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Abstract

Right-handed charged current in b → u transition has been considered in

order to explain the discrepancy among |Vub| measurements in several B meson

decay modes. We study this problem with the most recent experimental data.

As a result, we find that a large CP violation in the b → u right-handed

charged current is suggested. Accordingly we study possible CP violating

signals in B → ππ, ρLρL and DK decays. We obtain constraints from the

present experimental data and present future prospects. The scenario of the

b → u right-handed charged current is consistent with the present data and

new CP violating signals in the above decay modes might be discovered in

future experiments.
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1 Introduction

In the standard model (SM) with its gauge group SU(3)C × SU(2)L × U(1) all

charged currents are left-handed. However in new physics models, right-handed

charged currents (RHCC) could arise. Moreover quark charged currents in the SM is

governed by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2]. b→ u transition

in the SM is suppressed by CKM element Vub and is likely to be affected by RHCC

induced in new physics. In addition, it is possible to examine decays of bottom quark

in detail because of the competent data of B factory experiments.

There was discrepancy in |Vub| measurement among several semileptonic and lep-

tonic B meson decays [3] as shown in Fig. 1. It is reported that b → u RHCC can

explain it [4, 5, 6], as will be fully described below. After the publication of Ref.

[4, 5, 6], the branching fraction of B → τν was updated by Belle collaboration and

the discrepancy of |Vub| determination became less significant [7]. Therefore the possi-

bility of the new physics scenario that induces the b→ u RHCC must be reconsidered.

Also in these previous studies, it is assumed that b→ u RHCC does not induce new

CP violation.

In this work, we reexamine possibility of b→ u RHCC taking new experimental data

into account. We will introduce b → u RHCC in Sec. 2. In Sec. 3 we explain b → u

RHCC effect to the determination of |Vub| from semileptonic and leptonic B meson

decays and reveal that it suggests large CP violation in b→ u RHCC [8]. In Sec. 4, we

examine how CP violating observables in B → ππ,B → ρρ and B → DK are affected

by b → u RHCC. We find that a new direct CP asymmetries, which are absent in

the SM, arise and the determination of angles of unitarity triangle is affected [8].

Moreover possible signals in b→ u RHCC are compared with experimental data and

we show that b→ u CP violating RHCC is a viable new physics scenario [8]. In Sec. 5,

we compare b→ u RHCC induced by squark mixing in the minimal supersymmetric

standard model (MSSM) to experimental constraints given in Sec. 3. Our conclusion

is stated in Sec. 6.
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Fig.1 current data of |Vub| by each measurements
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2 The SM and extension with RHCC

2.1 The SM

The tree-level flavor changing interaction in the SM is described by the following

left-handed charged current;

Lc.c. =ŪLγµVCKMDLW
+
µ + h.c. (1)

DL =
(
dL sL bL

)T (2)

UL =
(
uL cL tL

)T (3)

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (4)

where CKM matrix, VCKM, represents the transition among quark generations. Ab-

solute values of CKM matrix element in the SM are given as [9]

|VCKM| =

 0.97 0.23 0.0041
0.23 0.99 0.041

0.0084 0.040 1.0

 . (5)

If the flavor structure in new physics differs from that of the SM, flavor signals can

be affected significantly by new physics. In particular, since Vub has the smallest

absolute value, the b → u transitions tend to be sensitive to new physics. One of

possible scenarios is that an effect of new physics appears in the b→ u transitions as

the corresponding RHCC.

2.2 Effective theory with RHCC

In general, effects of new physics at low energys are expressed in the following

effective lagrangian,

L = LSM +
1
Λ

∑
i

C
(5)
i Q

(5)
i +

1
Λ2

∑
i

C
(6)
i Q

(6)
i +O

(
1
Λ3

)
, (6)
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where Λ is the scale of new physics and Q(n)
i ’s represent gauge invariant operators of

dimension n. The b→ u RHCC is induced by the following operator,

QRR = (ūγµPRb)
(
φ̄†iD(L)µφ

)
+ h.c (7)

D(L)µ = ∂µ +
ig′

2
BµY +

ig

2
~Wµ · ~σ. (8)

We note that the above operator is the only one that contributes to b→ u RHCC up

to and including dimension 6. Substituting the Higgs vacuum expectation value, this

operator is evaluated as

QRR|φ→〈φ〉 =ūγµPRb(
1√
2
v, 0)iD(L)µ

(
0
1√
2
v

)
=− gv2

2
√

2
ūγµPRbW

+
µ . (9)

Thus b→ u RHCC is introduced in Lagrangian density:

LRbuW =
−g√

2
V Rubūγ

µPRbW
+
µ (10)

V Rub =
C

(6)
RRv

2

2Λ2
' 0.003× C(6)

RR(3TeV/Λ)2 (11)

where v = 246 GeV is used. The Lagrangian density of b-u-W vertex including both

left- and right- handed charged currents is

LbuW =
−g√

2
ūγµ(V RubPR + V LubPL)bW+

µ , (12)

where V L denotes the quark mixing matrix in the left-handed sector. Compering

Eq. (5) and Eq. (11), we find that the b→ u RHCC is sensitive to ∼3 TeV scale new

physics.

The left-handed charged current might be also affected by new physics. However

such effects are expected to be suppressed taking constraints of flavor changing neutral

current (FCNC) into account. Hence we assume that V L is unitary as in the SM.
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3 Constraint to b→ u RHCC by measurement of |Vub|
Experimental determinations of the strength of b → u transition |Vub| are affected

by the b → u RHCC. In this section, we evaluate the effects of the b → u RHCC

in direct |Vub| determinations in B → τν, π`ν, Xu`ν, ρ`ν and ω`ν. In addition, we

discuss the indirect determination of |V Lub|.

3.1 Direct measurement of |Vub|

3.1.1 B → τν

The decay rate of B → τν is calculated with the following equation,

Γ(B → τν) =
1
8π
Gf

2|V Lub − V Rub|2FB2MBM
2
τ

(
1−

(
Mτ

MB

)2
)2

. (13)

B−
b

ū

τ

ν̄
W−

Fig.2 Feynman diagram of B− → τν

d̄

b

W−

ν̄
l−

u

B̄0 π+, ρ+

Fig.3 Feynman diagram of B̄0 →
π+(ρ+, ω+)`−ν̄

B
b u

l−

ν̄

Xu

W−

q̄

Fig.4 Feynman diagram of B → Xu`−ν̄
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The relative sign between V Lub and V Rub is minus because only axial-vector current can

contribute. After solving |V Lub − V Rub| and inserting experimental value, the result is

|V Lub − V Rub| =(4.22± 0.42)× 10−3. (14)

with following data,

Br(B → τν) =(114± 22)× 10−6 [10] (15)

FB =0.1905± 0.0042 GeV [11]. (16)

3.1.2 B → π`ν

Decay rate of B → π`ν is calculated following equation,

dΓ(B → π`ν) =
G2
f

192π3c2πM
3
B

|V Lub + V Rub|2f+(q2)2λ(q2)3/2dq2. (17)

The relative sign between V Lub and V Rub is plus because only vector current can con-

tribute. For form factor, we use

f+(q2) =
r1

1− q2/(mπ
1 )2

+
r2

1− q2/m2
fit

(0 < q2 < 14GeV2) (18)

m2
fit = 40.73GeV2 mπ

1 = 5.32GeV2

r1 = 0.744 r2 = −0.486
(19)

cπ =
{

1 π = π+
√

2 π = π0 (20)

calculated by P. Ball and R. Zwicky [12]. This equation has 13% error. Branching

ratio with 0 < q2 < 16[GeV2] is measured, so we use this equation with q2 extension.

In the result, |V Lub + V Rub| is

|V Lub + V Rub| =(3.58± 0.47)× 10−3, (21)

with experimental data [10],

Br(B → π`ν)|16GeV2>q2>0 = (1.06± 0.04)× 10−4. (22)
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3.1.3 B → Xu`ν

The result of calculating B → Xu`ν with free quark approximation is given by the

following equation,

Γ(B → Xu`ν) =
G2
fm

5
b

192π3
[(|V Lub|2 + |V Rub|2)(1− 8ρ+ 8ρ3 − ρ4 − 12ρ2 log ρ)

− 4Re(V LubV
R∗
ub )
√
ρ(1 + 6ρ− 6ρ2 − ρ3 + 6(ρ+ 1)ρ log ρ)]. (23)

Because ρ = (mu/mb)2 ∼ 10−3 � 1, we can neglect ρ. The decay rate can be

described as

Γ(B → Xu`ν) =
G2
fm

5
b

192π3
[(|V Lub|2 + |V Rub|2). (24)

This equation shows that |Vub|2 in the SM is changed |V Lub|2 + |V Rub|2 with the b→ u

RHCC in inclusive decay. |Vub| measured by inclusive decay is averaged as |Vub| =
(4.39± 0.31)× 10−3 [10]. In the result, |V Lub|2 + |V Rub|2 can be calculated as,

|V Lub|

√
1 +

∣∣∣∣V RubV Lub

∣∣∣∣2 = (4.39± 0.31)× 10−3. (25)

We noted that we use the GGOU method and the experimental and theoretical error

are linearly combined, because the discrepancy among calculation methods is signifi-

cant.

3.1.4 B → ρ`ν, ω`ν

We are going to consider the b → u RHCC effect on B → ρ`ν,B → ω`ν decays.

Decay rate is calculated as following equations,

dΓ
dq2

=
G2
fpV q

2

96π3c2VM
2
B

(
|H0|2 + |H+|2 + |H−|2

)
(26)

H± =(V Lub − V Rub)(MB +Mρ)A1(q2)∓ (V Lub + V Rub)
2MBpρ
MB +Mρ

V (q2) (27)

H0 =(V Lub − V Rub)
MB +Mρ

2
√
q2

(
(M2

B −M2
ρ − q2)A1(q2)−

4M2
Bp

2
ρ

(MB +Mρ)2
A2(q2)

)
(28)

cV =
{

1 V = ρ+
√

2 V = ρ0, ω
. (29)
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with V = ρ±, ρ0, ω. Form factor we use are listed below,

A1(q2) =
rA1
1

1− q2/mA1
fit

2 (30)

A2(q2) =
rA2
1

1− q2/mA2
fit

2 +
rA2
2

(1− q2/mA2
fit

2
)2

(31)

V (q2) =
rV1

1− q2/m2
1−

+
rV2

1− q2/mV
fit

2 (32)

• parameter set for B → ρ`ν

rA1
1 = 0.240 mA1

fit

2
= 37.51GeV2 (33)

rA2
1 = 0.009 rA2

2 = 0.212 mA2
fit

2
= 40.82GeV2 (34)

rV1 = 1.045 rV2 = −0.721 m1− = 5.32GeV mV
fit

2
= 38.34GeV2

(35)

• parameter set for B → ω`ν

rA1
1 = 0.217 mA1

fit

2
= 37.01GeV2 (36)

rA2
1 = 0.006 rA2

2 = 0.192 mA2
fit

2
= 41.24GeV2 (37)

rV1 = 1.006 rV2 = −0.713 m1− = 5.32GeV mV
fit

2
= 37.45GeV2

(38)

with 9.5% error in A1, 10.4% error in A2 and 9.3% error in V [12]. We can calculate

as

Γ(B → V `ν) =|V Lub|2
(

1 +
∣∣∣∣V RubV Lub

∣∣∣∣2 + aRe
(
V Rub
V Lub

))
Γ(B → V `ν)|V L

ub=1,V R
ub=0 (39)

a =
{
−1.18 V = ρ+, ρ0

−1.25 V = ω
(40)

with constant a. |Vub| =
√

Γ(B → V `ν)/Γ(B → V `ν)|V L
ub=1,V R

ub=0 measured by B →
V `ν is listed in following equation [13],

|Vub| = 3.54± 0.34 B → ρ`ν
|Vub| = 3.08± 0.49 B → ω`ν

. (41)
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Φ1

Φ2
L

Φ3
L

È Vub
L÷

Vud È

È Vcb
÷

Vcd È

È Vtb
÷

Vtd È

È Vcb
÷

Vcd È

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ρ

Η

Fig.5 Light green region is constraint by sin 2φ1 and red region is constraint

by ∆mBd/∆mBs .

In the result, V Rub/V
L
ub can be calculated as following,

|V Lub|

√
1− 1.18Re

(
V Rub
V Lub

)
+
∣∣∣∣V RubV Lub

∣∣∣∣2 = (3.54± 0.34)× 10−3 · · ·B → ρ`ν (42)

|V Lub|

√
1− 1.25Re

(
V Rub
V Lub

)
+
∣∣∣∣V RubV Lub

∣∣∣∣2 = (3.08± 0.49)× 10−3 · · ·B → ω`ν. (43)

3.2 Indirect determination of V L
ub by the unitarity of CKM matrix

Unitarity of CKM matrix includes the following relation,

V L∗ub Vud + V ∗
cbVcd + V ∗

tbVtd = 0, (44)

which may be shown in the complex plane as Fig. 5. The triangle in this figure is called

as unitarity triangle and its angles are denoted by φ1(β), φ2(α) and φ3(γ) as shown

in Fig. 5. The horizontal axis ρ and the vertical axis η are defined by Wolfenstein

parametrization [14],

V L =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (45)

Since measurements of φ2 and φ3 could be affected by the b → u RHCC, angles of

unitarity triangle might differ from measured values of φ2 and φ3. In this thesis, we

13



Input parameters

sin 2φ1 = 0.691± 0.017 [10]

∆MB0 = 0.5055(20) ps−1 [10]

∆MBs = 17.757(21) ps−1 [10]

ξ = 1.268± 0.063 [11]

Table 1 Input parameters for indirect measurement

call the angles of unitarity triangle as φL2 and φL3 . Effects of the b→ u RHCC to φ2

and φ3 measurements are discussed in Sec. 4.

With the unitary of CKM matrix, it is possible to calculate |V Lub|, φL2 and φL3 without

direct measurements. Figure 5 shows that the side of |V ∗
tbVtd/V

∗
cbVcd| measured from

Bd(s)− B̄d(s) mixing observables ∆mBd(s) , and φ1 measured from b→ cc̄s decays like

B → J/ψKs are needed for this analysis. These observables are not affected by the

b → u RHCC since the b → u transition plays minor roles in the relevant processes.

We determine ρ and η with the experimental data of ∆mBd(s) and φ1 solving the

following equations,

∆mBd

∆mBs

=
mBd

mBs

ξ−2

∣∣∣∣VtdVts
∣∣∣∣2 =

mBd

mBs

ξ−2λ2{(1− ρ)2 + η2} (46)

tan(φ1) = tan
(

arg
(
VtdV

∗
tb

VcdV ∗
cb

))
=

η

1− ρ
, (47)

where ξ is flavor SU(3) breaking ratio. Then we calculate |V Lub|, φL2 and φL3 using the

following relations [15],

V Lub = Aλ3(ρ− iη) (48)

tan(φL2 ) =
η

η2 + (ρ− 1)ρ
(49)

φL3 = arg(V L∗ub ). (50)

With the input data listed in Table 1, we obtain |V Lub|, φL2 and φL3 as shown in Table 2.

We note that there are four values of φ1 for the given sin 2φ1 and we obtain four sets

of (ρ, η). In Table 2, we list φ1 and corresponding output parameters.

14



φ1 (ρ, η) |V Lub| × 103 φL2 φL3

21.38◦ (0.10, 0.35) 3.43± 0.16 (84.4± 7.5)◦ (73.8± 7.5)◦

68.62◦ (0.65, 0.90) 10.3± 0.4 (57.2± 2.1)◦ (54.2± 2.1)◦

201.38◦ (1.90,−0.35) 18.0± 0.7 (−10.9± 0.5)◦ (−10.6± 0.5)◦

248.62◦ (1.35,−0.90) 15.1± 0.6 (−35.0± 1.0)◦ (−33.5± 1.0)◦

Table 2 CKM calculation results

3.3 Summary and consideration about measurement of |Vub|

So far, constraints on V Lub and V Rub are given in the five decay processes and |V Lub| is
obtained from indirect measurement. The result is summarized as follows.

|V Lub| =
|V iub|√

1 + x2 + y2 + aix
(51)

where x ≡ Re
(
V Rub/V

L
ub

)
, y ≡ Im

(
V Rub/V

L
ub

)
. The relevant decay mode is specified

with i. The coefficient of the interference term, ai, is given as

ai =


−2 i = B → τν
2 i = B → π`ν
0 i = B → Xu`ν

−1.18 i = B → ρ`ν
−1.25 i = B → ω`ν

. (52)

The corresponding experimental situation is shown in Fig. 6.

In order to determine the best fit values of x, y and |V Lub| we define χ2 as

χ2 =

(
|V UT
ub | − |V Lub|
σ|V UT

ub |

)2

+
∑
i

(
|V iub| − |V Lub|

√
1 + x2 + y2 + aix

σ|V i
ub|

)2

. (53)

First, we analyze the case of no b→ u RHCC namely x = y = 0. We obtain χ2
min/d.o.f

and |V Lub| as

χ2
min

d.o.f
=

10.8
5

= 2.16 (54)

|V Lub| = 3.64× 10−3. (55)
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Turning on the b→ u RHCC, the χ2 fit leads to

χ2
min

d.o.f
=

6.82
3

= 2.27 (56)

x = −4.21× 10−3 (57)

|y| = 0.551 (58)

|V Lub| = 3.43× 10−3. (59)

After integrating out |V Lub|, we obtain allowed region of V Rub/V
L
ub as shown in Fig. 9.

This figure means that measurements of |Vub| suggest large imaginary part of V Rub/V
L
ub.

Thus the b→ u RHCC can be an new source of CP violation in B decays. In addition,

one σ allowed regions in |V Lub| − x plane where y is taken best fit value are shown in

Fig. 8 and |V Lub| measured by each decay mode where x and y are taken best fit values

is listed in Fig. 7. These figures show that y plays a significant role in determination of

|Vub|. The best fit value of |V Lub| in Eq. (59) corresponds to the solution of φ1 = 21.38◦,

which is also favored in the SM. Even with V Rub, three other solutions of φ1 give larger

χ2 values and are disfavored.

Fig.6 Current data of |Vub| × 103 by

each measurement

Fig.7 |V L
ub| × 103 using the best fit

value of the b → u RHCC.
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(a) y = 0 is satisfied. (b) y is taken best fit value.

Fig.8 |V L
ub| as functions of Re(V R

ub/V L
ub) calculated from each process with y

satisfied zero (left figure) or the best fit value (right figure). Yellow: B → τν、
Red: B → π`ν、Blue: B → Xu`ν、Green: B → ρ`ν、Gray: B → ω`ν、Light

blue: V L
ub calculated by unitarity of CKM matrix.

Fig.9 Allowed region of V R
ub/V L

ub.
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4 Constraint to b→ u RHCC by hadronic B decays

The hadronic decays including b→ u transition can be affected by the b→ u RHCC.

In addition, measurements of |Vub| suggest large CP violation in the b → u RHCC.

Therefore we consider its effect on B → ππ and B → ρρ, from which one of the angles

of the unitarity triangle φ2 is extracted, and B → DK used for measurement of φ3.

4.1 B → ππ

The isospin of the final state of B → ππ is I = 0 or 2. We define the following

isospin amplitude,

AI ≡ 〈(ππ)I |H|B0〉 (60)

ĀI ≡ 〈(ππ)I |H|B̄0〉 (61)

where H denotes the effective weak interaction Hamiltonian. As shown in Fig. 10,

both the tree and penguin diagrams are involved in this process. The penguin diagram

contributes to I = 0 and the tree one does to both I = 0 and 2. Hence we can

determine A0, A2, Ā0 and Ā2 by the isospin analysis [16]. The detailed explanation

of the isospin analysis is given in App. D . Although the b→ u RHCC contributes to

both I = 0 and 2 amplitudes, it is sufficient to consider I = 2 amplitudes, which is

free from the penguin pollution, as explained below.

The time dependent CP asymmetry of B → ππ(π+π− or π0π0) is represented as

Γ(B0 → ππ)− Γ(B̄0 → ππ)
Γ(B0 → ππ) + Γ(B̄0 → ππ)

= Cππ cos (∆MBd
t)− Sππ sin (∆MBd

t) . (62)

The coefficients Sππ and Cππ are given as

Cπ+π− =

(
1− |Rππ|2

∣∣∣∣1 + z̄

1 + z

∣∣∣∣2
)
/

(
1 + |Rππ|2

∣∣∣∣1 + z̄

1 + z

∣∣∣∣2
)

(63)

Sπ+π− =
√

1− C2
π+π− sin

(
2φL2 + arg (Rππ) + arg

(
1 + z̄

1 + z

))
(64)

Cπ0π0 =

(
1− |Rππ|2

∣∣∣∣2− z̄2− z

∣∣∣∣2
)
/

(
1 + |Rππ|2

∣∣∣∣2− z̄2− z

∣∣∣∣2
)

(65)
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(a) tree diagram (b) penguin diagram

Fig.10 Feynman diagram for B0 → π+π−

where

z =
√

2A0/A2, z̄ =
√

2Ā0/Ā2 (66)

Rππ =
1 + Ā2R/Ā2L

1 +A2R/A2L
. (67)

We have introduced the I = 2 amplitudes of left- and right- handed b → u currents,

A2L (Ā2L) and A2R (Ā2R) for B and (B̄). We note that experimental data of Sπ0π0

is not available at present. In addition to Cπ+π− , Cπ0π0 and Sπ+π− , the following

observables are also available:

Br(B0 → π+π−)
Br(B+ → π+π0)

τ+

τ0
=

1
9
(|1 + z|2 + |1 + z̄|2) (68)

Br(B0 → π0π0)
Br(B+ → π+π0)

2τ+

τ0
=

1
18

(|2− z|2 + |2− z̄|2) (69)

ACP(B+ → π+π0) =
(
1− |Rππ|2

)
/
(
1 + |Rππ|2

)
. (70)
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We use the following experimental data [10] in our numerical analysis:

Cπ+π− =− 0.31± 0.05 (71)

Sπ+π− =− 0.66± 0.06 (72)

Cπ0π0 =− 0.43± 0.24 (73)

Br(B0 → π+π−) =(5.10± 0.19)× 10−6 (74)

Br(B0 → π0π0) =(1.91± 0.225)× 10−6 (75)

Br(B+ → π+π0) =(5.48± 0.345)× 10−6 (76)

ACP(B+ → π+π0) =− 0.026± 0.039 (77)

With these input parameters as well as φL2 which is given by the analysis of the

unitarity triangle in Sec. 3, we can determine z, z̄ and Rππ. We present the allowed

region of Rππ in Fig. 11, where the horizontal axis is chosen to be ACP(B+ → π+π−)

and the vertical axis is arg (Rππ). The allowed region at 1(2)σ is shown in red (pink).

We compare the experimental constraint with the prediction of the b → u RHCC

which is examined in Sec. 3. We evaluate A2R/A2L and Ā2R/Ā2L as functions of

V Rub/V
L
ub. The necessary effective Hamiltonians of b → uūd for the calculation of the

I = 2 amplitudes are written as

HbL→uLūLdL
=2
√

2GfV L∗ub Vud(C1O1 + C2O2) (78)

HbR→uRūLdL =2
√

2GfV R∗
ub Vud(C1RO1R + C2RO2R) (79)

O1 =(ūαγµPLdβ)(b̄βγµPLuα) (80)

O2 =(ūαγµPLdα)(b̄βγµPLuβ) (81)

O1R =(ūαγµPLdβ)(b̄βγµPRuα) (82)

O2R =(ūαγµPLdα)(b̄βγµPRuβ). (83)

where α and β are color indices. The Wilson coefficients C1, C2, C1R and C2R are

determined by the following renormalization group equation (RGE)

µ
d

dµ
Cj(µ) =

∑
i

γij(µ)Ci(µ) (84)

γij =
αs
2π

(
−1 3
3 −1

)
, i, j = 1, 2 (85)

γij =
αs
2π

(
−8 0
−3 1

)
, i, j = 1R, 2R. (86)
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Fig.11 Allowed region by experimental results in B → ππ and the prediction

region of the b → u CP violating RHCC. The red (pink) shows 1 (2)σ allowed

region. The gray (light blue) shows 1(2)σ prediction region.

The solution of RGE is obtained as follows:

C1(mb) =
1
2

((
αs(mb)
αs(mW )

)−6/23

−
(
αs(mb)
αs(mW )

)12/23
)

= −0.27 (87)

C2(mb) =
1
2

((
αs(mb)
αs(mW )

)−6/23

+
(
αs(mb)
αs(mW )

)12/23
)

= 1.12 (88)

C1R(mb) =
1
3

((
αs(mb)
αs(mW )

)24/23

−
(
αs(mb)
αs(mW )

)−3/23
)

= 0.34 (89)

C2R(mb) =
1
3

(
3
(
αs(mb)
αs(mW )

)−3/23
)

= 0.92 (90)

where αs is the running QCD coupling. The derivation of the RGE and the above

solution is described in App. C .
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Fig.12 The p value of φL
2 + arg(Rππ)/2 assuming δL − δR = 0 or π and

the b → u CP violating RHCC’s prediction. The gray (light blue) shows 1(2)σ

prediction region. The black line is p value.

The amplitude ratio A2R/A2L is written as

A2R

A2L
=

√
2
3 〈π

+π0|HbR→uRūLdL |B+〉eiδR√
2
3 〈π+π0|HbL→uLūLdL |B+〉eiδL

(91)

=
(
V Rub
V Lub

)∗

ei(δR−δL) 〈π+π0|C1RO1R + C2RO2R|B+〉
〈π+π0|C1O1 + C2O2|B+〉

, (92)

where δR,L are strong phases. We evaluate the matrix elements in Eq. (92) with

factorization approximation:

〈π+π0|C1O1 + C2O2|B+〉
=(C2 + C1/3)〈π+|ūγµPLd|0〉〈π0|b̄γµPLu|B+〉

+ (C1 + C2/3)〈π0|ūγµPLu|0〉〈π+|b̄γµPLd|B+〉 (93)

=− (1/4)(1/
√

2)(−ifπ)f0(M2
π)(M2

B+ −M2
π)(4/3)(C2 + C1) (94)
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and

〈π+π0|C1RO1R + C2RO2R|B+〉
=(C2R + C1R/3)〈π+|ūγµPLd|0〉〈π0|b̄γµPRu|B+〉
− 2(C1R + C2R/3)〈π0|ūPRu|0〉〈π+|b̄PLd|B+〉 (95)

=− (1/4)(1/
√

2)(−ifπ)f0(M2
π)(M2

B+ −M2
π)

×
(

(C2R + C1R/3) +
M2
π

mu(mb −md)
(C1R + C2R/3)

)
. (96)

The form factor f0 is defined Eq. (236) in App. A . Thus we obtain

A2R

A2L
=
(
V Rub
V Lub

)∗

ei(δR−δL)
(C2R + C1R/3) + (C1R + C2R/3) M2

π

(mb−md)mu

(C2 + C1/3) + (C1 + C2/3)
(97)

= 1.56
(
V Rub
V Lub

)∗

ei(δR−δL) (98)

and similarly

Ā2R

Ā2L
= 1.56

V Rub
V Lub

ei(δR−δL). (99)

Given the allowed region of V Rub/V
L
ub in Fig. 9, we show the prediction of ACP(B+ →

π+π0) and arg (Rππ) in Fig. 11. In this calculation, we vary δR−δL in the range [0, 2π].

We observe that the prediction of the b → u RHCC is consistent with the B → ππ

experimental result. Figure 12 shows a comparison between φ2(= φL2 + arg(Rππ)/2)

measurement and the prediction of the b → u RHCC. In this figure, we assume

δL − δR = 0 or π so that ACP(B+ → π+π0) = 0. The prediction of the b→ u RHCC

is consistent with φL2 ∼ 127◦ at 1σ and there are several solutions at 2σ level.

4.2 B → ρLρL

The decay process B → ρρ is governed by the tree-level b → u transition and the

one-loop b→ d penguin diagram as B → ππ. The possible final states are ρT ρT and

ρLρL with ρT (L) being the transverse (longitudinal) helicity state. The ρT ρT final

state is a mixture of CP even and odd states. On the other hand, ρLρL is purely CP

even. Therefore the isospin analysis and the φ2 extraction strategy in B → ππ can

be applied to B → ρLρL almost in the same manner. Furthermore we can evaluate

23



the effect of the b → u RHCC as in the previous subsection. Employing a similar

notation as B → ππ, we obtain the coefficients in the time dependent CP asymmetry

and the direct CP asymmetry:

Cρ+ρ− =

(
1− |RρLρL |

2

∣∣∣∣1 + z̄

1 + z

∣∣∣∣2
)
/

(
1 + |RρLρL |

2

∣∣∣∣1 + z̄

1 + z

∣∣∣∣2
)

(100)

Sρ+ρ− =
√

1− C2
ρ+ρ− sin

(
2φL2 + arg (RρLρL

) + arg
(

1 + z̄

1 + z

))
(101)

Cρ0ρ0 =

(
1− |RρLρL |

2

∣∣∣∣2− z̄2− z

∣∣∣∣2
)
/

(
1 + |RρLρL |

2

∣∣∣∣2− z̄2− z

∣∣∣∣2
)

(102)

Sρ0ρ0 =
√

1− C2
ρ0ρ0 sin

(
2φL2 + arg (RρLρL

) + arg
(

2− z̄
2− z

))
(103)

ACP(B+ → ρ+
Lρ

0
L) =

(
1− |RρLρL |

2
)
/
(
1 + |RρLρL |

2
)

(104)

where z, z̄ and RρLρL
are defined in the same way as Eqs.(66, 67) with the corre-

sponding B → ρLρL amplitudes. Ratios of branching fractions are given as

f+−
L Br(B0 → ρ+ρ−)
f+0
L Br(B+ → ρ+ρ0)

τ+

τ0
=

1
9
(|1 + z|2 + |1 + z̄|2) (105)

f00
L Br(B0 → ρ0ρ0)

f+0
L Br(B+ → ρ+ρ0)

τ+

τ0
=

1
18

(|2− z|2 + |2− z̄|2) (106)

where f ijL is the fraction of longitudinal polarization, so that Br(B0 → ρiLρ
j
L) =

f ijL Br(B0 → ρiρj). A different point from B → ππ is that Sρ0ρ0 can be measured

and thus the number of solutions tends to decrease compered to B → ππ. The input
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parameters used in our numerical analysis are listed below:

Cρ+ρ− =− 0.06± 0.13 [10] (107)

Sρ+ρ− =− 0.05± 0.17 [10] (108)

Cρ0ρ0 =0.2± 0.8± 0.3 [10] (109)

Sρ0ρ0 =0.3± 0.7± 0.2 [10] (110)

Br(B0 → ρ+ρ−) =(24.2± 3.15)× 10−6 [10] (111)

Br(B0 → ρ0ρ0) =(0.73± 0.275)× 10−6 [10] (112)

Br(B+ → ρ+ρ0) =(24.0± 1.95)× 10−6 [10] (113)

ACP(B+ → ρ+
Lρ

0
L) =0.051± 0.054 [10] (114)

f+0
L =0.950± 0.016 [17, 18] (115)

f00
L =0.618± 0.118 [19, 20] (116)

f+−
L =0.990± 0.020 [21, 22]. (117)

As in the case of B → ππ, we obtain the allowed region of ACP(B+ → ρ+
Lρ

0
L) and

arg(RρLρL
) from the above input data and φL2 determined by the unitarity triangle.

In Fig. 13, we present the 1(2)σ allowed region in red (pink).

In order to evaluate the effect of the b→ u RHCC, we calculate the amplitude ratio

A2R/A2L. The effective Hamiltonian is the same as B → ππ and we obtain

A2R

A2L
=

√
2
3 〈ρ

+
Lρ

0
L|HbR→uRūLdL

|B+〉eiδR√
2
3 〈ρ

+
Lρ

0
L|HbL→uLūLdL

|B+〉eiδL

=
(
V Rub
V Lub

)∗

ei(δR−δL) 〈ρ
+
Lρ

0
L|C1RO1R + C2RO2R|B+〉
〈ρ+
Lρ

0
L|C1O1 + C2O2|B+〉

(118)

where δR,L are strong phases. We evaluate the matrix elements in Eq. (118) with the

factorization method. In B meson rest frame, the polarization of ρ meson and the

momentum of B and ρ mesons may be written as

εµρ+,L =(pρ, , 0, 0,−Eρ) (119)

pµρ+ =(Eρ, 0, 0, pρ) (120)

pµB+ =(MB+ , 0, 0, 0). (121)

because the ρ meson is longitudinal. Hence the vector form factor vanishes as

〈ρ+
L |b̄γµd|B

+〉 ∝εµνρσεν∗ρ+,Lp
ρ
ρ+p

σ
B+ = 0. (122)
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Then the matrix elements in Eq. (118) are evaluated as

〈ρ+
Lρ

0
L|C1O1 + C2O2|B+〉

=(C2 + C1/3)〈ρ+
L |ūγ

µPLd|0〉〈ρ0
L|b̄γµPLu|B+〉

+ (C1 + C2/3)〈ρ0
L|ūγµPLu|0〉〈ρ+

L |b̄γµPLd|B
+〉 (123)

=(1/4)〈ρ+
L |ūγ

µγ5d|0〉〈ρ0
L|b̄γµγ5u|B+〉(4/3)(C1 + C2) (124)

and

〈ρ+
Lρ

0
L|C1RO1R + C2RO2R|B+〉

=(C2R + C1R/3)〈ρ+
L |ūγ

µPLd|0〉〈ρ0
L|b̄γµPRu|B+〉

− 2(C1R + C2R/3)〈ρ0
L|ūPRu|0〉〈ρ+

L |b̄PLd|B
+〉 (125)

=− (1/4)〈ρ+
L |ūγ

µγ5d|0〉〈ρ0
L|b̄γµγ5u|B+〉(C2R + C1R/3). (126)

Fig.13 Allowed region by experimental results in B → ρρ and the prediction

region of the b → u CP violating RHCC. The red (pink) shows 1 (2)σ allowed

region. The gray (light blue) shows 1(2)σ prediction region.
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Using the Wilson coefficients in Eqs.(88-90), we obtain

A2R

A2L
=
(
V Rub
V Lub

)∗

ei(δR−δL)−(C2R + C1R/3)
(4/3)(C2 + C1)

(127)

=− 0.91
(
V Rub
V Lub

)∗

ei(δR−δL). (128)

With this result, we evaluate ACP(B+ → ρ+
Lρ

0
L) and arg(RρLρL) for the allowed region

of V Rub/V
L
ub given in Fig. 9 taking range of δR−δL in [0, 2π]. Figure. 13 shows the 1(2)σ

region by the gray (light blue). The b → u RHCC scenario is marginally allowed at

1σ level and perfectly consistent with the present experimental data at 2σ. Assuming

δL − δR = 0 or π, which means ACP(B+ → ρ+
Lρ

0
L) = 0, we show a comparison of the

φ2 measurement (solid line) and the prediction of the b → u RHCC (colored region)

in Fig. 14. As stated above the prediction of the b→ u RHCC is consistent with the

value of φ2 determined by the present experimental data. We note that the number

of φ2 solutions in the isospin analysis is only two, which is much less than the case

of B → ππ shown in Fig. 12. Therefore we expect that the improvement in future

experiment will be able to constrain the b→ u RHCC strongly.
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Fig.14 The p value of φL
2 + arg(RρLρL)/2 assuming δL − δR = 0 or π and

the b → u CP violating RHCC’s prediction. The gray (light blue) shows 1(2)σ

prediction region. The black line shows p value.
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4.3 B → DK

B
−

D
0

K
−

(a) B− → D0K−

K
−

B
−

D̄
0

(b) B− → D̄0K−

Fig.15 Feynman diagram for B → DK

In the SM, GLW method [23, 24], ADS method [25] and Dalitz plot analysis (GGSZ

method) [26] are known as methods of φ3 determination. The affinity of them is that

φ3 is extracted from the interference betweenB± → D0K± andB± → D̄0K± through

common decay modes of D0 and D̄0 as shown in Fig. 15. In the SM, φ3 is determined

by the following equation,

A(B+ → D0K+)
A(B− → D̄0K−)

=e2iφ3 . (129)

As seen in Fig. 15(b), however, the b→ u RHCC affects the measurement of φ3 and

induces a new direct CP violation ACP (B+ → D0K+) defined below.

The relevant amplitudes are defined as

A(B− → D0K−) = AB (130)

A(B− → D̄0K−) = ĀLDK + ĀRDK (131)

= ABr−ei(−φDK+δ) (132)

A(B+ → D̄0K+) = AB (133)

A(B+ → D0K+) = ALDK +ARDK (134)

= ABr+ei(φDK+δ), (135)

where A
L(R)
DK and Ā

L(R)
DK denote the contribution of the left(right)-handed charged

current, and δ is a CP even phase. We note that the CP odd phase φDK reduces to
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φL3 in the absence of the b→ u RHCC, namely

ALDK/Ā
L
DK = e2iφ

L
3 . (136)

The effects of the b→ u RHCC are expressed as

φDK =φL3 + arg(RDK)/2 (137)

ACP (B+ → D0K+) =
Γ(B+ → D0K+)− Γ(B− → D̄0K−)
Γ(B+ → D0K+)− Γ(B− → D̄0K−)

(138)

=
r2+ − r2−
r2+ + r2−

(139)

=
1− |RDK |2

1 + |RDK |2
(140)

where

RDK ≡
1 +ARDK/A

L
DK

1 + ĀRDK/Ā
L
DK

. (141)

We note that ACP(B+ → D0K+) has not been measured in experiments. In the

following, we extend Dalitz plot analysis in the presence of the b → u RHCC and

obtain a constraint on ACP(B+ → D0K+) as well as φDK .

4.3.1 Extended Dalitz plot analysis in B → DK with b→ u RHCC

In the Dalitz plot analysis, the decay modes of neutral D mesons, D0 →
Ks(p1)π+(p2)π−(p3) and D̄0 → Ks(p1)π−(p2)π+(p3) are used. The phase space

of the Dalitz decay is shown in Fig. 16 where s1i = (p1 + pi)2. We divide the

phase space into bins as illustrated in Fig. 16 (in our numerical analysis, we employ

the optimal binning used in Ref. [27]). The number of events in the ith bin of

B± → (Ksπ
+π−)K± in the presence of the b→ u RHCC can be expressed as

N+
i =K−i + r+

2Ki + 2r+
√
KiK−i (cos(φDK + δ)ci − sin(φDK + δ)si)

N−
i =K−i + r+

2Ki + 2r+
√
KiK−i (cos(−φDK + δ)ci − sin(−φDK + δ)si)

N+
−i =Ki + r−

2K−i + 2r−
√
KiK−i (cos(φDK + δ)ci + sin(φDK + δ)si)

N−
−i =Ki + r−

2K−i + 2r−
√
KiK−i (cos(−φDK + δ)ci + sin(−φDK + δ)si) , (142)

where i = 1 · · ·n and the ith and −ith bins are symmetric about the diagonal line

s12 = s13. The real numbers ci’s and si’s, which satisfy ci = c−i and si = −s−i, come
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from the interference between D0 and D̄0. Ki(−i) is the number of events in the ith

bin of D0(D̄0) → Ksπ
+π−. There are 4n equations for N±

±i that depend on 4 + 2n

unknown parameters, φDK , δ, r±, si and ci. Hence we can solve these equations as far

as n ≥ 2 and determine ACP (B+ → D0K+) and arg(RDK). N±
i andKi are measured

by Belle collaboration [27]. As for ci and si, although we treated them as parameters

in the above counting, they are actually measured by CLEO collabotation [28]. We

obtained the allowed region of ACP (B+ → D0K+) and arg(RDK). The 1(2)σ region

is presented in red (pink) in Fig. 17. We see that the constraint on the direct CP

violation ACP (B+ → D0K+) is rather weak.

4.3.2 Prediction to B → DK by b→ u RHCC

The effective Hamiltonian that describes b→ uc̄s process is written as

HbL→uLc̄LsL
=2
√

2GfV LubV
∗
cs(C1O1 + C2O2) (143)

HbR→uRc̄LsL
=2
√

2GfV RubV
∗
cs(C1RO1R + C2RO2R) (144)

Fig.16 Example of phase space binning.
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Fig.17 Allowed region by experimental results in B → DK and the predicted

region of the b → u CP violating RHCC. The red (pink) shows 1 (2)σ allowed

region. The gray shows 1σ prediction region. All region is allowed at 2σ.

where

O1 =ūαγµPLbβ s̄βγµPLcα (145)

O2 =ūαγµPLbαs̄βγµPLcβ (146)

O1R =ūαγµPRbβ s̄βγµPLcα (147)

O2R =ūαγµPRbαs̄βγµPLcβ . (148)

We evaluate ARDK and ALDK in the factorization approximation:

ALDK =〈D̄0K−|HbL→uLc̄LsL |B−〉 (149)

=− (2
√

2GfV LubV
∗
cs/4) (C1 + C2/3) 〈D̄|ūγµγ5c|0〉〈K−|s̄γµb|B−〉eiδL (150)

=− (2
√

2GfV LubV
∗
cs/4) (C1 + C2/3) (−ifD)fB→K

0 [M2
D](M2

B −M2
K)eiδL (151)
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and

ARDK =〈D̄0K−|HbR→uRc̄LsL
|B−〉 (152)

=− (2
√

2GfV RubV
∗
cs/4) (C1R + C2R/3) (−2)〈D̄|ūγ5c|0〉〈K−|s̄b|B−〉eiδR (153)

=− (2
√

2GfV RubV
∗
cs/4) (C1R + C2R/3) (−2)

(
−ifDM2

D

mc +mu

)(
(M2

B −M2
K)fB→K

0 [M2
D]

mb −ms

)
eiδR

(154)

where δR and δL are strong phases and we ignore annihilation contributions. The

Wilson coefficients C1, C2, C1R and C2R turn out to be the same as those in B → ππ.

Thus we obtain the amplitude ratio ARDK/A
L
DK as

ARDK
ALDK

=− 4.99
V Rub
V Lub

ei(δR−δL). (155)

The predicted region of ACP (B+ → D0K+) and arg(RDK) corresponding to V Rub/V
L
ub

in Fig. 9 with δR− δL ∈ [0, 2π] is given in Fig. 17. The 1σ allowed region is indicated

by the gray and the whole plane is allowed at 2σ.
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5 b→ u RHCC in minimal supersymmetric standard model

Minimal supersymmetric standard model(MSSM) has flavor violating interactions

in supersymmetry-breaking sector. Since the down quarks are of 6 types as chirality

× generation, the down type scalar quarks also have 6 types. The mass matrix of

down type squarks can be written as [29]

M2
d̃

=



(M d̃
1L)2 ∆d̃LL

12 ∆d̃LL
13 ∆d̃LR

11 ∆d̃LR
12 ∆d̃LR

13

∆d̃LL∗
12 (M d̃

2L)2 ∆d̃LL
23 ∆d̃RL∗

12 ∆d̃LR
22 ∆d̃LR

23

∆d̃LL∗
13 ∆d̃LL∗

23 (M d̃
3L)2 ∆d̃RL∗

13 ∆d̃RL∗
23 ∆d̃LR

33

∆d̃LR∗
11 ∆d̃RL

12 ∆d̃RL
13 (M d̃

1R)2 ∆d̃RR
12 ∆d̃RR

13

∆d̃LR∗
12 ∆d̃LR∗

22 ∆d̃RL
23 ∆d̃RR∗

12 (M d̃
2R)2 ∆d̃RR

23

∆d̃LR∗
13 ∆d̃LR∗

23 ∆d̃LR∗
33 ∆d̃RR∗

13 ∆d̃RR∗
23 (M d̃

3R)2


. (156)

The up type squarks have a similar mass matrix, changing the superscript d̃ → ũ.

The di → uf RHCC is induced by the flavor violation in the squark mass matrices

as shown Fig. 18. Using the mass insertion approximation, we obtain the following

g̃

d̃Ri

d̃Lj

ũRf

�uRL
fj�dLR

ji

ũLj

dRi
uRf

Fig.18 di → uf RHCC induced in MSSM
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effective Lagrangian.

LRHCC =
−ig√

2
Wµ (ūRfγµdRi)

( αs
36π

δdLRji δuRLfj

)
(157)

δqXYij =
∆q̃XY
ij∑

s(M
q̃
s )2/6

, s = 1L, 2L, 3L, 1R, 2R, 3R (158)

=
∆q̃XY
ij

m2
. (159)

where we assume that squarks and gluino have same mass m. Thus V Rub is given by

V Rub =
αs
36π

∑
j

δdLRj3 δuRL1j . (160)

Flavor off diagonal components of the down type squark mass matrix are constrained

rather strongly by FCNC processes,

|δdLR13 | ≤0.0010 (161)

|δdLR23 | ≤0.010 (162)

for m = 1TeV [29]. Therefore δdLR13 and δdLR23 can be ignored. Then V Rub can be written

as

V Rub =
αs
36π

δdLR33 δuRL13 . (163)

In Fig. 19, we present the region of δdLR33 δuRL13 that is allowed by the constraint on

V Rub/V
L
ub in Fig. 9. Since the mass insertion approximation is used in Eq. (163), its

applicability is limited to the cases of small |δdLR33 δuRL13 |. Thus Fig. 19 should be

interpreted with caution. As a reference, we show the line of |δdLR33 δuRL13 | = 0.3 in

Fig. 19. In order to precisely examine the region of large |δdLR33 δuRL13 |, we need an

evaluation beyond the mass insertion approximation.
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Fig.19 The allowed region of MSSM parameter. The red (pink) shows 1(2)σ.

The blue circle shows |δdLR
33 δuRL

13 | = 0.3.
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6 Conclusion

We have considered the b → u RHCC suggested by various |Vub| determinations

and examined its consequences in CP violation in B decays.

It is found that the discrepancy among the result of direct measurements of |Vub|
from B → τν, π`ν, Xu`ν, ρ`ν and ω`ν, and that of indirect measurement using

unitarity of V L is decreased by b → u RHCC as shown in Fig. 6 and Fig. 7. At the

same time, our analysis suggests a large CP violation in b → u RHCC as shown in

Fig. 9. The p-value of the model with CP violating b → u RHCC is practically the

same as that of SM.

According to this result, we have studied CP violating observables in B → ππ,

B → ρρ and B → DK. We reveal that new direct CP asymmetries, deviation of

φ2 in B → ππ and B → ρρ and that of φ3 in B → DK arise. They are shown in

Figs. 11, 13 and 17 with present experimental constraints. The direct CP violation

of B+ → π+π0 and B+ → ρ+ρ0 are strongly constrained by experimental data. On

the other hand, a large deviation ∼ 50◦ of φ2 is still allowed. Although the effect

to B → DK is enhanced by QCD radiative collection, experimental constraint is

rather weak at present. Comparing these possible CP violating signals and present

experimental data, we find that the b→ u CP violating RHCC is a viable new physics

scenario. These CP violating signals may be discovered by SuperKEKB/Belle II and

LHCb experiments.

If the b → u RHCC is found in experiments, it means that the flavor structure

and CP violation in new physics is not described by the CKM matrix. We have

illustrated such a case in the MSSM evaluating loop-induced b→ u RHCC and shown

the constraint on the relevant parameters in Fig. 19.

In order to clarify the remaining the discrepancy in several |Vub| determinations,

more detailed studies of the leptonic and semi-leptonic B decays discussed in this

thesis as well as other decay modes such as B → ρ`ν and Λb → p`ν [30] are necessary.

In particular, since the ρ meson polarization in B → ρ`ν [31] and the lepton energy

distribution in Λb → p`ν are sensitive to the b → u RHCC, both theoretical and

experimental studies of these modes are important to discover or constrain b → u

RHCC.
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In conclusion, the b→ u RHCC is consistent with current experimental constraints.

It might be discovered by further theoretical and experimental studies of leptonic and

semi-leptonic B decays and CP violations in hadronic B decays.

37



App. A Form factor and decay constant

The Calculations of the hadron transition amplitude like B → π and B → ρ re-

quired calculation of strong interaction because B, π, ρ are bound states by strong

interaction. Strong interaction is difficult to calculate in order not available pertur-

bations. However we can determine function form of the hadron transition amplitude

using that strong interaction preserve Lorentz invariance, parity symmetry(P symme-

try) and time-reversal symmetry(T symmetry). Then the hadron matrix elements are

called as Form Factor and Decay Constant. Now, we will look about their definition.

It needs caution that we deal with π, ρ, ω and others meson made from ūu and d̄d.

Because

π0 ∼ ūu− d̄d√
2

(164)

ρ0 ∼ ūu− d̄d√
2

(165)

ω0 ∼ ūu+ d̄d√
2

, (166)

we must multiply ±1/
√

2. Here, we consider this point by multiplying amplitude and

cmeson = 1 or ±
√

2.

A.1 Parity and time-reversal conversion property of states and operator

The parity and time-reversal conversion property of pseudo scalar meson P and

vector meson V are

P|P (p0, ~p)〉 = −|P (p0,−~p)〉 (167)

P|V (p0, ~p, ε)〉 = |V (p0,−~p, ε′)〉 (168)

P|0〉 = |0〉 (169)

T |P (p0, ~p)〉 = +|P (p0,−~p)〉 (170)

T |V (p0, ~p, ε)〉 = +|V (p0,−~p, ε′)〉 (171)

T |0〉 = |0〉. (172)

Time-reversal of states can have arbitrary phase because it is anti-unitarity but we

define like above.
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Next, we consider about the P and T conversion property of operators. For this,

we consider about P and T conversion property of spin 1/2 current Jµ(t, ~x) = ψ̄γµψ

first. P conversion of Jµ(t, ~x) is

PJµ(t, ~x)P† = Jµ(t,−~x)
= ψ̄(t,−~x)γ0γµγ0ψ(t,−~x). (173)

Thus wave functionψ is converted below.

Pψ(t, ~x)P† = γ0ψ(t,−~x) (174)

Thus 5 type operators are converted below with σµν = i[γµ, γν ]/2.

Pψ̄1(t, ~x)ψ2(t, ~x)P† = ψ̄1(t,−~x)ψ2(t,−~x) (175)

Pψ̄1(t, ~x)γ5ψ2(t, ~x)P† = −ψ̄1(t,−~x)γ5ψ2(t,−~x) (176)

Pψ̄1(t, ~x)γµψ2(t, ~x)P† = ψ̄1(t,−~x)γµψ2(t,−~x) (177)

Pψ̄1(t, ~x)γµγ5ψ2(t, ~x)P† = −ψ̄1(t,−~x)γµγ5ψ2(t,−~x) (178)

Pψ̄1(t, ~x)σµνψ2(t, ~x)P† = ψ̄1(t,−~x)σµνψ2(t,−~x) (179)

Changing sign of space component is represented by the raising and lowering of sub-

script. Similarly T conversion of Jµ(t, ~x) is

T Jµ(t, ~x)T † = ψ̄(−t, ~x)γµψ(−t, ~x). (180)

Because T conversion is anti-unitary, T conversion of wave function is

T ψ(t, ~x)T † = γ1γ3ψ(−t, ~x). (181)

For this reason, T conversion of operators are below.

T ψ̄1(t, ~x)ψ2(t, ~x)T −1 = ψ̄1(−t, ~x)ψ2(−t, ~x) (182)

T ψ̄1(t, ~x)γ5ψ2(t, ~x)T −1 = ψ̄1(−t, ~x)γ5ψ2(−t, ~x) (183)

T ψ̄1(t, ~x)γµψ2(t, ~x)T −1 = ψ̄1(−t, ~x)γµψ2(−t, ~x) (184)

T ψ̄1(t, ~x)γµγ5ψ2(t, ~x)T −1 = ψ̄1(−t, ~x)γµγ5ψ2(−t, ~x) (185)

T ψ̄1(t, ~x)σµνψ2(t, ~x)T −1 = −ψ̄1(−t, ~x)σµνψ2(−t, ~x) (186)
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An equation of ψ(t, ~x) is

ψ(t, ~x) =
∫

d3~p

(2π)3
1√
2Ep

∑
s=±

(
as(p)us(p)e−ip·x + bs†(p)vs(p)eip·x

)
(187)

ψ̄(t, ~x) =
∫

d3~p

(2π)3
1√
2Ep

∑
s=±

(
as†(p)ūs(p)eip·x + bs(p)v̄s(p)e−ip·x

)
(188)

(i/∂ −m)ψ(t, ~x) = 0 (189)

ψ̄(t, ~x)(i
←−
/∂ +m) = 0. (190)

A.2 Decay constant

A.2.1 Pseudo scalar meson

We want to consider about pseudo scalar meson vanishing amplitudes

〈0|q̄1Γq2|P 〉(Γ = 1, γ5...). This need QCD calculation, so it is difficult. For

this reason, we use P and T symmetry in QCD. In P and T conversion, amplitudes

convert

〈0|q̄1q2|P 〉
P→ −〈0|q̄1q2|P 〉 (191)

〈0|q̄1γ5q2|P 〉
P→ 〈0|q̄1γ5q2|P 〉 (192)

〈0|q̄1γµq2|P 〉
P→ −〈0|q̄1γµq2|P 〉 (193)

〈0|q̄1γµγ5q2|P 〉
P→ 〈0|q̄1γµγ5q2|P 〉 (194)

〈0|q̄1σµνq2|P 〉
P→ −〈0|q̄1σµνq2|P 〉 (195)

〈0|q̄1q2|P 〉
T→ −〈0|q̄1q2|P 〉 (196)

〈0|q̄1γ5q2|P 〉
T→ −〈0|q̄1γ5q2|P 〉 (197)

〈0|q̄1γµq2|P 〉
T→ −〈0|q̄1γµq2|P 〉 (198)

〈0|q̄1γµγ5q2|P 〉
T→ −〈0|q̄1γµγ5q2|P 〉 (199)

〈0|q̄1σµνq2|P 〉
T→ 〈0|q̄1σµνq2|P 〉. (200)
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Moreover, Lorentz parameter in these bracket is only P meson momentum pµ, so the

amplitudes are calcated

cP 〈0|q̄1q2|P 〉 = 0 (201)

cP 〈0|q̄1γ5q2|P 〉 = if ′P (202)

cP 〈0|q̄1γµq2|P 〉 = 0 (203)

cP 〈0|q̄1γµγ5q2|P 〉 = ifP pµ (204)

cP 〈0|q̄1σµνq2|P 〉 = 0. (205)

fp is called Decay Constant. There is following relation among momentum of quark

kµ1 and kµ2 and meson’s one pµ,

kµ1 + kµ2 = pµ. (206)

Then we derive relation between fP and f ′P as

f ′P =
M2
P

m1 +m2
fP . (207)

with equation of motion (EOM).

A.2.2 Vector meson

Similarly we can consider about vector meson. T and P conversion of amplitudes

is

〈0|q̄1q2|V 〉
P→ 〈0|q̄1q2|V 〉 (208)

〈0|q̄1γ5q2|V 〉
P→ −〈0|q̄1γ5q2|V 〉 (209)

〈0|q̄1γµq2|V 〉
P→ 〈0|q̄1γµq2|V 〉 (210)

〈0|q̄1γµγ5q2|V 〉
P→ −〈0|q̄1γµγ5q2|V 〉 (211)

〈0|q̄1σµνq2|V 〉
P→ 〈0|q̄1σµνq2|V 〉 (212)

〈0|q̄1q2|V 〉
T→ 〈0|q̄1q2|V 〉 (213)

〈0|q̄1γ5q2|V 〉
T→ 〈0|q̄1γ5q2|V 〉 (214)

〈0|q̄1γµq2|V 〉
T→ 〈0|q̄1γµq2|V 〉 (215)

〈0|q̄1γµγ5q2|V 〉
T→ 〈0|q̄1γµγ5q2|V 〉 (216)

〈0|q̄1σµνq2|V 〉
T→ −〈0|q̄1σµνq2|V 〉. (217)
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Amplitude of vector meson include first order of polarization vector εµ and ε · p = 0.

Thus amplitudes is calculated

cV 〈0|q̄1q2|V 〉 = 0 (218)

cV 〈0|q̄1γ5q2|V 〉 = 0 (219)

cV 〈0|q̄1γµq2|V 〉 = fV εµ (220)

cV 〈0|q̄1γµγ5q2|V 〉 = 0 (221)

cV 〈0|q̄1σµνq2|V 〉 = if ′V (pµεν − pνεµ). (222)

Since momentum of quarks kµ1 and kµ2 are satisfy kµ1 + kµ2 = pµ, we evaluate f ′V as

f ′V =
m1 +m2

M2
V

fV . (223)

with EOM.

A.3 Form factors

A.3.1 Pseudo scalar meson to pseudo scalar meson

We deal with amplitude of transition from pseudo scalar meson to pseudo scalar

meson for considering B → π`ν and others. P and T transition of these amplitudes

are

〈P1|q̄1q2|P2〉
P→ 〈P1|q̄1q2|P2〉 (224)

〈P1|q̄1γ5q2|P2〉
P→ −〈P1|q̄1γ5q2|P2〉 (225)

〈P1|q̄1γµq2|P2〉
P→ 〈P1|q̄1γµq2|P2〉 (226)

〈P1|q̄1γµγ5q2|P2〉
P→ −〈P1|q̄1γµγ5q2|P2〉 (227)

〈P1|q̄1σµνq2|P2〉
P→ 〈P1|q̄1σµνq2|P2〉 (228)

〈P1|q̄1q2|P2〉
T→ 〈P1|q̄1q2|P2〉 (229)

〈P1|q̄1γ5q2|P2〉
T→ 〈P1|q̄1γ5q2|P2〉 (230)

〈P1|q̄1γµq2|P2〉
T→ 〈P1|q̄1γµq2|P2〉 (231)

〈P1|q̄1γµγ5q2|P2〉
T→ 〈P1|q̄1γµγ5q2|P2〉 (232)

〈P1|q̄1σµνq2|P2〉
T→ −〈P1|q̄1σµνq2|P2〉. (233)
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For considering these, amplitudes can be written

cP1cP2〈P1|q̄1q2|P2〉 =FS(q2) (234)

cP1cP2〈P1|q̄1γ5q2|P2〉 =0 (235)

cP1cP2〈P1|q̄1γµq2|P2〉 =f+(q2)
(
p2 + p1 −

m2
P2
−m2

P1

q2
q

)
µ

+ f0(q2)
m2
P2
−m2

P1

q2
qµ

(236)

cP1cP2〈P1|q̄1γµγ5q2|P2〉 =0 (237)

cP1cP2〈P1|q̄1σµνq2|P2〉 =iFT (q2)(p1µp2ν − p2µp1ν) (238)

with qµ = (p2−p1)µ = (k2−k1)µ. For tensor type amplitude, a coefficient of εµνρσp
ρ
1p
σ
2

is 0 because P transition. This time, there are two vector parameters p1 and p2 so

FS , f+, f0 and FT are function of q2. Now, we are going to rewrite FS and FT using

f+ and f0. Then, FS is obtained as follow,

FS =
m2
P2
−m2

P1

m2 −m1
f0. (239)

Similarly FT is calculated as follow,

− i

2
q2FT

(
p2 + p1 −

m2
P2
−m2

P1

q2
q

)
ν

(240)

=i(k1ν + k2ν)
m2
P2
−m2

P1

m2 −m1
f0

− (m1 +m2)i
(
f+(q2)

(
p2 + p1 −

m2
P2
−m2

P1

q2
q

)
ν

+ f0(q2)
m2
P2
−m2

P1

q2
qν

)
.

(241)

Then we assume following equation,

m2
P2
−m2

P1

m2
2 −m2

1

(k1 + k2)ν = (p2 + p1)ν . (242)

This relation is correct in ignoring O(ΛQCD). Thus FT is obtained as

FT =
2(mP2 +mP1)

q2
(f+ − f0). (243)

A.3.2 Pseudo scalar meson to vector meson

We consider amplitude of transition from pseudo scalar meson to vector meson for

considering B → ρ`ν and others. P and T transition of these amplitudes are listed
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in follow,

〈V |q̄1q2|P 〉
P→ −〈V |q̄1q2|P 〉 (244)

〈V |q̄1γ5q2|P 〉
P→ 〈V |q̄1γ5q2|P 〉 (245)

〈V |q̄1γµq2|P 〉
P→ −〈V |q̄1γµq2|P 〉 (246)

〈V |q̄1γµγ5q2|P 〉
P→ 〈V |q̄1γµγ5q2|P 〉 (247)

〈V |q̄1σµνq2|P 〉
P→ −〈V |q̄1σµνq2|P 〉 (248)

〈V |q̄1q2|P 〉
T→ 〈V |q̄1q2|P 〉 (249)

〈V |q̄1γ5q2|P 〉
T→ 〈V |q̄1γ5q2|P 〉 (250)

〈V |q̄1γµq2|P 〉
T→ 〈V |q̄1γµq2|P 〉 (251)

〈V |q̄1γµγ5q2|P 〉
T→ 〈V |q̄1γµγ5q2|P 〉 (252)

〈V |q̄1σµνq2|P 〉
T→ −〈V |q̄1σµνq2|P 〉. (253)

For considering these, amplitudes can be written as

cP cV 〈V |q̄1q2|P 〉 =0 (254)

cP cV 〈V |q̄1γ5q2|P 〉 =f4(ε∗ · pP ) (255)

cP cV 〈V |q̄1γµq2|P 〉 =iεµνρσε∗νp
ρ
P p

σ
V

2V
mP +mV

(256)

cP cV 〈V |q̄1γµγ5q2|P 〉 =− ε∗µ(mP +mV )A1 + (pP + pV )µ(ε∗ · q)
A2

mP +mV
+ qµ(ε∗ · q)

2mV

q2
A3

(257)

cP cV 〈V |q̄1σµνq2|P 〉 =εµνρσ [f1ε∗ρpσP + f2ε
∗ρpσV + f3(ε∗ · pP )pρP p

σ
V ] (258)

with qµ = (p2− p1)µ. Just like previous subsection, we are going to calculate relation

of (f1, f2, f3, f4) and (V,A1, A2, A3). First, f4 is calculated as following equation,

− (mP +mV )f4(ε∗ · pP ) (259)

=− (mP +mV )cP cV 〈V |q̄1γ5q2|P 〉 (260)

=cP cV 〈V |i∂µ(q̄1γµγ5q2)|P 〉 (261)

=− (ε∗ · q)(mP +mV )A1 + (m2
P −m2

V )(ε∗ · q) A2

mP +mV
+ 2mV (ε∗ · q)A3. (262)

Thus we obtain f4 as follow,

f4 = A1 −
mP −mV

mP +mV
A2 −

2mV

mP +mV
A3. (263)
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Continuously, we evaluate f1, f2 and f3 and obtain following relations,

2V ενµρσε∗µp
ρ
P p

σ
V =− i(mP +mV )cP cV 〈V |q̄1γνγ5q2|P 〉 (264)

=cP cV 〈V |i∂µ(q̄1σµνq2)|P 〉 (265)

=qµεµνρσ [f1ε∗ρpσP + f2ε
∗ρpσV + f3(ε∗ · pP )pρP p

σ
V ] (266)

=(f1 + f2)ενρµσε∗ρp
µ
P p

σ
V (267)

ε∗ν(m
2
P −m2

V )A1 − (pP + pV )ν(ε∗ · q)
(
mP −mV

mP +mV
A2 + f4

)
− qν(ε∗ · q)

2mV (mP −mV )
q2

A3

(268)

=icP cV 〈V |i∂µ(q̄1σµνγ5q2)|P 〉 (269)

=
1
2
εµνρσq

µερσεη [f1ε∗εpPη + f2ε
∗
εpV η + f3(ε∗ · pP )pPεpV η] (270)

=− 1
2

[
ε∗ν
{
f1(m2

P −m2
V + q2) + f2(m2

P −m2
V − q2)

}
− (pV + pP )ν(ε∗ · pP )(f1 + f2 + q2f3)

− qν(ε∗ · pP ){f1 − f2 − (m2
P −m2

V )f3}
]
. (271)

As the result, we obtain as following relations,

f1 =V − m2
P −m2

V

q2
(A1 + V ) (272)

f2 =V +
m2
P −m2

V

q2
(A1 + V ) (273)

f3 =− 2
q2

(
A1 −

2mV

mP +mV
A3 − V

)
. (274)
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App. B Calculations of each B meson decay rate

In this section, we are going to calculate decay rate of each B meson decays with

RHCC.

B.1 b− u− `− ν 4 fermi operator

At first, we calculate the b− u− `− ν 4 fermi operator. For Eq. (12), it is

Mf = −g
2

2
PW 〈u`ν|

[
ūγµ

(
PLV

L
ub + PRV

R
ub

)
b
] [¯̀γµPLν] |b〉 (275)

when PW is propagator of W boson. Propagator of W boson with unitary gauge is

PW =
gµν − qµqν

M2
W

q2 −M2
W

. (276)

Energy scale of B meson is 5GeV and one of W boson is 80GeV, so q2 � M2
W . For

this reason,

PW ' −
gµν

M2
W

. (277)

In summary, 4 fermi operator is

Of = 2
√

2Gf
(
ūγµ

(
PLV

L
ub + PRV

R
ub

)
b
) (¯̀γµPLν) (278)

with Gf = g2/(4
√

2M2
W ).

B.2 B → τν

Using Eq. (278), an amplitude of B → τν is calculated as

A(B → τν) = 2
√

2Gf 〈τ−ν̄|(τ̄ γµPLν)|0〉〈0|(ūγµ
(
V LubPL + V RubPR

)
b)|B−〉. (279)

Using Eqs. (203, 204), we calculate as follow,

A(B → τν) =
√

2iGf (−V Lub + V Rub)fBp
µ
B〈τ

−ν̄|(τ̄ γµPLν)|0〉. (280)

Thus decay rate, Γ(B → τν), is evaluated as following equations,

dΓ(B → τν) =
1

2EB
|M(B → τν)|2dQ (281)
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where |M(B → τν)|2 and dQ are shown as

|M(B → τν)|2 =
∑
s

|A(B → τν)|2 (282)

= 2Gf 2|V Lub − V Rub|2FB
2PµBP

ρ
B

∑
s

Tr(ūτγµPLvν v̄νγρPLuτ ) (283)

= 2Gf 2|V Lub − V Rub|2FB
2M2

τ (M2
B −M2

τ ) (284)

dQ =
d3 ~Pν

2(2π)3Eν
d3 ~Pτ

2(2π)3Eτ
(2π)4δ4(PB − Pν − Pτ ) (285)

=
1

8πM2
B

(M2
B −M2

τ ). (286)

As the result, we obtain Γ(B → τν) as

Γ(B → τν) =
1

2MB
2Gf 2|V Lub − V Rub|2FB

2M2
τ (M2

B −M2
τ )

1
8πM2

B

(M2
B −M2

τ )

=
1
8π
Gf

2|V Lub − V Rub|2FB2MBM
2
τ

(
1−

(
Mτ

MB

)2
)2

. (287)

B.3 B → π`ν

We are going to calculate decay rate of B → π`ν. Using Eq. (278), its amplitude is

written as

A(B → π`ν) = 2
√

2Gfc−1
π 〈`ν̄|(τ̄ γµPLν)|0〉〈π|(ūγµ

(
V LubPL + V RubPR

)
b)|B〉 (288)

with cπ+ = 1, cπ0 =
√

2. Using Eq. (236, 237), we evaluate as follow,

|M|2 =
∑
s

|A(B → π`ν)|2

= 8G2
fc

−2
π |V Lub + V Rub|2[f+(q2)]2PµBP

ρ
B

∑
s

Tr(ū`γµPLvν v̄νγρPLu`)

= 8G2
fc

−2
π |V Lub + V Rub|2[f+(q2)]22[2(PBPl)(PBPν)−M2

B(PlPν)]. (289)
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We can represent momentum as following relations,

PlPν =
1
2
(Pl + Pν)2 =

1
2
q2 (290)

PBPl =
M2
By

2
(291)

PBPν = PB(PB − Pl − Pπ) = M2
B −

M2
By

2
+

1
2
(q2 −M2

B −M2
π)

=
1
2
q2 − M2

By

2
− 1

2
(M2

B −M2
π) (292)

y ≡ 2PlPB
M2
B

. (293)

Thus we can calculate |M|2 as

|M|2 = 8G2
fc

−2
π |V Lub + V Rub|2(f+(q2))2M2

B

[
y(q2 −M2

By +M2
B −M2

π)− q2
]
. (294)

A phase space dQ is evaluated as

dQ =
d3 ~Pν

2Eν(2π)3
d3 ~Pπ

2Eπ(2π)3
d3 ~Pl

2El(2π)3
(2π)4δ4(PB − Pν − Pπ − Pl) (295)

=
1

32π3
dEπdEl (296)

=
1

128π3
dq2dy (297)

where we use q2 = M2
B +M2

π − 2MBEπ, y = 2El/MB . Hence we obtain partial decay

rate, dΓ(B → π`ν), as

dΓ(B → π`ν) =
4G2

fMB

128π3c2π
|V Lub + V Rub|2(f+(q2))2

×
[
y(q2 −M2

By +M2
B −M2

π)− q2
]
dq2dy. (298)

Using P 2
ν = 0, we evaluate y as

0 = P 2
ν =(PB − Pl − Pπ)2 = q2 − y

2
(q2 +M2

B −M2
π)− y

2

√
λ cos θlπ (299)

y =
M2
B +M2

π −
√
λ+ 4M2

BM
2
π

M2
B −

1
2

√
λ+ 4M2

BM
2
π + 1

2

√
λ cos θlπ

(300)

λ ≡(q2 +M2
B −M2

π)2 − 4q2M2
B (301)

where θ`π is angle of momentum ` and π. Thus integral range of y is

M2
B −M2

π + q2 −
√
λ

2M2
B

≤ y ≤ M2
B −M2

π + q2 +
√
λ

2M2
B

. (302)
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where a range of cos θlπ is [1, −1]. As the result, we can integrate dΓ(B → π`ν) over

the y and obtain

dΓ(B → π`ν) =
G2
f

192π3c2πM
3
B

|V Lub + V Rub|2[f+(q2)]2λ(q2)3/2dq2. (303)

B.4 B → Xu`ν

We are going to calculate decay rate of B → Xu`ν in free quark approximation.

An amplitude is written as

A(B → Xu`ν) =2
√

2Gf 〈u`−ν̄|(¯̀γνPLW−
ν ν)(ūγ

µ(V LubPL + V RubPR)W+
µ b)|b〉

=2
√

2Gf (ūlγµPLvν)(ūuγµ(V LubPL + V RubPR)ub) (304)

where Eq. (278) is used. Thus squared matrix element |M|2 is evaluated as following

relation,

|M|2 =
1
2

∑
s

|A(B → Xu`ν)|2

=32G2
f (2(|V Lub|2(plpu)(pνpb) + |V Rub|2(plpb)(pνpu))− (plpν)mumbRe(V LubV

R∗
ub )).
(305)

We calculate product of momentum as

plpν =
q2

2
(306)

pupν =
1
2
(m2

b −m2
u −m2

by) (307)

pbpν =
1
2
(q2 +m2

b −m2
by −m2

u) (308)

plpu =
1
2
(−q2 +m2

by) (309)

where we use definitions, qµ ≡ pb − pu = pν + pl and y ≡ 2pbpl/m2
b . A phase space

dQ is calculated similar to B → π`ν as

dQ =
1

128π3
dq2dy. (310)
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Thus deferential decay rate dΓ(b→ u`ν) is evaluated as

dΓ(b→ u`ν) =
1

2MB
16G2

f (|V Rub|2(−q2 +m2
by)(q

2 +m2
b −m2

by −m2
u) (311)

+ |V Lub|2(m2
by)(m

2
b −m2

u −m2
by)− q2mumbRe(V LubV

R∗
ub ))

1
128π3

dq2dy.

An integration ranges of y and q2 are presented as

0 ≤q2 ≤ (1− y − ρ)y
1− y

m2
b (312)

0 ≤y ≤ 1− ρ (313)

where ρ is m2
u/m

2
b . In the result, we obtain following equations,

dΓ(B → Xu`ν)
dy

=
G2
Fm

5
b

32π3MB
[−2
√
ρRe(V LubV

R
ub

∗
)
y2(1− ρ− y)2

2(1− y)2
(314)

+ |V Lub|2
y2(1− ρ− y)2(3 + ρ(3− y)− 5y + 2y2)

6(1− y)3
(315)

+ |V Rub|2
y2(1− ρ− y)2

(1− y)
] (316)

Γ(B → Xu`ν) =
G2
fm

5
b

384π3MB
[(|V Lub|2 + |V Rub|2)(1− 8ρ+ 8ρ3 − ρ4 − 12ρ2 log ρ)

− 4Re(V LubV
R∗
ub )
√
ρ(1 + 6ρ− 6ρ2 − ρ3 + 6(ρ+ 1)ρ log ρ)]. (317)

B.5 B → ρ`ν, ω`ν

We are going to calculate decay rate of B → ρ`ν. In the case of B → ω`ν, it is

same how to calculate, so we deal with only B → ρ`ν. The amplitude of B → ρ`ν is

A(B → ρ`ν) =− i2
√

2Gf 〈`−ν̄|(¯̀γµPLν)|0〉〈ρ|(ūγµ
(
V LubPL + V RubPR

)
b)|B̄〉

=− i2
√

2Gfc−1
ρ 〈`−ν̄|(¯̀γµPLν)|0〉

×

(
−V Lub + V Rub

2

(
(MB +Mρ)A1(q2)ε(Pρ, λρ)∗µ −

A2(q2)
MB +Mρ

(qε(Pρ, λρ)∗)(PB + Pρ)µ

− (qε(Pρ, λρ)∗)
2Mρ

q2
A3(q2)qµ

)
+
V Lub + V Rub

2
2iV (q2)
MB +Mρ

εµνησP
ν
BP

η
ρ ε(Pρ, λρ)

∗σ

)
(318)
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where we use Eqs. (256, 257), cρ+ is 1 and cρ0 and cω is
√

2. A term that is

proportional to qµ does not affect, so we calculate the amplitude as

A(B → ρ`ν) = −i2
√

2Gfc−1
ρ 〈`−ν̄|(¯̀γµPLν)|0〉

×

(
−V Lub + V Rub

2

(
(MB +Mρ)A1(q2)ε(Pρ, λρ)∗µ −

2A2(q2)
MB +Mρ

(qε(Pρ, λρ)∗)PBµ

)

+
V Lub + V Rub

2
2iV (q2)
MB +Mρ

εµνησP
ν
BP

η
ρ ε(Pρ, λρ)

∗σ

)
. (319)

We divide amplitude into W boson helicity λW . In off-shell, there is a following

relation,

gµν =
∑
λW

ηλW ε(q, λW )∗µε(q, λW )ν ηλW =
{
−1 λW = 0,±
1 λW = s

(320)

with W boson polarized vector ε(q, λW )µ. Thus we calculate {(lepton part) ×
ε(q, λW )∗µ} and {ε(q, λW )µ × (hadron part)} separately.

At first, we calculate leptonic part. In the rest frame of W boson, momentum

vectors are presented as

qµ = (
√
q2, 0, 0, 0) (321)

PµB = (EB , 0, 0, pB) (322)

Pµρ = (E′
ρ, 0, 0, p

′
ρ) (323)

Pµl =

√
q2

2
(1, sin θ, 0, cos θ) (324)

Pµν =

√
q2

2
(1,− sin θ, 0,− cos θ) (325)

ε(q,±)∗µ = ∓ 1√
2
(0, 1,±i, 0) (326)

ε(q, 0)∗µ = (0, 0, 0,−1) (327)

ε(q, s)∗µ = (1, 0, 0, 0). (328)

Hence we calculate leptonic part as follow,

〈`−ν̄|¯̀γµPLν|0〉ε(q, λW )∗µ

= (ω(Pl)λl
ξ(Pl)∗λl

ω(Pl)−λl
ξ(Pl)∗λl

)
(

0 σ+µ

σ−µ 0

)(
0 0
0 1

)(
−ω(Pν)λν ξ(Pν)λν

ω(Pν)−λν ξ(Pν)−λν

)
ε(q, λW )∗µ

= ω(Pl)λl
ξ(Pl)∗λl

σ+µω(Pν)−λν ξ(Pν)−λν ε(q, λW )∗µ (329)
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with ξ+ =

(
cos θ2
sin θ

2

)
, ξ− =

(
− sin θ

2

cos θ2

)
, σµ± = (1,±σi), ω±(p) =

√
E ± |~p|. Since

`, ν masses are 0, ω is calculated as

ω(Pl)± = ω(Pν)± =
{

(q2)1/4 +
0 − . (330)

Therefore we calculate leptonic part as

〈`−ν̄|¯̀γµPLν|0〉ε(q, λW )∗µ =
√
q2ξ(Pl)∗−σ+µξ(Pν)−ε(q, λW )∗µ

=
√
q2(0,− cos θ,−i, sin θ)ε(q, λW )∗µ

=


−
√

q2

2 (1∓ cos θ) = L± λW = ±
−
√
q2 sin θ = L0 λW = 0

0 λW = s

. (331)

Next, we calculate hadronic part. In the rest frame of B meson, momentum vectors

are presented as

PµB = (MB , 0, 0, 0) (332)

Pµρ = (Eρ, 0, 0, pρ) (333)

ε(q,±) = ∓ 1√
2
(0, 1,∓i, 0) (334)

ε(q, 0)µ =
1√
q2

(pρ, 0, 0,−MB + Eρ) (335)

ε(q, s)µ =
1√
q2
qµ (336)

ε(Pρ,±)∗µ = ∓ 1√
2
(0, 1,±i, 0) (337)

ε(Pρ, 0)∗µ =
1
Mρ

(pρ, 0, 0, Eρ). (338)

If λW is s, leptonic part is 0. Hence we evaluate vector product with λW = ± or 0

and list as follow.

• λW = ±

ε(q,±)µε(Pρ, λρ)∗µ =
{
−1 λW = λρ
0 λρ 6= λW

(339)

ε(q,±)µPBµ = 0 (340)

ε(q,±)µεµνησP νBP
η
ρ ε(Pρ, λρ)

∗σ =
{
±iMBpρ λW = λρ = ±

0 λW 6= λρ
(341)
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• λW = 0

ε(q, 0)µε(Pρ, λρ)∗µ =


EρMB −M2

ρ√
q2Mρ

λW = λρ = 0

0 λW 6= λρ

(342)

ε(q, 0)µPBµ =
MBpρ√

q2
(343)

ε(q, 0)µεµνησP νBP
η
ρ ε(Pρ, λρ)

∗σ = 0 (344)

Thus we evaluate hadronic part with λW = ± and λW = 0, H±/2 and −H0/2, and

obtain as follow,

1
2
H± =

(
V Lub − V Rub

2
(MB +Mρ)A1(q2)∓

V Lub + V Rub
2

2MBpρ
MB +Mρ

V (q2)
)

(345)

−1
2
H0 =− V Lub − V Rub

2
MB +Mρ

2
√
q2Mρ

(
(M2

B −M2
ρ − q2)A1(q2)−

4M2
Bp

2
ρ

(MB +Mρ)2
A2(q2)

)
.

(346)

Next, we calculate phase space dQ. dQ is dq2dy/(128π3) as same as B → π`ν. We

translate y into cos θ as

dy = d

(
2PlPB
M2
B

)
=
pB
√
q2

M2
B

d cos θ =

√
Ω+Ω−

2M2
B

d cos θ (347)

Ω± = (MB ±Mρ)2 − q2, (348)

and we obtain dQ as

dQ =
1

256π3

√
Ω+Ω−

M2
B

dq2d cos θ. (349)

For these calculation, differential decay rate is

dΓ =
∑
λl,λρ

1
2EB

|Mλl

λρ
|2dQ

dΓ
dq2d cos θ

=
G2
f

√
Ω+Ω−q

2

256π3c2ρM
3
B

(
|H0|2 sin2 θ + |H+|2

(1− cos θ)2

2
+ |H−|2

(1 + cos θ)2

2

)
=

G2
fpρq

2

128π3c2ρM
2
B

(
|H0|2 sin2 θ + |H+|2

(1− cos θ)2

2
+ |H−|2

(1 + cos θ)2

2

)
(350)
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with Mλl

λρ
= −i2

√
2Gfc−1

ρ

∑
λW

Lλl

λW
H
λρ

λW
. pρ is 3-dimension momentum of ρ in the

rest frame of B meson. We integrate it from cos θ = −1 to 1 and obtain following

relation,

dΓ
dq2

=
G2
fpρq

2

96π3c2ρM
2
B

(
|H0|2 + |H+|2 + |H−|2

)
. (351)

After CP transforming, H+ and H− are exchanged each other by Eq. (341). However

After integrating cos θ, decay rate is not affected.
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App. C Renormalization for hadronic decays

Four quark operators are renormalized by QCD interaction [32]. An effective Hamil-

tonian is written as

Heff =
Gf√

2
VijV

∗
lk

∑
m

C(0)
m O(0)

m (352)

O(0)
m =(ū(0)

i d
(0)
j d̄

(0)
k u

(0)
l )m (353)

where u(0), d(0), O(0)
m and C(0)

m are bare up-type and down-type quark field, four Fermi

operator and Wlison coefficient respectively. The subscript m indicates combinations

of color and chiral structure, and the subscript i, j, k and l show generations. Here

we introduce field and operator renormalizations as

q(0) ≡Z1/2
2 q (q = u, d) (354)

O(0)
i =ZijOj (355)

where Z2 and Zij are divergent. We evaluate the matrix element (amputated Green

function) of O(0)
m in QCD 1-loop level and find the following relation,

〈O(0)
i 〉 =Z−2

2 Zij〈Oj〉. (356)

We define renormalized Wilson coefficients, Cm, so that∑
m

C(0)
m O(0)

m =
∑
m

Cm(µ)Om(µ) (357)

where µ is the renormalization scale. Renormalization constants of Wilson coefficients

Zcij are defined by

C
(0)
i ≡ZcijCj . (358)

From Eq. (357), we obtain

Zcij = Z−1
ji . (359)

Since the left-hand side of Eq. (358) does not depend on energy scale µ, we obtain

the following renormalization group equation,

d

d lnµ
Ck =

∑
j

γjkCj (360)
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where the anomalous dimension matrix γij is given by

γjk =−
∑
i

Zcki
−1

(
d

d lnµ
Zcij

)
(361)

=
∑
i

Zji
−1

(
d

d lnµ
Zik

)
. (362)

As we will show, at the 1-loop level, the µ dependence of γij(µ) is factorized as

follows,

γij(µ) ≡γ̄(µ)γ̃ij . (363)

Then we can diagonalize γ̃ij ,

aiδij ≡U−1
ik

(
γ̃T
)
kl
Ulj (364)

where Uij is unitary matrix. The Wilson coefficient C̃i in the diagonal basis,

C̃i ≡
∑
j

U−1
ij Cj(µ). (365)

satisfies the following renormalization group equation (RGE),

µ
d

dµ
C̃i(µ) =aiγ̄(µ)C̃i(µ). (366)

The solution is

C̃i(µ) = exp

(
ai

∫ gs(µ)

gs(m)

dgs
1

β(gs)
γ̄(µ)

)
C̃i(m) (367)

where the beta function β(gs) is given by

β(gs) =µ
dgs
dµ

= − g3
s

16π2

(
11− 2

3
Nf

)
, (368)

and Nf is the number of flavors. The running coupling constant gs(µ) is the solution

of equation Eq. (368).

Next, we calculate Z2. The 1-loop Feynman diagram for kinematic term of fermion

ψ̄/∂ψ is shown in Fig. 20 and this contribution rψ in Rξ gauge is calculated as following

equations,
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p pp+ k

k

 a  b  c

Fig.20 1-loop diagram of fermion field.

rψ =µε
∫

dnk

(2π)n
i

/p
igsT

A
cbγ

µi
/p+ /k

(p+ k)2
igsT

A
baγ

ν i

/p
−i
k2

(gµν − (1− ξ)kµkν/k2) (369)

=
4
3
µεg2

sδca
1
/p
(γµγργν)

1
/p
Iµνρ (370)

Iµνρ ≡
∫

dnk

(2π)n
(p+ k)ρ
(p+ k)2

1
k2

(gµν − (1− ξ)kµkν/k2) (371)

γµγργν =gµργν + gνργµ − gµνγρ − iεµρνηγ5γη (372)

TAcaT
A
db =

1
2
(δcbδda − δcaδdb/3) (373)

where a, b and c are color indices, TAab is generator of SU(3) and n = 4−ε is spacetime

dimension. In minimal subtraction scheme, we use only divergent part. The divergent

part of Iµνρ, Idiv
µνρ, is calculated as follow,

Idiv
µνρ =

i

8π2ε

[(
gµνpρ

1
2

)
+

1
2
(ξ − 1)[

1
3
gµνpρ −

1
6
gµρpν −

1
6
gνρpµ]

]
. (374)

The divergent part of rψ, rdiv
ψ , is written as

rdiv
ψ =

g2
sξ

6π2ε
δca

i

/p
. (375)

As the result, Z2 is obtained as following equation,

Z2 = 1− g2
sξ

6π2ε
+O(g4

2). (376)

In the following subsection, we calculate QCD 1-loop diagrams in each case of bL →
uLc̄LsL, bL → uLūLdL and bR → uRc̄LsL and obtain Ci(mb).
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C.1 bL → uLc̄LsL

For bL → uLc̄LsL, the following two operators contribute:

O1 =(ūaγµPLbb)(s̄bγµPLca) (377)

O2 =(ūaγµPLba)(s̄bγµPLcb). (378)

All QCD 1-loop Feynman diagrams are shown in Figs. 21 - 32. We define r(k)ij as the

coefficient of Oi obtained with Feynman diagram Fig. k that arises from Oj and r(k)div
ij

as the divergent part of r(k)ij . Then the renormalization constant Zij is expressed by

Zij/Z
2
2 = 1 +

∑
k r

(k)div
ij . The coefficient r(21)div

ij is calculated as following equations,

r
(21)
i2 Oi =µε

∫
dnk

(2π)n

(
ūcLigsT

A
cfγ

νi
/k +mu

k2 −m2
u

γµi
/k +mb

k2 −m2
b

igsT
A
faγ

ρbaL

)
(s̄bLγµc

b
L)

× −i
k2

(
gνρ − (1− ξ)kνkρ

k2

)
(379)

r
(21)div
i2 Oi =

g2
s

6π2ε
ξO2 (380)

Thus we obtain r(21)div
ij as follow,

r
(21)div
ij =

 g2
sξ

6π2ε
i = j = 2

0 otherwise
. (381)

We calculate similarly r(22)div
ij , r(27)div

ij and r(28)div
ij and obtain following equation,

r
(21)div
ij + r

(22)div
ij + r

(27)div
ij + r

(28)div
ij =

g2
sξ

3π2ε
. (382)
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r
(23)div
ij is calculated as following equations,

r
(23)
i2 Oi =µε

∫
dnk

(2π)n

(
ūcLγ

µi
/k −mb

k2 −m2
b

igsT
A
caγ

νbaL

)(
s̄dLigsT

A
dbγ

ρi
/k −ms

k2 −m2
s

γµc
b
L

)
× −i(gνρ − (1− ξ)kνkρ/k2)

k2
(383)

r
(23)div
i2 Oi =− ig2

sT
A
caT

A
db (ūcLγ

µγσγνbaL)
(
s̄dLγ

ργδγµc
b
L

)
Iσδνρ (384)

Iσδνρ ≡
∫

dnk

(2π)n
kσkδ(gνρ − (1− ξ)kνkρ/k2)

(k2)3
(385)

=
i

8π2ε
(gσδgνρ/4− (1− ξ)gσδνρ/24) (386)

gσδνρ ≡gσδgνρ + gσνgρδ + gσρgνδ. (387)

The r(24)div
ij , r(25)div

ij and r(26)div
ij are evaluated as following equations,

r
(24)div
i2 Oi =− ig2

sT
A
caT

A
db (ūcLγ

νγσγµbaL)
(
s̄dLγµγ

δγρcbL
)
Iσδνρ (388)

r
(25)div
i2 Oi =ig2

sT
A
caT

A
db (ūcLγ

µγσγνbaL)
(
s̄dLγµγ

δγρcbL
)
Iσδνρ (389)

r
(26)div
i2 Oi =ig2

sT
A
caT

A
db (ūcLγ

νγσγµbaL)
(
s̄dLγ

ργδγµc
b
L

)
Iσδνρ (390)

by similar calculations. Their sum is obtained as follow,

(r(23)div
i2 + r

(24)div
i2 + r

(25)div
i2 + r

(26)div
i2 )Oi

=ig2
sT

A
caT

A
db (ūcL(γµγσγν − γνγσγµ)baL)

(
s̄dL(γµγδγρ − γργδγµ)cbL

)
Iσδνρ (391)

=− g2
s

8π2ε
(3O1 −O2). (392)

Moreover we obtain following result about r(29)div
i1 , r(30)div

i1 , r(31)div
i1 and r

(32)div
i1 by

similar calculation,

(r(29)div
i1 + r

(30)div
i1 + r

(31)div
i1 + r

(32)div
i1 )Oi = − g2

s

8π2ε
(3O2 −O1). (393)

As the result, Zij for bL → uLc̄LsL is written as follow,

Zij/Z
2
2 =1 +

g2
s

3π2ε
− g2

s

8π2ε

(
−1 3
3 −1

)
+O(g4) (394)

Zij =1− g2
s

8π2ε

(
−1 3
3 −1

)
+O(g4). (395)
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Thus γij is obtained as

γij =Z−1
ij µ

d

dµ
Zij (396)

=
g2
s

8π2

(
−1 3
3 −1

)
+O(g4

s) (397)

using following relations, gs(µ) = µ−ε/2Zg(µ)g(0)
s and dZg(µ)/dµ ∝ O(g3). Finally,

we obtain the following solution of RGE,

C1(mb) =(C̃+(mb) + C̃−(mb)) (398)

=
1
2

((
αs(mb)
αs(mW )

)−6/23

−
(
αs(mb)
αs(mW )

)12/23
)

= −0.27 (399)

C2(mb) =(C̃+(mb)− C̃−(mb)) (400)

=
1
2

((
αs(mb)
αs(mW )

)−6/23

+
(
αs(mb)
αs(mW )

)12/23
)

= 1.12 (401)

where

αs(mW ) =0.12, αs(mb) = 0.23 (402)

C1(mW ) =0, C2(mW ) = 1 (403)

are used.

C.2 bR → uRc̄LsL

For bR → uRc̄LsL, following operators,

O1R =(ūαγµPRbβ)(s̄βγµPLcα) (404)

O2R =(ūαγµPRbα)(s̄βγµPLcβ), (405)

arise. The Feynman diagrams are obtained with changing bL → bR and uL → uR in

those of bL → uLc̄LsL. By similar calculation to bL → uLc̄LsL, we obtain following

equations,

(r(21)div
i2 + r

(22)div
i2 )Oi =

g2
sξ

3π2ε
O2 (406)

(r(23)div
i2 + r

(24)div
i2 + r

(25)div
i2 + r

(26)div
i2 )Oi

=iµεg2
sT

A
caT

A
db

(
ūcR2iεµσνηγ5γηb

a
R

) (
s̄dL2iεµδραγ5γαc

b
L

)
Iσδνρ (407)

=− g2
s

8π2ε
(−3O2 +O1). (408)
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The sign of Eq. (408) differs from Eq. (393) in bL → uLc̄LsL because of γ5 behavior.

Next, we calculate r(27)div
ij and obtain

r
(27)
i1 Oi =µε

∫
dnk

(2π)n

(
ūbRγ

µi
/k −mb

k2 −m2
b

igsγ
νTAfab

a
R

)
×
(
d̄dLigsγ

ρTAdf i
/k −md

k2 −m2
d

γµc
b
L

)
−i
k2

(
gνρ − (1− ξ)kνkρ

k2

)
(409)

r
(27)div
i1 Oi =

g2
s(1 + ξ/3)

2π2ε
O1R (410)

and also we obtain following equation,

r
(28)div
i1 Oi =

g2
s(1 + ξ/3)

2π2ε
O1R (411)

by the similar calculation. r(29)div
ij is calculated as

r
(29)
i1 Oi =µε

∫
dnk

(2π)n

(
ūcRigsγ

νTAcbi
/k −mu

k2 −m2
u

γµi
/k −mb

k2 −m2
b

igsγ
ρTAdab

a
R

)(
d̄dLγµc

b
L

)
× −i
k2

(
gνρ − (1− ξ)kνkρ

k2

)
(412)

r
(29)div
i1 Oi =

g2
sξ

8π2ε
TAcbT

A
da (ūcRγ

µbaR)
(
d̄dLγµc

b
L

)
(413)

and similarly we obtain

r
(30)div
i1 Oi =

g2
sξ

8π2ε
TAcbT

A
da (ūcRγ

µbaR)
(
d̄dLγµc

b
L

)
(414)

r
(31)div
i1 Oi =

−g2
sξ

8π2ε
TAcbT

A
da (ūcRγ

µbaR)
(
d̄dLγµc

b
L

)
(415)

r
(32)div
i1 Oi =

−g2
sξ

8π2ε
TAcbT

A
da (ūcRγ

µbaR)
(
d̄dLγµc

b
L

)
. (416)

Hence we obtain the following relation,

(r(27)div
i1 + r

(28)div
i1 + r

(29)div
i1 + r

(30)div
i1 + r

(31)div
i1 + r

(32)div
i1 )Oi =

g2
s(1 + ξ/3)
π2ε

O1R.

(417)
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Thus we obtain

Zij =1− g2

8π2ε

(
−8 0
−3 1

)
(418)

γij =
g2

8π2

(
−8 0
−3 1

)
+O(g4). (419)

Then, C1R(mb) and C2R(mb) are obtained as follow,

C1R(mb) =C̃−R(mb)− C̃+R(mb) (420)

=
1
3

((
αs(mb)
αs(mW )

)24/23

−
(
αs(mb)
αs(mW )

)−3/23
)

= 0.34 (421)

C2R(mb) =3C̃+R(mb) (422)

=
1
3

(
3
(
αs(mb)
αs(mW )

)−3/23
)

= 0.92, (423)

using the following equations,

C1R(mW ) =0 (424)

C2R(mW ) =1. (425)

bL dL

q q

Fig.33 One of additional 1-loop Feynman diagrams for bL → uLūLdL.
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C.3 bL → uLūLdL

For bL → uLūLdL, we must consider following operators,

O1 =(d̄aLγ
µbaL)(ūbLγµu

b
L) (426)

O2 =(d̄aLγ
µbbL)(ūbLγµu

a
L) (427)

O3 =
∑
q

(d̄aLγ
µbaL)(q̄bLγµq

b
L) (428)

O4 =
∑
q

(d̄aLγ
µbbL)(q̄bLγµq

a
L) (429)

O5 =
∑
q

(d̄aLγ
µbaL)(q̄bRγµq

b
R) (430)

O6 =
∑
q

(d̄aLγ
µbbL)(q̄bRγµq

a
R) (431)

because penguin diagrams can contribute. Hence, in addition to Fig. 21 - 32, figure

33 arise. The γij is calculated from these Feynman diagrams as follow [33]

γij =
g2

8π2


−1 3 0 0 0 0
3 −1 −1/9 1/3 −1/9 1/3
0 0 −11/9 11/3 −2/9 2/3
0 0 3−Nf/9 −1 +Nf/3 −Nf/9 Nf/3
0 0 0 0 1 −3
0 0 −Nf/9 Nf/3 −Nf/9 −8 +Nf/3

 , (432)

All elements in left below part of γij are zero. It means that O3,4,5,6 do not contribute

renormalization of O1,2 so it is sufficient that we consider only O1,2 for evaluating

C1,2. They are already calculated in Subsec.C.1.
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App. D Isospin analysis in B → ππ and ρLρL

When we measure φ2 with B → ππ or B → ρLρL, ρL is longitudinal mode of ρ

meson, we use isospin analysis for excluding effect of penguin diagram. In this section,

we explain how to use isospin analysis. It is almost same for B → ππ and B → ρLρL,

so we explain about B → ππ case. When there is differencial point as B → ρLρL,

then, we will mention it.

The time dependent CP asymmetry of B → ππ (π+π− or π0π0) is written as

Γ(B0 → ππ)− Γ(B̄0 → ππ)
Γ(B0 → ππ) + Γ(B̄0 → ππ)

= Cππ cos (∆MBd
t)− Sππ sin (∆MBd

t)

Cππ =
1− |ρ̄(ππ)|2

1 + |ρ̄(ππ)|2
(433)

Sππ =
2Im

(
q
p ρ̄(ππ)

)
1 + |ρ̄(ππ)|2

(434)

ρ̄(ππ) =
A(B̄0 → ππ)
A(B0 → ππ)

. (435)

Thus Cππ and Sππ are observables. B − B̄ mixing parameter q/p is known as

q

p
=
VtdV

∗
tb

V ∗
tdVtb

. (436)

If B → ππ is affected by only tree diagram,

ρ̄(ππ)no penguin =
VubV

∗
ud

V ∗
ubVud

. (437)

Then,

Sππno penguin = sin
(

arg
(
VtdV

∗
tb

V ∗
tdVtb

VubV
∗
ud

V ∗
ubVud

))
= sin(2φ2). (438)

Thus we can measure φ2 from Sππ. However, in fact, penguin diagram can also affect

B → ππ as shown in Fig. 10.

Since π+ and π0 are made from quark combination, ud̄ and (uū − dd̄)/
√

2, these
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are represented to isospin states as follow,

|π±〉 = |1,±1〉 (439)

|π0〉 = |1, 0〉 . (440)

We combine these state and define 2π states as following equations.

|π+π−〉 =
1√
2

(|1,−1〉 ⊗ |1, 1〉+ |1, 1〉 ⊗ |1,−1〉) =
1√
3
|2, 0〉+

√
2
3
|0, 0〉 (441)

=
1√
2
(|π−(p)〉 ⊗ |π+(−p)〉+ |π+(p)〉 ⊗ |π−(−p)〉) (442)

|π0π0〉 = |1, 0〉 ⊗ |1, 0〉 =

√
2
3
|2, 0〉 − 1√

3
|0, 0〉 (443)

= |π0(p)〉 ⊗ |π0(−p)〉 (444)

|π+π0〉 =
1√
2

(|1, 0〉 ⊗ |1, 1〉+ |1, 1〉 ⊗ |1, 0〉) = |2, 1〉 (445)

=
1√
2
(|π0(p)〉 ⊗ |π+(−p)〉+ |π+(p)〉 ⊗ |π0(−p)〉) (446)

� �
Combine spin 1 and 1

|2,±2〉 = |1,±1〉 ⊗ |1,±1〉 (447)

|2,±1〉 =

√
1
2
|1, 0〉 ⊗ |1,±1〉+

√
1
2
|1,±1〉 ⊗ |1, 0〉 (448)

|2, 0〉 =

√
1
6
|1,−1〉 ⊗ |1, 1〉+

√
2
3
|1, 0〉 ⊗ |1, 0〉+

√
1
6
|1, 1〉 ⊗ |1,−1〉 (449)

|1,±1〉 =

√
1
2
|1, 0〉 ⊗ |1,±1〉 −

√
1
2
|1,±1〉 ⊗ |1, 0〉 (450)

|1, 0〉 =

√
1
2
|1,−1〉 ⊗ |1, 1〉 −

√
1
2
|1, 1〉 ⊗ |1,−1〉 (451)

|0, 0〉 =

√
1
3
|1,−1〉 ⊗ |1, 1〉 −

√
1
3
|1, 0〉 ⊗ |1, 0〉+

√
1
3
|1, 1〉 ⊗ |1,−1〉 (452)� �

The distinction of first term and second term is momentum of π in B meson rest
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frame. Definitions of amplitude with these state are

A+− = A(B0 → π+π−) (453)

=
1√
3
〈2, 0|H∆I=3/2|1

2
,−1

2
〉+

√
2
3
〈0, 0|H∆I=1/2|1

2
,−1

2
〉 (454)

=
1√
3
A2 +

√
2
3
A0 (455)

A+0 = A(B+ → π+π0) (456)

= 〈2, 1|H∆I=3/2|1
2
,
1
2
〉

= A′
2 (457)

A00 = A(B0 → π0π0) (458)

=

√
2
3
〈2, 0|H∆I=3/2|1

2
,−1

2
〉 − 1√

3
〈0, 0|H∆I=1/2|1

2
,−1

2
〉 (459)

=

√
2
3
A2 −

1√
3
A0 (460)

with amplitude from B0(|1/2,−1/2〉) to isospin= i state (|i, 0〉), Ai (i = 0, 2). Since

these amplitude do not depend final state momentum p because B → ππ is two body

decays, we obtain as

〈πi(p)πj(−p)|H|B〉 = 〈πj(p)πi(−p)|H|B〉 i, j = 0,±. (461)

As the result, decay rates with these amplitude are calculated as follow,

Γ(B0 → π+π−) =
1

2MB

∫
dΦ|〈π+(p)π−(−p)|H|B0〉|2 (462)

=
1

2MB

∫
dΦ|1

2
〈π+(p)π−(−p)|H|B0〉+ 1

2
〈π−(p)π+(−p)|H|B0〉|2

=
1
2

1
2MB

∫
dΦ| 1√

2
(〈π+(p)π−(−p)|+ 〈π−(p)π+(−p)|)H|B0〉|2

=
1
2

1
2MB

∫
dΦ|A+−|2 (463)

Γ(B+ → π+π0) =
1
2

1
2MB

∫
dΦ|A+0|2 (464)

Γ(B0 → π0π0) =
1
2

1
2MB

∫
dΦ|〈π0(p)π0(−p)|H|B0〉|2 (465)

=
1
2

1
2MB

∫
dΦ|A00|2. (466)
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That is, we must multiply 1/2 because identical particle for π0π0 and symmetrization

for π+π− and π+π0.

Next, we evaluate q
p ρ̄(π

+π−) as following relation,

q

p
ρ̄(π+π−) =

A(B̄0 → π+π−)
A(B0 → π+π−)

=
q

p

Ā2 +
√

2Ā0

A2 +
√

2A0

(467)

where Āi is amplitude of B̄0(|1/2,+1/2〉) decay. Strong interaction conserve isospin

symmetry, so tree diagram affects to bothH∆I=3/2 andH∆I=1/2 and penguin diagram

affects only H∆I=1/2. For this reason, it can be calculated as follow.

q

p
ρ̄(π+π−) =

q

p

Ā2

A2

(
1 +
√

2Ā0/Ā2

1 +
√

2A0/A2

)
=
q

p

Ā2

A2

(
1 + z̄

1 + z

)
= e2iφ2

(
1 + z̄

1 + z

)
(468)

Im
(
q

p
ρ̄(π+π−)

)
=
∣∣∣∣1 + z̄

1 + z

∣∣∣∣ sin(2φ2 + arg
(

1 + z̄

1 + z

))
(469)

z =
√

2
A0

A2
z̄ =
√

2
Ā0

Ā2
. (470)

A relation between A2 and A′
2 is calculated by combining spin 1/2(B meson) and

spin 3/2(Hamiltonian) and obtain as follow,

A′
2 =

√
3
2
A2. (471)
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� �
Relation between A′

2 and A2

For evaluating coefficient 〈2, 1|H∆I=3/2| 12 ,
1
2 〉 and 〈2, 0|H∆I=3/2| 12 ,−

1
2 〉, we com-

pose spin1/2 and spin3/2. We want to know terms of |2, 0〉 and |2, 1〉 after com-

posing. Then we check only | 32 ,±
1
2 〉×|

1
2 ,∓

1
2 〉, |

3
2 ,

1
2 〉×|

1
2 ,

1
2 〉 and | 32 ,

3
2 〉×|

1
2 ,−

1
2 〉.

Using I2 = (I1 +I2)2 = I2
1 +I2

2 +2I1zI2z+4(I1+I2−+I1−I2+) and Iz = Iz1 +Iz2,

we make combination satisfying following equations,

I2|2, 0〉 = 2(2 + 1)|2, 0〉 (472)

I2|2, 1〉 = 2(2 + 1)|2, 1〉 (473)

Iz|2, 0〉 = 0 (474)

Iz|2, 1〉 = |2, 1〉, (475)

and thus result is follow.

|2, 0〉 =
1√
2
|3
2
,
1
2
〉 × |1

2
,−1

2
〉+ 1√

2
|3
2
,−1

2
〉 × |1

2
,
1
2
〉 (476)

|2, 1〉 =
√

3
2
|3
2
,
1
2
〉 × |1

2
,
1
2
〉+ 1

2
|3
2
,
3
2
〉 × |1

2
,−1

2
〉 (477)

Each first terms are related to definition of A2 and A′
2 and we obtain Eq. (471).� �

we summarize these relation of amplitude and obtain following relation

A+−
√

2
+A00 = A+0. (478)

Moreover we show A0,2 in complex plane as Fig. 34. |A+−|, |A00|, |A+0| can be

calculated by decay rate. Then we obtain z from these and z̄ is calculated in the

same way.
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A+0

A00

1√
6
A2

1√
3
A0

1√
2
A+−

Fig.34 Relation between amplitudes in complex plane

Next, we calculate φ2. The relation between observables, φ2, z and z̄ is as follow.

Cπ+π− =

(
1−

∣∣∣∣1 + z̄

1 + z

∣∣∣∣2
)
/

(
1 +

∣∣∣∣1 + z̄

1 + z

∣∣∣∣2
)

(479)

Sπ+π− = 2
∣∣∣∣1 + z̄

1 + z

∣∣∣∣ sin(2φ2 + arg
(

1 + z̄

1 + z

))
/

(
1 +

∣∣∣∣1 + z̄

1 + z

∣∣∣∣2
)

(480)

Cπ0π0 =

(
1−

∣∣∣∣2− z̄2− z

∣∣∣∣2
)
/

(
1 +

∣∣∣∣2− z̄2− z

∣∣∣∣2
)

(481)

Sπ0π0 = 2
∣∣∣∣2− z̄2− z

∣∣∣∣ sin(2φ2 + arg
(

2− z̄
2− z

))
/

(
1 +

∣∣∣∣2− z̄2− z

∣∣∣∣2
)

(482)

BR(B0 → π+π−)
BR(B+ → π+π0)

τ+

τ0
=

1
9
(|1 + z|2 + |1 + z̄|2) (483)

BR(B0 → π0π0)
BR(B+ → π+π0)

τ+

τ0
=

1
18

(|2− z|2 + |2− z̄|2) (484)

We mention that Sπ0π0 can not be measured, because it is too difficult to measure

�� B
�1�2

Fig.35
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in experiment. However Belle II experiment may be able to measure. Thus we are

going to theoretical calculation. z, z̄ and φ2 are calculated as following equations,

Re[z] =
3
4
(1 + Cπ+π−)

BR(B0 → π+π−)
BR(B+ → π+π0)

τ+

τ0
− 3

2
(1 + Cπ0π0)

BR(B0 → π0π0)
BR(B+ → π+π0)

τ+

τ0
+

1
2

|Im[z]| =

√
9
2
(1 + Cπ+π−)

BR(B0 → π+π−)
BR(B+ → π+π0)

τ+

τ0
− (Re[z] + 1)2 (485)

Re[z̄] =
3
4
(1− Cπ+π−)

BR(B0 → π+π−)
BR(B+ → π+π0)

τ+

τ0
− 3

2
(1− Cπ0π0)

BR(B0 → π0π0)
BR(B+ → π+π0)

τ+

τ0
+

1
2

|Im[z̄]| =

√
9
2
(1− Cπ+π−)

BR(B0 → π+π−)
BR(B+ → π+π0)

τ+

τ0
− (Re[z̄] + 1)2 (486)

arcsin

 Sπ+π−√
1− C2

π+π−

 =
π

2
±
[
2φ2 + arg

(
1 + z̄

1 + z

)
− π

2

]
(487)

arcsin

 Sπ0π0√
1− C2

π0π0

 =
π

2
±
[
2φ2 + arg

(
2− z̄
2− z

)
− π

2

]
. (488)

The results of isospin analysis in B → ππ, ρLρL are shown in Fig. 36 and 37. In

Fig. 36, it seems that there are 6 solutions, but in fact, there are 8 solutions. (3

sign selections that come from |Im[z]|, |Im[z̄]| and arcsin make 8 solution because of

23 = 8.) The reason of solution decrease are two couple of very near solutions. On

the other hand, in Fig. 37, there are only 2 solutions. This means effect of Sρ0Lρ0L that

can not be measured in B → ππ or triangle in Fig. 34 does not have area. In this

case, the second one affect. That is,penguin diagram in B → ρLρL does not occur to

shift phase and only arcsin divide into 2 solutions.
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Fig.36 p value of φ2 measured from B → ππ.

Fig.37 p value of φ2 measured from B → ρLρL.

� �
How to measure fL
ρ is vector meson so there are longitudinal and transverse parts. For measuring

fL, we must consider about ρ→ ππ after B → ρρ. Then, partial decay rate is

d2Γ
Γd cos θ1d cos θ2

=
9
4
{1
4
(1− fL) sin2 θ1 sin2 θ2 + fL cos2 θ1 cos2 θ2} (489)

with angle θ1, θ2 defined as Fig. 35. Thus fL can be calculated from this distri-

bution. Then it is known that longitudinal part almost occupy in B → ρρ decays

as follow.

f+0
L =0.950± 0.016[17, 18] (490)

f00
L =0.618± 0.118[19, 20] (491)

f+−
L =0.990± 0.020[21, 22] (492)� �
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App. E Dalitz Plot Analysis in B → DK

A one of the angle of unitarity triangle φ3 is measured from B → DK decays. Then

three methods for extraction of φ3 are known, that is, GLW method using D → ππ

and KK decays [23, 24], ADS method using D → Kπ decays [25] and dalitz plot

analysis using D → Ksππ [26]. In this section, we study dalitz plot analysis.

Feynman diagrams contributing B → DK are shown in Fig. 38. With Wolfenstein

parameterization in CKM matrix, only Vub and Vtd have weak phase and argument

of Vub is -φ3. Hence amplitudes of B → DK are written as following relation,

A(B− → D0K−) = AB (493)

A(B− → D̄0K−) = ABrBei(−φ3+δB) (494)

A(B+ → D̄0K+) = AB (495)

A(B+ → D0K+) = ABrBei(φ3+δB), (496)

where δB is strong phase. About D → Ksππ, we obtain following relation from CP

symmetry,

A(D0 → Ks(p1)π+(p2)π−(p3))
CP= A(D̄0 → Ks(p1)π−(p2)π+(p3)). (497)

It is known that there is CP violation in decay and mixing of D meson [10], but we

ignore it because it is small. With definition with sij ≡ (pi+pj)2, there is a following

B
−

D
0

K
−

(a) B− → D0K−

K
−

B
−

D̄
0

(b) B− → D̄0K−

Fig.38 Feynman diagram of B− → D0(D̄0)K−.
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relation,

s23 =m2
D +m2

K + 2m2
π − s12 − s13, (498)

Hence D → Ksππ decay is described by two parameters s12 and s13. Thus we obtain

following relations,

A(D0 → Ks(pK)π+(p+)π−(p−)) =A(s12, s13) (499)

A(D̄0 → Ks(pK)π+(p+)π−(p−)) =A(s13, s12). (500)

By Eqs.(493-496, 500), amplitudes of B → DK → (Ksππ)DK decays are written as

follow,

A(B− → (Ks(pK)π+(p+)π−(p−))DK−)

=AB
(
A(s12, s13) + rBe

i(−φ3+δB)A(s13, s12)
)

(501)

A(B+ → (Ks(pK)π+(p+)π−(p−))DK+)

=AB
(
A(s13, s12) + rBe

i(φ3+δB)A(s12, s13)
)
. (502)

From this relation, we obtain differential decay rate dΓ as follow,

dΓ(B− → (Ks(pK)π+(p+)π−(p−))DK−)/dp

=|AB |2
(
|A(s12, s13)|2 + rB

2|A(s13, s12)|2 + 2rBRe(ei(−φ3+δB)A(s12, s13)∗A(s13, s12))
)

(503)

dΓ(B+ → (Ks(pK)π+(p+)π−(p−))DK+)/dp

=|AB |2P2
(
|A(s13, s12)|2 + rB

2|A(s12, s13)|2 + 2rBRe(ei(φ3+δB)A(s13, s12)∗A(s12, s13))
)
,

(504)

where dp is phase space integration. We divide the phase space into bins as illustrated

in Fig. 39. ith bins and −ith bins are symmetric about diagonal line s12 = s13. We
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define integration of interference and noninterference term in these bins as follow,

ci ≡
∫
i

dp|AB |2Re (A(s12, s13)∗A(s13, s12)) /
√
TiT−i (505)

=c−i (506)

si ≡−
∫
i

dp|AB |2Im (A(s12, s13)∗A(s13, s12)) /
√
TiT−i (507)

=− s−i (508)

Ti ≡
∫
i

dp|AB |2|A(s12, s13)|2 (509)

T−i =
∫
i

dp|AB |2|A(s13, s12)|2. (510)

Using ci, si and Ti, integrated decay rate in each bin is written as following equations,

Γ−
i =

∫
i

dΓ(B− → (Ksπ
+π−)DK−) (511)

=Ti + rB
2T−i + 2rB

√
TiT−i (cos(−φ3 + δB)ci + sin(−φ3 + δB)si) (512)

Γ−
−i =

∫
−i
dΓ(B− → (Ksπ

+π−)DK−) (513)

=T−i + rB
2Ti + 2rB

√
TiT−i (cos(−φ3 + δB)ci − sin(−φ3 + δB)si) (514)

Γ+
i =

∫
i

dΓ(B+ → (Ksπ
+π−)DK+) (515)

=T−i + rB
2Ti + 2rB

√
TiT−i (cos(φ3 + δB)ci − sin(φ3 + δB)si) (516)

Γ+
−i =

∫
−i
dΓ(B+ → (Ksπ

+π−)DK+) (517)

=Ti + rB
2T−i + 2rB

√
TiT−i (cos(φ3 + δB)ci + sin(φ3 + δB)si) . (518)

In these, there are 4n equations and 2n + 3 unknown parameters, φ3, δB, ci and si,

with n ≥ i since Γi and Ti are observables. This is, if n is larger than two, we can

solve these equations and obtain φ3. Also even if ci = 0 of si = 0 is satisfied by strong

phase, there are 2n equations and n + 3 unknown parameters. Thus we can solve

these equations with n ≥ 3. Observables corresponding to Γi and Ti are measured by

Belle collaboration [27]. We rewrite Γi and Ti to number of signals in each bins as

follow,

Γ+
±ih =N+

±i (519)

Γ−
∓ih =N−

±i (520)

T±ih =K±i, (521)
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by multiplying constant h and we obtain following equations,

N+
i =K−i + rB

2Ki + 2rB
√
KiK−i (cos(φ3 + δ)ci − sin(φ3 + δ)si)

N−
i =K−i + rB

2Ki + 2rB
√
KiK−i (cos(−φ3 + δ)ci − sin(−φ3 + δ)si)

N+
−i =Ki + rB

2K−i + 2rB
√
KiK−i (cos(φ3 + δ)ci + sin(φ3 + δ)si)

N−
−i =Ki + rB

2K−i + 2rB
√
KiK−i (cos(−φ3 + δ)ci + sin(−φ3 + δ)si) . (522)

We note that N+
±i = N−

±i is satisfied in the limit rB = 0. In addition, ci and si are

measured by CLEO collaboration [28]. In the result, we can obtain φ3 = (74.5±15.1)◦

and show p value in Fig. 40 by using these measured value.

Fig.39 An example of binning phase space.
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Fig.40 The p value of φ3 extracted using Dalitz plot analysis.
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App. F Input list

• Heavy Flavor Averaging Group[10]

– HFAG-Oscillations/prepared for the PDG2014 Review of Particle Physics

TB0 = 1.520(4)× 10−12 s

TB+ = 1.638(4)× 10−12 s

∆MB0 = 0.5055(20) ps−1

∆MBs = 17.757(21) ps−1

– HFAG-Semileptonic, Summer 2014/PDG 2014

Br(B → π`ν)|16GeV2>q2>0 = (1.06± 0.04)× 10−4

V B→Xu`ν
ub = (4.39± 0.31)× 10−3

– HFAG,Rare Decays, 2014, Charmless Mesonic

Br(B0 → π+π−) = (5.10± 0.19)× 10−6

Br(B0 → π0π0) = (1.17± 0.13)× 10−6

Br(B+ → π+π0) = (5.48± 0.345)× 10−6

Br(B0 → ρ+ρ−) = (24.2± 3.15)× 10−6

Br(B0 → ρ0ρ0) = (0.97± 0.24)× 10−6

Br(B+ → ρ+ρ0) = (24.0± 1.95)× 10−6

– HFAG, Rare Decays, 2014, Radiative and leptonic

Br(B → τν)=(114± 22)× 10−6

– HFAG,Rare Decays, 2014, ACP

Aπ+π0 = −0.026± 0.039

Aπ0π0 = 0.43± 0.24

Aρ+ρ0 = −0.051± 0.054

– HFAG, Unitarity Triangle, Summer2015

Cπ+π− = −0.31± 0.05

Sπ+π− = −0.66± 0.06

sin 2φ1 = 0.691± 0.017

Sρ+ρ− = −0.14± 0.13

Cρ+ρ− = 0.00± 0.09

Sρ0ρ0 = 0.3± 0.7± 0.2

Cρ0ρ0 = 0.2± 0.8± 0.3
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• CKM fitter[34]

– Preliminary results as of Summer 2015 (EPS-HEP 2015 conference)

λ = 0.22543+0.00042
−0.00031

A = 0.8227+0.0066
−0.0136

• PDG2015[9]

– Reviews, Tables, Plots(2014)

Gf = 1.1663787(6)× 10−5GeV−2

~ = 6.58211928(15)× 10−25GeV s

– Summary Tables

MZ = 91.1876(21)GeV

MW = 80.385(15)GeV

Mπ± = 0.13957018(35)GeV

Mρ± = 0.77526(25)GeV

Mω± = 0.78265(12)GeV

MKS
= 0.497611(13)GeV

MD0 = 1.86484(5)GeV

MB± = 5.27937(15)GeV

MB0 = 5.27961(15)GeV

MBs = 5.36681(23)GeV

Mτ = 1.77686(12)GeV

mq = (mu +md)/2 = (3.5+0.7
−0.2)× 10−3GeV

• Flavor Lattice Averaging Group[11]

FB = 0.1905± 0.0042GeV

ξ = 1.268± 0.063

αs
(5)

MS
(MZ) = 0.1184± 0.0012

• longitudinal polarization fraction of B → ρρ

f+0
L = 0.950± 0.016[17, 18] (523)

f00
L = 0.618± 0.118[19, 20] (524)

f+−
L = 0.990± 0.020[21, 22] (525)

• Quark mass[35]

mb(MS) = 4.20± 0.07GeV

mb(1S) = 4.91± 0.12GeV
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mc(1S) = 1.77± 0.14GeV

• |Vub| measured by B → ρ`ν, ω`ν[13]

|Vub| = 3.56± 0.11± 0.09+0.54
−0.37 B− → ρ0`−ν

|Vub| = 3.51± 0.16± 0.13+0.53
−0.36 B0 → ρ+`−ν

|Vub| = 3.08± 0.29± 0.11+0.44
−0.31 B− → ω0`−ν
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