapter 11, 2.2.2]. O
We define the objects of ng(Amot(V)R) that correspond to local cohomology groups.

Definition 1.31. For any object (X, f: X’ — X) of L(V) and any closed subscheme W of X,
let 7: U — X be the inclusion of the complement of W in X, and let 7*f: U xx X’ — U be
the projection. Suppose that the morphisms j: U — X and j*f: U xx X' — U are in V. We
define the object Zx w(q)s of ng(Amot(V)R) as

Zxw(q)y = Cone(j*: Zx(q)r — Zy(q);-f)[—1].

The next step is to localize the triangulated tensor category K? . (V)g with respect to some
class of morphisms, which should be isomorphisms in the derived category of the expected

abelian category of mixed motives.

Definition 1.32. Let R be a commutative ring that is flat over Z. We assume that V satisfies
the following three conditions:

(a) If X is an object of V and U is an open subscheme of X, then U is an object of V.

(b) If X is an object of V and P is a projective bundle over X, then P is an object of V.

(c) If X is an object of V and Z is a closed subscheme of X, then the blowup of X along Z
is an object of V.

Then, we define the triangulated tensor category D% . (V)g to be the localization of K% ,(V)g

mot

obtained by inverting the following morphisms, i.e., D% (V) is the localization of K% ,(V)g

mot
with respect to the saturated tensor multiplicative system of morphisms generated by the fol-

lowing morphisms (cf. [41, Part II, Chapter II, 2.3.2, 2.3.4)):
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(1) Homotopy equivalence. Let i: (X, f) — (Y, g) be a morphism in £(V) such that i: X —
Y is the inclusion of a closed codimension-one subscheme in V, and let Z be a closed
subscheme of Y. We let W denote the inverse image of Z via i. Suppose that Z is
isomorphic to the affine line A%/V over W and that, via this isomorphism, ¢: W — Z is
the inclusion of 0 x W into A%/V. Suppose further that W is an object of Sm¢®. Then,
we invert the morphisms i*: Zx w(q)f — Zy,z(q)4 for all ¢ € Z.

(2) Kinneth formula. Let X and Y be objects of A;(V). Then, we invert the morphism
induced by the commutative external product

&X,y:X(@Y—)XXY,

where x (resp. ®) is the tensor product on A, (V) (resp. K2 ..(V)R).

(3) Gysin isomorphism. Let p: (X, f) — (W,g) be a morphism in £(V). Suppose that
p: X — W is a smooth morphism of relative dimension ¢ with a section i: W — X. We
regard W as a closed subscheme of X via i. Let

a:e® Zw(r—q)gl=2q] = Zxxsxwxx (1) fxf
denote the composite

[W]®p* X
¢ ® Zyw (r — q)g[—24] LS Zxw(@)g®Zx(r—q)f = Lxxsxwxx(T)ixs

and let p denote the morphism
Zxwsxwxx(T)(rxn11a = LxxsxWxx (T)fxf

induced by the following morphism in £(V):
(X xs X, fx f) = (X xs X, (f x /) ]]A),

where A is the diagonal morphism X — X xg X. Then, we invert the morphisms
a —
(0 Af")) 1 e @ Zw(r — q)g[—2q) ® Zxxsxwxx (T)(1x )11

= ZixxsxWxx (T)rxs ® Lxxsxwxx (T)rxfs
for all r € Z.
(4) Excision. Let (X, f) be an object of L(V), let W be a closed subscheme of X, and let
j: U — X be the inclusion of an open subscheme of X containing W. Then, for all
q € Z, we invert the morphisms

J* Zxw (@) = Zuw(q)-
(5) Unit. We invert the morphism
[S]®id: e ® Zg(0) — Zs(0) ® Zg(0).

(6) Moving lemma. For each object (X, f: X' — X) of L(V) and each morphism g: Y — X
in V, let ¢ be the canonical morphism

(X f: X = X) = (X f[Jo: X[V = X)
in £(V). Then, for all ¢ € Z, we invert the morphisms

" Zx(q) 119 — Zx(Q)s-

We define the triangulated tensor category lenotﬁh (V)R as the full image of le;mtsh (V)r in
Drbnot (V)R
b

Finally, by adjoining projectors to D} . (V) g, we obtain Levine’s triangulated category DM (V) r
of mixed motives with coefficients in the ring R.
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Definition 1.33 ([3, 1.2], [41, Part II, Chapter II, 2.4.1]). Let C be an additive category. Then,
the category Cy is defined as follows:

(1) The objects of Cy are pairs of the form (X,p), where X is an object of C and p is a
morphism in C(X, X) with p? = p.

(2) A morphism f: (X,p) = (Y,q) in C; is given by a morphism f: X — Y in C such that
f =qo fop. The composition of morphisms in C; is that induced by the composition in

C.

We can treat C as a full subcategory of Cy by sending X to (X, id). The category C; is called the
pseudo-abelian hull (or Karoubi envelope, or idempotent completion) of C.

Proposition 1.34 ([3, 1.5], [41, Part II, Chapter II, 2.4.7]). For each triangulated (resp. trian-
gulated tensor) category T, the pseudo-abelian hull Ty of T admits a unique triangulated (resp.
triangulated tensor) category structure such that the inclusion is a triangulated (resp. triangu-
lated tensor) functor. Moreover, each triangulated functor from T to T’ is canonically extended
to a triangulated functor from Ty to ’7;’ .

Proposition 1.35 ([41, Part II, Chapter 11, 2.4.8.2]). Let T be a triangulated (resp. triangulated
tensor) category that contains the countable self-direct sum for each object of T. Then, the
inclusion of T in Ty is an equivalence of triangulated (resp. triangulated tensor) categories.

Definition 1.36. Let R be a commutative ring that is flat over Z. Then, we define the triangu-
lated tensor category DM (V) as the pseudo-abelian hull of D2 (V). DM (V)R is called the
triangulated motivic category of V with coefficients in R. We denote the category DM (Smg)gr
by DM(S)gr. If S is the spectrum of a commutative ring A, then we denote DM (Smg)r by

DM(A)g.

Remark 1.37. For any perfect field k that admits the resolution of singularities for all schemes
of finite type over k, Voevodsky [52] defined his own triangulated tensor category of motives
over k. Levine proved that this motivic category defined by Voevodsky and his own DM (k) are
equivalent (cf. [41, Part I, Chapter VI, 2.5.5]).

2. GEOMETRIC COHOMOLOGY THEORY

As mentioned in the Introduction, Levine defined a geometric cohomology theory on V with
values in the category of complexes of abelian sheaves on some Grothendieck site and constructed
the realization functor associated with his geometric cohomology theory. In this section, we
will define a geometric cohomology theory on V with values in some tensor category. Our
geometric cohomology theory is a natural generalization of Levine’s. In fact, upon taking the
Godement resolution and the global sections, Levine’s theory becomes equivalent to ours. This
generalization is important for the constructions of realization functors associated with the mixed
Hodge cohomology theory and the étale cohomology theory (see Section 4).

First, we define a triangulated tensor system, which is a generalization of an exact category
that admits its derived category and on which our geometric cohomology theory takes its values.

Definition 2.1. A triangulated tensor system is a triple of the form (C, T, F), where C is a
tensor category, T is a triangulated tensor category, and F' is a triangulated tensor functor from
K™ CtoT.

Remark 2.2. For a triangulated tensor system (C, 7T, F'), we often treat objects or morphisms in
C™TC as those in T obtained via the functor F.

Ezample 2.3. For a weakly idempotent complete exact category C (e.g., C is an abelian category,
cf. [15, Section 7]), let ActC denote the full subcategory of the bounded below homotopy
category KT (C) that consists of all acyclic objects. Because C is weakly idempotent complete,
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Ac™C is a thick subcategory of the triangulated category KTC (cf. [15, 10.14]). Then, we
obtain the derived category DTC := K+tC/Ac*C of bounded below complexes over C. Now,
the triangulated functor F is defined to be the natural functor K*C — DTC. Assume further
that C is an exact tensor category. Then, the triangulated category DC has a natural tensor
structure induced by that of C, and F is a triangulated tensor functor (cf. [41, Part II, Chapter
I1, 2.3.4]). Hence, the triple (C, DTC, F) forms a triangulated tensor system.

For simplicity, we denote this triangulated tensor system, which is associated with C, by D*C.

For each object X of Smg® and a closed subscheme W of X, let Z{,(X) denote the subgroup
of Z9(X) that consists of the cycles in Z9(X) whose supports are contained by W. For each
object X (q)s of L(V)*, let (X, f)? denote the set of closed subschemes W of X that is the
support of some effective cycle in Z9(X)¢. The lemma below will be used in Section 3.

Lemma 2.4 ([41, Part I, Chapter V, 1.2.2]). Let (X, f) and (Y, g) be objects of L(V).
(1) Let ¢: (X, f) — (Y, g) be a morphism in L(V). Then, for all ¢ > 0 and all elements W
of (Y, 9)%, the g~L(W) are in (X, f)9.
(2) Let g, > 0. Then, for all W € (X, f)9 and oll Z € (Y, g)", the subschemes W xg Z of
X xgY arein (X xgV, fxg)?t".

Let C be an additive category, and let I" be a functor from V°P x Z to C*C. Now, we define
the concept that corresponds to a local cohomology of I'. Furthermore, we define the functors
'y and I'g as well as the natural transformation I'y — I' . We will use them to construct the
realization functor in the next section.

Definition 2.5. Using the above notation, for an object X of V and a closed subscheme W C X
of codimension ¢, let j: X \ W — X be the inclusion of the complement of W C X. Then, we
define
I'w (X, q) = Cone(I'(j, q): ['(X, q) = T(X \ W, q))[-1],

and we define the functor I'y: L(V)°P x Z — C*C to be

lim  I'w(X,q) forg>0

FS((Xa f)7 Q) = WE(XJ)q
I'X,q) otherwise

if it exists. Furthermore, we define the functor T'z: L(V)P x Z — C*C to be 'z (X, f,q) =
I'(X, q) for all objects X (q) s of L(V) x Z.

From the definitions of I'z and Ty, the natural morphisms 'y (X, q) — T'(X,q) induce a
natural transformation I'y — I' . Let v be this natural transformation I'y — I'z.

Remark 2.6. In the remainder of this paper, we denote I'(f,q) by f* for any morphism f in V
if the integer ¢ is clear from the context.

The definition of our geometric cohomology theory is as follows (see [41, Part I, Chapter V,
1.1.6] for the corresponding definition of Levine’s theory).

Definition 2.7. Let (C,7,F) be a triangulated tensor system with a commutative external
product X of a functor I': VP x Z — CTC. Furthermore, for each object X of V and each
effective cycle C in Z9(X), let cljj;  be a homomorphism from 2y, (X) to 7 (1,Tw (X, ¢)[2q]),
where W is the support of C.

Then, the triple (T', X, clf;, ) is said to be a (C, T, F)-valued geometric cohomology theory on
V if it satisfies the following axioms:

(1) Direct sum. For each of the objects X and Y of V and for g € Z, the canonical morphism
[(X]IY,q) — I'(X,q) & (Y,q) is an isomorphism in C*(C).
(2) Cycle classes. The morphisms clf;, y satisfy the following conditions:
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(a) Let f: X — Y be a morphism in V. If f~1(W) is contained in the support Z of
some effective cycle in Z9(Y), then the diagram

q

20,(X) U5 (1, Ty (X, )[24))

f*l lf*

Z3(Y) —— T(1,Tz(Y,q)[2q))

q
ClZy

commutes.
(b) Let Z be the support of an effective cycle in Z"(Y). Then,

ol «(C)Relyy (D) = e, vy .y (C x5 D)
for each C € Z{,(X) and each D € Z7(Y), where the morphism
CI%V,X(C) Xclyy (D)
is the composite of

cliy, x (C)@cly (D)

I'w(X,q) @z (Y,r)[2q + 2r] and

T (X, 9) @ T2(Y,7) = Ty z(X X Yy q+7)[2 + 2r],
(3) Semi-purity. Let (X, f) be an object of L(V) and ¢ € Z. Then,

T, Tw(X,q)2¢—p]) =0

for all W e (X, f)4, and p > 1.

(4) Homotopy equivalence. Let i : X — Y be the inclusion of a closed subscheme of codi-
mension one in V. Let Z be a closed subscheme of Y, and let W be the inverse image of
Z via i. Suppose that Z is isomorphic to the affine line AIl/V over W and that, via this
isomorphism, i : W — Z is the inclusion of 0 x W into AIl/V. Suppose further that W is
in Sm@®. Then, i* : I'y (X, q) — I'z(Y, q) is an isomorphism in 7 for ¢ € Z.

(5) Kiinneth formula. For all objects X and Y of V and for all ¢,r € Z, the morphisms
induced by the commutative external product

MYy : (X, q)@D(Y,r) = D(X x5 Y,q+7)

are isomorphisms in T .

(6) Gysin isomorphism. Let p: X — W be a smooth morphism in V of relative dimension
q with a section i: W — X. We regard W as a closed subscheme of X via ¢. Then, the
composite

p* UC]TW,X(W)
r(w,r) —-T(X,r) ———— Tw(X,q+r)[2q]
is an isomorphism in 7 for each r € Z, where Uclyy, (W) is the composite

idwcl? w
r(x,r) by @ T (X )[24]

X A*
— Pxxgw (X x5 X,q+7)[2¢] — Tw(X,q+7)[2q].

Here, A is the diagonal morphism X — X xg X.

(7) Excision. Let X be an object of V, let W be a closed subscheme of X, and let j: U — X
be the inclusion of an open subscheme U of X containing Z. Then, the morphism
7: Tw(X,q) = T'w(U,q) is an isomorphism in 7 for each g € Z.

(8) Unit. The morphism 01057 g(8):1 = I'(S,0) is an isomorphism in 7 when we regard S
as a cycle in Z9(S).
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Remark 2.8. For a geometric cohomology theory (I", X, CI?M ), we will often omit one or more

of the subscripts ¢, W or X of the cycle class map CI%V x When it or they are clear from the
context.

3. REALIZATION OF LEVINE’S MoTIvVIC CATEGORY

In this section, the category V will satisfy the conditions (a),(b) and (c¢) of Definition 1.32.
We will construct a realization functor from the motivic category DM (V) associated with a
given geometric cohomology theory on V that satisfies certain assumptions. The flow of our
construction is similar to that of Levine’s for the realization functor associated with his geometric
cohomology theory (cf. [41, Chapter V, Section 1]). The difference between the two constructions
is primarily derived from the difference in the definitions of the two geometric cohomology
theories. As mentioned at the beginning of Section 2, upon taking the Godement resolution
and the global sections, Levine’s geometric cohomology theory becomes equivalent to ours. This
section begins with the preparations for formulating our first main theorem (Theorem 3.5).

Let A denote the category whose objects are the ordered sets [n] := {0 < --- < n} for all
n > 0 and whose morphisms are non-decreasing maps. For a category A, we let c.s.A denote
the category of cosimplicial objects of A; i.e., c.s.A is the category of functors from A to A.

Definition 3.1. For an additive category A, the functor ¢: C;::;A — c.s.C’;gA is defined as
t(A)([n]) = A for all objects A of A and as ¢(f)([n]) = f for all morphisms f of A.
We define the dg functor G as the composite functor
L cc Tot
CiA = cs.CHA = CLCHA == Ch A,

where the central arrow cc is defined to represent taking the associated cochain complex (cf. [41,
Part II, Chapter III, 1.2.1]) and Tot is the total complex functor defined in [44, 2.18] (see also
[43, 2.29]).

Lemma 3.2. Using the above notation, the canonical morphism id — G of endofunctors of
C’;;,)A is homotopy equivalent.

Proof. For an object M of C(;rgA, the complex cco (M) is (M®,d*), which is defined as

0 otherwise’ 0 otherwise
Hence, it is evident that the map M — cc o «(M) is homotopy equivalent. Upon applying the

total complex functor Tot, we see that M — G(M) is also homotopy equivalent, as Tot is a dg
functor (cf. [43, 2.29], [44, 2.18]). O

Lemma 3.3 ([41, Part II, Chapter 111, 2.2.4]). Let A and B be tensor categories without unit,
and let F' be an additive functor from A to c.s.B with a commutative external product ®. Then, F
can be naturally extended to a dg tensor functor F®: A®H — C(;;B; i.e., the following diagram

A . csB

isbl lCC
sh
A= Ly OF B

commutes, and F* is compatible with the external product X of F.

The property of A% stated in Lemma 3.3 is similar to the universality of A% stated in
Lemma 1.9. The primary difference between them is that the extended functor F® in this
lemma is a dg tensor functor, whereas the extended functor in Lemma 1.9 is only additive. The
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proposition below corresponds to Step 2 of Levine’s construction of the realization functor given
in [41, Part I, Chapter 5, 1.3.1]. Using the lemma above, we will extend the additive functor

G oT', to a dg tensor functor from .A";'h (V) to C’;rgC.

Proposition 3.4. Let C be a tensor category. For a functor T': VP x Z — CTC that admits
the functor Iy (cf. Definition 2.5), let X be a commutative external product of I'. Assume that
I’ satisfies axiom (1) in Definition 2.7. Then, the additive functors G o I'z and G o'y can be
naturally extended to the dg tensor functors I's and I's 2 from A;h (V) to C, which are compatible
with the commutative external product X of T'. The natural transformation v: T'y — T's (defined
in Definition 2.5) can also be naturally extended to vo: I'y — I'so:

Gol', Gol'g

LOV)P x Z cte Lo)yrxz £ otc

| | | |
AW s e, ANV) 2 e

Proof. First, using Lemma 1.3, we extend the functors I'y and I'; to the symmetric monoidal
functors 'z« and I's £« from L£L(V)* to C’+ C by setting

Tre(iv): T(X,q) Y% (X, q) @ T(Y,q) = T(X [[ Y q).

Poge(i2): To(X. f.0) 55 Tu(X. foq) 0 Tu(YVog,0) S TX [[Vof [T9,0)

for each natural inclusion i: X(q)y — (X [[Y)(q)r114 in £L(V)°P X Z using Definition 2.7(1).
To be precise, using Lemma 1.3(1) for C = L(V)? x Z, D = C’dJrgC, O = {iy | ix: X(q)f —
(XTIY)(@)¢114) F =Tz (vesp. I's), and 9;, = T«(ix) (vesp. I's g« (ix)), we obtain the sym-
metric monoidal functor Fy: Ce — D. Because the morphisms ;, = I'z«(ix) (resp. T's £+ (i4))
satisfy the three relations specified in Definition 1.4, we can apply Lemma 1.3(2) in this case.
Thus, we obtain the symmetric monoidal functor Fr: Cr = L(V)* — Cg{gC, and I'z«(ix) (resp.
[s £+ (ix)) is defined to be Fr. We extend the natural transformation v: I'y — I'z to the natural
transformation vp: I's o — T'z by setting vg(I's £+ (i) = T+ (i4).

Next, we will extend the functors I'z« and I'y £+ to the functors I'; and I's 2 from Agh (V) to
Cji:gC. Let ? be () or s. Because C;g(C) is an additive category, we can canonically extend the
symmetric monoidal functor I'7 £« to the tensor functor from ZL(V)* to C’:{gC (cf. Definition
1.5). Let I'7 z,+ denote this functor, I's gz« : ZL(V)* — ngC.

The commutative external product X of I' can be naturally extended to that of the functor
o ze: ZL(V)* — C’;rgC, using Lemma 2.4, for the case of 7 = s. By applying Lemma 3.3 to
the pair (v o I'7 zr+,¢ 0 X), where ¢ is the functor defined in Definition 3.1, we obtain the dg
tensor functor (1o 'y ze-): (ZL(V)*)®H — C(;gCJgC. Now, we define the functor I'7 y to be
the composite of this functor (10T z,+)®" and the total complex functor used in Definition 3.1.
This total complex functor is a tensor functor (cf. [43, 2.29], [44, 2.18]). Similarly, the natural
transformation v : I's  — I'z extends to the natural transformation I'; g — I'g. Let v be this
natural transformation, I's g — I'g. We remark that the composite of ZL(V)* — (ZL(V)*)®*
and I'7 o is equal to G o I'7 7.+ by Lemma 3.3.

It follows from the construction of (—)®*9 (cf. [41, Part II, Chapter III, 2.1.5]) that A;h V)
is isomorphic to the dg tensor category obtained by imposing the relations in Definition 1.7 on
(ZL(V))®#h. Upon applying the functor I'z o to these relations, we see that similar relations
hold in C(LC. Hence, using Lemma 1.3(2), we can extend the dg tensor functor I'7o to the

dg tensor functor from .A;h (V) to C’j{gC . We denote this extended tensor functor by I's 5. The
natural transformation 1y naturally extends the natural transformation vo : I'y o — T'. O
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The following is our first main result, which is a generalization of Levine’s theorem ([41, Part
I, Chapter V, 1.3.1]).

Theorem 3.5. Let (C,T,F) be a triangulated tensor system, and let R be a commutative ring
that is flat over Z such that the ring C(1,1) is an R-algebra. Let d be an object of CTC with an
isomorphism 0 = 1 in DTC that satisfies the assumption in Proposition 1.16. Furthermore, let
(I, X, CI?MX) be a (C, T, F)-valued geometric cohomology theory on V that admits the functor I's
(defined in 2.5). Now, we assume the following two conditions:

(1) The class of the cycle class c1(C) in T(1,Ts(X, f,q)[2q]) belongs to the image of the map
from KTC(0,Ts(X, f,q)[2q]), which is induced by the functor F and by the morphism 0 = 1, for
each object X(q)s of L(V)* and each cycle C in Z9(X)s, where W is the support of C.

(2) The maps

K*C(0,Ts(X, f,q)[2¢ — p]) = T(1,Ts(X, f,q)[2¢ — p]),

which are induced by F and 0 = 1, are injective for all objects (X, f) of L(V), p >0, and q € Z.
Then, the functor I' can be canonically extended to a triangulated functor

DTe: D2 (Vg = T,

mot
which sends e to 0 and satisfies the following conditions:

(1) The composite functor F'o G oT is equal to the composite

b
VP Z 5 Db (V) X Tmety T

mot

where the left arrow is the natural functor that sends (X, q) to Zx(q).
(2) The functor D*(Tmet) is compatible with the cycle class maps cl via 0 = 1.
(3) The restriction of D'T et to DY . (V)R is a triangulated pseudo-tensor functor (cf. Def-

motsh
inition 1.29) from Dfnotsh(V)R to T, which is compatible with the commutative external
product X of T'.

Definition 3.6. The triangulated functor Rr: DM(V)r — T is defined to be the pseudo-
abelian hull (cf. Proposition 1.34) of the functor DT, in the above theorem. We call this
functor Rr the realization functor associated with T'. In particular, when the embedding of T
in 7y is an equivalence (cf. Proposition 1.35), we define the realization functor associated with
I' to be the composite of Rr and its quasi-inverse 73 — 7.

To prove Theorem 3.5, we first prove the proposition below.

Proposition 3.7. Given the same assumptions as in the theorem above and without assuming
that the triple (I', X, cl) satisfies axioms (4), (5), (6) and (7) of Definition 2.7, the functor I' can
be extended to a dg tensor functor

I‘mot: Ash

mot

(V)® R — C,C,

which sends ¢ to 0 such that the composite

0C‘ggpmot

KA (V)@ R) K'Cie~% KtC 5T
is compatible with the triple (I',X, cl) via the isomorphism d = 1, where Tot is the total complex
functor (cf. [41, Part II, Chapter II, 1.2.9]).

Proof. We will extend the functor I' to the functor from A (V) step by step along the flow of

mot

the construction of A% (V) (cf. Section 1.1). First, by Proposition 3.4, we extend the natural

mot
transformation v: I'z — I' to the natural transformation v5: I'y — T'y 5 of functors from A;h V)

to C;rgC.
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Step 1. The extension to As(V).

By Proposition 1.16, we choose a dg tensor functor I: E — C&;C that satisfies I(e®™) = 0®" for
all n > 1. Such a functor is unique up to homotopy (cf. loc. cit.). Let I'7 5[1]: A;h W)[E] — C;gC
denote the dg tensor functor that is the coproduct of I and I'7 5. The natural transformation v
extends to the natural transformation vp[I]: I's o[I] — I'2[].

Using Lemma 1.3, we extend the dg tensor functor I'7 5[] to the dg tensor functor I';3

from .A;h (V) to C;rgC as follows: For each object X (q)s of L(V)* and each non-zero cycle C' in
Z9(X)y, we choose a morphism v: 0 — G o I'y(X, f, ¢)[2q] in CJgC, which represents the cycle
class cl‘{MX(C): 0 — I'w (X, q)[2q] of C, using assumption (1) of this theorem, where W is the
support of C. Then, we consider the morphism

Lss([C1): 0 = ToI)(X, f,q) = GoTs(X, f,q)
of degree 2¢q for the composite morphism
0 5 T(X, f,q)[2q) = G o Ts(X, f,q)[24],

where the right arrow is the canonical morphism.

We define the morphism I's([C]*"): 0 — T'3[I](X, f,q) of degree 2¢q to be the composite of
[ 3([C]™) and the morphism T's2(X, f,q) — Ta(X, f,q) that is induced by the natural trans-
formation v5: I' 9 — I'e. The natural transformation v,[I] is naturally extended to the natural
transformation v3: I's 3 — I's.
Step 2. The extension to Ay(V).

We extend the dg tensor functor I'; 3 to the dg tensor functor I's 4 from .Aflh (V) to C’(fgC using
Lemma 1.3 as follows: Let X (q)¢ be an object of L(V)*, and let C and D be cycles in Z9(X);.
Then, the morphism

Ls([mC + nD}sh — [mC’]ﬁb — [nD]ﬁb): 0 — I's(X, £, 9)[2q]

is zero in T by the additivity of the cycle class maps CI‘IIM - This morphism is already zero

in K*C by Lemma 3.2 and assumption (2) of this theorem. Then, we choose a morphism
n: 0 — (X, f,q) of degree 2¢q in CJgC such that

dn = Ty([mC + nD]*" — [mC]*® — [n.D]*").
Here, we consider the morphism FS74(hﬁmb7n,C7 p): 0 = T 3(X, f, q) for this morphism 7. Similarly,
for each morphism h that is adjoined to Agh (V) in Definition 1.20(2) and (3), there exists a
morphism 7, in C’;rgC such that dny, = I's 3(h), by axioms (2)(a) and (2)(b) of I" in Definition 2.7
and by the assumptions of this theorem. We choose such a morphism 7, and set I'; 4(h) = np,.
Then, we obtain the functor I'; 4.

We extend the dg tensor functor I's to that denoted by I'y from Aflh (V) to Cd+gC , in a manner
similar to that used in the construction of I's, by means of the functor I'; 4 and the natural
transformation 3. We also naturally extend v3 to the natural transformation v4: I's 4 — T'y.
Step 3. The extension to Ag(V).

Let ? be @ or s. We set FS,OE)) =TI 4: Aib(V) — CdJrgC and l/éo) =wvy: gy = Ty Let r be a

positive integer. Suppose that we have formed the dg tensor functor F?TE)_ Y from .A‘g'b(V)(’"*l)

to C’(;;C and the natural transformation Vér_l): Fggl) — Fér_l). We denote Fg%_l) and yér_l)
by Fgréo) and VE()T’O), respectively. Furthermore, let k£ be a positive integer, and suppose that we

have formed the dg tensor functor Fgr’;fl) and the natural transformation Vér’kfl):

s

Fﬁ%k—l): Agh(v)(r,k—l) N Ci{gC, Vér,k—l): F(Ték_l) N Fgr,k—n_
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Then, we extend the dg tensor functor I' S, 5 Y to the dg tensor functor
Ty AP (V)R — o e

and extend the natural transformation 1/5(, rk=1) to the natural transformation

I/E()r,k) (r k) (r,k)

Iy — I'y

in a manner similar to that used in the previous step:
For each g € Z, each object (X, f) of £(V) and each non-zero morphism g: ¢®¥ — Zx(q)s of

degree 2q — r in Agh (V)*=1) with dg = 0, the morphism

Tgék_l)(g) 10 = Dos(X, f,9)[2¢ —r] = Ts(X, f,q)[2g — 7]

is zero in T because of the semi-purity in I" (cf. Definition 2.7(3)). By assumption (2) of this
theorem, the map induced by F' and 0 = 1,

K+C(Da FS(X’ f7 Q)[2q - ’I”]) - T(17FS(X7 f> q)[Qq - 7"]),
(r,k—1)
(

is injective; therefore, the morphism I';}

morphism 7: 0 — T's(X, f, q) of degree 2¢—r —1 in C+ C such that dn = (Tk 1)( ) because the

morphism dfgék_l)(

where hy is the morphism adjoined to A2 (V)("#~1) (cf. Definition 1.23). Using Lemma 1.3, the
assignment hy — 1 extends the dg tensor functor F(T K1) 6 the dg tensor functor Agb(V)("’k) —

Cg:gC Now, we denote this extended functor by F(T k).

g) is also zero in K*C. Hence, there exists a

g) is zero in C&;C. We choose such a morphism n and set Fgék)(hg) =1,

We define the dg tensor functor I‘g ) in a manner similar to that used in the previous step,
and we define the dg tensor functor I's: Agh(V) — C&;C to be the limit of the direct system of

{Fér’k)}k,T with respect to positive integers k and r:
=lim T Ty =1lim T,
i 1=ty

Step 4. The extension to A2, (V).

We define the dg tensor functor I'j,or to be the restriction of the functor I's to the dg tensor
subcategory Amot( ). From the construction, it is evident that this functor exhibits the desired
properties. O

Proof of Theorem 3.5. Let 'yt be a dg tensor functor constructed as in the previous proposi-
tion. Then, we define the triangulated tensor functor K bl“fr?ot to be the composite

by 4sh HOCY Tmot o Tot
KA (V)9 R) —2 "5 K C3,C — K*C.
By Proposition 1.30, the triangulated functor
K Cmot Kb('Amot( ) ® R) - Kmot(v) = Kb(Amot(V) ® R)

is an equivalence of triangulated categories; therefore, the functor K bF ot can be extended to
the triangulated functor
Kot : K

mot

(V)R — K*C.
It follows from axioms (4)—(8) of Definition 2.7 that the composite
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of the functors K°T'; and F': K+C — T factors through the localization D%, (V) g of K2, (V)g.

Let DTt denote this triangulated functor from D% (V)g to T. Thus, tr?lct)et diagram
L,
| |r
Dboi(V)r — T

mot

commutes, where the vertical arrows are the canonical morphisms. The restriction of DT ot
to the full image D® . (V)R of K? Otﬁh(V) R is a triangulated pseudo-tensor functor.

motsh m
It follows from Proposition 3.7 and the construction of the functor DT that it has the
desired properties. This completes the proof of Theorem 3.5. 0

Corollary 3.8 (Theorem 0.1). Let C be a weakly idempotent complete exact tensor category
(¢f. Example 2.3) whose unit object is projective and that admits arbitrary filtered direct limits
(we do not assume exactness properties for the filtered direct limits.). Let R be a commutative
ring that is flat over Z such that the ring C(1,1) is an R-algebra. Then, all C-valued geometric
cohomology theories (I',, cl) satisfy the assumptions of Theorem 3.5. In particular, there exists
a triangulated functor

Rnﬁi DM(V)R — D+Cﬁ

that is compatible with the cycle class maps cl and exhibits the following two properties:
(1) The composite functor

VP 5 Z s DM(V)r —2% D*C,

is isomorphic to the functor T' via the functor G (defined in Definition 3.1) and the canonical
functor C*C — DTC — DTC;y.

(2) The restriction of Rry to the triangulated tensor category ‘Drbnotsh(V)R is a triangulated
pseudo-tensor functor that is compatible with the external product X of I.

Assume further that the triangulated category DYC equips the countable self-direct sums for
all objects of DT (C). Then, the composite

Rr: DM(V)g 5% DHe, — DHC

of Rry and a quasi-inverse of DYC — DT Cy (cf. Proposition 1.35) exhibits the same properties
listed above.

Proof. Because the unit object 1 of C is projective, the canonical morphisms
K*C(1,M) — D*C(1, M)

are isomorphisms for all objects M of K+C. Hence, the assumption holds for any geometric
cohomology theory (I', X, cl). Assertion (1) follows from Lemma 3.2. The other is trivial. [

4. EXAMPLES OF REALIZATION

4.1. Hodge realization. (1) The Hodge cohomology theory (cf. [41, Chapter V, 2.3]). For a
Noetherian subring R of R, let C be the dg tensor category C;, of bounded below enlarged R-

R
mixed Hodge complexes (cf. [41, Chapter V, 2.3.1]). Furthermore, let 7 be its derived category
D;, , and let F be the composite of the total complex functor KTC;, — H OC;, =: K;, and
R R R R

the canonical functor K, — DI,
HR HR’

. ot 0 v+ +
F: K CH%%HCH,R%DH,R.
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Then, the triple (C, T, F') forms a triangulated tensor system. We note that the triangulated
tensor category 7T is canonically equivalent to the bounded below derived category of the abelian
tensor category of polarizable R-mixed Hodge structures (cf. [41, Chapter V, 2.3.3]).

Let V be the category Smc of smooth and quasi-projective schemes over C, and let I': VP x
Z — C*C be the functor RH48(—) constructed in [41, Chapter V, 2.3.9]. Then, combining the
usual external product X and the usual cycle class maps cl%V’ ., the functor I' forms a (C, T, F)-
valued geometric cohomology on V.

Levine constructed the object P* in the category T which is isomorphic to the unit object
such that the map of the represented functors

K*tc(pP*,—) = T(P*,-)

is an isomorphism (cf. [41, Chapter V, 2.3.10.1]). Hence, we have a realization functor associated
with this geometric cohomology theory by means of Theorem 3.5 when 0 = 1 is P* = 1.

(2) The real Hodge cohomology theory (cf. [41, Chapter V, 2.3.11]). For a Noetherian subring
R of R, let C be the dg tensor category C’;_Eﬁ: of bounded below enlarged real R-mixed Hodge

complexes (cf. [41, Chapter V, 2.3.11]). Furthermore, 7 be its derived category D;_LL?O, and let
R

F be the composite of the total complex functor K bC;_E,OO —H OCZ?O and the canonical functor
R R
H OCZ?O — D;fl?o. Then, the triple (C, T, F) forms a triangulated tensor system.
R R

Let V be the category Smg, and let T': V°P x Z — CTC be the functor R14&°(—). Then,
there also exist the usual external product X and the usual cycle class maps cl?M y for I' such
that they form a (C, T, F)-valued geometric cohomology on V. In a method similar to the above
case, we have the realization functor associated with this geometric cohomology theory.

4.2. Etale realization. (1) The l-adic étale cohomology theory (cf. [41, Chapter V, 2.2]). The
base scheme S is smooth and essentially of finite type over a ring R, where R is either an
algebraically closed field, a global field, a local field, a finite field, or a ring of integers in a
global field or in a local field (for simplicity). For a rational prime [ which is invertible on S,

let ShZ/ l*(S) denote the abelian tensor category of étale sheaves of Z/l*-modules on S. Let

ét
C be the full dg tensor subcategory of ngShz/ !
modules. Furthermore, 7 is its derived category DﬂimShéZt’(S ), and let F' be the restriction of

the composite functor

(S) whose objects are all normalized Z/I*-

K*CEsnZ/" (5) =5 KsnZ/" (5) — D snE/t(s)
to the full subcategory K°C. Then, the triple (C, T, F) forms a triangulated tensor system.

Let V be the category Smg, and let I': V°P x Z — C*C be the functor which sends any object
(X 2, S,7) in V x Z to Rp.Zg x,1(j) (cf. [41, Chapter V, 2.2.8]). Then, combining the usual
external product X and the usual cycle class maps cl%u » the functor I" forms a (C, T, F')-valued
geometric cohomology on V. By [41, Chapter V, 2.2.8.1], we can apply Theorem 3.5 to this
geometric cohomology theory. We thus have the associated realization functor.

(2) The étale cohomology theory with coefficients in Z/1". Composing the canonical functor
from Sh?t/l*(S) to the category Sh?t/lr (S) of étale sheaves of Z/I"-modules on S, we have a
geometric cohomology theory attached to the étale cohomology on S with coefficients in Z /1"
and the associated realization functor.

4.3. Mixed absolute Hodge realization. The mized absolute Hodge cohomology theory (cf.
[41, Chapter V, 2.4]). For a field k of finite type over Q, and a Noetherian subring R of R, let
C be the dg tensor category C’]TJ amkr Of polarizable R-mixed absolute Hodge complexes over
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k, and let T be its derived category D]D A kR We define the tensor triangulated functor F' to
be the composite
Kt*C— HC—T.

of the total complex functor and the canonical functor. Then, the triple (C,T,F) forms a
triangulated tensor system.

Let V be the category Smy, and let I': V°P x Z — CC be the functor which sends any object
(X 5 5,5)in V x Z to the one Ryramk(j) defined in [41, Chapter V, 2.4.8 and 2.4.9]. Then,
combining the usual external product X and the usual cycle class maps CI%V, v, the functor T
forms a (C, T, F)-valued geometric cohomology on V (cf. [41, p. 291]). Furthermore, we can apply
Theorem 3.5 to this geometric cohomology theory (cf. [loc. cit.]). We thus have the associated
realization functor.

5. p-ADIC HODGE COHOMOLOGY

5.1. p-adic Hodge geometric cohomology theory. In this section, let p be a prime number,
and let O be a complete discrete variation ring of mixed characteristic with a residue field & of
characteristic p. Let K denote the quotient field of O, let Ky denote the maximal unramified
extension of Q, in K, and let ¢ denote the Frobenius automorphism of Ky. Let Vi denote
the category of K-vector spaces, let Vj denote that of Ky-vector spaces with a o-linear endo-
morphism, and let Vggr denote that of K-vector spaces with a separated exhaustive decreasing
filtration. For any field I’ and scheme X, we denote X Xgpecz Spec F' by Xp.

To construct a p-adic Hodge realization functor from DM(O), for each object of Smp, we
first present a functorial (at the level of complexes) construction of a triple of the following:

(1) A complex of the de Rham cohomology of the generic fiber with the Hodge filtration.
(2) A complex of the rigid cohomology of the special fiber with the Frobenius automorphism.
(3) A morphism of complexes from the former to the latter, called the specialization map.

In this construction, it is essential for us to treat a prime filter of X as a point of X for each rigid
analytic space X. This is because the usual points of X are not sufficient to use the Godement
resolution as a canonical resolution of sheaves on X, but the prime filters of X are sufficient.
From this perspective, a functorial construction of a complex of the rigid cohomology is given
by Besser [11], and one for a specialization map on complexes is given by Chiarellotto, Ciccioni
and Mazzari [16]. Our construction of such a triple is based on these studies.

This section begins with the construction of the exact tensor category pH.S such that such a
triple belongs to the objects of CTpH S; this category contains the category of filtered Frobenius
modules (cf. [26]) as a full subcategory. Categories similar to CTpHS have previously been
studied by Bannai [4, Section 2] and Chiarellotto et al. [16, Section 2].

Definition 5.1. We define the exact categories pHS and pH Sy as follows:

(1) The objects of pHS are systems of the form M = ((My,¢), Mg, (Mar, F),crr, Sar),
where (M, ¢) is an object of V, M is a K-vector space, (Mgg, F') is an object of Vg,
and ¢: My ® K — Mg and s: Mgr — Mg are K-linear maps.

(2) For any two objects M and N of pHS, a morphism in pHS is given by a system
(fo, [x, far), where fo: Mo, — N» is a morphism in V7 for each ? = 0, K, or dR such
that the diagram

My =2 Mg <2 Mg

T

No Nk Nar

CN SN

commutes.
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(3) A kernel-cokernel pair A Sy B % ¢in pHS (i.e., f and g are morphisms in pHS,

A = Kerg and C = Cokerf) is a short exact sequence if the pair A i> By & Chis a
short exact sequence in V7 for each 7 = 0, K, or dR.

The exact category pH Sy is obtained by forgetting the o-linear maps ¢.
We will use the category pH.Sp in the next section.

Remark 5.2. (1) The exact categories pHS and pH S, satisfy the assumption regarding C in
Example 2.3 with respect to natural tensor structures. Therefore, D™pHS and D pHS, are
triangulated tensor systems. The unit object in this exact category pH Sy is projective; however,
that in pH S is not.

(2) Let M be an object of CTpHS such that M- is acyclic for each ? = 0, K, or dR. Then,
M is acyclic.

Lemma 5.3. Let f: M — N be a morphism in CTpHS.

(1) Suppose that Mqr and Nqgr are strict and that the morphisms H'(fqr) in Var are strict
for allv € Z. Then, the cone of fqr ts also strict.

(2) Suppose further that fr: M, — N7 is a quasi-isomorphism of complexes of vector spaces
for each ? =0, K, or dR. Then, f is a quasi-isomorphism in CTpHS.

Proof. Assertion (1) is proven in [6, 3.1], and the other follows from (1) and Remark 5.2(2). O

Next, we recall the Godement resolution of sheaves, which will be needed later (cf. [41,
Part II, Chapter IV]). For a Grothendieck site 2" and a commutative ring R, we denote the
category of sheaves of R-modules on 2 by Sh(Z,R). Let P be a conservative family of
points of 2~ (i.e., (1) the functors Sh(Z",R) > F +— F, € Sh(pt, R) are exact for all points
pof Z in P and (2) F, = 0 for all p € P implies F' = 0 for an F € Sh(2Z",R)). Then,
let G}, p: Sh(Z', R) — C*Sh(Z", R) denote the Godement resolution associated with P, and
let ap:id — G*R, p denote the augmentation. We extend this functor G*R, p to the functor
C*TSh(Z',R) — C*tSh(Z", R) by composing the total complex functor. We again denote this
extended functor by G}‘%’ p- Then, we can show that the Godement resolution has the following
properties.

Lemma 5.4. (1) For each object F of CT™Sh(Z", R) and each object X of 2, Gg pF is acyclic
with respect to the functor I'(X, —) and the morphism F — G}, pF' induced by the augmentation
ap 1S a quasi-isomorphism. 7

(2) Furthermore, let w: Sh(Z,R) — Sh(#,R) be a morphism of Grothendieck topoi, and
let Q be a conservative family of points of % such that the composite of p and f belongs to
Q for each point p in P. Then, for a morphism f: G — usF of complexes of sheaves on %,
where F and G are objects of CtSh(2", R) and CTSh(#%, R), respectively, there exists a natural
morphism gy: Gx oG — f«Gy pI such that g o ag = u«(ap)o f.

Proof. Assertion (1) follows from [41, Part II, Chapter IV, 2.2]. See [16, 3.1.2] for a proof of the
other. 0

Lemma 5.5. We assume that 2~ has a finial object ¢ and that products over ¢ exist. Let Fy, Fy,
and F3 be objects of CTSh(Z", R), and let p be a morphism piFy @ p5Fy» — F30 x of complezes
of sheaves on & x X', where the p;: X x X — Z are the projections to the i-th component.
Then, there exists a morphism of complexes of sheaves of R-modules

G}K%!,P,U: pTG}}7PF1 ®p§G*R,PF2 — GE,PF3 o X
that is natural in p and is compatible with p via the augmentations

piap @r psap: piF1 @r p3Fe — piGR pF @r p3GR pF,
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ap o X: FgOX *)GE,ngoX.

If F1 = Fy = F3 and if p is associated and commutative, then Gy pp is also associated and
commutative. 7

Furthermore, let us use the notations used in Lemma 5.4(2), and let us also assume that % has
a finial object vy and that products over vy exist. Let f;: G; — u.F; be a morphism in CTSh(%, R)
fori=1,2,3, and let v be a morphism ¢G1 ® ¢5G2 — G o x, where the q¢i: % x % — ¥
are the projections, such that v is compatible with u via the morphisms f;. Then, G*R,QI/ 18 also
compatible with GRP[L via the morphisms gy, .

Proof. The first half of this assertion is proven in [41, Part II, Chapter IV, 2.3.7], and the
compatibility follows from the constructions of gy,, G pp and G, pv. g

To use the Godement resolution, following [16, Section 3 and 4], we prepare the conservative
families of points of rigid analytic spaces with the rigid analytic site and of schemes with the
Zariski site, respectively. For a rigid analytic space X, let Pt(X) be the set of points of X that
consists of all prime filters (cf. [51, Section 2]) of X. For an object X of Smy, we let X" denote
the rigid analytic space associated with X. Furthermore, let Pt(X) denote the set of points of
X that consists of all Zariski points of X with discrete topology. We regard the set Pt(X?*") as
the set of points of X via the canonical morphism X2* — X of sites.

Lemma 5.6. Using the above notations, Pt(X) (resp. Pt(X)) is a conservative family of points
of X (resp. X). In particular, Pt(X)U Pt(X®") is a conservative family of points of X.

Proof. See [51, Section 4] after the proof of Theorem 1. d

For simplicity, we will write Gd,, = GE,Pt(X)UPt(Xan) and Gd, = G*R,Pt(x) when the sets
Pt(X) U Pt(X?) and Pt(X) and the ring R are clear from the context. Now, in this section,
we will begin to construct the desired functor.

Step (1). We present a functorial construction of a complex of the de Rham cohomology. For
details of this cohomology theory, we refer to [22].

Let X be an object of Smg, and let Q5 denote the de Rham complex of X. For each
compactification X of X with a normal crossing divisor D := X \ X, let Q% (D) denote the de

Rham complex of X with logarithmic poles along the divisor D. Then, the pair

(D(X, G2, Q5(D)), T(X, GdZ,052™(D)))

of complexes forms an object of CTVyr whose cohomology is the de Rham cohomology of X
with the Hodge filtration. Then, we define the object T'qr(X) of CTVgr to be the direct limit
of the pair

(D(X, GAZ,0%(D)), (X, Gd2,052" (D))

with respect to the direct system that consists of all normal crossing compactifications X of X.

Proposition 5.7 ([32, 7.1.2]). The above correspondence X — Iqr(X) can be naturally extended
to a functor Tar: Sm}Y — CTVar that exhibits the following properties:

e Let X be an object of Smg. Then, Car(X) is a strict complex. The cohomology groups
H'(Tar(X)) are of finite dimension for all i € Z and are zero if i > 0.
e The H'(T'qr(f)) are strict morphisms for all morphisms f of Smy and all i € Z.

Step (2). Next, we present a functorial construction of a complex of the rigid cohomology
with the Frobenius automorphism. This construction is based on [11, Section 4] and is the same
as that in [16, Section 4]. We refer to [8], [9] for the basic notations and properties in the theory
of the rigid cohomology.

A system (X, X, P) is called a rigid triple if X is an object of Smy, X is a compactification
of X, and X — P is a closed immersion into a p-adic formal O-scheme P that is smooth
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in a neighborhood of X. For each rigid triple (X, X,P), let Px denote the generic fiber of

P, and let | X[p be the tube of X in Pg. For each strict neighborhood V' of | X[p in | X[p,
(v, GdajTGdaQ{/) is a complex of the rigid cohomology of X.

Besser provided a functorial construction of a complex of the rigid cohomology by taking the
limit over the data (X, P) (cf. [11, p. 8-14]). Here, we recall this construction of such a complex.

Definition 5.8 ([11, 4.10, 4.11]). Let X be an object of Smy.

(1) We let PT x be a set of all pairs (f,(Y,P)), where f: X — Y is a morphism in Smy,
and (Y,Y,P) is a rigid triple.

(2) Let SETY be the category whose objects are all finite subsets (fs, (Ya,Pa))aca of PTx
such that f, is the identity for some a € A and whose morphisms are inclusions.

Lemma 5.9 ([11, 4.12]). For each object of A = (fu,(Ya,Pa)aca) of SET)O(, we let X 4 be the

closure of the image of the map [[,c 4 fa: X = [aca Ya, and we let Py be the formal scheme
ocaPa- Then, (X, X 4,P4) forms a rigid triple. Furthermore, we define

D (X/K)x, p, =Hm[(V, Gdaj'GdaQY),
v

where V' runs over all strict neighborhoods of | X[p in | X[p. Then, for each subset B of A, the
canonical projections X 4 — X p and Pa — Pp naturally induce a quasi-isomorphism

Prig(X/K)x, p, = Trig(X/K)x, -
Proposition 5.10 ([11, 4.9, 4.22], [9, 3.1]). The correspondence

X = Tg(X/K) = lim Dug(X/K)x, p,
AeSETY,

can be naturally extended to a functor Tyg i : Sm)® — CT Vi such that the cohomology groups
H'(Tyig (X)) are of finite dimension for all objects X of Smy, and all i € Z. Moreover, if
K = Ky, we can naturally extend I'yig g, to a functor I'p: szp — CTV,.

Step (3). Finally, we construct a natural transformation sp: I'qr — T'iig,x that induces the
specialization map on the cohomology theories. To this end, we present another functorial
construction of a complex of the rigid cohomology of the special fiber for each object of Sme.

Let X be an object of Smp. For each compactification X of X, let X denote the formal
completion of X along its special fiber. Then, (X, Xz, X) forms a rigid triple. Because X
is proper over O, X ¢ is canonically isomorphic to Y?? Using this isomorphism, X% can be
regarded as a strict neighborhood of the tube | X} [Y in Xg. Hence, I'(X320, GdajTGdaQ}?{n) is
a complex of the rigid cohomology of Xj. Then, we define the complex

Lrig(X) = lim (X3, GdajTGdaan),
X

where X runs over all compactifications of X. In this case, we need not determine a method of
taking a direct limit because there exists a canonical rigid triple (X, X1, X) and a canonical

strict neighborhood X# of | X, [y in X g for each object X of Smp and its compactification X.
By construction, there naturally exists a natural transformation on Sme:

rig(—) = Trig i ((—)k)-

Let X be an object of Smp. For each normal crossing compactification X g 4 Xk of Xk,
we obtain the canonical morphism

"Xk, Gdgzﬂ‘yl{ (D)) = T'(Xk,GdZ,2%,.)
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induced by the natural map Q.YK (D) — i.Q%, by Lemma 5.4(2). By taking the limit with
respect to the direct system that consists of all normal crossing compactifications X g of Xg,
we obtain the morphism

FdR(XK) — F(XKa Gda%z 3(1()
of complexes, which is functorial in X.

For each object X of Smgp and each compactification X of X, let e denote the natural
morphism X3 — X of sites. Then, by Lemma 5.4(2), we obtain the composite morphism

[(Xg, GdZ, Q%) = DX, GdZ0%s) = T(XF, GdajTGdaan),
where each of the arrows is induced by one of following the natural morphisms:

Ve = &Q%mn, GdaQ%n = j1GdaQan,

respectively. From the construction, the above composite morphism is functorial in (XLY)
Therefore, by taking the limit that consists of the direct systems of all compactifications X of
X, we obtain the functorial morphism

F(XKa Gdg,z ..XK) - Frig(X)'

We define the morphism sp: Tqr(Xx) — I'iig(Xy/K) as the composite of the above three
morphisms:
Far(Xk) = T(Xk, GdZ,0%,) = Thig(X) = Thig(Xi/K).
Then, we obtain a functor with the desired properties that is formed by complexes of the triple
consisting of the rigid cohomology, the de Rham cohomology, and the specialization map.

Proposition 5.11. For each integer q, we define I'o(Xk, q) = To(Xk)RK (q) (resp. Tar (X, q) =
Far (Xk) ® K(q)), where K(q) is the Tate object of degree q in Vi (resp. Var) (cf. [16, 2.2.1(i)]).
Then, we can naturally extend the correspondence

(X,q) = (To(Xk, q), 'vig(Xi/K), Tar(X Kk, q), ¢, sp),

where ¢ is the canonical quasi-isomorphism T'ig(Xy/Ko) @k, K — Trig(Xi/K) (cf. [11, 4.21]),
to a functor I'pp : Sm?op x Z — CtpHS with the following properties:

o Let X be an object of Smp. Then, the object Tqr(Xk) of CTVagr is strict. The all
cohomology groups H (Tyig(Xx/K)), H(o(Xk/Ko)), and H (Tar(Xk/K)) are of finite
dimension for i € Z and are zero if 1 > 0.

o The morphisms H(Uqr(fr)) of Var are strict for all morphisms f of Sme and for
1€ 7.

We remark that the specialization map sp: I'qr (X k) — Trig(Xy/K) is not a quasi-isomorphism
in general, unlike the case of the ordinary Hodge cohomology, because for a proper closed sub-
scheme Z of the special fiber of X, the generic fibers of X and X \ Z are equal, but the special
fibers are distinct.

Next, we will see that the Kiinneth maps on both cohomology theories can be extended to
the commutative external product of the functor I',p.

Proposition 5.12. There exists a canonical commutative external product X of I'yrr that induces
the Kinneth maps on both cohomology theories and satisfies aziom (5) of Definition 2.7 (that is,
the aziom called the ‘Kinneth formula’).

Proof. Let us consider the diagram
Tar(Xg) = T(Xk, GdZ,0%, ) — Tiig(X) = Drig (X3 /K) <= Thig(Xi/Ko) @ K

sp
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of cohomology theories on Smy5 (i.e., functors from Smg) to C*(pHS)), where X is an object
of Smp. By Lemma 5.5, each cohomology theory in this diagram admits the Kiinneth map
(cf. [2, 4.1], [10, 3.1], [23, 8.1.24]). Moreover, these Kiinneth maps induce commutative external
products of these cohomology theories. To demonstrate that these external products can be
naturally extended to the external product X of I',, it is sufficient to show that these external
products are compatible with the maps sp and ¢. This follows from the second half of Lemma
5.5. This external product X satisfies this axiom because the Kiinneth formula holds for each
cohomology theory (cf. [2, 4.3], [10, 3.2], [23, 8.2.10]). O

Before we prove that the functor I'yz with the external product X can be extended to a
pH S-valued geometric cohomology theory, we must consider the derived category DT (pHS) of
the exact tensor category pHS.

Remark 5.13 ([16, p.545, and 2.2.1(iii)]). For each of the objects M and N of CTpHS, the
complexes I'g(M, N) and I'1 (M, N) are defined as

Lo(M,N) = C3,Vic,(Mo, No) @ Ci,Vic (M, Ni) ® Cgf, Var (Mar,, Nar),

T1(M, N) = Cq, Vi, (Mo)?, No) ® C3, Vi (Mo, Nk ) ® Cf, Vic(Mar, Nk ),
where (My)? := My ®, Ko. We define the maps ¢1, ¢o: T'o(M, N) — I'1(M.N) as

é1(fo, fr, far) = (fo o dur,en o fo, fo o sumr),

b2 fo, fr, far) = (én © fo, fr o ey 5N © far)

for (fo, fx, far) € To(M, N). Furthermore, let ¥pr n = ¢1 — ¢2, and let us define the complex
I'(M, N) as Conetpr n[—1]. Then, the following properties hold:

(1) The kernel of ¢ n is equal to CTpHSqe(M, N) as a complex.

(2) When M = 1, the cone of the morphism s n is naturally quasi-isomorphic to the cone
of the map

PN N()@FONdR — Ny ® Nk
with ¥ (no, nar) = (no — ¢n(no), en(no) — sy(ndr)), by the canonical isomorphisms
Ci,Vieo (Mo)?, No) = Ny, Cy,Var(Mar, Nar) = FNgg.

(3) For any quasi-isomorphism N — L in CTpHS, the canonical map I'(M, N) — I'(M, L) is
a quasi-isomorphism because I'(M, —) is an exact functor.

Lemma 5.14 ([16, 2.2.2]). For each i € Z, there exists an isomorphism DTpHS(M, N[i]) —
H'(I'(M,N)) that is functorial in M and N, and the diagram

DtpHS(M,Ni]) —— H(I'(M, N))
commutes, where the vertical arrows are the canonical maps.

Lemma 5.15 ([6, 1.11]). Let o be an element of Ko. For any objects M and N of CTpHS, we
define the homomorphism Uq: I'(1, M) @ I'(1, N) — IT'(1, M ® N) by the formulas

(£,0) Ua (¢°,0) = (f*®¢°,0), (0, f1) Uq (0,g") = (0,0),

(f°,0) Ua (0, %) = (0, (—=1)%U") (g (f°) + (1 — )2 () @ g),
and (07 fl) UO! (90’ 0) = (07 fl ® (1 - a)¢1(go) + a¢2(go))
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for (f°, f') € T(1, M) = To(1, M) ® T1(1, M)[-1] and (¢°,¢') € T(1, N). Here, ¢1 and ¢ are
the maps defined in Remark 5.13. Then, the map Uy, is functorial in M and N, is independent
of the choice of a up to homotopy equivalence, and is associative if « =0 or 1. The diagram

Ir(1,M)®D(1,N) —2=s T(1,M®N)

! !

FO(L M) ® FO(L N) E— FO(L M® N)
commutes, where arrows other than U, are canonical maps. Moreover, the diagram

DtpHS(1,M)® DT*pHS(1,N) —— D*'pHS(1,M @ N)

~| «|

HOT(1, M) ® HNT(L,N) 20 gor, e V)

also commutes, where the top arrow is the canonical map.

Proof. Tt is trivial to prove all assertions except the last one. For quasi-isomorphisms M — M’
and N — N’, we consider a canonical hexahedron

K(1,M")® K(1,M") K(1,M' @ N')
D(1, M) ® D(1, M) D(1,M ® N)

l

HO(T'(1,M")) ® H(T'(1,N")) —

HO(T'(1,M)) ® HY(I'(1, N))

HO(Uq
) o, M @ NY))

1%

HO(Uq)

HO(D(1, M  N))

where we set K(—,—) = KTpHS(—,—) and D(—,—) = DtpHS(—,—). All subdiagrams ex-
cept for the front square are clearly commutative. Hence, the remaining front square is also
commutative. OJ

At the end of this section, we prove that the functor I',g with the external product X can be
extended to a pH S-valued geometric cohomology theory on Smp using fundamental results of
the rigid cohomology and the de Rham cohomology.

Proposition 5.16 ([16, 1.6.2]). There exist maps
Ny x pirt Zi(X) = DTpHS(1,Tprw (X, )[24))
for all objects X of Smp, as well as closed subschemes W of X of codimension q, such that the
functor T'py satisfies axiom (2) of Definition 2.7 (that is, the aziom labeled ‘cycle classes’) with
respect to the class of these maps, cl,y, and this cycle class is compatible with that in the rigid
cohomology and that in the de Rham cohomology via the map
2 2
D pHS(L, Tpnw (X, q)[2q]) — Hyig v, (X/Ko) ® FUHY y, (X)
induced by Remark 5.13(2) and Lemma 5.14. Moreover, such a class of maps cl,py s unique.

Proof. Let M denote I'yp w (X, ¢). Then, by Remark 5.13(2) and Lemma 5.14, we have an exact
sequence

H*Y(My) @ H* 7 (My) — D pHD(1, M[2q])
s H2(Mp) @ FOH>(Mag) 2% H?(Mo) & H(Mg).
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It follows from [16, 1.6.2] that there exists a map
n: Zi,(X) = H* (M) & FOH?(Mgg)

such that the following statements hold:

or each cycle mn , let no(Cr) be the cycle class of Cf In o) and let

1) F h lC"ZgVXl C}) be th le cl f Cp, in H?I(M, dl
nar(Ck) be that of Cx in FOH*(Mgg). Then, 7(C)=(no(Ck),nar(Ck)).

(2) Yaron=0.

Because the semi-purity in the rigid cohomology [9, 5.7] implies that H24~!(My) is zero, the
map 7 uniquely lifts to a morphism

Z(X) = DYpHS(1, M[2q)).

Now, we define the map Cl%(,W,p g for Iy to be precisely this lifted morphism. These maps cl,i
satisfy axiom (2)(a) of Definition 2.7 by [16, 1.6.3]. Because the Kiinneth maps and the Poincaré
duality pairings are compatible for the rigid and de Rham cohomology theories (cf. [2, 4.3], [10,
3.1]), the above cycle class maps 1o and nqr satisfy axiom (2)(b) of Definition 2.7. Hence, by
Lemma 5.15, this axiom holds for the class of maps cl,y because the specialization maps are
compatible with the Poincaré duality pairings (cf. [2, 6.9]). O

Here, we note that the range DTpHS(1,Tpuw (X, ¢)[2q]) of the cycle class map above is the
rigid syntomic cohomology defined by Besser [11, 6.1], which is a p-adic analog of the Deligne
cohomology.

Proposition 5.17. For an object X of Smp and i,q € Z, there exists a canonical isomorphism

D pHS(1,Tpn (X, q)[i]) = HL (X, K(q)),

syn
where the right-hand side is the rigid syntomic cohomology.

Proof. This proposition is true if we replace the triangulated category DTpH S with the one pH D
defined in [16, 2.1.1(ii)] (cf. [16, 5.3.4]). It is clear that the category pHD is a full triangulated
subcategory of DTpHS. O

Theorem 5.18. The triple (I‘pH,X,clpH) is a pHS-valued geometric cohomology theory on
Sme.

Proof. First, the existence of I', i s (defined in 2.5) follows from the fact that F"T'qr(X) = 0 for
all X in Smyg and n > dim X.

Next, we recall that both the rigid cohomology and the de Rham cohomology satisfy axioms
(3), (4), (7), and (8) of Definition 2.7, namely, semi-purity, homotopy equivalence, excision, and
the unit property (cf. [2], [8], [9], [31]).

(a) The Kiinneth formula in I',5 is proven in Proposition 5.12.

(b) Semi-purity in I', i follows from the semi-purity in both cohomologies.

(c) The direct sum property in I,y is evident.

(d) Excision in I'yy follows from the fact that the excision isomorphisms in both of the coho-
mologies commute with the specialization maps sp. Similarly, because the Gysin maps in each
cohomology commute with the specialization maps sp, homotopy equivalence holds for I', .
(e) The cycle class property in I'yy is proven in Proposition 5.16.

(f) The unit property in I', gy follows from the construction of the cycle class map cl,g.

(g) Gysin isomorphism in I',y follows from the fact that under the assumption of Definition
2.7(6), the diagram
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id®cl(W) «
(X) T(X) ® Tw (X, q)[2q) —= Dxsw (X xs X, q)[2q] —>= T (X, 9)[2q]
P T p*®id (pxid)* =
id®cl(W) X Ar
rw) I(W) @ I'w(X,q)[2q] —= Twxsw (W xs X, q)[2¢] —T'w(X, q)[2q]
id®cl(5)l id®G x,w Gwx X, WxW Gx,w
(W) ® D(S) —22™ . D(W) & D(W) = T(W xg W) A (W)
\d@w* (idxm)* =
T'(W)®T(S) = T(W xg8) 2 T(W)

commutes and the bottom maps are isomorphisms in DTpH S. In this diagram, A is the diago-
nal morphism, 7 is the structural morphism of W over S, and Gx w: I'(W) — I'w (X, ¢)[2¢] is
the Gysin isomorphism.

From the above, we see that the triple (I'yy, X, cl,i) is a pH S-valued geometric cohomology
theory on Smp. O

5.2. Realization associated with p-adic Hodge cohomology. In this section, we will prove
Theorem 0.2. By applying the forgetful functor pHS — pHSy (i.e., by forgetting the Frobenius
endomorphisms, cf. Definition 5.1) to the pH S-valued geometric cohomology theory constructed
above, we obtain a pH Sp-valued cohomology theory (I'px,, X, cl, H,)- Because the unit object of
pH Sy is projective, this geometric cohomology theory can be extended to a realization functor
by Corollary 3.8. Furthermore, because DTpH Sy equips the countable self-direct sums for all
objects, we can obtain a realization functor as follows.

Theorem 5.19 (Theorem 0.2). Let R be a commutative ring that is flat over Z such that the
ring Ko = pHSy(1,1) is an R-algebra. Then, there exists a triangulated functor

RPHSO: DM(O)R — D+pHSO

that is compatible with the cycle class maps cl,y, and has the following properties:
(1) The composite

R
Sm%P x Z — DM(0)g —2% D pH S

is isomorphic to I'py via the functor G that is defined in Definition 3.1 and the forgetful functor
pHS — pHSg.

(2) The restriction of Rpus, to the triangulated tensor subcategory D° .\ (Smo)g is a tri-
angulated pseudo-tensor functor that is compatible with the external product K.

(3) Let D be an object of DM(O)xg.

e For each ? = 0, K, or dR and i € Z, the vector space H(Rpus,(D)?) is of finite
dimension and is zero if i > 0. 4
e The map c¢: H' (Rpus,(D)o) @ K = H' (Rpus,(D)k) is an isomorphism for each i € Z.

Proof. Assertions (1) and (2) follow from Corollary 3.8 and the construction of Rprs,. The
last assertion follows from the same corollary, Proposition 5.11, and the following lemma in the
case that 7T is the strictly full subcategory generated by the image of I',;7. We note that the
category DM (O) is the pseudo-abelian hull of the full subcategory generated (as a triangulated
category) by the objects Zx (q)[é] for all X in Sme and for i,q € Z. O

Lemma 5.20. For a strictly full subcategory T of DTpHSy, let (DTpHSy)T denote the full
triangulated subcategory of DTpHSy generated by all objects of T .

(1) If T is closed under the operation of taking cones, then (D pHSy)1 is equal to T .
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(2) If T is closed under the operation of taking direct summands, then the restriction of
DtpHS) — (DTpHSy)y to (DTpHSy)7T is an equivalence (DYpHSy)T — (DTpHSo) T4
of triangulated categories.

Proof. Assertions (1) is evident. A quasi-inverse of DTpHSy — (D pHSp); sends an object
(M, p) of (DTpHSy)4 to the object M(p) of DTpH S that satisfies the properties below (cf. [41,
Part II, Chapter II, 2.4.8.1]):
(1) M(p) is a direct summand of M.
(2) The projector p: M — M is equal to the composite M — M (p) — M of the projection
and the inclusion.

These statements prove assertion (2). O

Remark 5.21. For an object D (resp. a morphism f) of DM(O)pg, it is not simple, in general,
to determine whether the object Rpms,(D)ar of CtVar (resp. the morphism H(R,ms,(f)dr)
of Vgr for ¢ € Z) is strict. However, if D is associated with a simplicial object of Smp, then we
can show that R,ns,(D)qr is strict by Lemma 5.3 and Proposition 5.11.

Part 2. Chern Class Map
6. CHERN CLASS MAP AND CHERN CHARACTER

We begin with this section to define an abstract cohomology theory for which we will construct
a Chern class map and a Chern character.

6.1. Definition and examples of abstract cohomology theory.

Definition 6.1. Let V be a full subcategory of Schg that satisfies the following conditions

e The base scheme S and the empty scheme is in V.

e The classifying scheme BGLy s of GLy,s (cf. [41, Appendex B, 1.1.2]) is a simplicial
scheme in V for each N € Zx.

e For a scheme X in V), all open subschemes of X are in V.

(1) A 4-tuple (C,I', T, F), where C is a dg category, I' = {I'(j) } jez is a Z-graded functor from
VP to ZOC, T is a triangulated category, and F is a triangulated functor from K°C to T is
called an abstract cohomology theory on V if the following conditions hold for j € Z:

e I'(j) preserves arbitrary direct sums.
e The canonical map FI'(j,X) — FI'(j,U)* in T is an isomorphism for each simplicial
scheme U attached to a finite affine open covering of a scheme X in V.

(2) For an abstract cohomology theory H = (C,I', 7, F) on V, we define the H-cohomology
group Hy, (X, j) of a simplicial scheme X in V to be

H}y(X, j) = im T(FT(0, 8), FT(j, X)*="[i])

for i,j € Z. Here, I'(j, X)*<" is the (stupid) truncation of I'(j, X)* to degree < n for n > 0 (cf.
[41, p. 288]).

Remark 6.2. For a (C, T, F)-valued geometric cohomology theory (I',X,cl) on V, the 4-tuple
(C*C,T, T, F) forms an abstract cohomology theory on V. For such an abstract cohomology
theory, the unit object of the tensor category 7 is isomorphic to FT'(0,S) via the cycle class
map (cf. Definition 2.7). In this thesis, we use this identification.

Remark 6.3. Let (C,I',T,F) be a geometric cohomology theory. Suppose that C is the dg
category C;ng of bounded below complexes on an abelian category A, T is its derived category
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DT A, and F is the composite

K*CiA 2ot K+ A DA

of the total complex functor (cf. [41, Part II, Chapter II, 1.2.9]) and the canonical one. Then,
via the total complex functor

Tot: CTCTA— CT A= 2",

the functor I' is canonically extended to a contravariant one from the category s.V of simplicial
objects in V to Z°C without taking truncations,

syor L otot A I ot A
Suppose further that A is the category Modpg of R-modules for a ring R, and that the unite
object R is isomorphic to F I'(S) in T. Then, under fixing such an isomorphism, the group
Hj,(X,j) is canonically isomorphic to H*(FT'(j,X)*),

Hy, (X, j) = DY A(R, FT(j, X)[i]) = KT A(R, FT(j, X)[i]) = H'(FT(j, X)*).
This identification is often used in the rest of this thesis.

Ezxample 6.4. Levine’s motivic abstract cohomology theory. Let V be a category which satisfies
the conditions (a), (b) and (c¢) in Definition 1.32. Then, we have an abstract cohomology theory
Hie = (CLes I'Le, TLes FLe) on V associated with Levine’s motivic categories with coefficients in
a ring R as follows:

e The dg category Cre is Amot(V) g (cf. Definition 1.25).

e The functor I're is VP x Z — Z° Aot (V) g which sends (X, ) to Levine’s motive Zx (j)

(cf. Definition 1.7).
e The triangulated category Tie is D2, (V)r (cf. Definition 1.32).

mot
b

e The triangulated functor Fi. is the canonical one K®Auot(V)r — Dot (V)R-
We note that the Hye-cohomology H%LC (X, j) is Levine’s motivic cohomology

Hio(X, R(j)) = Dot (V)& (Zs (0), Zx (7))
with coefficients in R (cf. [41, Part I, Chapter I, 2.2.7]).

6.2. Construction of Chern class map and Chern character. Following Huber’s method
in [32, Sectipn 18], we next see that, for an abstract cohomology theory H on V, an element ¢
of [T @H%(BGLMSJ) gives us a Chern class map

J N

G Ki(X) = HY (X, §)

)

to the H-cohomology group.
We first construct a Hurewicz map. To do this, we use the following lemmas about the
K-group and the homotopy limit.

Lemma 6.5. We set GL = lignN GLy. Then, for a scheme X, there exists a canonical map
Ki(X) — lim7;(Z x holim BGL(Ox(U))T),
U

where U runs over all simplicial schemes attached to a finite affine open covering of X. This
map s an isomorphism if X is reqular.

Proof. See [41, Appendix B, 2.1.1.2, 2.1.2]. O
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Lemma 6.6. For a simplicial-cosimplicial abelian group A, there exists a canonical isomorphism
7;(holim A) = H~*(Tot N A¥)

fori € Z>y.

Proof. See [41, Appendex B, 2.2.1]. O

We define a Hurewicz map
(1) Ky(X) — lim H™*(Tot NZV(U, BGLn,s)5)
UN
to be the composite
Ki(X) 22 lim m;(holim BGL(Ox (U))")
U
— lim 7;(holim ZBGL(Ox (U)) ™)
U

86, %H‘i(Tot (NZBGL(Ox(U))")3)

=)

& lim H~(Tot NZBGL(Ox (U))?)
U
=lim H'(Tot NZV(U, BGLys))
U,N

where the second map is induced by the map BGL — ZBGL of simplicial presheaves on X and
the fourth is induced by the weak homotopy equivalence BGL — BGL™.
We next construct a map

Ki(X) = lim T(FT(j, BGLy,s)™=", FT (5, X)i])
Nmn

for j € Z. Let X and Y be truncated simplicial objects in V), i.e., X and Y are simplicial objects
in V which satisfies X; = Y; = ) for 4 > 0. Then, the functor I" induces a map

ZV(X,Y) = C(I'(5,Y),I'(, X))

of simplicial-cosimplicial complexes of abelian groups. Taking the associated chain-cochain com-
plexes and normalizing them, we have a map

(2) NZV(X,Y): — NC(I'(j,Y),I'(j, X));

of triple cochain complexes. Taking the total complex twice and using the lemma below give us
a map

(3) Tot NZV(X,Y )i = Ch,C(T(j,Y)*, T(j, X)*),
which is natural in X and Y.

Lemma 6.7. Let A®* and B® be bounded complexes in a dg category D. Then, there exists a
canonical isomorphism

Tot o Tot; (ND(A", BY); jez) = C3,D(A®, B*).
Here, Tot; means taking the total complex under firing the index j.

Proof. Tt follows from [13, Section 2, Proposition 3], because ngD is the minimal strictly full

dg subcategory of the dg category Pre-Tr(D) of twisted complexes in C which is closed under
the operation of taking cones (cf. [41, Part II, Chapter II, 1.2.7]). O
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We compose the Hurewicz map (1)

Ki(X) — lim H(Tot NZV(U, BGLy,s)?)
UN

with the colimit (with respect to n, U and N) of the composite map
Hi(Tot NZV(U, BGLy 5)icp) -2 HY(C§,C(T(j, BGLy,5))*",T(j,U)")
= K'C(I'(j, BGLN,s)*™<",T'(j,U)*[i])
(4) L T(FT(j, BGLys)™=", FT(j,U)*[i])
(5) & T(FT(j, BGLy s)*=", FT(j, X)[i]),

where the bottom map is induced by the canonical isomorphism FT'(j, X) — FT'(j,U)*. We
thus have a functorial map

(6) Ki(X) ®lim Hj (BGLn s, k) — Hj (X, k)
N

for j,k € Z. We here name an element of H@Hg(BGLMS?j)'
J N

Definition 6.8. A wuniversal Chern class for an abstract cohomology theory H is an element
¢ = (c?); € [lim H; (BGL s, j)-
J N

Hence, a universal Chern class ¢ for the abstract cohomology theory H gives us the Chern
class map

G = (= @ ) Ki(X) — HY (X ).

In the case where i = j = 0, we add the rank function

(7) Ko(X) = Z — Hy(X,0),
where the second map sends 1 to the map I'(0, 5) Tx=9), 0, X).

We here define the Chern character for an abstract cohomology theory with a universal Chern
class.

Definition 6.9. The Chern character
chyl .+ Ki(X) — Hl7'(X,j) ® Q

for an abstract cohomology theory H with a universal Chern class c is defined as follows:

» (—1)/-1 i%i—i e
ch;{j’C = G- 1) chg Yif § > 0.
chg{’OC is the rank function (7), Ko(X) = Z — HY(X,0) ® Q. Otherwise, ché’{jC =

Remark 6.10. We note that the definition of Huber’s Chern character [32, 18.3.12] is not correct.
The map is not multiplicative (see [32, 18.3.11]).

(=171,
ch = (501'64-2 (j — 1)!0]-
Jj=1

is the correct definition.
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7. NATURALITIES OF CHERN CLASS MAP
7.1. Naturalities. We note that naturalities of our Chern class map.

Proposition 7.1. Let (H,c) be an abstract cohomology theory with a universal Chern class.
Furthermore, let G be a dg functor C — C' and let G’ be a triangulated functor T — T’ such
that the diagram

b
Kbe K29 goer

Fl lF’
T S 7
commutes up to an isomorphism. Then, we have an abstract cohomology theory H' = (C',GT, T, F")

with a universal Chern class G'c. The Chern class map for (H', G'c) coincides with the composite
Jn2i—i

Ki(X) 22 HE7(X, 5) &5 HE (X, §).

Proposition 7.2. For a map p: S — T of schemes and a full subcategory W of Schr that
satisfies the conditions on V in Definition 6.1. Assume that the image of W under the base
change map p*: Schy — Schg contains the category V. Then, an abstract cohomology theory
(H,c) on V with a universal Chern class gives a one (p*H,p*c) on W via p* and its Chern class

map c;’f?]_;;*c coincides with the composite

G T . - .
Ki(X) = Ki(p*X) 22— Hy " (p"X, j) = H2; (X, §).
Proposition 7.3. Let (H,c) and (H', ') be abstract cohomology theories on V with a universal
Chern class such that C =C', T =T’ and F = F'. Furthermore, let ¢ be a map
lgleC(F(O, S)a F(_v _)*Sn[_]) — I&HKbC(F,(Oa S)’ F/(_v _)*Sn[_])

of functors from s.V°P x Z x Z to Ab such that F¢ sends c to ¢’. Then, the Chern class map
for (H', ) coincides with the composite
Goe ' p2ieis s o PO 2y
Proof. The map (3) induces a one
S+ H'(Tot NZV(U, BGLy,5)i<,,) x HIC§,C(T(0,5),T(j, BGLy,5)*=")
— H™CG,(1(0,8), 05, U)").
It is enough to show that the diagram

HICL,C(T(0,9),T(j, BGLy,s)<") 225 gitich o(r(0,9),1(,U)")

I !

. Sqyr (fs— s .
HICh C(1(0,9),T"(j, BGLy,s)*<") 2225 pitict c(Fr(0,8), FI'(j, U)")
commutes for each element f in H'(Tot NZV(U, BGLy s)i.,), where the vertical maps are

*<n
induced by ¢. By Lemma 6.7, this commutativity is equivalent to the one of a corresponding

diagram
HjTOt(C(F(O7 S)v F(]a BGLN,S))*Sn) —— H"Tot (C(F(()? S)7 F(]a U))*)

! !

HiTot (C(T'(0,5),T"(j, BGLN g))*<") —— HTot (C(I"(0,5),I"(j,U))*).
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It follows from that the spectral sequence whose E{k_z is the commutative diagram

HIC(D(0,8),0(j, ByiGLys)) ~25  HiFC(D(0, S),0(, Uy))

gl |
HIC(T(0,8),T"(j, Be_iGLy.s)) —Y°7 gitie(r(0,8),I'(j, Uy))
converges to the above one, where (fi)y, is an element in @, ZV (U}, By—;GLn,s) which represents
f. O
By this proposition, we see that the following properties hold.

Remark 7.4. (1) Our Chern class map is uniquely determined up to homotopy.
(2) Suppose that the maps

Kbc(T(0,9),T(=)) & T(FT(0,9), FT(—, -)),
Kbc(1'(0,9),T(-)) & T(FT'(0, 5)C, FT(—,-))
of functors from s.V°P x Z to Ab are isomorphisms. Then, the ¢ is a map
Hy (= =) = Hyy(=-)

of H-cohomology groups on 8.V x Z x Z, and the Chern class map for (H', ¢(c¢)) coincides with
the composite of the one for (H,c) and the map ¢.

7.2. Relation to realization. In this section, we will define a realization functor for an abstract
cohomology theory H and prove that Levine’s motivic Chern class map is compatible with the
one for H via its realization functor.

As mentioned in Section 1, Levine constructed the dg tensor category AP (V) and the dg

mot
tensor functor A% (V) = Amet (V). Db

motsh
K (Ao (V)R) = K*(Amot(V)R) = Dhor(V) g
We note that the triangulated tensor functor
D?notsh (V)R - D?not (V)R
is an equivalences of triangulated categories, since the functor
K (A5 (V)R) = K (Amot (V)R)

is already an equivalence (see Proposition 1.30).

(V)R is the full image of the composite

Definition 7.5. Let H be an abstract cohomology theory on V with a universal Chern class
c. Then, we say that the abstract cohomology theory H on V is extended to a (an abstract)
realization functor if there exist a dg functor

Tiot: A (V)r = C
and a triangulated functor

Ry: Dby V)R — T
for some ring R that is flat over Z such that the diagram

»
yer B0, 20420 (V)r —— Db (V)i
S
yoo O g0 _E L,

commutes up to isomorphisms for each j € Z.
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Remark 7.6. By Theorem 3.5, a geometric cohomology theory which satisfies the assumptions
in this theorem is extended to an abstract realization functor.

Remark 7.7. An abstract cohomology theory H on V that is extended to an abstract realization
functor has a canonical universal Chern class. This is the image of Levine’s motivic Chern class

cre ® g € [ [ lim HY/(BGLw s, R(j))
j N
under the map ‘ ‘

H{(BGLy.s, R(j)) = Hy (BGLw.s, )
induced by the abstract realization functor Ry. Here, we fix isomorphisms which make the
diagram in Definition 7.5 commutative.

Remark 7.8. It is natural to define an abstract realization functor (I'moet, Ry) whose domains
are the motivic categories with the index sh. In fact, the flow of Levine’s (and thus ours)
construction of a realization functor SR on DMy, is as follows (cf. the proof of Theorem 3.5, or
[41, Chapter V]):
(1) Construct the dg tensor functor 'y on the category Amot( ) for a certain cohomology
theory (cf. Proposition 3.7).
(2) Extends to the triangulated tensor functor on Kmotﬁh (V) R, and composing a quasi-inverse
of Kmotsh WV)r — K2 (V)r (cf. Proposition 1.30).

(3) Extends to the triangulated tensor functor Ry on DP
abelian hull.

(V)r, and taking the pseudo-

motsh

Proposition 7.9. Let H be an abstract cohomology theory on V that is extended to an abstract
realization functor

Ry, motsh(V)R =T
in the sense of Definition 7.5 for some ring R that is flat over Z. Then, the composite

j,2j—i

c . R1p o
Ki(X) ”—> HYU(X, R(j)) 2% HIT(X, j)

coincides with our Chern class map c; J " for (H,c). Here, (Hie,CLe) s the Levine’s motivic
abstract cohomology theory with the umversal Chern class (see Example 6.4 and Remark 7.7),
and c is the universal Chern class for H induced by the abstract realization functor (cf. Remark
7.7). Especially, after tensoring with Q, the same property holds for the Chern characters.

Proof. The 4-tuple consisting of the two categories (Amot( ), Db (V) and the two functors

motsh

Z:VPxZ— ZO-Amot( ) and Kb'Amot( ) - Dmotﬁh(v)

forms an abstract cohomology theory. The H-cohomology of this abstract cohomology theory
equals to the Levine’s motivic cohomology via the equivalence (cf. Proposition 1.30). Hence,
Proposition 7.1 tells us that the Chern class map for this abstract cohomology theory with the
universal Chern class cre coincides with the one for (Hre, cre). Applying Proposition 7.1 to the
abstract realization functor (I, Ry) implies this theorem. O

8. LEVINE’S MoTIivic CHERN CLASS MAP

As constructed in Section 6, we have a Chern class map
j,2j—i 2j—i , 2j—i -
e K(X) — Hyl (X, j) = Hil (X, Z(3))

HLe,CLe
to Levine’s motivic cohomology theory. On the other hand, Levine already constructed a Chern
class map
12ji i )
. Ki(X) — Hyy (X, Z(5))
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to his motivic cohomology (cf. [41, Part I, Chapter III, 1.4]), and studied this map and the
associated Chern character (cf. [41, Part I, Chapter III, 3.3.6.1]). For example, he proved his
own Chern character induces an isomorphism from the K-theoretical motivic cohomology if the
base scheme S is the spectrum of a field.

Proposition 8.1. Suppose that the base scheme S is the spectrum of a field k. Then, Levine’s
Chern character
. , i s _
chiz: Ki(X)9 — Hy™ (X, Q()))
is an isomorphism for a scheme X inV. Here, KZ-(X)(j) is the weight j eigenspace of the rational
K-group K;(X)® Q of the Adams operators (cf. [41, Part I, Chapter III, 3.6.3]).

Proof. See [41, Part I, Chapter III, 3.6.12]. O

The aim of this section is to prove the proposition below that says these two Chern class maps
coincide.

Proposition 8.2. Our Chern class map 67H2L]e_clLe for the abstract cohomology theory Hr. with
the universal Chern class cre coincides with Levine’s motivic Chern class map ciezj_l
Remark 8.3. By the above proposition, Proposition 7.9 holds if we replace our Chern class map

(resp. Chern character) in this proposition with Levine’s.

In this section, the term sheaf will refer to a Zariski sheaf. If the category V is clear from the
context, we often omit V from Levine’s motivic categories. Via the embedding Z(j), we often
regard V°P as the subcategory of Z9 At (V)g for j € Z. We here note that the canonical map

Hio(X,Z(j)) @ R = Hi (X, R(j))
is an isomorphism.

8.1. Construction. We begin to recall the construction of Levine’s motivic Chern class map.
For details, see [41, Part I, Chapter III, 1.4]. For a scheme X in V), let Zar(X) denote the full
subcategory of open subschemes of X. Then, for j € Z, let Apot(X,j) denote the additive
subcategory of Aot (V) generated by the image of the functors

Z(j) ®¢® 1 Zar(X)P x Z>g — Amot(V),

where ¢ is the object of Aot (V) (cf. [41, Part I, Chapter I, 1.4.6]). We note that e is canonically
isomorphic to the unit object Zg(0) in the category D2 .(V)r.

mot

Remark 8.4. The additive subcategory Amot(Zar(X,id)) of Amet(V) constructed in [41, Part I,
Chapter 11, 1.5.2] is canonically equivalent to the additive category [[; Amot(X, 7).

Lemma 8.5. (1) Amot (X, 7) is isomorphic to the free additive category on Zar(X).x Z>q, where
Zar(X). is the full subcategory of connected open subschemes of X.

(2) A Zariski presheaf P on X that takes values in an additive category A and that sends
disjoint unions to direct sums is canonically extended to an additive functor Puot: Amot(X,7) —
A. Especially, an additive functor Q: Amet (X, j) — A is canonically isomorphic to (QoZ(5))mot -

Proof. See [41, Part I, Chapter II, 1.5.2]. The assertion (2) follows from (1). O

Let Z be an object of the category s.V of simplicial objects in V. Then, using Lemma above
and taking the dg category C’gg of bounded complexes, the map (2)

NZV(—, Z)s<n = NAmot(Zz(j), Z(j))s<n

of presheaves on X (for H = Hy,) that takes values in C’C*Ab is canonically extended to a
map

Cag(NZV(=, Z)szn)mot) = Cag(N Amot (Zz(5), —)s<n)
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of functors from C’gg.Amot(X ,7) to C’b C*C* Ab. Composing the total complex functor twice

Tot

Cdgch+Ab RN CiCTAb — C{ Ab

and using Lemma 6.7,
Tot o Tot; (NCloy(Z2()', A7)iznjez) = ChyClion(Z2(5)", A%),

we have a map

Tot Cly(NZV(—, Z)i<p)mot = CdgCrmot (Z2(1)*=", )
of functors from C% .(X,j) to C’;'gAb Here, we set C2 , = C’dgAmot and C? . (X,j) =
CdgAmot(X j)- The above functor Tot C’bg(NZV( Z)i<n)mot Was constructed in [41, p.120]

and was denoted by Cb(C’*> "(Z;Z)). Composing the total complex functor C’g Clo — C s
gives us the map

&n(2,1d): C*(CF (23 2)) = Couot(Z2()=", )
of dg functors from C? . (X,j) to C’d+gAb which was constructed in [41, p.120]. Here, we set
Ch (X, 5) = ngAmot (X,J). From construction, we see the following lemma.

Lemma 8.6. As a functor from s.V°P to C’Ab,
CY (O T"(Z:2))(2())") = Tot NZV(=, Z)icyp,
and the natural transformation &,(Z,id) o Z(j) is equal to the map (2)
Tot NZV(—, Z)i<n — Chaot(Z2(5)=", Z(j)")-

We denote HRz, ;) the category of hyper-resolutions of Zx (j) constructed by Levine. This

is a subcategory of C? (X, j) and exhibits the following properties (cf. [41, Part I, Chapter II,
1.4, 1.5)).

Lemma 8.7. (1) For any object A of HRyz, (;), there exists a canonical morphism e: Zx (j) — A

in C° (X, ), called the augmentation, such that € is an isomorphism in DL . (V).

(2) Let U be a simplicial object in V associated with a finite open covering of X. Then, the
object Zy(j)* of C°..(X, ) belongs to HRz ;) and the canonical map U — X induces the
augmentation Zx (j) — Zy(j)*.

Proof. See [41, Part I, Chapter II, 1.4.1, 1.4.2]. O

Lemma 8.8. The image of the category HRz, (j) in the homotopy category K Aot (V) is right-
filtering. Furthermore, for an object X of V and an object Z of s.V, let S(Z), denote the
sheafification of the presheaf NZV(—, Z)«<n of cochain complexes on X. Then, there ezists a
canonical isomorphism

lim H'(CY(CF"(Z;2))(A)) = H(X, 5(Z)n),
A€HRz ()

where the right group is the i-th hypercohomology of S(Z),.
Proof. See [41, Part I, Chapter II, 1.4.3, 1.5.3]. O
For a hyper-resolution A of Zx (j) with the augmentation €, we have a functorial map
i *>—n e totn(2)(A) *<n .
H(CNCF (2 2))(A)) ——"= Dinoe(Z2(j)"=", Zx () [i])-
Taking the colimit over HRz ;) and using the above lemma, we have a functorial map

H' (X, 5(2)n) = Doy (Zz(5)*=", Zx (§)[i]).
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This gives us a functorial map
ling H (X, S(Z),) @ Jim Dl (1, 22 (7)< [K]) = Dlor (1, Zix ()i + k).
We now let S(Z) denote the sheafification of the presheaf Tot NZV(—, Z). on X. Then, because

the cohomological dimension of X is finite, the canonical map

lim H'(X, 5(Z),) — H'(X,S(2))

is an isomorphism. We thus have a functorial map
H'(X,S(2)) @ HE.(2,2(j)) — H{ (X, 2(5).
The Hurewicz map

(8) Ki(X) = limH™(X, S(BGLy,s))
N

constructed in [41, Appendix B, 2.2.1.3] is the composite

Ki(X) — lim H(Tot NZV(U, BGLy,5);) = lim H™'(X, S(BGLy.s)),
U,N N

where the first map is the Hurewicz map (1) constructed in the previous section and the other
is the canonical map. Composing this, we have a functorial map

et Ki(X) ® lim H(BGLy 5, Z(5)) — HE, (X, Z(j)).
N

Finally, the universal Chern class

cre € [ [ lim H(BGLw,s,Z(5))
j N

for Levine’s motivic cohomology theory (cf. [41, Part I, Chapter III, 1.3.4]) gives us Levine’s
motivic Chern class map

AP = e~ ® eve): Ki(X) = HYY (X, Z(5)).
8.2. Proof of Theorem 8.2. To prove Theorem 8.2, we will use the two lemmas below.

Lemma 8.9. For a simplicial object Z in V, the canonical map

lim H'(Tot NZV(U, 2)ic,) = lim  H'(C*(CY¥"(%;2))(A))
U B A€HRz ()

induced by Lemma 8.6 and 8.7(2) is equal to the composite
lig H'(Tot NZV(U, Z)i<,) — H™'(X, S(2)y)
U

*<n
2 g HI(CNCY T(Z:2))(A)
AEHRZX(J-)
of the canonical maps.

Proof. It follows from that the diagram
Hi(Tot NZV(U, Z)*_.) —— HY(X,8(2),)

H'(CYCF™(Z:2))(Zu(j)")) —— HT(X,S(Z)n)

commutes for the simplicial scheme U attached to a finite affine open covering of X. U
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Lemma 8.10. For a simplicial object Z in V, the diagram

lim H'(Tot NZV(U, 2)ic,) ——  lim  HY(C'(C¥(Z;Z))(A))
U a AGHRZX(]')
<3>l n_rgsn(A)l
. 7 Ax<n S\ % 8'7(2) . 7 S\ *x<n
lim H'(Cot(Z2(5)*=" Zu()*)) ——  lim  H(CPo(Zz(5)"=", A))
U AEHRZX(j)
@+s)| t ! |
Dot (Zz(3)*=" Zx (i) == Dyt (Z2(5)=", Zx (7)[i)
commutes, where the top arrow is the map in Lemma above.
Proof. Tt follows from Lemma 8.6 and 8.7 (2). O

Proof of Theorem 8.2. Lemma 8.9 shows the two Hurewicz maps coincide, i.e., the diagram

Ki(X) U lim H(Tot NZV(U, BGLys)’<,)

*<n
U,N

®| ss |

limH{(X,S(BGLys)) ——  lim  H(CYC¥ "(BGLy.s; Z))(A))
N N,A€HRz, ;)

commutes. Hence, Lemma 8.10 shows that the map (6)

Ki(X) @ lim Hf (BGLy,s, Z(j)) = Hi (X, Z(j))
N

for Hie coincides with the 1. Then, the motivic universal Chern class cr defines the same
Chern class maps. O

9. BEILINSON’S REGULATOR

In this section, we first compare Beilinson’s regulator with our Chern character for the Hodge
cohomology theory (in Section 9.1). After that, we study the Chern character for the real Hodge
cohomology theory (in Section 9.2) and for the Hodge cohomology theory over a subfield field
of C (in Section 9.3). We close this section with proving Theorem 0.3 (Corollary 9.13).

9.1. Over C. We will show that our Chern character for the Hodge cohomology theory H g
in Example 4.1(1) with some universal Chern class cgg is canonically isomorphic to Beilinson’s
regulator (cf. [5]). To state the claim precisely, we recall the Deligne-Beilinson cohomology
theory which is the range of Beilinson’s regulator. We here note that the H jg-cohomology is
the absolute Hodge cohomology (cf. [6, Section 5]).

Let C’;;R denote the dg category of bounded below R-mixed Hodge complexes (cf. [6, Section

3], [41, Chapter V, 2.3.1]). Then, there exists a canonical dg functor C;, — C’;R that induced
' ,
an equivalence D), — D;_F[R between their derived categories.
- R

Let I'yy denote the additive functor Z OC’;:R — CTMod g which preserves arbitrary homotopies

and was constructed in [6, 1.2] (see also [32, 4.2]). We define the functor I'pp to be the composite
yep Lits, 70ct 7004 D% 0t Modp.
R R

The associated cohomology theory (cf. Remark 6.3) is called the Deligne-Beilinson cohomology
theory and is denoted by Hpg.
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Remark 9.1. In the derived category, the functor I'pp is isomorphic to the global sections of
an injective resolution of the Deligne-Beilinson complex ®jczRp,zqr(j) in [25, 5.5]. Hence, the
‘H pp-cohomology is equal to the Deligne-Beilinson cohomology,

Hy,,,, (X, 5) = Hpp(X, R(5)),
by Remark 6.3.
The functor f;.[ can be canonically extended to a triangulated functor
D3, — D™Modg

and there exists a canonical quasi-isomorphism R — fH1 in CT™Modpg. Furthermore, the
following lemma holds.

Lemma 9.2. The map
D, (1,—) = D*Modpg(I'y1,T3—)
of functors on DY*Modpg induced by fH s an tsomorphism.

Proof. By construction, the map in this lemma coincides with the composite of the isomorphism
D3, (1,—) = D*Modpg(R,T'y—)
(cf. [32, 4.2.3]) and the one
D+MOdR(R, fH—) = D+MOdR(f’H1, fH—)
induced by the R = T'y1. O
From this, we identify the absolute Hodge cohomology HZ;'[’HS (X, j) with the Deligne-Beilinson
cohomology H 5 (X, R(5)).
Because the Hodge cohomology theory is extended to a realization functor, this equips a

canonical universal Chern class cys (see Remark 7.7). On the other hand, the universal Chern
class
. 27 .
CDB € H @HDB(BGLN,Ca R(4))
j N
in the Deligne-Beilinson cohomology was constructed (cf. [48, p.20]). We here note that they
coincide up to sign.

Lemma 9.3. In the Deligne-Beilinson cohomology

lim Hjs(BGLy ¢, R(5)),
N

we have the equality g = (—1)7¢)p.

Proof. Both universal Chern classes are constructed by the projective bundle formula. Compar-
ing their definitions implies this lemma. O

In this section, we will prove the following proposition.

Proposition 9.4. Assume that the ring R contains Q. Then, our Chern character

chyl oot Ki(X) = HEG (X, R(j))
for the Hodge cohomology theory Hpys with the universal Chern class cyg coincides with Beilin-

son’s regulator multiplied by (—1)7.

To show this proposition, we recall the construction of Beilinson’s regulator following [48,
Section 4].
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Lemma 9.5. Let .F be a complex of Zariski sheaves on V. Then, for a simplicial scheme X in
V, the map

V(—,X) = CAb(F(X),Z(-))
of cosimplicial sheaves on V induces an isomorphism
HY(X, 7)== DV)NZV(—, X)., Z]i]),
where D(V) is the derived category of abelian Zariski shaves on V.

Proof. See [48, p. 15, Lemma). O

Applying this lemma to the case where % is the Godement resolution of the real Deligne-
Beilinson complex of weight j (see Remark 9.1) and X = BGLy ¢, we have an isomorphism

HY(BGLyc, 7) = D(V)(NZV(-, BGLy c)., Z[2]]).
For an affine scheme Y = Spec A in V, because
H;{(GLy(A),Z) = H"(NZV(Y, BGLyc))
(cf. [41, Part I, Appendix B, 1.1]), we have a map
H*(BGLyc, ) — Ab(H;(GLy(A),Z), HY~(FZ(Y))).
Taking the limit with respect to N and composing the Hurewicz map (1), we have a map

(9) lim H¥(BGLy,c, F) = Ab(K;(Y), H7(Z(Y))).
N

Finally, the j-th universal Chern class

CjDB € @H%(BGLNp,y)
N

(cf. [48, p.20]) gives us Beilinson’s Chern class map
e Ki(Y) —» HYU(F(Y)) = Hilp' (Y, R())).
In the case i = j = 0, we add the rank function
Ko(Y) = Z 2% Hp(Y, R(0)).
Furthermore, we define Beilinson’s Chern class map
cg 't Ki(X) = HEp' (X, R(j)).

for a scheme X in V as follows (cf. [48, p.17]): Jouanolou’s lemma [38, 1.5] tells us that there
exists a torsor Y on X for a vector bundle that is an affine scheme. Then, the map ¥ — X
induces isomorphisms

Ki(X) = Ki(Y) and Hpg'(X,R(j)) = Hpg' (Y, R(j))

because of the homotopy invariance. Beilinson’s Chern class map for X is defined to be the
composite map
i,2j—1i

Ki(X) 5 Ki(Y) 2= HY5' (Y, R(j)) < Hpg' (X, R(j))

that is independent on the choice of such a Y.
The Beilinson regulator is defined to be the associated Chern character (cf. [48, p.28]).

Lemma 9.6. Our Chern class map for the Deligne-Beilinson cohomology theory Hpp with the
universal Chern class cpp coincides with Beilinson’s Chern class map.
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Proof. Let Y be an affine scheme in V. Then, the map (9) canonically induces a map

Ki(Y) ® lim Hyjy (BGLy,s, R(7)) = Hyg ' (Y, R(j))
N

which coincides with the map (6) for the cohomology theory associated with the global sections of
Z . This follows from the comparison between their constructions and Lemma 9.5. Proposition
7.3 and Remark 9.1 tell us that the above map equals to the map (6) for the Deligne-Beilinson
cohomology theory. Hence, the universal Chern class cpp gives the same Chern class maps. By
functoriality, these maps coincide for each scheme in V. O

Proof of Proposition 9.4. By Proposition 7.1, we have a commutative diagram

Ki(Y) —— Hy '(Y,5)

x(fl)jl lfﬂ

Ki(Y) —— Hy (Y, ),

where the horizontal arrows are our Chern class maps for (Hys,cps) and (Hpp,cpp). This
proposition thus follows from Lemma 9.6. 0

The following theorem is the terminus of this section.
Theorem 9.7. Assume that the ring R contains Q. Let Ry, denote the realization functor
b
Dmotsb(smC)R - D?J-FLR
for the Hodge cohomology theory Hps. Then, the diagram

(—1)/chy’@1p
—

Ki(X) HP 7 (X, R(j))
it | s |
HYT (X, R(j) ——— Hyl (X, 5)

commutes for a scheme X in V.

Proof. 1t follows from Remark 8.3 and Proposition 9.4. O

9.2. Over R. We let H%y denote the real Hodge cohomology theory in Example 4.1(2). Because
this cohomology theory is extended to a realization functor, it equips a canonical universal Chern
class c%75. In this section, we prove that Beilinson’s regulator coincides with the Chern character
for (K%, c%rg) up to unit. We here note that the H%s-cohomology is the real part of the absolute
Hodge cohomology if 1/2 € R (see Lemma 9.9).

By construction, forgetting the action of Gal(C/R) gives us a commutative diagram

Tyy00
Smp — 20CF° —— Df®
R R

r
Smg " 7°C;, —— D,
R R

of categories, where the left vertical arrow is the base change map and the other verticals
are the forgetful functor (see [41, Chapter V, 2.3]). Proposition 7.1 and 7.2 thus tell us the
commutativity of the diagram below.
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Proposition 9.8. For a scheme X in Smg, the diagram

29

Hirs s 2j—i .
Ki(x) BB, g2ix, )

! l

2j—1,j

e 9ii )
Ki(Xg) —215, Hy (X, j)

commutes, where the left vertical arrow is the base change map and the right one is induced by
the forgetful functor D;_r[,oo — D;_r[, )
R R

The real absolute Hodge cohomology H?_Z%ZSZ(X ,7) is equals to the real part of the absolute
cohomology, if the ring R contains 1/2.

Lemma 9.9. Assume that the ring R contains 1/2. Then, for a scheme X in Smg, the map
Hye (X, ) = Hip(Xc, R())

induced by the forgetful functor is injective, and its image is the invariant part under the action
of Gal(C/R). Here, we set Xc = X ®@gr C.

Proof. This was proved in [6, Section 7]. O

The corollary below is the goal of this section.

Corollary 9.10. Let Ry, denote the realization functor

D} otey (SR ) R — D

for the real Hodge cohomology theory Hps. Then, if the ring R contains Q, the diagram

(~1)ich}?@1p
e

o . Ryjoo . )
Ki(X) H{7U(XOR()  —  Hyl2'(X,))

1 |

i,

ch i N\ oo i—i N\ 60
Ki(Xc) —2%  Hyp'(Xe R(j)™ ——= H;}. '(Xc.)j)

commutes for a scheme X in Smg, where the left vertical arrow is the base change map. Here,
we denote the invariant submodule of a Gal(C/R)-module M by M.

Proof. By Remark 8.3, our Chern class map for the real Hodge cohomology theory is compatible
with Levine’s. On the other hand, Proposition 9.4 tells that our Chern class map for Hodge co-
homology coincides with Beilinson’s. Thus, combing Proposition 9.8, we have the commutativity
of this diagram. O

9.3. Over a subfield of C. We let H 4 denote the mixed absolute Hodge cohomology theory
in Example 4.3. We define the category C;_zk . of real R-mixed Hodge complexes on k to be the

full dg subcategory of C’At[ a1k r Which consists of the objects whose data other than the real
R-mixed Hodge complex on k are 0, i.e., the data (i), (ii), (v), (vi), (vii) and (x) in [41, Chapter
V,2.4.1] are 0. Then, we have a forgetful functor C}, 4y 1 p — C’;k - We define s(o) to be

s(0) = {oo if o(k) CR

®  otherwise
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for an embedding o of k in C. Then, picking up the (real) R-mixed Hodge complex on an
s(o)

embedding o: k — C gives us a forgetful functor C;sz — C‘;R

They are extended to
triangulated functors

s(o)

+ + +
Ditan ke = Dign = Pug

between their derived categories. Furthermore, the diagram

Uman, 0+ +
Smy, Z CMAH,k,R * Dyan kg

| | l

0+ +
Smk e A CHk,R —_— DHk,R

| ! l

' so)

Smgio) — ZOC’;,S(U) —_— D;;f(”
R R

)

commutes by their constructions, where the left vertical arrow is the base change map via o.
We thus have a map

Po: H’;—LMAH (ij) - H;S(U) (X‘77j)
HS
of the H-cohomology groups for a scheme X in Smy, where we set X, = X ®j , C (cf. Section

9.1 and 9.2).
Proposition 7.1 and 7.2 tells us the following one.

Proposition 9.11. Let 67]\’4251;]1 denote our Chern class map

Ki(X) = HZ " (X, §)

HpaH

induced by the realization functor for the mized absolute Hodge cohomology theory (cf. Remark
7.7). For a scheme X in Smy, and an embedding o of k in C, the diagram

J»2J—1

c ) .
Ki(X) HAE 3, (X, 5)
l lp"
(2=

Ki(X @ Cs(9) M H%?g(x ko Cs) §)
commutes, where the left vertical map is the base change map.

Proof. By their constructions, these universal Chern classes coincide via the map p,. Hence, we
can apply Proposition 7.1 to this case. 0

Lemma 9.12. Assume that k is algebraic over Q. Then, the diagram

4,25~

Ki(X®qC) —f— HY (X ®qC,R(j))

~| |=

®o Ki(Xy) @ Hy5 ' (Xs, R())

of Gal(C/R)-modules commutes, where the direct sums runs through over all embeddings o of k
in C and the vertical arrows induced by the map X, — X ®q C. Here, the action of Gal(C/R)
on ®,K;(X,) is induced by the actions on the set of embeddings of k and on the group K;(X,)
foro: k— R — C, and Gal(C/R) acts on @JHéjgz(Xa, R(j)) similarly.

J,2j—1
@UCBC



50

Proof. The maps X, — X ®q C give us the isomorphism X ®q C = [[, X, of C-schemes with
an action of Gal(C/R). We thus have the commutativity of this diagram. O

Corollary 9.13. Let k be a finite extension field over Q and let Rysap denote the realization
functor

b
Dmotsh(smk)R - D—i]\}AILR
for the mized absolute cohomology theory Haram. Assume that the ring R contains Q. Then,
the diagram

(=1)ichiI @1 . ) R . )
Ki(X) ——2% HJU(X,R() — H (X))

| Jere

chi’i i \\ 00 = j—1 \\s(o
Ki(XC)OO & H2DJB (XC,R(])) ﬁ @JH%JB (XmR(])) (@)

commutes for a scheme X in Smy, where the direct sums runs through all infinite places of k
and the left vertical arrow is the base change map. Here, we set Xc = X ®q C.

Proof. Combining the diagrams in Proposition 9.11 and Lemma 9.12 via Proposition 9.8, we
have a commutative diagram

(—1ichdn" 2j—i .
Ki(X) _ Hy (X, )

| Jor

J,2j—1 L.
Bo Ki(X Qo C)) SoHAL (X, R(5))5)

! !

5,2j—i

Ki(Xc) s Hpjy'(Xe.R())).
Remark 8.3 thus tells us the desired commutativity. O

10. SoUuLE’S CHERN CLASS MAP

In this section, we study on an l-adic analog of the previous section and prove Theorem 0.4.
As already mentioned, we take Soulé’s Chern class as an [-adic analog of Beilinson’s.

Let H ¢ denote the [-adic étale cohomology theory in Example 4.2. Then, the H ¢ -cohomology
group is the continuous étale cohomology,

Hi, (X)) = Hi (X, Zy(5)).

As we mentioned, there exists the abstract realization functor for this abstract cohomology
theory H¢. This realization functor canonically gives us a universal Chern class c¢ (cf. Remark
7.7).

On the other hand, Soulé constructed a Chern class map

Ejé’gj_lKi(A, Z/l") — H?g_i(Spec A, ,u%j)
with coefficients in Z/I" for a ring A (which is a Dedekind domain when ¢ = 1) (cf. [49, 11.2.3]).
Taking the limit with respect to r (cf. [49, IV.3.1]), we have Soulé’s Chern class map

Cé’gjflz K;(A,Z)) — H%jfi(Spec A, Zy(j))

€t

with coefficients in Z; (cf. [50, Section 1]). We denote the associated Chern character by ché’g.
The goal of this section is to prove the following proposition.
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Proposition 10.1. Let cje;’fj_i denote the Chern class map for the l-adic étale cohomology theory
Her with cg. Let X be an affine scheme Spec A in'V and i be a non-negative integer. Ifi =1,
we assume that A is a Dedekind domain. Then, the diagram

(71)ch,2.7'—i

Ki(X) ——%— HZ(X,Z(5))

cont

! !

Cj,2j7i i )
Ki(X,Z) >  HI(X,2())

commutes, where the vertical arrows are the canonical maps.

Theorem 10.2. With notations as above, Soulé’s Chern class map coincides with the composite

(*1)jcj’§j7i o ) o ] . )
KZ(X) —L> HE& z(Xv Z(])) — Hfgntl(Xv Zl(])) — Hgg l(Xa Zl(]))a

where the middle map is induced by the realization functor R for the l-adic étale cohomology
theory. After tensoring with Q, the same property holds for the Chern characters.

Proof. 1t follows from the above proposition and Remark 8.3. 0

Let H¢yr denote the étale cohomology theory with coefficients in Z/I" in Example 4.2(2).
Then, the diagram

Z/1*

yor Ly o (s) L prgn®/(s)

| | l

Depir

r Fe T I
yor 20, otgn®(5) 2, pran?/t ()
commutes. Hence, the universal Chern class cg for the abstract cohomology theory Hy gives

us a one cg - for He . Proposition 10.1 can be deduced from the one below.

Proposition 10.3. With notations as above, let ch;flj}_i denote the Chern class map for the

abstract cohomology theory Heyr with the universal Chern class cg . Then, the diagram

(it i
Ki(X)  —— HY (X )

ét »

| H

=7,25—1 L. .
K(X,Z)I") = HETU(X, )

commutes, the left vertical arrow is the canonical map.
Lemma 10.4. Proposition 10.1 is deduced from Proposition 10.3.

Proof. By Proposition 7.1, the diagram

20—

Ki(X) —“—  HI (X, Zi(j))
hm, i i :
Ki(X) " HY 'YX, Zy(5))
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commutes. On the other hand, taking the limit of the diagram in Proposition 10.3, we have a

commutative one
s j,25—i
(=1 1&[’17‘ i

Ki(X) HA (X, Z4(7))

| H

Jn2i—1 . '
KiX.2)) = HJ '(X.Z(j)
Combining them tells us the desired commutativity.

O

To prove Proposition 10.3, we first recall the construction of Soulé’s Chern class map ZJS(?] -1

with coefficients in Z/I". For details, see [49, Section 2].

For a ring A, let G' denote the general linear group scheme GLy, 4 of rank N over A. Then,
for the identity map id as a representation of GG, there exists the associated Chern class c;(id)

in the equivariant étale cohomology Héj(Spec A, G(A),,uf?j) for j > 0 (cf. [29, (2.3)]), where G

acts A trivially. For ¢ € Z, using the map
(10) ®: HE(Spec A, G(A), 1) — Ab(H;(G(A), Z/I"), H " (Spec A, 11537))
constructed in [49, Lemma 1], the Chern class ¢;(id) gives us a map
Hi(G(A),Z/I") — H2 " (Spec A, ).
For ¢ # 1, Soulé’s Chern class map
e Ki(AZ)17) — HZ 7' (Spec A, i)

with coefficients in Z /1" is defined as follows:
We set GL = @N GLpy 4. If ¢ > 2, the map is the composite with the Hurewicz map

7 (BGL(A)Y,Z/I") — H;(BGL(A)T,Z/1") = H;{(GL(A),Z/I")

with coefficients in Z/I" (cf. [49, 11.2.2]).
E']S’gj is the map which makes the diagram

Ko(A) — Ho(GL(A),Z) —— Hy(GL(A),Z/I")

l l@(cjﬂ (id))

Ej’2j . .
Ko(A)/I'Ko(A) =—— Ko(A,Z/lI") —2— HZ (Spec A, u’)

commutative.
If ¢ = 1, for only a Dedekind ring A, the Chern class map

éjé’zj_l: K(AZ)1") — HZf_l(SpecA,u%j)
with coefficients in Z/I" was constructed ad hoc (cf. [49, IV.1.3]).

To compare Soulé’s Chern class map E’S? ~" with ours, we will use the following lemmas.

Lemma 10.5. With notations as above, the diagram

Ki(Spec A) — s H/(GL(A),Z) —— Hi(GL(A),Z/I")
| | eyt
20,25—i . :

Ki(A) —— K(AZ/I") —=>— HZ "(Spec A, ui’)

commutes.

Proof. 1t follows from their constructions.
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Lemma 10.6. The canonical map H:t] (BG, uf?j) — He%f(Spec A,G(A), ul@j) constructed in [27,
p.221] sends the j-th universal Chern class ¢ to the Chern class (—1)7c;(id) above.

Proof. Comparing the constructions of these universal Chern classes implies this lemma. They
were constructed by the projective bundle formulas. O

We have the isomorphism
HY(BG, i?) = D(V)(NZV(~, BG)., Recpt;?’ [k))

in Lemma 9.5, where Re, is the right derived functor associated with the push-forward to Zariski
sheaves. Via the identification

Hi(G(A), Z) = H {(NZV(Spec A, BG),),
taking the cohomology groups gives us a map
U: HY(BG, 1) — Ab(Hi(G(A),Z), HY *(Spec A, 11537)).
Lemma 10.7. Fori € Z, the diagram
. " » .
HY(BG, ) ——  Ab(H(G(A),Z), H " (Spec A, )

o T

HE(Spec A, G(A), i) —"— Ab(H;(G(A),Z/I"), HE (Spec A, 1i5))
commutes, where the right vertical arrow is the canonical map and ® is the map (10).

Proof. Comparing the construction of the map ® with that of ¥ tells us this lemma. We note
that, for a ring R, '

H;(G(A),R) = H*(NZV(Spec A, BG). ® R)
(cf. [41, Part I, Appendix B, 1.1]). O

Proof of Proposition 10.3. By Lemma 10.7, the maps ® and ¥ give us a commutative diagram

HY(BG, 15?) ® Hi(G(A), Z) — s HY(Spec 4, u)

| H

HY(Spec A, G(A), 1) @ HiG(A), 2/I") —2— H’(Spec A, ).

that is natural in the rank N of the group G = GLn 4. Taking the colimit with respect to /N
and using Lemma 10.6, we have a commutative diagram

oo . .
HA(GL(A4),2) <20 Hii(Spec A, u)

l H

1) ®(c; (id)@— . .
H/(GL(A), z/1r) TG, pimicgpec A, 199).
Composing the Hurewicz map (1), K;(A) — H;(GL(A),Z), makes the top arrow in this diagram
our Chern class map céfl]r_l. Hence, by Lemma 10.5, we have the desired commutativity. O

We close this section with an application to the category of mixed Tate motives. For a finite
extension field K over Q, let MT(K) denote the category of mixed Tate motives over K (cf.
[40, Section 4]). This is a full admissible abelian tensor subcategory of Dglotsh(SmK)Q. Hence,
restricting the rational [-adic realization functor

Retq: Dloren (Smic)q — DTS2/ (Spec K)q
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to the subcategory MT(K), we have an exact tensor functor
Z/1*
Req: MT(K)q — Sh2/" (Spec K)q.

We note that the domain Shézt/ r (Spec K) is canonically equivalent to the abelian tensor category
of continuous Z;[Gal(K /K )]-modules (cf. [32, 9.1]).

Corollary 10.8. Let | be an odd prime and K be a finite extension field of Q. Then, the
canonical extension of the rational l-adic realization functor

Raq: MT(K)q — Sh?t/l*(Spec K)q

to the Qi-linear category MT (K )q, of mized Tate motives is fully faithful.

l

Proof. The proof is similar to the Hodge case (see [24, 2.14]). We need that the injectivity of [-

adic realization on EXt}V[T(K)Q (Z(0),Z(j)). When j = 1, this follows from [21, 2.4]. Otherwise,
l

the proposition below and Theorem 10.2 imply this via the identification

Kyj-1(K)V) = H'(Spec K, Q(f)) = Exthypi)q (Z(0), Z(3))
induced by Levine’s Chern class map chi’g . O

Proposition 10.9. With notations as above, Soulé’s Chern class map

&P Ki(K) @ Q — HZ ™ (Spec K, Qu(j))

et

s an isomorphism if 2j —i =1 or 2, and i > 1.
Proof. We have a commutative diagram

Ky i(Ok) ® Q —— H,(Spec Ok[1/1], Qu(j))

| |

Ky i(K)®Q ——  Hy(Spec K, Qi(j)),

where the horizontal arrows are Soulé’s Chern class maps. The vertical arrows in this diagram
are isomorphisms by the localization sequences. Moreover, Soulé proved that the top Chern
class map is an isomorphism (see [50, Theorem 1]). Hence, the remaining map is also an
isomorphism. O

11. HUBER’S CHERN CHARACTER AND BESSER’S REGULATOR

Huber [32] constructed a Chern character to the absolute cohomology of the cohomology
theory which takes values in the category of mixed realizations. Using the method of her
construction, Besser [11] constructed the rigid syntomic regulator as a Chern character which is
a p-adic analog of Beilinson’s regulator. In this section, we compare these maps with our Chern
characters. We first define an abstract cohomology theory associated with Huber’s which takes
values in the category of mixed realizations.

For a field k of finite type over Q, we define the mized realization cohomology theory Har
on the category Smy, of smooth and quasi-projective schemes as follows:

e (Crmr, TMRr, FMmr) is associated with the abelian category MR defined in [32, 11.1.1]
(cf. Remark 6.3).
e '\ is the functor constructed in [32, 11.2].

We note that the difference between C'); 4 1 q and C;fg./\/lR is a bit (cf. [32, 11.1], [41, p. 285]).
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Proposition 11.1. Let cpqr denote the universal Chern class for the mized realization coho-
mology theory Har constructed in [32, Section 17]. Then, our Chern class map 07/\’/2[%1 for the
pair (Hpmr,cpmr) coincides with Huber’s Chern class map cf{lij_i defined in [32, 18.2.6] up to
sign. FEspecially, the associated Chern characters coincides up to sign after tensoring with Q.

Proof. As already mentioned, the construction of our Chern class map is a generalization of
Huber’s. The difference is only the construction of a Hurewicz map

K;(X) — lim H™*(Tot NZV(U, BGL)})
U

(see [32, 18.2.4]) and a dg structure on the category C'A of complexes in an additive category
A (see [32, 2.2.7]). We remark that their total complex functors are the same (compare [32,
2.2.3] and [41, Part II, Chapter II, 1.2.9]). To construct a Hurewicz map which she used,
the Bousfield-Kan completion Z., (cf. [14, Chapter 1, Section 4]) was used instead of the +-
construction. However, the simplicial presheaf BGL™ is canonically weak homotopy equivalent
to Zoo BGL via Zoo BGL™T (cf. [28, 2.16]). The difference The dg structure becomes equivalent

to the other by multiplying (—1)22_:10” on the group of maps of degree 1, O

In a manner similar to Huber’s construction, Besser constructed a Chern class map to the
rigid syntomic cohomology and defined the rigid syntomic regulator as the associated Chern
character (cf. [11, Section 7]). We note that the H-cohomology of p-adic Hodge cohomology
theory is Besser’s rigid syntomic cohomology (see Proposition 5.17).

Remark 11.2. We note that the definition of the associated Chern character in [11, 7.6] is
incorrect, because such a map is not multiplicative (cf. Remark 6.10). The correct definition is

(=11, e
Ch:ZWC' (+ Rank 1fz=j=0)
i>1 '

Proposition 11.3. Besser’s rigid syntomic requlator whose range is the rigid syntomic cohomol-
ogy group HS, (X, K(j)) coincides with our Chern character for the p-adic Hodge cohomology
theory in Theorem 5.18 with the universal Chern class cge constructed in [11, 7.4] up to sign.

Proof. Besser’s regulator is a Chern character that is constructed following the method of Huber.
On the same reason as the proposition above, these maps coincide up to sign. O

12. GILLET’S AND ASAKURA-SATO’S CHERN CHARACTER

We close this paper with comparing our Chern characters with Gillet’s [27] and with Asakura-
Sato’s [1].

For a Z-graded bounded below complex I' = {I'(j)};cz of abelian Zariski sheaves on V, we
define an associated abstract cohomology theory Hp as follows:

e The triple (C, T, F) is associated with the abelian category Ab of abelian groups (cf.
Remark 6.3).

e The functor I'(j): V°P — CTAb is the composite of the global sections of the Godement
resolution of I'(j) with the total complex functor,

yor LU, chgnZ (x) - oS, (X) s oot Ab 2 ot Ab,

Zar
We assume that this graded complex I" of sheaves satisfies one of the following conditions:

e [ is extended to a twisted duality theory on V with d =2 [27, 1.2].
e ' is extended to an admissible cohomology theory on V [1, 2.5].
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Then, the assumption gives us the universal Chern classes ¢y in []; lim - H %(BGLns, I'(j))
(see [27, 2.8] or [1, 4.1]) and the Chern character
chy: Ki(X) — H¥ (X, T'(j)) ® Q

(see [27, Section 2] or [1, Section 6]).
Remark 12.1. (1) Suppose that I" equips structures of a twisted duality theory and an admissible
cohomology theory simultaneously. Then, the associated universal Chern classes ¢y and the
Chern characters ch?j coincide, because the method of Asakura and Sato’s construction is the
same to Gillet’s.

(2) A twisted duality theory is almost an admissible cohomology theory. The bit difference is

the axiom about the existence of a first Chern class map (compare [27, 1.2(xi)] and [1, 2.5(1)],
see also [1, 2.6]).

Proposition 12.2. With notations as above, the Chern character ch?j coincides with our Chern
character for (Hr,cr).

Proof. For a scheme X in V, they constructed a map
H*(BGLy,x, I'(j)) — Ab(K;(X), H¥ (X, (5)))

using the notion of the homotopy category of simplicial sheaves (see [27, Section 2], [1, Section
5]). The pull-back of the universal Chern class cp thus gives us the Chern class map K;(X) —
H*=Y(X,I'(§)). ch} is the associated Chern character (cf. [27, 2.34], [1, 5.6]). Hence, it is
enough to show that the diagram

H*(BGLy x,I'(j)) — Ab(K(X),H¥ (X, I'(j)))

T H

H*(BGLys, T(j)) — Ab(Ki(X), H/ (X, )
commutes. This follows from comparing their constructions. O

By Theorem 3.5, the geometric cohomology theory H associated with a twisted duality the-
ory I' on V is extended to the realization functor Ry : Dglotsh(V) — DT Ab. Hence, Proposition
7.9 implies the proposition below.

Proposition 12.3. The composite
chi’g@)l i Ny R j—1 . j—1 ;
Ki(X) = BT (X,QU) =5 By (X)) @ Q = HY (X, I(j) © Q
coincides with Gillet’s Chern character chlfj multiplied by (—1)7.

Proof. Let cg,. denote the universal Chern class associated with the realization functor Ry (cf.
Remark 7.7). Then, we have an equality
(—1Ych,. = cp in lim HY(BGLy,s, I(j))
N
by construction. Hence, it follows from the above proposition and Theorem 8.3. U

13. A MOTIVIC INTERPRETATION OF BESSER’S REGULATOR

We now do not have the realization functor associated with the p-adic Hodge cohomology the-
ory that is constructed in Section 5. However, we can construct another p-adic Hodge realization
functor on a full subcategory of mixed Tate motives by composing the p-adic étale realization
functor with the functor D that sends a crystalline representation to a weakly admissible
filtered ¢-module. In this section, we give a motivic interpretation of Besser’s regulator using
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this p-adic Hodge realization functor. We refer to [26] for the basic notations and properties in
the theory of p-adic representation.

Let K be a finite extension of Q and let v be a place of K on the prime number p. Let K,
denote the completion of K with respect to v and let G, denote the absolute Galois group
of K,. Furthermore, let O denote the ring of integers of K. In Section 10, we constructed the
rational p-adic étale realization functor

Raq: MT(K)q — Sh2/" (Spec K)q

on the Q-linear category MT(K)q of mixed Tate motives over K (see the sentence before
Corollary 10.8). Taking the associated Galois representation, we have a functor

MT(O(’U) )Q - Repcris (GKv )

to the category Rep,,;s(Gk,) of crystalline representations of G, where MT(O(,))q is the full
subcategory of mixed Tate motives which are unramified at v (cf. [53, 4.2]). Composing the
equivalence

Dris : Repcris(GKv) - MFIJ;, (d))

to the category M F};y (¢) of weakly admissible filtered ¢-modules over K,, we have a p-adic
Hodge realization functor

Ré s Dcris
RPH: MT(O(U))Q —tQ> RepcriS(GKv) — MFIJ;.U (¢)

on MT(O(U))Q
Using this p-adic Hodge realization functor R,p, we can give a motivic interpretation of
Besser’s regulator as follows:

Theorem 13.1. Let X be a smooth and projective scheme over the local ring O, such that the
Zx, (k) belongs to the category MT(O,))q for some k € Z. Then, for i > 0 and j € Z, the
map

Ki(X)®Q = Ki(Xk,) ® Q = HITH(X ® 0y, K(j))

that is induced by the base change map and by the functor R,y becomes equivalent to Besser’s
regulator v by multiplying (—=1)7, where O, is the completion of O with respect to the place v.

Proof. Composing the representable functor C’(TgShéZt/ l*(Spec K,)(1,—) with the p-adic étale co-
homology theory I' in Example 4.2 (1), we have a twisted duality theory I'¢; on Smy, in the
sense of Gillet. Then, the corollary 9.10 of [11] means that the diagram

chid

Tt j—1 .
Ki(Xg,)®Q —% HI Xk, Qph))

I |

@, ..
K(X®0,)®Q —2= HIT(X & 0,, Ky(j))

commutes, where the top horizontal arrow is Gillet’s Chern character and the right vertical
arrow is the canonical map. Since the H-cohomology groups of I and T are coincide (cf. [41,
Section V, 2.2.8]), our Chern character for them are also by Proposition 7.1. Hence, it follows
from [11, Proposition 9.11] and Corollary 12.3. O

We close this thesis with giving an application of this Theorem. Yamashita [53] studied the
p-adic Hodge realization of Huber-Wildeshaus’ motivic polylogarithm class (that is constructed
in [35]) via the realization functor

Rypm: MT(O)q — MFL().
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Combining his result with this theorem, we have an another proof of the corollary below which
says that Besser’s regulator sends Huber-Wildeshaus’ polylogarithm class to a special value of
Coleman’s p-adic polylogarithm up to non-zero rational number.

Corollary 13.2. Let N be a positive integer that is prime to the prime number p and v be a
place of the N-th cyclotomic field Q(un) on p. Let O,y denote the ring of v-integers in Q(un)
and O, denote its completion. Furthermore, let K, denote the field of fractions of O,. Then,
for 7 > 2, the composite

1,j

Koj-1(Oy) © Q = K2j-1(0,) © Q 2= H'(Spec O, K, (§)) = Ko,

where the third arrow is the canonical isomorphism (cf. [53, p.718]), sends Huber- Wildeshaus’
motwic polylogarithm class pol¢ (see [35, 9.4]) to j!é;p)(g“) for an N-th root of unity (. Here,

€§p)(g) is the special value of Coleman’s p-adic polylogarithm (see [19, VI])

®) 1 _ t"
FH="> =

n>1,(n,p)=1
at C.
Proof. Tt follows from [53, 4.10 and 4.11] and the theorem above. We remark that the coefficient

()

in [53, 4.11] is incorrect. The correct coefficient is

o
(1-5)
where o is the Frobenius automorphism. O

Remark 13.3. By calculating the regulator explicitly, Besser and De Jeu already proved a result
similar to this corollary that says Besser’s regulator sends the element [(]; in Ka;-1(O(,)) ® Q
constructed by De Jeu [20] to a special value of p-adic polylogarithm up to some explicit constant
(see [12, Theorem 1.12]). We can prove this corollary using their result. We remark that
they used another identification of Hslyn(Spec Oy, Ky(j)) with K, in their paper (see [12, 4.6]).

Composing the automorphism
o

— —id
P

of K,, their identification becomes equivalent to ours (see [53, 4.13]), where o is the Frobenius
automorphism.
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