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 1 

General Introduction 

 

Properties and functions of Fe-S cluster 

Iron-sulfur (Fe-S) clusters were identified about 50 years ago as acid-labile prosthetic 

groups contained within a class of electron carrier proteins called ferredoxins (1). The role of 

Fe-S clusters as agents of electron transfer is ideally suited to their versatile electronic properties 

(2). This feature remained the only known function of Fe-S clusters until nearly 20 years later, 

when it was discovered that aconitase, a key player in the TCA cycle, also contains an Fe-S 

cluster (3). Aconitase does not have a redox function but rather catalyzes the reversible 

isomerization between citrate and aconitate, in which Fe-S cluster is responsible for this reaction. 

In more recent years, over 100 different proteins that contain Fe-S clusters, generically called 

Fe-S proteins, have been found and the functional diversity of their associated clusters is 

remarkable (4). As examples, Fe-S clusters are now known to have roles in controlling protein 

structure, to act as environmental sensors, to serve as modulators of gene regulation, and to 

participate in radical generation. Such functional diversity almost certainly reflects the chemical 

versatility of iron and sulfur (2). 

 

The most typical Fe-S clusters have the forms of [2Fe-2S], [3Fe-4S], and [4Fe-4S] and 

these are usually coordinated to their cognate proteins by the thiolate side chains of cysteine 

residues (Fig. G-1). However, not all Fe-S clusters are uniquely attached to their protein partners 

by cysteine ligands; occasionally coordinated by imidazole nitrogen of the histidine residue, 

carboxyl oxygen of the aspartic acid residue, hydroxyl oxygen of the serine residue, or backbone 

amides (5). Also, not all Fe-S proteins contain clusters that have Fe as the only metal; the 

nitrogenase MoFe protein contains a cluster, called FeMo-cofactor, which has a [7Fe-9S-Mo] 

core (6). Furthermore, unlike the binding manner of many other prosthetic group types, there is 
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not a single canonical sequence that defines an Fe-S cluster-binding motif within polypeptides. 

In fact, variations in the spacing, environment and types of Fe-S cluster ligands found in 

different Fe-S proteins is a significant contributor to the wide range of the electronic and 

chemical properties of their associated Fe-S clusters. 

 

It was shown in 1960s that simple [2Fe-2S] and [4Fe-4S] clusters can be removed from 

polypeptide by chelation and then reconstituted by simply incubating the apo-protein in the 

presence of Fe2+/3+ and S2- under reducing conditions (7). An important observation was that the 

correct cluster type could be reassembled by this method. It has thus been considered for a long 

time that, inside the cells, Fe-S clusters may form spontaneously, simply requiring iron and 

sulfide. However spontaneous, intracellular assembly of Fe-S clusters is not an attractive 

prospect because these elements are metabolic poisons. Hence it was expected that in vivo this 

process would be facilitated by protein factors in order to avoid the accumulation of Fe2+/3+ and 

S2- to toxic levels. 

 

 

 

 

 

 

 

 

Figure G-1. Typical three types of the Fe-S cluster. The clusters are coordinated in general by 

thiolate side chains of cysteine residues. Iron and sulfur atoms are colored in red and yellow, 

respectively. 
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Systems responsible for Fe-S cluster biogenesis 

From the late 1980s to the early 2000s, genetic and biochemical studies revealed three 

distinct systems that can direct Fe-S protein maturation in vivo one after another (8-10). The first 

system to be discovered was the so-called NIF system (Fig. G-2A) from Azotobacter vinelandii, 

which is required for the activation of the catalytic components of the biological nitrogen 

fixation, nitrogenase (8). The NIF system includes two proteins, NifS and NifU, which are 

responsible for the pyridoxal phosphate-dependent mobilization of S using L-cysteine (cysteine 

desulfurase) and for providing a scaffold for nascent Fe-S cluster assembly, respectively (11-15). 

More recently, it has been shown that the NIF type of system for Fe-S protein maturation is not 

necessarily restricted to nitrogen-fixing organisms, because proteins bearing a high degree of 

similarity to NifS and NifU have been identified in some anaerobic organisms lacking 

nitrogenase. They appear to be required for the general maturation of Fe-S proteins in those 

organisms (16-18). 

A second, more complicated system for Fe-S protein maturation is referred to as the 

ISC system (Fig. G-2B), which includes eight contiguously arranged genes encoding IscR, IscS, 

IscU, IscA, HscB, HscA, Fdx, and IscX in several bacteria (9,19,20). For simplicity, this 

genomic region is generically referred to as the “isc” gene region. IscS and IscU bear primary 

sequence similarity and have functions analogous to NifS and NifU respectively, in which IscU 

corresponds to the N-terminal domain of NifU. IscA has been proposed to serve as either an 

alternative scaffold or an agent of iron delivery to the IscU scaffold (21-24). HscA and HscB 

bear primary sequence similarity to Hsp70 chaperone DnaK and its cognate cochaperone DnaJ, 

respectively, and have therefore been proposed to have a chaperone function related to Fe-S 

protein maturation. Fdx carries a stable, redox-active [2Fe-2S] cluster itself, and is involved 

presumably in the reduction step of sulfur and/or iron atoms. IscX is a small acidic protein 

sharing several features with frataxin/CyaY, and likely serves as iron chaperone. IscR is a 
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regulatory protein that apparently controls the expression of the isc gene cluster in a negative 

feedback loop that involves the assembly of a [2Fe-2S] cluster within IscR (25). The components 

of the ISC machinery are conserved in α-, β-, and γ-proteobacteria and also in mitochondria from 

lower to higher eukaryotes (18). 

A third system for Fe-S protein maturation, discovered in Escherichia coli, is called 

the SUF system (10) (Fig. G-2C). In E. coli, the SUF system is comprised of SufA, SufB, SufC, 

SufD, SufS, and SufE, and it functions under conditions of oxidative stress or Fe limitation, 

when the ISC system is apparently inadequate (26,27). SufS and SufE represent a 

two-component cysteine desulfurase with a function that is analogous to those of NifS and IscS 

(28,29). SufA bears primary sequence homology to IscA and has been proposed to serve as 

either an iron donor for the assembly or as a carrier protein transferring Fe-S clusters from a 

scaffold to target apo-proteins (30-32). The remaining proteins, SufB, SufC, and SufD, have 

attracted much attention because deletion of any of them abolishes SUF function in vivo 

(10,18,27). These three components have been shown to form a stable ternary complex 

(SufBCD), and recent in vitro reconstitution studies have suggested that this complex can serve 

as the scaffold for the nascent Fe-S cluster assembly (29,33-35). The SUF homologs are 

distributed in plastids as well as in Eubacteria and Archaea (18). 

 

The three biosynthetic systems were being elucidated by genetic and biochemical 

studies together with their distinct properties as well as interchangeability among the three 

systems: they all are responsible for maturation of a wide variety of Fe-S proteins without strict 

specificity for apo-protein targets or Fe-S cluster types (either [2Fe-2S], [3Fe-4S], or [4Fe-4S]) 

to be assembled. The central concept is that the three biosynthetic systems share mechanistic 

similarity in the requirement for a cysteine desulfurase (sulfur donor) and the participation of an 

Fe-S scaffolding protein for assembly of a nascent, labile Fe-S cluster prior to delivery to the 
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target apo-proteins. Hence, the biosynthetic reactions are postulated as follows (Fig. G-2): First, 

the sulfur atom is abstracted from the substrate cysteine by the action of cysteine desulfurase 

NifS/IscS/SufS to produce alanine and enzyme-bound sulfane sulfur (S0). Second, the sulfur 

atom is transferred to the scaffold protein NifU/IscU/SufBCD by specific protein-protein 

interaction between the scaffold protein and the cognate cysteine desulfurase. Third, upon supply 

of iron atoms and reducing equivalents (by an as yet unknown mechanism), a transient Fe-S 

cluster is assembled on the scaffold. Finally, the pre-assembled cluster is delivered to recipient 

apo-proteins to form the active site of Fe-S proteins. However, important mechanistic questions 

have remained to be solved; How Fe-S clusters are assembled on the scaffold protein? How 

various accessory components participate in Fe-S cluster biosynthesis? How they interact and 

cooperate with other components? Given the importance of Fe-S proteins to so many cellular 

processes, the Fe-S cluster biosynthesis is an exciting area of research with many open questions. 
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Figure G-2. Comparison of the three systems responsible for Fe-S cluster biogenesis. The three 

systems are composed of cysteine desulfurase (NifS/IscS/SufS) and other components that act in 

concert in the assembly of intermediate Fe-S cluster and the subsequent transfer of these clusters 

to target proteins. (A) NIF machinery. (B) ISC machinery. (C) SUF machinery. 
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Recent advances in the studies of the SUF pathway 

The SUF system is the most ancient/widespread among the currently identified Fe–S 

cluster biogenesis systems (10). The widespread taxonomic distribution of SUF and its presence 

in both aerobes and anaerobes suggest this system evolved prior to the widespread oxygenation 

of the biosphere (36). The suf operon is diverse and can contain from two to more than six genes 

organized as (presumed) single polycistronic transcriptional units. The simplest suf operon that 

contains the minimal functional core is comprised solely of sufBC (10), which system is widely 

distributed in many Archaea. Thus, the ancestral suf operon likely consisted of only sufBC. A 

number of organisms contain the sufBC genes and lack sufD; however, there is currently no 

evidence of sufCD being found in the absence of sufB in any genome. This finding coupled with 

the substantial sequence homology between SufB and SufD suggests that sufD results from a 

duplication of sufB (36). 

 

The SUF machinery has been the focus of intense studies at the biochemical level, 

especially in E. coli. As described above, the sufABCDSE operon in E. coli encodes six proteins. 

SufS and SufE interact in a complex (SufS-SufE) (28). The cysteine desulfurase SufS mobilizes 

sulfur from free cysteine, resulting in formation of a persulfide on SufS Cys364 (37). The 

persulfide sulfur atom is then donated from SufS to the active-site Cys51 on the SufE protein 

(29,38). Consequently, the presence of the SufE sulfur transfer shuttle stimulates the basal 

activity of SufS, and the two proteins together form a novel sulfur transfer system (28,29). 

The function of SufA was more enigmatic. Some in vitro experiments had shown that 

SufA can bind ferric iron and transfer it to IscU during cluster assembly (31). However, recent in 

vitro experiments unambiguously demonstrated that SufA binds a [2Fe-2S] cluster that can be 

transferred to target apo-proteins (32). Consequently, SufA could be defined either as an iron 

donor for the Fe-S cluster assembly or as a carrier protein transferring Fe-S clusters from a 
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scaffold to a target protein. Genetic studies supported the latter concept, and SufA was included 

in the family of the so-called A-type carriers (39).  

The three remaining components of the SUF machinery, SufB, SufC, and SufD, were 

shown to be essential for in vivo Fe-S biosynthesis (10,27,33). SufC is encoded along with SufB 

in all suf operons identified in sequenced genomes. The SufC homologs, which all share at least 

30% sequence identity, have strictly conserved Walker A and Walker B motifs that are 

commonly found in nucleotide triphosphate-binding proteins, and have actually been shown to 

exhibit ATPase activity (33,40). More interestingly, SufC shares limited sequence similarity 

(⩽25% identity) with members of the ATP-binding cassette (ABC) ATPase superfamily (41).  

SufB and SufD share similarity in both primary and secondary structures with each 

other (17% identity and 37% similarity), and interact with SufC to form a tight SufBCD complex 

(29,33). Although the two other states of subcomplex have been reported: the SufBC 

subcomplex and the SufCD subcomplex (42-44), their physiological rolls in SUF machinery 

remain currently unclear. In vitro kinetic experiments have reported that SufC ATPase activity is 

enhanced by interacting with SufD and further as part of the SufBCD complex (43,45). Physical 

interaction between the SufBCD complex and the SufSE complex results in further stimulation 

of the cysteine desulfurase activity of the SufSE complex (29,46). SufA was also shown to 

interact with the SufBCD complex (34). And, recent in vitro reconstitution studies have 

suggested that this complex can serve as the scaffold for the nascent Fe-S cluster assembly 

(29,33-35). Thus, it seems that the SufBCD complex plays a central role in SUF machinery. 

 

Structural studies of proteins can provide critical insights for understanding the 

detailed functional mechanism. So far, the crystal structures of SufS, SufE, SufA, SufC, SufD, 

and the SufCD subcomplex (41,44,47-50) have been determined. 
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 The structure of the SufS cysteine desulfurase exhibits striking similarity with IscS, 

and reveals that the active-site Cys364 of SufS is oriented into the protein interior and does not 

appear to be solvent accessible (47,51). In contrast, the active-site Cys of the IscS desulfurase is 

highly exposed on a flexible loop structure (52). These differences in active-site orientation 

affect basal enzyme activity, since the specific activity of IscS is 20 times higher than that of 

SufS when the enzymes are assayed alone (53). However, the addition of the SufE sulfur transfer 

partner increases SufS activity so that it is comparable to that of IscS (28,29). Interestingly, the 

active-site Cys51 of SufE is also oriented into the protein interior, as shown by the SufE 

structure (48). Interactions between SufS and SufE must somehow allow their 

solvent-inaccessible active-site Cys residues to contact each other to allow sulfur transfer from 

SufS to SufE. 

 The crystal structure of SufA has some similarities with that of IscA, except that SufA 

is dimeric while IscA is tetrameric (49). The SufA dimer interface shows two of the invariant 

Cys residues (Cys114 and Cys116) from each monomer positioned at the dimer interface in an 

orientation that could allow coordination of iron or an Fe-S cluster between subunits. 

Interestingly, the Glu118 residue from each SufA subunit is located near Cys114 and Cys116 in 

the dimer interface, possibly to provide carboxylate ligands for direct iron binding. 

Monomeric SufC exhibits striking structural similarity with ABC ATPases, but 

curiously, the local conformation of SufC, in particular the ATP binding segments, is unique and 

distinct from that of most other ABC-ATPase family members. Glu171, an invariant catalytic 

residue in the Walker B motif of SufC, is rotated away from the ATP binding pocket and forms a 

salt bridge with Lys152 in a neighboring domain (41,54). This conformation of the active site 

within the monomeric SufC is unfavorable for ATPase activity and seems to represent an 

inactive, resting form of SufC that prevents wasteful ATP hydrolysis.  
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The Structural GenomiX project team has also determined the crystal structure of the 

SufD homodimer, and demonstrated that SufD has a novel fold in which 20 β-strands are 

assembled into a right-handed parallel β-helix (50). The physiological roll of SufD in SUF 

machinery remains enigmatic.  

The crystal structure of the SufCD subcomplex exhibits the tetrameric architecture 

(SufC2–SufD2), where each SufC subunit is bound near each C-terminus of homodimeric SufD 

(44). Although there is currently no direct structural characterization of the SufBCD complex, it 

is likely that similar interactions occur between SufC and the SufB or SufD partner protein. This 

is because SufB and SufD share sequence similarity in particular at the regions involved in 

intersubunit interactions in the SufCD subcomplex (44). In addition, SufBCD forms a complex 

with a stoichiometry of approximately 1:2:1 (29). Based on these data, I have assumed that the 

SufBCD (SufB1-SufC2–SufD1) complex most likely shares a common configuration with the 

SufCD (SufC2–SufD2) subcomplex where one SufD subunit is replaced by the SufB subunit and 

SufB interacts with both SufC and SufD.  

Despite the progress in elucidating their biochemical properties, including 

three-dimensional crystal structures, the detailed molecular mechanism for SUF machinery 

remains unclear. Since the SUF pathway requires a complex network and protein-protein 

interactions of various proteins, the structural information of the protein complex is essential for 

the further understanding, especially the core complex of SufBCD. 

 

Focus of this study 

The goal of this thesis is to unravel the complex SUF system involved in the assembly 

of Fe-S clusters by combined structural and biochemical studies. As described above, it is clear 

that the SufBCD complex plays a central role in SUF machinery as a scaffold, but the molecular 

mechanism underlying Fe-S cluster biogenesis in the SufBCD complex is unknown. In this study, 
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I approach the subject from the characteristic SufC component as an important player to reveal 

the mechanism. 

SufC is a member of the ABC ATPase superfamily and exhibits ATPase activity. ABC 

ATPases are chemo-mechanical engines involved in diverse biological pathways defined as the 

nucleotide-binding components of ABC proteins, almost all of which are membrane transporters 

(ABC transporters). Although the ABC protein includes several hundred different proteins and 

has extreme functional diversity, these proteins share a similar architecture, consisting of two 

ABC ATPase domains bound to substrate/function-specific partner domains; the ABC ATPase 

activity drives the conformational changes in partner domains required for each function (55). 

Therefore, it is no surprise to imagine that the similarity with the ABC ATPase in SufC could be 

positively correlated with the functional mechanism of the SufBCD complex. 

Chapter I describes the crystal structure of the SufBCD (SufB1-SufC2-SufD1) complex, 

providing the first demonstration of the quaternary configuration of the ternary complex. The 

structure showed the common configuration with ABC proteins, and the core domain of the SufB 

and SufD subunits has a novel β-helix structure, which is the structural motif specifying Fe-S 

cluster biosynthesis. In vitro activity measurements and in vivo complementation assays with 

mutated SufC demonstrated that SufC can behave as an ABC-type ATPase, and the activity is 

indispensable for in vivo Fe–S cluster assembly.  

In Chapter II, the biochemical experiments based on the static crystal structure 

demonstrated the dynamic characteristic of the SufBCD complex. The two SufC ABC ATPase 

subunits form a head-to-tail dimer in the complex upon ATP binding, thereby inducing a 

structural change in the interface between the SufB and SufD subunits. These findings, together 

with in vivo mutational analyses, provided insights into the mechanism of Fe–S cluster assembly 

in the SufBCD complex. 
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Chapter I 

 

 

Crystal structure of the SufBCD complex 

that serves as scaffold for Fe-S cluster biogenesis 

 

 

Abstract 

Iron–sulfur (Fe–S) clusters, which serve as cofactors for many essential proteins, 

execute a large spectrum of biochemical tasks in all kingdoms of life. Intracellular formation of 

the Fe-S cluster in a large number of eubacteria and archaea, as well as eukaryotic chloroplasts is 

achieved by the SUF machinery. This machinery is encoded in Escherichia coli by the 

sufABCDSE operon, where three SUF components, SufB, SufC, and SufD, form a ternary 

complex and serve as the biosynthetic apparatus for nascent Fe-S clusters. Here, I determined the 

first crystal structure of the E. coli SufBCD (SufB1-SufC2–SufD1) complex, which exhibits the 

common architecture of ABC proteins: two ABC ATPase components (SufC) with 

function-specific components (SufB–SufD protomers). The novel β-helix architecture of the 

SufB–SufD protomers appears to be specialized for the Fe–S cluster biogenesis systems. 

Biochemical analyses prove that the residues of the ABC sequence motifs in SufC are 

responsible for ATPase activity as in the canonical ABC ATPase. Furthermore, complementation 

assays demonstrate that the ATPase activity of SufC is indispensable for in vivo Fe–S cluster 

assembly. These findings have led me to expect that the SufBCD complex shares a common 

mechanism of action with ABC proteins despite their distinct functions, in which the activity of 

ABC ATPase components drives conformational changes of the function-specific components. 
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Introduction 

The SUF machinery has been the focus of intense studies at the biochemical level, 

especially in Escherichia coli. The sufABCDSE operon in E. coli encodes six proteins. SufS 

cysteine desulfurase and SufE sulfur shuttle protein together provide sulfur from the substrate 

cysteine for the construction of nascent Fe–S clusters (28,46). SufA is a member of the A-type 

protein family that transfers Fe-S clusters to target apo-proteins (32). The remaining proteins, 

SufB, SufC, and SufD, have attracted much attention because deletion of any of them abolishes 

SUF function in vivo (10,18,27). SufC have strictly conserved Walker A and Walker B motifs 

that are commonly found in nucleotide triphosphate-binding proteins, and have actually been 

shown to exhibit ATPase activity (33,40). SufB share similarity in both primary and secondary 

structures with SufD (17% identity and 37% similarity) and interact with SufC to form a stable 

ternary SufBCD complex (29,33). In vitro kinetic experiments have reported that SufC ATPase 

activity is enhanced by interacting with SufD and further as part of the SufBCD complex (43). 

Physical interaction between the SufBCD complex and the SufSE complex results in further 

stimulation of the cysteine desulfurase activity of the SufSE complex (29,46). 

Despite the progress in elucidating some of its biochemical properties, including 

three-dimensional crystal structures of SufC, SufD, and the SufCD subcomplex (41,44,50), the 

understanding of the role of the SufBCD complex remains elusive. Recent in vitro reconstitution 

studies have suggested that this complex can serve as the scaffold for the nascent Fe–S cluster 

assembly (29,33-35). It is clear that the SufBCD complex plays a central role in SUF machinery, 

but the molecular mechanism underlying Fe-S cluster biogenesis on the SufBCD complex is 

unknown. Here, I approach the subject from the characteristic SufC component as an important 

player to reveal the mechanism. 

Intriguingly, SufC shares limited sequence similarity (⩽25% identity) with members of 

the ATP-binding cassette (ABC) ATPase superfamily (41). ABC ATPases are 
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chemo-mechanical engines involved in diverse biological pathways defined as the 

nucleotide-binding components of ABC proteins, almost all of which are membrane transporters 

(ABC transporters). Although the ABC protein includes several hundred different proteins and 

has extreme functional diversity, these proteins share a similar architecture, consisting of two 

ABC ATPase domains bound to substrate/function-specific partner domains; the ABC ATPase 

activity drives the conformational changes in partner domains required for each function (55). 

Therefore, it is no surprise to imagine that the similarity of SufC with the ABC ATPase could be 

positively correlated with the functional mechanism of the SufBCD complex.  

In this study, I determined the crystal structure of the SufBCD (SufB1-SufC2-SufD1) 

complex, providing the first demonstration of the quaternary configuration of the ternary 

complex. The structure showed the common configuration with ABC proteins, and the core 

domain of the SufB and SufD subunits has a novel β-helix structure, which is the structural motif 

specifying Fe-S cluster biosynthesis. In vitro activity measurements and in vivo complementation 

assays with mutated SufC demonstrated that SufC can behave as an ABC-type ATPase, and the 

activity is indispensable for in vivo Fe–S cluster assembly.  
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Experimental procedures 

Expression and purification of E. coli SufBCD complex 

To purify the SufBCD complex, the entire suf operon was expressed simultaneously. 

The plasmid pGSO164, containing the entire suf operon under the control of an 

arabinose-inducible promoter (29), was used to over-express SufABCDSE in the TOP10 strain 

of E. coli. The cells were grown in TB medium containing ampicillin (50 µg/ml) at 37°C. 

L-arabinose was added to 0.2% (w/v) final concentration when the cultures reached an A600 of 

0.4–0.6. After 3 hours of SufABCDSE expression at 37°C, the cells were harvested by 

centrifugation, and the cell pellets were frozen at -80°C. Cell pellets were lysed by sonication in 

50 mM Tris-HCl (pH 7.8), 100 mM NaCl, and 1 mM DTT. The soluble fraction was subjected to 

ammonium sulfate fractionation at 20% saturation. After centrifugation, the supernatant fraction 

was loaded onto a HiPrep Phenyl FF (low sub) 16/10 column (GE Healthcare), and the bound 

protein was eluted with a decreasing linear gradient of 20–0% ammonium sulfate. Fractions 

containing the SufBCD complex were pooled, dialyzed overnight in 50 mM Tris-HCl (pH 7.8) 

and 1 mM DTT, and then loaded onto a Mono Q HR 5/50 GL column (GE Healthcare) and 

eluted with a linear gradient of 0–1 M NaCl. The SufBCD complex was further purified by gel 

filtration using a HiPrep 16/60 Sephacryl S-200 HR column (GE Healthcare) in 50 mM Tris-HCl 

(pH 7.8) and 150 mM NaCl. Purified SufBCD complex was concentrated and stored at -80°C.  

Site-directed mutagenesis was performed using the pGSO164 plasmid as a template 

and the primers listed in Table I-1. Genes were expressed in mutant cells (YT2512) in which the 

entire sufABCDSE operon was deleted from the chromosome (10), and mutant SufBCD 

complexes were purified as described for the wild-type complex.  
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Table I-1. O
ligonucleotides used in this study 

 
O

ligonucleotide 
Sequence 

R
estriction sites 

 
 

 
SufA

F 
5’-C

C
G

G
C

TC
G

A
G

G
TA

A
A

TC
G

A
TG

G
A

C
A

TG
C

-3’ 
XhoI 

SufB
-R

Sc3 
5’-C

TC
C

A
G

A
G

C
TC

C
A

C
TTA

A
C

A
TG

TTTA
TTC

C
TTA

TC
C

G
A

C
-3’ 

SacI 
SufD

-FSc5 
5’-C

C
G

G
A

G
C

TC
TTG

A
C

A
G

A
TTA

C
G

TTC
A

TG
TG

C
TA

TA
TC

-3’ 
SacI 

SufER
 

5’-C
C

G
G

G
C

TA
G

C
C

A
A

C
C

G
G

A
TG

A
A

A
G

C
TG

T-3’ 
N

heI 
SufC

-K
40R

-F 
5’-G

G
G

G
C

C
A

A
A

C
G

G
TTC

G
G

G
C

C
G

TA
G

TA
C

C
TTA

TC
G

G
C

A
A

C
G

-3’ 
 

SufC
-K

40R
-R

 
5’-C

G
TTG

C
C

G
A

TA
A

G
G

TA
C

TA
C

G
G

C
C

C
G

A
A

C
C

G
TTTG

G
C

C
C

C
-3’ 

 
SufC

-E171Q
-F 

5’-C
C

G
G

A
G

TTA
TG

C
A

TTC
TTG

A
TC

A
G

TC
G

G
A

C
TC

C
G

G
G

C
-3’ 

 
SufC

-E171Q
-R

 
5’-G

C
C

C
G

G
A

G
TC

C
G

A
C

TG
A

TC
A

A
G

A
A

TG
C

A
TA

A
C

TC
C

G
G
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 The underlined and shaded bases com

prise restriction sites and artificial prom
oter regions respectively.  

The double underlines indicate the altered codons for site-directed m
utagenesis. 



 17 

Crystallization and structure determination 

Crystallization was performed by the sitting-drop vapor-diffusion method. Crystals of 

the SufBCD complex were obtained at 4°C using a reservoir solution containing 31% (v/v) 

pentaerythritol propoxylate (5/4 PO/OH), 100 mM sodium citrate (pH 5.5) and 200 mM KCl 

(Fig. I-1A). The protein concentration was 35 mg/ml in 50 mM MES (pH 7.0). Mercury and 

platinum derivatives were obtained by soaking native crystals for 2 hours in mother liquor 

containing 1 mM methylmercury(II) acetate, 5 mM methylmercury(II) chloride, or 10 mM 

potassium tetranitro platinate(II). All crystals were transferred to a cryo-protectant solution 

containing 5% (v/v) 2-methyl-2,4-pentanediol and flash-cooled by immersion in liquid nitrogen. 

X-ray diffraction data were collected at beamline BL44XU and BL32XU of SPring-8 (Fig. I-1B) 

and processed with the HKL2000 package (56). Experimental phases were obtained from 

mercury- and platinum-derivative crystals by the multiple isomorphous replacement method 

coupled with anomalous scattering (MIRAS) using AutoSol in PHENIX (57). The model was 

built manually in COOT (58), and the structure was refined with PHENIX. Secondary structures 

were assigned using PROMOTIF (59), the geometry of the final model was analyzed using 

PROCHECK (60), and superposition and r.m.s. deviations of the structures were calculated using 

LSQMAN (61). All structure figures were prepared using PyMOL (62) or UCSF Chimera (63). 

X-ray data and refinement statistics are given in Table I-2. Coordinates of the X-ray structure of 

the SufBCD complex and the Hg-bound SufBCD complex have been deposited in the Protein 

Data Bank, under accession codes 5AWF and 5AWG.  

The crystallographic asymmetric unit contained two SufBCD complexes, termed 

Complex1 and Complex2. Although the electron density for the SufBCD complex was mostly 

continuous, the densities for some regions were poorly defined: in Complex1, SufB residues 

1–33 and 80–156, SufD residues 1–7 and 422–423, SufCSufB residues 244–248, and SufCSufD 

residues 236–248; in Complex2, SufB residues 1–35 and 79-157, SufD residues 1–7 and 
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422–423, SufCSufB residues 244-248, and SufCSufD residues 237-248. Accordingly, these residues 

were not included in the model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-1. Crystallographic studies of the E. coli SufBCD complex. (A) Crystals of the E. coli 

SufBCD complex. Scale bar indicates 100 µm length. (B) Diffraction pattern of the E. coli 

SufBCD complex crystal. Small panel shows a close up view of the pattern. The resolution of the 

spot indicated by the arrow is 2.6 Å. 
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Table I-2. D
ata collection, phasing and refinem

ent statistics for X
-ray crystallography 
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a, b, c (Å
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119.8, 140.4, 124.5 
α, β, γ (°) 
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90.0, 113.6, 90.0 
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90.0, 113.1, 90.0 

R
esolution (Å
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4.30 (4.45-4.30) 
4.50 (4.66-4.50) 
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) 
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14.4 (29.8) 

10.7 (34.1) 
I / σI 
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6.6 (5.2) 
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5.6 (5.6) 

6.0 (5.9) 
5.6 (5.6) 
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ond lengths (Å
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0.007 
 

 
  B

ond angles (°) 
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R
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achandran plot 

 
 

 
 

  M
ost favored (%
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92.3 
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  A
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ed (%

) 
6.9 
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ed (%
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0.8 
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 *H

g, M
ethylm

ercury(II) acetate. †H
g, M

ethylm
ercury(II) chloride. ‡Pt, Potassium

 tetranitro platinate(II).V
alues in parentheses  

correspond to the highest-resolution shell. 
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Single-particle electron microscopy reconstruction 

The SufBCD complex was prepared from a peak fraction of gel filtration in 50 mM 

MES (pH 6.5), 150 mM NaCl, and 5 mM MgCl2. The negatively stained SufBCD complex was 

examined using an H9500SD transmission electron microscope (Hitachi High-Tech) operated at 

200 kV at room temperature. The images were acquired on a 2k × 2k charge-coupled device 

camera (TVIPS) with a physical pixel size of 0.24 nm. Random conical tilt (RCT) reconstruction 

was performed using the software package SPIDER (64). The obtained 3D structure from RCT 

was refined by using the EMAN1 software suite (65). The final reconstruction of the SufBCD 

complex was computed from ~7,146 particles. The particle images were low-pass filtered at 30 

Å before refinement, and therefore the Fourier shell correlation that was calculated using eotest 

of EMAN1 shows higher values than 0.5 in every frequency ranges. The EM structure of the 

SufBCD complex has been deposited in the Electron Microscopy Data Bank, under accession 

number EMD-3163. 

 

Solution scattering data collection and analysis 

The SufBCD complex (2-18 mg/ml) for small angle X-ray scattering (SAXS) 

experiments was prepared in 50 mM Tris-HCl (pH 7.8) and 150 mM NaCl. SAXS experiments 

were performed at room temperature on a Rigaku BioSAXS-1000, using CuKα radiation from 

the Rigaku FR-X rotating anode X-ray generator. The scattering vector range was set from qmin = 

0.009 Å-1 to qmax = 0.69 Å-1 (q = 4πsinθ/λ). Protein samples were placed in a quartz capillary 

with a diameter of 1.0 mm using an exposure time of 15 minutes per frame. The final scattering 

curve was radially averaged from eight frames with the program SAXSLab (Rigaku). 

Subsequent data was analyzed by the ATSAS program package (66). Data quality was assessed 

on the basis of the linearity of Guinier plots. Molecular mass was calculated by extrapolating 

scattering intensity at zero angle, I(0). Scattering profile simulations from the crystal structure 
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were carried out using CRYSOL (67). Ab initio models were generated using DAMMIF (68).  

10 individual reconstructions were aligned, averaged and the most typical model was generated 

using DAMAVER (69). The crystal structure was fitted to the dummy model by manually. The 

SAXS data at 8 mg/ml measurement were used for Fig. I-4. Data collection and structural 

parameters are summarized in Table I-3. 
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Table I-3. Data collection and structural parameters for SAXS analysis 
 
Data Collection Parameters  
  Instrument Rigaku BioSAXS-1000 
X-ray source Rigaku FR-X 
Wavelength (Å) 1.54 
q range (Å-1) 0.009-0.69 
Exposure time (min) 15 
Concentration range (mg/ml) 2-18 
Temperature Room temperature 
Structural Parameters*  
  I(0) from P(r) 0.225 ± 0.001 
Rg from P(r) (Å) 40. 8 ± 0.6 
I(0) from Guinier 0.222 ± 0.001 
Rg from Guinier (Å) 39.9 ± 0.1 
Dmax (Å) 138.5 
x2 of DAMMIF models 1.22 
Molecular Mass Determination  
  Mr from I(0) (kDa) 150.2 
Mr from sequence (kDa) 156.7 

 
*, reported for 8 mg/ml measurement. 
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In vivo complementation assay with mutated SufC 

Site-directed mutations were generated in plasmid pBBR-sufC and introduced into E. 

coli mutant strain UT109 (18) harboring two plasmids, pUMV22 and pRK-sufAB-DSE (ΔsufCp). 

UT109 contains deletions of the chromosomal suf (ΔsufABCDSE) and isc (ΔiscUA–hscBA) 

operons. Normally, deletion of both pathways is lethal due to the lack of the biosynthetic 

apparatus for Fe–S clusters (10). However, plasmid pUMV22, which harbors genes for 

mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase cloned 

from Streptomyces sp., allows UT109 to grow in the presence of D-mevalonate (MVA) because 

the essential Fe–S enzymes IspG and IspH involved in the MEP pathway for isoprenoid 

biosynthesis can be bypassed by the foreign MVA pathway (Takahashi, Y., submitted for 

publication). Upon shift to the absence of MVA, the cells are unable to grow without 

introduction of a functional sufC gene (in this case from pBBR-sufC) to complete the partial SUF 

system provided by pRK-sufAB-DSE (ΔsufCp).  

For the construction of plasmid pRK-sufAB-DSE (ΔsufCp), the sufAB fragment was 

amplified using primers SufAF and SufB-RSc3, and sufDSE was amplified using primers 

SufD-FSc5 and SufER (Table I-1). Because the coding region of sufC contains the promoter 

elements for sufDSE, an artificial promoter sequence was added to the upstream region of sufD 

in the SufD-FSc5 primer. After digestion with restriction enzymes, the two PCR fragments were 

cloned simultaneously into the XhoI/NheI sites of pRKNSE (19). The expression plasmid 

pBBR-sufC was constructed by transferring the XbaI–SacI fragment carrying the 

ribosome-binding sequence and the SufC coding region from the pET-21a (+) derivative (44) to 

the pBBR1MCS-4 plasmid (70), in which expression was driven by the lac promoter. 

Mutagenesis of SufC was performed using the pBBR-sufC plasmid as a template and the primers 

listed in Table I-1.  
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ATP hydrolysis measurement 

ATP hydrolysis rates were determined by a linked enzyme assay that coupled the 

formation of ADP to the oxidation of NADH, as described previously (40).  

 

Protein sequences 

The multiple sequence alignments in Figs. I-8 and II-1 were performed using Clustal 

Omega (71), and the figures were prepared with NJplot (72) and ESPript (73). EcoGene (74) 

accession numbers for the proteins from E. coli K-12 aligned in Figs. I-8 and II-1 are as follows: 

SufC, EG13964; UgpC, EG11048; MalK, EG10558; PotA, EG10749; PotG, EG11630; ThiQ, 

EG11572; TauB, EG13299; SsuB, EG12358; ProV, EG10771; GltL, EG12663; YhdZ, 

EG12837; GlnQ, EG10389; HisP, EG10452; ArtP, EG11624; CysA, EG10183; PstB, EG10783; 

FetA, EG13259; FepC, EG10295; FecE, EG10290; FhuC, EG10304; BtuD, EG10128; CcmA, 

EG12059; DppD, EG12627; SapD, EG12304; DdpD, EG13787; DppF, EG12628; UvrA, 

EG11061; SbcC, EG10927; MutS, EG10625; RecN, EG10831; MukB, EG10618; and RecF, 

EG10828. 
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Results 

Overall architecture of the SufBCD complex 

I determined the first crystal structure of the SufBCD complex from E. coli at 2.95 Å 

resolution (Fig. I-2, A and B) by the multiple isomorphous replacement method coupled with 

anomalous scattering (MIRAS) phasing from Hg/Pt derivatives. The SufBCD complex consists 

of one SufB subunit, two SufC subunits, and one SufD subunit with a stoichiometry of 1:2:1, 

consistent with previous biochemical experiments (44,46). Each of the SufC subunits is bound to 

a subunit of the SufB–SufD protomers, and is accordingly termed SufCSufB and SufCSufD. This 

overall configuration is common among ABC proteins, in which two ABC ATPase subunits bind 

to function-specific subunits with their ATP-binding motifs facing each other. The two bound 

SufC subunits, however, are spatially separated, in contrast to the analogous domains/subunits of 

canonical ABC transporters; the distance between the SufC subunits within the SufBCD complex 

is more than 40 Å (Fig. I-2B). Although the asymmetric unit contains two complexes (termed 

Complex1 and Complex2) with almost identical structures, a slight shift of subunits were 

observed; two SufC subunits shifted < 1 Å toward each other in the complex. This may implies 

the mobility of SufC subunits in the complex. The r.m.s. deviation between Complex1 and 

Complex2 is less than 0.71 Å for the main-chain Cα atoms. 

The structure of the SufBCD complex was further examined by 3D-reconstruction 

imaging based on negative-stain electron microscopy (Fig. I-3). The structures obtained by both 

methods agreed closely, confirming the quaternary structure of the SufBCD complex. In addition, 

the crystal structure was consistent with small angle X-ray scattering (SAXS) data from the 

as-isolated SufBCD complex in solution (Fig. I-4), indicating that the configuration of the 

SufBCD complex in the crystalline state was not affected by crystal packing.  

The structures of SufB and SufD are similar and share a common domain organization: 

an N-terminal helical domain, a core domain consisting of a right-handed parallel β-helix, and a 
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C-terminal helical domain that contains the SufC binding site (Fig. I-2A). The β-helix in the core 

domain of SufB is partly composed of shorter strands than the corresponding domain of SufD, 

whereas the C-terminal helical domain and the mode of SufC binding are strikingly similar 

between SufB and SufD. Intriguingly, the mode of binding between the SufC and SufB/SufD 

subunits is conserved in ABC transporters, an interaction termed the “transmission interface” 

(75) (discussed below). The heterodimer interface of SufB–SufD protomers consists primarily of 

25 hydrogen bonds that form two anti-parallel β-sheets. Although the structure of the SufD 

subunit in the SufBCD complex was almost identical to that of the previously reported SufD 

homodimer crystallized alone (50), some structural difference was observed around the two short 

helix-turn-helix in the C-terminal helical domain (Fig. I-5). This region is located in the interface 

with SufC, thus it seems that the complex formation induced this structural change. The SufD 

monomers are superimposable, with an r.m.s. deviation of 0.59 Å between Cα atoms.  

The SufC subunit has two domains, as observed in the members of the ABC ATPase 

family: a catalytic α/β domain that contains the nucleotide-binding Walker A and Walker B 

motifs, and a helical domain specific to ABC ATPases containing an ABC signature motif (Fig. 

I-6). The two domains are connected by a Q-loop that contains a strictly conserved glutamine 

residue. SufCSufB and SufCSufD have almost identical structures (the r.m.s.d. < 0.63 Å), but some 

minor structural difference was observed in one loop region, which is away from both the 

catalytic pocket and the binding site with SufB/SufD. This loop region is much more loosely 

packed in the crystal lattice. 

Although the overall structure of SufC subunits in the SufBCD complex is similar to 

that of monomeric SufC (41), significant structural changes occur around the ATP-binding 

pocket upon complex formation (Fig. I-7). The unique salt bridge observed in the monomeric 

SufC between Glu171 (an invariant catalytic residue among typical ABC ATPases (76)) and 

Lys152 is cleaved in the complex, allowing the rotation of the Glu171 side chain toward the 
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ATP-binding pocket. Furthermore, His203, another key residue of ABC ATPase activity (77), is 

shifted about 4 Å toward Glu171 in the complex. These structural changes rearrange the catalytic 

pocket of SufC to be suitable for ATP binding and hydrolysis; consequently, the local structure 

of SufC more closely resembles that of active ABC ATPases. Thus, the monomeric SufC is the 

“latent form” as inadequate for the ATPase activity, whereas SufC in the SufBCD complex 

appears to represent the “competent form”. These findings are consistent with recent kinetic 

experiments showing that the ATPase activity of SufC is enhanced by complex formation with 

SufB/SufD (43). Namely, the activity of SufC is regulated with sophisticated structural changes 

that occur upon binding to its partner proteins. 

The SufBCD complex shares a common configuration with the previously reported 

SufCD subcomplex (44) predictably, in which one SufD subunit is replaced by the SufB subunit, 

but the physiological roll of SufCD subcomplex in Fe-S cluster biogenesis remains currently 

unclear (43,44). Although it is possible the SufBCD and SufCD complexes conduct discrete 

steps in cluster assembly, this has not been conclusively shown in vivo or in vitro. Because the 

SufBCD complex is considered to be the biosynthetic apparatus for Fe-S clusters from the 

pioneering physiological (18,27) and the biochemical (29,34,35) studies, the state of SufCD 

subcomplex may function by negatively regulating the assembly of Fe-S clusters as the latent 

form of the SufBCD complex. 
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Figure I-2. O
verall structure of the SufB

C
D

 com
plex from

 E. coli. (A
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ibbon representation of 
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 com
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). (B
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iew
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 Figure I-3. 3D
 reconstruction im

age of the SufB
C

D
 com

plex obtained by electron m
icroscopy. 

R
ibbon representation of the crystal structure of the SufB

C
D

 com
plex (gray) is superim

posed on 

the transparent EM
 structure (light blue). (right) V

iew
 rotated by 90º about the horizontal axis 

relative to (left).  
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Figure I-4. SAXS analyses of the SufBCD complex. (A) Comparison of the crystal structure and 

SAXS result. Experimental X-ray scattering curve from the SufBCD complex (green dotted line) 

and the theoretical curve estimated from the crystal structure (purple solid line). (B) The Guinier 

plots for the low angle region of the experimental scattering curve at (A). Its linearity indicates 

the absence of protein aggregation. (C) Molecular modeling of the SufBCD complex in solution. 

Ribbon representation of the crystal structure of the SufBCD complex (gray) is superimposed on 

the transparent ab initio dummy atom model (pink). (right) View rotated by 90º about the 

horizontal axis relative to (left). 
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Figure I-5. Local structural difference of SufD upon complex formation with SufC. Close-up 

view of the interface between SufC subunit (green) and SufD subunit (cyan) in the SufBCD 

complex. One subunit of the SufD homodimer (PDB code 1VH4, dark blue) is superimposed 

onto the SufD subunit in the SufBCD complex. Some structural difference was observed around 

the two short helix-turn-helix located in the interface with SufC. Motifs conserved in ABC 

ATPases are depicted by different colors: yellow (ABC signature motif) and blue (Q-loop). 
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Figure I-6. Superposition of the overall structures of E. coli SufC and HlyB (PDB code 1MT0). 

Green and light pink denote the SufC and HlyB structures, respectively. Motifs conserved in 

ABC ATPases are depicted by different colors: purple (Walker A motif), cyan (Walker B motif), 

yellow (ABC signature motif) and blue (Q-loop).  

 

 



 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I-7. Structural changes and rearrangements of the ATP-binding pocket in SufC. 

Comparison of the active site structures of SufC among (A) the SufC monomer (PDB code 

2D3W), (B) the SufCSufB subunit, and (C) the SufCSufD subunit. The orientation and color-coding 

for the conserved motifs in ABC ATPases are the same as in Fig. I-6. Lys152, Glu171, and 

His203 residues are shown in the stick models, and Fo–Fc maps omitting the side chains of these 

residues, contoured at 2.0 σ (orange), are overlaid on the stick models. The red broken line in (A) 

indicates a salt-bridge. 



 33 

The ABC-type ATPase of SufC 

Superposing the structure of E. coli SufC on the typical ABC ATPase, E. coli HlyB of 

the α-hemolysin export protein (77), reveals very similar overall topologies (Fig. I-6). SufC 

contains highly conserved sets of amino acid residues including an ABC signature motif, Q-loop, 

D-loop, and H-motif in addition to the Walker A and Walker B motifs, all of which are 

characteristic of ABC ATPases (Fig. I-8). I focused on three strictly conserved amino acid 

residues considered to be essential for ATP hydrolysis in the ABC ATPases (76-78): the Lys 

residue in the Walker A motif (corresponding to the Lys40 in SufC), the Glu residue 

immediately following the Walker B motif (the Glu171 in SufC), and the His residue in the 

H-motif (the His203 in SufC). In vitro measurements of ATPase activity clearly demonstrated 

that SufBCD complexes containing mutated SufC proteins (K40R, E171Q and H203A) almost 

completely lacked activity (Fig. I-9). These mutations did not impair the structural stability of 

SufC or its interaction with partner proteins (Fig. I-10). These results prove that as in the 

canonical ABC ATPase, the residues of the ABC sequence motifs are responsible for ATPase 

activity in SufC. 

To determine whether the ABC ATPase activity of SufC is necessary for the Fe–S 

cluster biogenesis, I assessed its in vivo function using a recently-established method (Takahashi, 

Y., submitted for publication) in the E. coli Δisc Δsuf mutant strain UT109 (18). The 

site-directed mutants of SufC, K40R, E171Q, and H203A, were not able to complement mutant 

cells, indicating that these residues are indispensable for in vivo Fe–S cluster biosynthesis (Fig. 

I-11). These results are in good agreement with previous experiments regarding the SufC K40R 

mutant (42). Thus, SufC can behave as an ABC-type ATPase, and the activity is indispensable 

for in vivo Fe–S cluster assembly. 
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Figure I-8. Sequence alignm
ent of SufC

 w
ith various A

B
C

 A
TPases from

 E. coli: H
isP, B

tuD
, 

M
alK

, and U
vrA

. R
ed and yellow

 indicate identical and sim
ilar residues, respectively. Secondary 

structures of SufC
 are show

n above the alignm
ent w

ith spirals (α-helices) and arrow
s (β-strands). 

M
otifs conserved in A

B
C

 A
TPases are show

n below
 the alignm

ent using the sam
e color-coding 

schem
e as in Fig. I-6. R

esidues 737-792 in U
vrA

, an unrelated region, are om
itted from

 the 

sequence. 
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Figure I-9. In vitro ATPase activity measurements of the SufBCD complex. Percentages 

indicate the ratios relative to wild-type complex (~0.07 µmol ATP hydrolyzed min-1 mg-1). Error 

bars, s.d. (n = 3). 
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Figure I-10. Mutational analyses of the SufC protein. (A) Comparison of the expression in 

wild-type and mutant SufC proteins by immunoblot analysis using an antibody against SufC. In 

the cell, the wild-type and SufC variants are expressed equally. Comparison of the size-exclusion 

chromatograms of (B) the native SufBCD complex and the SufC mutant complex of (C) K40R, 

(D) E171Q, and (E) H203A. These SufC mutants form a stable SufB1-SufC2-SufD1 complex 

similar to the wild-type complex. Elution curves from the gel-filtration column (Sephacryl 

S-200) are monitored by the absorbance at 280 nm. Inset is SDS-PAGE analysis of each peak 

fraction. 
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Figure I-11. Phenotypic characterization of the SufC mutations. Growth of the mutant cells 

(Δisc Δsuf) indicates complementation for the loss of sufC. Site-directed mutants K40R, E171Q, 

and H203A of SufC can not complement the E. coli UT109 mutant strains, indicating these 

residues are indispensable for in vivo Fe-S cluster biosynthesis. 
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Discussion 

In this study, I determined the crystal structure of the SufBCD complex for the first 

time, revealing its unusual architecture. The core domains of the SufB–SufD protomers consisted 

of many long strands (8–13 residues in each strand) arranged in a helical architecture, a so-called 

β-helix. Indeed, the SufD fold has been categorized as a novel folding superfamily (superhelix 

turns made of two very long strands each) in the SCOP2 classification database (79). Although 

the SufB fold has not been classified in any databases yet, the fold was assigned as the same 

group with SufD by searching the PDBeFold server (80), the 3D alignment program of protein 

structures with the whole PDB/SCOP archive. Moreover, the respective β-helix core domains in 

SufB and SufD are associated by anti-parallel β-strands to form a novel heterodimeric structure. 

In the ABC transporters in general, the transmembrane domains (TMD) consist of a total twelve 

helices with six helices per monomer, but they have structural diversity appropriate for their 

respective substrates and functions. In SMC (structural maintenance of chromosome) proteins, 

family members of ABC proteins, the function-specific domain consists of a long-coiled coil arm 

that forms a V-shaped dimeric molecule by interacting with the hinge region for DNA binding. 

Therefore, the novel β-helix architecture of the SufB–SufD protomers appears to be specialized 

for the Fe–S cluster biogenesis systems. 

Despite the structural variations in their substrate- and function-specific domains or 

subunits, ABC proteins share a common mechanism for transmitting the driving force for their 

respective functions. Recent extensive structural analyses in ABC transporters revealed that the 

so-called “transmission interface” transmits the dynamic motion of the ABC ATPase to the TMD 

during ATP binding and hydrolysis (75), where the Q-loop in the ABC ATPase domain 

associates with the two short helix-turn-helix motifs in the TMDs. Structural motifs involved in 

the interaction between SufC and SufB/SufD bear striking similarity to the corresponding 

configurations in other structurally characterized ABC proteins (Fig. I-12). From a structural 
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standpoint, the SufBCD complex also shares the mode of the transmission of the driving force 

with other ABC proteins: the ATPase activity of SufC drives the conformational change of 

SufB–SufD protomers for Fe–S cluster biogenesis.  
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Figure I-12. Comparison of the transmission interface in the SufBCD complex and ABC 

proteins from E. coli. Close-up view of the interface between the substrate/function-specific 

subunit and the ABC ATPase subunit in (A) the resting (inward-facing) state of MalFGK 

maltose transporter (PDB code 3FH6), (B) the inward-facing state of the MetNI methionine 

transporter (PDB code 3DHW), and the resting state of the SufBCD complex at the (C) the 

SufB-SufC interface, and (D) the SufD-SufC interface. Each subunit in the complex is depicted 

in a different color. Substrate/function-specific subunit is displayed only for the two short 

helix-turn-helix involved in the interaction. The orientation and color-coding for the conserved 

motifs in ABC ATPases are the same as in Fig. I-5. 
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Chapter II 

 

 

Functional dynamics revealed by the conformational changes  

of the SufBCD complex for the de novo Fe-S cluster assembly 

 

 

Abstract 

ATP-binding cassette (ABC)-type ATPases are chemo-mechanical engines involved in 

diverse biological pathways. Recent genomic information reveals that ABC ATPase 

domains/subunits act not only in ABC transporters and structural maintenance of chromosome 

(SMC) proteins, but also in iron–sulfur (Fe–S) cluster biogenesis. A novel type of ABC protein, 

the SufBCD complex, functions in the biosynthesis of nascent Fe–S clusters in almost all 

Eubacteria and Archaea, as well as eukaryotic chloroplasts. As described in Chapter I, I 

determined the first crystal structure of the Escherichia coli SufBCD complex, which exhibits 

the common architecture of ABC proteins: two ABC ATPase components (SufC) with 

function-specific components (SufB–SufD protomers). In this Chapter II, the biochemical and 

physiological analyses based on this structure provide critical insights into Fe–S cluster assembly 

and revealed a dynamic conformational change driven by ABC ATPase activity. I propose a 

molecular mechanism for the biogenesis of the Fe–S cluster in the SufBCD complex. 
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Introduction 

The ATP-binding cassette (ABC) is a ubiquitous, universally conserved ATPase 

domain/subunit historically defined as the nucleotide-binding domain of an ABC transporter. 

ABC transporters comprise a large and diverse family of membrane-spanning proteins that 

transport various substances, ranging from ions to proteins, across membranes (55,81-84). With 

the availability of complete genomes and the refinement of bioinformatic tools, it has become 

apparent that ABC-type ATPase domains are present not only in ABC transporters, but also in a 

variety of non-transporter proteins, the most well-known examples of which are the structural 

maintenance of chromosome (SMC) proteins involved in chromosome segregation/condensation 

and DNA repair (85-87). Although the SMC proteins, like the ABC transporters, have attracted 

great interest because its members are implicated in various human diseases, there are additional 

types of non-transporter ABC proteins. Here, I focus on a novel type of ABC protein, the 

SufBCD complex, whose ABC ATPase components (SufC) segregate in a different clade from 

those of transporters and SMC proteins (Fig. II-1). 

The SufBCD complex is a component in the SUF machinery that is responsible for de 

novo iron-sulfur (Fe–S) cluster biogenesis. Although SufC is a member of the ABC ATPase 

superfamily and exhibits ATPase activity (Chapter I), the role of ATPase activity in Fe–S cluster 

biogenesis is currently unclear (29,33,34). In ABC transporters, energy from ATP 

binding/hydrolysis acts to transport specific substances across membranes (55,81-84,88). In 

soluble SMC proteins, the ABC ATPase utilizes ATP to recognize and bind DNA (55,89). 

Despite this extreme functional diversity, these proteins share a similar architecture, consisting of 

two ABC ATPase domains bound to substrate/function-specific partner domains; in both types of 

proteins, the ABC ATPase activity drives the conformational changes in partner domains 

required for each function (55). Therefore, it is likely that structural changes in the SufB and 

SufD subunits are driven by SufC ATPase activity in the SufBCD complex and that the dynamic 
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motion of the complex should provide important clues regarding the molecular mechanism of 

Fe–S cluster biogenesis. 

In Chapter I, I described the crystal structure of the SufBCD (SufB1-SufC2-SufD1) 

complex, which exhibits the common configuration of ABC proteins. In this Chapter II, 

Biochemical experiments based on the crystal structure demonstrated that the two SufC ABC 

ATPase subunits form a head-to-tail dimer in the complex upon ATP binding, thereby inducing a 

structural change in the interface between the SufB and SufD subunits. These findings, together 

with in vivo mutational analyses, provided insights into the mechanism of Fe–S cluster assembly 

in the SufBCD complex. 
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Figure II-1. Dendrogram of ABC ATPases from E. coli. Among the 32 proteins, SufC belongs 

to clades of neither the ABC transporter nor the SMC family. 
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Experimental procedures 

Disulfide cross-linking experiment 

The purified mutant complexes (1 mg/ml) were incubated at room temperature for 30 

minutes in the presence of 5 mM ATP, 5 mM MgCl2, and 0.05 mM CuSO4, and the resultant 

products were analyzed by Western blot of native PAGE (7.5% gel) and non-reducing 

SDS-PAGE (12.5% gel) using antibodies against SufB, SufC, and SufD.  

 

Fluorescence labeling experiment 

For assays using 1-anilinonaphthalene-8-sulfonate (ANS), the purified mutant 

complexes (1 mg/ml) were mixed with 50 µM ATP, 50 µM MgCl2, 5 µM CuSO4, and 30 µM 

ANS, and time-dependent changes in fluorescence at room temperature was measured for 30 

minutes. For the N-(7-dimethylamino-4-methylcoumarinyl)-maleimide (DACM) assays, the 

purified mutant complexes (1 mg/ml) were incubated at room temperature for 30 minutes in the 

presence of 50 µM ATP, 50 µM MgCl2, 5 µM CuSO4, and 10 µM DACM, and then their 

fluorescence was measured. All fluorescence spectra were recorded on a FP-8200 fluorescence 

spectrometer (JASCO).  

 

In vivo Fe–S cluster formation analysis 

Site-directed mutagenesis was performed using the pGSO164 plasmid as a template 

and the primers listed in Table I-1, and the genes were expressed in YT2512 (10). The cells were 

grown in LB medium containing ampicillin (50 µg/ml) and ferric ammonium citrate (0.1 mg/ml) 

at 37°C. L-arabinose was added to 0.2% (w/v) final concentration when the cultures obtained an 

A600 of 0.4–0.6. After 3 hours of expression of SufABCDSE at 37°C, the cells were harvested by 

centrifugation. UV-visible absorption spectra were recorded at room temperature on a V-630 

spectrophotometer (JASCO).  



 46 

Results 

Head-to-tail dimer of SufC 

The structure of the SufB1–SufC2–SufD1 complex revealed the configuration of each 

subunit: the SufC subunit of the ABC ATPase binds to the C-terminal helical domains of the 

SufB/SufD subunits, and the two SufCs are oriented face-to-face (Chapter I). According to the 

current consensus model, ABC ATPases form a transient head-to-tail dimer in which two 

nucleotides are sandwiched at the dimer interface between the Walker motifs of one subunit and 

the ABC signature motif of the other subunit (Fig. II-2A). Based on this concept, I generated a 

putative dimer model of SufC by superimposing the structure of SufCSufB and SufCSufD onto the 

dimeric form of the ATP-bound HlyB (H662A) ABC ATPase (77). The resulting model showed 

that the local structural changes in SufC (mentioned above) enable an ideal association for the 

head-to-tail dimer without steric hindrances (Fig. II-2B). Despite the favorable modeling results, 

SufCSufB and SufCSufD subunits are spatially separated in the SufBCD complex, with their 

ATP-binding motifs facing one another (Fig. I-2B); they would have to move approximately 20 

Å closer to each other to form the head-to-tail dimer, a distance that is unusually long compared 

to other structurally characterized ABC proteins.  

I conducted disulfide cross-linking experiments to determine whether the separated 

SufC subunits could transiently associate with each other in the SufBCD complex. In the 

putative dimer model, the Cβ atoms of Tyr86 in each SufC subunit are in close proximity (< 

5.8 Å) (Fig. II-2B). Hence, I replaced Tyr86 with a cysteine to allow for covalent trapping of the 

transient SufC dimer via disulfide bond formation between the subunits. To simplify analysis, I 

also replaced the sole native cysteine residue on SufC, Cys167, with an alanine. These mutations 

did not affect the function of the SufBCD complex (Fig. II-3). After the mutated complex 

(SufC-Y86C/C167A) was incubated in the presence of ATP/Mg2+ and an oxidant (CuSO4) to 

enhance disulfide-bond formation, disulfide-bond formation was assessed by native PAGE 
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analysis. The results revealed an additional band on the gel that migrated more quickly than the 

as-isolated SufBCD complex (Fig. II-2C). No such band was observed when a reducing agent 

(DTT) was incubated with the sample, indicating that disulfide-bond gives the new band. No 

additional band was detected when ATP/Mg2+ or an oxidant was omitted from the reaction 

cocktails. Because Western blot analyses using antibodies against SufB, SufC and SufD revealed 

all of the corresponding signals (Fig. II-2C), I conclude that the novel band represents a 

conformationally distinct form of the SufBCD complex. In the control experiment using the 

single-mutated SufBCD complex (SufC-C167A), the corresponding band was undetected. In 

addition, non-reducing SDS-PAGE/Western blot analyses using an antibody against SufC also 

revealed an additional band whose molecular size was consistent with a molecule 2-fold larger 

than SufC (Fig. II-2D). These findings strongly support the idea that SufC can form a transient 

dimer, even within the SufBCD complex, in the presence of ATP/Mg2+. The mobility shift on 

native PAGE demonstrates that a structural change occurs in the SufBCD complex upon SufC 

dimerization. 
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Figure II-2. Disulfide cross-linking analyses of mutated SufBCD complex. (A) Dimeric 

structure of ABC ATPase HlyB (H662A) (PDB code 1XEF). Light pink and orange indicate 

individual subunits. Pink and red denote bound ATPs with van der Waals surfaces and Mg2+ ions, 

respectively. Color-coding for the conserved motifs is the same as in Fig. I-6. (B) Putative dimer 

model of SufC. Docking model is constructed by superimposing SufCSufB and SufCSufD onto the 

ATP bound HlyB (H662A) dimer. Tyr86 residues are depicted with their van der Waals surfaces. 

Color-coding for the two subunits and conserved motifs are the same as in Fig. I-2 and Fig. I-6, 

respectively. (C) Disulfide bond formation between two mutated SufC subunits in the SufBCD 

complex detected by native PAGE/Western blot analyses using antibodies against SufB, SufC, 

and SufD. (D) Non-reducing SDS-PAGE/Western blot analyses using an antibody against SufC. 
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Figure II-3. Phenotypic characterization of the SufC mutations. Growth of the mutant cells (Δisc 

Δsuf) indicates complementation for the loss of sufC. Site-directed mutants Y86C, C167A, and 

Y86C/C167A of SufC can complement the E. coli UT109 mutant strain, indicating these 

mutations do not affect the in vivo Fe-S cluster biosynthesis. 
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Gross structural change of SufB–SufD protomers 

I detected the conformational change of the SufBCD complex, initiated by SufC 

dimerization, in fluorescent labeling experiments using 1-anilinonaphthalene-8-sulfonate (ANS). 

ANS, which is poorly fluorescent in an aqueous environment, is highly fluorescent upon binding 

to hydrophobic regions on protein surfaces (90). In order to determine whether SufC 

dimerization induces the exposure of hydrophobic regions in SufB–SufD protomers, I compared 

the fluorescence of the native and cross-linked complexes (described above). After adding 

ATP/Mg2+ and an oxidant to the purified mutant SufBCD complex (SufC-Y86C/C167A), I 

added ANS to the mixture and immediately measured its fluorescence. The results revealed a 

remarkable increase in fluorescence intensity, depending on the incubation time (Fig. II-4A), 

indicating that a gross structural change of the SufBCD complex accompanied SufC dimerization 

(cross-link formation). No such fluorescence increase was observed when ATP/Mg2+ or oxidant 

was omitted from the reaction mixtures, or in a control experiment using the single-mutant 

SufBCD complex where the dimer is not covalently stabilized (SufC-C167A) (Fig. II-4A). 

Therefore, this conformational change was surely elicited by SufC dimerization.  

Next, I used another fluorescent reagent to determine whether the interface between 

SufB and SufD protomers is exposed. To this end, I used the fluorescent thiol reagent 

N-(7-dimethylamino-4-methylcoumarinyl)-maleimide (DACM), which has a high quantum yield 

when it reacts with the free cysteine residues on the protein surface (91). The SufBCD complex 

has a large number of cysteine residues (13 cysteines in SufB, 3 cysteines in SufD and 1 cysteine 

in SufC), most of which are buried inside the molecule. I focused on Cys405 of SufB, which is 

located at the heterodimer interface between the SufB and SufD protomers (Fig. II-5A). This 

cysteine residue, which is strictly conserved among SufB homologs, is a potential Fe–S cluster 

assembly site (44). To ascertain whether the Cys405 could be exposed and detected by DACM, I 

replaced Cys405 of SufB with an alanine, in combination with the SufC-Y86C/C167A mutation. 
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Each mutant complex (Y86C/C167A/C405A and Y86C/C167A) was incubated under 

cross-linked conditions (in the presence of ATP/Mg2+ and an oxidant) and further incubated after 

addition of DACM. Fluorescence intensity increased following formation of the SufC 

cross-linked dimer in the complex, indicating that several cysteine residues in the complex were 

exposed, whereas a significant decrease in fluorescence intensity was observed upon introduction 

of the SufB C405A mutation (Fig. II-4B). Control experiments, in which the incubation was 

performed under non-crosslinked conditions (i.e., in the absence of ATP/Mg2+ and oxidant), 

exhibited no difference between mutant complexes. These results demonstrated that SufC dimer 

formation leads to exposure of the heterodimer interface of the SufB–SufD protomers (at least of 

Cys405 of SufB, which is otherwise buried inside the dimer interface). Notably, the invariant 

residue His360 of SufD, another candidate for the cluster coordination residue (44), is located 

close to the Cys405 of SufB (Fig. II-5A), strongly implying that His360 of SufD could also be 

exposed by the conformational change. 
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Figure II-4. Fluorescent-labeling analyses of mutated SufBCD complex. (A) ANS detects 

exposure of hydrophobic regions in SufB-SufD protomers. (B) Exposure of Cys405 of SufB 

located inside the heterodimer interface between the SufB and SufD protomers under the 

cross-linked conditions detected by the DACM assays. 
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In vivo Fe–S cluster formation 

During the course of crystallographic phase determination using the heavy atoms, I 

noticed that two clear electron densities derived from Hg2+ ion appeared inside the heterodimer 

interface between the SufB and SufD protomers (Fig. II-5A): one Hg2+ ion bound to Cys405 in 

SufB, and the other bound to Cys358 in SufD. Hg2+-coordinating cysteine residue from SufB 

was the invariant Cys405, which is presumably one of the residues composing the assembly site 

for the nascent Fe–S cluster (44). Interestingly, Cys358 in SufD is located adjacent to His360 of 

SufD, another candidate for cluster binding. This observation raises the possibility that Hg2+ ion 

binds to the authentic iron-binding site involved in Fe–S cluster assembly. Hence, I performed 

mutation analyses to ascertain whether these residues function as a cluster assembly site.  

Because in vitro reconstitution experiments always run the risk that artificial Fe–S 

clusters will be formed at promiscuous sites (92), I assessed cluster assembly using the color of 

host cells overproducing the SufBCD complex as well as the SufA, SufS, and SufE components 

of the pathway. At an early stage of the purification, the fraction containing the SufBCD 

complex exhibited a blackish-green color; the UV-visible absorption spectrum indicated the 

presence of a nascent Fe–S cluster with absorption maxima at 340 and 420 nm and a broad 

shoulder at ∼500–650 nm (Fig. II-5B). The color was lost gradually during purification, because 

the Fe–S cluster is intrinsically fragile with respect to oxygen. Hence, I speculated that cluster 

formation ability could be evaluated based on the color of the harvested cells prior to exposure of 

the nascent Fe–S cluster to air by disruption. Harvested cells expressing the wild-type SufBCD 

complex had a blackish-green color (Fig. II-5C), quite similar to that of the partially purified 

SufBCD complex (Fig. II-5B, inset). By contrast, control cells harboring only a vector plasmid 

were an unremarkable white (Fig. II-5C). I thus reasoned that the color of the cells reflects in 

vivo cluster formation ability, at least for the SufBCD complex, even though the cells included 

other Fe–S proteins.  
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As expected, both SufB C405A and SufD H360A mutants had white cells, indicating 

that these residues are indispensable for cluster assembly, whereas Cys358 of SufD, the other 

binding site for Hg2+ ions, was not involved in cluster formation (Fig. II-5C). These results 

suggest that Cys405 of SufB and His360 of SufD could serve as the in vivo cluster binding sites. 

Furthermore, mutants in residues essential for SufC ATP hydrolysis (K40R, E171Q and H203A; 

described above) also had white cells (Fig. II-5C). In combination with the findings described 

above, SufC dimerization and conformational changes are indispensable for nascent Fe–S cluster 

formation (discussed below). The wild-type and mutant SufBCD proteins were present at equal 

levels in the cells as confirmed by immunoblot analyses (Fig. II-5D). 
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Figure II-5. In vivo Fe-S cluster formation on the SufBCD complex. (A) Two strong electron 

densities derived from the Hg2+ ion are observed in the Hg derivative of the SufBCD complex. 

Anomalous difference map for Hg2+ ion is contoured at 6.0 σ. Color-coding scheme for the each 

subunit is the same as in Fig. I-2. Square denotes the binding site of Hg2+, while right panel 

shows a close-up view. Two Hg2+ ions bound to Cys405 in SufB and Cys358 in SufD are 

adjacent to His360. These residues are depicted with a stick model, and Hg2+ ions are shown as 

orange balls. (B) UV-visible absorption spectrum of the SufBCD complex at an early 

purification stage. Inset is the sample solution and SDS-PAGE analysis of the partially purified 

SufBCD complex used in this measurement. (C) Colors of the harvested host cells overproducing 

the SufBCD complex and its variants. Blackish green color represents the in vivo Fe-S cluster 

formation on the SufBCD complex. (D) Comparison of the expression level of SuB/SufC/SufD 

among the cells harboring the wild-type plasmid or the various mutant plasmids by immunoblot 

analyses using antibodies against SufB, SufC, and SufD. 
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Discussion 

In vitro biochemical experiments and in vivo functional analyses based on the crystal 

structure of the SufBCD complex provided unprecedented insights into the molecular 

mechanism of Fe–S cluster biogenesis. The main findings are summarized as follows: 1) SufC of 

ABC-type ATPase forms a transient head-to-tail dimer within the SufBCD complex during the 

catalytic step of ATP binding and hydrolysis; 2) SufC dimerization drives gross structural 

changes of the SufB–SufD protomers, leading to the exposure of Cys405 of SufB (and probably 

also His360 of SufD) inside the heterodimer interface; 3) the conformational changes are directly 

related to nascent Fe–S cluster formation on the SufBCD complex; 4) Cys405 of SufB and 

His360 of SufD are most likely to work in concert, possibly serving as the site of in vivo cluster 

synthesis.  

Based on these findings, I propose a mechanism for Fe–S cluster biogenesis for the 

SufBCD complex (Fig. II-6). In the resting state, the SufC ABC-type ATPase in the complex is 

ready for ATP binding, and the nascent cluster-assembly site at the SufB and SufD interface is 

buried inside the complex. When SufC forms the head-to-tail dimer upon ATP binding, its 

dynamic motion is transmitted to the SufB–SufD protomers of the function-specific subunits via 

the transmission interface. Consequently, the invariant residues involved in Fe–S cluster 

assembly, Cys405 in SufB and His360 in SufD, are exposed to the surface in order to construct 

and transfer the nascent Fe–S cluster.  
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Figure II-6. Proposed mechanism of Fe-S cluster biogenesis for the SufBCD complex. (left) 

Biogenesis cycle starts in the resting state in which SufC is ready for ATP binding. Upon binding 

of ATP, SufC forms a head-to-tail dimer. Consequently, the Fe-S cluster binding site between 

the SufB and SufD interface is exposed to the surface. Nascent Fe-S cluster is built/transferred 

and ATP is hydrolyzed, restoring the SufBCD complex to its resting state. 
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General Discussion 

 

Iron-sulfur (Fe-S) proteins that contain an Fe-S cluster as prosthetic group execute a 

huge spectrum of biochemical tasks including the electron transport (e.g. respiratory complexes 

and the photosynthetic reaction center) and the regulation of gene expression (2). The versatile 

characteristics of the Fe-S cluster allow their widespread use in virtually all-living organisms 

(93). Extensive researches over the past five decades have shed light on the specific/unique 

function of the Fe-S proteins and their structures (4), but the research for the biosynthetic 

mechanisms of Fe-S clusters itself were just started from around 2000s (10). The typical Fe-S 

clusters have the forms of [4Fe-4S], [3Fe-4S] and [2Fe-2S], that is, the clusters have very simple 

structures (Fig. G-I). Nevertheless, intracellular formation of the Fe–S cluster requires 

sophisticated system comprising generally a lot of protein components and complexes that 

mobilize sulfur and iron, assemble nascent clusters, and transfer the assembled clusters to Fe–S 

proteins (Fig. G-II) (8-10). This system is composed of six proteins encoded by the sufABCDSE 

operon in E. coli. 

In this thesis, I focused on the SufBCD complex in the SUF system, since this ternary 

complex could serve as the scaffold for nascent Fe–S cluster assembly (29,33-35). Namely, the 

structure-function relationship of the SufBCD complex is able to directly elucidate the 

mechanism of the Fe-S cluster biosynthesis. In this study, the first crystal structure of the E. coli 

SufBCD (SufB1-SufC2–SufD1) complex was determined (Fig. I-1 and I-2), and its structural 

features were revealed; the complex had the novel β-helix architecture of the SufB–SufD 

protomers specialized for the Fe–S cluster biosynthesis. Also, my works demonstrated that the 

ATPase activity of SufC was indispensable for in vivo Fe–S cluster assembly (Fig. I-8 – I-11) 

and utilized to provide the driving force for inducing structural changes of the SufB–SufD 

protomers (Fig. II-2 – II-4). Furthermore, I identified the assembly site for the nascent Fe–S 
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cluster inside the heterodimer interface of SufB–SufD protomers, and revealed the correlation 

between in vivo cluster formation and the structural changes (Fig. II-5). Taken together, I 

proposed, for the first time, the molecular mechanism for the SUF Fe–S cluster biogenesis that 

incorporates dramatic structural changes driven by the SufC ATPase activity (Fig. II-6). 

 

The SUF Fe–S cluster biogenesis system is phylogenetically diverse and is present in 

photosynthetic organisms such as higher plants, as well as in Eubacteria and Archaea (10). The 

SUF machinery is thought to represent the ancestral system for Fe–S cluster biogenesis in all 

kingdoms of life (18). Genes homologous to SufB and SufC are present in a wide range of 

bacteria, Archaea, and plastids, suggesting that the SUF system is almost ubiquitous in nature. In 

this study, I revealed that SufB and SufD share novel structural features. Therefore, the dynamic 

motion of the SufB1–SufC2–SufD1 complex, experimentally demonstrated here, is universally 

applicable to all SUF systems, even the SufB2–SufC2 complex in the Archaeal SUF system.  

Structural and mechanistic understanding of SUF systems may enable the development 

of new antibiotics that target the SufBCD complex. Indeed, a recent study demonstrated that the 

SUF system of malaria parasites is essential for survival and plays a fundamental role in 

maintaining the apicoplast organelle (94). In eukaryotes, including mammalian cells, the ISC 

system (95) and its dependent CIA system (96) is responsible for nascent Fe–S cluster biogenesis. 

The extensively studied scaffold protein of the ISC machinery, IscU, has a completely different 

sequence and tertiary/quaternary structure than the SufBCD complex (97). Therefore, the SUF 

system, especially the SufB–SufD protomers with its characteristic β-helix fold and dynamic 

motion, is an eligible target for drug design with minimal risk of harm to the human body.
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