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Abstract 

Background: 

We investigate patterns of neurodevelopmental trajectories in infants using a representative 

population, and identify risk factors that predict delayed growth. 

Methods: 

Participating infants (n = 952; 82.8% of the total sample) were assessed by Mullen Scales of Early 

Learning at 7 time-points from 1 month to 24 months of age. Mothers were recruited in early 

pregnancy and data on demographic characteristics were collected during pregnancy. Trajectory 

patterns were investigated using latent class growth analysis and risk factors for the derived 

trajectory classes were investigated by multinomial logistic regression. 

Results: 

Participants were found to be a fairly representative sample with respect to their demographic 

characteristics. Five classes of high normal (11.5%), normal (49.2%), low normal (21.2%), delayed 

(14.1%), and markedly delayed (4.0%) were identified. The markedly delayed class was 

characterised by overall delay from the early developmental stages; notably, such delay first 

became salient in motor domains and was then exceeded by language domains, especially receptive 

language. This class was predicted by male sex (odds ratio 4.0; 95% confidence interval 1.7-9.1), 

small for gestational age (2.8; 1.0-7.5), low placenta-to-birthweight ratio (2.8; 1.2-6.4), and low 

maternal education (4.7; 1.2-19.0). The delayed class was characterised by gradual downward 

deviation after first birthday, and was predicted by male sex (2.5; 1.5-4.2), preterm birth (4.4; 1.6-

12.6), and advanced paternal age (1.9; 1.0-3.5). 

Conclusions: 

Our results demonstrate that about 1 out of 5 infants exhibits delayed neurodevelopment. Infants 

with distinct patterns of delayed trajectories and varying risk factors are considered to have 

different pathophysiological mechanisms. 

 

Keywords 

neurodevelopment; trajectory; delayed growth; birth cohort; risk factor, small placenta 

 

 



 

 

Introduction 

Many studies have investigated the early emergence and features of neurodevelopmental problems, 

and have found that many of early signs were evident in the first and second years of life in 

individuals with neuropsychiatric conditions such as autism spectrum disorder (ASD).1,2 It is, 

however, critically important to comprehend neurodevelopmental trajectories, defined as 

longitudinal developmental patterns captured by behavioural features such as motor and language, 

in the general population as a whole.  In regard to overall cognitive ability, Brian et al.3 identified 

three patterns of neurodevelopmental trajectories as measured by the Mullen Scales of Early 

Learning (MSEL)4 in the population of siblings of ASD and their controls.  However, MSEL 

consists of five neurodevelopmental sub-domains, and it has been reported that the pattern of 

development is different among sub-domains and types of neurodevelopmental disorders.5 In 

siblings of children with ASD, Landa et al.6 examined neurodevelopmental trajectories 

longitudinally across multiple developmental domains as measured by MSEL.  They depicted 

four different types of trajectories consisting of two normal and two delayed trajectories.  These 

trajectories derived from the population of siblings of children with ASD may be affected by the 

hereditary attributes of ASD, and thus the results obtained from this population cannot be 

generalised. 

 

Our aims in this study were twofold.  First, we sought to investigate patterns in the 

neurodevelopmental trajectories in a representative population of infants in Japan.  We anticipated 

that the percentage of infants with delayed growth in our study would be smaller than that reported 

in the previous study of the sample of siblings of children with ASD.6  Second, we attempted to 

identify factors that predict and characterise infants in each of the assigned classes derived from 

the latent class growth analysis, especially infants allocated to the delayed class (es).  The 

prenatal7,8,9 and postnatal factors10 have been associated with neurodevelopmental disorders.  The 

neurodevelopment of infants with these disorders has been reported to differ from that of infants 

with typical development.11  We postulated that such risk factors would be identified as risk 

factors in the delayed class (es) in the general population in the present study.  These factors would 

also have important implications for predicting neurodevelopmental trajectories. 

 

 

Methods 

This study was conducted as part of an ongoing cohort study, the Hamamatsu Birth Cohort Study 

for Mothers and Children (HBC Study), which is described elsewhere.12,13 

 

Participants 

Participants included a consecutive series of the mothers (n = 1065) and their infants (n = 1152) 

born between 24 December 2007 and 30 June 2011.  All women who visited in the first or second 

trimester of pregnancy at either of our two research sites, the Hamamatsu University Hospital and 



 

 

Kato Maternity Clinic, were invited to participate in the study.  In Japan, pregnant women can 

freely choose any maternity clinic, from a private clinic to a large general hospital.  There was no 

between-site difference in demographic characteristics of the participants included in the analyses; 

the only one exception to this was age of mothers.  Mothers who visited Kato Maternity Clinic 

first were younger than those who visited the Hamamatsu University Hospital first (t = -2.93, p = 

0.003).  All of the mothers who agreed to participate in the study, including mothers from Kato 

Maternity Clinic, gave birth at the same facility, i.e., Hamamatsu University Hospital.  The 

assessment after birth was also performed at the same facility (Hamamatsu University Hospital).  

By referring to the reports from the Department of Health, Labour and Welfare, Japan,14 we found 

that the enrolled mothers in this study were representative of Japanese mothers with respect to age, 

socioeconomic status and parity, and their offspring were representative of Japanese offspring with 

respect to birthweight and gestational age at birth.  Therefore, participants in this cohort are 

considered to be a fairly representative sample of the general population.12,13 

 

We excluded 183 participating mothers and 198 infants who missed 5 or more of the total 7 follow-

up evaluations after birth (Fig. 1).  The major reason for missing was a Japanese traditional 

support system for childbirth, called “satogaeri bunben”.15  We also excluded two mother-infant 

dyads as the infants were diagnosed with Down syndrome.  Thus, 952 infants (82.6%) and 880 

mothers (82.6%) were included in the analyses.  Table 1 displays demographic characteristics of 

the sample included in the analysis. 

 

Measures 

Developmental assessment 

We used the Mullen Scales of Early Learning (MSEL) to evaluate neurodevelopmental progress.  

MSEL is a composite scale for assessing child development and is made up of five subscales: gross 

motor, visual reception, fine motor, receptive language, and expressive language.  Measurement 

was performed when the infants reached the ages of 1, 4, 6, 10, 14, 18 and 24 months.  Prior to 

follow-up assessments of the birth cohort, two experienced clinicians performed 3-month video 

training sessions, through which agreement of their scoring of each item on the MSEL scale was 

attained.  Subsequently, separate 3-month video training sessions were set up, including 

additional 5 assessors (child health professionals), who engaged in actual ascertainment.  Because 

the assessment criteria change according to the development (i.e., ageing), similar training and 

quality-maintaining sessions using video recorded assessments were repeated prior to each of the 

7 time-point follow-ups.  Developmental assessments with MSEL were conducted without 

referring to previously evaluated data.  The assessors for the development were masked to 

information about demographic variables (Background assessment), which was collected by 

independent and separate researchers. 

 

MSEL T-scores, which are equivalent to Z-scores but instead with a mean of 50 and a standard 



 

 

deviation (SD) of 10, are commonly used and a useful index which enables one to discern 

deviations from normative development.  As anticipated, however, the US version of the 

normative data was found not to be correspondent, particularly in the language domains, with the 

Japanese sample in this study.  We therefore developed the Japanese version of the T-scores, using 

our HBC sample (Supplement 2), in accordance with the original procedure described by Mullen.4 

 

Background assessment 

Data on the demographic characteristics of mothers were collected during pregnancy.  They 

included the age of the mother and partner, their educational level and their annual household 

income. Perinatal variables were obtained from medical records, including gestational age, 

birthweight and placental weight. 

 

Statistical Analysis 

Latent class growth analysis 

Latent class growth analysis enables us to distinguish distinct subgroups of individuals, called “a 

latent class”, following distinct patterns of change over time.16,17  To investigate 

neurodevelopmental trajectories, we applied a parallel process latent class growth analysis, which 

allowed simultaneous processing of 5-domain data and contained combinations of continuous 

latent growth variables including the intercept (I), slope (S), the quadratic (Q) term for each of the 

five sub-domains of outcome and a latent categorical variable (Fig. 2).  Individual membership 

was assigned on the basis of the most likely posterior probabilities (maximum-probability 

assignment rule).17  We set the Japanese version of T-scores as the dependent variables.  Because 

T-scores were found to follow nearly normal distributions at each time point, but slightly skewed, 

we used an MLR estimator.18  As missingness related to attrition was at least not associated with 

outcome measures, as evaluated by MSEL (Supplement 1), the full information maximum 

likelihood algorithm we employed under assumption of missing at random (MAR) was deemed to 

be sustained. 

 

Since the appropriate number of latent classes was initially unknown, the model was run from one 

class solution to increasing number of classes solution.  To compare models with the different 

numbers of classes and determine the optimum model, we employed several fit indices19: the 

smallest Bayesian information criterion (BIC), consistent Akaike’s information criterion (CAIC) 

and approximate weight of evidence criterion (AWE); the adjusted Lo-Mendell-Rubin likelihood 

ratio test (adjusted LMR-LRT)20 and the bootstrap likelihood ratio test (BLRT)21;  and entropy.  

In addition, the number of classes was ultimately determined by integrating other considerations, 

including theoretical justification and interpretability.22 

 

Multinomial logistic regression 

To explore relationships between the latent class assignment and predictor variables, we used a 



 

 

three-step approach developed by Vermunt.23  In this approach, the latent class model was 

estimated in a first step using only latent class indicator variables.  In the second step, assignment 

of the most likely class was made for each child using the latent class posterior distribution obtained 

during the first step.  In the third step, a factor of the most likely class was regressed on predictor 

variables, taking into account the misclassification in the second step.24  As potential risk factors, 

gender, preterm birth before 37 weeks, small for gestational age (SGA), low placenta-to-

birthweight ratio, parental age, parental educational level and parental income were investigated.  

SGA infants were defined as having a birthweight less than the 10th percentile for the gestational 

age.25  The placenta-to-birthweight ratio was calculated by dividing placental weight by 

birthweight, and a low ratio less than 10th percentile indicated a small placenta relative to offspring 

birthweight.26  Nineteen mother-infant dyads who had missing values in mother’s placental 

weight were excluded from the analysis.  In addition, since the 10th percentile cannot be simply 

applied to twin deliveries, we excluded twin deliveries (n = 28).  Because some offspring were 

born from the same mother, such clustering (i.e., family clustering) was allowed for in the analyses 

using a Huber sandwich estimator.  All statistical analysis was performed with Mplus version 7.11. 

 

Ethical Issues 

The study protocol was approved by the Hamamatsu University School of Medicine and University 

Hospital Ethics Committee.  Written informed consent was obtained from each mother for her 

own and her infant participation. 

 

 

Results 

Latent class growth analysis 

We ran the model from the simplest solution to more complex solutions.  The value of BIC and 

CAIC continued to decrease, but the AWE had the smallest value for the 5-class solution (see 

Supplement 3).  The p-values of the adjusted LMR-LRT were less than 0.05 up to the 2-class 

solution, whereas the p-values of BLRT was less than 0.001 up to the 7-class solution.  Entropy 

was high enough for all the solutions, with 2- and 5-class solutions closer to 1.0 indicating better 

classification quality.  We counted chiefly on the results of these fit indices, but the prominent and 

exclusive solution did not emerge; two solutions (2-class and 5-class) were judged to be equally 

optimal model fit on the grounds of the results of AWE, adjusted LMR-LRT, and entropy.  Among 

these optimal two solutions, we ultimately selected the 5-class solution on the basis of our a priori 

postulation that the number of growth trajectory classes of infants in our study of a representative 

sample of the general population would be equal to or larger than the 4-class solution reported in a 

sample of siblings of children with ASD who are considered to be more homogenous than the 

general population and share hereditary attributes of ASD.6 

 

Figure 3 shows developmental trajectories by the MSEL domain and class assignment.  The first 



 

 

class was taken as “high normal” with a proportion of 11.5% of the sample (n = 110).  This class 

was characterised by the relatively accelerated development in all five domains.  The second class 

was “normal”, and approximately half of the total sample was allocated to this class (n = 468; 

49.2%).  The progress of growth in this class was nearly linear and parallel along the mean value 

of 50 over the period and thus closely matched the norm trajectory.  The third class was “low 

normal”; these infants showed slight delay in the early developmental stages, but caught up by 24 

months (n = 202; 21.2%).  These three classes were considered normal because the trajectories 

were in the range of the mean ± 1 SD.  The fourth “delayed” class showed a downward deviation 

in T-scores over time that became marked after around 12 months of age (n = 134; 14.1%).  This 

downward pattern (i.e., slower rates of developmental gain) was distinct, particularly in receptive 

language.  The motor function of infants in this class gradually diverged from that of their peers 

in the normative group over 24 months, although the estimated mean remained above -1 SD.  The 

fifth class was designated as “markedly delayed”, and was characterised by an overall delay from 

the early developmental stages (n = 38; 4.0%).  The estimated mean in motor domains deviated 

from the norm steeply within 10 months of age after birth, whereas the deviation became 

conspicuous in the language domains after 12 months.  Furthermore, the estimated means for the 

language domains dropped down below -2 SD at around 20 months of age.  In addition, an 

overview reveals that the degree of divergence across 5 classes appears to become larger over time, 

and it was most pronounced in the receptive language domain at 24 months of age. 

 

Multinomial logistic regression 

In Table 2, the reference was the “normal” class.  The distributions of all variables in this class 

were coincident with the norm figures in Japan, and in fact did not deviate from the grand value 

for the total sample. 

 

Male infants were more likely to be assigned to the delayed (odds ratio, OR: 2.5; 95% confidence 

interval, CI: 1.5-4.2; p < 0.001) and markedly delayed classes (OR: 3.8; 95%CI: 1.4-10.4; p = 0.01) 

than to the normal class.  Infants born before 37 weeks were more likely to be assigned to the 

delayed class (OR: 4.4; 95%CI: 1.6-12.6; p = 0.005) than to the normal class.  SGA infants were 

more likely to be allocated to the markedly delayed class (OR: 2.8; 95%CI: 1.0-7.5; p = 0.04) than 

to the normal class.  When the placental weight was small relative to offspring birthweight, the 

probability of assignment to the markedly delayed class was elevated (OR: 2.8; 95% CI: 1.2-6.4; p 

= 0.02) compared with the normal class.  With every 10-year increase in paternal age, the 

probability of assignment to the delayed class increased (OR: 1.9; 95% CI: 1.0-3.5; p = 0.04) 

compared with the normal class.  When the educational history of the mothers was less than 12 

years, the probability of assignment to the markedly delayed class was elevated (OR: 4.7; 95% CI: 

1.2-19.0; p = 0.03) compared with the normal class.  When the clustering within the recruited site 

was further allowed for in the analysis, the results remained almost identical (data not shown). 

 



 

 

Attrition 

We compared neurodevelopmental growth patterns, as assessed by MSEL, between a group of 

infants excluded from analysis and the infants included in the analysis.  To examine whether there 

is any association between missingness and growth patterns of neurodevelopment, we examined 

the interaction of group (excluded vs. included) x slope using a linear mixed model.  There were 

no differences in the MSEL T-scores between the infants excluded and included in the analysis, 

although some of background characteristics differed between them; in addition, loss to follow-up 

was kept minimal (see Supplement 1 and 5).  In multinomial logistic regression, attenuation due 

to missing data was almost negligible (4.9%).  In effect, the results remained identical when we 

applied multiple imputation. 

 

 

Discussion 

To our knowledge, this is the first longitudinal study to comprehensively examine the 

neurodevelopment of infants in the general population and to investigate risk factors that are 

associated with deviated growth trajectories in early life.  The existence of aberrant trajectories 

may be known empirically, but we directly identified them from a representative sample of infants.  

In addition, the measurements were prospective and fairly comprehensive, with each infant being 

directly evaluated at multiple time points (i.e., 7 times) and the same developmental scale was 

employed throughout. 

 

We discovered five neurodevelopmental classes consisting of three normal (81.9%) and two 

delayed (18.1%) trajectories.  Law et al.27 reported that the prevalence of speech and language 

delay is 5.0% and the prevalence of language delay is 16.0% at 2 years of age.  The prevalence of 

any developmental disability in children aged 3 to 17 years in the United States was reported 

15.0%.28  It is not possible to compare these reports with our results because the examined 

developmental domains and the targeted ages were different, but the proportion of the identified 

delayed classes was similar, albeit slightly higher, to the prevalence reported in these earlier studies. 

 

In the markedly delayed class, the deviation became marked in motor domains earlier, and 

somewhat later in language domains.  Interestingly, in their population-based cohort study in the 

Netherlands, van Batenburg-Eddes et al.29 reported that minor deviation from normal neuromotor 

development at 9-15 weeks of age is associated with receptive and expressive language delay at 

1.5 and 2.5 years of age.  The deviation of motor function may precede in early developmental 

stages and serve as a useful indicator for the subsequent emergence of widespread developmental 

delays, including delayed language. 

 

The “delayed” class, another type of infants with delayed development, in this study showed 

trajectories with the same convex curve and downward turn with ageing in all five domains.  



 

 

Disturbed developments as demonstrated in this delayed class as well as the markedly delayed class 

are reminiscent of developmental disorders such as ASD.  The diverse patterns of developmental 

trajectories observed in this study may pertain to variability of manifestation of developmental 

disorders such as ASD: e.g., distinctive patterns of onset.30  However, comparatively poor 

directions of development, especially in receptive language, highlight the need for further study of 

the subsequent developments in this population, in relation to identification of emerging patterns 

of developmental disorders. 

 

We investigated the risk factors that determine class assignment.  The finding of delayed 

neurodevelopment in males in early life is compatible with the notion that males are more 

vulnerable at early developmental stages.31  Recent studies have shown that the sexually 

dimorphic brain is formed by gender-varying mechanisms such as the hormone,32 gene expression33 

and immune systems,34 which in turn affect the development of the central nervous system (CNS) 

processes such as myelination, migration and synaptogenesis.35  The fact that developmental 

disorders such as ASD occur predominantly in males36 suggests that the infants in delayed classes 

identified in this study may share common mechanisms with children with neurodevelopmental 

disorders. 

 

We also found that SGA infants were more likely to be assigned to the markedly delayed class, and 

premature infants were more likely to be assigned to the delayed class.  It has been reported that 

intrauterine growth restriction (IUGR), which is closely related to SGA,37,38 causes CNS structural 

and functional abnormalities,39 and is associated with sensory, motor and intellectual 

impairments.40  The brain is especially susceptible to the sequelae of preterm birth, resulting in 

high rates of long-term neurological and health problems.41  However, two delayed classes 

identified in this study were predicted by different risk factors.  This result suggests that these 

classes may have different pathophysiological mechanisms in which deviated growth patterns are 

determined. 

 

Of particular interest is a finding of the relationship between small placenta relative to the 

birthweight and marked neurodevelopmental delay in this study.  It has been reported that 

placental weight was lower in SGA infants than in appropriate-for-gestational-age infants of the 

same birthweight.42  Our finding of an increased risk of the developmental delay associated with 

small placenta, independent of SGA, suggests that small placenta per se incurs neurodevelopment.  

Although the association between lower placental weight and schizotypal traits in adult women,43 

and placental size and mental health problems such as inattention-hyperactivity in boys44 has been 

demonstrated, this study is the first to our knowledge to demonstrate that small placenta may play 

an important role in predisposition to delayed neurodevelopment.  In parallel to emergence of 

studies showing the association between small placenta and neuropsychiatric disorders, research 

interest has been increasingly growing in understanding the mechanisms underlying the possible 



 

 

relationship between placental insufficiency in fetal life and abnormal brain development.45,46  

Our current finding further encourages this direction.  

 

Advanced paternal age, which has been related to developmental disabilities,47,48 was identified as 

a risk factor of the delayed class.  Kong et al.49 reported that a one-year increase of paternal age 

leads to approximately 2 de novo mutations of single-nucleotide polymorphisms.  A portion of 

infants with the delayed growth identified in this study could be interpreted as having a precursor 

of neurodevelopmental disorders linked with de novo mutations. 

 

A poor history of maternal education was identified as a risk factor only in the markedly delayed 

class.  However, inspection of the results in Table 3 reveals an increasing gradient in odds ratio 

(OR) from the high normal (0.8) to markedly delayed classes (4.7).  In fact, there was a linear 

trend for ORs across five classes (χ2 = 8.8, df = 1, p < 0.005).  This indicates that poor history of 

maternal education exerts a “one-class lowering effect" in terms of class assignment.  In other 

words, lower maternal education may generally affect the performance of offspring and lead to a 

lower level of growth trajectory. 

 

In the present analysis, there was a clear separation and divergence of growth patterns, even at an 

early stage, among different trajectory classes over the follow-up period. Given this fact, one may 

ask whether outcome groups created using only the data on developmental assessments obtained 

at the end of the observation period (i.e., 24 months of age) would show risk factor characteristics 

identical to those found in the present study.  To answer this question, we examined the 

relationships between antenatal risk factors and outcome groups as defined using the sum of scores 

of the MSEL 5 domains at 24 months of age (the group proportions were the same as in the classes 

identified in this study).  The results for male gender, paternal age, low placental-to-birthweight 

ratio, and maternal education were similar to those identified in the trajectory analysis (Table S4 

and Table 2).  While advanced maternal age was not identified as a predictor in the trajectory 

analysis, its seemingly protective effect emerged in the fourth cross-sectional outcome group.  

This result was unexpected, since it has been reported that advanced maternal age has a risk-

increasing effect,9 suggesting that this estimate based on the cross-sectional outcome assignments 

may be unreliable.  Further, low maternal education was a predictor for poor growth in the 

offspring of the fifth class (OR 4.7; 95% CI 1.2-19.0; p = 0.03), but the detrimental effect became 

more prominent (a 1.5-fold increase in OR) when the cross-sectional measurements at 24 months 

of age alone were used for determining outcomes: an OR of 7.0 (95% CI: 1.9-26.4; p = 0.004) was 

estimated for the fifth group.  Although low income was not identified as a predictor for any 

classes in the trajectory analysis, it was found to be a risk factor for the third and fourth cross-

sectional outcome groups.  In addition, there was a discrepancy in two other predictors; that is, 

preterm birth and small-for-gestational-age, both of which were found to serve as predictors of 

delayed growth in the latent class trajectory analysis, were not identified as risk factors in the cross-



 

 

sectional outcome groups.  Low income as well as poor maternal education can be regarded as 

social and environmental factors, whereas the latter two factors (preterm birth and small-for-

gestational-age) allude to biological involvement with disturbed growth that may exist immediately 

after birth or even before it.  It is reasonable to assume, therefore, that the cross-sectional outcome 

measurements at 24 months of life may represent environmental influences on growth that 

accumulate towards the end of the follow-up period, and that such environmental effects may, to 

some extent, mask impaired growth that originates in early life.  Latent class growth analysis is a 

powerful modality well-suited to our sample.  For example, although there was no linear trend for 

ORs associated with poor maternal education across the five cross-sectional outcome groups, a 

linear trend was evident in the trajectory analysis, which facilitates a more plausible interpretation.  

Taken together, the these results demonstrate that latent class growth analysis is a useful tool to 

provide optimum information by capturing unique traces extending throughout the observation 

period. 

 

Our findings showed five distinct types of neurodevelopmental trajectories in the first two years of 

life in the representative sample of the general population, and an apparent downward deviation in 

growth was seen in two of them.  Although the probabilities for assignment of the class 

membership were not perfect, it was satisfactorily high (0.82 to 0.93).  Furthermore, these two 

classes were predicted by different sets of risk factors.  The results suggest that these classes may 

have different pathophysiological mechanisms in which deviated growth patterns are determined.  

The strength of this study is that our sample comprised a representative sample of infants and thus 

the findings are generalisable.  This study has extensively examined the neurodevelopment of 

infants using the same developmental scale throughout the follow-up period.  Another strength is 

the low attrition rate; 91% of the initially enrolled mother-infant dyads, after eliminating “satogaeri 

bunben”, was retained in the analysis.  As one of the limitations of this study, it is uncertain 

whether infants with missing data were allocated to each of 5 classes with equal probabilities, 

although attrition was minimal.  As some background characteristics differed between infants 

between with and without missing data, there is a possibility that infants with deviant growth may 

have been excluded from the analysis.  Another limitation is that the trajectory patterns we 

examined were limited to the first two years of life, and it is possible that these patterns may change 

after further follow-ups.  In addition, there is little measurable variation and much difficulty in 

performing overt assessments in the very early months of life.  T-scores we employed tend not to 

be secured until infants can pass certain developmental milestones.  Hence, data obtained in the 

very early stages may not contribute greatly to the latent class assignments.  It will be necessary 

to follow-up with a study of subsequent trajectories, including outcome measures such as certain 

diagnostic entities, and to confirm the relationships between trajectory patterns and predictors 

found in this study. 

 

 



 

 

KEY MESSAGES 

 

 The best model in the latent class growth analysis identified five distinct neurodevelopmental 

trajectories. 

 The 18.1% of infants in either the delayed or markedly delayed classes made measurable 

neurodevelopmental gains more slowly than their peers in the normative classes. 

 The markedly delayed class characterised by overall delay from the early developmental stages 

was predicted by male sex, small for gestational age, low placenta-to-birthweight ratio, and 

low maternal education, and the delayed class characterised by a gradual downward deviation 

after first birthday was predicted by male sex, preterm birth, and advanced paternal age. 

 Small placenta relative to birthweight may play an important role in predisposition to delayed 

neurodevelopment. 

 

 

 

Funding 

This work was supported by the Strategic Research Programme for Brain Sciences (“Integrated 

research on neuropsychiatric disorders”) (NM and KJT) and Grant-in-Aid for Scientific Research 

from the Ministry of Education, Culture, Sports, Science & Technology in Japan (grant numbers 

26670540, 24659542: NT, 26380878: NM, and 25461758: KJT).  

 

 

Acknowledgements 

The authors would like to thank Dr. Tetsuo Kato of the Kato Maternity Clinic for promoting 

recruitment of potential participants. The authors are also grateful to Drs. N. Kanayama, H. Itoh, 

K. Sugihara, M. Sugimura, K. Takeuchi, K. Suzuki, Y. Murakami, Y. Koumura, Y. Miyabe, K. Hirai, 

Y. Nakamura, R. Koizumi, H. Murakami, Y. Kobayashi-Koumura, and K. Muramatsu-Kato, and 

all the attending obstetricians. The authors also thank Ms. Kiyomi Hinoki, and all the midwives 

and staff at the maternity clinic of the Hamamatsu University School of Medicine, for enrolling 

participants. 

The HBC study team includes Ms. Y. Kugizaki, C. Nakayasu, A. Okumura, Y. Suzuki, N. Kodera, 

E. Higashimoto, A. Nakamura, R. Takabayashi, T. Mori, H. Muraki, M. Narumiya, M. Honda, Y. 

Seno, E. Sato, C. Nishizawa, Mr. R. Nakahara, Drs. T. Harada, Y. Kameno, T. Wakuda, D. Kurita, 

K. Takebayashi, Y. Iwata, S. Takagai, T. Sugiyama, M. Tsujii, A.A. Pillai, T. Ismail, K. Matsumoto, 

K. Iwata, C. Shimmura, Y. Yoshihara, S. Yamamoto, M. Kawai, K. Nakamura, H. Matsuzaki, G. 

Sugihara, K. Hirano, Y. Endoh, and T. Suzuki. Finally, we thank all the participating families and 

infants. 

 

 

Conflict of interest: None declared. 

  



 

 

References 

1. Bolton PF, Golding J, Emond A, Steer CD. Autism spectrum disorder and autistic traits in the Avon 

Longitudinal Study of Parents and Children: precursors and early signs. J Am Acad Child Adolesc 

Psychiatry 2012;51:249-260. 

2. Lemcke S, Juul S, Parner ET, Lauritsen MB, Thorsen P. Early signs of autism in toddlers: a follow-

up study in the Danish National Birth Cohort. J Autism Dev Disord 2013;43:2366-2375. 

3. Brian AJ, Roncadin C, Duku E et al. Emerging cognitive profiles in high-risk infants with and 

without autism spectrum disorder. Res Autism Spectr Disord 2014;8:1557–1566. 

4. Mullen EM. Mullen Scales of Early Learning: AGS Edition. Minneapolis, MN: Pearson Assessments. 

1995 

5. Barbaro J, Dissanayake C. Developmental Profiles of Infants and Toddlers with Autism Spectrum 

Disorders Identified Prospectively in a Community-Based Setting. J Autism Dev Disord 

2012;42:1939–1948. 

6. Landa RJ, Gross AL, Stuart EA, Bauman M. Latent class analysis of early developmental trajectory 

in baby siblings of children with autism. J Child Psychol Psychiatry 2012;53:986–996. 

7. Savchev S, Sanz-Cortes M, Cruz-Martinez R et al. Neurodevelopmental outcome of full-term small-

for-gestational-age infants with normal placental function. Ultrasound Obstet Gynecol 2013;42:201-

206. 

8. Sutton PS, Darmstadt GL. Preterm birth and neurodevelopment: a review of outcomes and 

recommendations for early identification and cost-effective interventions. J Trop Pediatr 

2013;59:258–265. 

9. Idring S, Magnusson C, Lundberg M et al. Parental age and the risk of autism spectrum disorders: 

findings from a Swedish population-based cohort. Int. J Epidemiol 2014;43:107-115. 

10. Hanscombe KB, Trzaskowski M, Haworth CMA, Davis OSP, Dale PS, Plomin R. Socioeconomic 

status (SES) and children's intelligence (IQ): in a UK-representative sample SES moderates the 

environmental, not genetic, effect on IQ. PLoS One 2012;7:e30320. 

11. Burns TG, King TZ, Spencer KS. Mullen Scales of Early Learning: The utility in assessing children 

diagnosed with autism spectrum disorders, cerebral palsy, and epilepsy. Appl Neuropsychol Child 

2013;2:33-42. 

12. Tsuchiya KJ, Matsumoto K, Suda S et al. Searching for very early precursors of autism spectrum 

disorders: the Hamamatsu Birth Cohort for Mothers and Children (HBC). J Dev Orig Health Dis 

2010;1:158–173. 

13. Takagai S, Tsuchiya KJ, Itoh H et al. Cohort profile: Hamamatsu Birth Cohort for Mothers and 

Children (HBC Study). Int. J Epidemiol 2015; doi: 10.1093/ije/dyv290 

14. MHLW. Ministry of Health, Labour and Welfare. Vital , Health and Social Statistics Division, 

Statistics and Information Department, Minister’s Secretariat, Ministry of Health , Labour and 

Welfare; 2013, Retrieved 14 February 2015 from http://www.mhlw.go.jp/english/database/db-

hw/dl/81-1a2en.pdf 

15. Yoshida K, Yamashita H, Ueda M, Tashiro N. Postnatal depression in Japanese mothers and the 



 

 

reconsideration of ‘Satogaeri bunben’. Pediatr Int 2001;43:189–193. 

16. Muthén B, Muthén L. Integrating person-centered and variable-centered analysis: Growth mixture 

modeling with latent trajectory classes. Alcohol Clin Exp Res 2000;24:882–891. 

17. Andruff H, Carraro N, Thompson A, Gaudreau P, Louvet B. Latent class growth modelling: a 

tutorial. Tutor Quant Methods Psychol 2009;5:11–24. 

18. Asparouhov T, Muthén B. Multivariate statistical modeling with survey data. Proceedings of the 

Federal Committee on Statistical Methodology (FCSM) Research Conference. 2005 

19. Masyn KE. Latent Class Analysis and Finite Mixture Modeling. In: Nathan P, Little T, editors. The 

Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis. New York, NY: Oxford 

University Press; 2013. p. 551–610.  

20. Lo Y, Mendell NR, Rubin DB. Testing the number of components in a normal mixture. Biometrika 

2001;88:767–778. 

21. Nylund KL, Asparouhov T, Muthén B. Deciding on the number of classes in latent class analysis and 

growth mixture modeling: A Monte Carlo simulation study. Struct Equ Modeling 2007;14:535–569. 

22. Jung T, Wickrama KAS. An introduction to Latent Class Growth Analysis and Growth Mixture 

Modeling. Soc Pers Psychol Compass 2008;2:302–317. 

23. Vermunt JK. Latent class modeling with covariates: Two improved three-step approaches. Polit Anal, 

2010;18:450–469. 

24. Asparouhov T, Muthén B. Auxiliary variables in mixture modeling: Three-step approaches using 

Mplus. Struct Equ Modeling 2014:21;329-341. 

25. Ogawa Y, Iwamura T, Kuriya N et al. Birth size standards by gestational age for japanese neonates. 

Acta Neonat Jpn 1998;34:624-632. 

26. Almog B, Shehata F, Aljabri S, Levin I, Shalom-Paz E, Shrim A. Placenta weight percentile curves 

for singleton and twins deliveries. Placenta 2011;32:58-62. 

27. Law J, Boyle J, Harris F, Harkness A Nye C. Screening for Speech and Language Delay: A 

Systematic Review of the Literature. Health Technol Assess 1998;2:1–184. 

28. Boyle CA, Boulet S, Schieve LA et al. Trends in the Prevalence of Developmental Disabilities in US 

Children, 1997-2008. Pediatrics 2011;127:2010–2989. 

29. van Batenburg-Eddes T, Henrichs J, Schenk JJ et al. Early infant neuromotor assessment is associated 

with language and nonverbal cognitive function in toddlers: the Generation R Study. J Dev Behav 

Pediatr 2013;34:326–334. 

30. Landa RJ, Gross AL, Stuart EA, Faherty A. Developmental trajectories in children with and without 

autism spectrum disorders: the first 3 years. Child Dev 2013;84:429–442. 

31. Kraemer S. The fragile male. BMJ 2000;321:1609–1612. 

32. Collaer ML, Hines M. Human behavioral sex differences: a role for gonadal hormones during early 

development? Psychol Bull 1995;118:55–107. 

33. Kang HJ, Kawasawa YI, Cheng F et al. Spatio-temporal transcriptome of the human brain. Nature 

2011;478;483–489. 

34. Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain 



 

 

and behavior. J Neurosci 2013;33:2761–2772. 

35. Bale TL, Baram TZ, Brown AS et al. Early life programming and neurodevelopmental disorders. Bio 

Psychiatry 2010;68:314–319. 

36. Ruigrok AN, Salimi-Khorshidi G, Lai MC et al. A meta-analysis of sex differences in human brain 

structure. Neurosci Biobehav Rev 2014;39:34–50. 

37. Walker SP, Wachs TD, Grantham-McGregor S et al. Inequality in early childhood: risk and 

protective factors for early child development. Lancet 2011;378:1325–1338. 

38. Suda S, Takei N. Disturbed growth in early life and later neurocognitive development related 

especially to psychiatric disorders. In: Preedy VR, Watson RR, Martin CR, editors. Handbook of 

Behavior, Diet and Nutrition. London: Springer; 2011. p. 1541–1554. 

39. Mallard C, Loeliger M, Copolov D, Rees S. Reduced number of neurons in the hippocampus and the 

cerebellum in the postnatal guinea-pig following intrauterine growth-restriction. Neuroscience 

2000;100:327–333. 

40. Mackay DF, Smith GC, Dobbie R, Cooper SA, Pell JP. Obstetric factors and different causes of 

special educational need: retrospective cohort study of 407,503 schoolchildren. Int J Gynaecol Obstet 

2013;120:297–308. 

41. Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to 

adulthood. Lancet 2008;371:261–269. 

42. Heinonen S, Taipale P, Saarikoski S. Weights of placentae from small-for-gestational age infants 

revisited. Placenta 2001;22:399–404. 

43. Lahti J, Raïkkönen K, Sovio U et al. Early-life origins of schizotypal traits in adulthood. Br J 

Psychiatry 2009;195:132-137. 

44. Khalife N, Glover V, Hartikainen AL et al. Placental size is associated with mental health in children 

and adolescents. PLoS One 2012;7:e40534. 

45. Girardi G, Fraser J, Lennen R, Vontell R, Jansen M3, Hutchison G. Imaging of activated complement 

using ultrasmall superparamagnetic iron oxide particles (USPIO) – conjugated vectors: an in vivo in 

utero non-invasive method to predict placental insufficiency and abnormal fetal brain development. 

Mol Psychiatry 2014;110:1–10. 

46. Zeltser LM, Leibel RL. Roles of the placenta in fetal brain development. Proc Natl Acad Sci USA 

2011;108:15667–15668. 

47. D'Onofrio BM, Rickert ME, Frans E et al. Paternal age at childbearing and offspring psychiatric and 

academic morbidity. JAMA Psychiatry 2014;71:432–438. 

48. Idring S, Magnusson C, Lundberg M et al. Parental age and the risk of autism spectrum disorders—

findings from a Swedish population-based cohort. Int J Epidemiol 2014;43:107–15. 

49. Kong A, Frigge ML, Masson G et al. Rate of de novo mutations and the importance of father’s age to 

disease risk. Nature 2012;488:471–475. 

  



  

Figure 1. Flow chart of participants who met inclusion/exclusion criteria 



Table 1. Characteristics of participating infants and their parents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean (SD) 

Birth Weight [g] 2951.0 (429.0) 

Gestational Age at birth [weeks] 39.0 (1.5) 

Placental weight [g] 561.6 (131.9) 

Paternal Age at birth [yrs] 33.0 (6.0) 

Maternal Age at birth [yrs]  31.2 (5.0) 

Parental income at 2nd trimester of the index 

pregnancy [million JPY] 
6.1 (3.2) 

n (%) 

Gender 

    Male 470 (49.4) 

    Female 482 (50.6) 

Small for gestational age 

   <10th percentile 853 (89.6) 

   10th - 100th percentile 99 (10.4) 

Prematurity 

   <37 weeks 56 (5.9) 

   37weeks and longer 896 (94.1) 

Placental-to-birthweight ratio (twin excluded) 

   <10th percentile 169 (18.7) 

   10th - 100th percentile 736 (81.3) 

Paternal education 

   <12 years  70 (7.4) 

   12 years and longer  882 (92.6) 

Maternal education 

   <12 years  41 (4.3) 

   12 years and longer  911 (95.7) 



Figure 2. Parallel process latent class growth analysis model. Here we spread only the Gross Motor domain, but this model is specified for 

all 5 domains. 



Figure 3. Five trajectory classes of MSEL T score from age 1 to 24 months. 

The estimated neurodevelopmental trajectories of each class in (a) gross motor, (b) fine motor, (c) visual reception, (d) receptive language, and 

(e) expressive language domain. “T-scores = 50” indicates normative development (mean = 50, SD = 10), and a downward pattern reflects 

slower rates of developmental gain relative to peers in the normative group. 



  

Table 2. Risk factors for each trajectory class: Odds ratio and 95% confidence intervals in the analysis using multinomial logistic regression. 

Risk factors 

Latent class 

High Normal Normal Low Normal Delayed Markedly Delayed 

(n = 110, 11.5%) (n = 468, 49.2%) (n = 202, 21.2%) (n = 134, 14.1%) (n = 38, 4.0%) 

OR (95% CI) (Base Outcome) OR (95% CI) OR (95% CI) OR (95% CI) 

Male gender 0.6 (0.3-1.0) - 1.0 (0.7-1.5) 2.5 (1.5-4.2)**** 3.8 (1.4-10.4)** 

Premature birth before 37 weeks 2.7 (0.8-8.6) - 1.7 (0.5-5.0) 4.4 (1.6-12.6)*** 0.6 (0.0-13.2) 

Small for gestational age 0.6 (0.2-1.8) - 1.5 (0.8-2.8) 0.8 (0.3-1.9) 2.8 (1.0-7.5)* 

Low placental-to-birthweight ratio 

(<10th percentile) 
0.9 (0.4-1.9) - 1.1 (0.7-1.9) 1.0 (0.5-1.9) 2.8 (1.2-6.4)* 

10-year increase of paternal age at birth 1.4 (0.7-3.0) - 1.6 (1.0-2.7) 1.9 (1.0-3.5)* 1.6 (0.5-5.0) 

10-year increase of maternal age at birth 0.8 (0.3-2.0) - 1.0 (0.5-1.8) 0.7 (0.3-1.4) 0.7 (0.2-3.1) 

Lower paternal education (<12yrs) 0.7 (0.2-2.2)  0.9 (0.4-2.1) 1.0 (0.4-2.5) 1.6 (0.5-5.1) 

Lower maternal education (<12yrs) 0.8 (0.2-3.9) - 1.6 (0.5-5.0) 2.1 (0.7-6.6) 4.7 (1.2-19.0)* 

1-million-JPY decrease of parental 

income 
1.1 (1.0-1.1) - 1.0 (1.0-1.1) 1.1 (1.0-1.2) 1.1 (0.9-1.2) 

OR: odds ratio; CI: confidence interval 

*p<0.05, **p<0.01, ***p<0.005, ****p<0.001 



Online supplementary information for “Identification of neurodevelopmental trajectories in 

infancy and of risk factors affecting deviant development: a longitudinal birth cohort study” 

 

Supplement 1: missingness 

We compared neurodevelopmental growth patterns, as assessed by MSEL, between a group of 

infants excluded from analysis (excluded group) and the remaining infants included in the analysis 

(included group) (outcome was MSEL T-score).  To examine whether there is any association 

between missingness and growth patterns of neurodevelopment, we examined the interaction of 

group (excluded vs. included) x slope using a linear mixed model.  Because there was no 

significant interaction or intercepts in any of the MSEL five domains (Table S1), we can conclude 

that missingness is not related to growth patterns as assessed by MSEL.  Because we were unable 

to draw the slope in the case of infants who underwent measurement on one occasion only, we 

compared the mean scores of MSEL using one-way ANOVA.  In the excluded group, almost all 

of the infants who participated in measurement only once at 1 month of age were found to be births 

associated with satogaeri bunben.  We compared the mean scores of MSEL at 1 month of age 

between the satogaeri bunben group and the non-satogaeri bunben group (data not shown).  

Because there was no significant difference in the mean scores between these groups, infants who 

were born as in the context of satogaeri bunben were considered not to be a specific, selected 

subsample in terms of the neurodevelopment as ascertained by MSEL.  We further examined 

whether, in the included infants, there were any differences in mean scores on each subscale of 

MSEL between the group of infants who underwent only 3 measurements and the group of infants 

who underwent all measurements at all 7 time points.  Infants who infrequently attended 

assessment sessions in our cohort may have had a unique profile that is related to 

neurodevelopmental problems.  However, we found no significant interaction of group x slope or 

intercept in any of the five domains (data not shown).  These results suggest that missingness is 

deemed to be random with respect to growth patterns as measured by MSEL.  Therefore, the 

assumption of “missing at random” (MAR) was not violated when the full information maximum 

likelihood algorithm was employed in the procedure of latent class growth analysis. 



 

 

Table S1. Comparison between the group included in the analysis and the group excluded from 

the analysis by linear mixed model for each domain of Mullen scales. 

Domain  Coefficient SE P value 95% CI 

Expressive 

Language 

age -0.25  0.13  0.06  -0.50 to 0.01  

intercept (group) 0.24  0.84  0.77  -1.41 to 1.89  

age x group 0.23  0.13  0.08  -0.02 to 0.49  

Fine Motor 

age -0.21  0.12  0.07  -0.44 to 0.02  

intercept (group) -0.56  0.85  0.51  -2.23 to 1.11  

age x group 0.21  0.12  0.08  -0.02 to 0.44  

Gross Motor 

age -0.19  0.12  0.11  -0.42 to 0.04  

intercept (group) 0.32  0.85  0.71  -1.35 to 1.98  

age x group 0.16  0.12  0.16  -0.07 to 0.40  

Receptive 

Language 

age -0.10  0.14  0.47  -0.37 to 0.17  

intercept (group) 0.72  1.04  0.49  -1.32 to 2.77  

age x group 0.10  0.14  0.49  -0.18 to 0.37  

Visual Reception 

age -0.08  0.12  0.51  -0.32 to 0.16  

intercept (group) 0.16  0.96  0.87  -1.72 to 2.03  

age x group 0.12  0.12  0.32  -0.12 to 0.36  

SE: standard error; CI: confidence interval



 

 

Supplement 2: development of the Japanese version of T-score norms 

To make up T-score norms, we set the standardization sample from our HBC sample.  The 

following were excluded from the procedures: infants with known congenital diseases (Down 

syndrome; n = 2); pre-term births, defined as birth occurring before 37 weeks (n = 67); twins (n = 

34); and parents whose first language was not Japanese (n = 9).  Thus, the total size of the 

standardization sample used for this purpose was 1052.  Children included in this sample 

underwent the Mullen scale assessment on more than one of the seven time points: 1, 4, 6, 10, 14, 

18, and 24 months of age. 

 

The raw scores obtained by the standardization sample were divided into the following seven age 

groups: 0.50–1.49, 3.50–4.49, 5.50–6.49, 9.50–10.49, 13.50–14.49, 17.50–18.49, and 23.50–24.49 

months of age.  We repeated re-sampling 5,000 times using the bootstrap method and obtained 

means and SDs of each age group.  Then, using the age mid-points of these groups, cubic spline 

interpolation (1.0–24.0 months of age) or linear extrapolation (0.1–0.9 and 24.1–30.0 months of 

age) was performed to produce the final set of norm tables for the five Mullen scales.  Norms are 

provided at 0.1-month intervals for ages from 0.1 to 30.0 months.  As an example, Table S2 shows 

a part of the normalized T-scores for the expressive language domain in a Japanese representative 

population.  Complete T-score tables covering 5 domains are available on request.  The data 

were computed by converting the raw scores obtained for each child into T-scores from the norm 

tables.  The T-score means for each age group on each Mullen scale are close to 50, with SDs 

close to 10. Good achievement of normalization in T-scores was confirmed (the data not shown). 



 

 

Table S2. A part of norm table of Expressive Language T-scores corresponding to scale raw 

scores, by age 

The Japanese version of T-score tables covering 5 domains is available from the corresponding 

author. 

Raw score/ 

Month 

0 1 2 3 4 5 ….. 

….. ….. ….. ….. ….. ….. ….. … 

0.6 17.161076 36.559490 55.957919 75.356322 94.754751 114.15315  

0.7 17.401547 36.363060 55.324585 74.286086 93.247611 112.20911  

0.8 17.642018 36.166630 54.691249 73.215850 91.740470 110.26507  

0.9 17.882488 35.970200 54.057915 72.145615 90.233330 108.32104 … 

1.0 18.122959 35.773769 53.424580 71.075378 88.726189 106.37700 … 

1.1 18.363430 35.577339 52.791245 70.005142 87.219048 104.43296 … 

1.2 18.602648 35.380386 52.158127 68.935860 85.713600 102.49134 … 

1.3 18.839357 35.182404 51.525448 67.868484 84.211533 100.55458 … 

1.4 19.072308 34.982864 50.893425 66.803970 82.714531 98.625092 … 

1.5 19.300243 34.781258 50.262272 65.743279 81.224297 96.705307 … 

1.6 19.521912 34.577061 49.632210 64.687347 79.742500 94.797653 … 

1.7 19.736061 34.369759 49.003456 63.637146 78.270851 92.904549 … 

1.8 19.941435 34.158833 48.376232 62.593624 76.811028 91.028427 … 

1.9 20.136782 33.943768 47.750751 61.557732 75.364723 89.171707 … 

2.0 20.320848 33.724045 47.127235 60.530426 73.933624 87.336823 … 

2.1 20.492380 33.499142 46.505901 59.512661 72.519424 85.526192 … 

2.2 20.650124 33.268547 45.886967 58.505386 71.123817 83.742241 … 

2.3 20.792828 33.031742 45.270653 57.509563 69.748482 81.987396 … 

2.4 20.919235 32.788204 44.657173 56.526138 68.395111 80.264084 … 

….. ….. ….. ….. ….. ….. ….. … 



 

 

Supplement 3: Fit indices in the latent class growth analysis 

 

Table S3. Fit indices, classification qualities, and class proportions in the latent class growth 

analysis 

Number of 

classes 
1 class 2 classes 3 classes 4 classes 5 classes 6 classes 7 classes 

Number of free 

parameters  
50 66 82 98 114 130 146 

BIC 217718.3 215239.7 214678.6 214258.9 213962.8 213805.9 213722.0 

CAIC 217768.3 215305.7 214760.6 214356.9 214076.8 213935.9 213868.0 

AWE 218211.2 215890.4 215487.0 215225.1 215086.7 215087.6 215161.3 

Adjusted 

LMR-LRT p-

value 

- <0.001 0.588 0.257 0.264 0.214 0.725 

BLRT  

p-value 
- <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Entropy - 0.846 0.815 0.785 0.835 0.805 0.805 

Class 

proportions 

(%) 

100.0 62.6, 

37.4 

49.8, 

36.4, 

13.8 

39.5, 

30.9, 

19.4, 

10.2 

49.2, 

21.2, 

14.1, 

11.5, 

4.0 

34.9, 

22.3, 

20.2, 

12.8, 

8.5, 

1.4 

36.6, 

19.4, 

13.9, 

12.1, 

10.0, 

6.7, 

1.4 

BIC: Bayesian information criterion 

𝐵𝐼𝐶 = −2𝐿𝐿 + 𝑑log(𝑛), 

where LL is the maximized log likelihood function value to which the EM algorithm converges 

during the model estimation; 

d is the number of parameters estimated in the model;  

n is the number of subjects or cases, in the analysis sample. 

CAIC: Consistent Akaike information criteria 



 

 

𝐶𝐴𝐼𝐶 = −2𝐿𝐿 + 𝑑[log(𝑛) + 1] 

AWE: Approximate weight of evidence criterion 

𝐴𝑊𝐸 = −2𝐿𝐿 + 2𝑑[log(𝑛) + 1.5] 

 

 

Supplement 4: Risk factors for the outcome classes measured at 24 months of age 

 

Table S4. Risk factors for the outcome groups based on an MSEL total score at only 24 months 

of age: Odds ratio and 95% confidence intervals in the analysis of multinomial logistic 

regression. 

24 outcome groups 1. high score 

11.5% 

2. average 

score 

49.2% 

3. average-to 

-low score 

21.2% 

4. low score 

14.1% 

5. lowest score 

4.0% 

 OR (95%CI) Reference OR (95%CI) OR (95%CI) OR (95%CI) 

Male gender 0.8 (0.5-1.2)  1.1 (0.8-1.6) 2.2 (1.4-3.4)*** 3.3 (1.3-8.4)* 

Preterm birth before 

37 weeks 
2.5 (1.0-6.2)  1.3 (0.5-3.1) 1.9 (0.7-5.0) 0.7 (0.1-4.1) 

Small for gestational 

age 
0.3 (0.1-1.1)  1.2 (0.7-2.3) 0.8 (0.4-1.8) 2.6 (1.0-6.9) 

Low placental- to-

birthweight ratio 

(<10th percentile) 

0.9 (0.5-1.7)  1.1 (0.7-1.8) 1.2 (0.7-2.2) 2.4 (1.0-5.7)* 

10-year increase of 

paternal age at birth 
1.5 (0.8-2.9)  1.1 (0.7-1.8) 1.9 (1.1-3.3)* 0.9 (0.3-2.7) 

10-year increase of 

maternal age at birth 
0.6 (0.3-1.2)  1.1 (0.6-1.8) 0.5 (0.2-1.0)* 1.9 (0.6-6.1) 

Lower paternal 

education (<12yrs) 
1.5 (0.7-3.5)  1.2 (0.6-2.6) 1.2 (0.5-2.8) 1.7 (0.5-6.6) 

Lower maternal 

education (<12yrs) 
0.7 (0.2-2.6)  1.5 (0.6-3.8) 0.6 (0.2-2.3) 7.0 (1.9-26.4)*** 

1-million-JPY 

decrease of parental 

income  

1.0 (1.0-1.1)  1.1 (1.0-1.2)* 1.1 (1.0-1.2)** 1.0 (0.9-1.1) 

OR: odds ratio; CI: confidence interval 
*p<0.05, **p<0.01, ***p<0.005, ****p<0.001 

 



 

 

Supplement 5: low attrition rates for MSEL measures 

In the analysis of subsequent developments after birth, as assessed with the MSEL, for each of 7 

time-points (1 month to 24 months), all of the measures achieved high rates of data collection, 

ranging from 81.9 to 95.7% with the exception of only two measurements on one occasion (47% 

for receptive language and 60% for visual reception, both at one month of age).  Taking into 

account the nature of difficulties in maintaining high rates of follow-up in the longitudinal studies,1 

these figures can be viewed as very satisfactory.  In the analyses, all data available were employed, 

with the use of full information maximum likelihood methods. 
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