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Amyloid fibrils and its association with protein misfolding diseases 

In recent year, remarkable progress of science has dramatically increased human longevity. Advances 

in the diagnosis and treatment of human disease reduce the burden of human diseases, and average life 

in many countries have risen to over 80 years. In aging society, as a result of life expectancy, we have 

confronted with incurable diseases which require a great deal of effort to conduct treatment. Most serious 

diseases in aging society, such as Alzheimer’s, Parkinson’s, and diabetes, are deeply associated with 

amyloid fibrils which are aberrant fibrous aggregates of protein. Diameters of typical mature amyloid 

fibrils are ∼10 nm and their lengths is in the order of microns. Protein aggregation including amyloid 

fibrillation mainly caused by protein misfolding, and amyloid fibrillation has shown toxicity to nerve 

cells and cause the neurodegenerative diseases. Up to now, it is reported that amyloid fibrillation is 

responsible for more than 50 diseases (1) (Table 1). These misfolding-induced diseases are major threats 

to human health and welfare. It has been estimated that 46.8 million people in the world are living with 

Alzheimer’s disease in 2015, and this number will double every year reaching 131.5 million in 2050 (2). 

There is currently no effective therapies to combat these misfolding diseases and also no reliable 

diagnostics in early stage of a disease, although many models of disease biomarkers to track 

pathophysiological processes were proposed (3).  

 

Disease Aggregation protein and peptide 

Alzheimer’s disease Amyloid β 

Spongiform encephalopathies Prion protein or its fragments 

Parkinson’s disease α-synuclein 

Huntington disease Huntingtin fragment 

Familial amyloidotic polyneuropathy 

Senile systematic amyloidosis 
Transthyretin 

Haemodialysis-related amyloidosis β2-microglobulin 

Type II diabetes Amylin (IAPP) 

Table 1. Some human diseases associated with amyloid fibril formation. 
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Amyloidogenic proteins and peptides used in this work 

Amyloid β 

Amyloid β-protein is the proteolytic product of amyloid β-protein precursor and it contains 39–43 amino 

acid residues (Fig. 1). Among them, amyloid β-protein 1-42 and 1-40 (Aβ1-42 and Aβ1-40) is considered 

to be the most vital factor to the onset of Alzheimer’s disease (AD) due to its strong neurotoxicity 

and aggregation capability (4-6). Although the conformation of Aβ1-42 is variable and uncertain (7, 8), 

the secondary structure of Aβ monomers in fibrils is determined by NMR spectroscopy (9, 10). Aβ1-42 

monomers in fibrils possesses a disordered hydrophilic N-terminal region (Asp1–Lys16) (11), which is 

also considered to be the minimal zinc-binding domain and contains two aspartates subject to protein 

aging, a hydrophobic β-sheet-forming region (Leu17–Ser26), a turn region (Asn27–Ala30), and another 

β-sheet-forming region (Ile31–Ala42) (9, 10). Based on these information, numerous studies have 

suggested various inhibitors of Aβ-aggregation and their inhibiting mechanisms (12, 13). 

 

Fig 1. The amino acid sequence of Aβ 

 

α-synuclein  

α-synuclein (αSN) is a 14.5 kDa protein expressed predominantly at the presynaptic terminals of brain 

neurons. The physiological function of the protein remains unknown although a role in synaptic vesicle 

recycling has been suggested (14). Misfolding of αSN leads to the formation of fibrillar cytoplasmic 

aggregates called Lewy bodies, which are a defining characteristic of Parkinson's disease (15, 16). 

Because the number of Lewy bodies is often poorly correlated with the severity of symptoms, 

controversy surrounds the issue of whether fibrils or smaller soluble oligomers are responsible for the 

neurotoxicity of misfolded αSN. Regardless of the mechanism of neurotoxicity, genetic evidence 

establishes a link between the αSN gene and Parkinson's disease. Although 90–95% cases of Parkinson's 

disease cases are sporadic (17), the autosomal-dominant familial mutations A30P, E46K, A53T, as well 

as the triplication of the wild-type αSN gene lead to early onset of the disease (18).  

 The amino acid sequence of αSN can be subdivided into three domains with unusual distributions 

DAEFR HDSGW EVHHQ KLVFF AEDVG SNKGA IIGLM VGGVV IA 

10 20 30 40 
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of charged residues (Fig. 2). The first 90 residues of αSN contain seven imperfect repeats of the amino 

acid sequence KTKEGV (19), which are important for the induction of α-helical structures in αSN and 

for binding to membranes containing negatively charged lipids that the protein prefers (20, 21). Residues 

61-95 of αSN correspond to the hydrophobic “non-amyloid-β component” (NAC), the most 

aggregation-prone part of the protein. The name NAC, derives from the occurrence of this segment as a 

second protein component of the extracellular amyloid-β plaques found in patients with Alzheimer's 

disease. The mechanism by which the NAC fragment of the intracellular αSN is cleaved and comes to 

be associated with extracellular amyloid-β plaques is unknown. The last two KTKEGV repeats are in 

the NAC segment, however, due to their imperfect nature only two charged residues Lys80 and Glu83 

occur in the hydrophobic region between residues 62 and 95. The last 40 amino acids of αSN contain 

15 acidic residues, giving the C-terminal tail of the protein a negatively charged character at 

physiological pH. 

Fig. 2. The amino acid sequence of αSN 

 

β2-microglobulin and K3 peptide 

Dialysis-related amyloidosis is a common and serious complication among patients on long term 

hemodialysis, in which β2-microglobulin (β2m) forms amyloid fibrils. Native β2m, made of 99 amino 

acid residues, corresponds to a typical immunoglobulin domain (Fig. 3) and is a component of the type 

I major histocompatibility antigen. Although the increase in the concentration of β2m in blood over a 

long period is the most critical risk factor causing amyloidosis, the molecular details remain unknown. 

Recently β2m, because of its relatively small size, which makes it suitable for physicochemical studies, 

has been used as a target for extensive studies addressing the mechanism of amyloid fibril formation in 

the context of protein conformation (22-24). 

 In many amyloidogenic proteins, short peptides, called minimal or essential sequences, can form 

10 30 20 40 50 

MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV GSKTKEGVVH 

GVATVAEKTK EQVTNVGGAV VTGVTAVAQK TVEGAGSIAA ATGFVKKDQL  

GKNEEGAPQE GILEDMPVDP DNEAYEMPSE EGYQDYEPEA 

60 70 80 90 100 

110 120 130 140 
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amyloid fibrils by themselves. Kozhukh et al. previously found that a 22-residue K3 peptide, Ser20–

Lys41, obtained by digestion of β2m with Acromobacter protease I, forms amyloid fibrils (25). The 

minimal sequence provides various pieces of information useful for addressing amyloid fibril formation. 

It is likely that the minimal sequence includes the initiation site for amyloid fibril formation of the whole 

molecule. 

Fig. 3. The amino acid sequence of β2m 

 

 

Protein folding and protein aggregation escaped from protein homeostasis 

Proteins usually fold into compact three dimensional structures which play important role in intrinsic 

function of proteins in the living cell (i.e. gain of function) (Fig. 4). In microscopic aspects, the 

conformation of proteins have flexibility and can adapt their structures ranging from compact native 

states to largely unfolded states. During the process of folding or process of structural changes, protein 

molecules occasionally fail to fold into native structure and misfold. Furthermore, these misfolded 

proteins often form aggregates in intra- and/or extracellular space, thereby abolishing protein function 

(i.e. loss of function) (Fig. 4). Deposition of these aggregates in cells and tissues eventually result in 

serious diseases (i.e. gain of toxic function). In order to counteract protein misfolding and aggregation, 

cells possess various protective mechanisms to maintain protein homeostasis, which is the ability of 

cells to regulate the levels of proteins by means of the concentration, conformations and interactions 

(26-31). Once protein homeostasis becomes impaired due to environmental stress, aging, or the system 

escaped from protective mechanism of homeostasis, protein molecules misfold and form aberrant 

aggregates in living cells.  

MIQRTP KIQVY SRHPA ENGKS NFLNC YVSGF HPSDI EVDLL KNGER IEKVE  

HSDLS FSKDW SFYLL YYTEF TPTEK DEYAC RVNHV TLSQP KIYKW DRDM 

10 20 30 40 

60 

50 

70 80 90 100 
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Fig. 4. Brief description of protein folding and misfolding. Protein usually fold into compact 

three dimensional structure which play important role in the living cell, but protein molecules 

occasionally fail to fold into native state and form aberrant aggregation. The typical fibril formation 

process has two steps consisting of nucleation step with a long lag time, and followed by a rapid 

elongation step that is analogous to crystallization of substances. Amyloid fibrils are formed in 

supersaturated monomer solutions. Once supersaturation state of protein is broken, proteins 

immediately form aggregates. 

 

Formation of amyloid fibrils and the structural property 

Protein homeostasis also serves as maintenance of the protein solubility which is a key to protein 

aggregation. Proteins can be soluble even beyond the limit of solubility due to the supersaturation in the 

cell. When the supersaturated state of protein is disrupted, insoluble aggregates form (i.e. salting out). 

Insoluble protein aggregates have shown various morphologies, ranging from three dimensional ordered 

crystals to disordered amorphous aggregation and different nature of the aggregation pathway. Amyloid 

fibrils have ordered structures which are distinguished from three dimensional crystals and amorphous 

aggregates because of their unique conformational properties. Amyloid fibrils are linear assemblies of 

proteins which are categorized to one dimensional crystals.  

 Generally, amyloid fibrils in living system deposit over long periods of time. In the case of globular 

proteins, amyloid fibrils can be prepared by manipulating conditions that destabilize the native state to 

completely or partially unfolded state, such as using extreme pH (23, 32), high temperature, and 

chemical denaturants such as urea, guanidine hydrochloride (Gdn-HCl). Accessing hydrophobic 

residues into solvent caused by unfolding or partially unfolding dramatically increase propensity to 

assemble each other and consequently forms aggregation (33, 34). A more efficient method of preparing 
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fibrils is adding fibril nuclei as seeds of fibril growth to eliminate a nucleation phase which has long lag 

time (35). 

 On the other hand, many intrinsically disordered proteins or peptides that are known to be involved 

in the most common misfolding diseases, such as amyloid-β peptide in Alzheimer’s disease (36), α-

synuclein in Parkinson’s disease (15), and amylin in type II diabetes (37), are also prone to aggregate in 

physiological condition although many of them tend to maintain the high level of solubility through the 

highly abundant charged and polar residues. Dynamic fluctuations may enable to access partially folded 

states and these states are particularly prone to aggregate (38). In the living system, partially folded 

states may be required for functional reasons (39, 40). 

 Protein aggregation, however, has often been an obstacle to studying the structure, function, and 

physical properties of proteins because of their too large size to apply spectroscopy although elucidating 

their structure is very important to understand the mechanism and develop strategies to conduct 

treatment of misfolding diseases. Furthermore, polymorphism of amyloid fibrils of various proteins has 

been reported and, unfortunately, these heterogenic properties often disturb precise and accurate 

evaluation of biological and biophysical natures of amyloid fibrils. Although polymorphic formation of 

amyloid fibrils is likely to be controlled by the solution condition such as pH, temperature, and cosolvent, 

preparing homogeneous fibrils are not virtually easy because of similar physicochemical and mechanical 

stability of amyloid fibrils. The maturation process of amyloid fibrils from kinetic to thermodynamic 

controls may be present and key for the polymorphic property of amyloid fibrils. 

 Interestingly, using dipeptides, multi-step phase transition process underlying supramolecular 

assembly was recently observed (41). The real-time observation showed that early formed spherical 

amorphous aggregates converted step by step to more ordered structures over time; first step is 

conversion to fibrils and finally converted into a thermodynamically most stable form of crystal-like 

tube. This behavior is analogous to Ostwald’s ripening, which is a kinetically driven self-assembly 

process; conversion from less structured states to more structured states through the internal 

rearrangement and recrystallization of structures (42-44). Importantly, similar behavior of this phase 

transition has been also observed in the living cells (45-48).  

 In spite of these difficulties on structural study, great efforts allow us to know characteristics of 
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structures of protein aggregates at the level of atoms and molecules (see Chapter 2. Table S4 for 

example). Many structural studies have revealed that amyloid fibrils are consist of cross-β structural 

motifs, in which individual β-strands lie perpendicular to the fibril axis with the β-sheets stacked in the 

parallel direction to produce protofilaments (49, 50). The protofilaments associate laterally and form 

amyloid fibrils with hierarchical structures. Because of the main chain dominant structure mainly 

constructed by a number of hydrogen-bond and the hydrophobic effect between monomers, amyloid 

fibrils exhibit high stability against outer stress and they are considered to show lower free energy states 

than those of natively folded state (51, 52). Although the study on thermodynamics of amyloid fibrils is 

essential for various scientific field including protein science, biophysics, and medical science, our 

understanding of the detailed thermodynamics of amyloid fibrillation is still unclear and very limited 

information is available. Thermodynamic features of protein aggregation and structural aspects are also 

very important from therapeutic perspective as these properties are physiologically and medically key 

for disaggregation and clearance of aggregates in vivo. 

 

Supersaturation and protein aggregation 

Solubility and supersaturation are the most important thermodynamic factors in protein aggregation. 

Supersaturation is a mixed concept of thermodynamics with kinetics and its detailed mechanism on 

protein aggregation still remains unclear. Although the metastability of supersaturation should be also 

considered, when the degree of supersaturation elevated by increasing protein concentrations or 

decreasing the solubility, the driving force of aggregation seems to be stronger which may be linked to 

shortening of a lag time and increased an elongation rate. Careful experimental kinetic studies improved 

our understanding on how amyloid fibrils are formed based on the theory and formalism of chemical 

kinetics (53, 54). Accordingly, it is highly useful to address the supersaturated state by using the two 

subconcepts: one is the degree of supersaturation and the other is the metastability of supersaturation. 

 The degree of supersaturation (σ) continues to increase with elevations in protein concentrations 

and is predictable based on its definition; σ = (c - ceq) / ceq, where c is the protein concentration given 

and ceq is the critical concentration of proteins. On the other hand, the metastability of supersaturation 

for productive nucleation, which corresponds to a kinetic energy barrier, is maximal just above the 
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solubility limit and decreases with higher protein concentrations. The higher metastability of 

supersaturation with a low degree of supersaturation maintains kinetically-trapped soluble states, while 

the lower metastability with a high degree of supersaturation leads to amorphous aggregation including 

partially structured aggregates. Since much higher protein concentration produces only amorphous 

aggregates although it is easy to form protein aggregates, the probability of productive nucleation is 

maximal at a balanced metastability and degree of supersaturation. Therefore, both degree and 

metastability of supersaturation play a key role in determining the pathway of protein aggregation. It 

should be noted that the interplay between kinetics and thermodynamics involved in supersaturation 

determines the behaviors of protein aggregation. At concentration in living cell, the native state of 

protein may not always show global free energy minima, in other words, soluble native protein is in a 

metastable state that is separated from solid amyloid fibril state by high kinetic barriers.  

 

Thermodynamics of globular protein 

The free energy landscape of protein folding and misfolding is still important to provide insight into the 

conformational properties with a direct indicator of the reaction coordinate. Thus, the free energy 

landscape of a proteins offers the possibility of describing molecular behavior, conformational stability, 

and the mechanism of protein misfolding and aggregation. Therefore it provides the tool for rational 

therapeutic strategies. This free energy depends on the enthalpy-entropy interplay, ΔG = ΔH – TΔS, 

where ΔG is the change in Gibbs free energy and the change in enthalpy and entropy are represented by 

ΔH and ΔS, respectively. It is widely invoked as a descriptive principle in thermodynamic analyses of 

protein folding and intermolecular interaction. It is already well known that enthalpic components 

provide insights into molecular and atomic interactions such as hydrogen bonding and van der Waals 

interactions, whereas entropic components reveal the degree of freedom of molecules such as 

conformational flexibility of the polypeptide chain and translational freedom of water molecules in 

surrounding environments of protein surfaces which cause hydrophobic interactions of proteins. It 

should be noted that water which surrounds protein surface becomes free on protein folding or protein 

interactions with other molecules. 

 A number of thermodynamic studies on protein folding have been extensively performed and well 
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established. The typical way is to access the thermodynamics of protein folding using the two-state 

transition model between unfolded and folded states. Based on this model, the conformational stability 

of folded proteins has been widely investigated by denaturation experiments through adding chemical 

denaturants (55-58) and changing pH (55, 59), temperature (60-63), and pressure (64-67).The various 

spectroscopy including fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy 

(FTIR), and nuclear magnetic resonance (NMR) and calorimetry such as differential scanning 

calorimetry (DSC) has been used for monitoring structural changes of folded states.  

 

Heat and cold denaturation of globular proteins 

Thermal denaturation of globular proteins is known as a conventional way to evaluate the 

conformational stability. As temperature in protein solution increased, most soluble proteins denature 

below the boiling point due to increases in conformational entropy (i.e., heat denaturation). Assuming 

the two-state unfolding model, temperature of denaturation midpoint Tm where both folded and unfolded 

protein are equally populated at equilibrium is obtained from thermal assay with structural analysis such 

as CD spectrometry. At the denaturation midpoint, the equilibrium constant ΔKeq is equal to one (ΔKeq 

= 1) which produces ΔG of zero (ΔG = 0) based on the relation of ΔG = -RTlnKeq. It is also possible that 

the analysis based on the van’t Hoff equation, 
R

H

Td

Kd vHoffeq 


)/1(

ln
, provides a series of 

thermodynamic parameters of unfolding of globular proteins. 

 It is also well known that all proteins undergo cold-induced denaturation and cold and heat 

denaturation of proteins are predicted using the Gibbs-Helmolz equation. Although the molecular 

mechanism of cold denaturation is still in debates, cold denaturation can be explained by a 

thermodynamic aspect of water, that is, the temperature dependence of the hydration of nonpolar 

residues (68). On the other hand, there is only limited information on conformational stability of protein 

aggregates including amyloid fibrils over a wide temperature range. Therefore, I came up with heat and 

cold denaturation of amyloid fibrils in chapter 2. 
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Chemical denaturation 

Chemical denaturation of folded proteins with chaotrope-like compounds such as urea and guanidine 

hydrochloride (GdnHCl) is useful to determine theΔG value. The free energy difference and population 

of folded and unfolded states depend on the concentration of denaturant ([D]) and both values are used 

for this equation, ΔG = ΔG0 + m[D], where m is the constant of proportionality which represents 

cooperativity of unfolding. Fitting the denaturation curve described in fraction of folded protein as a 

function of [D] reveals the values of ΔG0 and m. This approach is applicable to amyloid fibrillation by 

regarding this reaction as two-state model between soluble monomers state and β-structured amyloid 

fibrils state. 

 

Calorimetry 

Calorimetry is one of the most powerful approaches to investigate the stability of protein which can 

directly determine the thermodynamic parameter, ΔH, the change in heat capacity (ΔCp), ΔS, and ΔG. 

Differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) are techniques for 

the high-sensitive measurement of reaction heat by changing temperature with fixed solvent conditions 

and changing solvent conditions with fixed temperature, respectively. DSC is usually used to study the 

thermally induced denaturation of native proteins by directly measuring accompanying heat of unfolding, 

ΔH and to produce ΔCp from the temperature-dependence of ΔH. The net value of ΔH is the change in 

heat mainly stemming from the disruption of intramolecular interactions (69). Other thermodynamic 

parameters, ΔS and ΔG are available by using Tm obtained from DSC measurement; transition entropy 

is determined by equation ΔS = ΔH/T. In many cases, DSC performed not only for studying structural 

stability of single protein, but also applicable for studying intermolecular interaction such as protein-

protein, protein-ligand, and protein-lipid interaction, which can also contribute to drug screening. In the 

DSC measurements, heat-induced unfolding has been recognized to be occasionally followed by an 

irreversible process that induces aggregation although protein aggregation usually has not been a target 

of calorimetry. In this work, I focused on this aggregation heat to understand the thermodynamics of 

protein aggregation including amyloid fibrils in chapter 3.  

 On the one hand, ITC also accurately detect the heat of the reaction in the ITC cell with continuous 
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stirring. ITC has been recognized as a direct and quantitative method for wide variety of intermolecular 

interactions and provides a series of thermodynamic parameters, the dissociation constant (KD), ΔH, and 

binding stoichiometry (n). Other thermodynamic parameters, ΔS and ΔG are available by using the 

relationship ΔG = -RTlnKa = ΔH - TΔS. The value of ΔCp is available from the temperature dependence 

of ΔH explained by Kirchhoff’s relation ∂ΔH/∂T = ΔCp. To understand the heat capacity changes is very 

important because the sign and magnitude of ΔCp reflect (de)hydration and the change in the accessible 

surface area. Hydration effects are proportional to the buried accessible surface area of polar and 

nonpolar residues. Hence, ΔCp provides insightful information on the extent of exposed surface area 

following the conformational conversion or binding reaction. 

  

Computational approach 

Combination of experimental measurements with computational methods has expanded the more 

detailed molecular mechanism of protein folding and intermolecular interactions. Molecular dynamics 

(MD) simulation is a powerful way to study biomolecules at atomic resolution. Moreover, combination 

with NMR spectroscopy has shown to characterize the structures and the free energy landscape, which 

is a fundamental quantity in a statistical mechanics description of protein including disordered peptide 

(8, 70-75). The NMR chemical shifts are used as structural restraints, and the resulting free energy 

landscape obey the Boltzmann distribution corresponding to the force field used in simulations. Taken 

together, the MD simulation-based approach may help us to understand general thermodynamics of 

proteins including amyloidogenic proteins. 

 

Thermodynamics of amyloid fibrils 

Although advanced method and technology have improved the understanding on thermodynamics of 

proteins, many questions remain open regarding protein aggregation including amyloid fibrils and 

amorphous aggregates. Previously, Kardos et al. and Narimoto et al. examined conformational stability 

of amyloid fibrils formed from several amyloidogenic proteins and peptides against outer stress of 

chemical denaturant and heat. They demonstrated that amyloid fibrils are also denatured by outer 

stresses (76, 77). 
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 In this work, I address further insights into thermodynamic properties of amyloid fibrillation by 

defining the difference in stability between the monomeric and fibrillar forms of a series of polypeptides 

(Table 1), ranging from short peptides (e.g., amyloid-β) to full-length proteins responsible for human 

diseases (e.g., α-synuclein and β2-microglobulin), in terms of consideration of different characteristics 

in the sequence and structure of the monomeric state. In chapter 2, I show the systematic investigation 

on the thermal stability of various amyloid fibrils using temperature-induced dissociation. Interestingly, 

α-synuclein amyloid fibrils undergo cold denaturation. I proposed a unique thermodynamic property of 

amyloid fibrils in comparison with soluble globular protein. In chapter 3, I describe a novel methodology 

to directly measure the thermodynamic parameters of protein aggregation including amyloid fibril using 

calorimetry. By using ITC, I clearly showed that observation of heat of protein aggregation is possible 

for supersaturation-limited spontaneous fibrillation, and even for amorphous aggregations. Furthermore, 

based on the thermodynamic parameters obtained by ITC, I was also able to characterize conformational 

states of globular proteins, amyloid fibrils, and amorphous aggregates.   

http://pubs.acs.org/doi/full/10.1021/ja2017703#tbl1
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2-1. Introduction 

Proteins natively folded under physiological conditions have evolved to maintain marginal stability and 

high solubility by dominantly burying hydrophobic residues and hydrogen-bonded peptide groups in 

cores while exposing hydrophilic residues to polar solvents. Breaking protein homeostasis by 

unregulated quality control often leads to protein misfolding and insoluble aggregates such as crystal-

like amyloid fibrils or glassy amorphous aggregates (78, 79). 

 Amyloid fibrils have been extensively studied over the last decade due to their importance in serious 

pathologies such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) (80-88), normal biological 

functions (82, 89), and nanomaterials (90). Denatured monomers, over the critical concentration of 

solubility, self-assemble to amyloid fibrils through a long lag phase for nucleation and a subsequent 

rapid elongation phase (82, 84, 91). This nucleation-growth mechanism is similar to that of the 

crystallization, which indicated that supersaturation or metastability limits the phase transition (79). 

 Various approaches such as X-ray crystallography (92), solution/solid-state NMR spectroscopy (91, 

93), and computer-based simulations (94) have revealed the detailed structures of amyloid fibrils. The 

hierarchical conformations of typical mature amyloid fibrils consist of a bundle of protofilaments 

composed of a few -sheet layers, in which each polypeptide chain typically assumes a U-shaped -

strand-loop--strand topology (91, 93, 94). Importantly, each -sheet layer is sustained by 

intermolecular hydrogen bonds between the backbones of adjacent monomers as well as hydrophobic 

interactions between the -sheet layers (82, 88, 91, 93-95). 

 Most proteins have been shown to accommodate amyloid-forming regions (96) and disease-

unrelated proteins were shown to polymerize to fibrils (82, 97-99). Therefore, these common properties, 

regardless of the distinct amino acid sequence of constituent monomers, have suggested that the main-

chain dominated formation of amyloid fibrils may be the generic nature of polypeptide chains (97, 100-

102). This concept has indicated that the fundamental features of intermolecular protein misfolding are 

distinct from intramolecular protein folding achieved by the optimized packing of side chains. 

 Although the molecular mechanisms of fibrillation are becoming increasingly clear, few studies 

have described the disaggregation of amyloid fibrils with alternating environmental conditions using pH 
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(89, 95, 99, 103), heat (76), pressure (87), or chemical denaturants (77, 83). Kardos et al. previously 

showed the thermal denaturation of fibrils of β2-microglobulin (β2m), responsible for dialysis-related 

amyloidosis, and its fragment and -synuclein (SN), a causative protein of PD (76). It has been shown 

that SN fibrils (85, 86) and PDZ domain fibrils (98) disaggregated to oligomers and monomers at -15 

C and to soluble species at room temperature, respectively. However, to date, there has been no 

available systematic study on the cold and heat denaturation of amyloid fibrils from microscopic and 

macroscopic viewpoints. Considering the extensive interest in the conformation of SN fibrils and 

oligomers (45, 80, 81, 85-87), it is critical to clarify the conformational stability of SN fibrils. Here, I 

provided the complete characterization of the conformational transitions of SN amyloid fibrils over a 

wide range of temperatures (0-110 C), and described cold and heat denaturation and their molecular 

origins and mechanisms. These results contrast the thermodynamic mechanisms stabilizing the native 

and amyloid structures of proteins. 
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2-2. Materials and Methods 

Reagents. Thioflavin T (ThT) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-  

benzimidazolylcarbocyanine iodide (JC-1) were purchased from Wako Pure Chemical Industries Ltd 

(Osaka, Japan) and Sigma-Aldrich Cooperation (St. Louis, MO), respectively. All other reagents were 

obtained from Nacalai Tesque (Kyoto, Japan). 

 

Preparation of Proteins. The recombinant full-length human αSN and β2m and the two αSN mutants, 

αSN103 and αSN118, were expressed in Escherichia coli strain BL21 (DE3) and BLR (DE3) (Novagen, 

Madison, WI), respectively, and were purified as described (76, 104-106). The K3 peptide was obtained 

by the digestion of β2m with Acromobacter protease I. The NAC peptide of αSN (NAC76-96) and A1-40 

peptide were purchased from Peptide Institute Inc. (Osaka, Japan). A1-42 was expressed and purified as 

described in SI Materials and Methods. Insulin was purchased from Wako Pure Chemical Industries Ltd 

(Osaka, Japan). 

 

Preparation of Fibrils. Seed-dependent fibrillation of all proteins and peptides was made using 1-2% 

(weight/weight) seed fibrils formed spontaneously from monomers, and by ultrasonication with the 

cycles of 1-min sonication and 9-min quiescence under the desired solvent conditions at 37 C. Full-

length αSN fibrils were also elongated using stirring by a magnetic bar without sonication. The water 

bath-type ultrasonic transmitter with a temperature controller (ELESTEIN SP070- PG-M, Elekon, 

Tokyo) was used at an ultrasonic frequency of 17–20 kHz and power output of 350 watts. Amyloid fibril 

formation of SN at 1.45 mg ml-1 in 20 mM sodium phosphate buffer (pH 7.5) containing 100 mM NaCl 

at 37 °C was monitored using ThT fluorescence (Fig. 1A; Fig. S1A and see SI Materials and Methods). 

Although spontaneous fibrillation did not occur even after 2 days without agitation (104), ultrasonication 

accelerated nucleation to produce fibrils with a lag phase of 10 h. The fragmentation of preformed fibrils 

and subsequent secondary nucleation may have also been enhanced by ultrasonication. Adding 

preformed fibrils as seeds to monomers under ultrasonication resulted in disappearance of the lag phase. 

Seeding under ultrasonication was more effective than seeding under stirring by a magnetic bar at 600 
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rpm, which indicated that the fragmentation of preformed fibrils occurred more frequently by 

ultrasonication than by stirring. The formation of fibrils was confirmed by far-UV CD (Fig. S1A and see 

SI Materials and Methods) and AFM (Fig. 1C and D and see SI Materials and Methods). The CD 

spectrum of αSN monomers and fibrils indicated a typical random coil with a minimum at 210 nm and 

a β-sheet-rich conformation with a minimum at 218 nm, respectively (Fig. S1A). AFM revealed 

morphologically different mature fibrils depending on the types of agitation. αSN fibrils formed by 

seeding under stirring ranged from submicrometer lengths to several micrometers with diameters of 7–

11 nm (Fig. 1C). Ultrasonication generated homogeneous short fibrils with submicron lengths and 

diameters of 7–10 nm (Fig. 1D), which demonstrated the ultrasonication-dependent intensive 

fragmentation of fibrils. Amyloid fibrils were assumed to be in equilibrium with monomers, although 

fibrillation was often accompanied by the formation of oligomers and amorphous aggregates. Therefore, 

I examined the molecular species that remained soluble after the formation of αSN fibrils at pH 7.5 and 

37 °C using far-UV CD and UV absorption spectroscopies and ultracentrifugation (215,000g for 2 h) 

(Fig. 1G and H; Fig. S1). The concentration of αSN in the supernatants after the formation of fibrils with 

10 M αSN was 0.5 M. The far-UV CD spectrum of the supernatant was consistent with that of the 

monomers (Fig. S1), which indicated that 5% monomers remained in the solution. The details on the 

fibril formation of Aβ1-40 and Aβ1-42 are given in SI Materials and Methods. 

 

Denaturation of Fibrils at the Various Temperatures. The far-UV CD spectra of fibril solutions 

prepared at various protein concentrations (1-10 μM) at 37 °C were obtained after incubation in the 0-

110 °C range using a cell with 1 or 10 mm path lengths. The time-dependent cold denaturation of full-

length αSN fibrils at 0, 10, 15, or 25 °C was observed by the CD at 220 nm. Data were fit using the 

following double exponential function. 

 

𝑦 = 𝑦0 + 𝐴1𝑒−𝑘1𝑡 + 𝐴2𝑒−𝑘2𝑡  (1), 

 

where y0 is the signal at infinite time, k1 and k2 are rate constants, A1 and A2 signify the amplitudes of 
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the two phases, and t indicates the incubation time. Thermal denaturation at 50, 60, 70, 80, 90, 100, and 

110 °C was monitored by CD at 220 nm. Combined with Gdn-HCl denaturation as described below, the 

apparent melting temperature (Tm) and m-values were determined by a regression analysis using a 

nonlinear least squares fitting of all sets of data to the sigmoidal equation under the assumption of a two-

state transition between fibrils (F) and monomers (U). 

 

𝑆 =
(𝑆𝐹 + 𝑚𝐹𝑇) + (𝑆𝑈 + 𝑚𝑈𝑇)𝑒−(∆𝐻(1−𝑇 𝑇𝑚⁄ )−∆𝐶𝑝((𝑇𝑚−𝑇)+𝑇ln(𝑇 𝑇𝑚⁄ )))/𝑅𝑇

1 + 𝑒−(∆𝐻(1−𝑇 𝑇𝑚⁄ )−∆𝐶𝑝((𝑇𝑚−𝑇)+𝑇ln(𝑇 𝑇𝑚⁄ )))/𝑅𝑇
 (2)   

 

where S is the signal intensity monitored by CD or ThT fluorescence, SF and SU are those of fibrils and 

monomers, respectively, and T, Tm, and R indicate temperature, the midpoint temperature of denaturation, 

and gas constant, respectively. H and Cp were incorporated in the equation. The initial and final 

baseline was described by SF + mFT and SU + mUT, respectively. ThT assay was further conducted using 

fibril samples before and after cold/heat treatments as described above. 
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2-3. Results 

Cold Denaturation of SN Fibrils of at 0 °C and pH 7.5. The two types of mature αSN fibrils 

were prepared using the distinct agitations at pH 7.5 and 37 °C (see Materials and Methods). The 

formation and conformational properties of fibrils were confirmed by ThT fluorescence (Fig. 1A), far-

UV CD (Fig. S1A) and atomic force microscopy (AFM) (Fig. 1C and D). Ultrasonication generated 

homogeneous shorter fibrils than the fibrils formed with stirring (Fig. 1C and D). 

 The temperature was decreased from 37 °C to 0 °C and conformational changes of αSN fibrils were 

monitored using far-UV circular dichroism (CD) (Fig. 1B). The intensity at 218 nm decreased with 

incubation. The spectrum after a 10-h incubation was essentially the same as that of the monomers at 

0 °C. Cold-denatured fibrils showed no ThT or JC-1 fluorescence at 485 nm or at 540 nm, respectively 

(Fig. 1G), and no large molecules were present in AFM images (Fig. 1F), indicating their complete 

denaturation to monomers. The molecular species and their amounts before and after cold denaturation 

at 0 °C were further examined using UV absorption, CD and analytical ultracentrifugation (Fig. 1G and 

H; Fig. S1). The results indicated that 5% of monomeric SN remained after fibril formation and the 

predominant species after cold denaturation were monomers (see SI Materials and Methods). 

 

Two-Step Denaturation of SN Fibrils via a Kinetic Intermediate. In order to explore the 

process of cold denaturation, the time course of changes in the CD signal at 220 nm was followed at pH 

7.4 and 0 C (Fig. 2A). The amplitude decreased and was saturated at 10 h, which indicated the end of 

cold denaturation. Time-dependent CD signals fit well with a double exponential function (see Materials 

and Methods) with the rate constants of fast (k1) and slow (k2) phases. The average k1 and k2 values for 

short fibrils prepared using ultrasonication were 5.29  0.75 h-1 and 0.70  0.04 h-1, respectively, with 

similar relative amplitudes (Table S1). These results suggest a three-state mechanism with an 

intermediate state. 

 The intermediate state of cold denaturation was characterized using JC-1 fluorescence and AFM 

images. The JC-1 fluorescence spectra revealed a kinetic intermediate SN based on the characteristic 

emissions (107) (Fig. 2B and see SI Materials and Methods). AFM images were taken at different time 
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points during cold denaturation (Fig. 1D-F). The heights of fibrils (5-8 nm) at 10 h and 10 C were lower 

than those of cold-untreated fibrils (7-10 nm), which supported the accumulation of a kinetic 

intermediate in which mature fibrils frayed into protofilaments. 

 

 

Fig. 1. Cold Denaturation of αSN Fibrils at 0 ºC. (A) αSN fibrillation at pH 7.4 at 37 ºC monitored 

by ThT fluorescence with and without fibril seeds under ultrasonication. (B) Denaturation of αSN 

fibrils, formed at 37 ºC, monitored at 0 ºC by far-UV CD. The spectra of fibrils before (black) and 

after the cold treatment for 10 h (blue) are displayed. The spectrum of monomers at 0 ºC (gray) is 

shown. The dissociation process is displayed by dotted curves and guided by arrows. (C-F) AFM 

images of αSN fibrils. Fibrils formed using stirring (C) or sonication (D). Fibrils after the cold 

treatment for 6 h at 10 ºC (E) and for 14 h at 0 ºC (F). Scale bars indicate 1 m and average heights 
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are exhibited at the right. (G) Amounts of fibrils and monomers before and after the cold treatment 

at 0 ºC for 14 h determined using the ThT and JC-1 (107) fluorescence and UV absorption. (H) 

Fractions of molecular species against the S values (s20,w). See also Fig. S1. 

 

Factors Affecting the Cold Denaturation of SN Fibrils. Physicochemical factors that may 

impinge on the kinetics of cold denaturation were investigated to obtain further insight into the 

mechanism of cold denaturation. The longer SN fibrils, produced by seeding under stirring, also cold-

denatured at 0 C through biphasic processes (Figs. 1C and 2A). However, the rates of cold denaturation 

were slower for both the fast and slow phases than for the short fibrils: the average k1 and k2 values were 

1.00  0.13 h-1 and 0.16  0.02 h-1, respectively (Table S1). These results suggest that cold denaturation 

mainly occurs from the ends of fibrils and that ultrasonication increased the number of active sites of 

denaturation. 

 Cold denaturation was delayed when the concentrations of sodium chloride and SN increased 

from 100 to 300 mM and from 10 to 100 M, respectively (Fig. 2C and Table S1). On the other hand, 

the addition of guanidine hydrochloride (Gdn-HCl) accelerated cold denaturation (Fig. 2D and Table 

S1). Thus, cold denaturation is an additional factor that determines the stability of fibrils, which are 

dependent on solvent conditions and SN concentrations. Cold denaturation was slower at 15 C than 

at 0 °C in an opposite way to the Arrhenius equation (Fig. 2E and Table S1). Cold denaturation was not 

observed at 25 C due to a large increase in fibril stability. 

 

Reversible Cold Denaturation of SN Fibrils. The reversibility of the cold denaturation of SN 

fibrils was verified by adjusting the temperature. After 10 h of cold denaturation at 0 °C, in which the 

CD intensity at 220 nm reached a minimum, the temperature was increased to 37 ºC (Fig. 2F). The CD 

signal was gradually restored to its original intensity, indicating the regeneration of fibrils with high 

reversibility, in which a small amount of remaining fibrils worked as seeds. High reversibility was even 

observed for SN solutions incubated at 0 ºC and 26 h, in which cold denaturation was apparently 

completed, which suggests that the completion of cold denaturation is difficult. 
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 During fibril regeneration at 37 ºC, I again reduced the temperature to 0 ºC. Although regenerated 

fibrils again exhibited cold denaturation, the denaturation rate appeared to be decelerated. As the cycle 

of heating and cooling was repeated, reversibility declined with an apparent resistance to cold 

denaturation. This may have happened due to an adaptation to cold denaturation and/or the formation of 

irreversible aggregates of fibrils. Increasing the incubation temperature from 37 to 50 ºC enhanced cold 

resistance. Almost the same patterns of reversibility were verified using ThT intensities at 485 nm (Fig. 

2G) and JC-1 at 540 nm (Fig. 2H). 
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Fig. 2. Kinetics and Reversibility of the Cold Denaturation of αSN Fibrils. (A) Time-dependent 

conformational changes in αSN fibrils prepared with sonication () or stirring (■) monitored by CD 

at 220 nm at 0 ºC. (B) The JC-1 fluorescence spectrum was also used to monitor the conformational 

transition at 0 ºC. "F", "I", and "M" indicate mature fibrils, intermediate fibrils, and monomers, 

respectively. (C) The cold denaturation of fibrils at different salt or protein concentrations at 5 ºC 

monitored by CD at 220 nm. (D and E) The cold denaturation of fibrils without (D) and with various 

Gdn-HCl concentrations (E) at 0 ºC monitored by CD at 220 nm. Fitted curves are shown by 

continuous lines. (F-H) Reversibility of cold denaturation in the repeated cycles of cooling at 0 ºC 

(blue) and heating at 37 ºC (red) monitored by CD at 220 nm (F), ThT fluorescence (G), or JC-1 

fluorescence (H). See also Table S1. 
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Heat Denaturation of SN Fibrils and Their Reversibility. To obtain a more comprehensive 

understanding, the thermal responses of SN fibrils over a wide temperature range were investigated. 

The time courses of conformational changes were monitored by far-UV CD at various temperatures 

from 37 to 110 ºC (Fig. 3). CD intensities at 220 nm increased rapidly and saturated to an equilibrium 

point within 0.2 h (Fig. 3A), which demonstrated that thermal denaturation was much faster than cold 

denaturation. The CD spectra following incubation at individual temperatures revealed the temperature-

dependent heat denaturation of fibrils (Fig. 3B). The CD signal decreased with an increase in 

temperature and the spectrum at 110 ºC was indistinguishable from that of monomers at 110 ºC. These 

results indicated that the cross- structure of αSN fibrils was destructed and depolymerized to monomers 

by heat, which is consistent with the finding of previous study (76). 

 The reversibility of heat denaturation was examined. The CD intensity at 220 nm was traced from 

37 ºC to a desired temperature, i.e. 70, 80, 90, 100, or 110 ºC (Fig. 3C). The profiles of heat scans 

revealed a cooperative transition independent of the final temperature of heating. Fibrils began to melt 

from ~60 ºC and the recovery of intensity after cooling to 37 ºC depended on the final heating 

temperature. Although reversibility from heating to 70 ºC was 100%, heating to 110 ºC almost 

completely abolished reversibility even after a 26-h incubation at 37 ºC without fibril seeds (Fig. 3; Fig. 

S2A). The addition of seeds (1% weight/weight) to the solutions subjected to heating to 110 ºC partly 

restored the CD intensity (Fig. S2B). I confirmed that an 8-h incubation at 37 ºC after heating to 100 ºC 

completely regenerated the fibrils even without seeds (Fig. S2C). Taken together, thermal treatment over 

100 ºC decreased reversibility due to the complete melting of fibril seeds and/or the partial formation of 

irreversible aggregates. However, scanning up to 100 ºC secured reversibility by retaining fibrillation-

competent monomers and fibril seeds. 

 Interestingly, when the denaturation of fibrils was monitored by differential scanning calorimetry 

(DSC), the heat capacity exhibited a negative peak and no reversibility was observed after heating to 

125 ºC (Fig. 3D). The negative peak was opposite to the typical positive heat capacity peak accompanied 

by the unfolding of globular proteins (108), which suggested a positive enthalpy change in SN fibril 

formation. 
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Fig. 3. Heat Denaturation of αSN Fibrils at Various Temperatures. (A) The kinetics of the 

thermal denaturation of αSN fibrils in the temperature range of 50 to 110 ºC monitored by CD at 

220 nm. (B) CD spectra of αSN fibrils at 37 ºC after the heat treatment at 70, 80, 90, 100, 105, or 

110 ºC. The transition process is displayed by dotted lines and guided by arrows. (C and D) The 

heat denaturation of fibrils observed by CD (C) or DSC (D) at a heating/cooling rate of 10 ºC min-1 

and 1 ºC min-1, respectively. The arrows indicate the direction of scanning. (C) The final 

temperature of each thermal scan was 70, 80, 90, 100, or 110 ºC. (D) The Cp curves of αSN fibrils 

() and monomers () and of the second heat scan of αSN fibrils () from 35 ºC to 125 ºC. The 

DSC thermograms of αSN () and β2m fibrils () upon cooling from 37 to 10 ºC. See also Fig. S2 

and Table S2. 

 

Stability of the Amyloid Fibrils of Various Proteins in a Wide Temperature Range and 

Gdn-HCl-Assisted Cold Denaturation. To extract the general features of the temperature responses 

of amyloid fibrils, fibrils of various amyloidogenic proteins under different solvent conditions were 

investigated. The amyloidogenic polypeptides utilized were full-length SN (Fig. 4A and B), the two C-

terminus-truncated SN mutants, αSN118 (Met1 to Val118) and αSN103 (Met1 to Asn103) (Fig. 4B), the 
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NAC peptide of αSN (Ala76 to Lys96), NAC76-96 (Fig. 4B), full-length β2m and its K3 fragment (Ser20 

to Lys41) (Fig. 4C), amyloid 1-42 (A1-42) and amyloid 1-40 (A1-40) peptides (Fig. 4D), and insulin (Fig. 

4D). The thermal denaturation profiles of all the fibrils explored here were expressed as a fraction of the 

fibrils remaining at a given temperature. The melting temperatures (Tm) of all fibrils based on thermal 

denaturation profiles were summarized in Table S2 (see Materials and Methods) 

 The thermal stability curve of SN fibrils at ~0.15 mg ml-1 and pH 7.5 from 0 to 110 ºC was first 

constructed based on the CD intensity (Fig. 4A). A bell-shaped curve explained the temperature-

dependent conformational stability of amyloid fibrils in a two-state transition between fibrils and 

monomers. Fibrils were stable between ~25 and ~60 ºC, however, there were unstable below ~25 ºC and 

above ~60 ºC. The apparent midpoints at which 50% of fibrils depolymerized were 12 and 91 °C for 

cold and heat denaturation, respectively. Although the curve was symmetrical, signals at high 

temperature regions (60-100 ºC) fluctuated due to the formation of aggregates and/or fibril association. 

 Bell-shaped symmetric stability curves were also obtained for αSN118, αSN103, and NAC76-96 fibrils 

formed at 37 ºC and pH 7.5 (Fig. 4B). After incubation at 0 °C, fractions of the remaining fibrils were 

0.1 (αSN118), 0.15 (αSN103), and 0.25 (NAC76-96), indicating the cold denaturation of fibrils. At 90 

ºC, αSN118 and NAC76-96 fibrils were almost denatured by heat, whereas 30% of αSN103 fibrils remained. 

 The decrease in pH to 2.5 extended the stable region of SN fibrils toward lower and higher 

temperatures (Fig. 4B). No cold denaturation was observed at 0 ºC, although the thermal denaturation 

was still observed. Similar findings were also observed for αSN103 and αSN118 fibrils at pH 2.5 (Fig. 4B). 

 Although mature 2m fibrils started to melt at ~90 ºC, showing notable tolerance for heat 

denaturation, no cold denaturation was observed at 0 ºC (Fig. 4C). K3 fibrils also denatured at high 

temperatures, however, they were not denatured at 0 ºC (Fig. 4C). Interestingly, thin and curved 

immature 2m fibrils showed cold denaturation with 15% of fibrils remaining at 0 ºC, although their 

heat denaturation was similar to that of K3 fibrils (Fig. 4C). The three types of fibrils of A1-42 and A1-

40 peptides under different conditions exhibited almost complete heat denaturation at 100 ºC, but no cold 

denaturation at 0 ºC (Fig. 4D). Although the heat denaturation of insulin fibrils at pH 2.5 started at ~40 

ºC, they were still stable at 0 ºC (Fig. 4D). 
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Fig. 4. Cold and Heat Denaturation of Various Fibrils over a Wide Range of Temperatures. 

(A) Temperature-dependent fractions of fibrils of full-length αSN at pH 7.5. The unstable 

temperature regions of fibrils against cold () and heat () and the stable region (). The solubility 

curve of αSN was obtained using concentrations of residual monomers assayed by UV-visible (▲) 

or CD (△) spectra. (B) Stability curves of full-length αSN (), αSN103 (), and αSN118 (△) at pH 2.5 

as well as αSN103 (■), αSN118 (▲), and NAC76-96 () at pH 7.5. The amphipathic N-terminal 

(magenta), hydrophobic NAC (yellow), and hydrophilic C-terminal regions (red) of αSN are depicted 

at the top. (C) The remaining mature (MF) () and immature fibrils (IF) () of β2m and the K3 fibrils 

() plotted against temperature. Fractions of native β2m monomers () are also shown. (D) 
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Fractions of Aβ1-42 fibrils at pH 7.5 () and 2.5 (), Aβ1-40 fibrils at pH 7.4 (), and insulin fibrils (X) 

plotted against temperature. The negatively- and positively-charged residues of corresponding 

monomers at neutral pH are shown by red and blue bars, respectively. Core regions and β-strands 

in fibrils (Table S4) are signified by gray and black rectangles, respectively. All continuous lines 

were for an eye guide. (see also Fig. 5 and Table S4) 

 

Then, the effects of Gdn-HCl on the stability of fibrils at different temperatures were examined to 

address the relationship between the chemical, cold, and heat stabilities of fibrils (see SI Materials and 

Methods). Using either CD or ThT fluorescence, ten different fibrils were observed to denature 

completely at the high concentration of Gdn-HCl (Fig. 5). Lowering the temperature to 0 ºC enhanced 

Gdn-HCl-induced denaturation of αSN fibrils formed at pH 2.5 and A1-42/A1-40 fibrils with decreasing 

the apparent midpoint Gdn-HCl concentration (Cm). These results indicate that the effects of Gdn-HCl 

and low temperature are additive with both destabilizing amyloid fibrils. 

 

 

Fig. 5. Gdn-HCl-assisted Cold Denaturation of Various Fibrils. (A and B) Gdn-HCl denaturation 

of full-length αSN (FL αSN) (), its mutants, αSN118 () and αSN103 (), and a fragment (NAC76-96) 
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() formed at pH 7.5, monitored by CD (A) or ThT fluorescence (B). (C) Gdn-HCl denaturation of 

two types of β2m fibrils, mature fibrils (MF β
2
m) (red) and immature fibrils (IF β2m) (green) at acidic 

pH, and mature K3 fibrils (K3F) at pH 6.5 (blue), estimated using the CD (filled rectangle) and ThT 

intensities (open rectangle). (D) Gdn-HCl denaturation of FL αSN fibrils at pH 2.5 and at 37 () or 

0 ºC () monitored by CD at 220 nm. (E and F) Gdn-HCl denaturation of Aβ1-42 (E) and Aβ1-40 fibrils 

(F) at various temperatures monitored by the ThT fluorescence intensity. The CD at 220 nm and 

ThT fluorescence at 485 nm were used to estimate the fractions of residual fibrils. All fitted results 

are shown by continuous lines. 

 

Opposite Signs of Thermodynamic Parameters for SN Fibrils to Those of Other 

Proteins. The thermodynamic parameters of fibril extension, which provides important information 

on the mechanism of fibrillation, were characterized using calorimetry. The seed-dependent growth of 

K3 fibrils was accompanied by the release of heat in accordance with previous results for 2m fibril 

elongation (Fig. 6A and see SI Materials and Methods) (105). Seed-dependent A1-40 fibrillation also 

occurred exothermically. Interestingly, αSN fibril extension was accompanied by heat absorption. The 

apparent values of the enthalpy change (H) for K3, 2m, A1-40, and αSN fibril growth (pH 7.5) were 

-10.2, -28.5, -36.8, and +8.8 kcal mol-1 at 37 ºC, respectively (Table S3). The positive value of H for 

the αSN fibrillation was consistent with the negative heat capacity peak observed upon heat denaturation 

by DSC (Fig. 3D). From the temperature dependence of H, the change in heat capacity (Cp) was 

shown to be 0.35 kcal mol-1 K-1 (Fig. 6B). This value was positive while those of the fibrillation and 

folding of 2m were -1.14 and -1.34 kcal mol-1 K-1, respectively (Table S3). The decrease in pH from 

7.4 to 2.5 inversed the signature of H and Cp for the αSN fibril growth (Fig. 6B). The predicted Cp 

values for protein folding of globular proteins was -1.56 K-1 for 2m and that for αSN was -2.3 kcal mol-

1 K-1 on the assumption that aSN, an intrinsically disordered protein, folds. This result showed that the 

empirical relationship on the basis of protein folding did not necessarily apply to protein misfolding. 

The inverse sign of H and Cp raised questions about energetic contributions to the stability of αSN 

fibrils inferred from other fibrils and protein folding. 
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Fig. 6. Calorimetric Characterization of Fibril Extension and Correlations between Cold 

Denaturation and Physicochemical Properties. (A) Fibril elongations at 37 ºC observed using 

isothermal titration calorimetry for full-length αSN (blue), K3 (green), β2m (red), and Aβ1-40 (black). 

(B) Temperature-dependent changes in H for the fibril growth of αSN at pH 7.5 () and 2.5 (o), 

and β2m (■) and folding of β2m (□). Values were also plotted for K3 (■) and Aβ1-40 (▲) at 37 ºC. 

(C and D) Net charge (C) and hydrophobicity (D) of amyloidogenic monomers plotted against the 

fractions of remaining fibrils at 0 ºC (see Supplemental Experimental Procedures). FL, MF, and 

IF indicate full-length, mature amyloid fibril, and immature amyloid fibril, respectively. (E and 

F) Solubility (E) of amyloidogenic monomers as well as Cm values of various amyloid fibrils (F) 

plotted against the fractions of remaining fibrils at 0 ºC. A correlation coefficient R value is shown.  
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2-4. Discussion 

All of the fourteen fibrils examined here exhibited heat denaturation as well as Gdn-HCl denaturation. 

The Tm, Cm, and m values obtained were in similar ranges to those of globular proteins (Figs. 4-6, Table 

S2) (109). which suggests that the stabilities of amyloid fibrils are not very different from those of 

globular proteins (77, 110). 

 Based on the results obtained here, I addressed the molecular origin of the cold denaturation of αSN 

fibrils. Cold denaturation of fibrils formed by charge-deleted mutants (αSN103 and αSN108) and 

hydrophobic NAC peptide at pH 7.4 raised a possible role for the charged residues at pH 7.4 (K43(+), 

K45(+), E46(-), H50(+), E57(-), K58(+), K60(+), E61(-), K80(+), E83(-), K96(+), K97(+), and D98(-)) 

buried in fibril cores (Fig. 4B, Table S4) without forming fully-satisfied electrostatic networks. 

Accordingly, full-length SN fibrils were prepared at pH 2.5 at which negatively-charged residues are 

protonated. No significant cold denaturation was observed when full-length SN, αSN103, and αSN108 

fibrils formed at pH 2.5 were incubated at 0 C. 

 Therefore, the unfavorable burial of the negative charges in cores at neutral pH may be responsible 

for the cold denaturation of SN fibrils because electrostatic repulsion becomes stronger with a decrease 

in temperature due to the increases in the dielectric constant (111) and in hydrophobic hydration (112). 

This view can be further supported by the findings that charge repulsion following the pH changes 

unfolds amyloid fibrils (89, 95, 99, 103) and even a single charge buried in a hydrophobic core readily 

dissociates fibrils (113). High packing density and hydrophobic burial with complementary pairs of 

buried polar groups are key ingredients of protein stability (114). 

 Most importantly, the positive values of H and Cp observed for SN fibrils by ITC and DSC 

were opposite to those of protein folding and other cases of protein misfolding reactions (105, 108, 109, 

112), arguing strongly for the burial of charges as evidenced by the positive Cp value following 

dehydration of charged residues (115, 116). Such adverse changes of H and Cp were also detected in 

DNA-protein (117), nucleotide-protein (118), lipid bilayer-protein (119), and the anion-protein binding 

(120) systems as well as and DNA condensation (121) in which charges were buried upon complexation. 

The recent study also indicated that the unstable glucagon fibrils formed with large positive H and Cp 
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values was attributed to the possible unfavorable burial of polar and/or charged residues (122). 

 However, fibrils of SN mutant (E83Q) showed cold denaturation at pH 7.4 (Fig. 4B), which 

suggested that the charge burial of E83 did not occur in forming fibrils or that buried charges formed 

satisfactory electrostatic networks. Alternatively, it may suggest the involvement of an additional factor 

in the cold denaturation of SN fibrils. Although the unfavorable burial of a negative charge among 

E46, E57, E61, and D98 in the cores may have been responsible for the cold denaturation of SN fibrils, 

cold denatruation of immature 2m fibrils and Gdn-HCl-promoted cold denaturation of A1-40/A1-42 

fibrils and SN fibrils at pH 2.5 suggest that cold denaturation is common phenomenon to amyloid 

fibrils even in the absence of unique burial of charged groups as shown with a high positive correlation 

(R=0.83 and p0.01) between the fraction of fibrils at 0 C and the Cm value of the Gdn-HCl-induced 

denaturation (Fig. 6F). 

 The lack of significant correlations between the fraction of fibrils at 0 C and net charge, 

hydrophobicity, or H suggests that there are currently no clear mechanisms to explain the cold 

denaturation of fibrils based on protein (un)folding (Figs. 6C and D, Fig. S3A). Nevertheless, a strong 

negative correlation between the fraction of fibrils at 0 C and protein solubility (R=-0.9 and p0.015) 

(Fig. 6E) implies that fibrils with a propensity to cold-denature are those with intrinsically high solubility. 

When proteins with intrinsically high solubility form fibrils at ambient temperatures by overcoming 

solubility and taking advantage of the main-chain dominated architecture, they are more likely to be 

disassembled at low temperatures. Such amyloid fibrils may be detected by the decreased or positive 

H value together with the positive Cp value of fibrillation (Figs. S3A and B). 

 The overall process for the thermal responses of SN fibrils was drawn schematically in Fig. 7. 

Mature SN fibrils are stable (20-60 C), as the temperature decreases below 20 C, fibrils begin to 

denature to monomers through a thin fibrillar intermediate, which may be formed by the dissociation of 

mature fibrils without axial fibril breakage. Dissociation of mature prion protein fibrils by charge 

repulsion into protofilaments may reflect similar lateral dissociation behavior of mature SN fibrils 

(103). The driving force for the cold denaturation of SN fibrils is the entropy-driven salvation of 

residues from the interior of fibrils based on amyloid-specific thermodynamics of the enthalpic penalty 
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of endothermic reaction and increase in heat capacity. On the other hand, heat denaturation was observed 

for all the fibrils examined. The thermodynamic driving force of depolymerization at high temperatures 

may be conformational entropy, similar to the unfolding of globular proteins at high temperatures. 

 Finally, in contrast to solid formation above the critical concentration, increases in solubility below 

the critical concentration dissociate solid states (84, 88). Accordingly, the conformational stability of 

amyloid fibrils can be defined by solubility (76, 77, 84, 88, 105, 110), which is the amount of remaining 

soluble monomers in equilibrium with fibrils. This provides a simple, but understandable concept that 

fibril stability can be determined by the thermodynamic solubility of monomers without considering 

complicated mechanisms. Mature SN fibrils formed at pH 7.5 showed a unique U-shaped solubility 

curve in the temperature range of 0 to 110 C, which was an exact inverse pattern of the stability of SN 

fibrils (Fig. 4A). I consider that the cold denaturation phenomena observed here were also coupled with 

the increased solubility at low temperatures. 

 Combining the viewpoints of solubility, crystalline amyloid fibrils, and glass-like amorphous 

aggregates, we can further understanding of the thermodynamic mechanism of protein fibrillation. 

Furthermore, my results also provide biological implications for SN protein homeostasis. The 

disaggregation and clearance of SN aggregates should be easier to achieve than those of A, 2m, and 

insulin fibrils taking advantage of the marked propensity for cold-denaturation of SN fibrils even near 

the physiological temperatures. However, cold adaptation may impede efficient SN protein 

homeostasis. 

 

 



  Chapter 2. Cold denaturation of α-synuclein amyloid fibrils 

36 

 

 

Fig. 7. Schematic Mechanism of the Cold and Heat Denaturation of αSN Fibrils. Upon a 

decrease in temperature, stable fibrils (gray) dissociate to monomers (blue curve) via a kinetic 

intermediate with a thin fibrillar conformation (blue). The direct detachment of monomers from fibril 

ends, indicated by dashed lines, occurs. Fibrils and monomers under high temperatures are 

represented by red. At elevated temperatures, the dissociation of monomers from fibril ends also 

takes place, which is further amplified by fibril breakage. The formation of fibrillar and amorphous 

aggregates at low and high temperatures is also shown. The rate constants at 0 C are given below 

the arrows. 
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2-5. Supporting Information 

Supplemental Experimental Procedures 

Residual Monomers in αSN Fibril Solutions before and after Cold/Heat Treatments. 

Sample solutions of fresh full-length αSN fibrils formed at 37 °C and of fibrils incubated for 15 h at 

0 °C were ultracentrifuged at 60,000 rpm for 2 h at 37 or 4 °C, respectively. The concentration of soluble 

proteins in supernatants was determined by UV absorbance at 280 nm with an extinction coefficient of 

5,960 M−1 cm−1  (104, 106). The far-UV CD spectra of the remaining soluble proteins were identical to 

those of monomers, which indicated that the remaining species were in monomers. The precipitated 

fraction was estimated by subtracting the concentration of soluble monomers from the total 

concentration. Alternatively, the CD intensity at 220 nm was used for estimating fractions of the residual 

fibrils and monomers based on the intensity of fibrils at 37 °C and of monomers at each temperature 

examined. The molecular species and their amounts after cold denaturation at 0 °C were further 

examined using UV absorption spectroscopy (Figs. 1G and S1). UV absorption spectra detected 95% 

soluble proteins in the supernatant after ultracentrifugation at 215,000g (Fig. 1G). The overall pattern 

of the far-UV CD spectrum of the supernatant was similar to that of the monomers (Figs. S1G and S1H). 

The homogeneity of fibril solutions was also investigated using sedimentation velocity analysis with 

analytical ultracentrifugation (Fig. 1H and S1). The sedimentation coefficient (s20,w) of SN monomers 

at 0 and 37 °C, obtained using the apparent partial specific volume (Fig. S1F and see also Supplemental 

Experimental Procedures), was 1.2 S, which indicated that the unfolded SN was monomeric (Fig. 

1H). A series of sedimentation curves at 37 °C were traceable, signifying that fragmented fibrils by 

ultrasonication were sufficiently populated to be analyzed. The s20,w values at 37 °C were distributed 

from 100 to 200 S, which corresponded to various sizes of amyloid fibrils. However, 5% of SN 

molecules did not sediment at 8,000g (Fig. S1D), which coincided with the amount of residual 

monomers. Fibrillar solutions, subjected to the cold treatment at 0 °C for 17 h, exhibited similar s20,w 

values to monomer solutions, which suggested that the predominant species after cold denaturation were 

monomers. 
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Sedimentation Velocity with Analytical Ultracentrifugation. Sedimentation velocity 

measurements were performed on αSN monomers and fibrils at 4 and 37 °C using a Beckman-Coulter 

Optima XL-I analytical ultracentrifuge (Fullerton, CA, USA) equipped with an An-60 rotor and two- or 

six-channel charcoal-filled Epon cells. The samples were first centrifuged at 3,000 rpm (700g) for 5 min 

to stabilize the temperature, and after precentrifugation, the rotor speed was increased to 10,000–20,000 

rpm (7,830–31,310g) and absorbance data at 220 nm were collected at intervals of 10–20 min. A radial 

increment of 0.003 cm was set to the continuous scanning mode. The protein concentrations were 

adjusted to absorbance values of 0.8-1.2. The sedimentation coefficients, corrected to s20W in standard 

solvent conditions where the density and velocity of pure water at 4 and 37 °C was considered, were 

obtained from the data by the van Holde–Weischet method with the software UltraScan 9.9 

(www.ultrascan.uthscsa.edu), using the partial specific volume of amyloid fibrils determined in previous 

study (102). 

 

High Precision Density Measurements. Density of monomeric αSN was made using a vibrating 

tube density meter (DMA5000, Anton Paar, Austria) with a precision of 1 × 10-6 g ml-1, and the 

polypeptide concentration was between 0.2 and 1.6 mg ml-1. The adjustments with water and air were 

performed following every single set of measurements, and almost no deviation of water density before 

and after a series of density measurements was confirmed. The plotted density of SN monomers against 

protein concentrations was fitted using equation to obtain the apparent specific volume (νapp) (102), 

 

𝜌 = (1 − 𝜈𝑎𝑝𝑝𝜌0)𝑐 + 𝜌0  (1) 

 

where ρ and ρ0 are the densities of the solution and solvent, respectively, and c is the concentration of 

αSN in g m-1. 
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A Kinetic Intermediate SN Fibrils during Cold Denaturation by JC-1. The cold denaturation 

process was observed using JC-1 fluorescence. The JC-1 fluorophore was previously shown to 

distinguish the two types of fibrils and monomers of SN with fluorescence emissions at 540, 560, and 

595 nm, respectively (107). The intensity at 540 nm, representing mature SN fibrils, decreased as cold 

denaturation proceeded (Fig. 2B). The intensity at 560 nm increased and subsequently decreased, while 

the intensity at 595 nm, representing monomers, increased. Therefore, the molecular species that 

engaged in the intensity at 540 nm and accumulated maximally at 3 h could be a kinetic intermediate. 

 

Gdn-HCl-assisted Cold Denaturation of Amyloid Fibrils. The Gdn-HCl-dependent 

denaturation of a series of fibrils under pH and temperature conditions in which fibrils were stable in 

the absence of Gdn-HCl were examined. The concentrations of monomers in fibrillar states were as 

follows: full length αSN, 50 μM (0.72 mg ml-1); αSN118, 50 μM (0.60 mg ml-1); αSN103, 50 μM (0.52 mg 

ml-1); NAC76-96, 312 μM (0.70 mg ml-1); β2m, 50 μM (0.59 mg ml-1); K3, 50 μM (0.12 mg ml-1); Aβ1-42, 

50 μM (0.22 mg ml-1); Aβ1-42, 50 μM (0.22 mg ml-1). Denaturation was monitored by CD at 220 nm and 

ThT fluorescence (Fig. 5). Full-length αSN, αSN118, αSN103, and NAC76-96 fibrils at pH 7.5 and 37 ºC 

were observed to denature completely at 3.0 M Gdn-HCl using either CD or ThT fluorescence (Figs. 5A 

and 5B). Transitions monitored using ThT fluorescence were preceded by those monitored using CD, 

which implied that structures responsible for ThT binding were destructed prior to -sheet melting. In 

the case of 2m-related fibrils, immature 2m and mature K3 fibrils showed denaturation curves similar 

to that of αSN-related fibrils (Fig. 5C). Mature 2m fibrils were highly stable against Gdn-HCl, 

exhibiting high cooperativity, as well as heat denaturation. αSN fibrils formed at pH 2.5 and A1-42 and 

A1-40 fibrils formed at pH 7.5 were further investigated at 0, 25, and 37 ºC (Figs. 5D-5F). αSN fibrils 

formed at pH 2.5 and 37 ºC showed a slightly higher resistance to Gdn-HCl than that of fibrils formed 

at pH 7.5 and 37 ºC (Fig. 5D). However, lowering the temperature from 37 to 0 ºC enhanced Gdn-HCl-

induced denaturation. Lowering the temperature from 25 ºC to 0 ºC (Fig. 5E), which was also observed 

for A1-40 fibrils (Fig. 5F). The apparent midpoint (Cm) and m-values of denaturation were determined 
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by fitting the observed results to the following sigmoidal equation assuming a two-state transition 

mechanism between fibrils (F) and soluble proteins (U) (77). 

 

 𝑆 =
(𝑈0+𝑈𝑆𝑐)+(𝐹0+𝐹𝑆𝑐)𝑒−(−𝐶𝑚𝑚+𝑚𝑐)/𝑅𝑇

1+𝑒−(−𝐶𝑚𝑚+𝑚𝑐)/𝑅𝑇   (3) 

 

where c is the concentration of Gdn-HCl. The initial and final baselines are described by U0 + USc and 

F0 + FSc, respectively. The kinetics of the Gdn-HCl-induced denaturation of fibrils were analyzed by 

fitting the amplitude at 220 nm to equation (1). 

 

Isothermal Titration Calorimetry (ITC). ITC measurements for the elongation of full-length αSN, 

K3, and A1-40 fibrils were performed with a VP-ITC instrument (GE Healthcare, MA, USA). αSN 

monomers at 300 μM in the injection syringe were titrated to αSN fibrils at 50 μM in the cell at 31, 33, 

37, 39, 41, and 43 °C. Five titrations of 5 μl in total were spaced at intervals of 7,200 s at a stirring of 

611 rpm. K3 monomers at 135 μM were also injected in 10 μl aliquots to seed fibrils at 20 μg ml-1 in the 

cell at pH 2.5 in the presence of 50 mM NaCl at 37 °C. A single injection of 50 μl A1-40 seed fibrils at 

55 μM in the syringe to A1-40 monomers at 8 μM in the cell was conducted in 50 mM sodium phosphate, 

100 mM NaCl, pH 7.5 at 37 °C. H values were calculated using peak areas after subtracting the heat 

of dilution and baseline correction. The Cp value was obtained from the relationship of H /T. 

 

Differential Scanning Calorimetry (DSC). DSC measurements of the fibrils and monomers of αSN 

and 2m fibrils at 0.1 mg ml-1 were performed with a VP-DSC calorimeter (GE Healthcare, MA, USA). 

Scanning between 37 and 120 °C was applied to αSN in the monomeric and fibrillar states at a scan rate 

of 1 °C min-1 for thermal denaturation. Cooling of fresh αSN fibrils from 37 to 5 °C was conducted with 

a distinct scan rate considering the slow kinetics of cold denaturation: from 37 to 10 °C with a scan rate 

of 1 °C min-1. 

 



  Chapter 2. Cold denaturation of α-synuclein amyloid fibrils 

41 

 

Thermal Stability of Native β2m Monitored by DSC and CD. The thermal stability of native 

β2m was measured by DSC and CD. In the case of DSC, 0.2 mg ml-1 β2m in 50 mM sodium phosphate 

buffer (pH 7.0) containing 100 mM NaCl was scanned at a rate of 1 °C min-1. After baseline fitting and 

subtraction, the native fraction as the function of temperature was calculated from the area of the heat 

transition curve of unfolding integrated up to the respective temperature in relation to the entire 

calorimetric enthalpy of unfolding (ΔHcal):  FN (T) = 1 – ΔH (T) / ΔHcal. In the case of CD spectroscopy, 

the thermal denaturation of β2m was measured at a concentration of 0.06 mg ml-1 in 20 mM sodium 

phosphate (pH 7.0) at 220 nm in a 5 mm quartz cell using a heating rate of 30 °C h-1. The native fraction 

was calculated by assuming a two-state transition: 

 

FN (T) = (fCD(T) – fCD,D) / (fCD,N – fCD,D)   (2) 

 

where fCD(T) is the recorded CD amplitude at temperature T, and  fCD,N and fCD,D are values for the native 

and unfolded states at temperature T calculated from linear extrapolation from the pre-transition and 

post-transition parts of the unfolding profile. The thermal unfolding of native β2m was fairly reversible 

(80-90%), which was verified by second scans after cooling back the samples. 

 

Calculating the Changes in Heat Capacity using Statistical Analysis 

The heat capacity change (ΔCp) for globular proteins can be predicted by using the number of amino 

acid residues (Num) of the protein of interest and the changes in accessible surface area (ΔASA) based 

on the following relationships (109). 

 

ΔASA (Å2) = −907 + 93 × Num   (3) 

ΔCp (cal mol−1 K−1) = −119 + 0.20 ×ΔASA (Å2 molecule-1)   (4) 
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Prediction of the Various Physicochemical Properties. Hydrophobicity of proteins used here 

was calculated using the data suggested by Kyte and Doolittle 

(http://www.vivo.colostate.edu/molkit/hydropathy/scales.html) (123). Solubility was calculated using 

SOLpro (http://scratch.proteomics.ics.uci.edu/) (124). 

 

Recombinant Expression of A1-42. Aβ1-42 was expressed recombinantly in E. coli. The DNA 

sequence encoding the human Aβ1-42 peptide was artificially constructed using codons preferred by E. 

coli to reach a good expression level. An extra Met residue was inroduced to the N-terminal of the 

peptide and the construction was equipped with NdeI and BamHI restriction sites at the 5’ and 3’ ends 

of the DNA construct. The construct was ordered from Integrated Gene Techologies (Germany), as a 

synthetic gene in a pZErO-2 vector and was subcloned into pAED4 vector (125). The protein expression 

using the pAED4 plasmid was carried out in E. coli BL21 (DE3) pLysS strain (Novagen, Inc., Madison, 

WI), using 1 mM IPTG for induction. The peptide accumulated in inclusion bodies in the cells. The 

peptide was purified physically based on its polymerization ability, similar to the purification of 

compounds or proteins by crystallization and recrystallization. In the monomeric form, the non-soluble 

contamination could be removed by centrifugation, then, by growing fibrils, the peptide could be 

separated from non-polymerizing material again by centrifugation. After monomerization of the peptide, 

the process could be repeated. In more details, the purified inclusion bodies were dissolved in 20 mM 

NaOH. Non-soluble fraction was removed by spinning down at 50,000g for 30 min. The pH of the 

supernatant was then set to 2 adding HCl, spun down again at 4 °C for 30 min at 40,000g and amyloid 

fibrils from the supernatant were grown for 24 h at 37 °C. The fibrils were collected by centrifugation 

at 40,000g for 2 h, resuspended in water and spun down repeatedly. Finally the pellet was lyophilized. 

Lyophilized Aβ was dissolved in 100% hexafluoroisopropanol for monomerization (6 h at room 

temperature), froze in liquid N2 and lyophilized again. According to my results, the polymerization of 

this recombinant Aβ1-42 peptide was found to be similar to that of synthetic Aβ1-42 peptide. There are 

some advantages of my purification method, such as the purified material contained no trifluoroacetic 

acid remnants. 

 

http://www.vivo.colostate.edu/molkit/hydropathy/scales.html
http://scratch.proteomics.ics.uci.edu/
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Fluorescence Assay. The formation and depolymerization of fibrils were monitored by a 

fluorometric assay with ThT at 37 °C. Excitation and emission wavelengths were 445 and 485 nm, 

respectively. 5 μl aliquots were taken from each reaction tube and mixed with 1.0 ml of 5 μM ThT in 50 

mM glycine-NaOH buffer (pH 8.5). The cold denaturation of αSN fibrils at 0 °C and refibrillation at 

37 °C were also monitored by JC-1 fluorescence. JC-1 fluorescence spectra were collected between 500 

and 600 nm with an excitation at 490 nm in the presence of 0.23 μM JC-1. The fluorescence spectra of 

ThT and JC-1 were measured using a F7000 fluorescence spectrophotometer (Hitachi, Japan). 

 

Circular Dichroism Spectroscopy Measurements. Far-UV CD spectra of proteins and peptides 

in soluble and insoluble states were measured with a J-820 spectropolarimeter (Jasco, Japan) using a 

cell with a light path of 0.1, 1 or 10 mm at the desired solvent conditions. Individual fibril solutions 

were diluted to 0.1 mg ml-1 for CD measurements. The solutions were constantly stirred at 1,000 rpm 

using a magnetic bar in the 10 mm cell (2 ml) to remove an artifact from the precipitation of fibrils. The 

CD signals between 195 and 250 nm were expressed as mean residue ellipticity [θ] (deg cm2 dmol-1). 

Temperature regulation was carried out using a PTC-423L Peltier-unit (Jasco, Japan). 

 

Atomic Force Microscopy (AFM) Measurements. AFM images were obtained using a Digital 

Instruments Nanoscope IIIa scanning microscope (Veeco, Santa. Barbara, CA). A 10 μl sample solution 

of 10 μM proteins was spotted onto freshly cleaved mica and left on the surface for 1 min. The surface 

was washed twice by 10 μl water and then blown off with compressed air. The scanning tip was a Si 

microcantilever and the scan rate was 1.0 Hz. The average height of the fibrils was estimated based on 

the peak height values measured. 

 

Fibril Formation of Aβ1-40 and Aβ1-42. Lyophilized recombinant Aβ1-42 peptide was dissolved in 20 

mM NaOH at a concentration of 3 mg ml-1 and used as a monomer stock for experiments. Fibril stocks 

were grown at 1 mg ml-1 concentration at 37 °C, 24 h, in a shaker bath either at pH 7.5 in 10 mM Na-

phosphate buffer by neutralizing the NaOH content with appropriate amont of HCl or at pH 2.0 adjusted 

by HCl. Synthetic Aβ1-40 peptide (Peptide Research Institute, Japan) was dissolved at 1 mM 
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concentration in 0.1% ammonia solution on ice. Polymerization was carried out at 1 mg ml-1 

concentration in 10 mM Na-phosphate, 50 mM NaCl at pH 7.4 overnight at 37 °C in a sonicated bath 

(ELESTEIN SP070- PG-M, Elekon, Tokyo) using cycles of 1 min sonication followed by 9 min 

quiescence. 
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Supplemental Figures 

 

Fig. S1. Fibril Formation and Residual Monomers of SN at pH 7.5. Far-UV CD spectra of SN 

monomers (black), fibrils (red) formed in the presence of fibril seeds under sonication, and the 

supernatant after ultracentrifugation of the fibril solution (green). (B-E) Sedimentation velocity 

measurements conducted for SN monomers at 4 (282,000g) (B) and 37 C (237,000g) (C) and 

for fibril solutions at 37 (7,830g) (D) and 4 C (282,000g) after an incubation of 17 h at 0 C (E). (F) 

Density of SN monomers plotted against protein concentrations. The three data sets conducted 

independently are shown by different colors. The straight lines indicate the linear fitting (see 

Supplemental Experimental Procedures). (G and H) Far-UV CD spectra of monomers at 37 (G) 

and 0 C (H) at various protein concentrations. 
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Fig. S2. Reversibility of the Heat Denaturation of SN Fibrils. (A-C) Reversibility after the heat 

scan to 110 (A and B) and 100 C (C). Far-UV CD spectra of fibrils at 37 C before (black solid) and 

after (red, green, and blue solid) the heat treatment. The spectrum of monomers at 37 C (black 

dotted) is shown. To observe the reformation of fibrils, samples subjected to the heat treatment 

were incubated at 37 C for various periods in the absence (A and C) and presence (B) of fibril 

seeds. 
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Fig. S3. Correlation of the Cold Denaturation of Fibrils with Thermodynamic and 

Physicochemical Factors. (A and B) The H (A) and Cp (B) values for fibril extension, directly 

measured by ITC, were plotted against the remaining fraction of fibrils at 0 C. (C) The “solubility” 

of amyloidogenic monomers, calculated using SOLpro 

(http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro) (124), was plotted against the 

remaining fraction of fibrils at 0 C. A correlation coefficient (R) and p value are shown. 
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Supplemental Tables 

Table S1. Kinetics of cold denaturation of 10 M SN at 100 mM NaCl under various 

conditions. 

Condition of 

denaturation  

Temp(

˚C) 
k1 (h-1) A1 k2 (h-1) A2 

Sonication* 

0 

5.29±0.75 -2680±240 0.70±0.04 -5270±210 

Stirring* 1.00±0.13 -2590±250 0.16±0.02 -2710±220 

Sonication** 

5 

1.42**** -7600±670 0.06**** -5670±1220 

Stirring** 2.08**** -4910±370 0.07**** -3450±760 

100 M αSN*** 3.39±1.72 -2290±480 0.10±0.17 -2600±2160 

300 mM NaCl*** 3.45±1.31 -1900±330 0.22±0.03 -7750±230 

Temperature 

dependence 

0 9.51±0.14 -9580±70 0.93±0.03 -2340±50 

10 6.69±0.13 -6020±60 0.70±0.02 -2800±40 

15 4.90±0.13 -2030±30 0.51±0.01 -2310±20 

25 15.26±2.87 -440±40 0.62±0.05 -760±20 

Gdn-HCl 

1 M 

0 

5.72±0.20 -8000±230 0.79±0.15 -3490±90 

2 M 15.97±1.22 -5340±360 3.67±0.69 -1920±360 

3 M 32.73±2.94 -3240±140 2.37±3.15 -210±70 

4 M 44**** -2780**** 42**** -270**** 

*Fibrils formed under distinct agitation. 

**Sonication or stirring treatment during cold denaturation. 

***Cold denaturation of 100 M SN at 100 mM NaCl and 10 M SN at 300 mM NaCl. 

****Meaningless error values too small or large are omitted. 
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Table S2. Various parameters of heat and chemical denaturations of fibrils. 

 
Heat 

Denaturation 

Gdn-HCl 

Denaturation 

Precursor 

protein/peptide 

Tm*  

(˚C) 

CD 

Cm*  

(M) 

ThT 

m value* 

(kJ mol-1 M-1) 

ThT 

Cm*  

(M) 

CD 

m value* 

(kJ mol-1 M-1) 

CD 

FL αSN (pH 7.5) ** 90.7±0.1 0.87 9.08 0.94 15.07 

αSN103 97.3±0.1 1.65 7.26 1.26 6.34 

αSN118 65.8±0.1 1.90 15.71 1.15 7.03 

NAC76-96 63.7±1.5 1.67 9.76 0.58 9.25 

MF β2m** 99.7±1.5 4.19 9.69 4.21 14.33 

IF β2m** 72.9±0.2 2.21 5.86 2.07 3.52 

K3 72.7±0.5 2.40 5.44 2.43 4.20 

Aβ1-42 (pH 7.5) -*** 2.61 2.12 -*** -*** 

Aβ1-40 (pH 7.4) 86.7±0.1 4.17 2.19 -*** -*** 

FL αSN (pH2.5) **  71.5±0.4 -*** -*** -*** -*** 

FL αSN  

300 mM NaCl **** 
73.0±0.1 -*** -*** -*** -*** 

Native β2m 64.2† -***
 

-***
 2.0† 13.20† 

*Data obtained by far-UV CD spectra or ThT assay. 

**FL, MF, IF indicate a full-length protein, mature fibrils, immature fibrils, respectively. 

***- indicates that the measurements were not performed or non applicable. 

****αSN fibrils prepared in the presence of 300 mM NaCl. 

†Data was taken from previous study (105), (77). 
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Table S3. Thermodynamic parameters of fibril extension obtained by ITC.  

*The data taken from previous study (105). 

**The ∆H and ∆Cp value of folding reaction of native β2m taken from (105). 

***The values were calculated using statistical relations (see Supplementary Section S7). 

  

Temperature 
∆H 

(kcal mol-1) 

 
Temperature 

∆H 

(kcal mol-1) 

αSN 
 

β2m** 

33 ˚C 7.6 
 

26 ˚C -13.7 

37 ˚C 8.8 
 

30 ˚C -20.6 

41 ˚C 10.2 
 

34 ˚C -23.1 

44 ˚C 11.5 
 

37 ˚C -28.5 (-41.8***) 

∆Cp = +0.35 kcal mol-1 K-1 

 (-2.3 kcal mol-1 K-1)* 

 
40 ˚C -29.5 

 
43 ˚C -34.7 

αSN (pH 2.5) 
 

47 ˚C -37.4 

31 ˚C -2.21 
 

50 ˚C -42.5 

34 °C -4.98  ∆Cp = -1.14 kcal mol-1 K-1 

 (-1.34 kcal mol-1 K-1)*** 

 (-1.56 kcal mol-1 K-1)* 

 

37 °C -8.21 
 

40 °C -11.23 
 

43 °C -14.80  Aβ1-40 

∆Cp= -1.06 kcal mol-1 K-1  
37 ˚C -36.8 

 K3 

 
37 ˚C -10.2 
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Table S4. Core regions of various amyloid fibrils. 

Protein or 

peptide 
Reference 

Core 

region  
Method 

αSN fibrils 

(126) 39–101 H/D exchange with MS* 

(127) 
35–96 

30–110 

H/D exchange with NMR** 

solid-state NMR 

(128) 32-102 Proteolysis 

(106) 76-96 Proteolysis 

(129) 38–95 solid-state NMR 

(130) 39-98 solid-state NMR 

(131) 38-97 solid-state NMR 

(132) 38-96 solid-state NMR 

(133) 35-100 EPR*** 

Mature β2m 

fibril  

(134) 27–86 MAS NMR**** 

(135) 21-87 H/D exchange with NMR** 

Immature 

β2m fibril 
(135) 

37-47 and 

60-70 
H/D exchange with NMR** 

K3 fibrils (136) 
21-28 and 

33-40 
solid-state NMR 

Aβ1-42 fibrils (9) 
18-26 and 

31-42 
H/D exchange with NMR** 

Aβ1-40 fibrils (10) 
11-22 and 

30-39 
solid-state NMR 

*Hydrogen-deuterium exchange method with mass spectrometry. 

**Hydrogen-deuterium exchange method with solution-state NMR spectroscopy. 

***Electron paramagnetic resonance spectroscopy. 

****Magic angle spinning NMR spectroscopy. 

 



  Chapter 2. Cold denaturation of α-synuclein amyloid fibrils 

52 

 

  



 Chapter 3. Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry 

53 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3. Heat of supersaturation-limited amyloid burst 

directly monitored by isothermal titration calorimetry  



 Chapter 3. Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry 

54 

 

3-1. Introduction 

Aggregation has often been an obstacle to studying the structure, function, and physical properties of 

proteins. However, a large number of aggregates associated with serious diseases, including Alzheimer’s, 

Parkinson’s, and prion diseases (1, 137) promoted the challenge of studying protein misfolding and 

aggregation. Researchers succeeded in distinguishing amyloid fibrils and oligomers from other 

amorphous aggregates and characterized the ordered structures present in amyloid fibrils or oligomers, 

which led to the development of the field of amyloid structural biology (32, 82, 92, 138-140). These 

advances have been attributed to various methodologies that are also useful for studying the structural 

properties of globular proteins. Even X-ray crystallography has become a powerful approach for 

studying amyloid microcrystals (92) or oligomers (141). The atomic details of amyloid fibrils are 

becoming increasingly clearer, and a cross- structure was shown to be the main structural component 

of fibrils (92, 139, 140). Although tightly packed core regions of amyloid fibrils have been reported, the 

overall structures were shown to be dominated by common cross- structures, which supported the 

argument for the main-chain dominated architecture in contrast to the side-chain dominated architecture 

of globular native states (101, 102, 142). 

 These structural studies have been complemented by a series of efforts to clarify the mechanism 

for the formation of amyloid fibrils (i.e., amyloid fibrillation). The presence of a long lag time in 

spontaneous fibrillation and rapid fibrillation by the addition of preformed fibrils represent a similarity 

with the supersaturation-limited crystallization of substances (35, 84, 143-146). I have revisited 

"supersaturation" and argued its critical role for amyloid fibrillation (79, 145, 146). The role of 

supersaturation in neurodegenerative diseases at the proteome level has been reported recently (147). 

 On the other hand, calorimetry, one of the most powerful methods used to study the thermodynamic 

properties of globular proteins (108, 148-150), has not played a significant role in understanding protein 

aggregation. The aggregation of proteins following heat denaturation as monitored by differential 

scanning calorimetry is an infamous example demonstrating how aggregation can prevent exact analyses 

(151, 152). To date, few studies have investigated protein aggregation including amyloid fibrils with 

calorimetry (105, 122, 153-156). Previous study on the exothermic heat effects accompanying fibril 
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growth was achieved by monitoring the seed-dependent elongation of fibrils formed by β2m, a protein 

responsible for dialysis-related amyloidosis, using ITC (105). 

 In the present study using β2m, I succeeded in characterizing the total heat of spontaneous 

fibrillation and amorphous aggregation. An analysis of the heat burst associated with fibrillation or 

amorphous aggregation under various temperatures clarified their thermodynamic properties. The 

results obtained enabled the calorimetric characterization of amyloid fibrils and amorphous aggregates 

relative to that of the native globular structures, which opens a new field for the calorimetric study of 

protein aggregates. 
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3-2. Materials and Methods 

Assays of Amyloid Fibrils. Expression and purification of human 2m was described in SI Text. 

The formation of fibrils and amorphous aggregates was characterized by various methods including ThT 

fluorescence, AFM, CD, and enzyme-linked immunosorbent assays. The details are described in SI Text. 

 

ITC Measurements. ITC measurements for the spontaneous fibrillization of 2m at 0.3–6.7 mg ml-1 

dissolved in 10 mM HCl solution (pH 2.5) were performed with a VP-ITC instrument (GE Healthcare, 

MA, USA) at the desired temperatures (31-43 °C). The consecutive injections of 20 μl of the 10 mM 

HCl solution containing 1 M NaCl in the syringe into the 2m solution in the cell were conducted 

following a 60 min-initial delay for complete equilibration. To minimize the heat effects caused by the 

difference in temperature, the consecutive injections were required because the temperature of the 

solution inside injection syringe was not controlled except 20 l in the needle. The first titration of 2 μl 

was adopted to minimize the influence of residual bubbles and imperfect solution filling the syringe. 

Nine salt titrations in total, spaced at intervals of 900 s, were performed with a duration of 4 s for the 

first titration and 40 s for the others to reach the final NaCl concentration of 100 mM. Changes in the 

heat flow in μcal s-1 were monitored in real time with 10 μcal s-1 of reference power. The reaction cell 

was continuously stirred at 600 rpm. Lag time was defined by a period between the time starting the 

measurement under stirring and the time of major heat effect occurred as shown in Fig. 3A. To examine 

the effects of the stirring speed on fibrillation, the stirring speed was changed from 200 to 1000 rpm. To 

monitor amorphous aggregation, 3.5 mg ml-1 of 2m in 10 mM HCl solution without salt was inversely 

titrated into 10 mM HCl solution containing 1.0 M NaCl at the desired temperatures (31-43 °C). The 

parameters for ITC measurements except for shortening the initial delay to 30 min were identical to 

those used for fibril formation. The total heat effects, which were shown to be equal to the H values, 

were calculated using peak areas after subtracting the heat of dilution and baseline corrections. 
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3-3. Results 

Heat for the Formation of Amyloid Fibrils Monitored by ITC. At pH 2.5, acid-denatured β2m 

formed amyloid fibrils in the presence of moderate concentrations of NaCl. As defined by the 

conformation phase diagram, fibril formation is dependent on protein and NaCl concentrations (Fig. 1) 

(79, 157). Spontaneous fibrillation was previously shown to be facilitated by various kinds of agitations 

such as stirring with a magnetic bar (158, 159) or ultrasonication (79, 160-163), leading to a burst phase 

of fibrillation after a lag phase. Under the conditions of persistent metastability of supersaturation, it is 

likely that these agitations may create seed-competent conformations. For instance, during air-water 

interface-dependent protein aggregation a template-competent conformation is formed (163). 

 

 

Fig. 1. Conformation phase diagram of β2m at 37 C and pH 2.5. The regions of unfolded 

monomers (blue), amyloid fibrils (red), and amorphous aggregates (magenta) are shown. 

Conformational states were determined in this study (▲, ●, X) and also in previous studies (gray 

triangle   , △, ○, )(79, 157). Lines are boundaries between the phases. The boundary between 

the unfolded soluble states and amyloid fibrils defines the critical concentration, which is equal to 

the equilibrium solubility of unfolded monomers. The critical concentrations from this study (X) and 

previous study ()(157).  
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 In my studies, I used the ITC instrument to agitate the β2m solution and monitor the heat response 

of fibrillation. To establish supersaturation in the presence of various concentrations of β2m at pH 2.5 

in the cell at 37 C, the NaCl concentration was increased to a final value of 0.1 M by stepwise injections 

of a small volume of 1.0 M NaCl (Fig. 2A, see Methods). After each injection, a sharp endothermic or 

exothermic spike, which represented the heat (q) of salt dilution, occurred and the heat flow (= q/t) 

returned back to the original reference power level. Notably, a marked exothermic peak with a half width 

of 2 h occurred at 0.3 mg ml-1 of β2m at 11 h (Fig. 2A). Similar exothermic peaks were observed at 

other concentrations of β2m. The lag time for the major exothermic peak (Materials and Methods) 

shortened (Fig. S1A) and the exothermic peak became larger with an increase in the protein 

concentration. When 0.5 mg ml-1 of the β2m solution at 0.1 M NaCl was prepared in a test tube, set in 

the ITC cell, and followed by stirring, a similar exothermic burst with a lag time of 3.7 h was observed 

(Fig. S2). When I consider the time for titration of salt (3.5 hr, see Fig. 4A below), the observed lag time 

was independent of the methods, although the titration in the ITC cell was much simpler. The results 

suggested that the titration inside the ITC cell did not bring any additional effects.  
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Fig. 2. Calorimetric observation of the amyloid burst of β2m at various protein 

concentrations at 37 C. (A) Thermograms of the fibril formation of β2m at 0.3–6.7 mg ml-1 and 

pH 2.5 obtained using ITC. The inset shows a close-up view of exothermic heat at 0.3 mg ml-1 of 

β2m. The arrowheads indicate the locations of "small burst". These also apply to the thermograms 

of Figs. 3, 4, and 6. (B-D) Characterization of β2m solutions after incubation in ITC cells by AFM 

images (B), far-UV CD spectra (C), and ThT fluorescence intensities (D). The scale bars on the 

AFM images indicate 1 m and the numbers under images are fibril height. The scale bar on the 

right represents the height. These also apply to AFM images in Figs. 4-6. (E) Dependences of the 
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observed heat of the small peak (black inverted triangle), main peak (red circles), total heat 

including rapid heat effect (green circle), and amorphous aggregation (black circles) on the protein 

concentration. Inset in C shows the expansion of the heat of amorphous aggregation. The observed 

heats were normalized by the β2m concentration to give the H values.  

  

 The total heat calculated based on the peak area was normalized by the protein concentration. The 

normalized heat did not depend significantly on the protein concentration (Fig. 2E). Moreover, when 

the stirring speed was varied in the range of 200-1000 rpm with a fixed protein concentration of 0.5 mg 

ml-1, the lag time shortened with an increase in the speed (Fig. 3A and Fig. S1B). However, the total heat 

was independent of the stirring speed (Fig. 3B). These results suggested that the observed heat 

represented the enthalpy change (ΔH) of the reaction triggered by stirring. Assuming that the observed 

total heat was ΔH, the ΔH value at 37 C was estimated to be -77 kJ mol-1 from the dependence on 

stirring speed or -74 kJ mol-1 from the dependence on protein concentration. The decrease in magnitude 

of ΔH at high protein concentrations may have been linked with the partial and transient formation of 

amorphous aggregates with a smaller ΔH value (see below). 

 After the exothermic peaks, all β2m solutions exhibited a far-UV CD spectrum with a minimum at 

approximately 218 nm, an AFM image of fibrils with a height of 4.5-9.0 nm and various lengths up to 

1 m, and strong ThT fluorescence (Fig. 2B-D). These results indicated that β2m solutions above 0.3 

mg ml-1 in 0.1 M NaCl at pH 2.5 were supersaturated (or metastable) and that agitation by stirring broke 

this supersaturation, resulting in amyloid fibrillation. I consider that the exothermic peak represents the 

formation of amyloid fibrils (amyloid burst) and the observed heat gives its ΔH value. Similar effects 

were expected for other salts, the effectiveness of which follows the electroselectivity series (79, 157). 

One experiment with ammonium sulfate was shown in Fig. S3. 
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Fig. 3. Dependencies of the observed heat of aggregation on the stirring speed at pH 2.5 and 

37 C. (A) Thermograms of the fibril formation of β2m at 0.5 mg ml-1 at various stirring speeds. The 

arrowheads indicate the locations of "small burst". (B) Dependence on the stirring speed of the 

observed heat normalized by the protein concentration. (C, D) Characterization of β2m solutions 

after incubation in ITC cells by far-UV CD spectra (C) and ThT fluorescence intensities (D). 

 

Small Amyloid Burst and Excess Heat Immediately after Salt-Titration. Careful inspection 

of the ITC thermograms indicated that, in all the ITC profiles, a small exothermic peak, which I 

designated small amyloid burst, appeared before the main amyloid burst (Figs. 2A, 3A, and 6A). To 

clarify the significance of these small peaks, I performed CD and AFM measurements and a ThT assay 

at several time points during the reaction at 1.0 mg ml-1 β2m (Fig. 4B, C). Neither the CD spectrum nor 

the AFM image showed significant changes before and immediately after the salt-injection spikes, 

which indicated that the dominant molecular species were still monomers. When the small exothermic 
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peak appeared at the 5.5 h time point, the AFM image revealed the presence of short and thin fibrils 

with a height of 2.6-5.3 nm. A slight change in the CD spectrum and small increase in ThT fluorescence 

were also observed. These results indicated that some fibrillation, possibly the formation of protofibrils, 

started at the point of the small burst, and subsequent elongation coupled with the breakage of fibrils to 

make new growing ends (i.e., secondary nucleation) caused the explosive amyloid burst (Fig. 4B, and 

C). The exact position and size of the minor peaks were less dependent on the experimental conditions 

than those of the major peaks (Figs. 2A, 3A, 6A and S1). The total heat accompanying the small 

exothermic peak was constant (-1.5 kJ mol-1) and independent of the protein concentration (Fig. 2E). 

Although the observed heat contained information on the ΔH value of protofibril formation, its small 

fraction precludes further analysis. 

 I also recognized a small excess heat effect immediately after each of the stepwise addition of 1.0 

M NaCl (Fig. S4). This small but notable heat effect increased with an increase in the concentration of 

NaCl and 2m, suggesting that it represents the formation of amorphous aggregates. However, after the 

completion of major amyloid burst, the formation of amorphous aggregates was evident neither from 

the CD spectra, ThT intensities, nor AFM images (Fig. 2B-D). Thus, it is possible that a small amount 

of amorphous aggregates formed after the salt injection finally transformed to the fibrils, although the 

exact kinetics is unknown. If this is a case, a total heat including those of rapid heat effect, small amyloid 

burst and major amyloid burst should represent the ΔH value for amyloid fibrillation. Indeed, the sum 

of these heat effects was constant (-78 kJ mol-1) over a wide range of concentration, suggesting the 

validity of assumption (Fig. 2E). 

 



 Chapter 3. Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry 

63 

 

 

Fig. 4. Monitoring the kinetics of the amyloid burst of β2m using various approaches. (A) 

ITC profile of 1.1 mg ml-1 β2m at pH 2.5 and 37 C. The lag time (red dot) is determined by a 

baseline and a tangent line at the middle of the major peak. (B, C) Conformational changes in β2m 

during incubation in an ITC cell characterized using AFM images and ThT fluorescence intensities 

(B) and the far-UV CD spectra (C) at the four time points: "Initial state (0 h)", "After salt injection 

(3.5 h)", "Small burst (5.5 h)", and "After main burst (12 h)". Conformations of β2m based on 

AFM, ThT fluorescence, and CD are illustrated above the AFM images: monomers (blue curves), 

oligomers (magenta curves), and fibrils (red rectangles). The CD spectra at the respective time 

points are shown by red solid curves. The spectra of monomers (black dotted curves) and mature 

fibrils (red dotted curves) are shown for comparison. 
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Heat of Amorphous Aggregation. β2m formed amorphous aggregates at very high NaCl 

concentrations above 0.8 M at pH 2.5 (Fig. 1) (79). In analogy with the crystallization of substances, 

amyloid fibrils and amorphous aggregates were shown to be similar to crystals and glasses, respectively 

(79). In Yoshimura et al. (79), they showed that, while crystalline amyloid fibrils formed after a lag 

phase, glassy amorphous aggregates formed without a lag phase. The rapid and partial formation of 

amorphous aggregates after the salt titration was consistent with this view (Fig. S4). 

 It was difficult to increase the NaCl concentration in the cell up to approximately 1.0 M by injecting 

the NaCl solution at a high concentration in the syringe. Thus, I performed an inverse titration: the β2m 

solution at a high concentration in the syringe was injected into the cell containing 1.0 M NaCl (Fig. 5). 

On the bases of the low CD signal, amorphous aggregates revealed by the AFM image, and low ThT 

fluorescence, I confirmed that β2m formed amorphous aggregates. There was no lag phase in amorphous 

aggregation, which was consistent with previous results (79). Careful subtraction of the heat for the 

control experiment revealed the heat of amorphous aggregation. At 37 C, the control heat effect without 

2m was ~1,250 cal, while that of 2 was around ~1,190 cal, with the excess heat of aggregation 

around ~5% of the basal heat effects. Again, there was no protein concentration dependence in the range 

of 0.1-0.7 mg ml-1, which suggested that the heats represented the H of amorphous aggregation (Fig. 

5B). The H value for amorphous aggregation was estimated to be -43 kJ mol-1 at 37 C and assumed 

to be independent of the protein concentration as indicated by the dotted line in Fig. 2E. 
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Fig. 5. Calorimetric observation of amorphous aggregation of β2m at 37 C.  (A) Thermogram 

of amorphous aggregation revealed by titrating 1.0 M NaCl in the ITC cell with 3.6 mg ml-1 β2m 

(red) or solvent (black) in the syringe. Titration was repeated 13 times to increase the β2m 

concentration. The expanded thermogram shows the second titration peak. (B) After subtracting 

the control, the excess heat was plotted against the final β2m concentration. The results of 

measurements at various temperatures are shown. (C, D) CD spectrum, ThT fluorescence intensity, 

and AFM image of the amorphous aggregates formed in the ITC cell at 1.0 M NaCl. CD spectra of 

fibrils and monomers are also shown.  

 

Temperature Dependency of Aggregation Heat. ITC measurements of the amyloid burst at 1.0 

mg ml-1 were performed at various temperatures between 31-43 ºC (Fig. 6A). The lag time shortened 

(Fig. S1C) and the exothermic peak became larger with an increase in temperature. The H value 

increased in magnitude from -41.3 to -101.1 kJ mol-1 (Fig. 7A and Table S1). I confirmed using far-UV 

CD, AFM, and ThT assays that the products observed after heat burst at all the temperatures were 

amyloid fibrils (Fig. 6B-D). 
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Fig. 6. Temperature-dependence of the amyloid burst of β2m monitored by calorimetry. (A) 

Thermograms at various temperatures between 31 to 43 C. The arrowheads indicate the locations 

of "small burst". (B-D) Characterization of the β2m solution at 1.1 mg ml-1 and 0.1 M NaCl after the 

heat burst by the far-UV CD (B), ThT fluorescence (C), and AFM (D). 

  

 Assuming that the observed heat effect represented H, temperature dependence provided a heat 

capacity change (Cp) of fibrillation based on the relationship of Cp = H/T. The plot of H against 

temperature was linear, providing a Cp value of -5.0 kJ mol-1K-1 (Fig. 7A and Table S1). Kardos et al.  

previously obtained the H value and temperature dependence for the seed-dependent elongation of 

amyloid fibrils of 2m monitored by ITC (105) (Fig. 7A). Although the H values for the spontaneous 

fibrillation obtained here were slightly smaller than those of seed-dependent elongation, the current Cp 

value was similar to that (-4.8 kJ mol-1K-1) of seed-dependent elongation (105). 

 I also measured temperature dependence of the heat effects of amorphous aggregation (Figs. 5B, 

7A and Table S1). Although the H values for amorphous aggregates at 1.0 M and various temperatures 

were smaller in intensity than those of mature fibrils, H changed linearly against temperature, 

providing a Cp value (-3.5 kJ mol-1K-1) that was slightly smaller than that of amyloid fibrils. 
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Fig. 7. Thermodynamic characterization of the folding and misfolding of β2m. (A) 

Temperature dependencies of H for amorphous aggregation (blue circles), spontaneous (red 

triangles) and seed-dependent fibrillations (black squares), and folding (black circles). (B) The 

difference in H at 60 C among the different conformational states is illustrated. (C) Temperature 

dependencies of G (curves), H (solid straight lines), and -TS (dotted straight lines) for folding 

to the native state (black lines and circles), spontaneous amyloid fibrillation (red lines and triangles), 

and amorphous aggregation (blue lines and circles). The G values at 37 C are shown with the 

closed symbols. The sign of the ordinate is opposite to that in A to compare the profiles with the 

standard profile of protein unfolding. 

 

Evaluation of Thermodynamic Parameters. To comprehensively understand the thermodynamics 

of aggregation, I have to know the changes in free energy (G) and entropy (S) in addition to the H 

and Cp terms, which are directly determined by calorimetry (108). Although the detailed mechanical 

models of fibril formation remain elusive (144), a simplified model will still be valid for describing the 
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equilibrium between monomers (M) and fibrils (P) (35, 84, 105, 143):  
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where k1 and k-1 are the apparent rate constants for polymerization and depolymerization, respectively. 

The elongation of fibrils is defined by the equilibrium association constant (K) as:  
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where [P] is the concentration of fibrils and [M] is the concentration of monomers. The equilibrium is 

clearly independent of [P]. Hence, I obtain the equilibrium monomer concentration [M]e as: 

  Kkke /1/M 11          (3) 

[M]e is referred to as the "critical concentration" (84, 143) because fibrils form when the concentration 

of monomers exceeds [M]e. By determining [M]e, I can calculate the apparent free energy change of 

fibrillation (ΔGapp) by: ΔGapp = -RTlnK = RTln[M]e, where R and T are the gas constant and temperature, 

respectively. Combined with the ΔH value directly obtained from the ITC measurements, I can obtain 

the ΔS value by ΔGapp = ΔH – TΔS. Although Mechanism 1 might not be exactly true for amorphous 

aggregation, I assumed that it is also a reversible process determined by solubility and thus is 

approximated by Mechanism 1. 

 I used an enzyme-linked immunosorbent assay (ELISA) (SI Text) to determine the [M]e value under 

various conditions (Table S2). I then estimated the ΔGapp and TΔS for fibrillation and amorphous 

aggregation. I also estimated the temperature dependencies of these parameters as well as those of ΔH, 

in which I used ΔGapp values at 37 ºC to link the ΔH and TΔS functions. These functions were compared 

with those for folding to the native state (Fig. 7). 

The ΔGapp value of fibrillation (-45.0 kJ mol-1) at 37 ºC and pH 2.5 was the same as that of amorphous 

aggregation (-45.4 kJ mol-1) under the same conditions (Fig. 7C). These values were significantly larger 

in intensity than that (-21.0 kJ mol-1) of the native state at pH 7.0 (105), although distinct pH values 

preclude a direct comparison. Although a small range of temperatures used for the experiments makes 

the extrapolation less accurate at this stage, separation of ΔGapp into the enthalpy and entropy terms 

indicated that both amyloid fibrils and amorphous aggregates are stabilized enthalpically above 40 °C, 
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while they are stabilized entropically below 20 °C. 
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3-4. Discussion 

Amyloid formation occurs in supersaturated solutions via a nucleation-dependent manner (146, 164, 

165), analogous to crystallization of substances (145, 166). Under the conditions of persistent 

metastability, nucleation does not occur in practice (35, 146). However, various kinds of agitations can 

break supersaturation, leading to the formation of fibrils. I used ITC for stirring the solution and for 

monitoring the accompanying heat effects. The results showed that I can perform calorimetric 

measurements of amyloid fibrillation of β2m as well as amorphous aggregation revealing the H and 

Cp values. By combining these values with G obtained from the solubility of β2m monomers, I can 

address the thermodynamics of protein aggregation (Fig. 7 and Tables S1 and S2). The methodology is 

straightforward and can be applied to study various amyloid fibrils as well as amorphous aggregates. 

 The heat capacity change upon protein unfolding has been primarily determined by the hydration 

of polar and apolar groups and to a much lesser extent by the disruption of internal noncovalent 

interactions such as van der Waals interactions, H-bonds, and ionic interactions (108, 148). Considering 

the morphological difference between the intramolecularly folded native state and intermolecularly 

associated amyloid fibrils and assuming the same packing densities, the extent of burial should be higher 

for fibrils assuming the same packing densities. The ΔCp values for the native, amyloid, and amorphous 

conformations were -5.6, -5.0, and -3.5 kJ mol-1 K-1, respectively (Fig. 7A and Table S1). The similar 

values of ΔCp upon protein folding and amyloid formation suggest a similar overall burial of surfaces in 

the two forms. I consider that the tightly packed core regions, as observed in amyloid microcrystals (92, 

139), coexist with the less densely packed noncore regions with cavities accessible to bulk water (32), 

leading to an overall similar extent of burial of surfaces (102). In contrast, the smaller ΔCp value of 

amorphous aggregation suggests looser packing, which is consistent with the absence of notable ordered 

structures. 

 Two main effects have been shown to be responsible for the ΔH of protein unfolding: the hydration 

of the buried hydrophobic and polar groups that become exposed in the unfolded state, and the disruption 

of internal interactions such as van der Waals interactions, and H-bonds (108, 148). The magnitude of 

the ΔH of amyloid fibrils (normalized by protein concentration) was significantly less than that of the 
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folding of native β2m (Fig. 7 and Table S1). The ΔH values for amorphous aggregation were even 

smaller in intensity. From the observed similarity of the ΔCp values, I assumed a similar contribution of 

the hydration of the buried groups between native and fibril conformations. Therefore, the observed 

decrease in ΔH appeared to be the result of different internal interactions. It is generally accepted that 

there is a stronger and more persistent backbone H-bond network in the amyloid structure than there is 

in the globular fold of proteins, leading to an increase in the β-sheet content (32, 91, 102). However, H-

bonds should increase the magnitude of the ΔH value, which is inconsistent with the results.  

 Thus, a reasonable explanation for the ΔH order in magnitude of "native structure > amyloid fibril 

> amorphous aggregate" is that it dominantly represents side chain packing in folded or misfolded 

structures (Fig. 7B). The overall side chain packing in the amyloid form cannot be as optimal as that in 

the native state because the structure is determined by extensively H-bonded β-structured backbones 

(101, 102). The loss of tight packing may be more serious for amorphous aggregation.  

 The separation of overall stability of amyloid fibrils (ΔG) into the ΔH and TΔS terms illustrates that 

the contributions of the two terms vary depending on temperature. Fibrillation is determined by the 

favorable entropic term at approximately 20 ºC at which ΔH is close to zero. ΔG is minimal at 

approximately 35 ºC, at which the fibrils exhibit maximal stability and, thus, ΔS is zero because S = 

G/T. Fibrillation is then determined by the favorable enthalpy term at 35 ºC. Thus, the temperature 

dependent enthalpy-entropy interplay determines the stability of amyloid fibrils. To understand this 

interplay, I have to estimate amyloid-specific factors such as the entropy loss resulting from a rigid H-

bonding of backbones and a reduction in the number of monomers as well as the enthalpy gain obtained 

from numerous molecular contacts. 

 In conclusion, I showed that quantitative calorimetric analysis with ITC was indeed possible for 

the supersaturation-limited amyloid fibrillations. Stirring inside the ITC cell can break persistent 

supersaturation, which triggers fibrillation. Compared with the single crystals of substances, amyloid 

fibrils retain a thin and linear morphology. Moreover, the shear forces of stirring keep fibrils dispersed 

in solution and fragment fibrils, which accelerate seed-dependent propagation. These enabled accurate 

calorimetric measurements of the amyloid burst, making the thermodynamic characterization of 

fibrillation possible. By carefully adjusting these conditions, I can also monitor the heat of amorphous 
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aggregation. Accordingly, ITC will become a promising approach for clarifying the thermodynamic 

properties of protein aggregates. 
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3-5. Supporting Information 

Supplemental Experimental Procedures  

Proteins and reagents. Recombinant human 2m protein with an additional methionine residue at 

the N terminus was expressed in Escherichia coli and purified as previously reported (167). The 

concentration of β2m was determined by measuring absorbance using a molar extinction coefficient of 

19,300 M−1 cm−1 at 280 nm (167). Thioflavin T (ThT) was purchased from Wako Pure Chemical 

Industries Ltd. (Osaka, Japan). All other reagents were obtained from Nacalai Tesque (Kyoto, Japan).  

 

Fluorescence assay. The formation of 2m fibrils was observed by a fluorometric assay with ThT 

at 37 °C. Excitation and emission wavelengths were 445 and 485 nm, respectively. Five μl aliquots were 

taken from the ITC cell after incubation and mixed with 1.0 ml of 5 μM ThT in 50 mM glycine-NaOH 

buffer (pH 8.5). The individual intensities of ThT fluorescence were normalized using the intensities of 

6.7 mg ml-1 2m (Fig. 2A), at 12 h (Fig. 4A) or 34 °C (Fig. 5C). ThT fluorescence spectra were 

measured using a F4500 fluorescence spectrophotometer (Hitachi, Japan). 

 

Circular dichroism spectroscopy. Far-UV CD spectra of 2m before and after incubation in the 

ITC instrument were measured with a J-820 spectropolarimeter (Jasco, Japan) using a cell with a light 

path of 1 mm. Sample solutions contained 0.1 mg ml-1 2m in 10 mM HCl (pH 2.5) and 100 mM NaCl. 

CD signals between 195 and 250 nm were expressed as the mean residue ellipticity [θ] (deg cm2  

dmol-1). Temperature regulation was performed using a PTC-423L Peltier-unit (Jasco, Japan). 

 

Atomic force microscopy. AFM images were obtained using a Digital Instruments Nanoscope IIIa 

scanning microscope (Veeco, Santa. Barbara, CA). A 10 μl sample solution of 10 μM 2m was spotted 

onto freshly cleaved mica and left on the surface for 1 min. The surface was washed twice with 20 μl 

water and then dried with compressed air. The scanning tip was a Si microcantilever and the scan rate 

was 1.0 Hz. The average height of the fibrils was estimated based on the peak height values measured. 
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Enzyme-linked immunosorbent assay to determine the remaining monomer 

concentrations. According to a model of the supersaturation-dependent formation of fibrils, the 

remaining monomer concentration after the formation of fibrils is equal to the equilibrium monomer 

concentration (i.e. critical concentration). This is also true for the formation of amorphous aggregates. 

In order to quantify the amount of residual 2m monomers after the formation of amyloid fibrils or 

amorphous aggregates, immunosorbent analyses using a commercial immunoassay kit (Human 2m 

ELISA test; MD Bioproducts, North America) were conducted using aggregates produced in ITC as 

described above. Supernatants of the sample solutions after centrifugation at 40,000 rpm with a CS 

120GX ultracentrifuge (Hitachi, Tokyo, Japan) for 30 m at the same temperature as the formation of 

aggregates were recovered and used for the ELISA assay. A series of diluted samples of the supernatants 

were assayed using standard 2m solutions as references. The standard solutions confirmed a sensitive 

and quasi-linear concentration dependence in the 0–200 ng ml-1 range. 
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Supplemental Figures 

 

Fig. S1. Dependencies of the observed lag time of heat peaks on the protein concentration 

or stirring speed at pH 2.5 and 37 C. (A) The lag times of the main and small heat peaks shown 

in Fig. 2 were plotted against the protein concentration. (B) The lag time for the major heat peak 

observed at 0.5 mg ml-1 as shown in Fig. 3 was plotted against the stirring speed. (C) The lag times 

of the main and small heat peaks at 1.1 mg ml-1 β2m and 600 rpm at various temperatures shown 

in Fig. 6 were plotted against the temperature. Solid lines were drawn to guide the eye. It is noted 

that the lag times indicate the period from the start of heat monitoring (i.e., time zero in the ITC 

thermogram) and the time of the amyloid burst. 
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Fig. S2. Amyloid burst of supersaturated β2m prepared outside the ITC cell and then 

monitored by ITC. (A) Thermogram of fibril formation at 0.5 mg ml-1, 0.1 M NaCl, and 37 C. The 

stirring speed was 600 rpm. The lag time was 3.7 h with a dead time of 55 min, where the dead 

time refers to a time between the sample preparation outside the ITC cell and the setup inside the 

cell with stabilization of the heat capacity signal. The H value of the major peak was 79.8 kJ mol-

1. (B, C) Characterization of the β2m solution after the heat burst by the far-UV CD (B), and ThT 

fluorescence and AFM (C). The normalized ThT intensity after incubation in the ITC cell with (+) 

and without (-) salt injections is shown. The scale bar on the AFM image indicates 1 m and the 

numbers under images are fibril height. 

 

 

Fig. S3. Thermogram for the formation of amyloid fibrils in the presence of 5 mM sodium 

sulfate at 37°C. 1.4 ml of β2m at 1.0 mg ml-1 was titrated with 300 mM (NH4)2SO4 by nine titrations 

in total with the final concentration of 3 mM. Total heat effects including the peaks at 12 and 17 h 

were 38.5 kJ mol-1. The value was smaller than the value obtained for the titration with NaCl. 

 



 Chapter 3. Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry 

77 

 

 

Fig. S4. Amorphous aggregation immediately after the salt titration. (A) Expanded 

thermograms for injection of NaCl at various β2m concentrations. The data are the same as shown 

in Fig. 1A. (B) Dependences of the observed heat on the NaCl concentration at various β2m 

concentrations. Crosses are the observed heat for a reference titration in the absence of protein, 

representing the heat effects of buffer dilution. (C) Dependence on the β2m concentration of the 

total excess heat where the difference between the peak areas in the presence and absence of 

β2m were summed up to 0.1 M NaCl. It is noted that the excess heats were not normalized by the 

β2m concentration. I consider that the excess heats arise from the transient formation of 

amorphous aggregates (see the text). 
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SupplementalTables 

Table S1. Enthalpy and heat capacity changes with the folding and misfolding of 2m at 

various temperatures. 

*Data taken from previous study (105).  

  

Temperature 

(C) 

ΔHfolding*  

(kJ mol-1) 

ΔHamyloid (kJ mol-1) 
 ΔHamorphous 

(kJ mol-1) seeded 

fibrillation* 

spontaneous 

fibrillation 

31 -142.6 -85.1 -41.3  3.3 -19.8 

34 -159.4 -96.7 -56.9  2.2 -27.5 

37 -176.3 -119.2 -73.6  5.8 -42.8 

40 -193.1 -123.2 -86.0  6.0 -49.6 

43 -210.0 -145.2 -101.1  3.9 -68.8 

Cp 

(kJ mol-1 K-1) 
-5.6  0.4 -4.8  0.2 -5.0  0.2 -3.5  0.4 
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Table S2. Thermodynamic parameters of the folding and misfolding of 2m obtained by the 

ELISA assay. 

*The concentrations of the residual monomers determined by the ELISA assay. The initial 

concentration was 84.7 μM (1.0 mg ml-1), except for those indicated in parentheses. 

**The values of K and Gapp were determined from experimentally determined [M]e using the 

relationship: K = 1/[M]e and Gapp = -RTlnK (see text). The values of -TΔS were determined by 

Gapp = ΔH -TΔS. ΔH values were obtained directly by ITC (see Table S1). 

 

 

  

 
Temp. 

(C) 

[M]e* 

(nM) 

K** 

(μM-1) 

ΔGapp** 

(kJ mol-1) 

-TΔS** 

(kJ mol-1) 

ΔH** 

(kJ mol-1) 

Amyloid 

fibrils 

31 37.7 26.5 -43.2 -1.9 -41.3  3.3 

37 25.8 38.8 -45.0 28.6 -73.6  5.8 

40 2.4 421.4 -51.7 34.3 -86.0  6.0 

37 
15.5 

(42.4 μM) 
64.5 -46.3 27.7 -74 

Amorphous 

aggregates 

31 19.3 51.8 -44.9 -25.1 -19.8 

37 21.4 46.8 -45.5 -2.7 -42.8 

40 17.3 57.8 -46.5 3.1 -49.6 

37 
22.7 

(42.4 μM) 
44.0 -45.4 -2.6 -42.8 

37 
29.3 

(169.5 μM) 
34.1 -44.7 -1.9 -42.8 
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I address the general thermodynamic property of amyloid fibrils together with its biological implication 

and kinetic control based on in-depth examination on thermal stability of various amyloid fibrils. All 

fibrils examined here showed heat denaturation, which might be caused by increased chain flexibility 

as shown in thermal unfolding of globular proteins. Interestingly, only α-synuclein amyloid fibrils 

underwent cold denaturation in the range of 0-20 ºC. Comparison of thermodynamic properties (i.e. 

positive enthalpy and heat capacity changes) with structural parameters indicate that burial of charged 

residues to fibril cores is responsible for the cold-denaturation of α-synuclein fibrils. 

 Therefore, as a general property of soluble and insoluble states of proteins, I speculate that amyloid 

fibrils of intrinsically disordered proteins which solubility is higher than that of globular proteins due to 

a large portion of charges and low hydrophobicity might show higher tendency of cold denaturation than 

other amyloid fibrils formed by globular proteins. In addition, cold denaturation of SN amyloid fibrils 

suggested important biological implications including the disaggregation and clearance of protein 

aggregates. For instance, protein homeostasis of SN should be better kept than that of at least A, 2m, 

and insulin. Repeating a cycle of heating and cooling revealed adaptation of amyloid fibrils to cold 

denaturation, implying smart kinetic controls of amyloid fibrillation in response to changes in ambient 

conditions. Interestingly, chemical denaturant-assisted cold denaturation of amyloid fibrils demonstrated 

that cold denaturation of amyloid fibrils is a general thermodynamic property of amyloid fibrils as in 

the case of globular proteins. 

 I suggest that although main-chain dominated amyloid fibrillation overwhelms unfavorable burials 

of charged side-chains to fibril cores, reinforced electrostatic repulsion at low temperature results in 

promoting cold-denaturation, revealing a unique but general thermodynamic property of amyloid fibrils. 

A whole picture of thermal stability of amyloid fibrils with the mechanism of cold and heat denaturation 

is the first example in the field of protein science and biophysics. 

 In order to obtain further insights into the thermodynamic property of protein aggregation, I 

performed that ITC-based thermodynamic characterization of amyloid fibrillation and amorphous 

aggregation is possible by observing directly heat of aggregation. I established the ITC method for 

observation of heat of seeded and supersaturation-limited spontaneous 2m fibrillation, which was 
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induced by stirring of ITC, and of amorphous aggregation of 2m at highly condensed salt solution. 

Precisely observed reaction heat allowed me to produce H. Comparison of H values of native 

structures, amyloid fibrils, and amorphous aggregates of 2m further gave me valuable information on 

distinct packing states of each individual 2m structure. ITC analyses in combination to ELISA assay 

produced a series of thermodynamic parameters, H, S, G, and Cp. 

 The stability curve of the amyloid fibril and amorphous aggregate of 2m was constructed, 

demonstrating that the thermodynamic study of protein misfolding and aggregations is indeed possible 

with just like globular proteins. Toward establishment of thermodynamics of protein misfolding and 

aggregation, much more case studies should be done and analyzed although I have recently succeeded 

in observing heat of amyloid formation of A1-40, insulin, and glucagon (data not shown). 

 I propose that ITC can be used for an assay of amyloid fibrillation and a new method for discovering 

of effectors for amyloid formation. Finally, I address one more key finding of thermodynamics of protein 

misfolding and aggregation. Interestingly, the positive sign of Cp of fibril formation of SN was 

obtained, which is an opposite sign of Cp for protein folding. I speculate that a distinct sign of Cp may 

be a unique thermodynamic property of the main-chain-dominated protein misfolding and aggregation 

which is distinguished from that of side-chain dominated reaction of protein folding. Accordingly, I 

emphasize that the thermodynamic properties established in protein folding is not always applicable to 

protein misfolding and aggregation. 
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