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1. Introduction

Let BP be the Brown-Peterson spectrum for a fixed prime , whosedbtapy is
BP. ¥ Zp[vi, v, ..., s, .. .]. In [6] §6.5, the second author has introduced the spec-
trum 7 (m), whoseB P -homology is

BP.(T(m)) = BP.[t, ..., tn].

This is homotopy equivalent t8 7  below dimensiop™2* — 3.
The Adams-NovikovE,-term converging to the homotopy groups Bfm ()

E3 (T (m)) = Extgp,sp) (B Py, BP.(T(m)))
is isomorphic by [6, Corollary 7.1.3] to
EXtrgn+1)(BPs, BP.),
where
C(m+1)=BP.(BP)/(t1, -, tm) = BP[tm+1s tm+2,s - --].

In particularI” (1) =BP.(BP) by definition. To get the structure of Exf+1)(BP., BP.),
we will use the chromatic method introduced in [3].
Denote an ideal £, vy, ..., v,_1) of BP, by I,, and a comodule

vnjﬁBP*/(p, V1, eees Une1, U0, ooy Uy 1)
by M. Then we can consider the chromatic spectral sequencerging to
EXtron+1) (BP., BP./1,)
with

E}' = EXtrge1y (BP. M)
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Shimomura calls this Ext group thgeneral chromatick;-term

The limiting case asn approaches infinity is discussed by #worel author
in [7]. In this paper we will determine the module structuowdr an appropriate gen-
eralization ofk (1)) of

EXt(11) (BPx, M1)

in Theorem 6.1, which is closely related to the group

EXtr(11)(B Ps, BP./(p)).

The structure of these two groups are described below in rEheo 6.1 and 7.1. No-
tice that our target E%gmﬂ)(BP*,BP*/(p)) is different from the localized object,
which is determined in Kamiya-Shimomura [2]. Hereafter wél wften abbreviate
EXtrgn+1)(B Pi, M) by EXtrgn+1)(M) for aT (m + 1)-comoduleM .

We begin by recalling the analogous result far = 0, which whtioed long
ago by Miller-Wilson in [4] (and reformulated in [6] as Theons 5.2.13, Corol-
lary 5.2.14, and Theorem 5.2.17). Recall that we have therm-exact sequence

(1.1) 0— BP./(p) — MY — M} — N? -0

obtained by splicing the two short exact sequences

0— BP./(p) M3 Ni 0,

and

0 Ni M} N? 0.
From (1.1) we see that E%;gg)(BP*/(p)) is a certain subquotient of
(1.2) Exﬂ:(l)(Mf) @ Exth(l)(Mll)-
For the first summand, we have (fpr odd)
Extr@)(M?) = Extry(v; 'BP./(p)) = K(1). ® E(h1,0).
In particular we have
Exty(M9) = K (1).{hy0}.

It turns out that the image of E%gg)(BP*/(p)) into this group isk (1){h10}, which
is the vi-torsion free component of Ek’g)(BP*/(p)).
To describe Exty, (M), we recall the elements; € v, *BP./(p) defined by

Xo = V2,
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x1 = vh — vaz_lvg,
_ P pz—l 122—p+l 1;2+p—l 172—212
X2 = X3 —v; vy — v vy v3,
2 —
Xr—1 (p - 2)
and X = ) k—1_ . for k > 3,
' {x/f_l — 2P () )
and integers: { ) defined by
a(0) = 1
a(1) = p,
3. 2k1 (p=2
= f > 2.
a(k) {pk+pkl—1(p>2) or k >

Then we have

Theorem 1.3([4]). As ak(1).-module Ext,, (M1) is the direct sum of
(a) the cyclic submodules generated ky/v;® for k > 0 and p { s € Z; and
(b) K(1)./k(1)., generated byl/v] for j > 1.

The odd prime case follows from the next proposition ([3, f@ition 5.4]). We
refer the reader to the original sources for the case =2.

Proposition 1.4. Let p be odd. Moduldp, v;**®), the differential

d=ng —nL: vy "BP./(p) — vy 'BP./(p) @pp. BP.(BP)
on x; Is

vit] for k =0,
d(x) = { vPh . for k =1,
2v;’(k) vé” D for k> 2.

Before Theorem 1.3 was proved, the naive conjecture abom#(lg(BP*/(p))
would have had the exponenisk () beip for falk 0. It was clear that

v
vzpk € EXt(I)‘(l)(M%)v
1

but the existence of “deeper” elements such as

2 2 2 2
—1, pP—p+l -
xp vy —vl T TP =l v, Pl
a(2) — pHp—1
v] v?
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and
3 3 3 2 3 2 2 3, 2 3 2
p°— p°—p+p —p°.p p+pc—p—1 p>—p+1
xz vy — ol TP TP ol Pl — 0] TP TP TR
a(3) ~ p3+p2—1
Ul vl

(and that of 3,2 /42y and Byp3/a) I Ext%(l)(BP* /(p)) for s > 1) came as a surprise,
as did the fact that the limiting value (&s— oo) of a(k)/p* is (p +1)/p (this limit
is attained forp =2 but not for odd primes) instead of 1.

Using these results one can deduce

Theorem 1.5. For odd primep, the groupExt%(l)(BP*/(p)) is isomorphic to
k(l)* {ﬁsp"‘/j 15 >0, pJ(s, k>0and0< J < as(k)} D k(l)*{hl,O}s
where 3¢ ,; is the image ofx,i/v{ under the connecting homomorphism

51 Exty(N1) — Extrqy(N7).

_fpt (s=1)
andas(k)—{a(k) 5>1)°

Our results (Theorems 6.1 and 7.1 below) have the same forithesrems 1.3
and 1.5, but withx;, and k( ) replaced by anda(k) defined in (4.1) and (4.3), and
with (1), replaced by a bigger ringglﬁ(l)* defined in (2.1). Thei(k) are the same
for all m > 0 (except whenn =1 angg = 2) although the show a slight difference
between the cases =1 and> 1. The casen =1 angg = 2 is different and has
to be treated separately. For > 1 there are no special conditions for the prime 2.
The asymptotic behavior of the exponents is given by

im 40 _ P2+ p?
k—oo pk pd-1’

a slightly larger value than for the case = 0. However#or- O there are no deeper
elements in E>§t<m+1)(BP*/(p)), i.e., no elements of the forrﬁspk/j with p { s and
j>p*

We found a new form of periodicity in our statement with noqa@ent in Theo-
rem 1.3. For example, (except for =2 amd =1) we have

k—1 k—2¢ m+2
R VAl R ) for k > 5,
and akk) = p*+p*t+ak —3) for k > 4.

A similar result for the chromatic modulaZ} is obtained in a joint work with
Ippei Ichigi [1]. There we get a similar periodicity with ped 4 instead of 3 when
m > 5.
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We obtained our result in the summer of 1999. On the other h&mimiya-
Shimomura [2] told us that they have determined all the smrecof Ext.,.q) (M7)
in the fall of 1999 independently.

We are grateful to the referee for suggesting some correctio an earlier draft
of this paper.

2. Prelimaries

For aT n + 1)-comoduleM , consider the cobar complex

{ Crn+1)(M), du } ,

n>0
which is determined by

Crneny(M) =T(m +1)®pp, - @pp, ['(m +1)@pp, M,

n-factors

and
dn . CF‘(m+l)(M) - CF"(';EI-+1)(M)

Then Extg.+1)(M) is the cohomology of this cobar complex. By the changehujs
isomorphism (cf. [6, Theorem 6.1.1]), we have

EXtrone) (MP) = Extray (MP ®@pp, BP.(T(m)))
E EXtZ(n) (K(n)*’ K(n)*(T(m))) B

whereX ¢ ) =K ¢ ) ®pp, BP.(BP) ®pp, K(n).. This object is already known by [6,
Corollary 6.5.6].

In order to avoid the excessive appearance of the index , Wehaieafter use
the following notations.

w = p",
Vi = Ui
/t; = tm+i5
2.1 ~
1) R hijj = hpsij,
I/(\(n)* = K(n)*[vn"'lv L] Un+m]a
and k(n)* = k(n)*[vrﬁlv cees vn+m],

whereh,,+; ; is the cocycle represented b,g{;.

Theorem 2.2 ([6, Corollary 6.5.6]). If n < 2(p — 1)(m + 1)/p andn < m + 2,
then

Extrguen) (M) % K1), @ E (hiy i 1<i<n,0<j<n—1).
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In this paper we will need this result only far =2, for whichcbvers the cases
m >0 for odd p andm > 1 for p =2. For the casep =2 and =1, we need

Theorem 2.3([5]). If p=2andm =1, then

EXtr(z) (Mg) = I?(Z)* ® P (il\l’o, il\l’ 1)/(;1\51 + v%il\io) ®E (il\z’o, 7’1\2’1, p) s

Wherep = h3,1 + vghg,o.

This information allow us to determine the structure of fxty) (M7) using the
Bockstein spectral sequence. In fact, we use the followimgvenient lemma.

Lemma 2.4 (cf. [3, Remark 3.11]). Assume that there existsAIdl)*-submodule
B' of Exty,.qy (M1) for eachs < N, such that the following sequence is exact

0 —— Ext,.q) (M) 7

5 1/v 5
o EXteay (MD) g Mo

where ¢ is a restriction of the coboundary map
0. EXfF(m+l) (Mjl:) — EXI‘F(,];IH) (Mg) .

Then the inclusion : B' — Exti,.1y (M{) is an isomorphism betweet(1),-modules
for eacht < N.

Proof. Because Et,.; (M7) is avi-torsion module, we can filteB’ by
B'(i)= {x € B': vix = 0}
and Exf,.1) (M1) by
E'(i) = {x € Ext{,41y (M7) : vix =0} .

Assume that the inclusiofy is an isomorphism foxK ¢+ — 1 (thet = 0 case is
obvious), and consider the following commutative laddexgdam where we abbreviate
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EXtheny(M]) by H*(M]).
t /v 1 U1 !
g-1—2 s H (M9) B'(i) B(i—1)—~H (M9)
H' Y (M}) >~ H' (M) Yo B e B - 1) B (M9)
Using the Five Lemma, we obtain the desired isomorphBm =(A'(i) ({ > 1) by
induction oni . ]

In §3 and§4, we will define elements; € vz_lBP* for k > 0 (see (4.1)) satisfy-
ing

/\Spk

x; vy mod (p, v1),

and integersi(k) such that eacl}/v} is a cocycle of for all 1< 7 < a(k).
Using these notations, we can describe the structur@%fitting into the long
exact sequence of Lemma 2.4. We have

Lemma 2.5. For m > 0,

Av

B® = v; %k (1). {% k>0,s>0andpts } @ vy LK (L), /k(2).

is isomorphic as &(1),-module tOEXt,41) (M1), if the set

"X.\S
{5 <va’(‘k)> : k>0,s>0andpts } C EXtrpe1) (M3)
1

is linearly independent over

R=Z/(p)[va, v; %, vs, ..

L) vm’ vm+l]v
where is the coboundary map ihemma 2.4
Proof. All exactness of the sequence
1/v v 5
0O—— EthQ(mﬂ) (Mg) ! BO ! BO EXt]l:‘(m+l) (Mg)

is obvious, except Ked C Im v1. So we need to show only this inclusion. Separate
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the R -basis ofB° into two parts,

A:{ ;f}(‘k): k>Oandp+s>0}

and

:{x—k: k>0, pts>0,and 1< I < a(k) } u {ii:i>o}.
v

Then it is obvious thaBi(xx) # 0 € Extr,.;y (M3) for X\ € A, but thaté(y,) =0 €
Extr (41 (M3) for y, € B. Thus for any element =, axxx + >, by, of B°
(ax, b, € R), we haved(z) = >, axd(x). The condition implies that alk, are zero
whené(z) =0, and sovy }©, by, /v1 = z. This completes the proof. ]

3. Definition of the elementsws; and wq4
In this section we will introduce elements; and w,4 in (3.2) to change the bases
hi; (i=1,2andj =0, 1) of EX{u+1)(MJ) given in Theorems 2.2 and 2.3. First we
recall the right unityz on v;.
Lemma 3.1. For any primep andm > 1, the right unit
ng: BP, — T(m+1)/(p)

on the Hazewinkel generators are

o~ N -p pwy
n (vz) = vty —vp o,

R
N~ 2 o~ —~ 2
R (v3) = vzt vzl‘f — vé 1+ Ull‘g — Uf 7]
. £ o~
+viw (vz, Ull‘lp, —Uf tl)
(add v§«*%2 for p = 2)
~ ~p2 ~ ~ o — 1
= vzt — v n vy — vl mod (v]),
~ o~ ~p3 w~ ~p2 ZUJ’\
NR (v4) =1t v3tlp — vg 1+ Uzl‘zp — vg tr mod (vl) .

where w;(—) is the first Witt polynomial satisfying

): (Zt ytp) B (Zz yt)p.

W1 (V1 oo Viy e e
p
Now let
(3.2) { s = vy B,
' 1’1\)4:1)2_1(54—1)317)5).

Using Lemma 3.1, it is easily shown that
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Lemma 3.3. The differentials
d=ng—n: v, 'BP./(p) — v, "BP./(p) @pp. I'(m +1)

on the abovew,’s are

—~ ~p2 —1~ PN l~p—1
d(ws) = 17" — v5“ '+ vvy 1Y — viv, 0T mod (v3),
2 _ ~ 20— p— ~ 25—1~
and dwg) =1 —, lv§“t1+ vh TP 1v3tlp —vb % mod (vy).

Then we can change thi’(n)*—module basis of Theorems 2.2 and 2.3 using
Lemma 3.3. In particular, we have

Corollary 3.4.

EXtE (1) (M3)
IA((Z)* {71\1,1, 71\1,2, 7’1\2’2, 71\2,3} for p > 2, or p= 2andm > 1,

K(2). {51,1, h12,h22, ho 3, P} for p=2andm=1.

When we compute the connecting homomorphignof Lemma 2.5, this base-
changing method actually works well to determine the stmeciof Exﬂ(mﬂ)(M,}) for
a generaln . In fact, Kamiya-Shimomura [2] and Shimomura Edently determined
the structure of E>?t<m+1)(M,}) under some conditions om amd in a similar way.

4. The elementsXy

In this section, we will define elements, € vngP* (k > 0) to be used
in Lemma 2.5 except fop =2 antk = 1. The cape = 2 and = 1 will be
treated in the next section.

Define elements;; € v, *BP, (k > 0) inductively onk by

Xo = V2,
~ _ ~p
X1 = Xg»
2 2
EST p—1 B+l PP
X2 = X1 — Vg U, Xpo— V1 W3,
~ _ ~p
X3 = x5,
(4.1)
x§+yl+y2 (m>l)
Xa =93 5, ~ 1. _ )
x5 +y1+§y3 (m=1andp > 2)
k—1 k—2
2 = 5P P, P Bap =1 =p
Xe =X, —v; vy Ux 3 (a—3 —X{_y) for k > 5,
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wherea = p+1 andg = p’w — p — 1, andy; (i =1, 2, 3) are given by

ph+pP—p?—p 0P 2B+p= p+pi—p —p—p? plws

1= -] ! vy T Pxp + vl v, 31)3 3x1 i
_vf4+P3—1 (17 +1)8—p +1v§ %o + vf +p Uz_p 'T)g
(4.2) 4_]3)5 +2p éﬂ PP’ g w?,
Yo = —of +pP=p (5—17)17 vg %o,
S = 5o 4o R P g

Define integersi(k) by
P for 0<k <1,
(4.3) atk)=< pFta for 2<k <3,
P ta+akk —3) fork > 4.
Notice that the integerg(k) are equivalently defined inductively dn by

(4.4) ) :{pa(k— 1) for2<k=0 mod (3)

patk—1)+p for2<k#0 mod (3)
Lemma 4.5. Unlessp =2 and m = 1, the differentials
d=ng =1L vy BP./(p) — vy "BP./(p) ©pp, T(m+1)

on the abovex,’s are

d(%o) = vit? mod (v?),

d(@) = vV mod (1),

(&) = ], " mod (v} 7).

d(@s) = —viPu "’ mod (v;*®),
d@) = —of “uf T a() mod (v"®)  for k>4

Proof. By Lemma 3.1 we have

d(xo) = vt mod (v{*),

4.6 2 2
(4.6) d(x1) = vl mod (v] ).

Moreover, we find that

d(xf) = mod (v/™*),

P’ 5+l 2p —p~(p—L)pp°
d(— vl =—vf ( -, — v v, Py 7 +viv, tz)
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mOd ( p +3p>'

and d o TRy = —oP WP mod (v/*7* 1),

Summing the above three congruences we obtain

2 2 2
d(2) = —o o P — WPy mod (v
= i@y rp” mod (v"*%),
and d §5) = 0@y 70’ mod (v} *+2p? ).
3) = 1 Y2 B

(4.4) suggests that we should calculatet;)(modulo @7*®) rather than modulo
(v1*®) when we apply induction o > 4. Fork =4, we find that modulovf ™)

d(v“(4) p *p Ap)

Up " Wy
— 4@, p p* p v Sump? P8 pPop® L (B+p)p*p?
= C 1 tvy "v 1y — vy t5)
d(v‘ll(d')_z”vz_p _p vg wf )
_ ZZ\(4)—17 —17 —p? 17 w;p
= 2 1
d(—v 0(4) 0(2) PP 5+17A)
(4.7) _ a(4) p 17 ﬂ(l’ 17;)\17 —p?p)
2 1

2
d(_vrll(4) pv;ﬁ p)p vg @gz) .
— a@)—p (B—p)p°, p° 7P B+1 P P, —pp’
= ey v3261 7+ v, P
d(_v;-z(4)—p—lv§p +1)3—p +lv:1>’7 /x\O)

_ . a@@—p, (p*+1)8—p*+1 p*op
= —v] vy vyt

Summing these congruences we obtain

N — a@)-p —p >t a@), p*8(, —p —p, p*3p°  ~p7—pip”
d(y) = v] v, Py — v vl P (v, vh iy ) )

mod (vf’rﬁ(“)) .

On the other hand, we find that modulo?{"*)

iy = { T (m > 2).
2) = 2
—vf avéﬁfp)p vg Glp —viv, ') (m = 1).

In them > 2 case, we see that
dZ) = — 3(4) pzﬁ/\(pfl)pﬁf2

vf *pp ﬂA(p l)pd(x ) mod (vf+ﬁ(4)) )
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In them =1 case, we must modify the eleméntinto y; as defined in (4.2). We
find that
—~ 2 2 ~, 2 2,3 |~ _ 2
d (v PPl g = oI (T — g o], )
a(4)+,
mod (vi’ ”),
-~ 2 3 2.
U;_Z(4)_1)U;1) +1)3—p +1vg tf

a(4)+p*—p—1
mod (v‘l’ p=r )

a4)—p—1 (pP+1)8—p3+1 p?~
d (vl vy Vg xo)

Summing the above congruences we obtain
-~ 2 3 2.2 -~
d(y3) = 2v‘ll(4)v£ N mod (vfm(“)) )

Consequently, we obtain the desired congruencé ®f) ih m = 1 case, too.
For k > 5, assume that

. —2 k=35 4 P
A1) = —v? “v) PRV a) mod (vfﬂ’(k 1)),

and denotex, —x/_, by zi. By definition (4.1), we note thad, = 0 for k = 0 mod 3.
In case thatt # 0 modulo 3, we have

k—1 k—2
~ _ - p—T~
e =—vl “b ﬂx,ﬂ_g Zk—3 for k > 5.

Notice thatZ;_s is divided by v? ~* for k = 5, by v?@*Y¢*Y for k = 7, and by
vfM"‘ for k > 8. On the other hand, by inductive hypothesis we see dh%,ijg)lo is
divisible by vf2+” for k =5 and byfo"‘ for k > 7. So we have

A 3%-3) = d(F3)nr(T-2) + X 3d(Gi—a)

= f,f:sld(/z\k_s) mod (v?a(k_s)) .

Therefore the differential ogy is

SO k=1, pk—2 SUSIPTN
d@) = —vf b PR SE )
k=1, k=235 1 243k
= ol o) PRI dGEs) mod (vl aw)

On the other hand, by inductive hypothesis we have

k—1 k—2
=P _ P B (p=1)p yrp
dix_) = —vp vy "X, Td(xy

k—1 k—2 ~
— P prT i Bap—1 gmp 2+a(k)
= —v; vy Tx_gd(x]_, mod (vl .

Summing the above two congruences we obtain

k—1 k=25 o 4 ~
d@)=—of vl R JdEes)  mod (o770
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as desired. O

5. The casep=2 andm=1

In this section we recover some results of Shimomura [8]qusie basis obtained
in Corollary 3.4.

Define the elements; € vz_lBP* in the same fashion as those in (4.1) fo0
k <3, and

(5.1) {X4 X3 T Y1 T Y4,

~ ~ k—2 k—2 ~ ~

Xp = x,f_l + vf‘z vg'z Xi—2(Xk—2 +x,§_3) for k > 5,
wherey, is

14, 14~ 23, 25~ 25, 8. 8~ 25, 25~ 26, 102

37\4 =v1 Vs X3+U1 Uy x1+Ul U2v3xo+vl (%) w3+Ul Vs Wy.

Note that the construction of, (k > 4) in this case is 2-periodic, although it is
3-periodic for the other cases. We are surprised at thigrdiffce.
Define integersi(k) by

2k for 0< k < 1,
(5.2) aky={ 3.21 for 2 <k < 3,
5.26245(k —2) fork > 4.

This givesa(0) = 1, a(1) = 2, a(2) = 6, a(3) = 12, a(4) = 26, and so on. Notice that
the integersa(k) are equivalently defined inductively dn by

(5.3) atk) = { 2a(k — 1) for odd ,

2a(k —1)+2 for evenk.

Then we have
Lemma 5.4. For p =2 and m = 1, the differentials
d=ng—nL: vy, BP./(2) = v; "BP./(2) @pp, T(m +1)

on the abovex,’s are

d(%o) = vitf mod (vf) .
d(x1) = vi(zyt\f mod (v?a(l)),

d(xp) = vf(z)vz_z?g mod (vi+a(2))’
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d(x3) = 17y, 48 mod ( 1+"(3)),
d) = 082 032 52 Cd(R_,)  mod ( 1*“(’<>) for k > 4.

Proof. Thek =0 andk = 1 cases follow directly from Lemma 3.1 (4f6)).
For k = 2 case, we find that

4(R2) = o? mod (u19)
d(viw3) = vi (1B + 517 + viv, 215 + viv, 203t ?)  mod (vi?),
d(viv§xo) = vivdiZ +vvin mod (v]).

Then we have

d(%2) = vdv, %13 + v][vSt +vdv, 2vZrf mod (vf)
= 6, %13 mod (v{),
d(%3) = vi*v; 1} mod (v1?).

For k = 4 case, we obtain the same consequences as in (4.7),itbuthe third
one replaced by

d (v1®v3%%,) = v¥*3%; + vPu3n + vioV3%ir) mod (v}'),
and so
d(yl) = vf“v2 8?216 + vf%gsﬂ + vfsv%0v3t2 + vffsvgovgtl mod (vf7).

On the other hand, we find that

A7) = VT + ) + 3,
d(v733°%) = v? v25tl,

26,1072\ — .26 1078 02472
d(v2%3%w3) = v28(v3vSr? + vi%8 + v3%3r) +v2%Z),
d(vi*v3*xs) = v2%3%3,

d (v®v8u8x0) = vZ%u5usi?
modulo @27), so we have
d (V) = vPv3%n + v¥%3%3rt mod (v}’).

Using the above congruences, we have

-~ 26, 10
d(x4) Ul vz v3ly

1%v3%v3d (%) mod ( 1+“(4))
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(5.3) suggests that we should calculatet;)(modulo @7*) rather than modulo
(v1*"®) for k > 5 when we apply induction ok . Denofg +x2 , by Z. By def-
inition (5.1) we note that; =0 for oddk . In case that is even, we have

- k=D qok—2
k= vfz vgz Xk—2Zk—2 for k > 5.

Notice thatz;_ is divisible by v} for k = 6 and byﬁ;.zw for k > 8. On the other
hand, by inductive hypothesi$ x( ») is divisible by v?*~?. So we have

d(Xk—2)1r (Zk—2) + Xr—2d(2k—2)

= X;_2d(Tx—_2) mod (vf+a(k_2)) .

d(Xk—22k—2)

Therefore the differential oy is

k—2 k—2
U? 2 Ug 2

d(zx) d(Xk—2Zk—2)

= vi"zkfzvg'zkfz)?k_gd@k_z) mod (vfﬁ(k)).

On the other hand, by inductive hypothesis we have

~2 _ 522 3.0k"2.0k=2 , ~) 2+a(k)
dxi_q) =037 vy° v5  d(Xi_s mod (v}

because 2(1 #(4)) = 2 +a(5) and 2(2 +a(k — 1)) > 2 +a(k) for k > 6. Summing
the above two congruences, we obtain

d(jc\k) = vier—zvg.zk—zk\k_zd(jc\k—z) mod (vfﬁ(k)) .
as desired. -

6. The structure of Exty .y (M1)

Theorem 6.1. As a v, k(1).-module Exf,.;, (M}) for m > 1 is the direct
sum of
(a) the cyclic submodules generated By/v:® for k >0, s >0 and p{s; and
(b) vy K(1)./k(1)., generated byl/v! for j >1,
whereXx,’s are the elements defined {4.1) and (5.1).

Proof. First we prove the theorem except for the =2 and = 1.case
By Lemma 2.5 it suffices to show that the set

D= {5 (f,i/v?(k)) t k>0,s>0andpts } C EXt%(m+l) (M2)
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is linearly independent over
— -1
R - Z/(p)[v25 U2 ’ U3, cc vmv vm+l]-

It follows from Corollary 3.4 that E%t(mﬂ)(Mg) is the freeIA((Z)*-moduIe on the four
classes represented by

2 2 3
Py Ry Ry /ey 4
{tl’ .ty 10 }
SO its basis oveR is
TP ’\t’\[lz AIAPZ ’\IAPS. >0
vht?, el vhtl, vt it > 0 .
Now define integer$(k) and¢(k) for k > 0 by

0 for0<k <1,
b(k)={ —pk-t for 2<k <3,
P23 +bk —3) for k > 4,

where 3 = p?w — p — 1 as before, and

) = 0 for 0<k <3,
W=V (p—1)p*3+2(k — 3) for k > 4.

Then Lemma 4.5 implies that

17 for k=0,

?{’2 for k > 0 andk = 1 mod 3
?2”2 for k > 0 andk = 2 mod 3
?2”3 for k > 0 andk = 3 mod 3

(R = £0T0BOFEN

modulo (v;**®), wherea(k) is defined in (4.3). Since

() = 5331 (%) = 598 d(®) mod (v V),

it follows that

1 for k=0,

#fork>0 andk=1mod 3
W fork>0 andk=2mod 3
W fork>0 andk=3mod 3

. _ o
62 9 <v;f’(<k)> SRS AT S
1
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In order to show that these elemerit§;/v2®) (with k > 0 ands > 0 not
divisible by p) are linearly independent ov&®® , it suffices toserve the exponents
of v, in the right hand side of (6.2).

So we consider the set®y = {05 : s >0 andp{s} for k = 0, and Dy, =
(3 7VP W - f = ko + 3k, s > 0 and p £ s} for a fixedko (1 < ko < 3). Since the in-
tegerc(k) is

k)= (p—1)po@@+pd+..-+p¥3)

for k = kg + 3ky > 4 with 1< kg < 3, we see

pr

_ m mod (pk+l).

(s — 1)p* +c(k) = sp*

If (s —1)p* +¢(k) = (r — 1)p' +¢(1) with k = [ = ko modulo 3, then it follows that
k =1 and hences = . Thus all the entries in the sBisand Dy, (1 < ko < 3) are
disparate, respectively.

In the p = 2 andm = 1 case our argument is the same subject to tlosviiod
changes. The intege?lﬁ(k) andc(k) are defined by

0 for 0<k <1,
bk) =4 —27* for 2 <k <3,
3.262+p(k —2) fork >4,
and
. |0 for 0< k < 3,
(k)= 22450k —2) fork > 4,
which is
0 for 0< k < 3,
4
a(k) = 5}(2"‘2 —1) for evenk > 4,

g(zH —1) for oddk > 5.

Then (6.2) gets replaced by

12 for k=0,

s [ 2 = wge-ntew ) 4 for k=1,
) 2 2 t3 for k > 0 andk = 0 mod 2
8 for k > 1 andk = 1 mod 2

and we can argue for linear independence as before. ]
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7. The group EXtfm.(BP./(p))

In this section we will use the structure of Eegﬂ)(Mll) given in Theorem 6.1 to
determine the group E]’x(;,,,,l)(BP*/(p)). As in the casen =0, this group is the direct
sum of subquotients of Ef,.1,(MY) and Exf,.y,(M7).

In Lemma 7.2 we will show that the former subquotient has thees form as in
the casen =0, i.e., it i&(1).{h1.0}. We will also see that unlike in the classical case,
the elementvl‘lﬁl,o supports a nontriviadl, in the chromatic spectral sequence.

The summand, *K (1), /k(1). of Extl,.,,(M7) is the image of

di: B9 = Exeqy(M7) — Eg° = Ex@un)(M1),
S0 it maps trivially to E)é't(mﬂ)(BP*/(p)). The kernel of the map
di: BT = ExQeny (M) — E7° = Ex@un)(M9),

consists of all elements, each of which does not have any miahowith negative
vo-exponent. We will see in Corollary 7.7 that these are thenelgs

=

% e Extun(MD)  with k 20,5 >0, pts, and 0< j < p,
v

Combining these results we get
Theorem 7.1. For any primep andm > 1, the group
EXtrgen)(BPs/(P))
is isomorphic to
k(). {@,,k/, :5>0, pts, k>0and0< j < pk} P k). {hro},
Where@pk/j is the image of)?;/v{ under the connecting homomorphism
o: Ethq(mﬂ)(Nll) — EXt%‘(m+l)(N](_))‘
First we consider the subquotient of Qqﬂ)(Mf).
Lemma 7.2. For any primep andm > 1, the group E%! in the chromatic spec-

tral sequence isl?(l)*{ﬁl,o}. Moreover there is a nontrivial differential in the chro-
matic spectral sequence

1 _ Z
da (Ul hl,O) = o1
v 1
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wherez =4 — v}v, 10,
Proof. We use the chromatic cobar complex

{CCluery(BP/(P)), dc}nzo
given by
CClueny(BP./(p) = €D € (M),

s+t=n

d. =d, + (=1)Yd;: C* (M) — C* (M"Y @ c*H (M),

whered, :C* (M}) — C*(M}*) is induced by the composite may! — Ni*t — mi*t
andd; :C* M1) — C**Y(M}) is the differential in the cobar complex (see [6, Defini-
tion 5.1.10] ).

By Theorem 2.2, we have

E9™ = Exthiey(MD) = RQ). {hro} .

The elemenﬁl,o is represented by, in the cobar complex and is clearly a permanent
cycle in the chromatic spectral sequence. We need to shcmw;ﬂﬁl,o does not sur-
vive to E%L. If it does, then the elemerftl,o € Ext%(mﬂ)(BP*/(p)) is divisible by vy
and therefore has trivial image under the composite

EXt]l:‘(m+1)(BP*/(p)) - EXtiI:‘(m+l)(BP*/12) - EXt]ﬁ(m+l)(vngP*/12)

The target group was computed in [5], and the element in tpress one of its gen-
erators.
For the chromatic differentiad,, we have

d(z) =Pt ' mod ( ”+1) .
It follows that in the chromatic cobar compleXCr,.+1)(B P«/(p)) the differential
d.: CH(MP) ® CO(My) — C2(MY) & CH(My) © CO(MT)
satisfies

~

t
L eclmd,
V1

S
—~
<
=
=5
fany
~—
1

v1 p+l pw—1

1-pw ~
t
* <UZ Z) =t e € CH @ i),
U1 V2



862 H. Nakal AND D.C. RavENEL

vy Pz z
-1 2 —
SO dC Uy I+ vp+l - vp+l pw—1"

1 1 V2

In terms of the double complex associated with the chromatsolution, we have the
following picture:

d, 1
s=1: ol ——=2
U1
vl—pmZ 4 z
2
s=0 P+l ptl pw—1
vy 1 2
t=0 r=1 t=2

This means that in the chromatic spectral sequence we havimdicatedds,. Its target
must be nontrivial inE>, i.e., it is not in the image under

dy: E::II:’O = EXt?‘(m_'_l)(M%) — EJZ_’O = EXt?‘(m_,_l)(Mf)

because otherwise 121,0 would survive toE&l, contradicting the nondivisibilty result
above. Ol

Now we turn to thewv;-torsion in Ext(mﬂ)(BP*/(p)). Let E(k) be the maximum
exponent ofv; satisfying

X=X, mod (p, v‘li(k)) .

(if xx =x7_,, then we setd(k) = o0.) Thus the integerg(k) (k > 5) are given induc-
tively by

(7.3) d(k) = p-ta+d(k — 3)
with d(2) = p? — 1, d(3) = o0, d(4) = p* + p® — p> — p unlessp =2 andn =1, but
(7.4) d(k)=5-2"2+d(k — 2)
with d(3) =co, d(4) = 14 in the casep =2 anat = 1.
Lemma 7.5. For any primep andm > 1,

k—2 k—475,
X =x5 mod (p, vy d(4)).
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Furthermore % = %2 * modulo (2, v2“®) in the casep = 2 and m = 1.
Proof. From (7.3) and (7.4) it follows thaf(k) > p*—4d(4) for k > 5 unless
p=2andm =1, and thal(k) > 2¢=54(6) for k > 7 in the casep =2 ansh = 1.

Therefore it is obvious that

min{d(k), pd(k - 1), ... p~“d(4). p—2d(3)}

— pk742(4) = pk 4 ph=1 _ pk=2 _ k=3
unlessp =2 andn =1, and
min {E(k), 2d(k — 1), ..., 2*-54(6), z’<—52(5)} = 2-6(6) = 94. 26
whenp =2 andn = 1. This completes the proof. O

Lemma 7.6. Let E,i/v{ (j < a(k)) be one of the generators (Ext?(mﬂ)(Mll).
Then the image of this element by the map

EXt (1) (M1) — EXE 041y (N7)
is non-trivial if and only ifk > 2 and p* < j < a(k).
Proof. We may assume that> 2. From definition ofx», it follows that

k—2 k k
- p
X, =v, —v

k—2 k—2 k k—1 k—1
BT G T 4 mod (p ).
Then, using the fact that

2(p* — p*2) > a(k) for k=2 or 3
2(pF — p*=2) > ptd(4) fork >4

and Lemma 7.5 we have

k k k_ k=2 k—2 k-2 k k=1 k—1
~ ~(s—1 — ~ — ~,
x,ﬁ = ’v\;p - svg » (vf P vzﬂp vg - UJI_) Uy P vg )

modulo (p, v{) for k =2 and 3, and modulop, vfk743(4)) for k > 4.
In the right hand side the first and the second terms do not lkaveegative
vp-exponent, but the third term iﬁ;/v{ is

k

1
pto=p
sV v,

k—1 k k—
~(s—=1)p " ~p
L) U3

J
v
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which may be mapped non-trivially t&/Z. Unlessp = 2 andn = 1, we notice that
p*—4d(4) > p*. Then we observe that /v{ is mapped non-trivially tav2 if and only
if j > p* except whenp =2m =1 and > 4.

On the other hand, in the =2 and =1 case we find fhat 2 * modulo
@2 "7 (k > 6) and

S =2, 14 145
X4 = X5+ 077053773

— 516, 12 244 . 14 14-8 , 16, —8-8 18
=y + V5 U, U 0y U5 vy, U mod (2 vi°),

so that

pk—d gk ok gkl

k ¢ _ k=2 g ok—1_ok—2 k=3 7.ok—3__ok—1
Xq = Uy + V1 v2 U3 + Uf 2 Ug 2 U% + UI 2 UZ 2 U2

2

modulo (292 °). Notice that 2-64(6) > 9- 23 > 2t and that we may ig-
nore the terms except the second one, because the other denitshave a negative
vp-exponent. Then we can complete the proof in similar way asathove. U

Corollary 7.7.  The only elements af;-° which survive toEL? are
x—}; fors >0, pts, k>0and0< j < pk.
V1
Proof. The summand)glf((l)*/f(l)* of E%’O is killed by the chromatic differ-
ential
dy: EXt(I)‘(m+1)(M](_)) — Ethq(mu)(Mll)-

Joining this result with Lemma 7.6, we have the desired tesul [l
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