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Abstract

In field theory defined on multiply connected manifolds, the bound-
ary conditions imposed on fields have the arbitrariness due to the
gauge symmetry in Lagrangian density. In the present study of field
theory on extra dimensions, these boundary conditions are given by
hand. This is called the arbitrariness problem. In this thesis we con-
struct the model including the boundary condition dynamics in order
to approach to the arbitrariness problem. We determine the physically
realized boundary conditions from the dynamics. As a result we get
the nontrivial restriction for the boundary conditions. Especially in
the SU(5) case, the symmetry breaking to the standard model gauge
symmetry SU(3)×SU(2)×U(1) is naturally realized, and the fermion
matter content of the standard model can be also realized with a pair
of Higgs fields.
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1 Introduction

The standard model(SM) is extremely successful theory to describe parti-
cle physics. In recent years, the Higgs boson has been discovered by LHC
experiment[1, 2]. By this pleasing news, all SM particle were observed
in collider experiments. However the SM has several problems which we
should solve in the further. One of them is so-called ”Higgs mass hierarchy
problem”[3, 4]. In the SM, Higgs potential is given by

V = m2
H |H|2 + λH |H|4, (1.1)

where H is complex scalar field. The SM requires m2
H < 0 and λH > 0 so

that H acquires the vacuum expectation value which lead to the spontaneous
electro-weak symmetry breaking. We know that 〈H〉 must be electro-weak
scale experimentally: 〈H〉 ∼ O(100)[GeV]. Then, the problem occurs at
quantum corrections. m2

H receives huge quantum corrections form the other
SM particles. For example, let us consider a quantum correction from a
Dirac fermion ψf , and suppose the Higgs field couples to ψf by the term
−λfHψ̄fψf in Lagrangian. Then we have the mass correction δm2

H from ψf

at one loop level

δm2
H ∼ −|λf |2

8π2
Λ2

UV + · · · , (1.2)

where ΛUV denotes an ultraviolet momentum cutoff to regulate the divergent
loop integral. This momentum scale should be the energy scale where a new
physics comes in and alters the physical behaviors. The largest correction in
(1.2) is given by the top quark and in this case |λf | ≈ 1. Then if ΛUV is order
Plank scale MP ≈ 2.8 × 1018 [GeV], we need strict fine-tuning at about 30
order of magnitude in order that we get the vacuum expectation value 〈H〉
at electro-weak scale. Therefore, it is needed that we investigate the beyond
standard model to solve the above unnatural fine-tuning problem.

It is known that the gauge-Higgs unification(GHU) model is a candidate
of beyond standard model. GHU is defined on higher dimensional spacetime
than normal four dimensional Minkowski spacetime. The higher dimensional
spacetime was firstly discussed by Kaluza and Klein[5] to unify gravity and
gauge interactions. After that, the study of field theories on higher dimen-
sional spacetimes gives us rich insight for particle physics and has been of
interest for a long time. For example, the higher dimensional theory gives
a new direction to understand large hierarchies in Yukawa coupling and fla-
vor mixing of SM fermions. These hierarchies can be naturally realized by
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dynamically localizing SM fermions at slightly distinct points in a extra di-
mensional direction[6]-[9]. The extra dimension can also play a crucial role
to give phenomenologically acceptable supersymmetry(SUSY) breaking sce-
nario. For this SUSY breaking via extra dimension, there are two famous
proposals: anomaly mediation[10]-[13] and gaugino mediation[14]-[17] sce-
narios. In these proposals, visible supersymmetric matter sector and hidden
SUSY breaking sector are located at different branes. In anomaly media-
tion scenario, gravity mediates SUSY breaking effect from the hidden sector
to the visible matter sector. In gaugino mediation scenario, the superpart-
nars of the SM gauge field mediate the SUSY breaking effect. However in
order to formulate the field theory in higher dimensional spacetime, there
arises the chiral fermion problem. Generally in five dimensional spacetime
two component Weyl fermion is no longer representation in Lorentz group.
Therefore, five dimensional Lagrangian forbids chiral fermion unlike the SM
matter content. In order to solve this chiral fermion problem, the orbifold
extra dimension has been introduced and can achieve chiral fermion due to
the fact that the right- and left-handed fermions are expanded as the differ-
ent forms in KK-expansion. Moreover S1/Z2 orbifold extra dimension can
give the natural explanation for large mass hierarchies among three family of
quark and lepton in Randall-Sundrum model[18]. Field theory on orbifolds
have been extensively applied to the constructions of realistic Grand unified
theory(GUT) and electro-weak symmetry breaking(EWSB) scenario. SU(5)
GUT on S1/Z2 orbifold has been investigate in Ref [19]-[25]. In this model,
one can get the natural solution for the doublet-triplet mass splitting prob-
lem. SO(10) GUT on 5D or 6D orbifold was also discussed in Ref [26]-[32].
Moreover, SO(11) GUT has been proposed by Yamatsu and Hosotani[33, 34].

The Hosotani mechanism[35, 36] can give the powerful tool to investi-
gate the field theory defined on multiply connected space. He has revealed
the relation between boundary conditions and the dynamics of Wilson line
phases on multiply connected manifolds, and classified boundary conditions
to equivalence classes. For investigating the physics of field theory on mul-
tiply connected manifolds, the dynamics of Wilson line phases, which are
regarded as physical degrees of freedom, play a crucial role, and leads to a
new symmetry breaking mechanism as an alternative to the Higgs mecha-
nism. By this dynamics of Wilson line phases, one can unify gauge fields and
Higgs scalar fields on multiply connected manifolds and it is called Gauge-
Higgs Unification. In GHU, the mass terms of Higgs fields, which are part
of gauge field, are forbidden by gauge symmetry and these mass terms can
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arise by quantum correction. Hatanaka, Inami and Lim pointed out that
the gauge hierarchy problem can be solved in GHU scenario thanks to gauge
symmetry[37]. Therefore, GHU is extensively applied to the construction of
EWSB model. 5D GHU on S1/Z2 have been investigated for SU(3) gauge
group in Ref [38]-[41] and for SO(5) × U(1) gauge group in Ref [42]-[47].
6D GHU was also investigated in Ref [48]-[50]. The other interesting ap-
proach for GHU is given in Ref [51]-[53]. Matsumoto and Sakamura gave the
general analysis of GHU on T 2/ZN by group theoretical analysis[54]. Haba,
Harada, Hosotani and Kawamura have investigated the physics of SU(N)
gauge theory on S1/Z2 orbifold in detail[55, 56]. They classified the bound-
ary conditions to equivalence classes completely for SU(N) gauge group,
and analyzed the dynamics of Wilson line phases in each equivalence class
especially, for SU(5) gauge theory.

However, for field theory on extra dimensions we also have several prob-
lems to solve. One of them is that the boundary conditions for extra dimen-
sional directions which we impose on each field have the arbitrariness due to
the gauge symmetry imposed on Lagrangian density and in present study of
the field theories on extra dimensions these boundary conditions are given
by hand. We refer this subtlety as the arbitrariness problem[57]. There-
fore, the purpose of our research is to solve this arbitrariness problem for
the boundary conditions. It means that we try to determine the boundary
conditions imposed on fields from the theoretical consequence. For this goal,
we need the model including the dynamic of boundary conditions. In order
to construct the model including the dynamics of boundary conditions and
determine the physically realized boundary conditions, we make the following
two assumptions:

• The boundary condition dynamics is realized by path integral formula
where the integration is defined by invariant measure.

• The equivalence class which has the lowest energy density among each
equivalence class is physically chosen.

In this paper, we construct the model including the dynamics of boundary
conditions for SU(N) gauge theory on S1/Z2 orbifold extra dimension. In
the model, we regard the boundary conditions as dynamical variables. Then,
we need to analyze systematically all possible configurations of boundary
conditions in one framework. We achieve it by using the matrix model anal-
ysis. By investigating the property of invariant measure in detail, we have
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revealed only restricted equivalence classes practically contribute to the par-
tition function of system in the SU(N) case although all possible boundary
conditions are included in the integration[58] and we discuss that in section 4.
For the further analysis, we use the second assumption. Then, we determine
the physically realized boundary conditions by comparing the minimal val-
ues of effective potential among sets of boundary conditions which practically
contribute to partition function. Unfortunately, for comparing the minimal
values of effective potential, there arises ambiguity: The difference between
the minimal energy densities in two equivalence classes may be divergent due
to the contributions of gauge and scalar fields to the effective potentials in
the non-supersymmetric case[56]. In order to avoid this ambiguity, we put
a restriction on the matter content of scalar fields, and there is no ambigu-
ity coming from gauge field contribution to effective potential in our model.
In supersymmetric case, the energy difference of effective potentials in two
equivalence classes becomes always finite. We discuss that in section 6 in
detail.

The content of this paper is as follows: In section 2 we give the brief review
for the Hosotani mechanism in multiply connected manifolds. In section 3 we
give the basic knowledge of field theory on S1/Z2 extra dimension and classify
the boundary conditions into equivalence classes. In section 4 we construct
the model including the dynamics of boundary conditions for SU(N) gauge
theory on S1/Z2 orbifold extra dimension and investigate the nature of invari-
ant measure. In section 5 we calculate the effective potential for SU(5) gauge
theory by background method. In section 6 we determine the physically re-
alized boundary conditions from the dynamics for non-supersymmetric and
supersymmetric case in each matter content. Finally section 7 is devoted to
the conclusion and discussion.

2 The Hosotani mechanism on multiply con-

nected manifold

In this section we review the Hosotani mechanism on multiply connected
manifolds, he has revealed that in gauge theory on multiply connected man-
ifold the eigenvalues of Wilson line along non-contractable loop become the
dynamical variables on system and the boundary conditions imposed on each
field can be classified into equivalence classes by the dynamics of Wilson line.
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The following discussion is based on Ref[36]
We consider gauge theory defined on multiply connected manifold M0

and suppose M0 is a homogeneous manifold, namely every point x ∈ M0 is
equivalent to others. The Lagrangian density is given by

L = −1

2
TrFµνF

µν + ψ̄i /Dψ

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]

Dµψ = (∂µ + igTαAα
µ)ψ,

(2.1)

where Tα denotes appropriate representation matrix of gauge group, and α
denotes the index of generator for gauge group. For simplicity, we consider
only massless fermions for matter fields. Since M0 is multiply connected
manifolds, non-contractable loops appear. We suppose there are n generators
of non-contractable loops and represent the transitions along these loops by
ha (a = 1 ∼ n).

In general principle Lagrangian density must be single valued on M0. It
mean that the Lagrangian density must be a periodic function under loop
translations along ha (a = 1 ∼ n):

L[ha(x)] = L[x], (a = 1 ∼ n). (2.2)

In order to satisfy this requirement, appropriate boundary conditions must
be imposed on fields. Under the Lagrangian density (2.1) the boundary
conditions are generally represented by

(Ua, βa) (a = 1 ∼ n)

Aµ[ha(x)] = UaAµ[x]U †
a

ψ[ha(x)] = eiβaTψ[Ua]ψ[x],

(2.3)

where Ua can be a element of gauge group, and Tψ[Ua] denotes appropriate
representation matrix of Ua for fermion. (Ua, βa) must be independent on
spacetime coordinates. It is required by the homogeneity of space. Therefore,
one must give both Lagrangian density and boundary conditions in order to
define the field theory on multiply connected manifolds.

Next, we show that the gauge invariance on system dose not equal to the
gauge symmetry in Lagrangian density. Let us consider a gauge transforma-
tion Ω(x):

Aµ → A′
µ(x) = Ω(x)AµΩ†(x) − i

g
Ω(x)∂µΩ†(x)

ψ(x) → ψ′(x) = Tψ[Ω(x)]ψ(x).

(2.4)
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For new fields A′
µ, ψ′, the boundary conditions change, for example for A′

µ

the relation (2.3) is transformed into

A′
µ[ha(x)] = U ′

aA
′
µU

′†
a +

i

g
Ω[ha(x)]Ua(∂µΩ†[x])U ′†

a

− i

g
Ω[ha(x)](∂µΩ†[ha(x)]),

(2.5)

where
U ′

a = Ω[hax]UaΩ
†[x]. (2.6)

Therefore, general gauge transformation can not be regarded as gauge invari-
ance on system since it spoils the relation (2.3).

If the gauge transformation Ω[x] satisfies the condition

Ω[ha(x)] = UaΩ[x]U †
a , (2.7)

Ω[x] remains the boundary conditions invariant, so it is the residual gauge
invariance on system. Ω is not single valued if [Ω[x], Ua] ̸= 0. Then the
residual global gauge symmetry is given by

[Ωglobal, Ua] = 0 (a = 1 ∼ n). (2.8)

It means that the residual global gauge symmetry is generated by gauge sub-
group whose generator commute with Ua. The global gauge transformation
which satisfies the relation (2.8) is called the symmetry of boundary con-
ditions. It is noted that the physical symmetry on system can be different
from the symmetry of boundary conditions due to the dynamics of Wilson
line phases.

For the gauge field on multiply connected manifold, the non-vanishing
expectation value can arise even if the field strength has the vanishing value.
This is caused by the fact gauge transformations which remain the system
invariant are subject to the condition (2.7). The condition 〈Fµν〉 = 0 leads
to

〈Aµ〉 = − i

g
V †∂µV. (2.9)

For the boundary condition (2.3), (2.9) implies

V †[ha(x)]∂µV [ha(x)]Ua = UaV
†[x]∂µV [x]. (2.10)
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If the condition CV [ha(x)] = UaCV [x]U †
a is not satisfied for some constant

unitary matrix C, there is no gauge transformation Ω which transforms 〈Aµ〉
to 0 because Ω is restricted by the condition (2.7). In this case, we must
regard 〈Aµ〉 as physically different configuration from 〈Aµ〉 = 0 and non-zero
expectation value leads to the spontaneous gauge symmetry breaking. The
expectation value 〈Aµ〉 is determined by dynamics on system, not arbitrary,
under given boundary conditions. Since CV (x) and V (x) give the identical
value 〈Aµ〉, so V (x) in (2.9) is not unique. Then V (x) depends on the
boundary conditions (Ua, βa) and matter content on system through the
dynamics of Wilson line phases and can be determined up to a constant
unitary matrix.

The different sets of boundary conditions (Ua, βa) and (U ′
a, βa) can lead

to the same physical content if the two sets are connected by the dynamics of
Wilson line phase. Under the general gauge transformation (2.4) the bound-
ary conditions (Ua, βa) are changed to (2.5), but if gauge transformation Ω
satisfies the condition

Ω†[ha(x)]∂µΩ[ha(x)]Ua = UaΩ
†[x]∂µΩ[x], (2.11)

then gauge transformed fields A′
µ and ψ′ again satisfy the boundary condi-

tions (2.3) where the set (Ua, βa) is replaced by the new boundary condi-
tion set (U ′

a, βa) defined by (2.6). The homogeneity of boundary condition,
namely x-independence of U ′

a is indeed preserved under the condition (2.11).
This transformation is not the gauge invariance on system and transforms to
the different system which is related to the original system by the dynamics
of Wilson line phases. If the two sets of boundary conditions (Ua, βa) and
(U ′

a, βa) are related by gauge transformation which satisfies the condition
(2.11) these two sets are called equivalent:

(Ua, βa) ∼ (U ′
a β′

a), (2.12)

and the boundary condition sets related by equivalence relation (2.12) lead to
the same physical content: all physical observables are identical in (Ua, βa)
and (U ′

a, β′
a). Then we can classify the boundary conditions into the equiv-

alence classes by using the relation (2.12). This fact plays crucial role to
analyzing the field theory defined on multiply connected manifolds.

Let us consider the physical symmetry on system by using the equivalence
relation (2.12). In the given boundary conditions (Ua, βa) the gauge field can
develop non-zero vacuum expectation value in (2.9) for the case 〈Fµν〉 = 0.
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Then under the gauge transformation Ω[x] = V [x] the boundary conditions
change to

Ua → U ′
a = V [ha(x)]UaV

†[x] ≡ U sym
a . (2.13)

In boundary conditions (U ′
a, βa) in (2.13) 〈A′

µ〉 = 0 and we can find that U sym
a

is independent on x due to (2.10). Hence we get the equivalence relation(
Ua, βa; 〈Aµ〉 = − i

g
V †∂µV

)
∼ (U sym

a , βa; 〈Aµ〉 = 0). (2.14)

U sym
a is not unique since V (x) has the arbitrariness for constant unitary

matrix, but the eigenvalues of U sym
a can be uniquely determined. These

eigenvalues are important variable for parameterizing the physics on system.
In the boundary conditions (U sym

a , βa) the physical global symmetry equals
to the symmetry of boundary conditions since 〈A′

µ〉 = 0. Therefore, the
physical global gauge symmetry is given by

[Ωglobal, U sym
a ] = 0 (a = 1 ∼ n) (2.15)

from (2.8). For the realistic model we consider the case that M0 is factorized
into the product of four dimensional Minkowski spacetime M4 and a multiply
connected space N . We assume that the size of N is much smaller than
the energy scale which is experimentally observed and denote the spacetime
coordinates by x ∈ M4 and y ∈ N respectively. In this case, the physical
gauge invariance is given by gauge transformation Ω[y, x] which satisfies the
condition Ω[ha(y), x] = U symΩ[y, x](U sym)†. In low energy limit the gauge
potential Ω is independent on y ∈ N and the physical symmetry is given by

Ω(x)U sym
a = U sym

a Ω(x). (2.16)

It means that the physical symmetry at low energy effective theory corre-
sponds to the gauge subgroup whose generator commutes with U sym

a just as
the global gauge symmetry.

Next we will show that the eigenvalues of U sym
a can be related to Wilson

line along non-contractable loop with boundary conditions Ua in (2.12). The
Wilson line phases are defined by the phases of Wa[x,C], where

Wa[x; C] = W (0)
a [x; C]Ua = P exp

{
− ig

∫ x

ha(x)

Aµdxµ

}
Ua. (2.17)

x again denotes the coordinate of general multiply connected manifold M0

and W
(0)
a [x; C] is the Wilson line along non-contractable loop C. Then,
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Wa[x,C] transforms in covariant form under gauge transformation due to
the condition (2.7). So the Wilson line phases are gauge invariant quantities.
For the field configuration (2.9), Wa[x; C] is given by

Wa[x; C] = V †[x]V [ha(x)]Ua. (2.18)

It follows from the fact that Wa[x; C] remains invariant under a continuous
deformation of the path C due to Fµν = 0. Under the boundary changing
gauge transformation Ω(x) = V (x), The quantity Wa[x; C] is replaced with
W ′

a[x; C] = U sym
a and

U sym
a = V [ha(x)]UaV

†[x] = V [x]Wa[x; C]V †[x]. (2.19)

That is, U sym
a has the identical eigenvalues with Wa[x; C]. U sym

a is indepen-
dent on x, so the eigenvalues of Wa[x; C] are also x-independent. In general,
these phase factors must be regarded as dynamical degree of freedom for
field theory defined on multiply connected manifold, because these can not
be gauged away once boundary conditions are given. The Wilson line phases
are determined by calculating effective potential, and given by field configu-
ration which minimizes the value of effective potential.

3 The field theory on S1/Z2 orbifold extra di-

mension

In this section, we give the basic knowledges of field theory on M4 × S1/Z2.
Suppose x and y denote the coordinates of M4 and S1/Z2 respectively, and
the radius of S1 is R. The S1/Z2 orbifold is obtained by identifying two
points on S1 by Z2 symmetry. In other words, we identify the coordinates
(x, y + 2πR) and (x,−y) with (x, y) by S1 compactification and orbifold
condition:(x, y) ∼ (x, y + 2πR) ∼ (x,−y). The discussion follows Ref[55, 56]

3.1 The boundary conditions on S1/Z2 orbifold

As general principle, Lagrangian density has to single-valued on M4 ×S1/Z2

as I mentioned in section 2. Then Lagrangian density must satisfy the con-
ditions

L(x, y + 2πR) = L(x, y)

L(x,−y) = L(x, y),
(3.1)

10



the second condition is by orbifold Z2 symmetry. Therefore, we must im-
pose the boundary conditions on each field on system in order to satisfy the
conditions (3.1). It is known that in S1/Z2 case, these boundary conditions
are realized by two parity transformations around y = 0 and y = πR respec-
tively. We denote the boundary conditions for these parity transformations
by P0 and P1. For gauge field AM (M = 0 ∼ 3, 5) they are given by(

Aµ(x,−y)
Ay(x,−y)

)
= P0

(
Aµ(x, y)
−Ay(x, y)

)
P †

0 (3.2)

and (
Aµ(x, πR − y)
Ay(x, πR − y)

)
= P1

(
Aµ(x, πR + y)
−Ay(x, πR + y)

)
P †

1 . (3.3)

We should note that for Ay component, the opposite sign relative to Aµ is
required since the derivative ∂y gives extra minus sign under these transfor-
mations. The repeated parity transformations must equal to the identical
transformation, so the condition

P 2
0 = P 2

1 = 1 (3.4)

must be imposed. Note that the boundary conditions P0 and P1 have arbi-
trariness due to the gauge symmetry in Lagrangian density. In general, P0

and P1 can be the elements of gauge group as long as the condition (3.4)
is satisfied. For SU(N) case, P0 and P1 are the element of U(N). The
arbitrariness of boundary conditions corresponds to the possible choices to
construct the different model, leading to the different symmetry breaking
patterns. The boundary condition for S1 loop transition can be represented
by P0 and P1. For gauge field, it is given by

AM(x, y + 2πR) = UAM(x, y)U †, (3.5)

where U = P1P0. U is called S1 boundary condition.
For scalar field, the boundary conditions are specified by

φ(x,−y) = ±Tφ[P0]φ(x, y)

φ(x, πR − y) = ±eiπβφTφ[P1]φ(x, πR + y)

φ(x, y + 2πR) = eiπβφTφ[U ]φ(x, y),

(3.6)

where Tφ[U ] denotes an appropriate representation matrix for gauge group
and the relation Tφ[U ] = Tφ[P0]Tφ[P1] is satisfied. The arbitrariness of sign
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in (3.6) is allowed as long as the interaction terms in Lagrangian remain
invariant. βφ must be 0 or 1 due to Z2 parity.

For Dirac fermion, the boundary conditions are given by

ψ(x,−y) = ±Tψ[P0]γ
5ψ(x, y)

ψ(x, πR − y) = ±eiπβψTψ[P1]γ
5ψ(x, πR + y)

ψ(x, y + 2πR) = eiπβψTψ[U ]ψ(x, y).

(3.7)

The phase βψ must be 0 or 1 just as for scalar field and (γ5)2 = 1 in our
convention.

Gauge transformation changes the given boundary conditions P0 and P1

as well as each field. Under a gauge transformation Ω(x, y) each field trans-
forms to

AM(x, y) → A′
M(x, y) = Ω(x, y)AM(x, y)Ω†(x, y) − i

g
Ω(x, y)∂MΩ†(x, y),

φ(x, y) → φ′(x, y) = Tφ[Ω(x, y)]φ, ψ(x, y) → ψ′(x, y) = Tψ[Ω(x, y)]ψ.
(3.8)

For this gauge transformation, the boundary conditions (3.2), (3.3) and (3.5)
also change to

A′
M(x, y + 2πR) = U ′A′

M(x, y)U ′† − i

g
U ′∂MU ′†(

A′
µ(x,−y)

A′
y(x,−y)

)
= P ′

0

(
A′

µ(x, y)
−A′

y(x, y)

)
P ′†

0 − i

g
P ′

0

(
∂µ

−∂y

)
P ′†

0(
A′

µ(x, πR − y)
A′

y(x, πR − y)

)
= P ′

1

(
A′

µ(x, πR + y)
−A′

y(x, πR + y)

)
P ′†

1 − i

g
P ′

1

(
∂µ

−∂y

)
P ′†

1

(3.9)
where,

U ′ = Ω(x, y + 2πR)UΩ†(x, y)

P ′
0 = Ω(x,−y)P0Ω

†(x, y)

P ′
1 = Ω(x, πR − y)P1Ω

†(x, πR + y),

(3.10)

for new field A′
M . Scalar and fermion fields φ′ and ψ′ satisfy the similar

relations to (3.5) and (3.6) with (P ′
0, P ′

1, U ′).
In general, the gauge symmetry in Lagrangian density can not be regarded

as the symmetry on system because gauge transformation may deform the
form of boundary conditions. The gauge transformations which preserve the
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boundary conditions give the residual gauge invariance on system. It is given
by the gauge transformations satisfying the relations

Ω(x, y + 2πR)U = UΩ(x, y)

Ω(x,−y)P0 = P0Ω(x, y)

Ω(x, πR − y)P1 = P1Ω(x, πR + y),

(3.11)

We call the gauge transformation satisfying the relations (3.11) the symmetry
of boundary conditions. Typically, we are interested in the case that the size
of extra dimension is much smaller than the experimental scale. In this case,
the gauge potential at low energy becomes independent on y: Ω = Ω(x) and
the condition (3.11) reduces to

Ω(x)U = UΩ(x), Ω(x)P0 = P0Ω(x), Ω(x)P1 = P1Ω(x). (3.12)

It implies that the symmetry of boundary conditions is generated by genera-
tors in gauge group which commute with U, P0 and P1. We should separate
the symmetry of boundary conditions from the physical symmetry on system
since the dynamics of Wilson line phase come in.

If the gauge transformed boundary conditions (3.9) satisfy the conditions

∂MP ′
0 = 0, ∂MP ′

1 = 0, ∂MU ′ = 0, (3.13)

then the two sets are equivalent :

(P ′
0, P

′
1, U

′) ∼ (P0, P1, U). (3.14)

From the conditions (3.13) we can find that (P ′
0)

† = P ′
0 and (P ′

1)
† = P ′

1, and
(P ′

0, P ′
1, U ′) also satisfy (3.4) and U ′ = P ′

1P
′
0. The equivalence relation (3.14)

is ensured by the Hosotani mechanism, leading the same physical content, as
we reviewed in section 2. Therefore, we can classify the boundary conditions
into equivalence classes by using the equivalence relation (3.13), and this
fact play a crucial role in order to approach to the arbitrariness problem for
boundary conditions.

Let us determine the physical symmetry on system by the Hosotani
mechanism. The Hosotani mechanism allows us to determine the phys-
ical symmetry on system once the boundary conditions and matter con-
tent are given. We assume that a constant 〈Ay〉 minimize the effective
potential Veff and exp(i2πgR〈Ay〉) ̸= I. Under the gauge transformation
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Ω(x, y) = exp{ig(y + α)〈Ay〉} the expectation value 〈Ay〉 transforms to
〈A′

y〉 = 0. Boundary conditions also change to

(P sym
0 , P sym

1 , U sym, β) ≡ (e2igα〈Ay〉P0, e2ig(α+πR)〈Ay〉P1, WU, β). (3.15)

WU denote the Wilson line given by (2.14) along S1/Z2 direction. We should
note that only gauge fields (Aa

y,
1
2
λa ∈ HW ) where,

HW =

{
λa

2
; {λa, P0} = {λa, P1} = 0

}
, (3.16)

can acquire the vacuum expectation values, because only these field have
the zero-mode in KK-expansions, namely the constant mode for y, and from
the requirement that spacetime is homogeneous the other fields can not have
the vacuum expectation value. Hence the boundary conditions (3.15) indeed
satisfy the conditions (3.4) and U sym = P sym

1 P sym
0 . In this gauge, the physical

symmetry on system agrees with the symmetry of boundary conditions as
〈Ay〉 = 0. Then the physical symmetry is generated by gauge subgroup
whose generators are given by

Hsym =

{
λa

2
; [λa, P sym

0 ] = [λa, P sym
1 ] = 0

}
. (3.17)

3.2 The classification of equivalence class for SU(N)
gauge theory

In this subsection, we consider the classification of boundary conditions into
the equivalence classes for SU(N) case. First, we note that the eigenvalues of
P0 and P1 must be +1 or −1 due to the parity condition (3.4). The diagonal
P0 and P1 can be specified by three non-negative integers (p, q, r) as follows:

diag P0 =

N︷ ︸︸ ︷
(+1, · · · , +1, +1, · · · , +1,−1, · · · ,−1,−1, · · · ,−1)

diag P1 = (+1, · · · , +1,︸ ︷︷ ︸
p

−1, · · · ,−1,︸ ︷︷ ︸
q

+1, · · · , +1,︸ ︷︷ ︸
r

−1, · · · ,−1)︸ ︷︷ ︸
s=N−p−q−r

,
(3.18)

where N ≥ p, q, r, s ≥ 0. We denote the boundary conditions indicated by
(p, q, r) as [p; q, r; s].

Let us find the equivalence relations for diagonal P0 and P1. First, we
consider SU(2) case with the boundary conditions (P0, P1, U) = (τ3, τ3, I).
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τi denotes the Pauli matrix. In this case, under the boundary changing gauge
transformation Ω = exp

{
i
(

αy
2πR

)
τ2

}
we get the equivalence relation

(τ3, τ3, I) ∼ (τ3, e
iατ2τ3, e

iατ2), (3.19)

and for α = π we get

(τ3, τ3, I) ∼ (τ3,−τ3,−I). (3.20)

In SU(N) case, we can obtain the following equivalence relations by using
(3.20) as SU(2) subgroup gauge transformation.

[p, q, r, s] ∼ [p − 1; q + 1, r + 1; s − 1] for p, s ≥ 1
∼ [p + 1; q − 1, r − 1; s + 1] for q, r ≥ 1.

(3.21)

Next, we consider the non-diagonal P0 and P1. In this case, we can always
diagonalize one of them by global gauge transformation, and suppose P0 is
diagonalized. In general, P1 is not diagonal, but by the appropriate boundary
changing gauge transformation we can always relate non-diagonal P0 and P1

to the both diagonal one by the equivalence relation. This calculation is
summarized in Appendix A. It implies that each equivalence class includes
at least one both diagonal representation of P0 and P1.

From these information we can count the number of equivalence class for
SU(N) case on M4 × S1/Z2. The discussion reduces to counting number of
both diagonal P0 and P1 representations in (3.18) subtracted by the number
of equivalence relations in (3.21). We denote the former number by n1 and
the later number by n2 and write [p; q, r; s] = [N − k; q, r; k − j], where
j = q + r. The number k runs from 0 to N , and j runs from 0 to k. For
fixed (k, j), there are (j + 1) configurations for (q, r). Then the number n1

is given by
N∑

k=0

k∑
j=0

(j + 1) =
1

6
(N + 1)(N + 2)(N + 3). (3.22)

The equivalence relation (3.21) can be written as [N − k; q, r; k − j] = [N −
k − 1; q + 1, r + 1; k − j − 1] and k and j run from 0 to N − 1 and from 0 to
k − 1 respectively. Hence

N−1∑
k=0

k−1∑
j=0

(j + 1) =
1

6
(N − 1)N(N + 1). (3.23)
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From (3.22) and (3.23) we can fine that the number of equivalence classes
equals to (N + 1)2 (Strictly speaking, we can find that the number of equiv-
alence classes is at most (N + 1)2 from above discussion. Then we suppose
that no more equivalence relation exists).

3.3 The classification of mode expansions for SU(2)
gauge theory

In this subsection, we summarize the mode expansions in general boundary
conditions for SU(2) case. These mode expansions are useful for calculat-
ing the effective potential in general SU(N) case. The general boundary
conditions for SU(2) case are classified into three cases for P0 and P1.

The first case is P0 and P1 = I or −I. In this case, U = I or −I and the
residual gauge invariance on system is given by

Ω(x, y + 2πR) = Ω(x, y), Ω(x,−y) = Ω(x, y), (3.24)

from (3.11). Therefore, a gauge potential is written as

Ω(x, y) = exp

{
i

3∑
a=1

ωa(x, y)τa

}
ωa(x, y) =

1√
πR

ωa,0(x) +

√
2

πR

∞∑
n=1

ωa,n cos
ny

R
.

(3.25)

The y-independent mode corresponds to the residual gauge invariance at low
energy. Components of field is either even or odd under parity transforma-
tions for this case. The mode expansions correspond to the following four
types:

φ(++)(x, y) =
1√
πR

φ0(x) +

√
2

πR

∞∑
n=1

φn(x) cos
ny

R

φ(−−)(x, y) =

√
2

πR

∞∑
n=1

φn(x) sin
ny

R

φ(+−)(x, y) =

√
2

πR

∞∑
n=0

φn(x) cos
(n + 1

2
)y

R

φ(−+)(x, y) =

√
2

πR

∞∑
n=0

φn(x) sin
(n + 1

2
)y

R
.

(3.26)
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The notation φ(±±) represents even or odd under P0, P1 parity transforma-
tions respectively.

The second case is P0 = I or −I and P1 = τ3. If P0 ∝ I we can diagonalize
P1 by global gauge transformation. Hence if P1 is not proportional to I we
can always take P1 = τ3. In this case, the residual gauge invariance is given
by

Ω(x, y + 2πR)τ3 = τ3Ω(x, y), Ω(x,−y) = Ω(x, y), (3.27)

and gauge potential is written as(
ω1(x, y)
ω2(x, y)

)
=

√
2

πR

∞∑
n=0

(
ω1,n(x)
ω2,n(x)

)
cos

(n + 1
2
)y

R

ω3(x, y) =
1√
πR

ω3,0(x) +

√
2

πR

∞∑
n=1

ω3,n(x) cos
ny

R
.

(3.28)

Therefore the low energy residual gauge invariance corresponds to U(1). The
mode expansions for field components are included in (3.26)

The third case is P0 = τ3 and P1 = τ3e
2πi(α1τ1+α2τ2). We can set α1 = 0

and α2 = α without loss of generality. Then, U = e−2πiατ2 and the residual
gauge invariance is given by

Ω(x, y + 2πR) = e−2πiατ2Ω(x, y)e2πiατ2

Ω(x,−y) = τ3Ω(x, y)τ3,
(3.29)

and (3.29) leads to

ω2(x, y) =

√
2

πR

∞∑
n=1

ω2,n(x) sin
ny

R(
ω1(x, y)
ω3(x, y)

)
=

√
1

πR

∞∑
n=−∞

vn(x)

(
sin (n+2α)y

R

cos (n+2α)y
R

)
.

(3.30)

In this case, whole SU(2) symmetry is broken, and the low energy U(1)
residual gauge invariance appears at α = 0,±1

2
,±1, · · · . The mode expansion

depends on the representation in SU(2). As a example, we consider a scalar
field in fundamental representation. The mode expansion is given by(

φ1(x, y)
φ2(x, y)

)
=

√
1

πR

∞∑
n=−∞

φn(x)

(
cos (n+α)y

R

sin (n+α)y
R

)
. (3.31)

For scalar field in adjoint representation, the mode expansion is the same as
(3.30).
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4 The formulation of gauge theory on M 4 ×
S1/Z2 with the dynamics of boundary con-

ditions

4.1 The definition of model

In previous section, we reviewed the field theory on S1/Z2 orbifold and found
there is the arbitrariness for boundary conditions imposed on fields. From
now on, we try to determine physically realized boundary conditions from
the dynamics. For this purpose, we need the model including the dynamics of
boundary conditions, therefore in this section we give the definition of model
with dynamical boundary conditions. This section is based on our original
work[58]. We focus on SU(N) gauge theory on M4 × S1/Z2, and define the
partition function on system by

Z =

∫
C

dP0

∫
C

dP1

∫
DAMDφDψ

∣∣∣∣
P0,P1

eiS(AM ,φ,ψ,P0,P1), (4.1)

where,
C = {Pj ∈ U(N), P 2

j = 1} j = 0, 1 (4.2)

and S(AM , φ, ψ, P0, P1) is the action depending on gauge, fermion, scalar
fields and boundary condition variables. The symbol |P0,P1 means we restrict
the functional integral regions for fields to preserve the boundary conditions
(P0, P1). dP0 and dP1 are defined by U(N) invariant measures. We suppose
the action S(AM , φ, ψ, P0, P1) is SU(N) gauge invariant.

4.2 Analysis of integral on dP0 and dP1

In this subsection, we discuss the general properties of integration over
boundary conditions

∫
C

dP0

∫
C

dP1. First, under the following transforma-
tion for integral variable

P0 = U †P ′
0U, U ∈ U(N) (4.3)

we can find ∫
C

dP0 =

∫
C

dP ′
0, (4.4)
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from the property d[U †P ′
0U ] = dP ′

0 for invariant measure, and (P ′
0)

2 = 1 for
any P ′

0 ∈ UCU †. The same discussion can be applied to P1.
Next, we will give the method to splits the integrations P0 and P1 be-

tween diagonal variables and off-diagonal variables[59, 60]. We start with a
integration

F =

∫
C

dP0

∫
C

dP1f(P0, P1), (4.5)

where f(P0, P1) is a function depending on P0 and P1, and we assume
f(P0, P1) is invariant under transformations P0 → UP0U

†, P1 → UP1U
†

for U ∈ U(N):
f(UP0U

†, UP1U
†) = f(P0, P1). (4.6)

Before the analysis, we need to regularize the integral region C by infinitesi-
mal regularization parameter µ as follows:

C → Ĉ ≡ {Pj ∈ U(N), ρi = ±eiµi , 0 ≤ µi ≤ µ ≪ 1} µ : real (4.7)

for reason that we will mention later. ρi (1 ≤ i ≤ N) denote eigenvalues of
Pj (j = 0, 1) and in the limit µ → 0 we restore the original definition.

Then, we define the function

∆−1(P0) =

∫
dU

∏
1≤i<j≤N

δ(2)[(UP0U
†)ij]

δ(2)[(UP0U
†)ij] = δ[ℜ(UP0U

†)ij]δ[ℑ(UP0U
†)ij],

(4.8)

where dU denotes the invariant measure for U(N) and the symbol
∫

dU
means we integrate over whole region on U(N). Substituting the function
(4.8) to (4.5) we find

F =

∫
Ĉ

dP0

∫
Ĉ

dP1∆(P0)

∫
dU

∏
1≤i<j≤N

δ(2)[(UP0U
†)ij]f(P0, P1). (4.9)

We change the variables as P0 = U †P ′
0U and P1 = U †P ′

1U , then, using
(4.4), (4.6) and the fact that function (4.8) is invariant under the unitary
transformation of variable, (4.9) is transformed to

F =

∫
dU

∫
Ĉ

dP ′
0

∫
Ĉ

dP ′
1∆(P ′

0)
∏

1≤i<j≤N

δ(2)[(P ′
0)ij]f(P ′

0, P
′
1). (4.10)
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Then, we normalize
∫

dU = 1 and carry out integration of P ′
0 with delta

function. (4.10) becomes

F =

∫
dΛ0

∫
Ĉ

dP ′
1∆(Λ0)f(Λ0, P

′
1), (4.11)

where

∆−1(Λ0) =
(2π)N∏

1≤i<j≤N

|ϵi − ϵje
iµij |2

, µij = µj − µi. (4.12)

ϵi, ϵj are +1 or −1. The symbol
∫

dΛ0 denote the integration over only

diagonal elements in Ĉ, and it is given by∫
dΛ0 =

∑
±1

∫ µ

0

∏
1≤n≤N

dµn. (4.13)

∑
±1

means the summation over all combinations we assign +1 or −1 to ϵi (1 ≤

i ≤ N) in (4.11) and (4.12).
We can apply the same calculation from (4.8) to (4.12) to P1 part and we

have

F =

∫
dΛ0

∫
dΛ1∆(Λ0)∆(Λ1)

∫
dUf(Λ0, U

†Λ1U), (4.14)

where,

∆−1(Λ1) =
(2π)N∏

1≤p<q≤N

|ϵ′p − ϵ′qe
iµ′

pq |2
, µ′

pq = µ′
q − µ′

p, (4.15)

∫
dΛ1 =

∑
±1

∫ µ′

0

∏
1≤m≤N

dµ′
m. (4.16)

µ′ ≪ 1 is the regularization parameter, and ϵ′p, ϵ
′
q are +1 or −1. For the

variables P0, P1 ∈ U(N), N ≥ 3, taking limit µ, µ′ → 0 leads to F → 0 for
any f(P0, P1). It means that the integral regions for boundary conditions
correspond to measure zero regions in U(N) invariant measure. Therefore
we must redefine the partition function (4.1) to make it well-defined.
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4.3 Integration of partition function over boundary
conditions

In this subsection, we apply the analysis discussed in section 4.2 to our model
defined in section 4.1. As a result, we will find that only restricted sets of
boundary conditions practically contribute to the partition function. First,
we need to redefine our partition function in order to make it well-defined as
I mentioned in previous section. The modified partition function is given by

Z = V −1

∫
Ĉ

dP0

∫
Ĉ

dP1

∫
DAMDφDψ

∣∣∣∣
P0,P1

eiS(AM ,φ,ψ,P0,P1), (4.17)

where

V ≡
∫

Ĉ

dP0

∫
Ĉ

dP1 =

∫
dΛ0

∫
dΛ1∆(Λ0)∆(Λ1). (4.18)

We regularized the integral regions for boundary conditions C → Ĉ with the
regularization parameters µ and µ′ just as section 4.2.

The field values are not defined in this regularization since P 2
0 , P 2

1 ̸= 1.
Therefore, we also redefine the parity transformation matrices (P0, P1) as

P̂0 ≡ (P−2
0 )

1
2 P0, P̂1 ≡ (P−2

1 )
1
2 P1, (4.19)

where

A
1
2 = UΛ

1
2 U †, Λ

1
2 =


√

a1 √
a2

. . .

 A ∈ U(N). (4.20)

ai (i = 1, 2, · · · ) are the eigenvalues of A, and we choose the positive square
root of the eigenvalues as the convention. In this prescription, we find the
eigenvalues of P̂0, P̂1 are +1 or −1 and P̂ 2

0 = P̂ 2
1 = 1. We can restore

these to the original definition in the limit µ, µ′ → 0 and the field values
are well-defined. From now on, the symbol |P0,P1 implies that we restrict
the functional integral regions for fields AM , φ, ψ to preserve the boundary
condition P̂0, P̂1.

The next step is to split the integral variables for boundary conditions
into diagonal components and off-diagonal components according to section
4.2. Using the function (4.8), the partition function becomes

Z = V −1

∫
Ĉ

dP0

∫
Ĉ

dP1

∫
DAMDφDψ

∣∣∣∣
P0,P1

∆(P0)

∫
dUδ(2)(UP0U

†)eiS(AM ,φ,ψ,P0,P1),

(4.21)
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where,

δ(2)(UP0U
†) ≡

∏
1≤i<j≤N

δ(2)[(UP0U
†)ij]. (4.22)

Then, we change the variable P0 → P ′
0 = UP0U

† and use (4.4) we get

Z = V −1

∫
dU

∫
Ĉ

dP ′
0

∫
Ĉ

dP1

∫
DAMDφDψ

∣∣∣∣
U†P ′

0U,P1

∆(P ′
0)δ

(2)(P ′
0)

×eiS(AM ,φ,ψ,U†P ′
0U,P1).

(4.23)

and integrate out
∫

Ĉ
dP0 with the delta function δ(2)(P ′

0), it becomes

Z = V −1

∫
dU

∫
dΛ0

∫
Ĉ

dP1∆(Λ0)

∫
DAMDφDψ

∣∣∣∣
U†Λ0U,P1

×eiS(AM ,φ,ψ,U†Λ0U,P1).

(4.24)

U †Λ0U is a unitary transformation for U ∈ U(N), but we can regard it as
a unitary transformation for U ′ ∈ SU(N) because U †Λ0U remains invariant
under U → U ′ = ΛU for a diagonal Λ ∈ U(N), and it is written as U ′†Λ0U

′ =
U †Λ0U for U ′ = ΛU ∈ SU(N) by suitable Λ. Then, we can rewrite (4.24) as

Z = V −1

∫
dU

∫
dΛ0

∫
Ĉ

dP1∆(Λ0)

∫
DAMDφDψ

∣∣∣∣
U ′†Λ0U ′,P1

×eiS(AM ,φ,ψ,U ′†Λ0U ′,P1)

U ′ ∈ SU(N).

(4.25)

Change the variable P1 → P ′
1 = U ′P1U

′† and use (4.4), we have

Z = V −1

∫
dU

∫
dΛ0

∫
Ĉ

dP ′
1∆(Λ0)

∫
DAMDφDψ

∣∣∣∣
U ′†Λ0U ′,U ′†P ′

1U ′

×eiS(AM ,φ,ψ,U ′†Λ0U ′,U ′†P ′
1U ′).

(4.26)

The integrand in (4.26) equals to the original system with the boundary

conditions (Λ̂0, P̂ ′
1) up to the global gauge transformation U ′. The system

should be independent on global gauge. Then, (4.26) becomes

Z = V −1

∫
dU

∫
dΛ0

∫
Ĉ

dP ′
1∆(Λ0)

∫
DAMDφDψ

∣∣∣∣
Λ0,P ′

1

×eiS(AM ,φ,ψ,Λ0,P ′
1).

(4.27)
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Normalize
∫

dU = 1, and apply the same procedure to P ′
1. Then, equation

(4.27) becomes

Z =

∑
±1

∫ µ

0

∏
1≤n≤N

dµn

∫ µ′

0

∏
1≤m≤N

dµ′
m∆(Λ0)∆(Λ1)I(AM , φ, ψ, Λ0, Λ1)

∑
±1

∫ µ

0

∏
1≤n′≤N

dµn′

∫ µ′

0

∏
1≤m′≤N

dµ′
m′∆(Λ0)∆(Λ1)

(4.28)
where

I(AM , ψ, Λ0, Λ1) ≡
∫

dU

∫
DAMDφDψ

∣∣∣∣
Λ0,U†Λ1U

eiS(AM ,φ,ψ,Λ0,U†Λ1U). (4.29)

We suppose I(AM , φ, ψ, Λ0, Λ1) is almost constant value on the integral vari-
ables µn and µ′

m, compared with ∆(Λ0), ∆(Λ1). Then, we can replace the

function

∫ µ

0

∏
1≤n≤N

dµn

∫ µ′

0

∏
1≤m≤N

dµ′
m∆(Λ0)∆(Λ1) with the integrand on par-

ticular values µn, µ′
m (0 < µn, µ′

m < µ) times the integral regions by mean-
value theorem. The conditions {µij ̸= 0, µ′

pq ̸= 0 (1 ≤ i, p < j, q ≤ N)} is
required for any finite µ if ϵi and ϵj or ϵ′p and ϵ′q have the same sign, since
these values correspond to the maximum or minimum of the integrand. After
this replacement, the integral regions of dµn, dµ′

m between the denominator
and numerator in (4.28) cancel out. As a result, we have

Z =

∑
±1

∏
1≤i,p<j,q≤N

|ϵi − ϵje
iµij |2|ϵ′p − ϵ′qe

iµ′
pq |2I(AM , φ, ψ, Λ0, Λ1)∑

±1

∏
1≤k,v<l,w≤N

|ϵk − ϵle
iµkl |2|ϵ′v − ϵ′weiµ′

vw |2
. (4.30)

In the summation
∑
±1

, the factors |1 − eiµij |2 and |1 − eiµ′
pq | give 0 to each

term in (4.30) in the limit µ, µ′ → 0. We suppose ”a” is the lowest number
of the factors ,such as |1− eiµij |, each term has in (4.30). The lowest number
of the factors such as |1−eiµ′

pq | is also a. Then, we multiply the denominator
and numerator in (4.30) by |1 − eiµ|−2a. As taking the limit µ → 0, we can
see

|1 − eiµij |
|1 − eiµ|

=

∣∣∣∣µij

µ

∣∣∣∣ → Cij > 0. (4.31)
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Cij must be finite value in order to be consistent with mean-value theorem.
There is at least one term which has finite value in denominator and numer-
ator of (4.30) in this limit. Such finite terms correspond to the combination
which has the highest number of pairs such as {+1,−1} in ϵi (1 ≤ i ≤ N).
The other terms go to 0 in the limit µ → 0 and after the limit, the set
{ϵi, (1 ≤ i ≤ N)} corresponds to the eigenvalues of P0. Therefore we con-
clude that only the eigenvalue set of P0 which have the largest number of
{+1,−1} pairs contribute to the partition function. We have the same con-
clusion for P1 integral.

Next, let us consider the case that boundary conditions (Λ′
0, Λ

′
1) are re-

lated to a diagonal boundary conditions (Λ0, Λ1) by the permutation of the
eigenvalue sets. we show I(AM , φ, ψ, Λ′

0, Λ
′
1) = I(AM , φ, ψ, Λ0, Λ1). Note

that the factor
∏

1≤i<j≤N

|ϵi − ϵje
iµij |2,

∏
1≤p<q≤N

|ϵ′p − ϵ′qe
iµ′

pq |2 gives the identi-

cal contribution to I(AM , φ, ψ, Λ′
0, Λ

′
1) and I(AM , φ, ψ, Λ0, Λ1) since these are

transformed into the identical form by relabels of integral variables µn and
µ′

m. Since (Λ′
0, Λ

′
1) is the permutation of eigenvalues sets in (Λ0, Λ1), they

satisfy the relations

Λ′
0 = V †

0 Λ0V0 Λ′
1 = V †

1 Λ1V1

V0, V1 ∈ SU(N),
(4.32)

then, for the boundary condition (Λ0, Λ1), we have

I(AM , φ, ψ, Λ′
0, Λ

′
1)

=

∫
dU

∫
DAMDφDψ

∣∣∣∣
Λ′

0,U†Λ′
1U

eiS(AM ,φ,ψ,Λ′
0,U†Λ′

1U)

=

∫
dU

∫
DAMDφDψ

∣∣∣∣
V †
0 Λ0V0,U†V †

1 Λ1V1U

eiS(AM ,φ,ψ,V †
0 Λ0V0,U†V †

1 Λ1V1U).

(4.33)

Under global gauge transformation Λ′
0 → V0Λ

′
0V

†
0 , U †Λ′

1U → V0U
†Λ′

1UV †
0 ,

we find

I(AM , φ, ψ, Λ′
0, Λ

′
1)

=

∫
dU

∫
DAMDφDψ

∣∣∣∣
Λ0,V0U†V †

1 Λ1V1UV †
0

eiS(AM ,φ,ψ,Λ0,V0U†V †
1 Λ1V1UV †

0 ).
(4.34)

Using the property of
∫

dU invariant measure, we get

I(AM , φ, ψ, Λ′
0, Λ

′
1) = I(AM , φ, ψ, Λ0, Λ1). (4.35)
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Then, according to the discussion in section 3.2, we find that the boundary
conditions (Λ0, Λ1) and (Λ′

0, Λ
′
1) are in the same equivalence class. Hence

(4.35) is consistent with the Hosotani mechanism. Moreover, from the dis-
cussion in Appendix A we can see that there is at least one both diagonal
representation of (P0, P1) in each equivalence class. Then, on the process that
arbitrary set of boundary conditions transforms to both diagonal representa-
tions by global and local gauge transformations, there is no transformation
which changes the eigenvalues set of the boundary conditions. Therefore, ar-
bitrary boundary conditions (P0, P1) and its eigenvalue set (Λ0, Λ1) belong to
the same equivalence class. Since a permutation (Λ′

0, Λ
′
1) of diagonal repre-

sentations (Λ0, Λ1) belong to the equivalence class with (Λ0, Λ1), we conclude
equivalence classes for SU(N) gauge theory on S1/Z2 are completely classi-
fied by eigenvalues sets for boundary conditions. Therefore, on the process
that we compute some physical observables, the integrand on

∫
dU in (4.29)

is independent of the variable U , so it is sufficient to compute only about the
both diagonal representations (P0, P1) = (Λ0, Λ1) if we want to know some
physical observables.

4.4 Application to several examples

In previous section, we gave the general discussion for dynamics of boundary
conditions in SU(N) gauge theory on S1/Z2 and got the result that only
restricted sets of boundary conditions practically contribute to the partition
function. Let us apply our formulation to SU(2), SU(3) and SU(5) cases.
Especially in SU(5) case, we will show that SM gauge symmetry SU(3) ×
SU(2) × U(1) naturally appears in our formulation.

First, we consider SU(2) case as the simplest example. In this case, only
one equivalence class gives non-vanishing contribution to partition function
and it is characterized by the eigenvalue set{

P0 = {+1,−1}
P1 = {+1,−1}

}
. (4.36)

Non-vanishing contribution is generated by unitary transformations of (4.36).
The diagonal representation (4.36) leads to SU(2) → U(1) symmetry of
boundary conditions.

Then, for SU(3) case the four equivalence classes contribute to partition
function, and these equivalence classes are characterized by the following
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eigenvalue sets

(1){
P0 = {+1, +1,−1}
P1 = {+1, +1,−1}

} (2){
P0 = {+1, +1,−1}
P1 = {−1,−1, +1}

}
(3){

P0 = {−1,−1, +1}
P1 = {+1, +1,−1}

} (4){
P0 = {−1,−1, +1}
P1 = {−1,−1, +1}

}
.

(4.37)

The symmetry of boundary conditions correspond to SU(2)×U(1) for (1) ∼
(4). The physical symmetry can be different among (1) ∼ (4) depending on
matter content on the system. The partition function (4.28) is written as

Z = C1I(1) + C2I(2) + C3I(3) + C4I(4). (4.38)

Here, I(i) i = 1 ∼ 4 indicate the I(AM , ψ, Λ0, Λ1) in (4.29) with the boundary

conditions (i), i = 1 ∼ 4. Since the factor
∏

1≤i<j≤N

|ϵi−ϵ′je
iµij |2,

∏
1≤p<q≤N

|ϵ′p−

ϵ′qe
iµ′

pq |2 gives the identical contribution to (4.38) we dropped this factor as
overall constant. Ci denote the coefficients corresponding to all permutation
in the eigenvalue sets (i). In SU(3) case, these constants are

Ci = (3C1)
2 i = 1 ∼ 4. (4.39)

So, we can see all coefficients are the same, and drop this coefficients as
overall constants.

Finally, we consider SU(5) case. Just as in the SU(3) example, four
equivalence classes contribute to the partition function. These equivalence
classes are characterized by

(1){
P0 = {+1, +1, +1,−1,−1}
P1 = {+1, +1, +1,−1,−1}

} (2){
P0 = {+1, +1, +1,−1,−1}
P1 = {−1,−1,−1, +1, +1}

}
(3){

P0 = {−1,−1,−1, +1, +1}
P1 = {+1, +1, +1,−1,−1}

} (4){
P0 = {−1,−1,−1, +1, +1}
P1 = {−1,−1,−1, +1, +1}

}
.

(4.40)
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In (1) ∼ (4), the symmetry of boundary conditions corresponds to SM gauge
symmetry SU(3) × SU(2) × U(1). Therefore, we can get SU(3) × SU(2) ×
U(1) physical symmetry if the expectation value of gauge field 〈Ay〉 does
not arise, in other words Wilson line phase have the trivial configuration.
We give the further analysis for SU(5) case in the following sections. The

partition function is written as (4.38) and the factor
∏

1≤i<j≤N

|ϵi − ϵ′je
iµij |2,∏

1≤p<q≤N

|ϵ′p − ϵ′qe
iµ′

pq |2 and Ci give the identical contribution for boundary

conditions (1) ∼ (4) and can be dropped as overall constant just as in SU(3)
case.

5 Calculation of the effective potential for SU(5)

gauge theory on S1/Z2

In previous section, we showed that only restricted sets of boundary condi-
tions contribute to the partition function. Especially, for SU(5) case these
sets are given by (4.40) and their equivalence classes. Then, we try to de-
termine the physically realized boundary condition by further analysis: we
suppose that the equivalence class which has the lowest energy density is
physically selected as I mentioned in the introduction. For this purpose, we
need to evaluate the effective potential on system. In this section, we review
the method to calculate the effective potential for SU(5) case with the diago-
nal boundary conditions (4.40) at one loop level. This section is based on Ref
[55]. First, we note the boundary conditions (4.40) identically contribute to
gauge field since gauge field is in adjoint representation. Hence, the degree of
freedom of Wilson line also takes place identically. The difference for these
boundary conditions arise in matter content on system.

Then we calculate the effective potential by background field method at
one loop level. The Lagrangian density on D dimensional spacetime is given
by

L = Lgauge + Lmatter

Lgauge = −1

2
TrFMNFMN − 1

α
TrF [A]2 − Tr

(
η̄
δF [A]

δAM

DMη

)
Lmatter = ψ̄iγMDMψ + |DMφ|2 − V [φ, ψ],

(5.1)
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where the gauge fixing term with a gauge parameter α and ghost term cor-
respond to the second and third terms respectively, and we choose α = 1. ψ
and φ denote Dirac and complex scalar fields and V [φ, ψ] is any interaction
term. For simplicity, we consider only massless case for fermion and scalar
fields. The covariant derivative is given by DM = ∂M + igT aAM , where T a

is an appropriate representation matrix of gauge group.
Then, we split the gauge field AM into the classical part A0

M , which
corresponds to background field and the solution of classical equation of
motion, and the quantum part Aq

M , which corresponds to integral variable for
functional integral. Under the gauge transformation Ω, each field transforms
to

A0
M → A′0

M = ΩA0
MΩ† − i

g
Ω∂MΩ†

Aq
M → A′q

M = ΩAq
MΩ†

ψ → ψ′ = Tψ[Ω]ψ, φ → φ′ = Tφ[Ω]φ.

(5.2)

Then, we impose the following gauge fixing condition

F [A] = DM(A0)AqM = ∂MAqM + ig[A0
M , AqM ] = 0, (5.3)

and suppose the background field also satisfies F [A0] = 0.
The effective potential Veff depends on not only A0

M buy also the bound-
ary conditions (P0, P1, U, eiπβ) so we denote Veff as Veff [A0; P0, P1, U, β]. Let
us consider the boundary changing gauge transformation Ω. We suppose the
boundary conditions (P0, P1, U, eiπβ) transform to the new boundary condi-
tion set (P ′

0, P
′
1, U

′, eiπβ) which satisfies the condition (3.13) under this gauge
transformation. Then, the action is invariant expect the gauge fixing term.
If the gauge transformation satisfies the additional condition

D0M(∂MΩ†Ω) + ig[A0M , ∂MΩΩ†] = 0, (5.4)

the entire action remains invariant. Here, we denoted DM(A0) by D0
M for

short. Therefore, if the gauge transformation Ω satisfies the conditions (3.13)
and (5.4), the effective potentials satisfy the relation

Veff [A
0; P0, P1, U, β] = Veff [A

′0; P ′
0, P

′
1, U

′, β]. (5.5)

This relation is required by the Hosotani mechanism since the entire action
is invariant. From (5.5) we find the effective potential is a invariant func-
tion under the gauge transformation which remains the boundary conditions
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invariant. Moreover, if we consider the case that the boundary conditions
(P0, P1, U, eiπβ) change to (P sym

0 , P sym
1 , U sym, eiπβ) in (3.15) under the gauge

transformation, then the gauge transformation satisfies the condition (5.4)
for A0 = 〈A〉 in (P0, P1, U, eiπβ). Hence we get the relation

Veff [〈A0〉; P0, P1, U, β] = Veff [〈A′0〉 = 0; P sym
0 , P sym

1 , U ′, β]. (5.6)

By using these information, we can calculate the effective potential with
the boundary conditions (4.40). We note the degree of freedom of Wilson line
appears in only the component Aa

y whose generator is in HW given by (3.16).
Therefore, the vacuum expectation value A0 for the boundary conditions
(4.40) can be parameterized as

A0
y =

1

2gR

(
0 Θ
Θ† 0

)
. (5.7)

Θ denotes a 3×2 matrix. Then, the boundary conditions (4.40) have GSM =
SU(3) × SU(2) × U(1) as the symmetry of boundary conditions. Therefore
some of components in Θ are unphysical parameters. Under a appropriate
global gauge transformation in GSM , Θ brings in the form

Θ =

 α γ
0 β
0 0

 , (5.8)

where α and γ are complex parameters and β is a real parameter. The
effective potential must be a invariant function of these α, β and γ under
GSM gauge transformation. Only possible combinations of these parameters
appear as the eigenvalues of ΘΘ† and Θ†Θ where

ΘΘ† =

 |α|2 + |γ|2 βγ 0
βγ∗ β2 0
0 0 0

 , Θ†Θ =

(
|α|2 γα∗

γ∗α β2 + |γ|2
)

. (5.9)

The eigenvalues of ΘΘ† are given by λ+, λ− and 0, and those of Θ†Θ are
given by λ+ and λ−, where

λ± =
1

2

(
β2 + |α|2 + |γ|2 ±

√
(β2 + |α|2 + |γ|2)2 − 4|α|2β2

)
. (5.10)

Therefore the effective potential is a function of λ+ and λ−. It means that
one can simplify the form of Θ without loss of generality, then we can set
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α = a, β = b and γ = 0 where a and b are real values. In this case, λ±
correspond to a2 and b2. Hence we evaluate Veff for

Θ =

 a 0
0 b
0 0

 . (5.11)

Then, the resultant Veff (a, b) should be interpreted as Veff (
√

λ+,
√

λ−).
The one-loop effective potential for A0 is obtained by integrating out the

fields Aq
M , η, ψ and φ up to quadratic terms of these fields. The contributions

from each field are given by

Veff [A
0] = Veff [A

0]g+gh + Veff [A
0]fermion + Veff [A

0]scalar

Veff [A
0]g+gh = −(D − 2)

i

2
Tr ln D0

LD0L

Veff [A
0]fermion = f(D)

i

2
Tr ln D0

LD0L, f(D) = 2[D/2]

Veff [A
0]scalar = −2

i

2
Tr ln D0

LD0L,

(5.12)

where we supposed F 0
MN = 0. Then the expectation values in D0

M arise in
the components in (5.7) and (5.11).

6 Determination of equivalence class from the

dynamics of boundary conditions

6.1 Non-supersymmetric SU(5)

In this section, we determine the physically realized equivalence class from
the dynamics of boundary conditions. As we mentioned in the previous
section, we assume that the equivalence class which has the lowest vacuum
energy density is physically selected, so we determine the equivalence class
by evaluating the effective potential on system. We focus our attention to
the SU(5) case, but the discussion is easily generalized to SU(N) case.

In section 4 we found that only restricted equivalence classes contribute to
the partition function and for SU(5) case those are specified by the following
diagonal boundary condition sets:{

P0 = {−1,−1,−1, +1, +1}
P1 = {−1,−1,−1, +1, +1}

} {
P0 = {+1, +1, +1,−1,−1}
P1 = {+1, +1, +1,−1,−1}

}
(6.1)
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{
P0 = {−1,−1,−1, +1, +1}
P1 = {+1, +1, +1,−1,−1}

} {
P0 = {+1, +1, +1,−1,−1}
P1 = {−1,−1,−1, +1, +1}

}
. (6.2)

The equivalence classes which practically contribute to the partition func-
tion are generated by the separate unitary transformations of P0 and P1 in
(6.1) and (6.2). In following calculation, we will use the above diagonal rep-
resentations in (6.1) and (6.2) for evaluating the effective potential. Note
the two sets in (6.1) (or (6.2)) are related by the transformations P0 → −P0

and P1 → −P1 and the transformation P1 → −P1 changes the two sets in
(6.1) to the two sets in (6.2). Therefore, these four boundary condition sets
make no difference for gauge fields because gauge field belongs to the adjoint
representation of SU(5). It is important that the symmetry of boundary
conditions corresponds to SU(5) → SU(3)×SU(2)×U(1) in four boundary
condition sets in (6.1) and (6.2), therefore the physical symmetry on system
has SM symmetry only if Wilson line phase has trivial configuration, namely
all gauge fields have vanishing vacuum expectation values. The differences of
these boundary condition sets appear in matter content of the system (ψ, φ),
and these differences affect shape of the effective potential for gauge fields.

In general, the differences of minimal values of effective potentials among
these four equivalence classes become divergent due to the contributions of
scalar fields. Then if we suppose scalar fields exist in the pair like(

φ
φ′

)
(x,−y) = ±P0

(
φ

−φ′

)
(x, y)(

φ
φ′

)
(x, πR − y) = ±eiπβφP1

(
φ

−φ′

)
(x, πR + y),

(6.3)

where βφ = 0 or 1. It is guaranteed that the differences of effective potential
among the four equivalence classes become finite. For the purpose that we
compare the minimal values of effective potentials, we put the rule that scalar
fields exist in the pair (6.3). In supersymmetric case, such pairs naturally
appear in hypermultiplets. Under this rule, the effective potentials for the
two boundary condition sets in (6.1) or (6.2) are completely degenerate at one
loop level. Then we can not compare the vacuum energy densities between
the two sets in (6.1) or (6.2). This degenerates may be lifted at the higher
loop correction. For the moment, we compare the energy differences between
in (6.1) and (6.2). We compare the minimal values of effective potential
between the boundary condition sets on the left sides in (6.1) and (6.2) and
suppose the degenerates in (6.1), (6.2) are lifted by higher loop corrections.
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We call the boundary condition set on the left side in (6.1) Type (I) and the
boundary condition set on the left side in (6.2) Type (II). We introduce the
notation

P ≡ {−1,−1,−1, +1, +1}. (6.4)

For Type (I), the boundary conditions of fermions in 5 representation are
written as

ψ5(x,−y) = ±Pγ5ψ(x, y)

ψ5(x, πR − y) = ±e−iπβ5
ψPγ5ψ(x, πR + y)

ψ5(x, y + 2πR) = e−iπβ5
ψψ(x, y),

(6.5)

where β5
ψ = 0 or 1. For scalar fields, the boundary condition set is given

by (6.3), where P0 and P1 are replaced by P ’s. The interchanging overall
constant + and − corresponds to interchanging the mode expansions between
right- and left-handed for fermions or φ and φ′ for scalar pairs, therefore give
the identical contributions to the effective potential. Therefore we do not
distinguish ± signs for overall constants from now on. We suppose there
are nf and mf fermion fields with β5

ψ = 0, 1 in 5 representation respectively,
and ns and ms scalar fields with βφ = 0, 1 in (6.3) respectively. For Type
(II), the boundary condition sets of fermion in 5 representation and scalar
fields are added by extra minus sign for (x, πR − y) → (x, πR + y) parity
transformation compared with the boundary condition sets for Type (I). It
means that we take the replacement nf ↔ mf and ns ↔ ms in order to
change from Type (I) to Type (II) boundary condition sets. For fermion
fields in 10 representation, the boundary condition set is represented by

ψ10
ij (x,−y) = ±(P )i′

i (P )j′

j γ5ψi′j′(x, y)

ψ10
ij (x, πR − y) = ±e−iπβ10

ψ (P )i′

i (P )j′

j γ5ψi′j′(x, πR + y)

ψ10
ij (x, y + 2πR) = e−iπβ10

ψ ψij(x, y),

(6.6)

where β10
ψ = 0 or 1. Since changing from P to −P preserve the boundary

conditions (6.6), there is no difference for changing from Type (I) to (II). We
suppose there are pf , qf fermion fields in 10 representation with β10

ψ = 0, 1
respectively in Type (I) and (II) case.

We can calculate the contributions to effective potential from gauge and
matter fields for the boundary conditions (6.1) and (6.2). For simplicity,
we suppose all fermion and scalar fields are massless, then the Lagrangian
density is given by (5.1). The detail of calculation is summarized in Appendix
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B and C. For gauge and ghost fields, the contribution to effective potential
is given by

V g+gh
eff (a, b) = −3C

{
f5(a)+f5(b)+f5(a+ b)+f5(a− b)+

1

2
f5(2a)+

1

2
f5(2b)

}
,

(6.7)
where

C =
3

64π7R5
, f5(x) =

∞∑
n=1

cos(nπx) − 1

n5
. (6.8)

There are the other a, b independent contributions. Since these term will not
contribute to our analysis, we dropped these terms. For a fermion field in 5
representation, the contribution to effective potential is given by

V 5 fermion
eff (a, b) = C

{
f5(β

5
ψ)+2f5(a−β5

ψ)+2f5(b−β5
ψ)+5

∫
d4p

(2π)4
ln

[
p2+

( n

R

)2
]}

(6.9)
For scalar field pairs with the boundary condition set given by (6.3) which
is replaced P0, P1 → P ’s, the contribution to effective potential is given by
(6.9) with opposite sign for overall constant and replacement β5

ψ → βφ. For
fermion fields in 10 representation, the contribution to effective potential is

V 10 fermion
eff (a, b) = C

{
2f5(β

10
ψ ) + 2f5(a − β10

ψ ) + 2f5(b − β10
ψ )

+2f5(a + b − β10
ψ ) + 2f5(a − b − β10

ψ ) + 10

∫
d4p

(2π)4
ln

[
p2 +

( n

R

)2
]} (6.10)

Then, we find that the effective potential Veff (a, b) is symmetric under a ↔ b,
a → −a and b → −b and periodic in a and b: Veff (a+2, b) = Veff (a, b+2) =
Veff (a, b).

There may be another contribution coming from the action S(P0, P1)
depending on P0, P1 variables. However these variables P0, P1 are indepen-
dent on the spacetime coordinates, therefore S(P0, P1) does not contribute to
effective potential unless the coefficients of each term in S(P0, P1) are propor-
tional to the spacetime volume. Then we assume the coefficients in S(P0, P1)
are not proportional to the spacetime volume, and ignore these contribution
to effective potential.

Let us evaluate the minimum of effective potential for various matter
contents. The effective potential is minimized at (a, b) = (0, 0), (1, 1) or
(1, 0) for enough small nf ,mf , ns,ms, pf , qf , where the effective potential is
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symmetric under a ↔ b, so the effective potential at (0, 1) is the equivalent
to the value at (1, 0). However for large nf ,mf , ns, ms, pf , qf , this condi-
tion is not valid. The reason is that, for example pf = qf = 1 case, the
contribution of fermions to effective potential is given by the sum of (6.10)
with β10

ψ = 0 and 1, and the summation of a, b depending part of fermion
contributions are almost canceled, but there still leaves small contribution
with the delicate dependence on a and b. For nf = mf = 1 case, the similar
effect takes place but is smaller than the effect for 10 representation. Then,
if nf , mf , pf , qf become large, this effect also be large and changes the min-
imal point slightly different from (a, b) = (0, 0), (1, 1) or (1, 0). In fact, in
the case nf = mf = 10, ns = ms = 0, pf = qf = 8 the minimal point of
effective potential becomes slightly different from (a, b) = (0, 0). From now
on, we evaluate the effective potential for small nf ,mf , ns,ms, pf , qf so that
the effective potential is minimized at (a, b) = (0, 0), (1, 1) or (1, 0). We
denote the effective potential with Type (I) boundary condition as V I

eff (a, b)
and V II

eff (a, b) for Type (II) boundary condition, and introduce the notations

N1 ≡ (nf − mf ) − (ns − ms)

N2 ≡ pf − qf .
(6.11)

The minimal points of effective potential and the difference between V I
eff (a, b)

and V II
eff (a, b) depend on only these combinations N1, N2, so we evaluate

V I
eff (a, b), V II

eff (a, b) for each N1, N2 as input parameters. The values of
N1, N2 are evaluated in the point of view for Type (I) boundary condition,
so we substitute −N1, N2 for matter content on system in order to evaluate
V II

eff (a, b).
For Type (I) case, when N1, N2 satisfy

N1 + N2 <
3

2
and N1 + 3N3 <

9

2
, (6.12)

V I
eff (a, b) is minimized at (a, b) = (0, 0). The physical symmetry on system

is SU(3) × SU(2) × U(1). When N1, N2 satisfy

N1 + N2 >
3

2
and − N1 + N2 <

3

2
, (6.13)

V I
eff (a, b) is minimized at (a, b) = (1, 1), and the physical symmetry is

[SU(2)]2 × [U(1)]2. When N1, N2 satisfy

N1 + 3N2 >
9

2
and − N1 + N2 >

3

2
, (6.14)

34



Figure 1: The a, b depending part of summation of (6.10) with β10
ψ = 0 and

1. The difference between maximum and minimum is much smaller than that
of contribution from gauge part, but the getting number of matter larger the
becoming this effect dominant.

V I
eff (a, b) is minimized at (a, b) = (1, 0), and the physical symmetry is

SU(2) × [U(1)]3.
In order to evaluate the minimum point of V II(a, b), we just take the

replacement N1 → −N1 in (6.12) - (6.14).
we compare the minimal value of V I

eff (a, b) to that of V II
eff (a, b) for each

N1, N2 in (6.11). The results are summarized as the tables in Appendix D.
We evaluate KK-mode of fermion and scalar fields, and their zero modes

correspond to the matter content of system at low energy scale. We introduce
the notation (±, ±) whose signs represent even or odd under parity trans-
formations P0, P1 for each component of field multiplets. We write down
the parity assignment for ” + ” overall constant in (6.3), (6.5) and (6.6).
For ” − ” overall constant, parity assignments in components are obtained
by replacement + ↔ − for both parity transformations. For fermion case,
only the components with (+, +) or (−,−) parity assignment have zero mode
and may be regarded as SM particles. For fermion fields in 5 representation
belonging to the boundary condition set (6.5),
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Figure 2: The effective potential Veff (a, b)/C for nf = mf = 10, ns = ms =
0, pf = qf = 8 case. The global minimum is located at (a, b) = (0.1581, 0).

ψ5 =


(−,−)
(−,−)
(−,−)
(+, +)
(+, +)

 for β5
ψ = 0, (6.15)

and for β5
ψ = 1 the parity assignments are given by taking the replacement

+ ↔ − for second parity in (6.15). For fermions in 10 representation be-
longing to boundary condition set (6.6),

ψ10 =


(+, +) (+, +) (−,−) (−,−)

(+, +) (−,−) (−,−)
(−,−) (−,−)

(+, +)

 for β10
ψ = 0, (6.16)

for β10
ψ = 1 parity assignments are also obtained by the replacement + ↔ −

for second parity in (6.16). For scalar field pairs, only components with
(+, +) parity assignment has zero modes, and for boundary condition set
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(6.3) which is replaced P0, P1 with P ’s,

φ =


(−,−)
(−,−)
(−,−)
(+, +)
(+, +)

 plus φ′ =


(+, +)
(+, +)
(+, +)
(−,−)
(−,−)

 for βψ = 0 (6.17)

the replacement + ↔ − for second parity leads to the parity assignment for
βψ = 1.

We investigate the two types of matter content on system with the bound-
ary conditions which has the lower vacuum energy density: The one is that
only Higgs field exists in bulk five dimensional spacetime and fermion fields
are located on one fixed point. The other is that Higgs and fermion fields of
SM particles live in the bulk, and in this case we need three fermions in 5 and
10 representations in parity assignments (6.15), (6.16) and one Higgs dou-
blet. The former case corresponds to, for example ns = 1, nf = mf = ms =
pf = qf = 0 (The Higgs field must arise in pair due to the condition (6.3)).
In this case, the physical symmetry is the SM symmetry. The later case cor-
responds to, for example nf = 3, mf ≥ 3, pf = 3, qf ≥ 2, ns = 1, ms = 0,
where mf , qf fermions are needed for vacuum expectation values to be stable
at the point which leads to SM gauge symmetry, and these fields do not be
observed at low energy since they have no zero mode for any component.
In both case, Type (I) boundary condition have the lower vacuum energy
density and should be physically realized.

6.2 Supersymmetric SU(5)

Let us consider the supersymmetric SU(5) case. In this case, the energy
difference of effective potential for different boundary condition sets is al-
ways finite. Therefore our formulation become more natural in supersym-
metric case. However if the system has exact supersymmetry, the contribu-
tions from bosonic and fermionic degree of freedom to effective potential are
completely canceled at one loop level, so we require some supersymmetry-
breaking mechanism in order to evaluate non-trivial effective potentials. We
introduce soft SUSY breaking terms due to the Scherk-Schwarz SUSY break-
ing mechanism[61] since it gets the evaluation of effective potentials easier.
The Scherk-Schwarz SUSY breaking on orbifold was investigated in Ref [62]-
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Figure 3: The evaluations of V I
eff (a, b)/C and V II

eff (a, b)/C in the matter
content ns = 1, nf = mf = ms = pf = qf = 0. The left and right
figures indicate V I

eff (a, b)/C and V II
eff (a, b)/C respectively, and in both case

the global minimums are located at (0, 0). Type (I) boundary condition have
the lower vacuum energy density.

Figure 4: The evaluations of V I
eff (a, b)/C and V II

eff (a, b)/C in the matter
content nf = mf = pf = 3, qf = 2, ns = 1, ms = 0. The left and
right figures indicate V I

eff (a, b)/C and V II
eff (a, b)/C respectively. The global

minimums are located at (0, 0) for V I
eff (a, b), and at (1, 1) for V II

eff (a, b). Type
(I) boundary condition have the lower energy density.
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[67]. The Hosotani mechanism with Scherk-Schwarz SUSY breaking was also
analyzed on M3 × S1 in Ref [68].

Five dimensional N = 1 SUSY corresponds to four dimensional N = 2
SUSY after dimensional reduction. A five dimensional gauge multiplet is
given by

V = (AM , λ, λ′, σ), (6.18)

and it is decomposed into a vector superfield and chiral superfield

V = (Aµ, λ), Σ = (σ + iAy, λ′) (6.19)

in four dimensional point of view. Five dimensional matter fields come in a
hypermultiplet

H = (h, hc†, h̃, h̃c†), (6.20)

and it represented by two chiral super fields

H = (h, h̃), Hc = (hc, h̃c). (6.21)

H and Hc have conjugate transformation under the gauge group.
Under the requirement that Lagrangian density must be single valued and

satisfy orbifold condition, the boundary conditions are written as, for gauge
multiplet (

V
Σ

)
(x,−y) = P0

(
V
−Σ

)
(x, y)P †

0 ,(
Aµ

Ay

)
(x, πR − y) = P1

(
Aµ

−Ay

)
(x, πR + y)P †

1 ,(
λ
λ′

)
(x, πR − y) = e−2πiατ2P1

(
λ

−λ′

)
(x, πR + y)P †

1 ,

σ(x, πR − y) = −P1σ(x, πR + y)P †
1 ,

AM(x, y + 2πR) = UAM(x, y)U †,(
λ
λ′

)
(x, y + 2πR) = e−2πiατ2U

(
λ

−λ′

)
(x, y)U †,

σ(x, y + 2πR) = Uσ(x, y)U †,

(6.22)
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and for hypermultiplet H(
h
hc†

)
(x,−y) = ±TH[P0]

(
h

−hc†

)
(x, y),(

h
hc†

)
(x, πR − y) = ±e−2πi(α+ 1

2
β)τ2TH[P1]

(
h

−hc†

)
(x, πR + y),(

h
hc†

)
(x, y + 2πR) = e−2πi(α+ 1

2
β)τ2TH[U ]

(
h
hc†

)
(x, y),

(
h̃

h̃c†

)
(x,−y) = ±TH[P0]

(
h̃

−h̃c†

)
(x, y),(

h̃

h̃c†

)
(x, πR − y) = ±e−iπβTH[P1]

(
h̃

−h̃c†

)
(x, πR + y),(

h̃

h̃c†

)
(x, y + 2πR) = e−iπβTH[U ]

(
h̃

h̃c†

)
(x, y),

(6.23)
where β = 0 or 1. For (λ, λ′) and (h, hc†) pairs, non-trivial twist on SU(2)R

space is allowed for loop translation on S1, introducing soft SUSY breaking
terms parameterized by real-valued parameter α. TH denotes the appropriate
representation matrices and we consider only 5 and 10 representations just as
in the non-SUSY case. In order to get the effective potential for Type (I), (II)
boundary conditions, we need to evaluate the contributions to effective poten-
tial from each field where P0, P1 are replaced by P = {−1,−1,−1, +1, +1}
in (6.22), (6.23). All matter contributions for Type (I), (II) are obtained by
the combination of overall constant ± and βH = 0, 1 and the contribution
depend on βH but not overall constant ±. We suppose there are n5 and m5

hypermultiplet in 5 representation with βH = 0 and 1 respectively, and n10

and m10 hypermultiplet in 10 representation with βH = 0 and 1 in Type (I)
boundary conditions. Changing from Type (I) to Type (II) corresponds to
replacement n5 ↔ m5.

The effective potential at one loop level can be calculated just as non-
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SUSY case. The contribution from gauge multiplet is given by

V g
eff (a, b) = −2C

{
2f5(a) − f5(a + 2α) − f5(a − 2α) + 2f5(b) − f5(b + 2α)

−f5(b − 2α) + 2f5(a + b) − f5(a + b + 2α) − f5(a + b − 2α) + 2f5(a − b)

−f5(a − b + 2α) − f5(a − b − 2α) + f5(2a) − 1

2
f5(2a + 2α) − 1

2
f5(2a − 2α)

+f5(2b) −
1

2
f5(2b + 2α) − 1

2
f5(2b − 2α)

}
≈ −8π2Cα2

{
g3(a) + g3(b) + g3(a + b) + g3(a − b) +

1

2
g3(2a) +

1

2
g3(2b)

}
for α ≪ 1,

(6.24)
where we dropped a, b independent part, and use the notation

g3(x) ≡
∞∑

n=1

cos(nπx)

n3
. (6.25)

The contribution from hypermultiplet in 5 representation is

V 5
eff (a, b) = 2C

{1

2
f5(β

5) − 1

2
f5(2α − β5) + f5(a − β5) − 1

2
f5(a + 2α − β5)

−1

2
f5(a − 2α − β5) + f5(b − β5) − 1

2
f5(b + 2α − β5) − 1

2
f5(b − 2α − β5)

}
≈ 4π2Cα2

{1

2
g3(β

5) + g3(a − β5) + g3(b − β5)
}

for α ≪ 1,

(6.26)
and for hypermultiplet in 10 representation,

V 10
eff (a, b) = 2C

{
f5(β

10) − f5(2α − β10) + f5(a − β10) − 1

2
f5(a + 2α − β10)

−1

2
f5(a − 2α − β10) + f5(b − β10) − 1

2
f5(b + 2α − β10) − 1

2
f5(b − 2α − β10)

+f5(a + b − β10) − 1

2
f5(a + b + 2α − β10) − 1

2
f5(a + b − 2α − β10)

+f5(a − b − β10) − 1

2
f5(a − b + 2α − β10) − 1

2
f5(a − b − 2α − β10)

}
≈ 4π2Cα2

{
g3(β

5) + g3(a − β5) + g3(b − β5) + g3(a + b − β5) + g3(a − b − β5)
}

for α ≪ 1.
(6.27)
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The logarithmic divergent part is canceled between fermion and bosonic de-
gree of freedom. We can determine the physically realized boundary condi-
tion by these formula (6.24)-(6.27) for each n5, m5, n10, m10. The minimal
point of effective potential highly depends on the matter content n5, m5, n10, m10

and the SUSY breaking parameter α. Therefore, the systematic evaluation
of effective potential as we used in the non-SUSY case is difficult. Then, we
investigate only two interest case. The first case is that there are only gauge
and Higgs fields in bulk region and fermion fields are located on a fixed point.
We suppose two Higgs hypermultiplets are introduced in 5 representation,
given by the boundary conditions,(

h1 h2

hc†
1 hc†

2

)
(x,−y) = P0

(
h1 −h2

−hc†
1 hc†

2

)
(x, y),(

h1 h2

hc†
1 hc†

2

)
(x, πR − y) = e−2πiατ2P1

(
h1 −h2

−hc†
1 hc†

2

)
(x, πR + y),(

h1 h2

hc†
1 hc†

2

)
(x, y + 2πR) = e−2πiατ2U

(
h1 h2

hc†
1 hc†

2

)
(x, y).

(6.28)
This model has been investigated in Ref [62]. Under the boundary conditions
(6.28) these hypermultiplets are expanded as(

h1,j h2,j

hc†
1,j hc†

2,j

)
(x, y) =

1√
πR

∞∑
n=−∞

(
h1,j(x) sin n−α

R
y h2,j(x) cos n+α

R
y

h1,j(x) cos n−α
R

y h2,j(x) sin n+α
R

y

)
(

h1,i h2,i

hc†
1,i hc†

2,i

)
(x, y) =

1√
πR

∞∑
n=−∞

(
h1,i(x) cos n+α

R
y h2,i(x) sin n−α

R
y

h1,i(x) sin n+α
R

y h2,i(x) cos n−α
R

y

)
,

(6.29)
where j = 1, 2, 3, i = 4, 5 and these indices denote gauge indices. And these
fields lead to soft SUSY breaking mass terms

∞∑
n=−∞

(
n − α

R

)2

, for h1,j, h2,i

∞∑
n=−∞

(
n + α

R

)2

, for h1,i, h2,j,

(6.30)

and suppose SUSY breaking scale is much smaller than scale O( 1
R
), namely

α ≪ 1. This Higgs matter content is realized by, for example n5 = 2, m5 =
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3 case, preserving SM symmetry unbroken. m5 = 3 field are needed for
preserving SM symmetry and boundary condition structure, and for these
fields scalar components acquire SUSY breaking mass terms

∞∑
n=−∞

(
n − α − 1

2

R

)2

or
∞∑

n=−∞

(
n + α + 1

2

R

)2

, (6.31)

and fermion superpertners have no zero mode, so these fields do not the low
energy physics for α ≪ 1.

The second case is that all SM particles live in bulk region. In this case if
Type (I) boundary condition is physically realized, we need n5 = 5, m5 = 3
fields for Higgs and fermion fields. However these matters make the point
(a, b) = (0, 0) unstable because the contributions of effective potential for
n5, n10 fields have the minimum points at (a, b) = (1, 1), (1, 0) respectively.
Hence we need to put m5, m10 fields in system since the contributions of
these fields have the minimum point at (a, b) = (0, 0). Then we must evaluate
whether the point (a, b) = (0, 0) can be stable, in other words evaluate

∂2

∂a2
V I

eff (0, 0) =
∂2

∂b2
V I

eff (0, 0) = 2π2C
{
(10 − n5 − 3n10)

∞∑
n=1

1

n3
(1 − cos[nπ2α])

−(m5 + 3m10)
∞∑

n=1

(−1)n

n3
(1 − cos[nπ2α])

}
≈ π4C

{
(10 − n5 − 3n10)(− log 2α +

3

2
) + (m5 + 3m10) log 2

}
(2α)2,

(6.32)
for small α and we used the formula

∞∑
n=1

1 − cos(nπ2α)

n3
≈ (−1

2
log 2α +

3

4
)(2α)2. (6.33)

In the first case, the first and second terms in (6.32) are positive, so the
point (a, b) = (0, 0) is indeed stable. In the second case, the first term is the
negative value and its coefficient become large for small α compared with the
coefficient for second term. As a result, we need huge number of m5, m10

fields in order to make the point (a, b) = (0, 0) stable. It means that it is
difficult to realize SM particles in SM gauge symmetry.
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Figure 5: The evaluation of V I
eff (a, b)/8π2Cα2 and V II

eff (a, b)/8π2Cα2 in
n5 = 2, m5 = 3, n10 = m10 = 0. The left and right figures indicate
V I

eff (a, b)/8π2Cα2 and V II
eff (a, b)/8π2Cα2 respectively, and in both case the

global minimums are located at (a, b) = (0, 0). In this matter content, Type
(I) boundary condition has the lower energy density.

7 Conclusion and discussion

In present study of field theory defined on extra dimension, the boundary
conditions imposed on fields are given by hand even though these boundary
conditions play major role to determine the physical properties on system.
Therefore, we constructed the higher dimensional field theory including the
dynamics of boundary conditions in order to determine the physically realized
boundary conditions from theoretical consequence. The process of determin-
ing the physically realized boundary conditions consists of two part: (i) The
restriction of equivalence classes from the property of invariant measure. (ii)
The selection of physically realized equivalence class by comparing vacuum
energy densities among equivalence classes.

The first part is discussed in section 4. In section 4, we gave the formu-
lation of model with the dynamics of boundary conditions for SU(N) gauge
theory. This dynamics is defined by path integral formula, namely integrate
over all possible configurations of boundary conditions with some weighting
action. The integration is defined by invariant measure for U(N) group.
By investigating the property of invariant measure, we have revealed that
only restricted class of boundary conditions practically contributes to the
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partition function of system. Especially, for SU(5) case we found that the
symmetry breaking to SM gauge symmetry SU(5) → SU(3)×SU(2)×U(1)
is naturally included in our model.

The second part is discussed in section 6. In section 6 we determined the
physically realized equivalence class in the SU(5) case by comparing minimal
energy densities among the equivalence classes which practically contribute
to partition function on system. Then we investigated non-supersymmetric
and supersymmetric cases. In non-supersymmetric case, we encounter the
problem that the difference of minimums for effective potentials is divergent
between equivalence classes. We solved this problem by putting scalar fields
in pairs. We can produce the SM fermion matter content with a pair of
Higgs fields in the case nf = 3, mf ≥ 3, pf = 3, qf ≥ 2, ns = 1, ms = 0.
There leaves a problem that color triplet components in Higgs field must be
heavy compared with doublet components. In supersymmetric case, we can
avoid the divergence problem for effective potential, therefore our formulation
becomes more natural. We considered two cases: Only gauge and Higgs fields
live in the bulk region, and all SM particle live in the bulk. The former case
can be realized in the case n5 = 2, m5 = 3 but the later case can not,
because the second derivative of effective potential become negative in any
matter content for small SUSY breaking parameter α so we can not realize
SM gauge symmetry in this case.

In our research, we assume that the boundary condition are governed
by some dynamics. Then under this assumption we give one criterion to
determine the physically realized boundary conditions. Unfortunately, at
present we do not know whether or not the boundary conditions should be
treated as dynamical values. To discuss that, we need to understand the
more fundamental theory, like string theory, and get the further knowledges
about the spacetime dynamics. From the spacetime dynamics we should
discuss the boundary conditions are determine from some dynamics or the
other principle. It may be possible that our model is generalized to the
other classical groups, like SO(N). It is the nontrivial work because our
model for the SU(N) case is strongly governed by the structure of manifold
for U(N) group, namely global structure of U(N) group. Therefore, for
example SO(N) case, the result depends on the structure of manifold for
O(N) and this structure is more complicate than U(N) case. Then we expect
the different result from SU(N) case.
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A Transformation of boundary conditions P0, P1

into diagonal representations

In this appendix, we give the proof that every equivalence class has both
diagonal P0 and P1 representation for SU(N) gauge theory on S1/Z2 as I
mentioned in subsection 3.2. The calculation follows Ref [56].

P0 and P1 are unitary and Hermitian matrices. Then, Under appropriate
global SU(N) gauge transformation, P0, P1 matrices transform to

P0 =

(
Im

−In

)
, P1 =

(
A C†

C B

)
. (A.1)

Im denote unit matrix and m + n = N . Moreover, we can diagonalize A and
B matrices since P0 has still global gauge invariance under SU(m) × SU(n)
subgroup. Hence we get

P1 =



a1 c⃗†1
. . .

...
am c⃗†m

b1

c⃗1 · · · c⃗m
. . .

bn


=



a1

. . . d⃗1 · · · d⃗n

am

d⃗†
1 b1
...

. . .

d⃗†
n bn


.

(A.2)
The variables in (A.2) must satisfy the conditions

a2
j + c⃗†j c⃗j = 1, b2

j + d⃗†
j d⃗j = 1

c⃗†j c⃗k = d⃗†
j d⃗k = 0 ifj ̸= k,

(A.3)

by P 2
1 = 1. Let us suppose the rank of C is r. It means that only r vectors

for c⃗j or d⃗j can be linearly independent, and from the condition (A.3) the

46



other (m − r) vectors for c⃗j or (n − r) vectors for d⃗j become zero vectors.
Therefore after a appropriate rearrangement of rows and columns the matrix
C has the form

C =

 C̃ 0

0 0

 , (A.4)

where C̃ denote rank r, r × r matrix. Then, C̃ consist of r linearly inde-
pendent vectors e⃗1, · · · , e⃗r and these vectors are orthogonal each other. By
the rearrangement of rows and columns we can take these vectors into the
form that the first component of e⃗1 is non-zero, the second component of e⃗2

is non-zero, and so on. Through the further rearrangement, we can take P1

in the form

P1 =

(
P̃1

ÎN−2r

)
, (A.5)

where

P̃0 =



a1

. . . C̃ ′†

ar

−a1

C̃ ′ . . .

−ar


, (A.6)

where C̃ ′ denotes the transformed C̃ so that the first component of e⃗1 is non-
zero, the second component of e⃗2 is non-zero and so on. ÎN−2r is a diagonal
matrix with diagonal elements +1 or −1. We can find (A.6) because from
the condition (P̃1)

2 = 1 it follows that

(aj + bk)C̃
′
jk = 0 (1 ≤ j, k ≤ r) (A.7)

Then, we can find aj = −bj since C̃ ′
jj ̸= 0. Therefore P̃0 must have the form

of (A.6). We note that C̃jk = 0 if aj ̸= −bk. By collecting the same values al

in {aj, j = 1 ∼ r} and the corresponding −al, P̃1 can be transformed into
the following block diagonal form:

P̃1 =

 P̃
(1)
1

. . .

P̃
(t)
1

 , P̃
(l)
1 =

(
alIsl

C†
l

Cl −alIsl

)
, (A.8)
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where (s1 + s2 + · · · + sl = r). Under the unitary transformation, we can

bring P̃
(l)
1 into(

Isl

U (l)

)
P̃

(l)
1

(
Isl

U (l)†

)
=

(
alIsl

√
1 − a2

l Isl√
1 − a2

l Isl
−alIsl

)
, (A.9)

where U (l) is given by the unitary matrix
√

1 − a2
l C

†
l . Under this transforma-

tion we can see P0 indeed remains invariant. Hence we get the block diagonal
form

 P̂
(l)
1

P̂
(l)
1

. . .

 =


cos θl sin θl

sin θl − cos θl

cos θl sin θl

sin θl − cos θl

. . .

 (A.10)

for each P̃
(l)
1 . For each P̂

(l)
1 , the corresponding P0 part is τ3. Therefore, the

local SU(2) transformation Ω(y) = ei(θly/2πR)τ2 in this subspace transforms

P̂
(l)
1 into τ3, remaining P0 form invariant. This completes the poof.

B Calculation of the effective potential for

SU(5)

In this appendix, we calculate the effective potential Veff for the boundary
conditions (6.1) and (6.2). We show only the fermion field in 5 representation
case, but the calculation can be applied to the case for the field in adjoint
and 10 representations. The calculation is based on Ref [55].

The boundary conditions for fermion field in 5 representation are given
by

ψ5(x,−y) = ±Pγ5ψ(x, y)

ψ5(x, πR − y) = ±e−iπβ5
ψPγ5ψ(x, πR + y)

ψ5(x, y + 2πR) = e−iπβ5
ψψ(x, y),

(B.1)

where β5
ψ = 0 or 1. The left- and right-handed components are defined

by ψL(x, y) = 1
2
(1 − γ5)ψ(x, y) and ψR(x, y) = 1

2
(1 + γ5)ψ(x, y). We con-

sider the ”+” sign in (B.1), the case for ”-” sign corresponds to the inter-
changing mode expansions between left- and right-handed fermions in ”+”
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sign case. The contribution of effective potential from fermion field corre-
sponds to −f(D) i

2
Tr ln D0

LD0L. Then, we need to evaluate the eigenvalues
of D0

LD0L = ∂µ∂
µ − D2

y. Since the expectation values of gauge field are
parameterized in (5.7) and (5.11), −D2

y is given by

− D2
y =

−∂y∂y +
(

a
2R

)2
0 0 i a

2R
0

0 −∂y∂y +
(

b
2R

)2
0 0 i b

2R

0 0 −∂y∂y 0 0

i a
2R

0 0 −∂y∂y +
(

a
2R

)2
0

0 i b
2R

0 0 −∂y∂y +
(

b
2R

)2

 .

(B.2)
Then in the gauge components of fermion, the pairs (ψ1, ψ4) and (ψ2, ψ5) are
mixed by −D0

yD
0y. For the pair (ψ1, ψ4) we expand as(

ψ1(x, y)
iψ4(x, y)

)
=

1√
πR

∞∑
n=−∞

{
ψ

(n)
L (x)

(
cos(n + 1

2
β5

ψ) y
R

sin(n + 1
2
β5

ψ) y
R

)
+ψ

(n)
R (x)

(
sin(n − 1

2
β5

ψ) y
R

cos(n − 1
2
β5

ψ) y
R

)}
.

(B.3)

The expansion indeed satisfies the boundary condition (B.2). By substituting
the expansion (B.3) to (B.2) and performing the integration of

∫
dy, we

obtain the mass spectrum for (ψ1, ψ4) pair:

∞∑
n=−∞

(n − 1
2
(a − β5

ψ))2

R2
, for ψ

(n)
L (B.4)

and
∞∑

n=−∞

(n + 1
2
(a − β5

ψ))2

R2
, for ψ

(n)
R . (B.5)

The similar calculation can be applied to (ψ2, ψ5) pair. The mass spec-
trums are given by (B.4) and (B.5) where a is replaced by b. The contri-
bution from ψ3 is independent on a and b. The mass spectrum is obtained
by (n+ 1

2
β)2/R2 by combining contributions from the left- and right-handed

components. Therefore, we summarize the contribution from fermion field in
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5 representation Tr ln D0
MD0M as

∞∑
n=−∞

ln

{
− p2 +

(
n + 1

2
β5

ψ

R

)2}
+ 2

∞∑
n=−∞

ln

{
− p2 +

(
n − 1

2
(a − β5

ψ)

R

)2

+2
∞∑

n=−∞

ln

{
− p2 +

(
n − 1

2
(b − β5

ψ)

R

)2}
,

(B.6)
where pµ denotes four dimensional momentum and (B.6) is integrated on pµ.

C Zeta regularization

In this appendix, we review the method for calculating the logarithmic func-
tion given in (B.6). It is called the zeta regularization. The calculation in
this appendix follows Ref [69].

We focus on massless field case so consider the following function

V (θ) =
1

2

∞∑
n=−∞

∫
dd−1p

(2π)d−1
ln

[
p2 +

1

R2

(
n +

θ

2π

)2]
. (C.1)

We define the generalized zeta function ζ(s) by

ζ(s) =
1

Γ(s)

∞∑
n=−∞

∫ ∞

0

dtts−1

∫
dd−1p

(2π)d−1
exp

{
− t

[
p2 +

1

R2

(
n +

θ

2π

)2]}
,

(C.2)
where Γ(s) denotes the Gamma function and we can find V (θ) = −ζ ′(0)/2.
After integrating over p variable we find

ζ(s) =
π

d−1
2

(2π)d−1Γ(s)

2πR√
4π

∞∑
n=−∞

einθ

∫ ∞

0

dtts−
d
2
−1 exp

[
− (2πR)2n2

4t

]
, (C.3)

where we used the poisson’s summation formula

∞∑
n=−∞

exp

[
− t

(
2πn + θ

2πR

)2]
=

2πR√
4πt

∞∑
l=−∞

exp

(
− (2πR)2l2

4t
+ ilθ

)
. (C.4)

We find the term corresponding to n = 0 is divergent, but since this term
is independent on θ we can eliminate it by subtracting the constant V (0).

50



In the s → 0 limit Gamma function behaves as Γ(s) ∼ 1/s. Then, ζ ′(0) is
obtained by

ζ ′(0) =
π

d−1
2 2πR

(2π)d−1
√

4π

∞∑
n=−∞

(einθ − 1)

∫ ∞

0

dtt−
d
2
−1 exp

[
− (2πR)2n2

4t

]
. (C.5)

Since the integral part in (C.5) is represented by∫ ∞

0

dtt−
d
2
−1 exp

[
− (2πR)2n2

4t

]
=

2d

(2πR)dnd
Γ

(
d

2

)
, (C.6)

eventually we get the form

V (θ) = −
Γ(d

2
)

π
d
2 (2πR)d−1

∞∑
n=1

cos(nθ) − 1

nd
. (C.7)

D Comparison of energy densities between

equivalence classes

In this appendix, we compare the vacuum energy densities between in Type
(I) and Type (II) boundary conditions in (6.1) and (6.2) for non-SUSY case.
We suppose that there are ns, ms scalar field pairs in the boundary conditions
(6.3) with βφ = 0, 1 respectively, nf , mf fermion fields in (6.5) with β5

ψ = 0,
1 and pf , qf fermion fields in (6.6) with β10

ψ = 0, 1 in the point of view
of Type (I). We can get the matter content in Type (II) by the replacement
nf ↔ mf and ns ↔ ms from the matter content in Type (I). We introduce the
notations N1 = (nf −mf )− (ns −ms) and N2 = pf − qf . Since the effective
potentials V I

eff (a, b) and V II
eff (a, b) depend on only these combinations N1,

N2, we evaluate V I
eff (a, b) and V II

eff (a, b) for each N1, N2 case. The result
is summarized in Table 1. In the third rows, we give the equivalence class
which has the lowest energy density between in Type (I) and Type (II), and
the corresponding minimal point is given in the fourth rows.

The values of N1, N2 are evaluated in the point of view of Type (I)
boundary condition. We substitute −N1, N2 in order to calculate V II

eff (a, b).
We show only N1 > 0 case, and N1 < 0 case is identical to the positive N1

but the results in the third rows are obtained by the replacement (I) ↔ (II).
N1 = 0 case corresponds to completely degenerating between Type (I) and
(II).
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The vacuum expectation values (a, b) = (0, 0), (1, 1) and (1, 0) correspond
to SU(3)× SU(2)×U(1), [SU(2)]2 × [U(1)]2 and SU(2)× [U(1)]3 physical
symmetry on system respectively.

N1 = 1
N2 · · · 0 1 2 3· · ·
BCs (II) (II) (I),(II) (II)
(a,b) (0,0) (0,0) (1,0) or (1,1) (1,0)

N1 = 2
N2 · · · -1 0 1 2 3 4· · ·
BCs (II) (II) (II) (I),(II) (II) (II)
(a,b) (0,0) (0,0) (0,0) (0,0) or (1,1) (1,0) (1,0)

N1 = 3
N2 · · · -2 -1 0 1 2 3 4 5· · ·
BCs (II) (II) (II) (II) (II) (I),(II) (II) (II)
(a,b) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) or (1,1) (1,0) (1,0)

N1 = 4
N2 · · · -3 -2 -1 0 1 2 3 4 5 6· · ·
BCs (II) (II) (II) (II) (II) (II) (I) (II) (II) (II)
(a,b) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,1) (1,0) (1,0) (1,0)

N1 = 5
N2 · · · -2 -1 0 1 2 3 4 5 6· · ·
BCs (II) (II) (II) (II) (II) (I) (I),(II) (II) (II)
(a,b) (0,0) (0,0) (0,0) (0,0) (0,0) (1,1) (1,1) or (1,0) (1,0) (1,0)

Table 1: The determination of equivalence class from comparison of vac-
uum energy density between Type (I) and (II). The equivalence class with
the lowest energy density and the corresponding minimum point are shown
in the third and fourth rows respectively. The case that two minimal points
of (a, b) are put in a slot indicates the minimum energy densities degenerate
between Type (I) and (II).
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