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Abstract

The scenario of gauge-Higgs unification solves the fine-tuning problem associated with
the Higgs boson mass. In particular, the SO(5) × U(1) gauge-Higgs unification is phe-
nomenologically viable. The Higgs boson is unified with the gauge bosons as the fifth-
dimensional component of the gauge fields. The Higgs boson appears as a fluctuation
mode of the Wilson line phase θH along the fifth dimension. The observed Higgs boson
with mass 125 GeV is realised with SO(5)-spinor fermions in addition to the SO(5)-
vector quark-lepton multiplets. The constraint for this model is obtained from the Z ′

signals at the LHC in dilepton events. Candidates for the Z ′ are the first Kaluza-Klein
modes of Z, ZR and γ and the allowed region of Z ′ mass is found to be 4 ∼ 9 TeV for
θH from 0.2 to 0.07. The model possesses the universality under which various physical
quantities such as the Kaluza-Klein scale and the Higgs self couplings are determined
by θH .

In this thesis, the Higgs boson decay and the dark matter candidate in this model are
studied. The decay processes H → γγ and H → Zγ occur at the one-loop level. In spite
of the presence of an infinite number of the Kaluza-Klein modes in the loops, the cor-
rections turn out finite and the deviations of these decay rates from the standard model
become approximately O(1)%. The branching ratios of the Higgs boson are consistent
with the standard model. The lowest mode of the SO(5)-spinor fermions, which couples
to SU(2)L very weakly and is stable, becomes a candidate for the dark matter. The
observed relic density of the dark matter is reproduced with the Breit-Wigner enhance-
ment in the annihilation processes. From the direct detection experiments, the allowed
region of their mass is from 2.6 to 3.1 TeV, which corresponds to 0.07 < θH < 0.09 (
9.0 < mKK < 10.4 TeV ).
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1. Introduction
In 2012, the Higgs boson was discovered at the Large Hadron Collider (LHC) by the
ATLAS group [1] and the CMS group [2]. As of 2015, the combined result of the Higgs
mass with the ATLAS and the CMS is mH = 125.09±0.24 GeV [3]. By the discovery of
the Higgs boson, all of the particles in the standard model (SM) were discovered. The
measured branching ratios of the Higgs boson is consistent with those in the SM [4, 5]
and no particles beyond the SM have been discovered [6,7]. Although the SM have been
successful so far, it is not complete. There is the so-called fine-tuning problem. The
radiative correction to the Higgs boson mass squared is proportional to the square of
the cutoff parameter. If the cutoff scale of the SM is far larger than the electroweak
(EW) scale, the bare Higgs boson mass must be fine-tuned to produce the observed
Higgs boson mass. Hence the more fundamental theory will appears in the high energy
scale which is not far larger than the EW scale. The LHC has started run 2 from 2015.
By this run, the properties of the Higgs boson are measured and physics beyond the SM
is expected to be observed.

The other problem of the SM is that there are no candidates of the dark matter (DM)
in the SM. The Planck data [8] indicate the existence of the DM. In contrast, the DM has
not been detected by the direct detection experiments such as the LUX experiment [9,10]
so far. The DM might be detected by the 300 live-days result of the LUX experiment
or future experiments such as the XENON 1T experiment.

To solve the fine-tuning problem and to explain the existence of the DM, the more
fundamental theory beyond the SM is necessary. The fine-tuning problem of the Higgs
boson mass is one of the keys to study the more fundamental theory. The fine-tuning
problem occurs because the Higgs boson mass is not protected by symmetry in the
SM. Therefore one of the approach to solve the fine-tuning problem is to protect the
Higgs boson mass by some symmetry. The gauge-Higgs unification is one of the scenario
which can solve the fine-tuning problem. In gauge-Higgs unification, the Higgs boson
mass is unified with the gauge boson as an extra-dimensional component of the gauge
field [11–19]. Therefore the Higgs boson mass is protected by the gauge symmetry in
GHU scenario. In five-dimensional GHU, the Higgs boson does not have the potential
at the tree level. By radiative corrections, the Higgs boson acquires the mass and the
vacuum expectation value (VEV) which minimise the effective potential. This VEV
is physical because the VEV can not be gauged away. The Higgs boson appears as a
fluctuation mode of the Wilson line phase θH along the fifth-dimension. The one more
important point is that the acquired Higgs mass is found to be finite at the one loop
level. This is the so-called Hosotani mechanism [11,12].

In particular, the SO(5)×U(1) GHU model is a viable model of the scenario beyond
the SM [20–25]. In the model, the Lagrangian has the SO(5) × U(1)X symmetry. The
SO(5) symmetry is broken to SO(4) symmetry by the boundary condition and the
Higgs doublet appears as SO(5)/SO(4) element. The remaining SO(4) × U(1)X '
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SU(2)L × SU(2)R × U(1)X symmetry is broken to SU(2)R × U(1)Y symmetry by the
brane interaction. Finally, SU(2)R × U(1)Y symmetry is broken to U(1)EM by the
Hosotani mechanism.

The effective potential has minimum at θH = π
2 in the minimal model with the quarks

and leptons in the SO(5)-vector multiplets [23]. The Higgs boson coupling to the SM
particles are approximately suppressed from the SM value by cos θH [24]. Therefore
θH = π

2 leads to the stable Higgs boson and contradicts the experiments. Thus the
value θH 6= π

2 is required and it is realised by adding the SO(5)-spinor fermions. The
parameter sets which realise the observed Higgs boson with mass 126 GeV are obtained
in [26]. In the paper, the non-trivial relation between the Kaluza-Klein (KK) scale and
the θH is found. The relation is called the universality and later more concretely studied
in [27]. By this universality, this model is very predictive. In the paper [27], the Z ′ signal
at the LHC is predicted. In this model, the Z ′ is the KK Z, ZR and γ where ZR is the
neutral SU(2)R gauge boson and does not have zero mode. By the constraint from the
8 TeV LHC result, the Z ′ mass must be larger than about 4 TeV. By the universality, it
corresponds to θH < 0.2.

One of the topics covered in this thesis is the study of the Higgs decay in the
SO(5) × U(1) GHU. The decay rates of the Higgs decay H → bb̄, τ τ̄ , WW, ZZ are
given by the SM value times cos2 θH because these processes occur at the tree level. In
contrast, the H → γγ, gg processes occur at the loop level and an infinite number of
the KK modes contribute to the processes. However, the cancellations between the KK
mode contributions occur [26]. The infinite sum of the KK mode contributions converge
and their contributions turn out negligible. The H → Zγ process also occur at the
loop level [29]. The KK number in the loop can change through the interaction with
the Z boson. Nevertheless, summing up all of the KK mode contributions, the cancella-
tion among the KK mode contributions occurs. The summation of their contributions
converge and is negligible as in the H → γγ case. As a result, the production cross
section σ(gg → H) and the decay rate Γ(H → γγ), Γ(H → Zγ) are approximated as
the SM value times cos2 θH . Therefore the branching ratio of the Higgs decay is almost
equal to the SM value. and the deviation of the signal strength from the SM value is
approximately 1− cos2 θH ' O(1)%.

The SO(5)×U(1) GHU model can solve the fine-tuning problem. In addition, one of
the fermions in the SO(5)-spinor representation, which called as dark fermions becomes
the candidate of the DM [28]. The study of this DM candidate is another topic of this
thesis. Its annihilation cross section seems to be small by the naive estimation. However,
the Breit-Wigner enhancement occurs in the annihilation processes and there are the
region in which the relic density of the dark fermion matches to the observed relic density
of the DM. In the region, the elastic scattering cross section of the dark fermion off the
nucleon is smaller than the experimental limit from the LUX 85-live days result and
larger than the expected limit of the LUX 300-live days result. Its mass range is from
2.6 to 3.1 TeV.
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In section 2, the SO(5) × U(1) GHU model is reviewed. In section 3, the decay rate
of the H → γγ and the H → Zγ process are evaluated in the model. In section 4, the
relic density and the elastic scattering cross section off the nucleon of the neutral dark
fermion are evaluated. Section 5 is devoted to the Summary and discussions. In the
appendices, the SO(5) algebra and the triple and quartic gauge boson couplings, the
couplings of the Higgs boson to the gauge bosons, the couplings of the gauge and the
Higgs boson to the SM fermions and the couplings of the gauge and the Higgs boson to
the dark fermions are summarised.

2. Model

2.1. Hosotani mechanism
In this subsection, the Hosotani mechanism [11, 12] is reviewed. Theories on spacetime
with compactified extra dimension(s) are defined by the Lagrangian and the boundary
conditions. Some of the boundary conditions are equivalent because they can be changed
each other by the gauge transformation. In addition, vacuum expectation value (VEV)
of extra dimensional component of gauge field is physical quantity. The VEV might not
be gauged away from the theory without changing the boundary conditions. To consider
the VEV of the gauge field, the radiative corrections play important role. By radiative
corrections, the gauge boson acquires the VEV which minimise the effective potential.
This mechanism of symmetry breaking is called the Hosotani mechanism.

Consider the SU(N) theory on the M4 × S1 spacetime. The Lagrangian is given by

L =Tr
[
−1

4FMNF
MN − 1

2ξ
(
∂MA

M
)2
]

+ ψ
(
ΓMDM −m

)
ψ , (2.1)

where

FMN = ∂MAN − ∂NAM − ig [AM , AN ] , (2.2)
DM = ∂M − igAM . (2.3)

The Lagrangian has the gauge symmetry and is invariant under the gauge transformation

A′
M = Ω

(
AM + ig−1∂M

)
Ω† . (2.4)

Next, consider the boundary condition. Because the fifth dimensional coordinate y and
y + 2πR is same point, set the boundary condition as

AM(xµ, y + 2πR) = UAM(xµ, y)U † , (2.5)
ψ(xµ, y + 2πR) = Uψ(xµ, y) , (2.6)
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where U is a element of SU(N). In the new gauge transformed by (2.4), A′
M(xµ, y+2πR)

is written as

A′
M(xµ, y + 2πR) =U ′A′

M(xµ, y)U ′† − ig−1 (∂MU
′)U ′† , (2.7)

where

U ′ = Ω(xµ, y + 2πR)UΩ†(xµ, y) . (2.8)

If ∂MU
′ = 0 is satisfied, A′

M(xµ, y+2πR) = U ′A′
M(xµ, y)U ′† is the boundary condition in

the new gauge. Simultaneously, ψ′(xµ, y + 2πR) = U ′ψ′(xµ, y) is satisfied. Therefore as
shown above, the boundary condition is also changed by the gauge transformation. Some
of the boundary conditions are related to each other through the gauge transformation.
It implies that VEV is physical because in general the VEV cannot be cancelled away
from the theory. By the gauge transformation, the VEV can always be gauged away
from the Lagrangian. However, the VEV appears in the new boundary condition.

2.2. Action
The SO(5)× U(1) GHU is defined on the Randall-Sundrum metric [30].

ds2 =e−2σ(y)ηµνdx
µdxν + dy2 , (2.9)

where −L ≤ y ≤ L, σ(y) = k|y| and ηµν = diag(−1, 1, 1, 1). Therefore y = L and
y = −L are identified as the same point, so that this metric has S1/Z2 symmetry for
the fifth dimensional coordinate. The so-called conformal coordinate is defined for the
region 0 ≤ y ≤ L as

ds2 = z−2
{
ηµνdx

µdxν + k−2dz2
}
, (2.10)

where z = eky and 1 ≤ z ≤ zL = ekL. The y = 0(z = 1) and y = L(z = zL) brane is
called the Planck brane and TeV brane respectively. This ekL = zL is called the “warp
factor” and it is assumed that zL � 1.

The bulk Lagrangian has the SU(3)c × SO(5) × U(1)X symmetry. SU(3) symmetry
is the color symmetry and SO(5) × U(1)X symmetry is finally broken to U(1)EM sym-
metry. The gauge fields of SU(3), SO(5) and U(1)X are denoted by GM , AM and BM ,
respectively. The matter fields in the bulk are Ψa and ΨFi

. Ψa is the fermion multiplet
in the SO(5)-vector representation and ΨFi

is the fermion multiplet in the SO(5)-spinor
representation.
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The bulk action is given by

Sbulk =
∫
d5x
√
−G

[
−Tr

(1
4F

(A)MNF
(A)
MN + 1

2ξA

(f (A)
gf )2 + L(A)

gh

)
−
(1

4F
(B)MNF

(B)
MN + 1

2ξB

(f (B)
gf )2 + L(B)

gh

)
−Tr

(1
4F

(G)MNF
(G)
MN + 1

2ξC

(f (G)
gf )2 + L(G)

gh

)

+
∑

a

ΨaD(ca)Ψa +
nF∑
i=1

ΨFi
D(cFi

)ΨFi

]
,

F
(A)
MN = ∂MAN − ∂NAM − igA

[
AM , AN

]
, F

(B)
MN = ∂MBN − ∂NBM ,

F
(G)
MN = ∂MGN − ∂NGM − igC

[
GM , GN

]
, (2.11)

D(c) = ΓAeA
M
(
∂M + 1

8ωMBC [ΓB,ΓC ]− igAAM − igBQXBM − igCQCGM)
)
− cσ′(y) ,

where fgf are the gauge-fixing terms, Lgh are the ghost Lagrangian, Ψ ≡ iΨ†Γ0 and
gamma matrices are given by

Γµ =
(

σµ

σ̄µ

)
, Γ5 =

(
1
−1

)
, σµ = (1, ~σ) , σ̄µ = (−1, ~σ) . (2.12)

eA
M is the vielbein and ωMAB is the spin connection. ωM ≡ 1

8ωMAB[ΓA,ΓB] on the RS
metric is given by

(ωµ, ωy) =
(
−1

2ke
−σηµνΓνΓ5, 0

)
. (2.13)

The boundary conditions at y0 = 0 and y1 = L are set by(
Aµ(x, yj − y)
Ay(x, yj − y)

)
=P

(
Aµ(x, yj + y)
−Ay(x, yj + y)

)
P−1 ,(

Bµ(x, yj − y)
By(x, yj − y)

)
=
(
Bµ(x, yj + y)
−By(x, yj + y)

)
,(

Gµ(x, yj − y)
Gy(x, yj − y)

)
=
(
Gµ(x, yj + y)
−Gy(x, yj + y)

)
,

Ψa(x, yj − y) = PvecΓ5Ψa(x, yj + y) ,
ΨFi

(x, yj − y) = ηFi
(−1)jPspΓ5ΨFi

(x, yj + y)
Pvec = diag(−1,−1,−1,− 1, 1), Psp = diag(−1,−1, 1, 1) (2.14)

By the above boundary condition, the SO(5) symmetry is broken to SO(4) and Ay in
the SO(5)/SO(4) have the zero modes. In contrast, the SU(3) and U(1) symmetries are
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preserved andGy and By do not have zero modes. Therefore only Ay in the SO(5)/SO(4)
part can have the VEV and this part corresponds to the Higgs doublet in the SM.

The SO(5) can be divided by SO(4) ' SU(2)L × SU(2)R and SO(5)/SO(4). Corre-
spondingly, the gauge boson can be denoted as

AM =
3∑

a=1
AaL

M T aL +
3∑

a=1
AaR

M T aR +
4∑

a=1
Aâ

MT
â . (2.15)

The VEV of the Higgs boson is taken to 〈Aâ
z〉 = v · δa4uH(z), where uH(z) ≡

√
2

k(z2
L−1)z.

and the Wilson line phase is given by

exp
{
i

2θH2
√

2T 4̂
}

= exp
{
igA

∫ zL

1
dz〈Az〉

}
. (2.16)

In this notation, v can be rewritten as v = fHθH , where

fH ≡
2
gA

√
k

z2
L − 1 . (2.17)

The four dimensional effective Lagrangian is obtained by integrating the five-dimensional
Lagrangian by the fifth coordinate. The four-dimensional gauge couplings of the strong
and weak interactions and the electroweak charge are given by

gs = gC√
L
, gw = gA√

L
, e = gAgB√

(g2
A + 2g2

B)L
, (2.18)

respectively.
Considering the SO(5)-vector fermion multiplets, the multiplets can be written as

Ψ = (Ψ1 Ψ2 Ψ3 Ψ4 Ψ5)T . For convenience, Ψ̂ is defined as

Ψ̂ =
(

Ψ̂11 Ψ̂12

Ψ̂21 Ψ̂22

)
≡ 1√

2

(
−iΨ1 −Ψ2 iΨ3 + Ψ4
iΨ3 −Ψ4 iΨ1 −Ψ2

)
. (2.19)

then (Ψ̂11 Ψ̂21)T and (Ψ̂12 Ψ̂22)T are SU(2)L doublets and (Ψ̂11 Ψ̂12)T and (Ψ̂21 Ψ̂22)T

are SU(2)R doublets. For each generation, Ψa are donated as

Ψ̂1 =
(
T t

B b

)
,

(
Ψ1
)

5
= t′ , Ψ̂2 =

(
U X

D Y

)
,

(
Ψ2
)

5
= b′ ,

Ψ̂3 =
(
ντ L1X

τ L1Y

)
,
(
Ψ3
)

5
= τ ′ , Ψ̂4 =

(
L2X L3X

L2Y L3Y

)
,
(
Ψ4
)

5
= ν ′

τ . (2.20)
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The electromagnetic charges of each particles are

T : 5
3 , U, B, t, t′ : 2

3 , D, X, b, b′ : −1
3 , Y : −4

3 ,

L2X : 1 , L2Y , ντ , ν
′
τ , L3X : 0 , L3Y , τ, τ

′, L1X , : −1 , L1Y : −2 , (2.21)

because the electric charge is QEM = T 3L + T 3R + QX as shown later. The bulk mass
parameters are set such that c1 = c2 and c3 = c4 in each generation. With the boundary
condition in (2.14), zero modes appear in[

Q1L =
(
TL

BL

)
, qL =

(
tL
bL

)
, t′R

]
,

[
Q2L =

(
UL

DL

)
, Q3L =

(
XL

YL

)
, b′

R

]
,[

`L =
(
ντL

τL

)
, L1L =

(
L1XL

L1Y L

)
, τ ′

R

]
,

[
L2L =

(
L2XL

L2Y L

)
, L3L =

(
L3XL

L3Y L

)
, ν ′

τR

]
. (2.22)

Considering the SO(5)-spinor fermion multiplets, top two components are SU(2)L

doublet and bottom 2 components are SU(2)R doublet. From the boundary condition,
ΨFi

do not have zero modes.
To break the SO(4) symmetry spontaneously and reproduce the mass difference be-

tween the fermions in same generations, the brane action is added. The brane scalar Φ̂,
the brane fermions χ̂q

aR and χ̂l
aR (a = 1, 2, 3) are localised on the Planck brane. χ̂q

aR and
χ̂l

aR are SU(2)L doublet and denoted as

χ̂q
1R =

(
T̂R

B̂R

)
7/6
, χ̂q

2R =
(
ÛR

D̂R

)
1/6
, χ̂q

3R =
(
X̂R

ŶR

)
−5/6

,

χ̂l
1R =

(
L̂1XR

L̂1Y R

)
−3/2

, χ̂l
2R =

(
L̂2XR

L̂2Y R

)
1/2
, χ̂l

3R =
(
L̂3XR

L̂3Y R

)
−1/2

, (2.23)
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where the subscripts denote U(1) charge QX . The brane action is given by

Sbrane =
∫
d5x
√
−Gδ(y)

{
− (DµΦ̂)†DµΦ̂− λΦ̂(Φ̂†Φ̂− w2)2

+
3∑

α=1

(
χ̂q†

αR iσ̄
µDµχ̂

q
αR + χ̂l†

αRiσ̄
µDµχ̂

l
αR

)
− i

[
κq

1χ̂
q†
1RΨ̂1L

˜̂Φ + κ̃qχ̂q†
2RΨ̂1LΦ̂ + κq

2χ̂
q†
2RΨ̂2L

˜̂Φ + κq
3χ̂

q†
3RΨ̂2LΦ̂− (h.c.)

]
− i

[
κ̃lχ̂l†

3RΨ̂3L
˜̂Φ + κl

1χ̂
l†
1RΨ̂3LΦ̂ + κl

2χ̂
l†
2RΨ̂4L

˜̂Φ + κl
3χ̂

l†
3RΨ̂4LΦ̂− (h.c.)

]}
,

DµΦ̂ =
(
∂µ − igA

3∑
aR=1

AaR
µ T aR − igB

Bµ

2

)
Φ̂ ,

Dµχ̂αR =
(
∂µ − igA

3∑
aL=1

AaL
µ T aL − iQXgBBµ − igCQCGµ

)
χ̂αR, (2.24)

where ˜̂Φ = iσ2Φ̂∗. 〈Φ̂〉 = (0, w)t 6= 0 breaks SU(2)R × U(1)X to U(1)Y . Assume
w � O(MKK), then the brane scalar is heavy and negligible. By the VEV of the brane
scalar, the brane action is rewritten as

Smass
brane =

∫
d5x
√
−Gδ(y)

{
− 1

4g
2
Aw

2
(
A1R

µ A1Rµ + A2R
µ A2Rµ

)
− 1

4w
2
(
gAA

3R
µ − gBBµ

) (
gAA

3Rµ − gBB
µ
)

−
3∑

α=1
iµq

α(χ̂q†
αRQαL −Q†

αLχ̂
q
αR)− iµ̃q(χ̂q†

2RqL − q†
Lχ̂

q
2R)

−
3∑

α=1
iµl

α(χ̂l†
αRLαL − L†

αLχ̂
l
αR)− iµ̃l(χ̂l†

3R`L − `†
Lχ̂

l
3R)
}
,

µq
α

κq
α

= µ̃l

κ̃q
= µl

α

κl
α

= µ̃l

κ̃l
= w . (2.25)

Therefore define that A3′
R

µ

B′
µ

 =
(
cφ −sφ

sφ cφ

)(
A3R

µ

Bµ

)
, (2.26)

where

cφ = gA√
g2

A + g2
B

, sφ = gB√
g2

A + g2
B

. (2.27)
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By this definition, the brane mass term of the gauge fields are written as

Smass
brane ⊃

∫
d5x
√
−Gδ(y)

{
− g2

Aw
2

4
(
A1R

µ A1Rµ + A2R
µ A2Rµ

)
− g2

A + g2
B

4 w2A3′
R

µ A3′
Rµ

}
,

(2.28)

and by this brane mass term, the boundary condition for A1R
µ , A2R

µ and A3′
R

µ are changed
to

A1R
µ = A2R

µ = A3′
R

µ ' 0 , (2.29)

for mn � O(MPlanck) modes. Therefore the SO(4) × U(1)X symmetry is broken to
SO(2)×U(1)Y . For simplicity, the boundary condition for A1R

µ , A2R
µ and A3′

R
µ is written

as A1R
µ = A2R

µ = A
3′

R
µ = 0 in the following.

The Higgs VEV can be removed from the Lagrangian by the gauge transformation

Ω(y) = exp
(
igA

∫ L

y
dy′〈Ay〉

)
(2.30)

where the phase is determined by the condition Ω(L) = 1. By this gauge transformation,
the boundary condition at y = 0 is changed to

P ′
0 = Ω(−y)P0Ω†(y) . (2.31)

From {T 4̂, P0} = 0, P0 can be written as

P̃0 =



−1
−1

−1
− cos 2θH sin 2θH

sin 2θH cos 2θH

 , (2.32)

in the vector representation and

P̃0 =


cos θH −i sin θH

i sin θH − cos θH

cos θH −i sin θH

i sin θH − cos θH

 , (2.33)

in the spinor representation. This gauge in which 〈Ãz〉 = 0 is called the twisted gauge.

13



2.3. Mode functions of the gauge fields
In this subsection, the mode functions and the mass spectra is considered. At first, the
KK decomposition of the Abelian gauge field is considered as a example [31]. The action
is given by

S =
∫
d4x

∫ zL

1
dz
√
−G

(
−1

4FMNF
MN − 1

2ξ (fgf)2
)
, (2.34)

where fgf is gauge-fixing term

fgf = z2
{
ηµν∂µBµ + ξk2z∂z(z−1Bz)

}
. (2.35)

Here, the ’t Hooft-Feynman gauge ξ = 1 is taken. Therefore the equation of motion is
obtained by

S =
∫
d4x

∫ zL

1

dz

kz

(1
2η

µρBµ

{
ηνσ∂σ∂νBρ + k2z∂z

(
z−1∂zBρ

)})
+
∫
d4x

∫ zL

1

dz

kz

(1
2k

2Bz

{
ηµρ∂µ∂ρBz + k2∂z

(
z∂z(z−1Bz)

)})
(2.36)

where Bµ∂zBρ = Bz(∂µBρ) = Bz∂z(z−1Bz) = 0 are imposed. As the scalar case, the
gauge bosons are decomposed to

Bµ(x, z) =
∑

n

B(n)
µ (x)

f (n)
g (z)
√
rg(n)

, (2.37)

Bz(x, z) =
∑

n

B(n)
z (x)f

(n)
h (z)
√
rh(n)

, (2.38)

where rg, rh are the normalisation factors

rg(n) =
∫ L

1

dz

kz
f (n)

g (z)2 , (2.39)

rh(n) =
∫ L

1

dz

kz
z−2 f

(n)
h (z)2 . (2.40)

The eigenstate of f (n)
g (y), f (n)

h (y) are determined by

k2∂z

(
z−1∂zf

(n)
g

)
= −m2

nf
(n)
g (2.41)

k2∂z

(
z∂z(z−1f

(n)
h )

)
= −m2

nf
(n)
h . (2.42)
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To solve the equation, z−1f (n)
g = f̄ (n)

g is defined as the scalar case. By rewriting the
equation, we obtain {

z2∂2
z + z∂z + z2(λ2

n − 1)
}
f̄ (n)

g = 0 , (2.43)

where λn ≡ mn/k is defined. Therefore, the solution of this equation f̄ (n)
g is written by

the Bessel function

f (n)
g (λnz) ∝ z {anJ1(λnz) + bnY1(λnz)} . (2.44)

Similarly, f (n)
h (y) is obtained as

f
(n)
h (λnz) ∝ z2 {anJ0(λnz) + bnY0(λnz)} . (2.45)

The coefficients and the mass eigenvalues are determined by the boundary condition.
For convenience, the functions are defined

Fα,β(u, v) ≡ Jα(u)Yβ(v)− Yα(u)Jβ(v) . (2.46)

C(z;λ) = π

2λzzLF1,0(λz, λzL) , C ′(z;λ) = π

2λ
2zzLF0,0(λz, λzL) ,

S(z;λ) = −π2λzF1,1(λz, λzL) , S ′(z;λ) = −π2λ
2zF0,1(λz, λzL) ,

Ŝ(z;λ) =C(1;λ)
S(1;λ) S(z;λ) . (2.47)

Here the formulas

xZ ′
α(x) + αZα(x) = xZα−1(x) , (2.48)

xZ ′
α(x)− αZα(x) = −xZα+1(x) , (2.49)

are shown for convenience.
Imposing the Neumann condition ∂zAµ = 0, Aµ has the zero mode. In the case,

f (0)
g /
√
rg(0) = 1/

√
L. The non-zero mode which satisfies the Neumann condition at the

z = zL, f (n)
g can be written as

f (n)
g (λnz) = π

2λzzL {J1(λnz)Y0(λnzL)− Y1(λnz)J0(λnzL)}

= C(z;λ) , (2.50)

and imposing the Dirichlet condition Az = 0 at the z = zL, f (n)
h is written as

f
(n)
h (λnz) = C ′(z;λ) . (2.51)
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Imposing the Dirichlet condition Aµ = 0 at the z = zL, f (n)
g is written as

f (n)
g (λnz) = S(z;λ) . (2.52)

and imposing the Neumann condition ∂z(z−1Az) = 0 at the z = zL, Az has zero mode.
From the boundary condition, f (0)

h = z and

rh(n) =
∫ L

1

dz

kz
z2 = z2

L − 1
2k . (2.53)

For non-zero mode, f (n)
h is written as

f
(n)
h (λnz) = S ′(z;λ) . (2.54)

Considering the gauge bosons in the SO(5)×U(1) GHU model, Aµ(x, z) and BX
µ (x, z)

are expanded as follows.

Ãµ(x, z) + gB

gA

Bµ(x, z)TB = Ŵ−
µ + Ŵ+

µ + Ẑµ + Âγ
µ + Ŵ−

Rµ + Ŵ+
Rµ + ẐRµ + Â4̂

µ , (2.55)

where

Ŵ∓
µ =

∑
n

W (n)∓
µ (x)

hL
W (n)

T 1L ∓ iT 2L

√
2

+ hR
W (n)

T 1R ∓ iT 2R

√
2

+ ĥW (n)
T 1̂ ∓ iT 2̂
√

2

 ,

Ẑµ =
∑

n

Z(n)
µ (x)

{
hL

Z(n)T
3L + hR

Z(n)T
3R + ĥZ(n)T 3̂ + gB

gA

hB
Z(n)TB

}
,

Âγ
µ =

∑
n

Aγ(n)
µ (x)

{
hL

γ(n)T
3L + hR

γ(n)T
3R + gB

gA

hB
γ(n)TB

}
,

Ŵ∓
Rµ =

∑
n

W
(n)∓
Rµ (x)

{
hL

W
(n)
R

T 1L ∓ iT 2L

√
2

+ hR

W
(n)
R

T 1R ∓ iT 2R

√
2

}
,

ẐRµ =
∑

n

Z
(n)
Rµ (x)

{
hL

Z
(n)
R

T 3L + hR

Z
(n)
R

T 3R + gB

gA

hB

Z
(n)
R

TB

}
,

Â4̂
µ =

∑
n

A4̂(n)
µ (x)ĥA4̂(n)T

4̂ ,

Ŵ± = Ŵ 1 ∓ iŴ 2
√

2
, Ŵ±

R = Ŵ 1
R ∓ iŴ 2

R√
2

. (2.56)

The weak mixing angle θW is given by

cos θW = 1√
1 + s2

φ

. (2.57)

The KK spectrum and corresponding wave functions for each tower are summarised as
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follows.

W boson tower
The mass spectrum of the W boson tower is given by

2S(1;λW (n))C ′(1;λW (n)) + λW (n) sin2 θH = 0 . (2.58)

This equation has the solution which corresponds to the SM W boson. For λW (0)zL � 1,
the solution of Eq. (2.58) is obtained by the approximations S(1;λW (0)) ' −λW (0)zL/2
and C ′(1;λW (0)) ' λ2

W (0)zL ln zL. Thus the mass of the SM W boson is obtained by

mW ' kz−1
L

sin θH√
kL
' mKK

sin θH

π
√
kL

. (2.59)

For zero mode, W (0) is denoted by W for simplicity. Their mode function is given by
hL

W (n)(z)
hR

W (n)(z)
ĥW (n)(z)

 = 1
√
rW (n)

√
2


(1 + cos θH)C(z;λW (n))
(1− cos θH)C(z;λW (n))
−
√

2 sin θH Ŝ(z;λW (n))

 ,

rW (n) =
∫ zL

1

dz

kz

{
(1 + cos2 θH)C(z;λW (n))2 + sin2 θH Ŝ(z;λW (n))2

}
. (2.60)

Z boson tower
The mass spectrum of the Z boson tower is given by

2S(1;λZ(n))C ′(1;λZ(n)) + (1 + s2
φ)λZ(n) sin2 θH = 0 , (2.61)

This equation also has the solution for λzL � 1 as the W boson tower and it corresponds
to the SM Z boson. The mass of the SM Z boson is obtained by

mZ ' kz−1
L

sin θH√
kL

1
cos θW

. (2.62)

For zero mode, Z(0) is denoted by Z for simplicity. Their mode function is given by

hL

Z(n)(z)
hR

Z(n)(z)
ĥZ(n)(z)
hB

Z(n)

 = 1√
1 + s2

φ

1
√
rZ(n)
√

2



{
(1 + s2

φ)(1 + cos θH)− 2s2
φ

}
C(z;λZ(n)){

(1 + s2
φ)(1− cos θH)− 2s2

φ

}
C(z;λZ(n))

−
√

2(1 + s2
φ) sin θH Ŝ(z;λZ(n))

−2sφcφC(z;λZ(n))

 ,

rZ(n) =
∫ zL

1

dz

kz

{
c2

φC(z;λZ(n))2 + (1 + s2
φ)
[
cos2 θHC(z;λZ(n))2 + sin2 θH Ŝ(z;λZ(n))2

]}
.

(2.63)
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γ (photon) tower
The mass spectrum of the photon tower is given by

C ′(1;λγ(n)) = 0 , (2.64)

and the mode function is given by
hL

γ(n)(z)
hR

γ(n)(z)
hB

γ(n)

 = 1√
1 + s2

φ

1
√
rγ(n)

sφ

sφ

cφ

C(z;λγ(n)) ,

rγ(n) =
∫ zL

1

dz

kz
C(z;λγ(n))2 . (2.65)

For the photon γ = γ(0),

hL
γ (z) = hR

γ (z) = 1√
(1 + s2

φ)L
sφ = tφh

B
γ . (2.66)

Therefore the electric charge is

QEM = T 3L + T 3R +QX . (2.67)

WR boson tower
The mass spectrum of the WR boson tower is given by C(1;λ

W
(n)
R

) = 0 . Their mode
function is given byhL

W
(n)
R

(z)
hR

W
(n)
R

(z)

 = 1√
r

W
(n)
R

√
2

(
1− cos θH

−1− cos θH

)
C(z;λ

W
(n)
R

) ,

r
W

(n)
R

=
∫ zL

1

dz

kz
C(z;λ

W
(n)
R

)2 . (2.68)

ZR boson tower
The mass spectrum of the Z boson tower is given by C(1;λ

Z
(n)
R

) = 0 , Their mode
function is given by

hL

Z
(n)
R

(z)
hR

Z
(n)
R

(z)
hB

Z
(n)
R

 = 1√
1 + (1 + 2t2φ) cos2 θH

√
r

Z
(n)
R

√
2

−1− cos θH

1− cos θH

2tφ cos θH

C(z;λ
Z

(n)
R

) ,

r
Z

(n)
R

=
∫ zL

1

dz

kz
C(z;λ

Z
(n)
R

)2 = r
W

(n)
R

, tφ ≡
sφ

cφ

. (2.69)
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A4̂ tower
The mass spectrum of the A4̂ tower is given by S(1;λA4̂(n)) = 0 , Their mode function

is given by

hA4̂(n)(z) = 1
√
rA4̂(n)

S(z;λA4̂(n)), rA4̂(n) =
∫ zL

1

dz

kz
S(z;λA4̂(n))2 . (2.70)

Az(x, z) and Bz(x, z) are expanded as

Ãz(x, z) =
3∑

a=1

3∑
a=1

Ĝa + D̂a + Ĥ ,

D̂a =
∑

n

Da(n)(x)
{
uL

D(n)T
aL + uR

D(n)T
aR + ûD(n)T â

}
,

Ĝa =
∑

n

Ga(n)(x)
{
uL

G(n)T
aL + uR

G(n)T
aR

}
,

Ĥ =
∑

n

H(n)(x)uH(n)T 4̂ ,

Bz =
∑

n

B(n)(x)uB(n)TB . (2.71)

D tower
The mass spectrum of the D tower is given by

C(1;λD(n))S ′(1;λD(n))− λD(n) cos2 θH = 0 . (2.72)

Their mode functions are given by
hL

D(n)(z)
hR

D(n)(z)
ĥD(n)(z)

 = 1
√
rD(n)
√

2


cos θHC

′(z;λD(n))
− cos θHC

′(z;λD(n))
−
√

2 sin θH Ŝ
′(z;λD(n))

 , Ŝ ′(z;λ) = C(1;λ)
S(1;λ)S

′(z;λ) ,

rD(n) =
∫ zL

1

kdz

z

{
cos2 θHC

′(z;λD(n))2 + sin2 θH Ŝ
′(z;λD(n))2

}
. (2.73)

G tower
The G boson mass spectrum and mode functions are given by

C ′(1;λG(n)) = 0 , (2.74)

uL
G(n) = uR

G(n) = 1√
2

1
√
rG(n)

C ′(z;λG(n)) ,

rG(n) =
∫ zL

1

kdz

z
C ′(z;λG(n))2 . (2.75)
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H (Higgs) tower
The mass spectrum of the Higgs tower is determined by

S(1;λH(n)) = 0 . (2.76)

For the zero mode which is the 4D Higgs boson H = H(0), λH(n) = 0. The mode functions
are

uH(0)(z) = uH(z) =
√

2
k(z2

L − 1) z , (2.77)

for the 4D Higgs boson, and

uH(n)(z) = 1
√
rH(n)

S ′(z;λH(n)), rH(n) =
∫ zL

1

kdz

z
S ′(z;λH(n))2 , (2.78)

for KK-excited states (n ≥ 1).

B tower
The B tower mass spectrum and the mode functions are given by

C ′(1;λB(n)) = 0 , (2.79)

uB(n) = 1
√
rB(n)

C ′(z;λB(n)) , rB(n) =
∫ zL

1

kdz

z
C ′(z;λB(n))2 . (2.80)

2.4. Mode functions of the SO(5)-vector fermions
In this subsection, the mass spectra and the mode functions of the SO(5)-vector fermions
are summarised [32]. Consider the free fermion,

S =
∫
d4x

∫
dy
√
−G ψ̄ ΓAeA

M
(
∂M + 1

8ωMBC [ΓB,ΓC ]− cσ′(y)
)
ψ , (2.81)

then the equation of motion is written as(
−kD−(c) σµ∂µ

σ̄µ∂µ −kD+(c)

)
ψ̌(x, z) = 0 , (2.82)

where ψ = z2ψ̌ are defined and

D±(c) = ± d

dz
+ c

z
. (2.83)
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Consider the KK decomposition of the fermion and substitute it to the equation of
motion to obtain the wave function of the KK modes. The fermion is decomposed to

ψ̌(x, z) =
∑

n

1
√
rf (n)

ψ̌(n)
R (x)f (n)

R (z)
ψ̌

(n)
L (x)f (n)

L (z)

 , (2.84)

where √rf (n) is the normalisation factor

rf (n) =
∫ ZL

1

dz

kz
zf

(n)
R (z)2 =

∫ zL

1

dz

kz
zf

(n)
L (z)2 . (2.85)

Considering the eigenvalue equation

kD−(c)f (n)
R (z) = mnf

(n)
L (z) , (2.86)

kD+(c)f (n)
L (z) = mnf

(n)
R (z) , (2.87)

the eigenvaluemn becomes the KK mass. These equations (2.86) and (2.87) are rewritten
as

{z2∂2
z + z∂z + (λnz)2 − (c− 1/2)2}z− 1

2f
(n)
R (z) = 0 (2.88)

{z2∂2
z + z∂z + (λnz)2 − (c+ 1/2)2}z− 1

2f
(n)
L (z) = 0 . (2.89)

Therefore f (n)
R (z), f (n)

L (z) is written as

f
(n)
R (z) ∝ z

1
2
{
anJc− 1

2
(λnz) + bnYc− 1

2
(λnz)

}
(2.90)

f
(n)
L (z) ∝ z

1
2
{
anJc+ 1

2
(λnz) + bnYc+ 1

2
(λnz)

}
(2.91)

From the boundary condition, either f (n)
R or f (n)

L must satisfy the Dirichlet boundary
condition. Therefore, the normalisation factor satisfies the condition (2.85):

rf (n) =
∫ ZL

1

dz

k
f

(n)2
R

=
∫ ZL

1

dz

λnk
f

(n)
R D+f

(n)
L

= 1
λnk

[
f

(n)
R f

(n)
L

]z=zL

z=1
+
∫ ZL

1

dz

λnk
D−

(
f

(n)
R

)
f

(n)
L =

∫ ZL

1

dz

k
f

(n)
L (z)2 . (2.92)
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For convenience, we define

CL(z;λ, c) = π

2λ
√
zzLFc+ 1

2 ,c− 1
2
(λz, λzL) , SL(z;λ, c) = −π2λ

√
zzLFc+ 1

2 ,c+ 1
2
(λz, λzL) ,

CR(z;λ, c) = −π2λ
√
zzLFc− 1

2 ,c+ 1
2
(λz, λzL) , SR(z;λ, c) = π

2λ
√
zzLFc− 1

2 ,c− 1
2
(λz, λzL) .

(2.93)

By imposing the Dirichlet boundary condition for f (n)
L (zL) = 0, D−f

(n)
R (z)|z=zL

= 0 must
be satisfied simultaneously from the Eq. (2.86). In the case, f (n)

R and f
(n)
L is expressed

by using Fαβ as

f
(n)
R (z) = CR(λnz, λnzL) , (2.94)
f

(n)
L (z) = SL(λnz, λnzL) , (2.95)

respectively. Similarly by imposing the Neumann boundary condition for f (n)
R (zL) = 0,

D+f
(n)
L (z)|z=zL

= 0 must be satisfied simultaneously from the Eq. (2.87). In the case,
f

(n)
R and f

(n)
L is expressed as

f
(n)
R (z) = SR(λnz, λnzL) , (2.96)
f

(n)
L (z) = CL(λnz, λnzL) , (2.97)

respectively. From the orthogonality of the Bessel function, the effective potential be-
comes the infinite sum of the fermions with mass mn = kλn.

QEM = 5
3 sector

From the boundary condition (2.14), T must satisfies D+(z−2TL) = 0, at z = zL.
Therefore TL is decomposed by z2CL. At z = 1, from the boundary condition (2.14) and
brane mass (2.24),

λSR −
(µq

1)2

2k CL = 0 , (2.98)

must be satisfied where CL = CL(1, λ, c), etc. For µq
1 �
√
kλ, the first term of the LHS

is negligible and the zero mode does not exist.

QEM = 2
3 sector

To calculate in the twisted gauge, B̃, t̃, t̃′ are defined as
B̃t̃
t̃′

 = Ω̃

Bt
t′

 , Ω̃ =


1
2(1 + c) 1

2(1− c) −1√
2s

1
2(1− c) 1

2(1 + c) 1√
2s

1√
2s − 1√

2s c

 , (2.99)
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where c = cos θ(z), s = sin θ(z). From the boundary condition (2.14), Ũ , B̃, t̃, t̃′ must
satisfy

D+(z−2ŨL) = D+(z−2B̃L) = D+(z−2t̃L) = t̃′L = 0 (2.100)

at z = zL. Therefore UL, BL, tL, t
′
L are decomposed as


ŨL(x, z)
B̃L(x, z)
t̃L(x, z)
t̃′L(x, z)

 =
√
kz2
√
rt(n)


a

(n)
U CL(z, λt(n))
a

(n)
B CL(z, λt(n))
a

(n)
t CL(z, λt(n))
a

(n)
t′ SL(z, λt(n))

 t(n)
L (x) , (2.101)

Here CL(z, λt(n)) = CL(z;λt(n) , c) and SL(z, λt(n)) = SL(z;λt(n) , c). From the boundary
condition (2.14) and brane mass (2.24) at z = 1,

sH(B̃L − t̃L)−
√

2cH t̃
′
L = 0 ,(

D+ −
µ2

2
2k

) (
z−2ŨL

)
− µ̃µ2

4k z
−2(B̃L + t̃L) + µ̃µ2

4cHk
z−2(B̃L − t̃L) = 0 ,

− µ̃µ2

2k z
−2ŨL +

(
D+ −

µ2
1 + µ̃2

4k

)
z−2(B̃L + t̃L)− µ2

1 − µ̃2

4cHk
z−2(B̃L − t̃L) = 0 ,

µ̃µ2

2k z
−2ŨL −

µ2
1 − µ̃2

4k z−2(B̃L + t̃L)

+
(
cHD+ −

µ2
1 + µ̃2

4cHk

)
z−2(B̃L − t̃L) +

√
2sHD+(z−2t̃′L) = 0 , (2.102)

must be satisfied where cH = cos θH and sH = sin θH . For simplicity, the superscripts of
the brane masses are abbreviated. By (2.101), this condition is rewritten as

0 0
√

2sHcHCL −cHSL

λSR − µ2
2

2k
CL − µ̃µ2

2k
CL

µ̃µ2
2k
CL 0

−µ2
2

2k
CL 2λSR − µ̃2+µ2

1
2k

CL
µ̃2−µ2

1
2k

CL 0
µ2

2
2k
CL

µ̃2−µ2
1

2k
CL 2c2

HλSR − µ̃2+µ2
1

2k
CL

√
2sHλCR





a
(n)
U

a
(n)
B +a

(n)
t

2
a

(n)
B −a

(n)
t

2cH

a
(n)
t′


= 0 .

(2.103)

The above equation have the nontrivial solution when

C2
L

{
µ̃2SLSR + µ2

2SLSR + s2
H

µ2
2

2

}
= 0 (2.104)

is satisfied where µ1, µ2, µ̃ �
√
λk is assumed. Therefore the mass spectrum of the
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QEM = 2
3 fermion is determined by(

µ̃2

µ2
2

+ 1
)
SLSR + s2

H

2 = 0 . (2.105)

For 0 < c < 1/2, the solution for λzL � 1 is obtained by approximating SL '
−λz1+c

L /(1 + 2c) and SR ' λz1−c
L /(1− 2c), as

mt '
kz−1

L sin θH√
2

√
1− 4c2

t√
1 + (µ̃2/µ2

2)
. (2.106)

For 1/2 < c, the solution for λzL � 1 is obtained by approximating SL ' −λz1+c
L /(1+2c)

and SR ' λzc
L/(2c− 1), as

mu '
kz−1

L sin θH√
2

√
4c2

u − 1

zc−1/2
√

1 + (µ̃2/µ2
2)
. (2.107)

The coefficients are obtained as
a

(n)
U

a
(n)
B

a
(n)
t

a
(n)
t′

 =


−
√

2 µ̃q/µq
2

(1− cos θH)/
√

2
(1 + cos θH)/

√
2

− sin θHCL/SL

 . (2.108)

The mode functions of the right-handed components ŨR, B̃R, t̃R, t̃
′
R are obtained by re-

placing CL → SR and SL → CR. Thus the mode functions are written as


ŨL(x, z)
B̃L(x, z)
t̃L(x, z)
t̃′L(x, z)

 =
√
kz2
√
rt(n)


a

(n)
U CL(z, λt(n))
a

(n)
B CL(z, λt(n))
a

(n)
t CL(z, λt(n))
a

(n)
t′ SL(z, λt(n))

 t(n)
L (x) ≡

√
kz2


f

(n)
UL

(z)
f

(n)
BL

(z)
f

(n)
tL

(z)
f

(n)
t′
L

(z)

 t(n)
L (x) ,


ŨR(x, z)
B̃R(x, z)
t̃R(x, z)
t̃′R(x, z)

 =
√
kz2
√
rt(n)


a

(n)
U SR(z, λt(n))
a

(n)
B SR(z, λt(n))
a

(n)
t SR(z, λt(n))
a

(n)
t′ CR(z, λt(n))

 t(n)
R (x) ≡

√
kz2


f

(n)
UR

(z)
f

(n)
BR

(z)
f

(n)
tR

(z)
f

(n)
t′
R

(z)

 t(n)
R (x) ,

rt(n) =
∫ zL

1
dz
{
a

(n)2
U CL(z, λt(n))2 + (a(n)2

B + a
(n)2
t )CL(z, λt(n))2 + a

(n)2
t′ SL(z, λt(n))2

}
=
∫ zL

1
dz
{
a

(n)2
U SR(z, λt(n))2 + (a(n)2

B + a
(n)2
t )SR(z, λt(n))2 + a

(n)2
t′ CR(z, λt(n))2

}
,

(2.109)
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QEM = −1
3 sector

To consider the QEM = −1
3 fermions, the equations are obtained from the QEM = 2

3
sector by replacing 

Ũ

B̃

t̃

t̃′

→

b̃

X̃

D̃

−b̃′

 (2.110)

µ2 ↔µ̃ . (2.111)

Therefore the mass spectrum of the QEM = −1
3 fermion is determined by(

µ2
2
µ̃2 + 1

)
SLSR + s2

H

2 = 0 . (2.112)

and the solution for λzL � 1 is obtained as

mb '
kz−1

L sin θH√
2

√
1− 4c2

t√
1 + (µ2

2/µ̃
2)
, (2.113)

for 0 < c < 1/2. The ratio of this mass to the top mass is expressed as

mb

mt

'

√
1 + (µ̃2/µ2

2)√
1 + (µ2

2/µ̃
2)

= µ̃

µ2
. (2.114)

Thus the mass ratio of the top quark and the bottom quark is reproduced by adjusting
the brane mass parameters This relation is also satisfied for the first and the second
generations.
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The quarks with QEM = −1
3 are decomposed as


b̃L(x, z)
X̃L(x, z)
D̃L(x, z)
b̃′

L(x, z)

 =
√
kz2
√
rb(n)


a

(n)
b CL(z, λb(n))
a

(n)
X CL(z, λb(n))
a

(n)
D CL(z, λb(n))
a

(n)
b′ SL(z, λb(n))

 b(n)
L (x) ≡

√
kz2


f

(n)
bL

(z)
f

(n)
XL

(z)
f

(n)
DL

(z)
f

(n)
b′

L
(z)

 b(n)
L (x) ,


b̃R(x, z)
X̃R(x, z)
D̃R(x, z)
b̃′

R(x, z)

 =
√
kz2
√
rb(n)


a

(n)
b SR(z, λb(n))
a

(n)
X SR(z, λb(n))
a

(n)
D SR(z, λb(n))
a

(n)
b′ CR(z, λb(n))

 b(n)
R (x) ≡

√
kz2


f

(n)
bR

(z)
f

(n)
XR

(z)
f

(n)
DR

(z)
f

(n)
b′

R
(z)

 b(n)
R (x) ,

rb(n) =
∫ zL

1
dz
{
a

(n)2
b CL(z, λb(n))2 + (a(n)2

X + a
(n)2
D )CL(z, λb(n))2 + a

(n)2
b′ SL(z, λb(n))2

}
=
∫ zL

1
dz
{
a

(n)2
b SR(z, λb(n))2 + (a(n)2

X + a
(n)2
D )SR(z, λb(n))2 + a

(n)2
b′ CR(z, λb(n))2

}
,

(2.115)

where 
a

(n)
b

a
(n)
X

a
(n)
D

a
(n)
b′

 =


−
√

2µq
2/µ̃

q

(1− cos θH)/
√

2
(1 + cos θH)/

√
2

sin θHCL/SL

 . (2.116)

QEM = −4
3 sector

To consider the QEM = −4
3 fermion, the equations are obtained from the QEM = 5

3
sector by replacing

T → Y (2.117)
µ1 → µ3 . (2.118)

The mass spectrum is determined by

λSR −
(µq

3)2

2k CL = 0 , (2.119)

therefore Y does not have zero mode.
For a lepton multiplet (ντ , τ), the wave functions are given by the following replace-
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ment rules; 
U

B

t

t′

→

ντ

L2Y

L3X

ν ′
τ

 ,


b

D

X

b′

→

L3Y

τ

L1Y

τ ′

 , (2.120)

(µ̃q, µq
2)→ (µ`

3, µ̃
`) , (µq

3, µ
q
1)→ (µ`

1, µ
`
2) , (2.121)

c1 → c3 . (2.122)

2.5. Mode functions of the SO(5)-spinor fermions
The mass spectra and the mode functions of the dark fermions are written in this subsec-
tion. The SO(5)-spinor multiplet consists of four fermions. The above two components
are SU(2)L doublet and the below two components are SU(2)R doublet. Therefore the
SO(5)-spinor multiplet are denoted as

ΨFi
=
(

ΨFi,l

ΨFi,r

)
=


ψFi,l1
ψFi,l2
ψFi,r1
ψFi,r2

 . (2.123)

The electric charges are 1
2 +QXFi

for ψFi,l1 and ψFi,r1 and 1
2 −QXFi

for ψFi,l2 and ψFi,r2.
The Ψ̃Fi

is defined as Ψ̃Fi
≡ z−2ΨFi

in the twisted gauge. From the boundary condition
at z = zL,

Ψ̃Fi,lR(zL) = 0 , D+Ψ̃Fi,lL(zL) = 0 ,
D−Ψ̃Fi,rR(zL) = 0 , Ψ̃Fi,rL(zL) = 0 , (2.124)

for ηFi
= +1 and

D+Ψ̃Fi,lR(zL) = 0 , Ψ̃Fi,lL(zL) = 0 ,
Ψ̃Fi,rR(zL) = 0 , D−Ψ̃Fi,rL(zL) = 0 , (2.125)

for ηFi
= −1. In the following, QXFi

= 1
2 and ηFi

= +1 are adopted.
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The SO(5)-spinor fermions are decomposed as

Ψ(n)
Fi,R

(x, z) =
√
kz2




f

(n)
i,lR(z)

0
f

(n)
i,rR(z)

0

F+(n)
i,R (x) +


0

f
(n)
i,lR(z)

0
f

(n)
i,rR(z)

F 0(n)
i,R (x)

 ,

Ψ(n)
Fi,L

(x, z) =
√
kz2




f

(n)
i,lL(z)

0
f

(n)
i,rL(z)

0

F+(n)
i,L (x) +


0

f
(n)
i,lL(z)

0
f

(n)
i,rL(z)

F 0(n)
i,L (x)

 . (2.126)

From the boundary condition, the f (n)
i ’s are proportional tof (n)

i,lL(z)
f

(n)
i,lR(z)

 ∝ (CL(z)
SR(z)

)
,

f (n)
i,rL(z)
f

(n)
i,rR(z)

 ∝ (SL(z)
CR(z)

)
,

respectively. The boundary condition at z = 1 is

cos θH

2 Ψ̃Fi,lL(1)− i sin θH

2 Ψ̃Fi,rL(1) = 0 ,

−i sin θH

2 Ψ̃Fi,lR(1) + cos θH

2 Ψ̃Fi,rR(1) = 0 . (2.127)

From the boundary condition at z = 1, the mass spectrum {mFi,n = kλi,n} is determined
by

CL(1;λi,n, cFi
)CR(1;λi,n, cFi

)− sin2 θH

2 = 0 . (2.128)

The mode functions are given byf (n)
i,lL(z)
f

(n)
i,lR(z)

 =
i sin θH

2 SL(1)√
r

(n)
i

(
CL(z)
SR(z)

)
=

cos θH

2 CR(1)√
r

′(n)
i

(
CL(z)
SR(z)

)
,

f (n)
i,rL(z)
f

(n)
i,rR(z)

 =
cos θH

2 CL(1)√
r

(n)
i

(
SL(z)
CR(z)

)
=
i sin θH

2 SR(1)√
r

′(n)
i

(
SL(z)
CR(z)

)
, (2.129)

with λ = λi,n. The normalisation factors r(n)
i and r

′(n)
i are determined by the condition∫ zL

1
dz
{
|f (n)

lL |2 + |f (n)
rL |2

}
=
∫ zL

1
dz
{
|f (n)

lR |2 + |f (n)
rR |2

}
= 1 (2.130)
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to be

r
(n)
i =

∫ zL

1
dz
{

sin2 θH

2 SL(1)2CL(z)2 + cos2 θH

2 CL(1)2SL(z)2
}

=
∫ zL

1
dz
{

sin2 θH

2 SL(1)2SR(z)2 + cos2 θH

2 CL(1)2CR(z)2
}
,

r
′(n)
i =

∫ zL

1
dz
{

cos2 θH

2 CR(1)2CL(z)2 + sin2 θH

2 SR(1)2SL(z)2
}

=
∫ zL

1
dz
{

cos2 θH

2 CR(1)2SR(z)2 + sin2 θH

2 SR(1)2CR(z)2
}
. (2.131)

The electric charges are 1 for F+(n)
i and 0 for F (n)0

i .
In the case of the boundary condition for ΨFi

with ηFi
= −1 in (2.14), the correspond-

ing mode functions and masses are obtained from the above formulas by the replacement

cH ↔ isH , CL ↔ SL , SR ↔ CR . (2.132)

The spectrum is determined by the same equation as in (2.128).
With ηFi

= +1 for ΨFi
, the odd KK number modes F+(n)

i , F
0(n)
i (n: odd) are mostly

SU(2)R doublets, containing SU(2)L doublets slightly. The even KK number modes
F

+(n)
i , F

0(n)
i (n: even) are mostly SU(2)L doublets. Consequently the first KK modes

F
+(1)
i , F

0(1)
i couple to the SU(2)L gauge bosons (W and Z) very weakly. On the other

hand, with ηFi
= −1, F+(n)

i , F
0(n)
i (n: odd) are mostly SU(2)L doublets, and the first

KK modes F+(1)
i , F

0(1)
i couple to W and Z with the standard weak coupling strengths.

At the tree level the masses of the first KK modes F+(1)
i and F 0(1)

i are same value which
is about 1.5 TeV to 4 TeV. The charged dark fermions F+(1)

i receive radiative correction
by photon and becomes heavier than the neutral ones F 0(1)

i . Their mass difference is
estimated to be about α ·mF . Thus F+(1)

i eventually decays into F 0(1)
i and SM particles.

The lightest modes F 0(1)
i ’s are absolutely stable. Their relic densities and the constraints

from the direct detection experiments are discussed in Sec. 4.

2.6. Effective potential and the parameters
By the radiative corrections, the Higgs boson acquires the VEV which minimise the
effective potential. The way to calculate the effective potential was developed in Ref. [33,
34]. Contributions of the each particle to the effective potential is written as the following
form

V = ±N2
∑

n

∫ d4pE

(2π)4 log
(
p2

E +m2
n

)
, (2.133)

where the sign + and − are assigned for boson and fermion respectively and N is a
degrees of freedom of each particle. Suppose that mn depends on 〈Ay〉. To calculate the
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〈Ay〉 dependence of the effective potential,

N

2
∑

n

∫ ddpE

(2π)d
log

(
p2

E

)
(2.134)

are neglected because it does not depend on 〈Ay〉 and Eq. (2.133) is calculated by the
dimensional regularisation.

N

2
∑

n

∫ ddpE

(2π)d
log

(
1 + m2

n

p2
E

)
= N

1
(4π)d/2Γ(d

2)
π

d sin(πd/2)
∑

n

md
n , (2.135)

where d = 4+ε. Consider the function ρ(w) where the mass spectrum ofmn is determined
by the condition ρ(mn) = 0 and ρ(w) is chosen so that ρ(w) is a holomorphic function of
w, lim|w|→∞ ρ(w) = 0 and ρ(iv) = ρ(−iv) when v is real. Suppose that all of the points
which satisfies ρ(mn) = 0 is on the real axis. Consider the contribution of the W boson
tower. The mass spectrum of the W boson tower is determined by (2.58). Thus ρ(w) is
chosen as

ρ(w) = 1 + w

2kS(1;w/k)C ′(1;w/k) sin2 θH

= 1−
( 2
π

)2 k2

w2zLF0,0(w/k, wzL/k)F1,1(w/k, wzL/k)
sin2 θH

2 . (2.136)

Because the ρ(w) is a holomorphic function of w, the summation can be rewritten as

∑
n

md
n = 1

2πi

∮
c
dw wdρ

′(w)
ρ(w) , (2.137)

where contour c is taken so that all of mn is inside the contour. It can be expressed as

∑
n

md
n = − 1

2π

(∫ ∞

0
dv (iv)dρ

′(iv)
ρ(iv) +

∫ 0

−∞
dv (iv)dρ

′(iv)
ρ(iv)

)

= d

π
sin

(
πd

2

)∫ ∞

0
dv vd−1 log

(
ρ(iv)

)
. (2.138)

Therefore the 〈Ay〉 dependent part of Eq. (2.133) is written as

V = ±N2
∑

n

∫ ddpE

(2π)d
log

(
1 + m2

n

p2
E

)
= ±N 1

(4π)2

∫ ∞

0
dv v3 log

(
ρ(iv)

)
, (2.139)

where the limit ε → 0 is taken in the last equality. Therefore without knowing the
every value of mn, the effective potential is calculated by this method. Again consider
the contribution of the W boson tower. Define q ≡ vzL/k, then the W boson tower
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contribution is rewritten as

V W
eff = 2(3− ξ2)(kz−1

L )4

(4π)2

∫ ∞

0
dq q3 log

(
ρ(iq)

)
, (2.140)

where

ρ(iq) = 1 +
( 2
π

)2 zL

q2F0,0(iqz−1
L , iq)F1,1(iqz−1

L , iq)
sin2 θH

2 . (2.141)

The entire effective potential is calculated by using the above formula. The relevant
part of the Veff(θH) is given by

Veff(θH , zL, k, ct, rt, cF , nF , ξ) = V gauge
eff (θH , zL, k, ξ) + V fermion

eff (θH , zL, k, ct, rt, cF , nF ),
V gauge

eff (θH , zL, k, ξ) = 2(3− ξ2)I[QW ] + (3− ξ2)I[QZ ] + 3ξ2I[QS],
V fermion

eff (θH , zL, k, ct, rt, cF , nF ) = −12
{
I[Qtop] + I[Qbottom]

}
− 8nF I[QF ] ,

I[Q(q; θH)] = (kz−1
L )4

(4π)2

∫ ∞

0
dq q3 ln{1 +Q(q; θH)},

QW = cos2 θWQZ = 1
2QS = 1

2Q0[q;
1
2] sin2 θH ,

Qtop = Qbottom

rt

= Q0[q; ct]
2(1 + rt)

sin2 θH ,

QF = Q0[q; cF ] cos2 1
2θH ,

Q0[q; c] = zL

q2F̂c− 1
2 ,c− 1

2
(qz−1

L , q)F̂c+ 1
2 ,c+ 1

2
(qz−1

L , q)
, (2.142)

where rt = µ̃2/µ2
2, F̂α,β(u, v) = Iα(u)Kβ(v) − e−i(α−β)πKα(u)Iβ(v), and Iα, Kα are the

modified Bessel functions. Fα,β(u, v) is expressed by using F̂α,β(u, v) as Fα,β(u, v) =
(2/π)2F̂α,β(u, v). The contributions of the up quarks, down quarks, charm quarks,
strange quarks and leptons are found to be negligible.

The gauge boson contributions to the effective potential, I[QW ] and I[QZ ] have the
minimum at θH = 0, π and the maximum at θH = π

2 as shown in Fig. 1(a). For the
fermions, the quark contributions, I[Qtop] and I[Qbottom] have the minimum at θH = π

2
and the maximum at θH = 0, π and the dark fermion contributions I[QF ] have the
minimum at θH = 0 and the maximum at θH = π as shown in Fig. 1(b). Therefore the
effective potential has the minimum at θH = 0, π or π

2 when no dark fermions are in the
Lagrangian. However the value θH = 0, π and π

2 is disfavoured phenomenologically. In
the case of θH = 0 or π, the electroweak symmetry is not broken. In the case of θH = π

2 ,
the Higgs boson becomes stable because the Higgs boson coupling to the SM particles
are suppressed from the SM value by cos θH [24]. Therefore the dark fermion is needed
to realise the observed Higgs boson.
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(b) The contribution of the quarks (blue line) and the contribution of the dark fermion (purple
line) to the effective potential are plotted.

Figure 1: The contributions to the effective potential of the gauge bosons and the
fermions are plotted in Fig. 1(a) and in Fig. 1(b), respectively, in the nF = 5,
zL = 105, ct = 0.227 and cF = 0.382 case.

The Higgs mass is obtained by the second derivative of the effective potential at the
minimum,

m2
H = 1

f 2
H

d2Veff

dθ2
H

∣∣∣∣∣
min

. (2.143)

The Higgs cubic and quartic couplings are obtained by the third and fourth derivatives
of the effective potential at the minimum, respectively. The parameters of the effective
potential are θH , zL, k, ct, rt, cF and nF . k, ct, rt and cF are determined to realise the
mW , mt, mb and mH . θH is determined by the condition V ′(θH) = 0. Therefore the free
parameters of this model is nF and zL.
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Table 1: The parameters θH , k, ct, cF , mF (1) and mZ(1) for zL and nF = 3, 4, 5 and 6
which realise mH = 126 GeV in the t’Hooft-Feynman gauge.
nF zL θH k ct cF mF (1) mZ(1)

(GeV) (TeV) (TeV)
3 108 0.360 9.72× 1010 0.357 0.385 0.668 2.41

107 0.258 1.26× 1010 0.330 0.353 0.993 3.15
106 0.177 1.69× 109 0.296 0.309 1.54 4.25
105 0.117 2.32× 108 0.227 0.235 2.53 5.91

2× 104 0.0860 5.87× 107 0.137 0.127 3.88 7.54
4 108 0.355 9.86× 1010 0.357 0.423 0.567 2.45

107 0.254 1.28× 1010 0.330 0.402 0.834 3.20
106 0.174 1.71× 109 0.292 0.374 1.27 4.32
105 0.115 2.36× 108 0.227 0.332 2.03 6.00
104 0.0737 2.29× 107 0.0366 0.256 3.46 8.52

5 108 0.351 9.97× 1010 0.357 0.445 0.502 2.48
107 0.251 1.29× 1010 0.330 0.430 0.735 3.24
106 0.172 1.74× 109 0.292 0.410 1.11 4.37
105 0.114 2.38× 108 0.227 0.382 1.75 6.07
104 0.0730 3.33× 107 0.0366 0.333 2.91 8.61

6 108 0.348 1.01× 1011 0.356 0.461 0.455 2.51
107 0.171 1.30× 1010 0.330 0.449 0.671 3.29
106 0.171 1.75× 109 0.292 0.434 1.00 4.43
105 0.113 2.40× 108 0.227 0.414 1.57 6.16
104 0.0724 3.36× 107 0.0365 0.379 2.57 8.72
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Figure 2: The effective potential Veff(θH) is plotted around the minimum in the nF = 5,
zL = 105, ct = 0.227 and cF = 0.382 case, where the minimum is θH = 0.114.

In the Table 1, the parameter sets which realise the mH = 126 GeV and the mF (1)

and mZ(1) are summarised. The bulk mass parameters of the dark fermions need not
to be the same value for the each dark fermion. However all bulk mass parameters are
set to be same for simplicity. In the case, the dark fermion masses are degenerate. The
behaviour of the V (θH) which realise the mH = 126 GeV is plotted in Fig. 2 where the
parameters are nF = 5, zL = 105, ct = 0.227 and cF = 0.382, so that θH = 0.114.

2.7. Universality
As shown in the previous section, the free parameters of this model are nF and zL.
However the relation among θH and the other physical quantities such as mKK, mγ(1) ,
mZ(1) , m

Z
(1)
R

, λ3 and λ4 are found to be almost independent of nF , where λ3 and λ4 are the
Higgs cubic and quartic couplings respectively. Those parameters are well approximated
by the function of one parameter θH . This is called the universality of this model.
mKK, mγ(1) , mZ(1) and m

Z
(1)
R

are approximated as the function of θH by

mKK ∼
1352

(sin θH)0.786 GeV ,

m
Z

(1)
R

∼ 1038
(sin θH)0.784 GeV ,

mZ(1) ∼
1044

(sin θH)0.808 GeV ,

mγ(1) ∼
1056

(sin θH)0.804 GeV . (2.144)

The relation between θH and mZ(1) is plotted in Fig. 3 for nF = 0, 1, 3, 6. The plotted
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points are almost on the same curve and independent of nF .
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Figure 3: mZ(1) as the function of θH for mH = 126 GeV. Reprinted from Ref. [27].

Similarly the Higgs cubic and quartic self-couplings, λ3 and λ4 are plotted as the
functions of θH for nF = 0, 1, 3, 9 in Fig. 4. The fitting curves are given by

λ3/GeV = 26.7 cos θH + 1.42(1 + cos 2θH) ,
λ4 = −0.0106 + 0.0304 cos 2θH + 0.00159 cos 4θH . (2.145)

In the SM, the Higgs cubic and quartic self-couplings are λSM
3 = 31.5 GeV and λSM

4 =
0.0320.
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Figure 4: λH
3 and λH

4 as the function of θH for mH = 126 GeV. In the SM λSM
3 = 31.5

GeV and λSM
4 = 0.0320. The fitting curves are given by (2.145). Reprinted

from Ref. [27].

In contrast, no universality is found in the mass spectrum of the dark fermions. The
masses of the dark fermion depends both θH and nF . The mass mF (1) is plotted in Fig. 5
for nF = 1, 3, 6.
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Figure 6: θH vs mKK with various values of mH . Reprinted from Ref. [27].

The universality relations are slightly affected by mH . For mH = 110 GeV, mKK is
approximated as mKK ∼ 1.20/| sin θH |0.733 TeV. For mH = 110, 126, 140 GeV, mKK is
plotted in Fig. 6 as a function of θH .

The origin of the universality is not revealed yet. However, once θH is determined by
some experiment such as the discovery of Z(1), the other physical values are simultane-
ously determined without the dark fermion mass mF (1) . Therefore this model is highly
predictive.
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2.8. Prediction of the Z′ signal at the LHC
One of the important predictions of this model is the Z ′ signals at the LHC. In this
model, there are four kinds of neutral gauge bosons which have mass O(1) TeV. They
are the first KK mode of the photon, the Z boson, the ZR boson and the A4̂ boson.
The A4̂ boson does not couple to SM particles so that it is not produced at the LHC.
Therefore, γ(1), Z(1) and Z(1)

R are the Z ′ bosons. The dilepton production cross sections
through the Z ′ from pp̄ was studied in [27]. No significant excess have been observed
in the processes at the 8 TeV LHC [6, 7]. Therefore the Z ′ masses are constrained and
consequently the allowed range of θH is determined from the universality.

Table 2: Masses, total decay widths and couplings of the Z ′ bosons to the SM particles
in the first generation for θH = 0.114. The couplings to µ are almost same
value as those to e. Reprinted from Ref. [27].

Z ′ m(TeV) Γ(GeV) gZ′uLuL
gZ′dLdL

gZ′eLeL
gZ′uRuR

gZ′dRdR
gZ′eReR

Z 0.0912 2.44 0.257 −0.314 −0.200 −0.115 0.0573 0.172
Z

(1)
R 5.73 482 0 0 0 0.641 −0.321 −0.978

Z(1) 6.07 342 −0.0887 0.108 0.0690 −0.466 0.233 0.711
γ(1) 6.08 886 −0.0724 0.0362 0.109 0.846 −0.423 −1.29
Z(2) 9.14 1.29 −0.0073 0.0089 0.0057 −0.0055 0.0027 0.0086

Table 3: Masses, total decay widths and couplings of the Z ′ bosons to the SM particles
in the first generation for θH = 0.073. Reprinted from Ref. [27].

Z ′ m(TeV) Γ(GeV) gZ′uLuL
gZ′dLdL

gZ′eLeL
gZ′uRuR

gZ′dRdR
gZ′eReR

Z
(1)
R 8.00 553 0 0 0 0.588 −0.294 −0.896

Z(1) 8.61 494 −0.100 0.123 0.0780 −0.426 0.213 0.650
γ(1) 8.61 1.04×103 −0.0817 0.0408 0.123 0.775 −0.388 −1.18

The relevant couplings of the Z ′ bosons to calculate the production and decay rates
are tabulated in Table 2 and Table 3. As shown in those tables, the couplings of γ(1),
Z(1) and Z

(1)
R to the right-handed fermions are larger than those to the left-handed

fermions. This difference comes from a feature of the RS metric. The mode functions
of left-handed fermions are written by CL(z;λ) and SL(z;λ) and those of right-handed
fermions are written by CR(z;λ) and SR(z;λ), respectively. CL(z;λ) and SL(z;λ) have
large values near the Planck brane, in contrast CR(z;λ) and SR(z;λ) have large values
near the TeV brane. These mode functions for the top quark are shown in Fig 7(a) and
7(b). Considering the mode functions of the Z ′, the mode functions of γ(1), Z(1) and
Z

(1)
R include C(z;λ). For the first KK modes, C(z;λ) have a large value near the TeV

brane as shown in Fig. 8. This behaviour is a consequence of the RS metric and leads
to the large Z ′ couplings to the right-handed fermions.
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(a) Behaviour of the mode functions for the left-handed top quark, CL(z; λ, ct) and 10 ×
SL(z; λ, ct) are represented by the blue solid and red dashed curve, respectively where
the factor 10 is for convenience.
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(b) Behaviour of the mode functions for the left-handed top quark, CR(z; λ, ct) and 10 ×
SR(z; λ, ct) are represented by the green dot-dashed and grey dotted curve, respectively
where the factor 10 is for convenience.

Figure 7: Behaviour of the mode functions for the left-handed and right-handed top
quark are plotted where zL = 105 and ct = 0.227.

The decay width of the Z ′ boson is given by

ΓZ′ =
∑

i

mZ′

12π

(
(gZ′iLiL

)2 + (gZ′iRiR
)2

2 + 2gZ′iLiL
gZ′iRiR

m2
i

m2
Z′

)√√√√1− 4m2
i

m2
Z′
. (2.146)

Here i runs over all fermions including the SM fermions and the dark fermions. The
contribution of its decay to W+W− is very small and negligible because the couplings
Z ′WW are small enough as shown in Table 12. By Eq. (2.146), the decay widths ΓZ′

are calculated and the results are summarised in Table 2 and Table 3. It is found that
all of Z(1)

R , Z(1), and γ(1) have large decay widths. Especially γ(1) has large decay width
around 1 TeV for θH ' 0.1.
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Figure 8: Behaviour of the C(z;λ) for the first KK photon where zL = 105, θH = 0.114
and mγ(1) = 6.08 TeV.

The dependence of the cross section σ(pp→ `+`−X) on the final state invariant mass
M`` is described as

dσ(pp→ `+`−X)
dM``

=
∑

q

∫ 1

−1
d cos θ

∫ 1
M2

``
E2

CMS

dx1
2M``

x1E2
CMS

× fq(x1,M
2
``)fq̄

(
M2

``

x1E2
CMS

,M2
``

)
dσ(q̄q → `+`−)

d cos θ , (2.147)

where ECMS is the center-of-mass energy of the LHC and fq’s are the parton distribution
functions (PDFs) for q quark. In our analysis, CTEQ5M [35] are employed for the PDFs.
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Figure 9: The differential cross section multiplied by a luminosity of 20.6 fb−1 for pp→
µ+µ−X at the 8 TeV LHC for θH = 0.114 (red solid curve) and for θH = 0.251
(blue dashed curve). The black dotted line represents the SM background.
Reprinted from Ref. [27].
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Figure 10: The differential cross section for pp→ µ+µ−X at the 14 TeV LHC for θH =
0.114 (red solid curve) and for θH = 0.073 (blue dashed curve). The black
dotted line represents the SM background. Reprinted from Ref. [27].

In Figure 9, the differential cross sections for pp → µ+µ−X are shown in the θH =
0.251 and θH = 0.114 cases. The values of the photon and Z boson couplings to the SM
particles are almost equal to the SM value, so that the cross section in this model does
not deviate largely from that in the SM below 1 TeV. However the decay widths of Z ′

bosons are very wide. In the θH = 0.251 case, the deviation from the SM is large above
1 TeV. Therefore the θH = 0.251 case is excluded by the 8 TeV LHC experiments but
the θH = 0.114 case is not excluded. In Figure 10, the predictions for the 14 TeV LHC
are shown in the θH = 0.114 and 0.073 cases. Because of the wide decay widths of Z ′’s,
the large peak is predicted.
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3. Higgs decay
In this section the decay rates Γ(H → γγ) and Γ(H → Zγ) in the SO(5) × U(1)
GHU model is evaluated. These processes occur at the one loop level. Therefore an
infinite numbers of the KK mode contribution might be significant. However amazing
cancellation occurs in their contributions and negligible. The decay rates in this model
is approximately suppressed by cos2 θH from the SM value. Therefore the branching
ratios of the Higgs boson are consistent with the SM. In the following, the amplitudes
are calculated in the unitary gauge.

3.1. H → γγ

At first, the decay rate Γ(H → γγ) is calculated. The decay rate in the SM is given by

Γ(H → γγ)SM = α2g2
w

1024π3
m3

H

m2
W

∣∣∣∣∑
i

Nc ie
2
iFi(τi)

∣∣∣∣2 , τi = 4m2
i

m2
H

, (3.1)

where we follow the notation of Ref. [36]. Nc i is the number of the color degrees of
freedom and ei is the electromagnetic charge in units of e. Functions F1(τ) and F1/2(τ)
are defined by

F1(τ) = 2 + 3τ + 3τ(2− τ)f(τ) ,
F1/2(τ) = −2τ [1 + (1− τ)f(τ)] ,

f(τ) =


[

sin−1
(√

1/τ
)]2

for τ ≥ 1 ,

−1
4

[
ln 1+

√
1−τ

1−
√

1−τ
− iπ

]2
for τ < 1 ,

(3.2)

and assigned for gauge bosons and fermions, respectively. In the large τ limit, these
functions reaches to F1/2 → −4

3 and F1 → 7.
In the SO(5)×U(1) GHU model, the KK number is conserved by the electromagnetic

interaction. Therefore the KK number in the loop is conserved and the calculation of
the decay rate in the GHU is straightforward. The result is

Γ(H → γγ) = α2g2
w

1024π3
m3

H

m2
W

∣∣∣∣FW + 4
3Ft + nFFF

∣∣∣∣2 , (3.3)
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Figure 11: Behaviors of IW (n) = gHW (n)W (n)/gwmW (n) cos θH , It(n) = yt(n)t(n)/ySM
t cos θH

and IF (n) = yF (n)F (n)/ySM
t sin θH

2 in the case of nF = 4, zL = 105 for which
θH = 0.1153. Reprinted from Ref. [29].

where

FW =
∞∑

n=0

gHW (n)W (n)

gwmW

m2
W

m2
W (n)

F1(τW (n)) =
∞∑

n=0
IW (n)

mW

mW (n)
cos θHF1(τW (n)) ,

Ft =
∞∑

n=0

yt(n)t(n)

ySM
t

mt

mt(n)
F1/2(τt(n)) =

∞∑
n=0

It(n)
mt

mt(n)
cos θHF1/2(τt(n)) ,

FF =
∞∑

n=1

yF (n)F (n)

ySM
t

mt

mF (n)
F1/2(τF (n)) =

∞∑
n=1

IF (n)
mt

mF (n)
sin θH

2 F1/2(τF (n)) . (3.4)

Here IW (n) , It(n) and IF (n) are defined as IW (n) = gHW (n)W (n)/gwmW (0) cos θH , It(n) =
yt(n)t(n)/ySM

t cos θH and IF (n) = yF (n)F (n)/ySM
t sin θH

2 . Contributions from other quarks
and leptons and their KK modes are negligible.

In the SO(5)× U(1) GHU, the Higgs couplings to the zero modes are approximated
as gHW (0)W (0)/gwmW (0) ' yt(0)t(0)/ySM

t ' cos θH , etc [24]. The Higgs couplings to the KK
modes are obtained by the numerical calculation. In Fig. 11, the values of IW (n) , It(n)

and IF (n) are shown in the NF = 4 and θH = 0.1153 case. They approximately behave
as

IW (n) ' (−1)n
{
0.0759− 0.0065 lnn+ 0.0022(lnn)2

}
,

It(n) ' (−1)n
{
0.2304− 0.0108 lnn+ 0.0017(lnn)2

}
,

IF (n) ' (−1)n
{
1.0341− 0.0457 lnn+ 0.0108(lnn)2

}
, (3.5)

for 51 ≤ n ≤ 200. Note that the sign changes alternatively for n. The masses of
the KK modes of the W boson, top quark and the dark fermion are approximately
mn ' n ·mKK/2 for large n. Therefore the contributions of the KK modes to F behave
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as ∑(−1)n(lnn)α/n (α = 0, 1, 2) and converges. In addition, the contributions from
n ≥ 1 are suppressed by mEW/mKK. Hence the ratio of F to the zero-mode contribution
becomes

FW

FW (0)only
= 0.9997 ,

Ft

Ft(0)only
= 0.9983 ,

FF

Ft(0)only
=− 0.0032 , (3.6)

for θH = 0.114 and nF = 4 respectively. The ratio of the amplitude to that with only
zero modes is

FW + 4
3Ft + 4FF

FW (0)only + 4
3Ft(0)only

= 1.0027. (3.7)

Therefore the contributions of the KK modes and the dark fermions are less than 1%
and negligible. Because the zero mode couplings are approximately given by gHW W '
gSM

HW W cos θH = gwmW cos θH and yt ' ySM
t cos θH , the decay rate in the GHU is ap-

proximately cos2 θH times that in the SM. Thus the deviation from the SM is 1% for
θH ∼ 0.1.

The production process gg → H also occurs at the one loop level. In the production
process, only the quarks and its KK mode contribute to the process and the contributions
of the light quarks are negligible as the H → γγ process. Therefore the cross section
σ(gg → H) is approximately obtained as

σ(gg → H)GHU

σ(gg → H)SM
=
(
Ft

Ft(0)only

)2

cos2 θH ' cos2 θH . (3.8)

3.2. H → Zγ

In this subsection, the decay rate Γ(H → Zγ) is calculated. The calculation is not so
straightforward as the H → γγ case, because the KK number might be changed by the
interaction to the Z and H. Besides, there are also loops involving the WR boson.
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4.2. �(H æ Z“)
In this subsection, the decay rate �(H æ Z“) is calculated. The calculation is not so
straightforward as the H æ ““ case Because the KK number need not be conserved by
the interaction to the Z and H and the WR boson also contribute to this process.

4.2.1. gauge boson loops

H

γ

Z

W (m)

W (m)

W (n)

(a)

H

γ

Z

W (n)

W (m)

W (m)

(b)

H

γ

Z

W (m)

W (n)

(c)

H

γ

Z

W (m)

W (m)

W (n)
R

(d)

H

γ

Z

W (n)
R

W (m)

W (m)

(e)

H

γ

Z

W (m)

W (n)
R

(f)

Figure 2: The gauge boson loop processes for H æ Z“ in the SO(5)◊U(1) gauge-Higgs
unification. WR is the SU(2)R gauge boson and has no zero mode. Since
HW (m)

R W (n)
R couplings vanish, there are no diagrams involving two or more

WR’ s.

The gauge boson loop processes for H æ Z“ are shown in Fig. 2. Unlike the H æ ““
processes, there are also loops including the WR boson. Note that there are no H-WR-WR

26

Figure 12: The gauge boson loop processes for H → Zγ in the SO(5)×U(1) gauge-Higgs
unification is shown. WR is the SU(2)R gauge boson and has no zero mode.
Note that HW (m)

R W
(n)
R couplings does not exist. Reprinted from Ref. [29].

3.2.1. Boson loops

The gauge boson loop processes for H → Zγ are shown in Fig. 12. Note that there are
no H-WR-WR interaction. The amplitude of W boson loop Figs. 12(a)(b)(c) is given by

iM(a)
W (m),W (n) + iM(b)

W (m),W (n) + iM(c)
W (m),W (n)

= egHW (m)W (n)gZW (m)W (n)ε∗
µ(k1)ε∗

ν(k2)
∫ d4p

(2π)4 Dτα(p,mW (m))Dσ
τ (p− k1 − k2,mW (n))

×
[
2Dβρ(p− k1,mW (m))

{
2ηαβpµ − ηβµ(p− 2k1)α − ηαµ(p+ k1)β

}
×
{
2ηρσ(p− k1)ν − ησν(p− k1 − 2k2)ρ − ηρν(p− k1 + k2)σ

}
− (2ηµνηασ − ηµαηνσ − ηµσηνα)

]
,

Dµν(p,m) =
(
ηµν −

pµpν

m2

) 1
p2 −m2 + iε

, (3.9)

44



where k1 and k2 are the photon and the Z boson momenta, respectively. The amplitude
(3.9) is divergent. However, by adding the m ↔ n diagrams and using gHW (m)W (n) =
gHW (n)W (m) and gZW (m)W (n) = gZW (n)W (m) , the amplitude is finite. The summation of the
amplitude is

i
{
M(a)

W (m),W (n) +M(b)
W (m),W (n) +M(c)

W (m),W (n) + (m←→ n)
}

=egHW (m)W (n)gZW (m)W (n)ε∗
µ(k1)ε∗

ν(k2)
(
ηµν − kµ

2k
ν
1

k1 · k2

)
i

16π2
1

m2
W (m)m

2
W (n)

×
{(
m4

W (m) +m4
W (n) + 10m2

W (m)m
2
W (n)

)
E+(mW (m) ,mW (n))

+
(

(m2
W (m) +m2

W (n))(m2
H −m2

Z)−m2
Hm

2
Z

)
E−(mW (m) ,mW (n))

−
(
4m2

W (m)m
2
W (n)(m2

H −m2
Z) + 2m4

Z(m2
W (m) +m2

W (n))
)

× (C0(mW (m) ,mW (n)) + C0(mW (n) ,mW (m)))
}

(3.10)

where

C0(m2
1,m

2
2) ≡ C0(0,m2

H ,m
2
Z ,m

2
1,m

2
1,m

2
2) ,

E±(m1,m2) ≡ 1 + m2
Z

m2
H −m2

Z

{
B0(m2

H ,m
2
1,m

2
2)−B0(m2

Z ,m
2
1,m

2
2)
}

±
{
m2

1C0(m2
1,m

2
2) +m2

2C0(m2
2,m

2
1)
}
, (3.11)

with the Passarino-Veltman functions [37,38] defined by

B0(k2,m2
1,m

2
2) ≡

(2π)4−D

iπ2

∫
dDq

1
(q2 −m2

1){(q + k)2 −m2
2}

,

C0(k2
1, (k1 − k2)2, k2

2,m
2
1,m

2
2,m

2
3)

≡ (2π)4−D

iπ2

∫
dDq

1
(q2 −m2

1){(q + k1)2 −m2
2}{(q + k2)2 −m2

3}
, (3.12)

In the D → 4 limit, B0 is divergent. However, the divergence are cancelled in C0 and
E±, so that the amplitude (3.10) is finite.

To obtain the amplitude quantitatively, the couplings gHW (m)W (n) and gZW (m)W (n) have
to be evaluated numerically. The details are summarised in Appendix. For convenience
the dimensionless coupling JW (m)W (n) is defined by

JW (m)W (n) ≡
gHW (m)W (n)gZW (m)W (n)

g2
w cos θW cos θH

√
mW (m)mW (n)

, (3.13)

and the value of JW (m)W (n) is tabulated in Table 4. JW (m)W (n) with |m− n| ≥ 2 is found
to be smaller than JW (n)W (n) by a factor 10−2, whereas JW (n)W (n) and JW (n)W (n±1) are of
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Table 4: JW (m)W (n) defined in (3.13) is shown for 0 ≤ m,n ≤ 7 and for 101 ≤ m,n ≤ 108
in the NF = 4, zL = 105 case. Only the values larger than that of O(10−4) are
shown with three significant figures. Reprinted from Ref. [29].
0 1 2 3 4 5 6 7

0 1.00 O(10−4) O(10−9) O(10−6) O(10−11) O(10−8) O(10−12) O(10−9)
1 O(10−4) -0.0580 0.0595 O(10−6) O(10−5) O(10−10) O(10−7) O(10−9)
2 O(10−9) 0.0595 0.0218 -0.0413 O(10−8) O(10−5) O(10−9) O(10−5)
3 O(10−6) O(10−6) -0.0413 -0.0625 0.0637 O(10−6) O(10−5) O(10−10)
4 O(10−11) O(10−5) O(10−8) 0.0637 0.0226 -0.0432 O(10−7) O(10−5)
5 O(10−8) O(10−10) O(10−5) O(10−6) -0.0432 -0.0652 0.0648 O(10−6)
6 O(10−12) O(10−7) O(10−9) O(10−5) O(10−7) 0.0648 0.0233 -0.0434
7 O(10−9) O(10−9) O(10−5) O(10−10) O(10−5) O(10−6) -0.0434 -0.0673

101 102 103 104 105 106 107 108
101 -0.0932 0.0705 O(10−6) O(10−4) O(10−12) O(10−5) O(10−8) O(10−6)
102 0.0705 0.0328 -0.0406 O(10−6) O(10−4) O(10−12) O(10−5) O(10−9)
103 O(10−6) -0.0406 -0.0934 0.0706 O(10−6) O(10−4) O(10−12) O(10−5)
104 O(10−4) O(10−6) 0.0706 0.0329 -0.0405 O(10−6) O(10−4) O(10−12)
105 O(10−12) O(10−4) O(10−6) -0.0405 -0.0937 0.0706 O(10−6) O(10−4)
106 O(10−5) O(10−12) O(10−4) O(10−6) 0.0706 0.0330 -0.0405 O(10−6)
107 O(10−8) O(10−5) O(10−12) O(10−4) O(10−6) -0.0405 -0.0940 0.0707
108 O(10−6) O(10−9) O(10−5) O(10−12) O(10−4) O(10−6) 0.0707 0.0331
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0 20 40 60 80 100!0.10

!0.05

0.00

0.05

n

J " JW!n"W!n"1"
! JW!n"W!n"

Figure 13: JW (n)W (n) and JW (n)W (n+1) are plotted for 1 ≤ n ≤ 100 in the NF = 4, zL = 105

case. The red circles and blue squares represent JW (n)W (n) and JW (n)W (n+1) ,
respectively. Reprinted from Ref. [29].

46



the same order. JW (n)W (n) and JW (n)W (n+1) are plotted in Fig. 13 for 1 ≤ n ≤ 100 in the
NF = 4, zL = 105 case. JW (n)W (n) and JW (n)W (n+1) for 101 ≤ n ≤ 200 are approximately
given by

JW (n)W (n) '− 0.0272 + 0.00320(lnn)− 0.00083(lnn)2

+ (−1)n−1
(
−0.0563 + 0.00654(lnn)− 0.00173(lnn)2

)
,

JW (n)W (n+1) ' 0.0135− 0.00160(lnn) + 0.00041(lnn)2

+ (−1)n−1
(

0.0567− 0.00106(lnn) + 0.00018(lnn)2
)
. (3.14)

The diagonal (m = n) part of the amplitude in (3.10) for n� 1 is rewritten as

iM(a)
W (n),W (n) + iM(b)

W (n),W (n) + iM(c)
W (n),W (n)

= eg2
w cos θW cos θHε

∗
µ(k1)ε∗

ν(k2)
(
ηµν − kµ

2k
ν
1

k1 · k2

)
i

16π2
JW (n)W (n)

2m3
W (n)

×
{
− m2

H −m2
Z

2m2
W (n)

(
12m4

W (n) + 2m2
W (n)(m2

H −m2
Z)−m2

Hm
2
Z

)
I1(τW (n) , λW (n))

+ 4
(

4m2
W (n)(m2

H −m2
Z)−m2

Hm
2
Z +m4

Z

)
I2(τW (n) , λW (n))

}
, (3.15)

where

I1(a, b) = ab

2(a− b) + a2b2

2(a− b)2

[
f(a)− f(b)

]
+ a2b

(a− b)2

[
g(a)− g(b)

]
,

I2(a, b) = − ab

2(a− b) [f(a)− f(b)] ,

g(τ) =


√
τ − 1 sin−1

(√
1/τ

)
for τ ≥ 1 ,

1
2
√

1− τ
[
ln 1+

√
1−τ

1−
√

1−τ
− iπ

]
for τ < 1 .

(3.16)

and λi ≡ 4m2
i /m

2
Z . τi and f(a) are defined in (3.1) and (3.2). Here, we have used

m2
Z

m2
H −m2

Z

(
B0(m2

H ,m
2
W (n) ,m

2
W (n))−B0(m2

Z ,m
2
W (n) ,m

2
W (n))

)
= −1− m2

H −m2
Z

2m2
W (n)

I1(τW (n) , λW (n)) + 2I2(τW (n) , λW (n)) ,

C0(0,m2
H ,m

2
Z ,m

2
W (n) ,m

2
W (n) ,m

2
W (n)) = − 1

m2
W (n)

I2(τW (n) , λW (n)) . (3.17)

The functions I1, I2 in (3.17) approach constants for mW (n) →∞. The whole amplitude
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of the W boson loop is

iMW = i

2

∞∑
m,n

{
M(a)

W (m),W (n) +M(b)
W (m),W (n) +M(c)

W (m),W (n) + (n←→ m)
}
. (3.18)

Since JW (m)W (n) for |m− n| ≥ 2 are negligible comparing to JW (m)W (n) for |m− n| ≤ 1,
only the amplitude for |m−n| ≤ 1 need to be considered. For n� 1, mW (n±1) ' mW (n) .
By this approximation, the whole amplitude of the W boson loop is

1
2
∑
m

(
iM(a)

W (m),W (n) + iM(b)
W (m),W (n) + iM(c)

W (m),W (n) + (n←→ m)
)

' eg2
w cos θW cos θHε

∗
µ(k1)ε∗

ν(k2)
(
ηµν − kµ

2k
ν
1

k1 · k2

)
i

16π2

× 1
2m3

W (n)
(JW (n)W (n) + JW (n+1)W (n) + JW (n−1)W (n))

×
{
− m2

H −m2
Z

2m2
W (n)

(
12m4

W (n) + 2m2
W (n)(m2

H −m2
Z)−m2

Hm
2
Z

)
I1(τW (n) , λW (n))

+ 4
(

4m2
W (n)(m2

H −m2
Z)−m2

Hm
2
Z +m4

Z

)
I2(τW (n) , λW (n))

}

≈ const.× 1
n

(JW (n)W (n) + JW (n+1)W (n) + JW (n−1)W (n)) . (3.19)

Therefore for the large n, the sum in the whole amplitude ofW boson loop asymptotically
behaves as

iMW ≈
∞∑
n

const.× 1
n

(JW (n)W (n) + JW (n+1)W (n) + JW (n−1)W (n)) . (3.20)

Nevertheless the sums ∑ JW (n)W (n)/n and ∑ JW (n±1)W (n)/n diverge respectively, the sum
of them, ∑ (JW (n)W (n) + JW (n+1)W (n) + JW (n−1)W (n)) /n behaves as

JW (n)W (n) + JW (n+1)W (n) + JW (n−1)W (n)

' (−1)n−1
{
− 0.0563 + 0.00654(lnn)− 0.00173(lnn)2

}
, (3.21)

and therefore converges.
Next the loop process involving the WR is considered. The dimensionless coupling

J
W (m)W

(n)
R

is also defined by

J
W (m)W

(n)
R

≡
g

HW (m)W
(n)
R

g
ZW (m)W

(n)
R

g2
w cos θW cos θH

√
mW (m)m

W
(n)
R

, (3.22)

As is seen in the Table 5, J
W (m)W

(n)
R

is relevant only when m/2−n = 0, 1, 2. The mass
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Table 5: J
W (m)W

(n)
R

in (3.22) is shown for 0 ≤ m ≤ 7, 1 ≤ n ≤ 4 and for 101 ≤ m ≤ 108,
51 ≤ n ≤ 55 in the NF = 4, zL = 105 case. Only values larger than O(10−4)
are shown explicitly with three significant figures. Reprinted from Ref. [29].

m
0 1 2 3 4 5 6 7

1 O(10−5) O(10−5) -0.0118 O(10−7) O(10−5) O(10−7) O(10−4) O(10−7)
2 O(10−6) O(10−6) 0.0296 O(10−6) -0.0299 O(10−6) O(10−4) O(10−8)

n 3 O(10−8) O(10−8) 0.0014 O(10−6) 0.0362 O(10−5) -0.0373 O(10−6)
4 O(10−7) O(10−8) O(10−5) O(10−7) 0.0018 O(10−6) 0.0395 O(10−4)

m
101 102 103 104 105 106 107 108

51 O(10−4) -0.0499 O(10−6) O(10−4) O(10−7) O(10−4) O(10−7) O(10−5)
52 O(10−5) 0.0474 O(10−4) -0.0499 O(10−6) O(10−4) O(10−7) O(10−4)

n 53 O(10−7) 0.0026 O(10−5) 0.0475 O(10−4) -0.0499 O(10−6) O(10−4)
54 O(10−7) O(10−4) O(10−7) 0.0026 O(10−5) 0.0475 O(10−4) -0.0499
55 O(10−8) O(10−4) O(10−7) O(10−4) O(10−7) 0.0026 O(10−5) 0.0475

of the W (n)
R is approximately m

W
(n)
R

' n ·mKK, and the W mass is mW (n) ' n ·mKK/2.
Therefore for m/2− n = 0, 1, 2, mW (m) ' m

W
(n)
R

' n ·mKK is satisfied. Hence the whole
amplitude of the loop Figs. 12(d)(e)(f) is given by

iMWR
=

∞∑
m,n

(
iM(d)

W (m),W
(n)
R

+ iM(e)
W (m),W

(n)
R

+ iM(f)
W (m),W

(n)
R

+ iM(d)
W

(n)
R ,W (m) + iM(e)

W
(n)
R ,W (m) + iM(f)

W
(n)
R ,W (m)

)
≈

∞∑
n

const.× 1
n

(
J

W (n)W
(n/2)
R

+ J
W (n)W

(n/2+1)
R

+ J
W (n)W

(n/2+2)
R

)
. (3.23)

J
W (n)W

(n/2)
R

, J
W (n)W

(n/2+1)
R

and J
W (n)W

(n/2+2)
R

are plotted in Fig. 14 for 1 ≤ n ≤ 100 in the
NF = 4, zL = 105 case. J

W (n)W
(n/2)
R

, J
W (n)W

(n/2+1)
R

, J
W (n)W

(n/2+2)
R

are approximately

J
W (n)W

(n/2)
R

' −0.0425− 0.00268(lnn) + 0.00023(lnn)2

J
W (n)W

(n/2+1)
R

' 0.0411 + 0.00227(lnn)− 0.00019(lnn)2

J
W (n)W

(n/2+2)
R

' 0.0021 + 0.00017(lnn)− 0.00001(lnn)2. (3.24)

J
W (n)W

(n/2)
R

+ J
W (n)W

(n/2+1)
R

+ J
W (n)W

(n/2+2)
R

almost vanishes.
To summarise, the whole amplitude of the gauge boson loop contributions iMboson ≡

iMW + iMWR
are convergent.
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Figure 14: J
W (n)W

(n/2)
R

, J
W (n)W

(n/2+1)
R

and J
W (n)W

(n/2+2)
R

are plotted for 1 ≤ n ≤ 100 in
the NF = 4, zL = 105 case. The red circles, blue squares, green triangles
represent J

W (n)W
(n/2)
R

, J
W (n)W

(n/2+1)
R

and J
W (n)W

(n/2+2)
R

, respectively. Reprinted
from Ref. [29].

3.2.2. Fermion loops

Next, the amplitude of the fermion loops in Fig. 15 are calculated similarly. The con-
tributions from the top quark, charged dark fermions and their KK excitations are
significant. The contributions from other quarks and leptons are negligible.

The diagrams of fermion loops Fig. 15 (a, b) (or (c,d)), give

iM(a)
f (m),f (n) + iM(b)

f (m),f (n)

=−Qfe ε
∗
µ(k1)ε∗

ν(k2)
∫ d4p

(2π)4
1

p2 −m2
f (m)

1
(p− k1)2 −m2

f (m)

1
(p− k1 − k2)2 −m2

f (n)

× Tr
[(
yf (m)f (n) + ŷf (m)f (n)γ5

)
(/p+mf (m))γµ(/p− /k1 +mf (m))γν

×
(
gV

Zf (m)f (n) + gA
Zf (m)f (n)γ

5
)
(/p− /k1 − /k2 +mf (n))

+
(
yf (m)f (n) + ŷf (n)f (m)γ5

)
(−/p+ /k1 + /k2 +mf (n))γν

×
(
gV

Zf (m)f (n) + gA
Zf (n)f (m)γ

5
)
(−/p+ /k1 +mf (m))γµ(−/p+mf (m))

]
, (3.25)

where f (m) is arbitrary fermion. The Yukawa couplings yf (m)f (n) and ŷf (m)f (n) for f (m) =
t(m) and F (m) are given in (B.45) and (B.57), respectively. The amplitude (3.25) is
divergent, but by adding the m ↔ n diagrams and making use of yf (m)f (n) = yf (n)f (m)
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F (n)

F (m)

F (m)
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Figure 5: The fermion loop processes of H æ Z“ decay in the SO(5)◊U(1) gauge-Higgs
unification. F + is the charged dark fermion which does not have a zero mode.

G±(m1, m2) = 2(m1 ± m2) + 2m2
Z(m1 ± m2)
m2

H ≠ m2
Z

1
B0(m2

H , m2
1, m2

2) ≠ B0(m2
Z , m2

1, m2
2)

2

+m1(2m2
1 ± 2m1m2 ≠ m2

H + m2
Z)C0(0, m2

H , m2
Z , m2

1, m2
1, m2

2)

±m2(2m2
2 ± 2m1m2 ≠ m2

H + m2
Z)C0(0, m2

H , m2
Z , m2

2, m2
2, m2

1) . (4.25)
In this form the amplitude is finite.

We define Jt(m)t(n) and JF +(m)F +(n) by

Jt(m)t(n) ©
gV

Zt(m)t(n)yt(m)t(n) cos ◊W

gwyt cos ◊H

, (4.26)

JF +(m)F +(n) ©
gV

ZF +(m)F +(n)yF (m)F (n) cos ◊W

gwyt sin ◊H

2
(4.27)

In the Table 3 and Table 4, Jt(m)t(n) and JF +(m)F +(n) by the numerical evaluation are
shown. As in the case of JW (n)W (n) , Jt(m)t(n) and JF +(m)F +(n) for |m ≠ n| Ø 2 become
negligible for m, n > 100. In addition, the terms proportional to ŷf (m)f (n)gA

Zf (m)f (n) are
negligible around m, n = 100. The ratio (ŷf (m)f (n)/yf (m)f (n)) · (gA

Zf (m)f (n)/gV
Zf (m)f (n)) is

smaller than 10≠4, and the ŷf (m)f (n)gA
Zf (m)f (n) term in (4.25) may be dropped.

For the asymptotic behavior of the amplitude for m, n ∫ 1 only the |m≠n| Æ 1 terms
are relevant. For |m ≠ n| Æ 1, mf (n±1) ƒ mf (n) and the amplitudes are evaluated as

iMfermion

© 1
2

Œÿ

m,n

;
iM(a)

t(m),t(n) + iM(b)
t(m),t(n) + iM(c)

F +(m),F +(n) + iM(d)
F +(m),F +(n) + (m ¡ n)

<

33

Figure 15: The fermion loop processes ofH → Zγ decay in the SO(5)×U(1) gauge-Higgs
unification. F+ is the charged dark fermion. Reprinted from Ref. [29].

and ŷf (m)f (n) = −ŷf (n)f (m) , the amplitude becomes

iM(a)
f (m),f (n) + iM(b)

f (m),f (n) + (m←→ n)

=− iQfe

4π2 ε
∗
µ(k1)ε∗

ν(k2)
(
ηµν − kµ

2k
ν
1

k1 · k2

)

×
{
yf (m)f (n)gV

Zf (m)f (n)G+(mf (m) ,mf (n))− ŷf (m)f (n)gA
Zf (m)f (n)G−(mf (m) ,mf (n))

}
,

G±(m1,m2) = 2(m1 ±m2) + 2m2
Z(m1 ±m2)
m2

H −m2
Z

(
B0(m2

H ,m
2
1,m

2
2)−B0(m2

Z ,m
2
1,m

2
2)
)

+m1(2m2
1 ± 2m1m2 −m2

H +m2
Z)C0(0,m2

H ,m
2
Z ,m

2
1,m

2
1,m

2
2)

±m2(2m2
2 ± 2m1m2 −m2

H +m2
Z)C0(0,m2

H ,m
2
Z ,m

2
2,m

2
2,m

2
1) . (3.26)

and this amplitude is finite as the gauge boson case.
We define Jt(m)t(n) and JF +(m)F +(n) by

Jt(m)t(n) ≡
gV

Zt(m)t(n)yt(m)t(n) cos θW

gwyt cos θH

, (3.27)

JF +(m)F +(n) ≡
gV

ZF +(m)F +(n)yF (m)F (n) cos θW

gwyt sin θH

2
(3.28)

The value of the Jt(m)t(n) and JF +(m)F +(n) by the numerical calculation are shown in the
Table 6 and Table 7. As in the case of JW (n)W (n) , Jt(m)t(n) and JF +(m)F +(n) for |m−n| ≥ 2
is negligible. In addition, the ratio (ŷf (m)f (n)/yf (m)f (n)) · (gA

Zf (m)f (n)/g
V
Zf (m)f (n)) is smaller

than 10−4. Hence the ŷf (m)f (n)gA
Zf (m)f (n) term in (3.26) is negligible.
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Table 6: Jt(m)t(n) is shown for 0 ≤ m,n ≤ 7 and for 101 ≤ m,n ≤ 108 in the NF = 4,
zL = 105 case. Only the values larger than O(10−4) are shown with three
significant figures. Reprinted from Ref. [29].

0 1 2 3 4 5 6 7
0 0.0988 -0.0041 O(10−4) O(10−5) O(10−7) O(10−6) O(10−6) O(10−7)
1 -0.0041 -0.0790 0.0638 O(10−5) O(10−4) O(10−9) O(10−10) O(10−8)
2 O(10−4) 0.0638 -0.0350 -0.0071 O(10−6) O(10−6) O(10−9) O(10−5)
3 O(10−5) O(10−5) -0.0071 -0.0763 0.0616 O(10−6) O(10−4) O(10−9)
4 O(10−7) O(10−4) O(10−6) 0.0616 -0.0338 -0.0071 O(10−6) O(10−6)
5 O(10−6) O(10−9) O(10−6) O(10−6) -0.0071 -0.0754 0.0609 O(10−6)
6 O(10−6) O(10−10) O(10−9) O(10−4) O(10−6) 0.0609 -0.0334 -0.0070
7 O(10−7) O(10−8) O(10−5) O(10−9) O(10−6) O(10−6) -0.0070 -0.0751

101 102 103 104 105 106 107 108
101 -0.0761 0.0610 O(10−6) O(10−4) O(10−13) O(10−7) O(10−8) O(10−6)
102 0.0610 -0.0337 -0.0068 O(10−6) O(10−6) O(10−13) O(10−5) O(10−9)
103 O(10−6) -0.0068 -0.0761 0.0610 O(10−6) O(10−4) O(10−13) O(10−7)
104 O(10−4) O(10−6) 0.0610 -0.0337 -0.0068 O(10−6) O(10−6) O(10−13)
105 O(10−13) O(10−6) O(10−6) -0.0068 -0.0761 0.0610 O(10−6) O(10−4)
106 O(10−7) O(10−13) O(10−4) O(10−6) 0.0610 -0.0337 -0.0068 O(10−6)
107 O(10−8) O(10−5) O(10−13) O(10−6) O(10−6) -0.0068 -0.0762 0.0610
108 O(10−6) O(10−9) O(10−7) O(10−13) O(10−4) O(10−6) 0.0610 -0.0337

Table 7: JF +(m)F +(n) is shown for 0 ≤ m,n ≤ 7 and for 101 ≤ m,n ≤ 108 in the NF = 4,
zL = 105 case. Only the values larger than O(10−4) are shown with three
significant figures. Reprinted from Ref. [29].

1 2 3 4 5 6 7
1 0.2256 -0.0272 O(10−5) -0.0040 O(10−8) O(10−5) O(10−7)
2 -0.0272 0.2378 0.0824 O(10−6) O(10−5) O(10−8) O(10−5)
3 O(10−5) 0.0824 0.2204 -0.3188 O(10−6) 0.0036 O(10−8)
4 -0.0040 O(10−6) -0.3188 0.2554 0.0866 O(10−6) O(10−5)
5 O(10−8) O(10−5) O(10−6) 0.0866 0.2245 -0.3263 O(10−6)
6 O(10−5) O(10−8) -0.0036 O(10−6) -0.3263 0.2612 0.0874
7 O(10−7) O(10−5) O(10−8) O(10−5) O(10−6) 0.0874 0.2271

101 102 103 104 105 106 107 108
101 0.2505 -0.3528 O(10−6) -0.0033 O(10−11) O(10−5) O(10−8) O(10−5)
102 -0.3528 0.2918 0.0848 O(10−5) O(10−5) O(10−12) O(10−5) O(10−8)
103 O(10−6) 0.0848 0.2508 -0.3531 O(10−6) -0.0033 O(10−11) O(10−5)
104 -0.0033 O(10−5) -0.3530 0.2921 0.0848 O(10−5) O(10−5) O(10−12)
105 O(10−11) O(10−5) O(10−6) 0.0848 0.2510 -0.3533 O(10−6) -0.0033
106 O(10−5) O(10−12) -0.0033 O(10−5) -0.3533 0.2924 0.0847 O(10−5)
107 O(10−8) O(10−5) O(10−11) O(10−5) O(10−6) 0.0847 0.2512 -0.3535
108 O(10−5) O(10−8) O(10−5) O(10−12) -0.0033 O(10−5) -0.3535 0.2927
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!0.05
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Figure 16: Jt(n)t(n) and Jt(n)t(n+1) are plotted for 1 ≤ n ≤ 100 in theNF = 4, zL = 105 case.
The red circles and blue squares express Jt(n)t(n) and Jt(n)t(n+1) , respectively.
Reprinted from Ref. [29].

From the numerical calculation, only the terms Jt(m)t(n) and JF +(m)F +(n) for the |m −
n| ≤ 1 is significant. For |m − n| ≤ 1 and n � 1, mf (n±1) ' mf (n) is satisfied and the
amplitudes are

1
2
∑
m

{
iM(a)

t(m),t(n) + iM(b)
t(m),t(n) + iM(c)

F +(m),F +(n) + iM(d)
F +(m),F +(n) + (m↔ n)

}

≈ i

4π2 ε
∗
µ(k1)ε∗

ν(k2)
(
ηµν − kµ

2k
ν
1

k1 · k2

)
egwyt cos θH

cos θW

(m2
H −m2

Z)

×
{

2
3
Jt(n)t(n) + Jt(n+1)t(n) + Jt(n−1)t(n)

mt(n)

[
I1(τt(n) , λt(n))− I2(τt(n) , λt(n))

]

+ JF +(n)F +(n) + JF +(n+1)F +(n) + JF +(n−1)F +(n)

mF +(n)

[
I1(τF +(n) , λF +(n))− I2(τF +(n) , λF +(n))

]}
.

(3.29)

Jt(n)t(n) , Jt(n)t(n+1) , JF +(n)F +(n) and JF +(n)F +(n+1) are plotted in Figs. 16 and 17. For
101 ≤ n ≤ 200, they are approximately given by

Jt(n)t(n) ' −0.0597 + 0.00323(lnn)− 0.00047(lnn)2

+ (−1)n−1
{
− 0.0230 + 0.00122(lnn)− 0.00018(lnn)2

}
,

Jt(n)t(n+1) ' 0.0296− 0.00162(lnn) + 0.00024(lnn)2

+ (−1)n−1
{
0.0362− 0.00143(lnn) + 0.00020(lnn)2

}
, (3.30)
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Figure 17: JF +(n)F +(n) and JF +(n)F +(n+1) are plotted for 1 ≤ n ≤ 100 in the NF = 4,
zL = 105 case. The red circles and blue squares express JF +(n)F +(n) and
JF +(n)F +(n+1) , respectively. Reprinted from Ref. [29].

JF +(n)F +(n) ' 0.280− 0.0172(lnn) + 0.00331(lnn)2

+ (−1)n−1
{
− 0.0212 + 0.00131(lnn)− 0.00026(lnn)2

}
,

JF +(n)F +(n+1) ' −0.138 + 0.0084(lnn)− 0.00163(lnn)2

+ (−1)n−1
{
− 0.2218 + 0.00558(lnn)− 0.00107(lnn)2

}
. (3.31)

Consequently, by adding them, it is found that

Jt(n)t(n) + Jt(n+1)t(n) + Jt(n−1)t(n) ' (−1)n−1
{
− 0.0230 + 0.00122(lnn)− 0.00018(lnn)2

}
,

JF +(n)F +(n) + JF +(n+1)F +(n) + JF +(n−1)F +(n)

' (−1)n−1
{
− 0.0212 + 0.00131(lnn)− 0.00026(lnn)2

}
.

(3.32)

Since iMf ∝
∑

n(Jf (n)f (n) + Jf (n+1)f (n) + Jf (n−1)f (n))/n for large n, the amplitude of the
fermion loops converges as in the case of the gauge boson loops. Therefore the whole
amplitude of the fermion contributions iMfermion defined as

iMfermion ≡ iMt + iMF (3.33)

= i

2

∞∑
m,n

{
M(a)

t(m),t(n) +M(b)
t(m),t(n) +M(c)

F +(m),F +(n) +M(d)
F +(m),F +(n) + (m↔ n)

}
,

is finite.
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3.2.3. Total amplitude

The ratio of the sum of the all boson contributions to the W boson contribution and
that of the all fermion contributions to the top quark contribution are given by

Mboson

MW (0)only
= 0.9994, Mfermion

Mt(0)only
= 1.0023, (3.34)

respectively for zL = 105, nF = 4, and θH = 0.1153. In the case, the ratio of the whole
contribution to the W boson and top quark contributions is

Mboson +Mfermion

MW (0)only +Mt(0)only
= 0.9993 . (3.35)

Therefore the KK mode contributions are found to be negligible. The zero mode cou-
plings are approximated as gHW (0)W (0) ' gw cos θH and yt(0) ' ytSM cos θH , the decay
width is approximated by

Γ(H → Zγ)GHU ' Γ(H → Zγ)SM × cos2 θH . (3.36)

In the SO(5)×U(1) gauge-Higgs unification, the decay width of H → WW , H → ZZ,
H → bb and H → ττ are suppressed by cos2 θH at the tree level. The decay width of the
H → γγ and H → Zγ are also suppressed by cos2 θH at the one-loop level. Therefore
the branching ratios of the Higgs decay modes in this model are almost the same as
in the SM. The dominant process in the Higgs boson production is gg → H, and the
production cross section is also suppressed by cos2 θH . Therefore the signal strength,
[σ(gg → H)B(H → Zγ)]GHU/[σ(gg → H)B(H → Zγ)]SM, is approximately cos2 θH .
For θH ∼ 0.1, the deviation from the SM is only 1%.

The H → gg, γγ and H → Zγ processes occur at the one-loop level and an infinite
number of the KK modes contribute to the processes. By the non-trivial cancellations
among the KK mode contributions, the infinite sums of the KK mode contributions
converge and their contributions turn out negligible. Especially, in the H → Zγ process,
the miraculous cancellations occur. The KK numbers of the particles can change by the
interaction with the Z boson, so that the whole amplitude is obtained by summing up
the two KK numbers. The mere infinite sum of the amplitudes in which the KK numbers
are conserved diverges. However, the cancellations occur among the amplitude of the
process in which the KK number is conserved in the loop and the amplitude of the
process in which the KK number is not conserved in the loop. Consequently, the whole
amplitude converges by summing up all of the contributions of the KK modes. These
amazing cancellations are remarkable and attractive features of this model. The origin
of the cancellations is to be clarified. It seems to originate from the five-dimensional
gauge symmetry.
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4. Dark mater
The existence of the dark matter (DM) [39] is one of the important clues to the physics
beyond the SM and studied in the several models [40–43]. In this section, the relic
density and the direct detection constraint of the neutral dark fermion are considered.
The dark fermions do not have the zero mode from the boundary condition and the
lightest mode are almost SU(2)R doublet and the SU(2)L doublet is slightly mixed.
Thus the neutral dark fermions are DM candidates.

In this section, the first KK modes of the dark fermions F (n)
i are denoted as Fi.

4.1. Relic density
4.1.1. Pair annihilations and relic density of dark fermions

F

F̄

(a)

F

F̄

(b)

F

F̄

(c)

F

F̄

(d)

F

F̄

(e)

F

F̄

(f)

Figure 18: FF̄ annihilation diagrams. (a) s-channel annihilation to fermions through a
vector boson. (b) s-channel annihilation to vector bosons through a vector
boson. (c) s-channel annihilation to a fermion-pair through the Higgs boson.
(d) s-channel annihilation to a boson-pair through the Higgs boson. (e) t-
channel annihilation to two vector bosons. (f) u-channel annihilation to two
vector bosons. Reprinted from Ref. [28].

To obtain the relic density of the dark fermion, the annihilation cross sections of the
dark fermions are calculated. Here, it should be emphasised that the lowest KK dark
fermions are mostly SU(2)R doublets. Consequently, the WFF and ZFF couplings are
small and ZRWW couplings are also small.

At first the neutral dark fermion annihilations are considered. The s-channel annihila-
tion to fermions through Z and Z(n) in Fig. 18(a) are suppressed by the small ZFF̄ and
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Z(n)FF̄ couplings. The s-channel annihilation to two vector bosons shown in Fig. 18(b)
are suppressed by the small F̄FZ(n) and Z

(n)
R WW couplings. The s-channel annihila-

tion through the Higgs boson in Fig. 18(c)(d) are negligible because of the small Higgs
Yukawa couplings of FF̄ . The t- and u-channel processes shown in Fig. 18(e)(f) are also
negligible because of the small F̄FW and F̄FZ.

Considering the charged dark fermion, γ and γ(1) contribute to the processes. The
s-channel annihilation to fermions through γ in Fig. 18(a) are small because of the heavy
dark fermion mass. The s-channel annihilation F+−F− → γ(1) → W+W− in Fig. 18(b)
are suppressed by the small γ(1)WW coupling shown in Table 12. The t- and u-channel
processes F+−F− → γγ and F+−F− → Zγ in Fig. 18(e)(f) are also negligible because of
the large dark fermion mass and small ZFF coupling, respectively.

Thus unsuppressed processes are the s-channel annihilation processes F 0−F 0 → Z(1) →
ff̄ , F+−F− → Z(1) → ff̄ and F+−F− → γ(1) → ff̄ . The couplings of Z(1)

R to quarks and
leptons are large as shown in Table 2 and 3.

There are the also the co-annihilation processes. In this model, the annihilation of
charged and neutral dark fermions is the co-annihilation and all of the co-annihilation
processes are either vanishing or suppressed. The s-channel co-annihilation, F+F̄ 0 to
fermions through W and W (n) in Fig. 18(a) are suppressed by the small WF+F̄ (0) and
W (n)F+F̄ (0) couplings and the s-channel co-annihilation to fermions through W

(n)
R is

forbidden because WRf̄f couplings are banished. The s-channel co-annihilation to two
vector bosons shown in Fig. 18(b) are suppressed by the small WF+F̄ (0), W (n)F+F̄ (0)

and W
(n)
R WZ couplings. The t- and u-channel processes F+−F 0 → W+γ and F+−F 0 →

W+Z in Fig. 18(e)(f) are also suppressed by small F+F̄ 0W− couplings.
Therefore the relevant processes for the dark fermion annihilation are the following

s-channel processes

F 0F̄ 0 → Z
(1)
R → qq̄, ll̄, νν̄,

F+F̄− → γ(1) → qq̄, ll̄,

F+F̄− → Z
(1)
R → qq̄, ll̄, νν̄,

(4.1)

and all other annihilation and co-annihilation processes are negligible. In addition, these
processes could be enhanced by the Breit-Wigner resonance [43].

For charged dark fermions, the annihilation cross section of F+
i F

−
i to the SM fermions
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is given by∑
f

σ(F+
i F

−
i → {γ(1), Z

(1)
R } → f̄f)

= 1
64πβ

[
s

(s−m2
Z

(1)
R

)2 +m2
Z

(1)
R

Γ2
Z

(1)
R

g4
w

(∑
f

[(
g

Z
(1)
R fL

)2
+
(
g

Z
(1)
R fR

)2
])

×
{(

1 + β2

3

) [(
g

Z
(1)
R F +

L

)2
+
(
g

Z
(1)
R F +

R

)2
]

+ 8m
2
F

s
g

Z
(1)
R F +

L

g
Z

(1)
R F +

R

}

+ s

(s−m2
γ(1))2 +m2

γ(1)Γ2
γ(1)

e4

∑
f

[(
gγ(1)fL

)2
+
(
gγ(1)fR

)2
]

×
{(

1 + β2

3

) [(
gγ(1)F +

L

)2
+
(
gγ(1)F +

R

)2
]

+ 8m
2
F

s
gγ(1)F +

L
gγ(1)F +

R

}

+2·
(s−m2

Z
(1)
R

)(s−m2
γ(1)) +m

Z
(1)
R

mγ(1)Γ
Z

(1)
R

Γγ(1)

[(s−m2
Z

(1)
R

)2 +m2
Z

(1)
R

Γ2
Z

(1)
R

][(s−m2
γ(1))2 +m2

γ(1)Γ2
γ(1) ]
· s

× g2
we

2

∑
f

[
g

Z
(1)
R fL

gγ(1)fL
+ g

Z
(1)
R fR

gγ(1)fR

]
×
{(

1 + β2

3

) [
g

Z
(1)
R F +

L

gγ(1)F +
L

+ g
Z

(1)
R F +

L

gγ(1)F +
R

]

+ 4m
2
F

s

[
g

Z
(1)
R F +

L

gγ(1)F +
R

+ g
Z

(1)
R F +

R

gγ(1)F +
L

]}]
, (4.2)

where gV F +
L /F +

R
and gV fL/fR

are abbreviation of gV F +
L F +

L
, etc. β ≡

√
1− 4m2

F/s and s is
the invariant mass of FF̄ . F 0

i F̄
0
i annihilation cross section ∑f σ(F 0F̄ 0 → Z

(1)
R → f̄f) is

obtained from (4.2) by replacing gV F +
L /F +

R
with gV F 0

L/F 0
R

and ignoring e2 and e4 terms.
The Boltzmann equation for F 0

i is given by

dn(F 0
i )

dt
= −3Hn(F 0

i ) −
∑

X,X′

[
〈σ(F̄ 0

i F
0
i → XX ′)v〉

(
n(F 0

i )n(F̄ 0
i ) − n(F 0

i ),eqn(F̄ 0
i ),eq

)]
−
∑

X,X′

[
〈σ(F−

i F
0
i → XX ′)v〉

(
n(F 0

i )n(F̄ +
i ) − n(F 0

i ),eqn(F̄ +
i ),eq

)]
−
∑

j

[
〈σ(F̄ 0

i F
0
i → F+

j F
−
j )v〉

(
n(F 0

i )n(F̄ 0
i ) − n(F 0

i ),eqn(F̄ 0
i ),eq

)]
−
∑

X,X′

{
〈σ(F 0

i X → F+
i X

′)v〉n(F 0
i )n(X)

− 〈σ(F+
i X

′ → F 0
i X)v〉n(F +

i )n(X′)

}
, (4.3)

where H is the Hubble constant, n(F ) denotes the number density of F , and X represents
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a SM field. The last term corresponds to the decay F+
i → F 0

i W
+ → F 0

i ff̄
′ where f and

f ′ denotes the SM fermions. Similar relations are obtained for F̄ 0
i and F±

i . The number
density of F in the thermal equilibrium is given by neq

(x) = gx(mxT/2π)3/2 exp(−mx/T )
where gx and mx are the number of the degrees of freedom and mass of x, respectively.

The number-density of F 0
i and F̄ 0

i [F+
i and F̄+

i ] (i = 1, . . . , nF ) are denoted by n0
[n+]. Because the co-annihilations are suppressed, the third term in the right-hand side
of (4.3) are negligible. The Boltzmann equation for the total number density of the DM,
n ≡ 2nF (n0 + n+), is given by

dn

dt
= −3Hn− 2nF 〈σ0v〉(n2

0 − n2
0,eq)− 2nF 〈σ+v〉(n2

+ − n2
+,eq), (4.4)

where σ0 [σ+] be the annihilation cross section of F 0
i [F+

i ] and n0/+,eq is approximately
given by n0/+,eq ≈ g0/+(mF 0/±T/2π)3/2 exp(−mF 0/±/T ) and g0/+ = 2 for F 0

i and F+
i .

Using the relations n0,+/n0,+eq = n/neq and n0,eq/neq = n+,eq/neq = 1/4nF , we obtain

dn

dt
= −3Hn− 〈σeffv〉(n2 − n2

eq), σeffv ≡
σ0v + σ+v

8nF

. (4.5)

From the above definition, the relic density of the dark fermions at the present time
is given by

ΩDMh
2 = 1.04× 109

MP l

1
√
g∗

1
Jf

, (4.6)

where g∗ is the degree of freedom at the freeze-out temperature Tf and we take g∗ = 92,

Jf ≡
∫ xf

0
〈σeffv〉(x)dx , (4.7)

The value of the xf is determined by the relation

x−1
f = ln

5
4

√
45
8

2 · 4nF

2π3
mFMP lx

1/2
f 〈σeffv〉
g

1/2
∗

 , (4.8)

which can be solved by numerical iteration.
To obtain the thermal-averaged cross section 〈σv〉, σv is expanded in v2 as

σv = a+ bv2 + · · · = a+ b[(s− 4m2
F )/m2

F ] + · · · , (4.9)
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then, we obtain

〈σv〉 = 4π
(
mF

4πT

)3/2 ∫ ∞

0
dv v2e−mF v2/4Tσv

= a+ 6bT/mF + · · · . (4.10)

In the present case xf ∼ 1/30 and therefore only the first term in the v2 expansion in
Eq. (4.9) is kept in the following analysis. In the case where the Breit-Wigner resonance
enhance the DM relic density, a careful treatment may be required [44]. In our case,
because of the large decay widths of V = Z(1), Z

(1)
R , γ(1), the approximation can be

justified.

4.1.2. Relic density of degenerate dark fermions

First we consider the case in which all dark fermions are degenerate. In Fig. 19 the relic
density of the degenerate dark fermions for nF = 3, 4, 5 and 6 is plotted. In the plot, the
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Figure 19: Relic density of the nF degenerate dark fermions (nF = 3, 4, 5, 6) are plotted.
Data points are, from right to left, zL = 104 (2 × 104) to 105 with a step of
104, 106, 107 and 108 for nF = 4, 5, 6 (nF = 3). The horizontal lines represent
the observed relic density of the DM and the lower bound of the overclosure
of the universe. Reprinted from Ref. [28].

best value [68% confidence level (CL) limits] of the relic density of the cold DM observed
by Planck [8]:

ΩCDMh
2 = 0.11805 [0.1186± 0.0031], (4.11)
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has been also shown. From the Z ′ search (Sec. 2.8) in dilepton events, the allowed region
of zL is zL . 106. For zL . 106, no parameter regions can explain the relic abundance
of the DM. For nF = 3, ΩDMh

2 ' 0.01 around zL ' 4 × 104 are obtained. For nF ≥ 4,
the obtained values of the relic density is too large.

4.1.3. Relic density of non-degenerate dark fermions

In the above discussion, all of the cFi
are the same value. Thus all of the dark fermion

masses are degenerate, but the dark fermion masses need not be degenerate. From here,
the possibility of the non-degenerate dark fermions as DM is discussed. In the scenario,
some of them are heavier than others, only the lightest F 0(1)

i becomes the DM.
Let us denote the mass eigenstates of the lightest particles of heavy and light dark

fermions by (F+
h , F

0
h ) and (F+

l , F
0
l ), respectively. To make the (F+

h , F
0
h ) unstable, F 0

h

decay F 0
h → F 0

l + Z or as F 0
h → F+

l +W− → F 0
l +W+ +W− have to be realised.

The boundary condition of the ΨFl
are set as ηFl

= +1 in (2.14), whereas that of the
ΨFh

are set as ηFh
= −1. By the boundary conditions, the lowest mode (F+(1)

h , F
0(1)
h )

is mostly an SU(2)L doublet, whereas (F+(1)
l , F

0(1)
l ) is mostly an SU(2)R doublet. The

KK spectra for both ΨFh
and ΨFl

are given by (2.128).
The gauge eigenstates of the lightest modes of ΨFh

,ΨFl
are denoted by F̂+

h , F̂
0
h , F̂

+
l , F̂

0
l .

The most general form of bulk mass terms for ΨFh
and ΨFl

is

L5D mass
F = −σ′(y)

{
cFh

Ψ̄Fh
ΨFh

+ cFl
Ψ̄Fl

ΨFl

}
− ∆̃

{
Ψ̄Fh

ΨFl
+ Ψ̄Fl

ΨFh

}
. (4.12)

Note that Ψ̄Fh
ΨFh

and Ψ̄Fl
ΨFl

are odd under parity y → −y, whereas Ψ̄Fh
ΨFl

is even.
The ∆̃ term induces mass mixing among F̂+

h and F̂+
l , and among F̂ 0

h and F̂ 0
l . cFh

and cFl

generate masses m̂h and m̂l for (F̂+
h , F̂

0
h ) and (F̂+

l , F̂
0
l ). Their bulk mass parameters cFh

and cFl
are supposed to be cFh

< cFl
so that m̂h > m̂l. As mentioned above, the charged

dark fermions acquire radiative corrections by photon, and becomes heavier than the
neutral ones. The mass difference mF + −mF 0 is denoted as a · m̂h (a · m̂l) for F̂+

h (F̂+
l )

where a is O(10−3 ∼ 10−2).
Hence the mass matrices are given by

L4D mass
F = −

( ¯̂
F+

h ,
¯̂
F+

l

)
M+

(
F̂+

h

F̂+
l

)
−
( ¯̂
F 0

h ,
¯̂
F 0

l

)
M0

(
F̂ 0

h

F̂ 0
l

)
,

M+ =
(

(1 + a)m̂h ∆
∆ (1 + a)m̂l

)
, M0 =

(
m̂h ∆
∆ m̂l

)
. (4.13)
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We suppose that ∆� m̂h, m̂l. By diagonalising the two matrices, we obtain

L4D mass
F = −mF +

h
F̄+

h F
+
h −mF +

l
F̄+

l F
+
l −mF 0

h
F̄ 0

hF
0
h −mF 0

l
F̄ 0

l F
0
l ,(

F+
h

F+
l

)
= V

(1
2α+

)(
F̂+

h

F̂+
l

)
,

(
F 0

h

F 0
l

)
= V

(1
2α0

)(
F̂ 0

h

F̂ 0
l

)
,mF +

h

mF +
l

 = 1
2(1 + a)(m̂h + m̂l)±

√
1
4(1 + a)2(m̂h − m̂l)2 + ∆2 ,

V (α) =
(

cosα sinα
− sinα cosα

)
, tanα+ = 2∆

(1 + a)(m̂h − m̂l)
. (4.14)

The masses (mF 0
h
,mF 0

l
) and angle α0 are obtained from (mF +

h
,mF +

l
) and α+ by taking

a→ 0.
The couplings to Z (the neutral currents) are given originally by

Zµ

∑
j=h,l

{
gZF +

jL

¯̂
F+

jLγ
µF̂+

jL + gZF 0
jR

¯̂
F 0

jLγ
µF̂ 0

jL

}
+ (L→ R) . (4.15)

Similarly the couplings to W (the charged currents) are given by

Wµ

∑
j=h,l

{
gW FjL

¯̂
F+

jLγ
µF̂ 0

jL + gW FjR

¯̂
F+

jRγ
µF̂ 0

jR

}
+ (h.c.). (4.16)

In terms of mass eigenstates, the neutral current becomes

(F̄ 0
hL, F̄

0
lL)
{
gZF 0

hL
+ gZF 0

lL

2 +
gZF 0

h
L − gZF 0

l
L

2 U(α0)
}
γµ

(
F 0

hL

F 0
lL

)

+(F̄+
hL, F̄

+
lL)
{
gZF +

hL
+ gZF +

lL

2 +
gZF +

h
L − gZF +

l
L

2 U(α+)
}
γµ

(
F+

hL

F+
lL

)
+ (L→ R) , (4.17)

where

U(α) =
(

cosα − sinα
− sinα − cosα

)
. (4.18)

The charged current is

(F̄+
hL, F̄

+
lL)
{
gW FhL

+ gW FlL

2 V
(
α+ − α0

2

)
+ gW FhL

− gW FlL

2 U
(
α+ + α0

2

)}
γµ

(
F 0

hL

F 0
lL

)
+(L→ R) . (4.19)

Thus the mixing neutral and charged currents of the heavy and light dark fermions are
generated.
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Table 8: Parameters in the non-degenerate case of dark fermions. (nlight
F , nheavy

F ), bulk
mass parameter cFl

, the masses mFh
and mFl

are tabulated for various ∆cF ≡
cFl
− cFh

and zL. Reprinted from Ref. [28].

∆cF 0.04 0.06
(nlight

F , nheavy
F ) zL cFl

mFh
mFl

cFl
mFh

mFl

[TeV] [TeV] [TeV] [TeV]
(1,3) 106 0.404 1.32 1.13 0.418 1.34 1.06

105 0.362 2.09 1.86 0.377 2.12 1.77
3× 104 0.329 2.72 2.46 0.344 2.76 2.36

104 0.286 3.54 3.24 0.240 3.58 3.14
(2,2) 105 0.352 2.15 1.92 0.361 2.21 1.86

104 0.276 3.61 3.32 0.285 3.69 3.25
(3, 1) 105 0.342 2.21 1.98 0.346 2.30 1.95

104 0.266 3.68 3.39 0.270 3.80 3.36

In the case of ∆ � m̂h − m̂l so that α+, α0 � 1. The Z coupling of F 0
lL/R is ∼

gZF 0
lL/R

+ gZF 0
hL/R

(1
2α0)2. We assume that (1

2α0)2 � |gZF 0
lL
/gF 0

hL
|, |gZF 0

lR
/gZF 0

hR
| so that

the value of gZF 0
lL/R

is almost equal to the value in the degenerate case. However by this
coupling, F 0

hL decays sufficiently fast.
By the above setup, the heavy dark fermion can decays to the light dark fermion and

only the lightest F 0(1)
i becomes the DM. In the following, the relic density of the lightest

dark fermion is evaluated. The nF dark fermions (F+
i , F

0
i ) (i = 1, · · · , nF ) are divided

to nlight
F light fermions (F+

l , F
0
l ) with cFh

and nheavy
F heavy fermions (F+

h , F
0
h ) with cFh

.
The mass parameters cFl

and cFh
are chosen so as to retain the values of θH and mH

unchanged. In Table. 8, the values of cFl
, ∆cF ≡ cFl

−cFh
and the corresponding fermion

masses are tabulated.
For mFh

−mFl
= O(100) GeV, the heavy dark fermions decay or annihilate sufficiently

fast. Thus the Boltzmann equation of the light dark fermion is given by

dn

dt
= −3Hn〈σND

effv〉(n2 − n2
eq),

σND
effv = 1

8nlight
F

[σl0v + σl+v] , (4.20)

where σl0 and σl+ are the cross section of F 0
l,iF̄

0
l,i, F+

l,iF̄
+
l,i annihilations, respectively.

In Fig. 20 the relic density of the dark fermion is plotted for ∆cF = 0.04 and 0.06
in the case of nF = 4 with (nlight

F , nheavy
F ) = (1, 3). For ∆cF < 0.04, the approximated

formula (4.20) is not valid because the mass difference mFh
−mFl

is not large enough and
the relic-density can be larger than those for ∆cF & 0.04. By inter- and extra-polating
the ΩDMh

2 with respect to ∆cF and zL, the parameter region (∆cF , zL) allowed by
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Figure 20: Relic density of the dark fermion for (nlight
F , nheavy

F ) = (1, 3). The solid and
dotted lines represent ∆cF ≡ cFl

− cFh
= 0.06 and 0.04, respectively. Data

points are, from right to left, zL = 104 to 105 with a step of 104, 3× 105 and
106. Horizontal lines around ΩDMh

2 ∼ 0.12 represent the observed 68% CL
limit of the relic density of the cold DM. Reprinted from Ref. [28].
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the experimental limit on the current relic density is plotted in Fig. 21. It is seen
that the observed current relic density is obtained when 104 . zL . 106 in the range
0.04 . ∆cF . 0.07 where 0.07 . θH . 0.17 and 1000 . mFl

. 3100 GeV. For nF = 5, 6
and nF = 4 with (nlight

F , nheavy
F ) = (2, 2), (3, 1), we find no parameter region which

explains the current DM density.

4.2. Direct detection
In this subsection, the elastic scattering of the neutral dark fermion off a nucleus is
calculated [45]. The dominant and subdominant processes are shown in Fig. 22. The
dominant process of the F 0-nucleus scattering is the Z boson exchange. The subdomi-
nant processes are the processes of Z(1)

R and Higgs exchange. Contributions from other
processes are negligible. The Z-F 0 coupling is very small because the F 0 is almost
SU(2)R component. The Z(n)

R -F 0 coupling is large, but Z(n)
R is heavy. The H-F 0 cou-

pling is small. Therefore the elastic scattering cross section is small.

F 0 F 0

q q

Z

F 0 F 0

q q

Z
(1)
R

F 0 F 0

H

q q

Figure 22: Dominant and subdominant processes of the F 0 scattering off the nucleus
with large atomic numbers. Reprinted from Ref. [28].

In the scattering of F 0 on nuclei with large mass number A, the spin-independent
scattering is dominant. Therefore pseudo-scalar and axial-vector coupling are neglected
and the effective Lagrangian at low energies is given by

Lint '
∑

q

−
(
g2

wvZqvZF

m2
Z cos2 θW

+
g2

wvZ
(1)
R q
v

Z
(1)
R F

m2
Z

(1)
R

)
q̄γ0q F̄ 0γ0F

0 + yqyF

m2
H

q̄qF̄ 0F 0

 , (4.21)

where vZq and vZF are gV
Zqq and gV

ZF 0(1)F 0(1) in the unit of gw/ cos θW , and v
Z

(1)
R q

and
v

Z
(1)
R F

are gV

Z
(1)
R qq

and gV

Z
(1)
R F 0(1)F 0(1) in the unit of gw.

In the GHU model, quark couplings satisfy vZq|GHU ' vZq|SM and

yq|GHU ' yq|SM cos θH = gw

2mW

mq cos θH , (4.22)

to good accuracy. The contributions of the Higgs exchange process is evaluated by using
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the nucleon matrix element

〈N |mq q̄q|N〉 = mNf
(N)
T q , (4.23)

where N = p, n. For the heavy quarks (Q = c, b, t) one has

f
(N)
T Q = 2

27

(
1−

∑
q=u,d,s

f
(N)
T q

)
. (4.24)

Therefore, by dropping the small momentum dependence of the form factor, the spin-
independent cross section of the F 0-nucleus elastic scattering becomes

σ0 ≡
∫ 4M2

r v2

0

dσ

d|q|2

∣∣∣∣∣
|q|=0

d|q|2

= M2
r

π

{
Z (bp + fp) + (A− Z) (bn + fn)

}2
, (4.25)

where Mr is the F 0-nucleus reduced mass and Z (A) is the atomic (mass) number of the
nucleus. |q| is the momentum transfer and

bp = 2bu + bd , bn = bu + 2bd ,

bq = −4
√

2GF

(
vZqvZF + m2

W

m2
Z

(1)
R

v
Z

(1)
R q
v

Z
(1)
R F

)
,

fN = yF

m2
H

∑
q

〈N |yq q̄q|N〉 = yF

m2
H

gwmN

2mW

cos θH

(
2
9 + 7

9
∑

q=u,d,s

f
(N)
T q

)
. (4.26)

The spin-independent cross section of the F 0-nucleon elastic scattering σN can be written
as

σN ≡
1
A2

m2
r

M2
r

σ0 , (4.27)

where mr is the F 0-nucleon reduced mass.

The F 0-nucleon cross sections σN are shown in Table 9, 10 and Figure 23. In the
numerical evaluation, we have employed the values given by [41]

f
(p)
T u = 0.020 , f

(p)
T d = 0.026 , f

(p)
T s = 0.118 ,

f
(n)
T u = 0.014 , f

(n)
T d = 0.036 , f

(n)
T s = 0.118 . (4.28)

Because the dominant process is the Z boson exchange process, the uncertainty of the
nucleon matrix element are negligible.
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Table 9: F 0 mass mF and the spin-independent cross section σN of the F 0-nucleon scat-
tering for nF = 4, 5, 6 degenerate dark fermions. Reprinted from Ref. [28].

nF = 4
zL θH mF (TeV) σN (cm2)
105 0.115 2.03 5.33×10−44

5× 104 0.101 2.36 3.78×10−44

3× 104 0.092 2.66 2.99×10−44

2× 104 0.085 2.92 2.53×10−44

104 0.074 3.46 2.03×10−44

nF = 5
zL θH mF (TeV) σN (cm2)
105 0.114 1.75 3.67×10−44

104 0.073 2.91 1.01×10−44

nF = 6
zL θH mF (TeV) σN (cm2)
105 0.113 1.57 2.96×10−44

104 0.072 2.56 0.72×10−44

Table 10: mFl
, m

Z
(1)
R

, the couplings of F 0
l and the spin-independent cross section σN of

the F 0
l -nucleon scattering for nF = 4 and (nlight

F , nheavy
F ) = (1, 3). Reprinted

from Ref. [28].
∆cF = 0.04

zL θH mFl
m

Z
(1)
R

vZF v
Z

(1)
R

u
v

Z
(1)
R

d
v

Z
(1)
R

F
yF σN (cm2)

(TeV) (TeV)
4× 104 0.097 2.29 6.47 -0.00108 0.474 -0.237 1.11 -0.0299 2.69×10−44

3× 104 0.092 2.46 6.74 -0.00100 0.469 -0.234 1.11 -0.0293 2.35×10−44

2× 104 0.085 2.72 7.15 -0.00092 0.461 -0.231 1.10 -0.0286 1.96×10−44

104 0.074 3.24 7.92 -0.00081 0.450 -0.225 1.08 -0.0280 1.53×10−44

∆cF = 0.06
zL θH mFl

m
Z

(1)
R

vZF v
Z

(1)
R

u
v

Z
(1)
R

d
v

Z
(1)
R

F
yF σN (cm2)

(TeV) (TeV)
2× 104 0.085 2.61 7.15 -0.00086 0.461 -0.231 1.09 -0.0266 1.76×10−44

104 0.074 3.13 7.92 -0.00075 0.450 -0.225 1.07 -0.0261 1.35×10−44
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Figure 23: The spin-independent cross section of the F 0-nucleon elastic scattering for
104 ≤ zL ≤ 105. The orange diamonds represent the nF = 4 cases of degen-
erate dark fermions with a step of 104 in zL. Red circles and blue squares
represent the cases of non-degenerate dark fermions (nlight

F , nheavy
F ) = (1, 3)

with ∆cF = 0.04 and 0.06, respectively. The brown dashed and black solid
line are the 90% confidence limits set by the first result of the LUX exper-
iment [9] and the improved result of the LUX experiment [10]. The purple
and light purple bands represent the regions allowed by the limit of the relic
density of DM at the 68 % CL depicted in Fig. 21 and by twice of that. The
allowed region of the dark fermion mass is 2.6 < mFl

< 3.1 TeV.

As seen in the previous section, when all dark fermions are degenerate, there are
no parameter regions which realise the observed relic density of the DM. When nlight

F

light dark fermions and nheavy
F heavy dark fermions are introduced, the parameter set of

(nlight
F , nheavy

F ) = (1, 3), the region 0.04 < ∆cF < 0.07, zL < 106 are allowed to explain the
relic density as shown in Fig. 21. The spin-independent cross section for the F 0-nucleon
elastic scattering for the allowed region is shown in Fig. 23. The purple and light purple
bands there represent the regions allowed by the limit of the relic abundance of DM at
the 68 % CL and by twice of that, respectively. The result is that the allowed region by
the direct detection experiments of LUX [10] is 2.6 . mFl

< 3.1 TeV. The corresponding
the value of the warp factor and the Wilson line phase are 104 < zL . 2 × 104 and
0.07 < θH . 0.09. The mass of Z ′ is from 7.4 . mZ′ < 8.5 TeV. In the allowed region,
the value spin-independent cross section is larger than the expected limit by the 300-day
run of the LUX experiment.
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5. Summary and discussion
In this paper, the phenomenological study of the SO(5)× U(1) gauge-Higgs unification
is summarised. In Ref. [26], the unstable Higgs boson with mass 126 GeV was realised
by introducing the SO(5)-spinor representation fermion, named the dark fermion.

In Ref. [27], the universality of the parameters and the Z ′ signals at the LHC are
studied. The universality is that the mZ(1) , m

Z
(1)
R

, mγ(1) , mKK, the Higgs cubic coupling
λ3 and quartic couplings λ4 are almost independent of the number of the dark fermion,
nF and determined only by the θH . The Z ′ in this model are Z(1), Z(1)

R and γ(1). Their
decay rates are large, especially Γγ(1) is almost 1 TeV for θH = 0.073. Because of the large
decay width, the wide peaks are predicted in the dilepton events. By the 8 TeV LHC
result, the Z ′ mass must be larger than 4 TeV and it might be detected by the 14 TeV
LHC. By the universality, the constraint mZ′ > 4 TeV corresponds to θH < 0.17. Once
mZ′ is determined, λ3 and λ4 is predicted. Therefore this model is predictive because of
the universality.

One of the main topic of this thesis is the Higgs boson decay. The decay rate Γ(H →
γγ) and the production cross section σ(gg → H) calculated in Ref. [26]. The processes
gg → H and H → γγ do not occur at the tree level but occur at the one-loop level.
Therefore an infinite number of the KK modes contribute to the processes, thus Γ(H →
γγ) and σ(gg → H) deviate from the SM value. However, the Higgs couplings to the
KK W , KK top and the dark fermions depend on their KK numbers and their signs
change alternatively for n. The summations of the each KK contribution finite and are
negligible. Thus the whole amplitudes are approximately suppressed from the SM values
by cos θH which comes from the suppression of the Higgs coupling to the zero modes.
In Ref. [29], the decay rate Γ(H → Zγ) is calculated. The decay also occurs at the one-
loop level. In addition, the KK numbers can be changed by the interaction to the Higgs
boson and the Z boson. Therefore the KK numbers in the loop might not be conserved
and the decay rate seems to be even divergent. However, by summing all of the KK
mode contributions, the summations of the KK mode contributions become alternative
sums of the KK number n. The whole amplitude are are found to be convergent and the
KK mode contributions are negligible. Again the amplitude is suppressed from the SM
values by cos θH . Therefore the branching ratios of the Higgs boson decay are consistent
with the SM. and the signal strengths of each decay mode are suppressed from the SM
values by cos2 θH . Numerically, the deviation of the signal strength from the SM value
is O(1)% for θH < 0.17. It should be emphasised that an infinite numbers on the KK
modes contribute to the processes in these decay processes, nevertheless, the non-trivial
cancellations between the KK mode contributions occur and the infinite sums of the KK
mode contributions are finite. These cancellations do not occur in the other models.
Therefore these cancellations are remarkable feature of this model and thought to be a
consequence of the gauge symmetry.
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One of the other main topics of this thesis is the dark matter (DM). In Ref. [28], the
possibility of the dark fermion as a DM is discussed. The dark fermions do not have
the zero mode from the boundary condition and the lowest modes couple to the SU(2)L

very weakly. The fermion number of the dark fermions is conserved and the neutral one
is stable. Thus the neutral dark fermion is a candidate of the DM. The the charged
and neutral dark fermion annihilate through Z

(1)
R and γ(1), respectively and finally the

charged one decays to the neutral one. The relic density of the dark fermion does not
matches to the observed relic abundance of the DM for the degenerate case. In the
nF = 3 case, too little relic density is predicted and in the nF = 4, 5 and 6 case the relic
density is larger than the observed relic abundance. Therefore the non-degenerate dark
fermions are considered. The heavy and light dark fermion is introduced and the mixing
term of the heavy and light dark fermions are added in the Lagrangian. The heavy dark
fermions finally decay to the light dark fermions. In the (nlight

F , nheavy
F ) = (1, 3) case, the

solution was found in which their relic density matches to the relic abundance of the DM.
The constraint from the direct detection experiments are also considered. The elastic
scattering cross section off a nucleon of the lowest dark fermion is suppressed because of
the small SU(2)L coupling. The allowed region of the dark fermion mass from both the
relic density and the direct detection is 2.6 < mFl

< 3.1 TeV with (nlight
F , nheavy

F ) = (1, 3).
In the range, the elastic scattering cross section is larger than the expected upper limit
of the cross section by the 300-days run of the LUX experiment.

As shown in this thesis, the SO(5)×U(1) GHU solves the fine-tuning problem of the
Higgs boson mass and explains the existence of the DM. Therefore the SO(5)×U(1) GHU
is phenomenologically viable. This model is consistent with the 8 TeV LHC result and
the LUX 85 live-days result. The most severe constraint for the parameter comes from
the study of the DM. The allowed region of the dark matter mass is 2.6 < mFl

< 3.1
TeV, where the warp factor and the Wilson line phase are 104 < zL . 2 × 104 and
0.07 < θH . 0.09. In this region, the scenario of the dark fermion as a dark matter is
testable by the LUX 300-days run and the Z ′ mass is from 7.4 TeV to 8.5 TeV and the
wide peak is predicted for the 14 TeV LHC in dilepton events. Considering the Higgs
boson, the deviations of the Higgs boson couplings to the SM particle and the Higgs
boson cubic coupling from the SM values are O(1)%. These couplings will be measured
precisely by the International Linear Collider (ILC) in the future.

The Z ′ signal has predicted in this model. Besides other signals such as the W ′ signal
have to be predicted. Especially, the H-W -W (1) and H-Z-Z(1) couplings are found
to be O(1) times larger than the H-W -W and H-Z-Z couplings, respectively. These
properties might be important to distinguish this model from the other models in the
experimental viewpoint. Therefore, the predictions of this model for the LHC will be
done for several events. In addition to the phenomenological studies of the gauge-Higgs
unification, the theoretical studies of the gauge-Higgs unification are also important
topics. There are other candidates of the dimensions, metrics, boundary conditions and
gauge groups. Especially, the gauge-Higgs grand unification [46, 47] is proposed. The
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three forces and the Higgs boson are unified into the one gauge group in the model.
The Hosotani mechanism, the key of the symmetry breaking in gauge-Higgs unification,
is studied nonperturbatively on the lattice [48]. A dynamical determination of the
boundary conditions are also studied in Ref. [49]. Thus there are many important and
interesting topics around the gauge-Higgs unification.
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A. SO(5) algebra and generators
The algebra of SO(5) is summarised below.

[T aL , T bL ] = iεabcT cL , [T aR , T bR ] = iεabcT cR , [T aL , T bR ] = 0,

[T aL , T b̂] = i

2δ
ab + iεabcT ĉ, [T aR , T b̂] = − i2δ

ab + iεabcT ĉ,

[T â, T b̂] = i

2ε
abc(T cL + T cR),

[T aL , T 4̂] = − i2T
â, [T aR , T 4̂] = i

2T
â, [T â, T 4̂] = i

2(T aL − T aR), (A.1)

where a = 1, 2, 3.
The SO(5) generators in the vector representation can be written below.

T 1L = 1
2



−i
−i

i

i

 , T
2L = 1

2



i

−i
−i

i

 , T
3L = 1

2



−i
i

−i
i

 ,

T 1R = 1
2



i

−i
i

−i

 , T
2R = 1

2



i

i

−i
−i

 , T
3R = 1

2



−i
i

i

−i

 ,

T 1̂ = 1√
2



−i

i

 , T
2̂ = 1√

2


−i

i

 , T
3̂ = 1√

2

 −i

i

 ,

T 4̂ = 1√
2

 −i
i

 . (A.2)

The SO(5) generators in the spinor representation can be written below.

T aL = 1
2

(
σa

)
, T aR = 1

2

(
σa

)
, T â = 1

2
√

2

(
iσa

−iσa

)
, T 4̂ = 1

2
√

2

(
I

I

)
.

(A.3)
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B. Couplings
In the following, the numerical values of couplings are calculated for

zL = 105, θH = 0.1153, k = 2.357× 108 GeV, ct = 0.2270, cF = 0.3321, (B.1)

when there are nothing mentioned.

B.1. γW W , ZW W and ZRW W couplings
The Z(l)W (m)W (n) coupling is contained in∫ zL

1

dz

kz

(
−1

4

)
Tr [FµνFρσ] ηµρηνσ

⊃ igA

∫ zL

1

dz

kz
Tr
[
(∂µẐν − ∂νẐµ)[Ŵ+

ρ , Ŵ
−
σ ]

+ (∂µŴ
−
ν − ∂νŴ

−
µ )[Ẑρ, Ŵ

+
σ ] + (∂µŴ

+
ν − ∂νŴ

+
µ )[Ẑρ, Ŵ

−
σ ]
]
ηµρηνσ

⊃ i
∑
m,n

gZ(l)W (m)W (n)ηµρηνσ
{

(∂µZ
(l)
ν − ∂νZ

(l)
µ )W+(m)

ρ W−(n)
σ

− (∂µW
+(m)
ν − ∂νW

+(m)
µ )Z(l)

ρ W−(n)
σ + (∂µW

−(n)
ν − ∂νW

−(n)
µ )Z(l)

ρ W+(m)
σ

}
(B.2)

so that one finds that

gZ(l)W (m)W (n) = gw

√
L
∫ zL

1

dz

kz

×
{
hL

Z(l)

(
hL

W (m)h
L
W (n) + ĥW (m)ĥW (n)

2

)
+ hR

Z(l)

(
hR

W (m)h
R
W (n) + ĥW (m)ĥW (n)

2

)

+ ĥZ(l)

(
hL

W (m)ĥW (n) + hR
W (m)ĥW (n) + ĥW (m)hL

W (n) + ĥW (m)hR
W (n)

2

)}
. (B.3)

Here CW (m) = C(z;λW (m)) etc. Numerical values of gZW (m)W (n) are given in Table 11.
Similarly, the γ(l)W (m)W (n) coupling is

gγ(l)W (m)W (n) = gw

√
L
∫ zL

1

dz

kz

×
{
hL

γ(l)

(
hL

W (m)h
L
W (n) + ĥW (m)ĥW (n)

2

)
+ hR

γ(l)

(
hR

W (m)h
R
W (n) + ĥW (m)ĥW (n)

2

)
. (B.4)

Especially, gγ(0)W (m)W (n) is gγ(0)W (m)W (n) = e δmn.
The Z(l)

R W (m)W (n) coupling is obtained from (B.4) by replacing γ(l) to Z(l)
R . Numerical

values of gZW (m)W (n) , gZ(1)W (m)W (n) , g
Z

(1)
R W (m)W (n) and gγ(1)W (m)W (n) for various θH are

given in Table 12.
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Table 11: gZW (m)W (n)/gw cos θW . Only the value larger than O(10−3) are shown and
written by three significant figures. Reprinted from Ref. [29].
0 1 2 3 4 5 6 7

0 1. O(10−4) O(10−7) O(10−5) O(10−7) O(10−6) O(10−8) O(10−6)
1 O(10−4) 0.996 0.032 O(10−5) O(10−4) O(10−6) O(10−5) O(10−6)
2 O(10−7) 0.032 0.350 -0.022 O(10−7) O(10−4) O(10−6) O(10−4)
3 O(10−5) O(10−5) -0.022 0.996 0.032 O(10−5) O(10−4) O(10−6)
4 O(10−7) O(10−4) O(10−7) 0.032 0.350 -0.023 O(10−5) O(10−4)
5 O(10−6) O(10−6) O(10−4) O(10−5) -0.023 0.996 0.032 O(10−5)
6 O(10−8) O(10−5) O(10−6) O(10−4) O(10−5) 0.032 0.350 -0.023
7 O(10−6) O(10−6) O(10−4) O(10−6) O(10−4) O(10−5) -0.023 0.996

Table 12: Triple vector-boson couplings VW+W− with V = Z,Z(1), Z
(1)
R in unit of gw

and γ(1)W+W− in unit of the electric charge e for various θH .
θH gZW W gZ(1)W W g

Z
(1)
R W W

gγ(1)W W

0.3548 0.811 1.506× 10−2 0.391× 10−2 −0.417× 10−2

0.1742 0.861 0.459× 10−2 0.114× 10−2 −0.115× 10−2

0.1153 0.870 0.225× 10−2 0.055× 10−2 −0.054× 10−2

0.0737 0.874 0.105× 10−2 0.025× 10−2 −0.024× 10−2

B.2. γγW W and γZW W couplings
γZ(l)W (m)W (n) coupling is contained in

(gA)2
∫ zL

1

dz

kz
Tr
[
[Âγ(A)

µ , Ŵ+
ν ]
(
[Ẑ(l)

ρ , Ŵ−
σ ]− [Ẑ(l)

σ , Ŵ−
ρ ]
)

+ [Âγ(A)
µ , Ŵ−

ν ]
(
[Ẑ(l)

ρ , Ŵ+
σ ]− [Ẑ(l)

σ , Ŵ+
ρ ]
) ]
ηµρηνσ

⊃
∑

l,m,n

gγZ(l)W (m)W (n)ηµρηνσ

× {Aγ
µW

+(m)
ν (Z(l)

ρ W−(n)
σ − Z(l)

σ W−(n)
ρ ) + Aγ

µW
−(n)
ν (Z(l)

ρ W+(m)
σ − Z(l)

σ W+(m)
ρ )} (B.5)

so that

gγZ(l)W (m)W (n) = −g2
wL

∫ zL

1

dz

kz

×
{
hL

γh
L
W (m)

(
hL

Z(l)h
L
W (n) + ĥZ(l)ĥW (n)

2

)
+ hR

γ h
R
W (m)

(
hR

Z(l)h
R
W (n) + ĥZ(l)ĥW (n)

2

)

+
hL

γ + hR
γ

2 ĥW (m)

(
hL

Z(l)ĥW (n) + hR
Z(l)ĥW (n) + ĥZ(l)hL

W (n) + ĥZ(l)hR
W (n)

2

)}
= −egZ(l)W (m)W (n) . (B.6)
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The relation gγZ(l)W (m)W (n) = −egZ(l)W (m)W (n) follows from the gauge invariance as well.
Similarly, the γ(0)γ(0)W (m)W (n) coupling is

gγ(0)γ(0)W (m)W (n) = −g2
wL

∫ zL

1

dz

kz

×
{(

hL
γ

)2
hL

W (m)h
L
W (n) +

(
hR

γ

)2
hR

W (m)h
R
W (n) +

(
hL

γ + hR
γ

2

)2

ĥW (m)ĥW (n)

}
= −e2δmn . (B.7)

B.3. ZZW W coupling
The ZZW (m)W (n) coupling is contained in

(gA)2
∫ zL

1

dz

kz
Tr
[
[Ẑµ, Ŵ

+
ν ][Ẑρ, Ŵ

−
σ ]− [Ẑµ, Ŵ

+
ν ][Ẑσ, Ŵ

−
ρ ]
]
ηµρηνσ

⊃
∑
m,n

gZZW (m)W (n)ηµρηνσ
{
ZµW

+(m)
ν (ZρW

−(n)
σ − ZσW

−(n)
ρ )

}
(B.8)

so that one finds that

gZZW (m)W (n) = −g2
wL

∫ zL

1

dz

kz
×
{(

hL
Zh

L
W (m) + ĥZ ĥW (m)

2

)(
hL

Zh
L
W (n) + ĥZ ĥW (n)

2

)

+
(
hR

Zh
R
W (m) + ĥZ ĥW (m)

2

)(
hR

Zh
R
W (n) + ĥZ ĥW (n)

2

)

+
(
hL

Z ĥW (m) + hR
Z ĥW (m) + ĥZh

L
W (m) + ĥZh

R
W (m)

2

)

×
(
hL

Z ĥW (n) + hR
Z ĥW (n) + ĥZh

L
W (n) + ĥZh

R
W (n)

2

)}
.

(B.9)

Numerical values of gZZW (m)W (n) are given in Table 13.

B.4. ZW WR and γZW WR couplings
The Z(l)W (m)W

(n)
R coupling in

i
∑

l,m,n

g
Z(l)W (m)W

(n)
R

ηµρηνσ
{

(∂µZ
(l)
ν − ∂νZ

(l)
µ )(W+(m)

ρ W
−(n)
R σ +W−(m)

ρ W
+(n)
R σ )

+ (∂µW
−(m)
ν − ∂νW

−(m)
µ )Z(l)

ρ W
+(n)
R σ − (∂µW

+(m)
ν − ∂νW

+(m)
µ )Z(l)

ρ W
−(n)
R σ

+ (∂µW
−(n)
R ν − ∂νW

−(n)
R µ )Z(l)

ρ W+(m)
σ − (∂µW

+(n)
R ν − ∂νW

+(n)
R µ )Z(l)

ρ W−(m)
σ

}
(B.10)
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Table 13: gZZW (m)W (n)/g2
w cos2 θW . Only the value larger than O(10−3) are shown and

written by three significant figures.
0 1 2 3 4 5 6 7

0 1. -0.001 O(10−5) O(10−5) O(10−6) O(10−6) O(10−7) O(10−6)
1 -0.001 0.992 0.042 O(10−4) O(10−4) O(10−5) O(10−5) O(10−6)
2 O(10−5) 0.042 0.125 -0.030 -0.001 -0.001 O(10−5) O(10−4)
3 O(10−5) O(10−4) -0.030 0.993 0.043 O(10−4) 0.001 O(10−5)
4 O(10−6) O(10−4) -0.001 0.043 0.126 -0.031 -0.001 -0.001
5 O(10−6) O(10−5) -0.001 O(10−4) -0.031 0.994 0.043 O(10−4)
6 O(10−7) O(10−5) O(10−5) 0.001 -0.001 0.043 0.126 -0.031
7 O(10−6) O(10−6) O(10−4) O(10−5) -0.001 O(10−4) -0.031 0.994

is given by

g
Z(l)W (m)W

(n)
R

= gw

√
L
∫ zL

1

dz

kz

{
hL

Z(l)h
L
W (m)h

L

W
(n)
R

+ hR
Z(l)h

R
W (m)h

R

W
(n)
R

+ ĥZ(l)ĥW (m)

hL

W
(n)
R

+ hR

W
(n)
R

2

}
. (B.11)

Numerical values of g
ZW (m)W

(n)
R

are given in Table 14.

Table 14: g
ZW (m)W

(n)
R

/gw cos θW . Only the values larger than O(10−3) are shown and
written by two significant figures. Reprinted from Ref. [29].

m
0 1 2 3 4 5 6 7

1 O(10−4) 0.003 -0.021 O(10−4) 0.009 O(10−4) -0.008 O(10−4)
n 2 O(10−5) O(10−4) 0.018 0.003 -0.026 O(10−4) 0.007 O(10−4)

3 O(10−6) O(10−5) 0.004 O(10−4) 0.020 0.004 -0.028 O(10−4)
4 O(10−6) O(10−5) O(10−4) O(10−4) 0.005 O(10−4) 0.020 0.004

Similarly γZ(l)W (m)W
(n)
R coupling is contained in

(gA)2
∫ zL

1

dz

kz
ηµρηνσ

× Tr
[
[Âγ(A)

µ , Ŵ+
ν ]
(
[Ẑρ, Ŵ

−
R σ]− [Ẑσ, Ŵ

−
R ρ]

)
+ [Âγ(A)

µ , Ŵ−
ν ]
(
[Ẑρ, Ŵ

+
R σ]− [Ẑσ, Ŵ

+
R ρ]

)
[Âγ(A)

µ , Ŵ−
R ν ]

(
[Ẑρ, Ŵ

+
R σ]− [Ẑσ, Ŵ

+
ρ ]
)

+ [Âγ(A)
µ , Ŵ−

R ν ]
(
[Ẑρ, Ŵ

+
R σ]− [Ẑσ, Ŵ

+
ρ ]
) ]

⊃
∑
m,n

g
γZ(l)W (m)W

(n)
R

ηµρηνσ

×
{
Aγ

µW
+(m)
ν (Z(l)

ρ W
−(n)
R σ − Z(l)

σ W
−(n)
R ρ ) + Aγ

µW
−(n)
ν (Z(l)

ρ W
+(m)
R σ − Z(l)

σ W
+(m)
R ρ )

+ Aγ
µW

+(m)
R ν (Z(l)

ρ W−(n)
σ − Z(l)

σ W−(n)
ρ ) + Aγ

µW
−(n)
R ν (Z(l)

ρ W+(m)
σ − Z(l)

σ W+(m)
ρ )

}
(B.12)
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so that

g
γZ(l)W (m)W

(n)
R

= −g2
w

√
L
∫ zL

1

dz

kz

{
hL

γ(0)h
L
W (m)h

L
Z(l)h

L

W
(n)
R

+ hR
γ(0)h

R
W (m)h

R
Z(l)h

R

W
(n)
R

+ 1
2
(
hL

γ(0) + hR
γ(0)

)
ĥW (m)

1
2 ĥZ(l)

(
hL

W
(n)
R

+ hR

W
(n)
R

)}
= −eg

Z(l)W (m)W
(n)
R

. (B.13)

The relation g
γZ(l)W (m)W

(n)
R

= −eg
Z(l)W (m)W

(n)
R

follows from the gauge invariance as well.

B.5. A4̂W W coupling
The A4̂(l)W (m)W (n) coupling is

gA4̂(l)W (m)W (n) = igw

√
L
∫ zL

1

dz

kz

×
{
ĥA4̂(l)

(
hL

W (m)ĥW (n) − hR
W (m)ĥW (n) − ĥW (m)hL

W (n) + ĥW (m)hR
W (n)

2

)}
. (B.14)

Therefore the A4̂(l)W (m)W (n) coupling vanishes for m = n.

B.6. HW W coupling
The Higgs coupling HW (m)W (n) is contained in the TrFµzF

µz term

− igAk
2
∫ zL

1

dz

kz
Tr
[(
∂zŴ

−
µ

)[
Ŵ+

ν , Ĥ
]

+
(
∂zŴ

+
µ

)[
Ŵ−

ν , Ĥ
]]
ηµν

⊃ −
∑
m,n

gHW (m)W (n)HW+(m)
µ W−(n)

ν ηµν (B.15)

so that

gHW (m)W (n) = −gAk
2
∫ zL

1

dz

kz

1
2uH(z)

×
{
−
(
∂zĥW (m)

)(
hL

W (n) − hR
W (n)

)
+ ∂z

(
hL

W (m) − hR
W (m)

)
ĥW (n) + (m←→ n)

}
. (B.16)

Numerical values of gHW (m)W (n) are given in Table 15.
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Table 15: gHW (m)W (n)/gw cos θH in the unit of GeV written by three significant figures.
The values smaller than O(10) are abbreviated. Reprinted from Ref. [29].

0 1 2 3 4 5 6 7
0 80.0 2.55×102 O(1) 45.4 O(0.1) 20.7 O(0.1) 10.4
1 2.55 -3.50×102 1.39×104 -1.96×102 1.40×103 O(1) 2.28×102 -24.1
2 O(1) 1.39×104 5.62×102 2.06×104 2.87×102 3.04×103 O(1) 1.66×103

3 45.4 -1.96×102 2.06×104 -8.40×102 2.94×104 -4.17×102 3.54×103 O(1)
4 O(0.1) 1.40×103 2.87×102 2.93×104 1.07×103 3.49×104 5.11×102 4.51×103

5 20.7 O(1) 3.04×103 -4.17×102 3.49×104 -1.36×103 4.46×104 -6.40×102

6 O(0.1) 2.28×102 O(1) 3.54×103 5.11×102 4.46×104 1.60×103 4.88×104

7 10.4 -24.1 1.66×103 O(1) 4.51×103 -6.40×102 4.88×104 -1.90×103

B.7. HW WR and HWRWR couplings
Similarly the HW (m)W

(n)
R coupling contained in

− igAk
2
∫ zL

1

dz

kz
Tr
[
∂zŴ

−
R µ

[
Ŵ+

ν , Ĥ
]

+ ∂zŴ
+
µ

[
Ŵ−

R ν , Ĥ
]]
ηµν

⊃ −
∑
m,n

g
HW (m)W

(n)
R

HW+(m)
µ W

−(n)
R ν ηµν (B.17)

is given by

g
HW (m)W

(n)
R

= igAk
2
∫ zL

1

dz

kz

× i

2uH(z)
[
∂z

(
hL

W
(n)
R

− hR

W
(n)
R

)
ĥW (m) −

(
∂zĥW (m)

)(
hL

W
(n)
R

− hR

W
(n)
R

)]
. (B.18)

Numerical values of g
HW (m)W

(n)
R

are given in Table 16. The HW (m)
R W

(n)
R couplings vanish

for all m,n as a result of the Lie algebra.

Table 16: g
HW (m)W

(n)
R

/gw cos θH in the unit of GeV written by three significant figures.
The values smaller than O(10) are abbreviated. Reprinted from Ref. [29].

m
0 1 2 3 4 5 6 7

1 112 -60.7 3.47×103 O(1) -55.8 O(1) 161 O(1)
n 2 80.9 -118 1.72×104 -278 1.62×104 -70.2 391 O(1)

3 O(1) O(1) 4.83×103 -260 3.32×104 -527 2.93×104 -140
4 30.4 -19.4 1.13×103 -17.3 7.96×103 -412 4.94×104 -789
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B.8. HZZ coupling
The Higgs coupling HZ(m)Z(n) is contained in the TrFµzF

µz term

− igAk
2
∫ zL

1

dz

kz
Tr
[(
∂zẐµ

)[
Ĥ, Ẑν

]]
ηµν

⊃ −1
2
∑

n

gHZ(n)Z(n)HZ(n)
µ Z(n)

ν ηµν −
∑

m<n

gHZ(m)Z(n)HZ(m)
µ Z(n)

ν ηµν (B.19)

so that

gHZ(m)Z(n) =− gAk
2
∫ zL

1

dz

kz

1
2uH(z)

×
[
−
(
∂zĥZ(m)

)(
hL

Z(n) − hR
Z(n)

)
+ ∂z

(
hL

Z(m) − hR
Z(m)

)
ĥZ(n) + (m←→ n)

]
.

(B.20)

Numerical values of gHW (m)W (n) are given in Table 17.

Table 17: gHZ(m)Z(n) cos2 θW/gw cos θH in the unit of GeV written by three significant
figures. The values smaller than O(10) are abbreviated.

m
0 1 2 3 4 5 6 7

0 80 2.55×102 O(1) 45.4 O(10−1) 20.7 O(10−1) 10
1 -3.50×104 1.22×104 -1.96×102 1.23×103 O(1) 2.00×102 -24
2 5.62×102 1.81×104 2.87×102 2.67×103 O(1) 1.45×103

3 -8.39×102 2.58×104 -4.17×102 3.10×103 O(1)
n 4 1.07×103 3.06×104 5.11×102 3.97×103

5 -1.36×103 3.92×104 -6.40×102

6 1.60×103 4.29×104

7 -1.90×103

B.9. HHW W coupling
The Higgs coupling HHW (m)W (n) is contained in the TrFµzF

µz term

− (−igA)2k2
∫ zL

1

dz

kz
Tr
[[
Ŵ−

µ , Ĥ
][
Ŵ+

ν , Ĥ
]]
ηµν

⊃ 1
4
∑
m,n

gHHW (m)W (n)HHW+(m)
µ W−(n)

ν ηµν (B.21)

so that

gHW (m)W (n) = g2
Ak

2
∫ zL

1

dz

kz
uH(z)2

{(
hL

W (m) − hR
W (m)

)(
hL

W (n) − hR
W (n)

)
+ 2ĥW (m)ĥW (n)

}
.

(B.22)
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Numerical values of gHHW (m)W (n) are given in Table 18.

Table 18: gHHW (m)W (n)/g2
w cos2 θH written by three significant figures. The values smaller

than O(1) are abbreviated.
0 1 2 3 4 5 6 7

0 1.01 3.19 O(10−1) O(10−1) O(10−2) O(10−1) O(10−2) O(10−1)
1 3.19 12.5 O(10−2) 5.46 O(10−3) 1.54 O(10−3) O(10−1)
2 O(10−1) O(10−2) 15.6 O(10−2) 8.41 O(10−2) 1.85 O(10−3)
3 O(10−1) 5.46 O(10−2) 8.71 O(10−2) 4.94 O(10−2) 1.32
4 O(10−2) O(10−3) 8.41 O(10−2) 15.6 O(10−2) 9.04 O(10−2)
5 O(10−1) 1.54 O(10−2) 4.94 O(10−2) 8.14 O(10−2) 4.82
6 O(10−2) O(10−3) 1.85 O(10−2) 9.04 O(10−2) 15.6 O(10−2)
7 O(10−1) O(10−1) O(10−3) 1.32 O(10−2) 4.82 O(10−2) 7.96

B.10. HHZZ coupling
The Higgs coupling HHZ(m)Z(n) is contained in the TrFµzF

µz term

− 1
2(−igA)2k2

∫ zL

1

dz

kz
Tr
[[
Ẑ(A)

µ , Ĥ
][
Ẑ(A)

ν , Ĥ
]]
ηµν

⊃ 1
8
∑

n

gHHZ(n)Z(n)HHZ(n)
µ Z(n)

ν ηµν + 1
4
∑

m<n

gHHZ(m)Z(n)HHZ(m)
µ Z(n)

ν ηµν (B.23)

so that

gHZ(m)Z(n) = g2
Ak

2
∫ zL

1

dz

kz
uH(z)2

{(
hL

Z(m) − hR
Z(m)

)(
hL

Z(n) − hR
Z(n)

)
+ 2ĥZ(m)ĥZ(n)

}
.

(B.24)

Numerical values of gHHZ(m)Z(n) are given in Table 19.

Table 19: gHHZ(m)Z(n) cos2 θW/g
2
w cos2 θH written by three significant figures. The values

smaller than O(1) are abbreviated.
m

0 1 2 3 4 5 6 7
0 1.01 3.19 O(10−1) O(10−1) O(10−2) O(10−1) O(10−2) O(10−1)
1 12.6 O(10−3) 5.47 O(10−3) 1.54 O(10−3) O(10−1)
2 12.0 O(10−2) 6.47 O(10−3) 1.42 O(10−3)
3 8.73 O(10−2) 4.95 O(10−2) 1.33

n 4 12.0 O(10−2) 6.95 O(10−2)
5 8.16 O(10−2) 4.83
6 12.0 O(10−2)
7 7.97
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B.11. γff̄ coupling
The γ(l)t(m)t(n) couplings are found to be

L ⊃ −i
∑

l,m,n

{
g

γ(l)t
(m)
L t

(n)
L

Aγ(l)
µ t̄

(m)
L γµt

(n)
L + g

γ(l)t
(m)
R t

(n)
R

Aγ(l)
µ t̄

(m)
R γµt

(n)
R

}
(B.25)

where

g
γ(l)t

(m)
L t

(n)
L

= gw

√
L
∫ zL

1
dz

{
hL

γ(l) + hR
γ(l)

2 f
(m)
UL

f
(n)
UL

+QX1tφh
B
γ(l)

(
f

(m)
BL

f
(n)
BL

+ f
(m)
tL

f
(n)
tL

+ f
(m)
t′
L
f

(n)
t′
L

)
+QX2tφh

B
γ(l)f

(m)
UL

f
(n)
UL

}

= 2
3e
√
L
√
rγ

∫ zL

1
dz Cγ(z)

(
f

(m)
UL

f
(n)
UL

+ f
(m)
BL

f
(n)
BL

+ f
(m)
tL

f
(n)
tL

+ f
(m)
t′
L
f

(n)
t′
L

)
.

(B.26)

for the left-handed component t(n)
L and a similar expression for t(n)

R . The γ(l)b(m)b(n)

couplings are found to be

L ⊃ −i
∑

l,m,n

{
g

γ(l)b
(m)
L b

(n)
L

Aγ(l)
µ b̄

(m)
L γµb

(n)
L + g

γ(l)b
(m)
R b

(n)
R

Aγ(l)
µ b̄

(m)
R γµb

(n)
R

}
(B.27)

where

g
γ(l)b

(m)
L b

(n)
L

= gw

√
L
∫ zL

1
dz

{
−
hL

γ(l) + hR
γ(l)

2 f
(m)
bL

f
(n)
bL

+QX2tφh
B
γ(l)

(
f

(m)
XL

f
(n)
XL

+ f
(m)
DL

f
(n)
DL

+ f
(m)
b′

L
f

(n)
b′

L

)
+QX1tφh

B
γ(l)f

(m)
bL

f
(n)
bL

}

= −1
3e
√
L
√
rγ

∫ zL

1
dz Cγ(z)

(
f

(m)
bL

f
(n)
bL

+ f
(m)
XL

f
(n)
XL

+ f
(m)
DL

f
(n)
DL

+ f
(m)
b′

L
f

(n)
b′

L

)
.

(B.28)

for the left-handed component b(n)
L and a similar expression for b(n)

R . This form can be
applied to the other quarks and leptons tower straightforwardly. For the SM photon,
the coupling is obtained by replacing rγ → L and Cγ(z)→ 1. Therefore

g
γ(0)t

(m)
L t

(n)
L

= 2
3e δ

mn (B.29)

g
γ(0)b

(m)
L b

(n)
L

= −1
3e δ

mn. (B.30)
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B.12. Zff̄ and ZRff̄ couplings
The Z couplings of the quark tower are found from

2∑
a=1

∫ zL

1
dz
√
G
−Ψa (−igAAµ − igBQXaBµ) zγµΨa

⊃− igw

√
L
∑

l

Z(l)
µ (x)

∫ zL

1

dz

k

×
{
hL

Z(l)

2

(
− ¯̃BγµB̃ + ¯̃tγµt̃− ¯̃bγµb̃+ ¯̃UγµŨ − ¯̃DγµD̃ + ¯̃XγµX̃

)

+
hR

Z(l)

2

(
¯̃BγµB̃ − ¯̃tγµt̃− ¯̃bγµb̃+ ¯̃UγµŨ + ¯̃DγµD̃ − ¯̃XγµX̃

)

+ ĥZ(l)

2

(
¯̃Bγµt̃′ + ¯̃tγµt̃′ + ¯̃

t′γµB̃ + ¯̃
t′γµt̃+ ¯̃Dγµb̃′ + ¯̃Xγµb̃′ + ¯̃

b′γµD̃ + ¯̃
b′γµX̃

)
+QX1tφh

B
Z(l)

(
¯̃BγµB̃ + ¯̃tγµt̃+ ¯̃bγµb̃+ ¯̃

t′γµt̃′
)

+QX2tφh
B
Z(l)

(
¯̃UγµŨ + ¯̃DγµD̃ + ¯̃XγµX̃ + ¯̃

b′γµb̃′
)}

. (B.31)

The Zt(m)t(n) couplings are found to be

L ⊃ −i
∑
m,n

{
g

Zt
(m)
L t

(n)
L

Zµt̄
(m)
L γµt

(n)
L + g

Zt
(m)
R t

(n)
R

Zµt̄
(m)
R γµt

(n)
R

}
(B.32)

where

g
Zt

(m)
L t

(n)
L

= gw

cos θW

√
L√

2rZ

∫ zL

1
dz

×
{
CZf

(m)
UL

f
(n)
UL

+ cos θHCZ

(
−f (m)

BL
f

(n)
BL

+ f
(m)
tL

f
(n)
tL

)
+ −
√

2 sin θH

2 ŜZ

(
f

(m)
BL

f
(n)
t′
L

+ f
(m)
tL

f
(n)
t′
L

+ f
(m)
t′
L
f

(n)
BL

+ f
(m)
t′
L
f

(n)
tL

)
− 2 sin2 θWCZ

2
3
(
f

(m)
UL

f
(n)
UL

+ f
(m)
BL

f
(n)
BL

+ f
(m)
tL

f
(n)
tL

+ f
(m)
t′
L
f

(n)
t′
L

)}
(B.33)
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for the left-handed component t
(n)
L and a similar expression for t

(n)
R . Similarly, the

Zb(m)b(n) couplings are found to be

g
Zb

(m)
L b

(n)
L

= gw

cos θW

√
L√

2rZ

∫ zL

1
dz

×
{
− CZf

(m)
bL

f
(n)
bL

+ cos θHCZ

(
f

(m)
XL

f
(n)
XL
− f (m)

DL
f

(n)
DL

)
+ −
√

2 sin θH

2 ŜZ

(
f

(m)
DL

f
(n)
b′

L
+ f

(m)
XL

f
(n)
b′

L
+ f

(m)
b′

L
f

(n)
DL

+ f
(m)
b′

L
f

(n)
XL

)
− 2 sin2 θWCZ

(
−1

3

) (
f

(m)
DL

f
(n)
DL

+ f
(m)
XL

f
(n)
XL

+ f
(m)
bL

f
(n)
bL

+ f
(m)
b′

L
f

(n)
b′

L

)}
(B.34)

for the left-handed component b(n)
L and a similar expression for b(n)

R . These forms can be
applied to the other quarks and leptons tower straightforwardly. Therefore the vector
and axial vector coupling are written by

gV
Zf (m)f (n) =

g
Zf

(m)
L f

(n)
L

+ g
Zf

(m)
R f

(n)
R

2 , gA
Zf (m)f (n) =

g
Zf

(m)
L f

(n)
L

− g
Zf

(m)
R f

(n)
R

2 (B.35)

Numerical values of gV
Zt(m)t(n) are given in Table 20.

Table 20: gV
Zt(m)t(n) = 1

2{gZt
(m)
L t

(n)
L

+ g
Zt

(m)
R t

(n)
R

} in the unit of g/ cos θW . The values larger
than O(10−3) are shown. gA

Zt(m)t(n) = 1
2{gZt

(m)
L t

(n)
L

− g
Zt

(m)
R t

(n)
R

} in the unit
of g/ cos θW is smaller than O(10−3) in the range of m,n ≤ 10, except for
gA

Zt(0)t(0) = −0.2501. Reprinted from Ref. [29].
0 1 2 3 4 5 6 7

0 0.095 -0.008 0.001 O(10−4) O(10−5) O(10−4) O(10−5) O(10−5)
1 -0.008 0.337 0.059 O(10−4) 0.002 O(10−5) O(10−6) O(10−6)
2 0.001 0.059 -0.149 -0.010 O(10−5) O(10−4) O(10−5) O(10−4)
3 O(10−4) O(10−4) -0.010 0.338 0.056 O(10−5) 0.002 O(10−6)
4 O(10−5) 0.002 O(10−5) 0.056 -0.149 -0.010 O(10−5) O(10−4)
5 O(10−4) O(10−5) O(10−4) O(10−5) -0.010 0.338 0.056 O(10−4)
6 O(10−5) O(10−6) O(10−5) 0.002 O(10−5) 0.056 -0.150 -0.010
7 O(10−5) O(10−6) O(10−4) O(10−6) O(10−4) O(10−4) -0.010 0.338

By the same way, the Z(1)
R t(m)t(n) couplings are found to be

L ⊃ −i
∑
m,n

{
g

Z
(1)
R t

(m)
L t

(n)
L

Z
(1)
Rµ t̄

(m)
L γµt

(n)
L + g

Z
(1)
R t

(m)
R t

(n)
R

Z
(1)
Rµ t̄

(m)
R γµt

(n)
R

}
(B.36)
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where

g
Z

(1)
R t

(m)
L t

(n)
L

= gw

√
L
∫ zL

1
dz

×
{hL

Z
(1)
R

+ hR

Z
(1)
R

2 f
(m)
UL

f
(n)
UL

+
hL

Z
(1)
R

− hR

Z
(1)
R

2
(
−f (m)

BL
f

(n)
BL

+ f
(m)
tL

f
(n)
tL

)
+QX1tφh

B

Z
(1)
R

(
f

(m)
BL

f
(n)
BL

+ f
(m)
tL

f
(n)
tL

+ f
(m)
t′
L
f

(n)
t′
L

)
+QX2tφh

B

Z
(1)
R

f
(m)
UL

f
(n)
UL

}
(B.37)

for the left-handed component t(n)
L and a similar expression for t(n)

R , b(n)
L , b(n)

R , other
quarks and leptons.

B.13. W ff̄ and WRff̄ couplings
The W couplings of the quark tower are found from

2∑
a=1

∫ zL

1
dz
√
G
−Ψa (−igAAµ − igBQXaBµ) zγµΨa

⊃− igw

√
L
∑

l

W+(l)
µ (x)

∫ zL

1

dz

k

×
{
hL

W (l)

( ¯̃TγµB̃ + ¯̃tγµb̃+ ¯̃UγµD̃ + ¯̃XγµỸ
)

+ hR
W (l)

( ¯̃Tγµt̃+ ¯̃Bγµb̃+ ¯̃UγµX̃ + ¯̃DγµỸ
)

+ ĥW (l)

(
− ¯̃Tγµt̃′ + ¯̃

t′γµb̃− ¯̃Uγµb̃′ + ¯̃
b′γµD̃

)}
. (B.38)

The W (l)t(m)b(n) couplings are found to be

L ⊃ −i
∑
m,n

{
g

W (l)t
(m)
L b

(n)
L

W+(l)
µ t̄

(m)
L γµb

(n)
L + g

W (l)t
(m)
R b

(n)
R

W+(l)
µ t̄

(m)
R γµb

(n)
R + (h.c.)

}
(B.39)

where

g
W (l)t

(m)
L b

(n)
L

= gw

√
L√

2rW (l)

∫ zL

1
dz

×
{
hL

W (l)

(
f

(m)
tL

f
(n)
bL

+ f
(m)
UL

f
(n)
DL

)
+ hR

W (l)

(
f

(m)
BL

f
(n)
bL

+ f
(m)
UL

f
(n)
XL

)
+ ĥR

W (l)

(
f

(m)
t′
L
f

(n)
bL
− f (m)

UL
f

(n)
b′

L

)}
(B.40)
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for the left-handed component t(n)
L and a similar expression for t(n)

R , b(n)
L , b(n)

R , other
quarks and leptons. Similarly, the W (l)

R t(m)b(n) couplings are found to be

g
W

(l)
R t

(m)
L b

(n)
L

= gw

√
L√

2r
W

(l)
R

∫ zL

1
dz

×
{
hL

W
(l)
R

(
f

(m)
tL

f
(n)
bL

+ f
(m)
UL

f
(n)
DL

)
+ hR

W
(l)
R

(
f

(m)
BL

f
(n)
bL

+ f
(m)
UL

f
(n)
XL

)}

= gw

√
L√

2r
W

(l)
R

rt(m)rb(n)

∫ zL

1
dz C(z;λ

W
(l)
R

)CL(z;λt(m))CL(z;λb(n))

×
{

(1− cos2 θH)
(
−µ2

µ̃
− µ̃

µ2

)
− (1− cos2 θH)

(
−µ2

µ̃
− µ̃

µ2

)}
=0 . (B.41)

Therefore WR boson does not decays to the SM quarks and leptons.

B.14. A4̂ff̄coupling
The A4̂ couplings of the quark tower are found from∫ zL

1
dz
√
G
−Ψ1 (−igAAµ − igBQXaBµ) zγµΨ1

⊃− igw

∑
l

√
LA4̂(l)

µ

∫ zL

1

dz

k

i

2hA4̂(l)

( ¯̃Bγµt̃′ − ¯̃tγµt̃′ − ¯̃t′γµB̃ + ¯̃t′γµt̃
)
. (B.42)

The A4̂t(m)t(n) couplings are found to be

g
A4̂(l)t

(m)
L t

(n)
L

= gw

√
L
∫ zL

1

dz

k

i

2hA
ˆ4(l)

(
f

(m)
BL

f
(n)
t′
L
− f (m)

t′
L
f

(n)
BL
− f (m)

tL
f

(n)
t′
L

+ f
(m)
t′
L
f

(n)
tL

)
(B.43)

for the left-handed component t(n)
L and a similar expression for t(n)

R , other quarks and
leptons. Therefore A4̂ coupling vanishes for m = n case.
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B.15. Hff̄ coupling
The Higgs couplings of the top quark tower are contained in∫ zL

1
dz
√
G
−Ψ1 (−igAkzAz) γ5Ψ1

⊃ −igw

√
LH

∫ zL

1
dz uH(z) i2

(
B̄γ5t′ − t̄γ5t′ − t̄′γ5B + t̄′γ5t

)
= gwk

√
L

2
∑
m,n

Hit
(m)†
L t

(n)
R

×
∫ ∞

1
zLdz uH(z)

(
f

(m)
BL

f
(n)
t′
R
− f (m)

tL
f

(n)
t′
R
− f (m)

t′
L
f

(n)
BR

+ f
(m)
t′
L
f

(n)
tR

)
+ (L↔ R)

= i
∑
m,n

H
(
g

Ht
(m)†
L t

(n)
R

t
(m)†
L t

(n)
R − gHt

(m)†
R t

(n)
L

t
(m)†
R t

(n)
L

)
. (B.44)

One finds that

g
Ht

(m)†
R t

(n)
L

= g
Ht

(n)†
L t

(m)
R

=− gw

√
kL

2
2sHcH√

(z2
L − 1)rt(m)rt(n)

×
∫ zL

1
dz z

{
− S(m)

R

C
(n)
L (1)

S
(n)
L (1)

S
(n)
L + C

(m)
L (1)

S
(m)
L (1)

C
(m)
R C

(n)
L

}
. (B.45)

We denote

yt(m)t(n) =
g

Ht
(m)†
L t

(n)
R

+ g
Ht

(m)†
R t

(n)
L

2 , ŷt(m)t(n) =
−g

Ht
(m)†
L t

(n)
R

+ g
Ht

(m)†
R t

(n)
L

2 . (B.46)

For m = n

yt(m)t(m) = −gwk
√
kL

2

√
z2

L − 1
rt(n)

sHcH
C

(m)
L (1)

S
(m)
L (1)

, ŷt(m)t(m) = 0 . (B.47)

Numerical values of yt(m)t(n) and ŷt(m)t(n) are given in Table 21 and 22, respectively.
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Table 21: yt(m)t(n) in the unit of yt cos θH . Only the values larger than O(10−3) are shown
and written by three significant figures. Reprinted from Ref. [29].
0 1 2 3 4 5 6 7

0 1.00 0.517 0.188 0.049 -0.010 0.044 0.025 0.013
1 0.517 -0.225 1.04 -0.090 0.234 O(10−4) O(10−4) -0.010
2 0.188 1.04 0.226 0.674 0.088 0.034 O(10−4) 0.057
3 0.049 -0.090 0.694 -0.217 1.05 -0.087 0.244 O(10−4)
4 -0.010 0.234 0.088 1.05 0.217 0.670 0.087 0.028
5 0.044 O(10−4) 0.034 -0.087 0.670 -0.214 1.05 -0.087
6 0.025 O(10−4) O(10−4) 0.244 0.087 1.05 0.215 ‘0.667
7 0.013 -0.010 0.057 O(10−4) 0.028 -0.087 0.667 -0.213

Table 22: ŷt(m)t(n) in the unit of yt cos θH . Only the values larger than O(10−3) are shown
and written by three significant figures. Reprinted from Ref. [29].

0 1 2 3 4 5 6 7
0 0 -0.529 0.091 -0.043 -0.015 -0.049 0.015 -0.011
1 0.529 0 -0.040 0.014 -0.005 O(10−4) O(10−5) 0.002
2 -0.091 0.040 0 -0.119 -0.012 -0.011 O(10−4) -0.026
3 0.043 0.012 0.119 0 -0.024 0.008 -0.014 O(10−4)
4 0.015 O(10−3) 0.012 0.024 0 -0.060 -0.007 -0.005
5 0.049 O(10−4) 0.011 -0.008 0.062 0 -0.017 0.006
6 -0.015 O(10−4) O(10−4) 0.014 0.007 0.017 0 -0.040

B.16. γF F coupling
The γ couplings of the dark fermion tower are given by

L ⊃ −ie
∑

l,m,n

Aγ(l)
µ

√
L

√
rγ(l)

∫ zL

1
dz C(z, λγ(l))

[ (
f

(m)∗
lL f

(n)
lL + f

(m)∗
rL f
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rL

)

×
{(

QX + 1
2

)−
F

+(m)
L γµF

+(n)
L +

(
QX −

1
2

)−
F

0(m)
L γµF

0(n)
L

)}
+ (L→ R)

]
, (B.48)

Therefore F 0 does not couples to photon for QX = 1
2 case. The couplings are defined as

L ⊃ −i
∑

l,m,n

{
g

γ(l)F
+(m)
L F

+(n)
L

Aγ(l)
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−
F

+(m)
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R

Aγ(l)
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√
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rL f
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)
,
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R F
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(
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lR f

(n)
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. (B.49)
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Especially, the γ(0) couplings of the dark fermion tower are given by

g
γ(0)F

+(m)
L F

+(n)
L

= g
γ(0)F

+(m)
R F

+(n)
R

= eδmn. (B.50)

In Tables 23, γ(1)FF couplings for various parameter sets are tabulated.

Table 23: The mass and left- and right-handed couplings to F+ in (B.49) in the unit of
electromagnetic coupling e of the first KK photon in the case of degenerate
dark fermions. Reprinted from Ref. [28].

nF zL mγ(1) (TeV) g
γ(1)F

+(1)
L F

+(1)
L

g
γ(1)F

+(1)
R F

+(1)
R

3 108 2.42 0.19 4.16
106 4.26 0.28 3.61
105 5.92 0.38 3.31

2× 104 7.55 0.52 3.09
4 108 2.46 0.06 4.15

106 4.32 0.11 3.59
105 6.00 0.15 3.28

3× 104 7.19 0.17 3.10
104 8.52 0.21 2.93

6 108 2.50 −0.06 4.14
106 4.40 −0.05 3.58
105 6.12 −0.04 3.26
104 8.68 −0.03 2.90

B.17. ZF F and ZRF F couplings
The Z couplings of the dark fermion tower are given by∫ zL

1
dz
√
G
−ΨF (−igAAµ − igBQXF

Bµ) zγµΨF

=− iZµ
gw

cos θW

√
L√

2√rZ

∫ zL

1
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∑
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×
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(n)
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(
if

∗(m)
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(n)
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− 2 sin2 θW

(
f
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(n)
lL + f

∗(m)
rL f

(n)
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)−
F

(m)
L γµ(I3 +QXF

)F (n)
L + (L→ R)

]
=− iZµ

∑
m,n

{
g

ZF
+(m)
L F

+(n)
L

−
F

+(m)
L γµF

+(n)
L + g

ZF
+(m)
R F

+(n)
R

−
F

+(m)
R γµF

+(n)
R

+ g
ZF

0(m)
L F

0(n)
L

−
F

0(m)
L γµF

0(n)
L + g

ZF
0(m)
R F

0(n)
R

−
F

0(m)
R γµF

0(n)
R

}
, (B.51)
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where F (n)
L is a abbreviation of the doublet (F+(n)

L , F
0(n)
L )T and I3 is a isospin opera-

tor. Numerical values of gV
ZF +(m)F +(n) and gV

ZF 0(m)F 0(n) are given in Table 24 and 25,
respectively.

Table 24: gV
ZF +(m)F +(n) = 1

2{gZF
+(m)
L F

+(n)
L

+g
ZF

+(m)
R F

+(n)
R

} in the unit of g/ cos θW . Only the
value larger than O(10−3) are shown and written by three significant figures.
Reprinted from Ref. [29].

1 2 3 4 5 6 7
1 -0.230 0.021 O(10−5) -0.001 O(10−6) O(10−4) O(10−6)
2 0.021 0.267 0.009 O(10−6) O(10−5) O(10−6) O(10−5)
3 O(10−5) 0.009 -0.230 0.024 O(10−6) -0.001 O(10−6)
4 -0.001 O(10−6) 0.024 0.267 0.009 O(10−6) O(10−4)
5 O(10−6) O(10−5) O(10−6) 0.009 -0.229 0.025 O(10−6)
6 O(10−4) O(10−6) -0.001 O(10−6) 0.025 0.267 0.009
7 O(10−6) O(10−5) O(10−6) O(10−4) O(10−6) 0.009 -0.229

Table 25: gV
ZF 0(m)F 0(n) = 1

2{gZF
0(m)
L F

0(n)
L

+ g
ZF

0(m)
R F

0(n)
R

} in the unit of g/ cos θW . Only the
value larger than O(10−3) are shown and written by three significant figures.
Reprinted from Ref. [29].

1 2 3 4 5 6 7
1 -0.002 -0.021 O(10−5) 0.001 O(10−6) O(10−4) O(10−6)
2 -0.021 -0.498 -0.009 O(10−5) O(10−5) O(10−6) O(10−5)
3 O(10−5) -0.009 -0.002 -0.024 O(10−5) 0.001 O(10−6)
4 0.001 O(10−5) -0.024 -0.498 -0.009 O(10−5) O(10−4)
5 O(10−6) O(10−5) O(10−5) -0.009 -0.002 -0.025 O(10−5)
6 O(10−4) O(10−6) 0.001 O(10−5) -0.025 -0.498 -0.009
7 O(10−6) O(10−5) O(10−6) O(10−4) O(10−6) -0.009 -0.002
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Table 26: The ZFF couplings in the unit of gw with b.c. ηF = +1 in the case of
degenerate dark fermions. Reprinted from Ref. [28].

nF zL g
ZF

+(1)
L F

+(1)
L

g
ZF

+(1)
R F

+(1)
R

g
ZF

0(1)
L F

0(1)
L

g
ZF

0(1)
L F

0(1)
L

3 108 −0.260 −0.242 −4.01× 10−3 −2.273× 10−2

106 −0.261 −0.257 −2.18× 10−3 −6.96× 10−3

105 −0.262 −0.260 −1.97× 10−3 −4.27× 10−3

2× 104 −0.259 −0.258 −4.13× 10−3 −5.84× 10−3

4 108 −0.261 −0.244 −2.52× 10−3 −2.049× 10−2

106 −0.263 −0.258 −1.14× 10−3 −5.59× 10−3

105 −0.263 −0.261 −7.6× 10−4 −2.77× 10−3

3× 104 −0.263 −0.262 −6.7× 10−4 −1.97× 10−3

104 −0.263 −0.262 −6.5× 10−4 −1.54× 10−3

6 108 −0.263 −0.246 −1.42× 10−3 −1.860× 10−2

106 −0.263 −0.259 −5.8× 10−4 −4.77× 10−3

105 −0.263 −0.262 −3.4× 10−4 −2.19× 10−3

104 −0.264 −0.263 −2.1× 10−4 −9.8× 10−4

Similarly the ZR couplings of the dark fermion tower are given by∫ zL

1
dz
√
G
−ΨF (−igAAµ − igBQXF

Bµ) zγµΨF

=− igw

∑
l,m,n

Z
(l)
R µ

√
L

√
2
√

1 + cos2 θH

cos 2θW

√
r

Z
(l)
R

∫ zL

1
dz CZ(z)−F (m)

L γµI3F
(n)
L

×
[
I

(c)
3

{
− cos θH

(
f

(m)∗
lL f

(n)
lL + f

(m)∗
rL f

(n)
rL

)
+
(
f

(m)∗
lL f

(n)
lL − f

(m)∗
rL f

(n)
rL

)}

+ 2QX
sin2 θW

cos 2θW

cos θH

(
f

(m)∗
lL f

(n)
lL + f

(m)∗
rL f

(n)
rL

)]
+(L→ R).

=− i
∑

l,m,n

Z
(l)
R µ

{
g

Z
(l)
R F

+(m)
L F

+(n)
L

−
F

+(m)
L γµF

+(n)
L + g

Z
(l)
R F

+(m)
R F

+(n)
R

−
F

+(m)
R γµF

+(n)
R

+ g
Z

(l)
R F

0(m)
L F

0(n)
L

−
F

0(m)
L γµF

0(n)
L + g

Z
(l)
R F

0(m)
R F

0(n)
R

−
F

0(m)
R γµF

0(n)
R

}
. (B.52)

In Tables 26, 27, 28, 29, 30 and 31, we have summarised the ZF̄F and the ZRF̄F

couplings for various parameter sets.

B.18. W F F and WRF F couplings
The W couplings of the dark fermion tower are given by

L4D ⊃ W−(l)
µ

(
g

W (l)F
(m)
L F

(n)
L

−
F

0(m)
L γµF

+(n)
L + g

W (l)F
(m)
R F

(n)
R

−
F

0(m)
R γµF

+(n)
R

)
+ (h.c.),
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Table 27: The ZFF couplings in the unit of gw with b.c. ηF = −1 in the case of
degenerate dark fermions. Reprinted from Ref. [28].

nF zL g
ZF

+(1)
L F

+(1)
L

g
ZF

+(1)
R F

+(1)
R

g
ZF

0(1)
L F

0(1)
L

g
ZF

0(1)
L F

0(1)
L

4 108 0.304 0.287 −0.569 −0.552
106 0.306 0.301 −0.569 −0.565
104 0.306 0.305 −0.570 −0.569

Table 28: The Z(1)FF couplings in the unit of gw with b.c. ηF = +1 in the case of
degenerate dark fermions. Reprinted from Ref. [28].

nF zL mZ(1) (TeV) g
Z(1)F

+(1)
L F

+(1)
L

g
Z(1)F

+(1)
R F

+(1)
R

g
Z(1)F

0(1)
L F

0(1)
L

g
Z(1)F

0(1)
L F

0(1)
L

3 108 2.42 −0.02 −1.07 −0.04 −0.08
106 4.25 −0.06 −0.95 −0.02 −0.02
105 5.92 −0.09 −0.87 −0.01 −0.01

2×104 7.54 −0.12 −0.81 −0.02 −0.00
4 108 2.45 0.00 −1.06 −0.02 −0.08

106 4.32 −0.02 −0.94 −0.01 −0.02
105 6.00 −0.03 −0.86 −0.01 −0.01
104 8.52 −0.05 −0.77 −0.00 −0.00

6 108 2.50 0.02 −1.06 −0.01 −0.07
106 4.40 0.02 −0.94 −0.00 −0.01
105 6.13 0.01 −0.86 −0.00 −0.01
104 8.68 0.01 −0.77 −0.00 −0.00

Table 29: The Z(1)FF couplings in the unit of gw with b.c. ηF = −1 in the case of
degenerate dark fermions. Reprinted from Ref. [28].
nF zL g

Z(1)F
+(1)
L F

+(1)
L

g
Z(1)F

+(1)
R F

+(1)
R

g
Z(1)F

0(1)
L F

0(1)
L

g
Z(1)F

0(1)
L F

0(1)
L

4 108 0.00 1.25 −0.02 −2.39
106 0.03 1.10 −0.06 −2.05
105 0.04 1.00 −0.08 −1.87
104 0.06 0.90 −0.12 −1.67
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Table 30: The Z(1)
R FF couplings in the unit of gw with b.c. ηF = +1 in the case of

degenerate dark fermions. Reprinted from Ref. [28].
nF zL m

Z
(1)
R

(TeV) g
Z

(1)
R F

+(1)
L F

+(1)
L

g
Z

(1)
R F

+(1)
R F

+(1)
R

g
Z

(1)
R F

0(1)
L F

0(1)
L

g
Z

(1)
R F

0(1)
L F

0(1)
L

3 108 2.34 −0.09 −1.05 0.25 2.55
106 4.06 −0.13 −0.90 0.34 2.23
105 5.59 −0.16 −0.82 0.42 2.06

2×104 7.05 −0.20 −0.77 0.51 1.93
4 108 2.37 −0.07 −1.05 0.18 2.54

106 4.12 −0.10 −0.89 0.24 2.22
105 5.70 −0.11 −0.82 0.29 2.04

3×104 6.74 −0.12 −0.78 0.32 1.94
104 7.92 −0.14 −0.73 0.35 1.84

6 108 2.42 −0.04 −1.05 0.12 2.54
106 4.20 −0.06 −0.89 0.16 2.21
105 5.78 −0.07 −0.81 0.18 2.03
104 8.11 −0.08 −0.73 0.21 1.83

Table 31: The Z(1)
R FF couplings in the unit of gw with b.c. ηF = −1 in the case of

degenerate dark fermions. Reprinted from Ref. [28].
nF zL g

Z
(1)
R F

+(1)
L F

+(1)
L

g
Z

(1)
R F

+(1)
R F

+(1)
R

g
Z

(1)
R F

0(1)
L F

0(1)
L

g
Z

(1)
R F

0(1)
L F

0(1)
L

4 108 0.05 0.80 0.07 0.69
106 0.07 0.68 0.08 0.65
105 0.08 0.62 0.09 0.61

3× 104 0.09 0.58 0.10 0.58
104 0.11 0.55 0.11 0.55
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are given by

g
W (l)F

(m)
L F

(n)
L

= gw

2
√

2

√
L

√
rW (l)

∫ zL

1
dz

{
C(z)

{
(1 + cos θH)f (m)∗

lL f
(n)
lL + (1− cos θH)f (m)∗

rL f
(n)
rL

}
− sin θH Ŝ(z)i

(
f

(m)∗
lL f

(n)
rL − f

(m)∗
rL f

(n)
lL

)}
, (B.53)

and g
W (l)F

(m)
R F

(n)
R

is obtained by replacements fl(r)L → fl(r)R.
Similarly the WR couplings of the dark fermion tower are given by

L4D ⊃ W
−(l)
R µ

(
g

W
(l)
R F

(m)
L F

(n)
L

−
F

0(m)
L γµF

+(n)
L + g

W
(l)
R F

(m)
R F

(n)
R

−
F

0(m)
R γµF

+(n)
R

)
+ (h.c.),

g
W

(l)
R F

(m)
L F

(n)
L

= gw

2
√

2

√
L√

r
W

(l)
R

√
1 + cos2 θH

×
∫ zL

1
dz C(z)

{
(1− cos θH)f (m)∗

lL f
(n)
lL − (1 + cos θH)f (m)∗

rL f
(n)
rL

}
, (B.54)

and g
W

(l)
R F

(m)
R F

(n)
R

is obtained by replacing fl(r)L with fl(r)R.
In Tables 32, 33 and 34, we have summarised the WF̄F and the WRF̄F couplings for

various parameter sets.

B.19. A4̂F F coupling
The A4̂ couplings of the dark fermion tower are given by∫ zL

1
dz
√
G
−ΨF (−igAAµ − igBQXF

Bµ) zγµΨF

=− igw

∑
l,m,n

A4̂(l)
µ

−
F

(m)
L γµF

(n)
L

√
L

√
rA4̂(l)

∫ zL

1
dz S(z) 1

2
√

2
(
f

(m)∗
lL f

(n)
rL + f

(m)∗
rL f

(n)
lL

)
+ (L→ R).

(B.55)

Therefore F̄ (n)F (n)A4̂
µ couplings vanish.
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Table 32: The WFF couplings in the unit of gw/
√

2 with b.c. ηF = +1 in the case of
degenerate dark fermions. Reprinted from Ref. [28].

nF zL g
W F

(1)
L F

(1)
L

g
W F

(1)
R F

(1)
R

mW (1) (TeV) g
W (1)F

(1)
L F

(1)
L

g
W (1)F

(1)
R F

(1)
R

3 108 7.0× 10−3 3.98× 10−2 2.42 6.19× 10−2 0.1360
106 3.8× 10−3 1.22× 10−2 4.25 2.64× 10−2 2.80× 10−2

2× 104 7.2× 10−3 1.02× 10−2 7.54 3.15× 10−3 7.8× 10−3

4 108 4.4× 10−3 3.59× 10−2 2.45 4.02× 10−2 0.1322
106 2.0× 10−3 9.7× 10−3 4.32 1.50× 10−2 2.68× 10−2

104 1.1× 10−3 2.7× 10−3 8.52 6.1× 10−3 3.8× 10−3

6 108 2.5× 10−3 3.26× 10−2 2.50 2.34× 10−2 0.1273
106 1.0× 10−3 8.4× 10−3 4.40 8.0× 10−3 2.59× 10−2

104 0.4× 10−3 1.7× 10−3 8.68 2.3× 10−3 3.6× 10−3

Table 33: The WRFF couplings in the unit of gw/
√

2 with b.c. ηF = +1 in the case of
degenerate dark fermions. Reprinted from Ref. [28].

nF zL m
W

(1)
R

(TeV) g
W

(1)
R F

(1)
L F

(1)
L

g
W

(1)
R F

(1)
R F

(1)
R

3 108 2.34 −0.41 −3.11
106 4.06 −0.57 −2.66

2× 104 7.05 −0.84 −2.28
4 108 2.37 −0.30 −3.10

106 4.12 −0.41 −2.65
104 7.92 −0.59 −2.18

6 108 2.42 −0.19 −3.10
106 4.20 −0.26 −2.64
104 8.07 −0.36 −2.16

Table 34: The WFF and WRFF couplings in the unit of gw/
√

2 with b.c. ηF = −1 in
the case of degenerate dark fermions for nF = 4 case. Reprinted from Ref. [28].

nF zL g
W F

(1)
L F

(1)
L

g
W F

(1)
R F

(1)
R

g
W (1)F

(1)
L F

(1)
L

g
W (1)F

(1)
R F

(1)
R

g
W

(1)
R F

(1)
L F

(1)
L

g
W

(1)
R F

(1)
R F

(1)
R

4 108 0.997 0.966 0.04 4.15 −0.019 0.099
106 0.998 0.991 0.10 3.59 −0.008 0.020
104 0.999 0.998 0.21 2.93 −0.004 0.003
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B.20. HF F coupling
The Higgs couplings of the dark fermion tower are given by∫ zL

1
dz
√
G
−ΨF (−igAAz) γ5ΨF

⊃ −igAk
∫ zL

1
dz

1
2
√

2
∑
m,n

H(x)uH

(
f

∗(m)
lL

−
F

(m)
L γ5f

(n)
rR F

(n)
R + f

∗(m)
rL

−
F

(m)
L γ5f

(n)
lR F

(n)
R

)
+ (L←→ R)

= −igAk
∫ zL

1
dz

1
2
√

2
∑
m,n

H(x)uH

(−i)
(
f

∗(m)
lL f

(n)
rR F

(m)†
L F

(n)
R + f

∗(m)
lR f

(n)
rL F

(m)†
R F

(n)
L

+ f
∗(m)
rL f

(n)
lR F

(m)†
L F

(n)
R + f

∗(m)
rR f

(n)
lL F

(m)†
R F

(n)
L

)
= iH

∑
m,n

(
g

HF
(m)†
L F

(n)
R

F
(m)†
L F

(n)
R − g

HF
(m)†
R F

(n)
L

F
(m)†
R F

(n)
L

)
. (B.56)

where

g
HF

(m)†
L F

(n)
R

= gw

√
kL

√
rF (m)rF (n)

sin θH

2 cos θH

2

∫ zL

1
dz

1
2

1√
z2

L − 1
z

×
(
S

(m)
L (1)C(m)

L (z)C(n)
L (1)C(n)

R (z)− C(m)
L (1)S(m)

L (z)S(n)
L (1)S(n)

R (z)
)
,

g
HF

(m)†
R F

(n)
L

= gw

√
kL

√
rF (m)rF (n)

sin θH

2 cos θH

2

∫ zL

1
dz

1
2

1√
z2

L − 1
z

×
(
−S(m)

L (1)S(m)
R (z)C(n)

L (1)S(n)
L (z) + C

(m)
L (1)C(m)

R (z)S(n)
L (1)C(n)

L (z)
)
.

(B.57)

One can show that g∗
HF

(m)†
R F

(n)
L

= g
HF

(m)†
R F

(n)
L

= g
HF

(n)†
L F

(m)
R

. We define

yF (m)F (n) =
g

HF
(m)†
L F

(n)
R

+ g
HF

(m)†
R F

(n)
L

2 , ŷF (m)F (n) =
−g

HF
(m)†
L F

(n)
R

+ g
HF

(m)†
R F

(n)
L

2 .

(B.58)

In particular

yF (n)F (n) = gw

√
kL

√
rF (m)rF (n)

sin θH

2 cos θH

2
1
4

√
z2

L − 1S(n)
L (1)C(n)

L (1) . (B.59)

Numerical values of yF (m)F (n) and ŷF (m)F (n) are given in Table 35 and 36, respectively.
Numerical values of yF (n)F (n) for various parameter sets are shown in 37.
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Table 35: yF (m)F (n) in the unit of yt sin θH

2 . The value are written by three significant
figures. Reprinted from Ref. [29].

1 2 3 4 5 6 7
1 -0.944 -12.6 0.328 2.85 -0.006 -0.485 0.038
2 -12.6 0.856 8.73 -0.357 -0.174 0.003 0.394
3 0.328 8.73 -0.924 -12.7 0.369 2.65 -0.002
4 2.85 -0.357 -12.7 0.920 9.05 -0.376 -0.277
5 -0.006 -0.174 0.369 9.05 -0.942 -12.7 0.380
6 -0.485 0.003 2.65 -0.376 -12.7 0.941 9.13
7 0.038 0.394 -0.002 -0.277 0.380 9.13 -0.953

Table 36: ŷF (m)F (n) in the unit of yt sin θH

2 . Only the value larger than O(10−3) are shown
and written by three significant figures. Reprinted from Ref. [29].

1 2 3 4 5 6 7
1 0 -6.54 0.117 1.35 -0.017 -0.654 0.013
2 6.54 0 1.62 -0.094 0.168 0.005 0.106
3 -0.117 -1.62 0 -1.26 0.066 0.627 -0.002
4 -1.35 0.094 1.26 0 0.934 -0.057 0.027
5 0.017 -0.168 -0.066 -0.934 0 -0.668 0.044
6 0.654 0.005 -0.627 0.057 0.668 0 0.648
7 -0.013 -0.106 0.002 -0.027 -0.044 -0.648 0

Table 37: The Higgs-Yukawa couplings y
F

(1)
i F

(1)
i

in (B.58) in the case of degenerate dark
fermions. Reprinted from Ref. [28].

nF zL y
F

(1)
i F

(1)
i

3 108 −0.106
106 −0.071
105 −0.064

2× 104 −0.089
4 108 −0.082

106 −0.049
105 −0.038

3× 104 −0.034
104 −0.033

6 108 −0.060
106 −0.034
105 −0.024
104 −0.017

96



References
[1] G. Aad et al., [ATLAS Collaboration], “Observation of a new particle in the search

for the Standard Model Higgs boson with the ATLAS detector at the LHC”,
Phys. Lett. B716, 1 (2012).

[2] S. Chatrchyan et al., [CMS Collaboration], “Observation of a new boson at a mass
of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B716, 30 (2012).

[3] G. Aad et al., [ATLAS and CMS Collaboration], “Combined Measurement of the
Higgs Boson Mass in pp Collisions at

√
s = 7 and 8 TeV with the ATLAS and CMS

Experiments”, Phys. Rev. Lett. 114, 191803 (2015).

[4] V. Khachatryan et al. [CMS Collaboration], “Precise determination of the mass of
the Higgs boson and tests of compatibility of its couplings with the standard model
predictions using proton collisions at 7 and 8 TeV”, Eur. Phys. J. C75, 212 (2015).

[5] G. Aad et al. [ATLAS Collaboration], “Measurements of the Higgs boson production
and decay rates and coupling strengths using pp collision data at

√
s = 7 and 8 TeV

in the ATLAS experiment”, Eur. Phys. J. C76, 6 (2016).

[6] G. Aad et al., [ATLAS Collaboration], “Search for high-mass dilepton resonances
in pp collisions at

√
s = 8 TeV with the ATLAS detector”, Phys. Rev. D90, 052005

(2014).

[7] V. Khachatryan et al., [CMS Collaboration], “Search for physics beyond the stan-
dard model in dilepton mass spectra in proton-proton collisions at

√
s = 8 TeV”,

JHEP 04, 025 (2015).

[8] P. A. R. Ade et al., [Planck Collaboration], “Planck 2013 results. XVI. Cosmological
parameters”, Astron. Astrophys. 571, A16 (2014).

[9] D. S. Akerib et al., [LUX Collaboration], “First results from the LUX dark matter
experiment at the Sanford Underground Research Facility”, Phys. Rev. Lett. 112,
091303 (2014).

[10] D. S. Akerib et al. [LUX Collaboration], “Improved WIMP scattering limits from
the LUX experiment”, arXiv:1512.03506 [astro-ph.CO].

[11] Y. Hosotani, “Dynamical Mass Generation by Compact Extra Dimensions”,
Phys. Lett. B126, 309 (1983).

[12] Y. Hosotani, “Dynamics of Nonintegrable Phases and Gauge Symmetry Breaking”,
Annals Phys. 190, 233 (1989).

97



[13] A. Davies and A. McLachlan, “Gauge Group Breaking by Wilson Loops”,
Phys. Lett. B200, 305 (1988).

[14] A. Davies and A. McLachlan, “Congruency Class Effects in the Hosotani Model”,
Nucl. Phys. B317, 237 (1989).

[15] H. Hatanaka, T. Inami, and C. Lim, “The Gauge hierarchy problem and higher
dimensional gauge theories”, Mod. Phys. Lett. A13, 2601 (1998).

[16] G. Burdman and Y. Nomura, “Unification of Higgs and gauge fields in five-
dimensions”, Nucl. Phys. B656, 3 (2003).

[17] C. Csaki, C. Grojean, and H. Murayama, “Standard model Higgs from higher di-
mensional gauge fields”, Phys. Rev. D67, 085012 (2003).

[18] Y. Matsumoto and Y. Sakamura, “6D gauge-Higgs unification on T 2/ZN with cus-
todial symmetry”, JHEP 1408, 175 (2014).

[19] C. S. Lim, N. Maru, and T. Miura, ‘Is the 126 GeV Higgs boson mass calculable in
gauge-Higgs unification?”, PTEP 2015, 043B02 (2015).

[20] K. Agashe, R. Contino, and A. Pomarol, “The Minimal composite Higgs model”,
Nucl. Phys. B719, 165 (2005).

[21] A. D. Medina, N. R. Shah, and C. E. Wagner, “Gauge-Higgs Unification and Ra-
diative Electroweak Symmetry Breaking in Warped Extra Dimensions”, Phys. Rev.
D76, 095010 (2007).

[22] Y. Hosotani and Y. Sakamura, “Anomalous Higgs couplings in the SO(5)×U(1)B−L

gauge-Higgs unification in warped spacetime”, Prog. Theor. Phys. 118, 935 (2007).

[23] Y. Hosotani, K. Oda, T. Ohnuma, and Y. Sakamura, “Dynamical Electroweak
Symmetry Breaking in SO(5)×U(1) Gauge-Higgs Unification with Top and Bottom
Quarks”, Phys. Rev. D78, 096002 (2008).

[24] Y. Hosotani and Y. Kobayashi, “Yukawa Couplings and Effective Interactions in
Gauge-Higgs Unification”, Phys. Lett. B674, 192 (2009).

[25] Y. Hosotani, S. Noda, and N. Uekusa, “The Electroweak gauge couplings in SO(5)×
U(1) gauge-Higgs unification”, Prog. Theor. Phys. 123, 757 (2010).

[26] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, “Novel uni-
versality and Higgs decay H → γγ, gg in the SO(5)×U(1) gauge-Higgs unification”,
Phys. Lett. B722, 94 (2013).

98



[27] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, “LHC signals
of the SO(5)× U(1) gauge-Higgs unification”, Phys. Rev. D89, 095019 (2014).

[28] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, “Dark matter
in the SO(5)× U(1) gauge-Higgs unification”, PTEP 2014, 113B01 (2014).

[29] S. Funatsu, H. Hatanaka, and Y. Hosotani, “H → Zγ in the gauge-Higgs unifica-
tion”, Phys. Rev. D92, 115003 (2015).

[30] L. Randall and R. Sundrum, “A Large mass hierarchy from a small extra dimen-
sion”, Phys. Rev. Lett. 83, 3370 (1999).

[31] A. Pomarol, “Gauge bosons in a five-dimensional theory with localized gravity”,
Phys. Lett. B486, 153 (2000).

[32] Y. Grossman and M. Neubert, “Neutrino masses and mixings in nonfactorizable
geometry”, Phys. Lett. B474, 361 (2000).

[33] K. Oda and A. Weiler, “Wilson lines in warped space: Dynamical symmetry break-
ing and restoration”, Phys. Lett. B606, 408 (2005).

[34] A. Falkowski, “About the holographic pseudo-Goldstone boson”, Phys. Rev. D75,
025017 (2007).

[35] J. Pumplin et al., “New generation of parton distributions with uncertainties from
global QCD analysis”, JHEP 07, 012 (2002).

[36] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, “The Higgs Hunter’s
Guide”, Front. Phys. 80, 1 (2000).

[37] G. Passarino and M. Veltman, “One Loop Corrections for e+e− Annihilation into
µ+µ− in the Weinberg Model”, Nucl. Phys. B160, 151 (1979).

[38] A. Denner, “Techniques for calculation of electroweak radiative corrections at the
one loop level and results for W physics at LEP-200”, Fortsch. Phys. 41, 307 (1993).

[39] E. W. Kolb and M. S. Turner, “The Early Universe”, Front. Phys. 69, 1 (1990).

[40] G. Jungman, M. Kamionkowski and K. Griest, “Supersymmetric dark matter”,
Phys. Rept. 267, 195 (1996).

[41] J. R. Ellis, A. Ferstl and K. A. Olive, “Re-evaluation of the elastic scattering of
supersymmetric dark matter”, Phys. Lett. B481, 304 (2000).

[42] G. Servant and T. M. P. Tait, “Is the lightest Kaluza-Klein particle a viable dark
matter candidate?”, Nucl. Phys. B650, 391 (2003).

99



[43] G. Belanger, M. Kakizaki and A. Pukhov, “Dark matter in UED: The Role of the
second KK level”, JCAP 1102, 009 (2011).

[44] K. Griest and D. Seckel, “Three exceptions in the calculation of relic abundances”,
Phys. Rev. D43, 3191 (1991).

[45] M. W. Goodman and E. Witten, “Detectability of Certain Dark Matter Candi-
dates”, Phys. Rev. D31, 3059 (1985).

[46] Y. Hosotani and N. Yamatsu, “Gauge-Higgs Grand Unification”, PTEP 2015
111B01 (2015).

[47] N. Yamatsu, “Gauge Coupling Unification in Gauge-Higgs Grand Unification”,
arXiv:1512.05559 [hep-ph].

[48] G. Cossu, H. Hatanaka, Y. Hosotani, and J.-I. Noaki, “Polyakov loops and the
Hosotani mechanism on the lattice”, Phys. Rev. D89 094509 (2014).

[49] K. Yamamoto, “The formulation of gauge-Higgs unification with dynamical bound-
ary conditions”, Nucl. Phys. B883 45-58 (2014).

100


