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1. Introduction. One of the useful tools for analyzing a linear operator
T i n a Banach space X, if available, is a functional calculus. In general, no
reasonable functional calculus may exist. If it is known that T is a closed op-
erator then there is available a restricted functional calculus for T based on
functions which are holomorphic in a neighbourhood of the spectrum <r(T),
of T, and have a limit at infinity, [4; Ch. VII]. To admit a richer functional
calculus it would be expected that T should satisfy some additional properties.
For 0<>a<πy define the open cone SΛ={z^C\{0} |arg(#)| <a}. A closed
operator T in X is said to be of type ω [12], where 0<ω<7r, if σ(T)^Sω (the
bar denotes closure and, by definition, S0=[0, oo]) and, for 0<£<(τr—ω)
there is a positive constant ce such that

Here i?(λ; T) denotes the resolvent operator of T at λ. We remark that
— 71, for the case 0<ω<7r/2, is the infinitesimal generator of a holomorphic
semigroup [12; Theorems 3.3.1 and 3.3.2].

In the case when X is a Hubert space and T is of type ω there are results
of A. Yagi [13] and more recently, of A. Mclntosh [10], which give conditions
equivalent to the existence of a functional calculus for T based on the algebra
H°°(Sω+z), for every 0<£<(τr—ω). For example, this is the case if the purely
imaginary powers Tiu, u^R, exist as bounded operators in X or if T satisfies
certain square function estimates. However, these results are specific to Hu-
bert space. The situation in Banach spaces, even reflexive ones, is less clear
and more complex; some positive results in this setting can be found in [2].

Perhaps one of the simplest examples to consider is the Laplace operator
L=—d2fdx2 in LP(R) for \<p<oo. In this case, it turns out that L is of
type ω=0 and, as indicated in Section 2, L has an ϋΓ^iSy-functional calculus
for every £>0. Another algebra of functions acting on L is the space BV(R+)
of functions on [0, oo) which are of bounded variation. We note that these

* This paper is dedicated to the late Professor N. Dunford.
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algebras are distinct. Indeed, the function z->z* belongs to H°°(St) for every
0<£<7Γ but its restriction to [0, oo) is surely not of bounded variation. It
is just as easy to exhibit elements of BV(R+) which are not the restriction to
[0, oo) of any element of Hoo(Si) for any £ > 0 ; the characteristic function Xj
of any interval /<Ξ[0, oo), other than [0, oo) itself, will do.

The most desirable functional calculus is one admitting the largest possible
class of functions defined on σ(L)=[0, oo). If />=2, then L is self-adjoint and
hence it is possible to form a continuous linear operator ψ(L) for every bounded
Borel function ψ on [0, oo), The question arises of whether this is still the
case for pφ2, that is, whether L is a scalar-type spectral operator in the sense
of N. Dunford [5] ? As noted above an operator ψ(L) exists whenever ψ=Xj
for some interval / c : [0, oo). Since such sets generate the Borel subsets of [0, oo)
one might be hopeful of a positive answer. Unfortunately, the main aim of
this note is to show that L is not a scalar-type spectral operator in Dunford's
sense if ^>Φ2; see Theorem 1 below.

2. Some functional calculi for L. Unless stated otherwise it is as-
sumed that />^(1, oo). Consider the closed operator L in LP(R) given by L=
—d2\dy?. The domain of L is taken to be the dense subspace of LP{R) specified
by

where AC(R) is the space of functions on R which are absolutely continuous
on bounded intervals. Then <r(L)=[0, oo) and — L is the infinitesimal generator
of a strongly continuous C0-semigrouρ of contractions, namely the Gauss-
Weierstrass semigroup given by

(Gtf)(μ) = \(ntγ

for each t>0 [7; § 21.4]. It is known that

( 1 ) | | i ? (λ ;L) | |< l/ | λ | s in 2 ( i -arg(λ)) , λGΞp(L) = C\[0, oo),

[8; IX § 1.8], from which it follows that L is of type ω=0. Let Ώ——id\dx
denote the differentiation operator with domain

SDψ) = if<ΞU{R)'J<ΞAC{R), / ' GP(Λ)} .

Then D is closed, densely defined and <r(D)=R.
For ease of presentation we now assume that ^e( l ,2) . Then it is possible

to reformulate the domains of L and D in terms of the Fourier transform mapp-
ing : Lp(R)->Lq(R) where q is the conjugate index to p. Indeed,
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g)(L) = ifeI/(R); ξ'ftξ) = i(ξ) for

and, for each/eiZ)(Z,), it turns out that Lf=g where g^Lp(R) satisfies £(ξ)=
A [7; §21.4]. Similarly,

= {feI/(R); ξftξ) = i(ξ) for some ge-I/(R)}

and, for each / e ^ ( D ) , it is the case that Df=g where geL"(R) satisfies

Let the bounded measurable function m: R-+C be a ^-multiplier [11; IV
§ 3]. Then there exists a bounded operator in LP(R), say Tm9 such that

(Tmf)Λ (ξ) = m(ξ)f(ξ), ftΞL*{R) Π L\R).

Observing that (Df) *(ξ)=ξf(ξ)y for each f^3){D\ it is natural to define m(D)
to be the operator Tm. If γ : C->C is the function j(z)=z2, then γ(D)=D2=L
where D2 is defined in the usual way for positive integral powers of an unbounded
operator. So, if m is a bounded measurable function on [0, °o) such that moy:
R-+C is a ̂ -multiplier, then we can define an operator m(L) by

( 2 ) m(L) = (moy)(D).

Since the linear space of bounded measurable functions m: [0, oo)-»C
such that moy: R->C is a ^-multiplier forms an algebra under pointwise multi-
plication it follows that the action of such functions m on L as specified by (2)
is multiplicative. It is the formula (2) which will imply that H°°(SZ) acts on L
for each £>0.

The following result on multipliers will be needed. It is essentially Theo-
rem 3 of [11; p. 96]. An examination of its proof shows that the constant Ap

specified there has the form of the right-hand-side of (3) for some universal
constant ap.

Lemma 1. Let l<p<oo. There exists a constant apsuch that if m: Λ->C
is any Cι-function in /2\{0} for zΰhich both m and ξ\-*ξm'(ξ), ? φ θ , are bounded,
then m is a p-multiplier and the associated operator Tmy considered in LP(R), satisfies

(3) HΓJI = |KD)||<α#max{|MU llfm'(βlU>.

Now, fix 0<8<π and let ψ^H°°(S1t). Then ψoΎ^H°°(Cφ) where, for
any 0<p<zr/2, Cp is the open double cone SP\J(—SP) and — Sp={—z; z^Sp}.
Furthermore, the norm |\ψoγ||βo=suρ {| ^{z2) | « e Cε/2} of ψoy^H00(C8/2)
coincides with the norm ||^||oo=sup{|^(«?)| WGS2} of l^r^H0O(Sz). If φ is
any element oίH°°{CzI^, then it follows from the Cauchy integral formula that

\φ'(x)\<\\φ\\~l\x\sm(εl2), *
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and

( 4 )

hence

°y)'(χ)\<\\φo,

W.J. RlCKER

y|U|*|8in(e/2) = 1*| sin(£/2),

for each #Gi2\{0}. Defining (ψoγ)(0) to be zero, say, it follows from Lemma 1
that the restriction to R of ψoγy again denoted by τ/roγ, is a ^-multiplier and
hence the bounded operator ψ(L) = (-ψ oγ)(D) certainly exists. Noting that
l/sin(£/2)>l it follows from (4) that

and hence, (3) implies the continuity of the mapping ψt-*yfr(L)=(ψ°rγ)(D)
from H°°(Se) into the space of bounded linear operators on LP(R) equipped
with the uniform operator topology. Accordingly, L admits a H°°(SZ) functional
calculus.

It is worth noting that this functional calculus includes the resolvent opera-
tors of L. Indeed, if zoGC\[O, OO), then there exists u^C\R such that u2—w.
Of course, the other square root of w is then — u. Let Rw(z)=(z—zo)"1 for

Let £e(0, π) be any number such that RUf^Hoo(S1t) in which case
Cφ). It follows from the definition that Rw(L) = (RwoΎ)(D) since

Rw(oci)=(x2—w)~1

y x^R, is a ^-multiplier. But, Rw(x2)=ψi(x)—ψ2(
x) f° r e a c h

x^R, where 'ψti(x) = [2u(x—u)]~1, x^Ry and ψ2(x) = [2u(x+u)~1], x^R.
Lemma 1 implies that both ψ1 and ψ 2 are ̂ -multipliers and so Rw(L)=(Rtv°

rγ)(D)
=^(2))—ψ2(D). But, noting that u and —w are in the resolvent set of D, it is
easily checked from the definition of D in terms of the Fourier transform that
ψ1(D) = (2u)-\D-uiy1 and ψa(D) = (2u)"\D+uI)"'1. Since D is a closed
operator it follows, for each \Gp(D), that the range of D—Xl on 3){D) is all of
LP(R)9 [7; Theorem 2.16.3], and hence, that the operator (D—λ/)"1 is every-
where defined. Accordingly, (D—\I)~1=R(X; D) and so the resolvent identities
for D imply that

Ψι(D)-ψ2(D) = R(u; D)R(-u; D) = (D-z/^φ+t/)- 1

= (D2-u2yι = (L-w)'1.

But, L is also a closed operator and hence (L—w)~1=R(zϋ; L). It follows that
Rw(L)=(RwoΎ)(D)=R(w; L).

We remark that if Ψ(z)=f(z)lg(z) where / and g are polynomials such that
deg(/)<deg(£) and the zeros of g are in the resolvent set C\[0, ©o) of L, then
it is natural to define a bounded operator tfr{L) by

k n

where ψ(z)=yΣ Σ3 anj(z—wn)~s is the partial fraction decomposition of ψ. Here
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{wv •••, zϋ/} are the zeros of g and, for each ϊ<n<k, the multiplicity of the zero
wn is mn. Now if £G(0, π) is any number such that {̂ «}«=i ΠS ε = 0, then
ψ^H°°(Sz) and hence there is also the operator ψ(L) defined via (2). It is clear
from the previous paragraph that the operators yfr(L) and ψ(L) coincide.

We now outline, briefly, the action of BV(R+) on L. If/: R->C is any
function, then V(f) denotes the total variation of/. The linear space BV{R)
consists of all C-valued functinos on R which have finite total variation. It is
a Banach algebra with respect to pointwise multiplication and norm defined by

Fix l<p<oom Then each m&BV(R) is a ^-multiplier and the mapping
m-*Ίn(D), m^BV(R), is a continuous algebra homomorphism for the uniform
operator topology [1 pp. 208-209]. Define BV(R+) to be the closed subalgebra
of BV(R) consisting of those functions / such that / = 0 in (—oo, 0). Then,
for each/eBF(Λ + ), the function/oγ: x-^ftx2), xGΛ, belongs to BV(R) and
V(f °fγ)<2V{f). Accordingly, the map

m ι-> m(L) = (moΎ)(D),

is a functional calculus for L. We remark that if zo^p(L)=C\[Oy oo), then the
restriction to [0, oo) of Rw(z) = (z—w)'1, zΦw, belongs to BV(R+) since its
derivative is an element of ^([0, oo)). As noted previously, the operator RW(L),
defined to be (i?M?oγ)(D), agrees with the resolvent operator R(w; L)=(L—wI)~ι.

3. The non-spectrality of L. At this stage it is natural to inquire
whether L admits a functional calculus based on some richer family of functions.
Indeed, this is the case for p=2. Suppose that /C[0, oo) is an interval. Then
Xjoy^BV(R+) is the characteristic function of the set {tι/2\ t^J} U {—tιf2\ t^J}
which, with obvious notation, is the union of the two intervals J1/2 and —J1/2.
Accordingly, %;°γ = %/i/2+%./i/2-%7(0)%{0) and so the operator Xj(L) defined
via (2) is just Xjii2(P)-\-X_μi2(D)\ it is a projection commuting with L. Further-
more, the family of projections {Xj(L); J an interval in [0, oo)} is uniformly
bounded in LP(R), [11; p. 100]. For the case p=2 this family of projections
can be extended so that a projection is assigned to each Borel subset of [0, oo)
and the so extended family forms the resolution of the identity for the self-
adjoint operator L. However, if ^>Φ2, then the state of affairs is quite different
as seen by the following

L e m m a 2. Let !R+ denote the algebra of subsets of (0, oo) generated by all

intervals in [0, oo), in zϋhich case the additive set function J->Xj{L) has a unique

extension from the semi-algebra of all intervals in [0, oo) to 3V~. If p^(l, oo),

but p^r2, then the family of projections {XE(L); E^<R+} is not uniformly bounded

in L\R).
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Proof. We proceed by contradiction. Suppose then that

( 5 ) suPi\\XE(L)\\p:E^3ί+}<oo

where \\ \\p denotes the operator norm considered with respect to the Banach

space LP(R). Let Si denote the algebra of subsets of R generated by the intervals

in R and let %= {F'<Ξ Sl\ F=—F}. If F<B%, then it is clear that F2={f;

tEϊF} is an element of jR+. The discussion prior to Lemma 2 together with the

finite additivity of E-*XE(D)y E<=Sl and E->XE(L), E <Ξ <R+ implies that

XF2(L)=XF(D). It follows from (5) that

( 6 ) supi\\XF(D)\\p;F(Ξ%}<oo.

Let F^LSH. Then F_=F Π (— °°, 0) is a finite disjoint union of intervals

in (— oo, 0) and F+=F Π [0, °o) is a finite disjoint union of intervals in [0, °o).

Define F(l)=F_(J(-F_) and F(2)=F+ U(-F + ) Since both F(l) and F(2)

are elements of iR0, it follows from (6), the identities %;Γ_=%F(I)X(-°O,O)> ^ F + =
a n d ^ F = ^ F + + ^ F _ and the finite additivity of X(.)(D) that

sup i\\XF(D)\\p;

That this is not the case is well known.

Lemma 2 implies that the family of projections {XE(L)\ E^ίR+} cannot

be enlarged to form a spectral measure in LP(R), [5; XVII Lemma 3.3 and

Corollary 3.10]. This point suggests that L ought not to be a scalar-type

spectral operator. However, to make a precise argument along these lines

would require showing that if there were some spectral measure in LP(R), say

P, a priori having no connection what-so-ever with the projectors Xj(L), for

ί °°
XdP(X)y then necessarily P arises by extension of the set function

o

J\-*Xj(L), with domain all intervals/in [0, °o), to the collection of all Borel

sets in [0, oo). That is, it would have to be established that P(/)=%/(^) for

each such interval / . Rather than pursuing this approach directly we prefer

a slightly different argument to establish the following result.

Theorem 1. // 1<^><OO and pφ2, then L is not a scalar-type spectral

operator in LP(R).

Before indicating a proof we recall more precisely the notion of a scalar-type

spectral operator, briefly, a scalar operator. So, let X be a Banach space and

L{X) be the space of all continuous linear operators from X into itself. By a

spectral measure in X is meant a set function P: 2->L(X), where 2 is a σ-

algebra of subsets of some set Ω, such that Pίis multiplicative (i.e. P(EΓ\F)=

P(E)P(F) for every £ G Σ and F G Σ ) , P(Ω) is the identity operator I in X and

P is countably additive for the strong operator topology in L(X). Given a
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C-valued, Σ-measurable function on Ω, say ψ, it is possible to define a closed,
densely defined operator P(ψ) in X as follows: the domain S)(P(ψ)) of P(ψ)
consists of those elements x^X such that ψ is integrable with respect to the
X-valued measure P( )x: E\-*P(E)x, EEϊΣ (in the usual sense [9]), in which

case P(ψ)x is defined to be the element \ ψ(w)dP(w)x, denoted briefly by
JΩ

\ ψdPx. It turns out that P ( ψ ) G i ( I ) if and only if ψ is P-essentially
JQ

bounded on Ω. A linear operator T in X is said to be a scalar operator if there
exists a spectral measure P: Σ—>L(X) and a Σ-measurable function ψ such that
T=P(ψ). This is the case if and only if there exists a spectral measure Q in X
defined on the Borel sets -3(σ(Γ)) of σ(T) such that T=Q(\). Here λ denotes
the identity function in C. All of the above definitions and statements concern-
ing scalar operators can be found in [3] and [5].

The idea of the proof of Theorem 1 is as follows. Since ΪD is the infini-
tesimal generator of the translation group in LP(R) given by Ttf=f(t-}- •), t^R,
that is, Tt=eitD, t(ΞR, it follows from [6; Theorem 2] and [5; XVIII Theo-
rem 2.17] that ϊD and hence, also D, is not a scalar operator if ^>Φ2. Now, if
L were a scalar-operator, then it ought to follow from L=D2 that Ό—Ώ12 and
hence, D would also be a scalar operator [5; XVIII Theorem 2.17] which is a
contradiction. Although this is not quite correct (if it were, then σ(D)=σ(L1/2)
would be [0, °°)!) it is the spirit in which the proof will proceed. The difficulty
is that D is "not quite'' a function of L (see (7)). So, it is necessary to identify
the positive square root L1/2, of L, more precisely.

Suppose again t h a t ^ e ( l , 2). Let H^L(LP(R)) denote the Hubert trans-
form. That is, H is the operator corresponding to the ̂ -multiplier ξ\—>sgn(£),
ξ^R. Then H2=I and so σ(H) = {—1, 1}. Define a closed operator S in
LP(R) with dense domain

&(S) = {f^Lp(R); \ξ\f(ξ) = i(ξ) for someg£EL*(R)}

by Sf=g,fG<D(S), where g^Lp(R) satisfies i(ξ)= \ξ\f(ξ). To see that S
is actually closed and densely defined we observe that — S is the infinitesimal
generator of a strongly continuous C0-semigrouρ, namely the Poisson semigroup
given by

(Ptf)(w) = tπ-1 Γ /(tϋ-uχf+uT'du , /€=L>(Λ),

for each ί > 0 ; see [7; §21.4], for example. It is clear from the definition of
L in terms of the Fourier transform that S is the natural candidate to be called
the positive square root of L. Indeed, S2=L and, in addition, σ(S)=[0, oo).
To see this, we note that if f^<D(S), then
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((S-Xl)f)A(f) = (IξI -λ)/(?),

Since ?H-»(|g | — λ)"1, ξ^Ry is a ̂ -multiplier whenever λ$[0, oo) (cf. Lemma 1),
it is clear that the corresponding operator is the resolvent operator of S at λ.
This shows that σ(iS)Q[0, oo) and it is not difficult to show equality. If/ is a
' 'nice function'', then a direct computation shows that

(Df)A (ξ) = £/(£) = | f | /(£) sgn (?) = (SET/)Λ (ξ) = (HSf)A (?),

a formula which suggests the known equality D=SH=HS [7; §22.5], written
more suggestively as

( 7 ) D = HL1/2 = L^2H.

It is this identity, the correct version of "Z)=L1 / 2", which will lead to a proof
of Theorem 1.

So, suppose that L is a scalar operator. The first aim is to show that S is
then also a scalar operator for which the following result is needed. The proof
is immediate from the fact that σ(L)=[0, oo) and the estimates (1).

Lemma 3. If A=—L, then R(X; A) exists for Re(λ)>0 and

sup{|Re(λ)|.||Λ(λ;^)||;Re(λ)>0}<oo.

It follows from Lemma 3 that

is defined for each 0<ez<l [14; Ch. IX, § 11 ^Theorem 3]. In the notation
of § 11 of Chapter IX in [14] with A=— L, if AΛ is the infinitesimal generator
of the holomorphic semigroup TΛt= Tt defined there, then for each/eiZ)(^l)=
£D{L) the value Aj is equal to (8); see [14; (3) and (4), p. 260]. Noting that
A1/2 is precisely the generator of the Poisson semigroup [14; p. 268], that is,
Ά1/2=—S, it follows from (8) with a=l/2 that

( 9 ) Sf= -(-Sf) = π-1 [
Jo

In particular, 3){L)^£D(S).

Now, by assumption, L = I μdV(μ) = V(μ) for some spectral measure
Jo

V: -S([0, oo))->L(L%R)). Accordingly, if /e^)(L), then the functional calculus
for scalar operators implies that

[° λ>0 .
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Substituting this expression into (9) and using Fubini's theorem gives

(10) Sf = π-1 [~μ( [~\-*(μ+\)-ιd\)dV(μ)f =
Jo Jo

= π'1 \"μ(πμ-^)dV(μ)f= Γμ*dV(μ)f,
Jo Jo

for each/ej2)(L). To justify the use of Fubini's theorem it must be established
that the function μi->μ1/2, μ > 0 , is V( )/-integrable whenever /ej£)(L). But, if
f G<D(L)=<D(V(μ))) then by definition of the operator V(μ) the identity function
μ on [0, oo) is V( )/-integrable and hence, so is μ\-+ μ1/2Xιuoo)(μ), μ>0; see
[9; Ch. II, § 3 Theorem 1]. Since μ\-*μ1/2%[0,i)(μ<), μ > 0 , is bounded on [0, oo)
it is also F( )/-integrable [9 Ch. II § 3 Lemma 1] and the desired conclusion
follows.

Now, define a set function P: ^([0, oo))->L(LP(R)) by P{E) = V{{μ>0;
μ1/2^E}) for each Borel set 2?£Ξ[0, oo). Then P is a spectral measure and

S CO

λrfP(λ) is a scalar operator such that
o

(11) Sf= Γ XdP(\)f= Γ μ
Jo Jo

see [5; XVIII Theorem 2.17]. In particular, σ(S)=[0, oo), [5; XVIII Lemma
2.25]. The argument used above to justify the use of Fubini's theorem in (10)
shows that 3){L)^W{§).

The claim is that S=S. The formulae (10) and (11) show that

(12) Sf=Sf, f<ΞW{L).

Since σ(S)=[0, oo)—σ(^i§)y the resolvent sets p(S) and p(S) also coincide. If λ
belongs to this common resolvent set, then it follows from (12) that

{S-\I)f={S-xI)f, /

Operate on the left with the bounded resolvent operator i?(λ; S) gives

But, f=R(\;S)(S—\I)f whenever / e ^ ( L ) c ^ } ( 5 ) and it follows that
i?(λ; S)g=R(\; S)g for all ^ in the range of the operator (S—\I) restricted to
3)(L). Assume for the moment that the space of all such functions g is dense in
LP(R) whenever λ<0. Then i?(λ; S)=R(\; S) for all λ<0. Both S and S
are closed operators and so R(\; S)=(S—\I)~1 and R(\; S)=(S—\iy1 for
each X^p(S)=p(S). Accordingly, the equality R(X; S)==R(\; S), valid for
each λ<0, implies that

= Range^-λ/)"1 = J3)(S).
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Fix λ<0. lίf^3){S)=W{§\ then

^ {s-xiγι{s-xi)f

from which Sf—Sf follows by injectivity of (S—Xl)'1. Accordingly, S=S.
So, it remains to establish the following

Lemma 4. Let λ < 0 . Then the space of functions {(S—Xl)f\f^<2)(L)}
is dense in LP(R).

Proof. The aim is to show that the stated space of functions contains the
set £)(S-Xl)=£}(S) and hence, it will be dense in L\R). So, if h<=W(S-Xl)y

then it is to be shown that h=(S—Xl)f for some/Gi2)(L).
By definition of £)(S-Xl) there is g(=Lp(R) such that {\ξ\ -X)h{ξ)=g(ξ)

and hence, *(£)=( |ξ | - λ ) " 1 ^ ) = ( I ξ | -λ)(IξI -λ)- 2 i ( f ) . Sinceξt-+(\ξ\ -λ)~ 2

is a ̂ -multiplier (cf. Lemma 1) there is f^Lp(R) such that (\ξ\ —X)~2g(ξ) =/(f).
In particular, A(f )=( | £ | —X)f(ξ) and so it remains to show that f^£D{L). But,
P / ( f ) = P ( i e | - λ ) - 2 i ( f ) . Since ξt->ξχ\ξ\-χy* is also a ^-multiplier (by
Lemma 1 again) there is ψ<=Lp(R) such that ξ2(\ξ\ — X)~2g{ξ)=Ψ(ξ) and hence
£2/(£)—$(£)• ^ ^ s shows that/G^)(L) and completes the proof of the lemma.

So, we are at the stage of having established that S=S— \ XdP(X) is a
Jo

scalar operator if L is a scalar operator.
Now, the Hubert transform H is equal to Qx—Q2 where Qx is the projection

corresponding to the ̂ -multiplier %[0>oo) and Q2 is the projection corresponding to
the ^>-multiρler %(_oo,0). In particular, Q1Q2=0=Q2Ql and Q1+Q2=L If we
define Q(E)=XE(1)Q1+XE(—1)Q2 for each E(=£B{C)y then ρ is a spectral

measure in LP(R) such that K— I μdQ(μ). Since H and 5 commute, it follows

that HP(E)=P(E)H for each £ G ^ ( [ 0 , OO)), [5; XVIII Corollary 2.4]. But, H
is also a scalar operator, with Q its resolution of the identity, and hence QjP(E)~
P(E)Q{ for each j e {1, 2} and £e.S([0, oo)), [5; XV Corollary 3.7].

Let Ω=[0, oo)χ {—1, 1} and let Σ denote the Borel subsets of Ω. Define
a set function Λ: ̂ -^L(LP(R)) by

Then it is routine to check that Λ is a spectral measure which may be considered
as being defined on all of -S(C) with Γί as its support. Let ψ: Ω->C be the
Σ-measurable function defined by (λ, μ)\-^Xμ for each (λ, /ί)6Ω, The corres-
ponding scalar operator A(ψ) that is so induced has domain given by

= if(ΞLp(R); ψ is Λ( )/-integrable}.

Since, for each £/eΣ, we have the identity
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Λ(£/)/= QtP({t>0; (t, l ) e ί / } ) / + ρ 2 P ( { ^ 0 ; (t, - 1 ) E [ / } ) /

whenever /eZ/(Λ), it is clear that ψ is Λ( )/-integrable if and only if the
identity function λ, on [0, oo), is P( )/-integrable. Accordingly,

$(A{ψ)) = {/eL%R); λ is P( )/-integrable} = $(S),

where we have used the fact that S=P(\). But, (7) implies that <D(S)=ίD(D).
Hence, i{f(Ξ4)(A(ψ))=£)(D)y then

( XμdA(\, μ)f = Qλ Γ \dP(\)f-Q2 Γ XdP(\)f =
Q JO JO

= Q1Sf-Q2Sf=HSf=Df

which shows that D=A(ψ). Accordingly, D is a scalar operator. This is the
desired contradiction and completes the proof of Theorem 1 for the case when

For 2<p<oo we proceed via duality. Indeed, noting that the dual op-
erator L*> of L (when L is considered in LP(R)), is just L in L9(R), it sufficies
to establish the fact that in a reflexive Banach space X the dual operator T* of a
scalar operator T is a scalar operator in X*. But, if T=P(ψ) wheie P: Σ-^
L(X) is a spectral measure and ψ is a Σ-measurable function, then it is an
easy consequence of the reflexivity of X and the Orlicz-Pettis lemma that the set
function P*: Σ-*L(X*) denned by P*(£)=P(£)*, £ G Σ , is a spectral measure
and hence P*(^) is a scalar operator in X*. It remains only to verify the identity
r*=P*(<ψ,). But, this follows from the leflexivity of X and [5; XVIII Theo-
rem 2.11 (i)]. The proof of Theorem 1 is thereby complete.
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