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緒論 

膀胱癌は世界中で年間およそ 380, 000 人が発症し, 150, 000 人もの命を奪っている 1. 初

発性膀胱癌の 55-60%は表在性癌として発症するが, 経尿道的膀胱腫瘍切除術(TUR-BT)の

予後は比較的良好で治療満足度も高い. 一方で浸潤性膀胱癌患者の 5 年生存率は 60%に留

まっており 2, 3, 遠隔転移を呈する症例に至っては生存期間中央値(MST)が 15カ月と非常に

予後不良である 4. 筋層浸潤を呈した浸潤性膀胱癌治療の第一選択は膀胱全摘出術であるが, 

患者の著しいQOL低下を招くという側面も併せ持っている 5. この状況はここ 20年近く変

わっておらず, 有効な治療薬の登場が切望されてきた.  

膀胱癌は表在性乳頭癌 (pTa)と浸潤性癌 (pT1<)とでドライバー変異が異なるという

Two-pathway modelが提唱されており, 以前からその多様性が指摘されてきた 6. 遺伝子変

異数がメラノーマ, 肺癌に次いで 3番目に多い癌種でもあり, 多様性のみならず腫瘍内の不

均一性も高いと推測されている 7. こうした背景から病態の細分化が進み, Sjödahl らは臨床

検体でのトランスクリプトーム解析に基づき膀胱癌を Urobasal A (UroA), Urobasal B (UroB), 

Genomicaly Unstable (GU), Squamous Cell Caracimoma-Like (SCCL) , infiltrated の 5 種類のサブ

クラスに分類している 6, 7
. このうち UroB と SCCL は共に予後不良であるにも関わらず, 異

なる遺伝子発現プロファイルを示しており, 膀胱癌は多様性の高い癌であることが解明さ

れてきた. このような異なるサブクラスの腫瘍が同時多発的に発生するという特徴も, 膀

胱癌治療の難しさを助長している. 分子標的治療薬が隆盛する昨今において, いまだに膀

胱癌に対しては細胞障害性抗腫瘍薬の併用である M-VAC (メトトレキセート・ビンブラス

チン・ドキソルビシン・シスプラチン)療法あるいは GC (ゲムシタビン・シスプラチン)療

法が使われ続けている. 有効な分子標的治療薬の不在も, 膀胱癌の病態が単一分子によっ

て規定されていないことを示唆しており, 同癌に対する創薬標的分子には多様な制御遺伝

子を有している標的が適切だと考えられる.  

こうした特徴を考慮し, 私は膀胱癌治療標的として non-coding RNA の一種である

microRNA (miRNA)に注目した. miRNA は 20-25bp の non-coding RNA であり, 標的

mRNA の翻訳阻害あるいは分解によって遺伝子発現を制御する. 1つの miRNA は平均 200

個もの標的遺伝子を有しており 8, 9, 逆に哺乳類の遺伝子の約 60%は miRNA による制御を

受けていると試算されている 10, 11. つまり癌で発現上昇している oncomiR を標的とするこ

とで, 多様な癌関連シグナル伝達経路を制御出来る可能性がある. 一方で miRNA は標的

mRNA の poly-A 鎖の脱アデニル化を介した不安定化, あるいは mRNA 当たりのリボソー

ム量の低下によって標的 mRNA の翻訳阻害を行うため, それぞれの標的遺伝子に対する抑

制作用は極めて小さい 13. またmiRNAノックアウトスタディでもその大部分が表現型を示

さず, 単独の miRNA の作用自体もそこまで強いものではない. これは miRNA 欠損による

標的遺伝子の発現変動が多くとも Fold-change2 倍以下であり, この程度の発現変動は生物

本来の恒常性維持機構で補正できるためだと考えられている 14,15. こうした知見から, 
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miRNA は多様な遺伝子の発現を微調整する"ファインチューナー"として理解されている 13. 

以上の背景を踏まえると, 治療標的として強い薬効を示すためには複数の疾患特異的

miRNA を同時に標的とする戦略が有効であると考えられる. 事実, 複数の miRNA から構

成されるmiRNA-cluster16やmiRNA-family17において機能的重複が報告されており, こう

した miRNA 群を同時に阻害することで単独阻害時よりも強力に癌の進展を制御できる可

能性が示唆されている 18–20. しかしながら膀胱癌においては oncomiR-familyの存在は確認

されておらず, この治療戦略の実現は事実上不可能であった.  

これまでに当研究室では大阪大学医学部泌尿器科から供与して頂いた腎盂尿管癌臨床検

体を用いて, miRNA microarray 解析を行い, 浸潤性腎盂尿管癌で高発現する 4 種類の

miRNA として miR-130b, miR-301a, miR-301b, miR-210 を同定している (Fig.1). 

腎盂・尿管は組織学的には膀胱と同一の移行上皮に分類されることから, 膀胱癌において

もこれらのmiRNAが発現上昇する可能性が考えられた. そこで第 1章では膀胱癌臨床検体

を用いてこれら 4種類のmiRNAの発現量を定量した結果, 確かに膀胱癌部での発現上昇が

認められた. miR-210 は膀胱癌における機能解析が既に報告されていたため 21, 新規性の観

点からmiR-130 familyに焦点を当てた. Table.1に示すようにmiR-130 family は oncomiR

としての報告が大多数を占め, 治療標的として適切な miRNA 群だと考えられるが, 膀胱癌

における機能は全く分かっていない. 癌種に依存して機能が異なることを考慮すると, 標

的とする癌における機能解析は必須である. そこで第 2 章では同定した miR-130 family が

oncomiR-family として膀胱癌進展に寄与しているかを, 細胞株を用いた in vitro 解析によ

り評価した. 続けて第3章では標的遺伝子の探索を行い, miR-130 familyの膀胱癌での機能

の本質に迫った. 最後に第 4章では同定したmiR-130 familyに対する seed-targeting LNA

をデザインし, 治療薬としての有効性を in vitro と in vivo の両面から検討した. 一連の解

析を通して興味深い知見が得られたので, ここに博士論文としてまとめた.   

 

 

 

 

Figure. 1 miR-130b,  

miR-301a,  miR-301b and 

miR-210 were significantly 

upregulated in invasive 

renal pelvis and ureter 

carcinoma specimens. The 

expression of the miR-210 

and miR-130 family was 

validated by RT-PCR. 

Normal n = 17,  Superficial 

n = 5,  Invasive n = 11. 

Data are mean ± S.D. 

**p<0.01, ***p<0.001.  
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Table.1 Identified target genes of miR-130 family among various cancer types. All target genes were validated by dual-lucifersae 
reporter assay using reporter vector containing 3'-UTR of each genes. 

  

has-miR-130b-3p has-miR-301a-3p 

Onco/Supp Target Tumor type Reference Onco/Supp Target Tumor type Reference 

Suppressor IRF1 肝臓癌 Lin YH et al 22 OncomiR RUNX3 胃癌 Wang M et al 37 

Suppressor ZEB1 子宮内膜癌 Dong P et al 23 OncomiR SMAD4 咽頭扁平上皮癌 Lu Y et al 38 

Suppressor STAT3 膵臓癌 Zhao G et al 24 OncomiR GAX 肝臓癌 Zhou P et al 39 

Suppressor MMP-2 前立腺癌 Chen Q et al 25 OncomiR SMAD4 結腸直腸癌 Lu Y et al 38 

Suppressor CSF-1 卵巣癌 Yang C et al 26 OncomiR AMPKα1 骨肉腫 Zhang Y et al 40 

OncomiR PPARɤ 肝臓癌 Tu K et al 27 OncomiR SMAD4 膵癌 Xia X et al 41 

OncomiR TP53INP1 肝臓癌 Ma S et al 28 OncomiR NKRF 膵臓腺癌 Lu Z et al 42 

OncomiR PPARɤ 結腸直腸癌 Colangelo T et al 29 OncomiR BIM 膵臓腺癌 Chen Z et al 43 

OncomiR DICER1 子宮内膜癌 Li BL et al 30 OncomiR NDRG2 前立腺癌 Guo YJ et al 44 

OncomiR PTEN 食道扁平上皮癌 Yu T et al 31 OncomiR SOCS6 大腸癌 Fang Y et al 45 

OncomiR CCNG2 乳癌 (miR-130b-5p) Chang YY et al 32 OncomiR TGFBR2 大腸癌 Zhang W et al 46 

OncomiR TGFBR2 非小細胞肺癌 Mitra R et al 33 OncomiR TIMP2 多発性骨髄腫 Liang B et al 47 

OncomiR TP53INP1 成人 T 細胞白血病 Yeung ML et al 34 OncomiR PTEN 乳癌 Ma F et al 48 

OncomiR PPARɤ 神経膠腫 Sheng X et al 35 has-miR-301b-3p 

OncomiR CYLD 胃癌 Sun B et al 36 OncomiR NDRG2 前立腺癌 Guo YJ et al 44 
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本論 

第1章 膀胱癌において高発現する miR-130 family の同定 

 

第 1 節 実験材料・実験方法 

 

  治療標的探索に際し, 膀胱癌において高発現しているmiRNAを同定するため, 大阪大学

医学部泌尿器科から供与して頂いた膀胱癌臨床検体をサンプルとしたRT-PCRを行った. 

  

膀胱癌臨床検体 

大阪大学医学部泌尿器科より供与して頂いた臨床検体を用いた. 臨床情報は以下の通り.  

 

 

 

 

 

 

 

 

 

組織ホモジナイズ 

・QIAzol Lysis Reagent (QIAGEN) 

 

RNA 抽出, cDNA 合成 

・miRNeasy mini kit (QIAGEN) 

・Mir-XTM miRNA  First–Strand Synthesis and qRT-PCR SYBR Kits (TaKaRa) 

 

RT-PCR 

・Polymerase premix 

 SsoAdvanced SYBR Green Supermix (BIO-RAD) 

・Primers (Clontech) 

 mRQ 3’ primer  

 U6 Reverse primer  

 U6 Forward primer  

 

 

Table 2. Bladder cancer clinical samples used for RT-PCR analysis and immunohistochemistry 
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・Primers (Life Technologies) 

Target Sequence 

 hsa-miR-130b-3p 5'-CAGTGCAATGATGAAAGGGCAT-3' 

 hsa-miR-301a-3p 5'-CAGTGCAATAGTATTGTCAAAGC-3' 

 hsa-miR-301b-3p 5'-CAGTGCAATGATATTGTCAAAGC-3' 

 hsa-miR-210-3p 5'-CTGTGCGTGTGACAGCGGCTGA-3' 

・PCR 装置 

  CFX96 Real-Time System (BIO-RAD) 

 

臨床検体からの miRNA 抽出 

RNA 抽出に先立ち, 凍結組織内の RNA 安定化の目的で, 凍結組織を RNA later ICE 

Frozen Tissue Transition Solution (Ambion) 中で-20℃/16 時間以上保存した. その後, 組

織片を QIAZOL (QIAGEN) 700 L と破砕用 φ5.5mm ステンレスビーズ１個が入ったサン

プルチューブに入れ, Micro smash MS-100 (TOMY)を用いて破砕し, ホモジネートを得た. 

破砕条件としては, 4800 rpm/30 秒間を 2 回繰り返し, 途中 1 分間の氷上放置とした. 組織

ホモジネートにクロロホルム 140 L を添加して混和後, 12,000 g/15 分間遠心し, 得られた

水層を RNA 抽出に用いた. 全自動核酸抽出装置 QIA Qube (QIAGEN)を使用し, 200 

nucleotide (nt)以上の RNAをRNeasy MinElute Cleanup Kit (QIAGEN)で, 200 nt以下の

RNA は miRNeasy Mini Kit (QIAGEN)を用いて抽出精製し, RNA の濃度測定には極微量

分光光度計 Nano Drop を使用した.  

 

RT-PCR for miRNA 

 抽出したtotal RNA 500 ng を用いて, Mir-XTM miRNA First-Strand Synthesis and 

qRT-PCR SYBR Kits にてポリアデニル化とcDNA 合成を行い, MilliQ 水にて10 倍希釈

してからRT-PCR に用いた. あらかじめ10 µM に希釈したprimer および SsoAdvanced 

SYBR Green Supermix (BIO-RAD) をMilliQ 水にて希釈したものにcDNA を加えて20 

µL とし, CFX96 Real-Time System (BIO-RAD) にてRT-PCR を行った. PCR条件は以下

の通り.  

 

[miR-130b, miR-301a, miR-301b, U6 snRNA] 

 

 

 

98℃ 30sec

95℃  2sec

63℃  5sec x40

55℃  5sec

95℃  5sec
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第 2 節 膀胱癌において高発現する miRNA 群の同定 

 

 

Figure. 2 The miR-130 

family and miR-210 are 

significantly upregulated 

in bladder cancer 

specimens. The expression 

of the miR-130 family was 

compared between normal 

and tumor tissues (A), 

among pathological 

tumour stages (B),  and 

among pathological tumor 

grades (C). (D) The 

miR-130 family has a 

common seed sequence. (E) 

Genomic localization of the 

miR-130 family. Data are 

mean ± S.D. *p<0.05, 

**p<0.01,  ***p<0.001.  
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 腎盂・尿管癌での結果を受け, 膀胱癌部23例と正常尿路19例の臨床検体を用いてRT-PCR

によるvalidationを実施した. その結果, 膀胱癌臨床検体でも腎盂・尿管癌と同様にこれら

のmiRNAが非癌部と比較して発現上昇が確認され (Fig.2 A), その発現レベルは浸潤度あ

るいは異形度の進展に相関していた (Fig.2 B, C).  

 

第 3 節 小括 

 

 腎盂・尿管癌で発現上昇する4種類のmiRNA群に関して膀胱癌でも発現レベルを検討し

た結果, 同様に発現上昇が観察された. 膀胱癌におけるmiR-130 family発現誘導機構は解

明されていないが, 他疾患での発現制御機構には諸説ある. 肺高血圧症においては特に解

析が進んでおり, 肺動脈性内皮細胞及び筋繊維芽細胞ではHypoxia-HIF2α-Oct4 axis依存

的にmiR-130aを含むmiR-130 familyいずれもが発現上昇し, これが肺性高血圧を引き起こ

す49. 他にも肺高血圧症の初期には細胞外マトリックス (ECM)のリモデリングによって

ECMが硬化するが, これがHippoシグナル伝達経路を活性化する. その結果転写因子

YAP/TAZが活性化し, 標的であるOct4依存的にmiR-130 familyが誘導される50. 一方で

miR-130bがtumor suppressorとして機能する卵巣癌においては変異p53がmiR-130bプロ

モーター領域に結合することで発現が低下する23. またmiR-301aはNF-κBのp50RelAがプ

ロモーター領域に結合することでによってその発現が亢進する. 更にmiR-301aはNKRFと

いうNF-κBシグナル抑制因子を標的とすることで同シグナルを活性化, ポジティブフィー

ドバックを促進することで自身の発現誘導を行うことも知られている42. つまりmiR-130 

familyにはそれぞれ異なる発現制御メカニズムが存在している. 本研究においても

miR-130b, -301a, -301b間の発現上昇レベルはそれぞれ異なっており(Fig. 2 A-C：膀胱癌臨

床検体, 及びFig. 3 A：膀胱癌細胞株), 膀胱癌においても各miRNA固有の制御メカニズムが

存在すると考えられる.  

 膀胱癌においては筋層浸潤が臨床上の課題となっているが, 筋層浸潤癌の前段階である

pTa, pT1症例でmiR-130 familyが発現上昇することは治療標的としての利点である. 更に

Genecards (http://www.genecards. org/)に示されるRNA-Seqのデータでは, miR-130 

familyのいずれもが正常膀胱において発現が認められず, これも副作用の観点からは好都

合である. 興味深いことに, miR-210以外の3種類のmiRNAは共通したseed配列を有する

family分子であった (Fig.2 D). miRNA-familyはgenomic localizationが異なるが (Fig.2 

E), 2-8塩基目までのseed配列が共通しているmiRNA群を指す11. miR-210は膀胱癌を含む

多数の癌でoncomiRとして既報であったため21, 本研究ではmiR-130b, miR-301a, 

miR-301bから構成されるmiR-130 familyに焦点を当てて解析を進めることとした.  
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第2章 膀胱癌における miR-130 family の機能解析 

 

第 1 節 実験材料・実験方法 

 

細胞培養 

UM-UC-2, EJ-1, T24, 5637, J82, RT-4, SV-HUC-1 細胞は奈良県立医科大学より供与さ

れたものを使用した. UM-UC-2, T24, EJ-1 細胞は DMEM 10% FCS で, RT-4, 5637 細胞は

RPMI-1640 10 % FCS で, SV-HUC-1 細胞は Ham’s F12 10% FCS で, 37℃, 5%CO2環境中

で培養した. 継代には 0.025% Trypsin/EDTA を用いて 37℃, 5% CO2にてインキュベート

することで細胞を剥離し, 1500rpm/3-5 分間の遠心により回収した.  

 

miRIDIAN Hairpin Inhibitor 

 本研究ではDharmacon社より購入したmiRIDIAN microRNA Hairpin Inhibitorを終濃

度 50 nM で使用した.  

miRIDIAN microRNA Hairpin Inhibitor カタログ番号 

Negative Control #1 (IN-001005-01-05) 

hsa-miR-130b-3p - Hairpin Inhibitor (IH-300660-07-0005) 

hsa-miR-301a-3p - Hairpin Inhibitor (IH-300657-05-0005) 

hsa-miR-301b-3p - Hairpin Inhibitor (IH-301252-02-0005) 

 

トランスフェクション (miRIDIAN Hairpin Inhibitor) 

 5637 細胞に miRIDIAN Hairpin Inhibitor をトランスフェクションする際には

Lipofectamine RNAi MAX (Invitrogen)を用いてリバース法で導入した. 12 well plate の場

合, 血清未添加の RPMI-1640 液体培地 200 µL 中で終濃度 50 nM の miRIDIAN 

microRNA Hairpin Inhibitor と Lipofectamine RNAi MAX 2.2 µLを予め 15分間反応させ

た. この後 7.5× 104 個/800 µL となるように調整した 5637 細胞と混合し well に播種した. 

CO2インキュベーター内にて 24 時間培養した後に 10% FCS を添加した RPMI-1640 培地

に交換し, さらに 48 時間経過後に実験に使用した. 12 well plate 以外の well plate 若しく

はdishで実験を行う際には 12 well plateの底面積を参考に各試薬の使用量を比率で求め使

用した.  
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Primer 

 Primer はいずれも Life Technologies に合成を依頼したものを使用した.  

a. For Dual-luciferase reporter construct 

 

 

 

 

 

b. For pri-miRNA expression construct 

 

 

 

 

 

Plasmid 作製 

 

Plasmid Vector 

pmirGLO Dual-Luciferase miRNA Target Expression Vector (Promega E1330) 

pmR-ZsGreen1 Vector (Clontech Z2541N) 

 

pmirGLO reporter construct の作製 (Oligonucleotide によりインサートを作製) 

 1 µg の pmirGLO Dual-Luciferase miRNA Target Expression Vector を SacI /SalI を用

いてそれぞれ 37℃/overnight 制限酵素処理を行った. 切断産物を 1％アガロースゲル電気

泳動により単離し, Wizard SV Gel and PCR Clean-Up System (Promega)を用いて精製し

た. 標的配列に相補的な Oligonucleotide を Sense/Antisense 鎖それぞれ 2 µg を 46 µL の

Oligo Annealing Buffer と混合した. 95℃から 5℃ずつ低下させ, 30℃まで各 5 分間処理さ

せることでアニーリングさせた. Oligonucleotide pairs を制限酵素処理した pmiRGLO 

vector と 1:10 となるように混合し, Ligation high を用いてライゲーションした. その後, 

E.coli DH5α を用いて形質転換し, Luria-Bertani (LB, ampicillin) plate で 37℃一晩培養し

た後, NotI 処理によってインサートチェックを行い, ポジティブなクローンを LB 

(ampicillin)培地中で 18 時間培養し, QIAGEN Plasmid Midi Kit (QIAGEN)を用いて

Plasmid 精製した.   

 

 

 

 

 

Sequence

Sense 5’-CTAGCGGCCGCTAGTATGCCCTTTCATCATTGCACTGG-3’

Antisense 5’-TCGACCAGTGCAATGATGAAAGGGCATACTAGCGGCCGCTAGAGCT-3’

Sense 5’-CTAGCGGCCGCTAGTGCTTTGACAATACTATTGCACTGG-3’

Antisense 5’-TCGACCAGTGCAATAGTATTGTCAAAGCACTAGCGGCCGCTAGAGCT-3’

Sense 5’-CTAGCGGCCGCTAGTGCTTTGACAATATCATTGCACTGG-3’

Antisense 5’-TCGACCAGTGCAATGATATTGTCAAAGCACTAGCGGCCGCTAGAGCT-3’

 hsa-miR-130b-3p

 hsa-miR-301a-3p

 hsa-miR-301b-3p

Target miRNA

 

Sequence

Sense 5’- TCGAAAGCTTTACCCAATTCGCTCCCTTCT-3’

Antisense 5’-TCGAGGATCCCACCCACCTGATCCTCTGAT-3’

Sense 5’-GCGAATTCTCCAAATATGTAACAGAAAGCAACA-3’

Antisense 5’-GCGGATCCTTCCTTTCTACATCTATGCATGTTT-3’

Sense 5’-GCAAGCTTGGTGTCCTGGGTTCTGAAGACC-3’

Antisense 5’-GCGGATCCCAGGCCTGTCTAGAATCTCAAGTT-3’

 hsa-miR-301a-3p

 hsa-miR-301b-3p

Target miRNA

 hsa-miR-130b-3p
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pmirGLO reporter construct の構築 (クローニングによりインサートを作製) 

 

・PCR 反応液の組成 

試薬名 (μL) 

2×PCR buffer for KOD FX 25 

2 mM dNTPs 10 

10 μM sense primer 2.5 

10 μM antisense primer 2.5 

Template DNA (cDNA) 0.5 

KOD FX 0.5 

Water 9.0 

Total 50 

 

・PCR 反応条件 (x,  y は Primer 及び標的遺伝子産物の塩基長により決定) 

94℃     2 min 
 

98℃  10 sec 
 

 x℃     30 sec 
 

68℃    y min x30 

12℃ O/N 
 

 

 PCR 産物を 1％アガロースゲル電気泳動により単離し, Wizard SV Gel and PCR 

Clean-Up System (Promega)を用いて精製した. Sense/Antisense Primer に設定した 2 種

類の制限酵素処理を 37℃/overnight で別々に行い, 1 回目の制限酵素処理後は Wizard SV 

Gel and PCR Clean-Up System (Promega)によりゲル電気泳動をせずに核酸のみ抽出し, 2

度目の制限酵素処理後にはゲル電気泳動を行い, 目的核酸断片のみを精製した. 以降の操

作は Oligonucleotide によるインサート作製時と同様である.  

 

miR-130 family 安定高発現 UM-UC-2 細胞の作製 

  miR-130b, miR-301a, miR-301b が発現している 5637 細胞 のゲノム DNA をテンプレ

ートとして, 各 miRNA の pri-miRNA をクローニングした. PCR 産物を任意の制限酵素で

処理した後, pmR-ZsGreen1 ベクターにライゲーションした. 得られたプラスミド DNA を

miR-130 familyの発現量が低いUM-UC-2細胞にトランスフェクションし, G418を用いて

セレクションを行った. 2 週間培養して一過性発現している細胞をすべて除去した後, 限界

希釈法により ZsGreen1 陽性シングルコロニーをピックアップして発現量を測定した. 

Empty ベクターを導入した細胞と比較して各 miRNA の発現量が上昇している細胞株を

miR-130 family 高発現 UM-UC-2 細胞として樹立した.  
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Dual-luciferase reporter assay 

 Dual-Luciferase Reporter Assay System を用いて添付のプロトコールに従って行い, 

GloMax 20/20n Luminometer (Turner Biosystems)を用いて測定した. 96 well plate に

1.2×104 cells/well の 5637 細胞を播種し, 24 時間後に pmirGLO vector (50 ng) / 

miRIDIAN Hairpin Inhibitor (50 nM)を Lipofectamine 2000 0.4 µL/well を用いてフォワ

ード法でトランスフェクションした. トランスフェクション 24 時間後に細胞を冷却 PBS 

で 3 回洗浄し, 1× Passive lysis buffer 20 μL 加え, 室温で 15 分間振盪して細胞ライセート

を調製した. ライセート 5 μL につき 20 μL の Luciferase assay reagent ll を加え, タッピ

ングしてからホタル・ルシフェラーゼの発光を 10 秒間の積算値として測定した. 次に基質 

(5637 細胞は 1/2500, UM-UC-2 細胞は 1/500 希釈)を含む Stop & Glo Reagent を 20 μL 加

え, タッピング後にウミシイタケ・ルシフェラーゼの発光を 10 秒間の積算値として測定し

た. Luciferase 活性はホタル・ルシフェラーゼの測定値をウミシイタケルシフェラーゼの測

定値で割った値として算出される. サンプル間の相対活性は, 全測定値をMock の値で割っ

て標準化し, Mock の値を 1 とすることで Relative Luciferase Activity を求めた.  

 

WST-1 assay 

 miRIDIAN Hairpin Inhibitorトランスフェクション24時間後の5637細胞を96 well 

plateに2000 cells/wellとなるように細胞を播種し, その24・48・72時間後 (Day1, 2, 3)に

2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium salt (WST-1) / 

20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 溶 液  : 

1-methoxy-PMS溶液 を9 : 1 に混合し, 5%となるよう細胞培養液に添加した. 2時間後にプ

レートリーダー (BIORAD)を用いて測定波長として450 nm, 対照波長として630 nmの吸

光度をそれぞれ測定した. miR-130 family高発現UM-UC-2細胞の場合は800 cells/wellとな

るように播種し, 以降は同様の操作で細胞増殖能を測定した. 再播種24時間後の測定値で

それぞれの測定値を割って標準化し, Day1の値を1とすることでRelative cell growthを算

出, 細胞増殖能として評価した. 

 

Wound healing assay 

  実験には 12 well plate を使用し, トランスフェクション 3 日目後の細胞あるいはコンフ

ルエント状態の miR-130 family 高発現 UM-UC-2 細胞を用いた. 細胞がコンフルエントに

なっていることを確認後, 1000 µL ピペットチップの先で細胞層に傷をつけた. 傷をつけた

時点を 0 時間とし, 任意の時間まで観察を行った. 遊走面積は Image Jにより定量し, 細胞

の遊走能は「(ある時点での傷面積)-(0 時間の時点での傷面積)」という式で評価した. 
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Invasion assay 

 

a. xCELLigene DP system (5637 細胞に使用) 

  Roche 社製 CIM Plate を使用し, 実験に使用する実験器具は事前に 4 ℃で冷やしておい

た. CIM PlateのUpper chamberをMatrigel (BD Growth Factor Reduced)でコーティン

グし, Lower chamber に化学誘引物質として FCS を 10%含んだ RPMI-1640 を加えた. 

miRIDIAN microRNA Hairpin Inhibitor トランスフェクション 1 日後の 5637 細胞を 

2×104 cells/well となるように無血清培地に懸濁して Upper chamber に播種し, 

xCELLigence DP system にセットして細胞浸潤能をリアルタイムに測定した.   

 

b. BD BioCoat™ 癌細胞浸潤アッセイシステム (UM-UC-2 細胞に使用) 

  室温に戻した BD BioCoat™癌細胞浸潤アッセイシステムのインサートに 37 ℃に温めた

無血清DMEM溶液を75 µL加え, miR-130 family高発現UM-UC-2細胞を3×103 cells/well

となるように無血清 DMEM 溶液 25 µL で調整し, 上部チャンバーに添加した.  下部チャ

ンバーには化学誘引物質として FCS を 10%含んだ DMEM 溶液を 200 µL 加え, プレート

を 37℃, 5% CO2インキュベーター内で 22 時間インキュベートした. その後に溶液を除去

し, 下部チャンバーに Calcein AM (2.0 µg/mL)を 200 µL 加えて 37℃, 5% CO2インキュベ

ーター内で 1 時間インキュベートした後, Ex: 485 nm, Em: 535 nm の吸光値を EnVision™

マルチラベルカウンター (Perkin Elmer)で測定した. 

 

抗体 

 本研究で使用した抗体の希釈倍率とメーカーは以下の通り.  

anti-FAK polyclonal (1:1000, Santa Cruz, sc-557, Santa Cruz, CA, USA), anti-p-FAK576 

(1:1000, SIGMA, SAB4503869, St Louis, MO, USA), anti-p-FAK576 (1:1000, Santa Cruz, 

sc-16563-R), anti-MMP-9 (1:1000, CST, #3852S), anti-Akt (1:1000, CST, #C67E7), 

anti-p-Akt473 (1:1000, CST, #D9E), anti-PTEN polyclonal (1:1000, Sigma, SAB4300336: 

for western blot analysis and immunocytochemistry), anti-PTEN polyclonal (1:1000, 

CST, #9188: for western blot analysis and immunohistochemistry), anti-Actin polyclonal 

antibody (1:50000, Sigma, A5316). Horse radish peroxidase-conjugated goat 

anti-mouse/rabbit-IgG (1:5000, Santa Cruz Biotechnology, INC, mouse:sc-2005, 

rabbit:sc-2030) 

 

Western blot 

・ 6× SDS sample buffer 

0.5 M Tris-HCl (pH 6.8) 2.5 mL, グリセロール 2.0 mL, 10% SDS 4.0 mL, 2-メルカプ

トエタノール 1.2 mL, bromophenol blue 少量を MilliQ 水で 10 mL にメスアップして
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使用した. 0.5M Tris-HCl (pH6.8) 2.5 mL, 2-Me 1 mL, 10% SDS 4 mL, スクロース 1 

g を MilliQ 水で 10 mL にメスアップした.  

・ SDS-PAGE 泳動 buffer 

Tris base 15.1 g, glycine 72.0 g, SDS 5.0 gをMilliQ水に溶解して1000 mLとした. 使

用時に MilliQ 水で 5 倍希釈して用いた.  

・ Transfer buffer 

14.4 g/L Tris, 3.03 g/ L-glycine, 5 %メタノール (in water) 

・ TBS-T (Tris-buffered saline with Tween 20)10 mM Tris-HCl (pH7.4), 600 mM NaCl, 

0.1 % Tween 20 (in water) 

・ Blocking buffer  

5 % スキムミルク(森永乳業) (in TBS-T) 2.5 g のスキムミルクを 50 mL の TBS-T に

溶解した.  

 

 12 well plate に播種した細胞を冷却 PBS で 3 回 wash してから 6× SDS sample buffer

を 50 µL 滴下, 1 mL チップを用いて細胞を溶解・回収し, 95℃で 10 分間加熱した後で氷冷

したサンプルを細胞ライセートとして使用した. まずアクリルアミドゲルを用いて, 20 mA

定電流下でサンプルの SDS-PAGE を行った . 次に PVDF 膜をメタノールで処理し , 

Trans-Blot® SD Semi-Dry Transfer Cell (BIO-RAD)もしくは Trans-Blot® Turbo™ 

Transfer System (BIO-RAD)を用いて 25 V/1 時間のトランスファーを行った. その後メン

ブレンを5%スキムミルク溶液を用いて15分間のブロッキングを行い, 一次抗体を4℃で一

晩反応させた. 翌日メンブレンを TBS-Tで 15分間洗浄する操作を 3回行い, 二次抗体を室

温で 1 時間反応させた. 抗体反応にはオービタルローテーター (バイオクラフト)を使用し, 

攪拌させながら反応させた. 再び TBS-T による洗浄を行った後, ECL Plus Western 

Blotting Detection Reagents を用いて発光させ , ImageQuant LAS 4000mini (GE 

Healthcare)によるバンドの撮影を行った. Densitmetry の定量には Image J を使用した.  

 

Gelatin zymography  

 miRIDIAN Hairpin Inhibitor トランスフェクション 24 時間後に serum free の

RPMI-1640 にメディウム交換を行い, 48 時間培養した. この培養上清を回収して 3000 

rpm/5 分間の遠心分離により死細胞を除去し, 2-Me(-)の 6× SDS sample buffer と混合, 

37℃/30 分間インキュベートを行うことでサンプルを作製した. サンプルを 0.1% Gelatin 

solution (SIGMA)含有の 10%ポリアクリルアミドゲルで展開し, 1× Denaturating buffer / 

1× Developing buffer で 30 分間ずつインキュベートした後, 新しい 1× Developing buffer

で 37℃/24 時間インキュベートした. ゼラチンの分解を CBB 染色により検出し, これを

MMP 活性として評価した.  

 



- 18 - 

 

培養細胞からの Total RNA 抽出 

 回収した細胞ペレットに Trizol reagent (Invitrogen)を 1 mL加え, 5分間のボルテックス

により細胞を溶解させ, さらに 5 分間静置した. クロロホルム 200 µL を加え, 再び 2 分間

ボルテックスした後に室温で 3 分静置した. 12,000 rpm/4℃で 15 分遠心後に上清を回収し, 

500 µL のイソプロパノールを加えて混和し, -80℃で 30 分以上静置した. 15000 rpm/4℃で

20 分遠心後, デカンテーションで上清を捨て, 80%エタノール 1 mL により沈殿を洗い, 

12,000 rpm/4℃で 10分遠心後に再びデカンテーションで上清を捨てエタノールが揮発する

まで風乾した. その後, RNase free water を加えてタッピングにより RNA を溶解した.  

 

RT-PCR for mRNA 

Real-time PCR 装置には Light Cycler (Roche)を用い, DNA ポリメラーゼとして

Thunder Bird (TOYOBO)を使用した. PCR 反応は total 10 µL の系で行った. Primer 配列

と PCR 条件は以下に記載. 

  

・Primer 配列  

Target gene Sequence 

GAPDH 
Sense 5'-CCATCACCATCTTCCAGGAG-3' 

Antisense 5'-AATGAGCCCCAGCCTTCTCC-3' 

MMP-9 
Sense 5'- ACCTCGAACTTTGACAGCGACA-3' 

Antisense 5'- GATGCCATTCACGTCGTCCTTA-3' 

MMP-2 
Sense 5'- GATAACCTGGATGCCGTCGTG-3' 

Antisense 5'- CAGCCTAGCCAGTCGGATTTG-3' 

 

・PCR 反応条件  

GAPDH 
   

MMP-9/2 
  

95 ℃ 30 sec 
  

95 ℃ 10 sec 
 

95 ℃ 15 sec 
  

95 ℃ 5 sec 
 

60 ℃ 30 sec 
  

60 ℃ 20 sec x 40 

72 ℃ 15 sec x 40 
 

融解曲線分析 
  

融解曲線分析 
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細胞染色(培養細胞) 

カバーガラスを敷いた 12 well plate に播種した 5637 細胞に miRNA 阻害剤あるいは

miR-130 family seed-targeting LNA をトランスフェクションし, トランスフェクション後

3 日目の細胞を染色に用いた. 培地を除去して PBS で一度洗浄し, 4%パラホルムアルデヒ

ド (PFA)を用いて固定した. その後 Blocking buffer (5% BSA, 0.3% Triton X-100 in 40 

mL PBS)で 1時間ブロッキングし, 一次抗体を添加して 4℃で一晩インキュベートした. 翌

日 PBSで 3 回洗浄を行い, 二次抗体を添加して暗所・室温で 1時間インキュベートし, PBS 

による洗浄を行った. なおF-actinと共染色する場合は二次抗体インキュベート時に40 nM

となるように Acti-stain 488 Fluorescent Phalloidin (Cytoskeleton, Inc.)を添加した. 

DAPI 入りの封入剤である vectashield with 4’, 6-diamidino-2-phenylindole (Southern 

Biotech)を用いて封入した後に, システム生物顕微鏡 BX51 (OLYMPUS)を用いて観察し

た.  
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第 2 節 miR-130 family 阻害剤の作用評価 

 

 前述したように miR-130 family は oncomiR として知られているが, miR-130b に関して

は tumor suppressor としての報告も複数存在する  (Table.1). また膀胱癌における

miR-130 family の機能は未解明であったため, まず膀胱癌細胞を用いて in vitro 機能解析

を実施した. 解析に際して正常様膀胱細胞株 SV-HUC-1 細胞に加えて 6 種類の膀胱癌細胞

株における miR-130 family 発現量を定量し (Fig.3 A), 機能阻害実験には最も発現量が高

い 5637 細胞を使用した. miRNA 阻害剤の効果は Dual-luciferase reporter assay により評

価し, 内在性の miR-130 family に起因する翻訳阻害を抑制することを確認した (Fig.3 B).  

 

 

 

 

Figure. 3 Functional verification of 

the miR-130 family hairpin 

inhibitors. (A) Expression of the 

miR-130 family molecules in 

bladder cancer cell lines was 

measured by RT-PCR in duplicate. 

(B) MiR-130 family reporter vectors 

containing perfectly matched target 

sites of miR-130b,  miR-301a or 

miR-301b (50 ng) were 

cotransfected with 50 nM 

miRIDIAN Hairpin Inhibitors or a 

negative control inhibitor into 5637 

cells. Luciferase activity was 

determined using a dual luciferase 

reporter assay system. Data are 

presented as mean ± S.D. of more 

than three independent 

experiments. *p<0.05, **p<0.01,  

***p<0.001. 
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第 3 節 5637 細胞における miR-130 family 阻害の表現型解析 

 

 第 2 節の実験系を用いて miR-130 family 機能阻害が 5637 細胞の細胞増殖能・遊走能・

浸潤能に与える影響を解析した結果, 細胞増殖には目立った影響を与えなかった (Fig.4 A). 

しかしながら細胞浸潤性を低下させる傾向を認め (Fig.4 B), 細胞遊走能を顕著に低下させ

た (Fig.4 C, D).  

 
Figure. 4 Inhibition of the miR-130 family suppresses 5637 cell invasion and migration. (A) The effect of miR-130 

family inhibitors on cell growth was measured by a WST-1 assay. (B) Invasion assay was performed by 

xCELLigence real-time cell monitoring system 72 h after transfection. (C) Cell migration was estimated by a wound 

healing assay. The wound was formed by scraping 60 h after transfection and then relative cell migration was 

measured after 12 h. In all the experiments, 50 nM miRIDIAN hairpin miRNA inhibitors were transfected in 5637 

cells. Data are mean ± S.D. of more than three independent experiments. **p<0.01, ***p<0.001. 

 

第 4節 miR-130 family 阻害による膀胱癌細胞の運動性調節メカニズムの解析 

 

 第 3節の結果よりmiR-130 familyが膀胱癌の運動性亢進に寄与する可能性が示唆された

ため, その制御メカニズムの解析を行った. 膀胱癌の病理像において幼若血管はほとんど

認められず, 血管新生による遠隔転移は少ないと考えられている. その転移様式は主に

EMT による Cell-Cell interaction の破綻, あるいは細胞骨格再編成による運動性の獲得に

よって亢進することが知られている 6. 膀胱癌転移先の第 1 位は骨盤内のリンパ節, 第 2 位

が周辺骨への転移である. 血行性転移すると考えられる肺や肝臓はそれぞれ第 3, 4 位であ

ることからも, 周辺組織への浸潤が膀胱癌転移の主要メカニズムであることは明白である
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51. EMT に関しては miR-200 family の発現低下による ZEB1/2 発現上昇がこれを誘導する

ことが知られているため 17, 本研究においては miR-130 family が細胞骨格再編成に伴う運

動性亢進に与える影響を評価した.  

 まず細胞の運動性に重要なストレスファイバー形成を Phalloidin 染色によって評価した

結果, miR-301a/b阻害剤の導入によってこれが減弱する傾向が観察された (Fig. 5 A). スト

レスファイバーは焦点接着斑(focal adhesion)を起点に伸長しており, その構成要素の一つ

であるFAKのTyr576のリン酸化はストレスファイバー形成を促進することが知られている

52. ウエスタンブロット解析の結果, 同リン酸化部位は miR-301a/b 阻害剤の導入により阻

害されることが明らかとなった (Fig.5 B). またFAKの下流因子であるAkt53のSer473リン

酸化も miR-130 family 阻害によって減弱していた(Fig.5 C). 細胞浸潤能は MMP によって

も制御されるが, このうち MMP-9 は PI3K/Akt シグナルにより制御される 54. そこで

MMP-9 タンパク質発現量を評価したところ, miR-301a/b 阻害によって発現量の低下傾向

が観察された (Fig.5 C).  

 

 

 

 

 

 

 

Figure. 5 The effects of the miR-130 family inhibitors on stress fiber formation, phosphorylation status of FAK and 

Akt, and MMP-9 expression in 5637 cells. (A) Stress fiber formation was observed by F-actin staining with 

Phalloidin. Phosphorylation status of FAK at Tyr576 (D), Akt at Ser473 (C), and MMP-9 expression (D) were examined 

by Western blot analysis and these graph showed the relative protein expression levels. Densitmetry of each 

proteins were nomalized to β-actin or dephosphorylated proteins. In all experiments, 50 nM miRIDIAN hairpin 

miRNA inhibitors were transfected in 5637 cells. Data are mean ± S.D. of three independent experiments. *p<0.05. 

 

 更に Gelatin Zymography によりそのプロテアーゼ活性を評価したところ, タンパク質発

現量と相関した結果を得た (Fig.6 B). 興味深いことにmiR-130 family阻害はMMP-2活性

NC 130b 301a 301b
0.0

0.5

1.0

1.5

2.0

miRNA inhibitor

T
o

ta
l-

A
k
t 

/ 
b

e
ta

-a
c
ti

n

NC 130b 301a 301b

0.0

0.5

1.0

1.5

*
*

miRNA inhibitor

P
-A

k
t 

(S
e
r4

7
3
) 

/ 
b

e
ta

-a
c
ti

n

NC 130b 301a 301b
0.0

0.5

1.0

1.5

miRNA inhibitor

T
o

ta
l-

F
A

K
 /

 b
e
ta

-a
c
ti

n

NC 130b 301a 301b

0

1

2

3 *

miRNA inhibitor

P
-F

A
K

 (
T

y
r5

7
6
) 

/ 
T

o
ta

l-
F

A
K

NC 130b 301a 301b
0.0

0.5

1.0

1.5

2.0

miRNA inhibitor

M
M

P
-9

 /
 b

e
ta

-a
c
ti

n



- 23 - 

 

には影響しておらず, RT-PCR においても MMP-2 発現量には影響していなかった (Fig.6 

A). MMP-2/9 のうち MMP-9 のプロモーター領域にのみ結合する転写因子は 5 種類存在す

るが, このうちPI3K/Aktシグナルの下流に存在するのはNF-κBである 55. miR-130 family

標的候補遺伝子のうちMMPのActive formへのCleavageを抑制できる因子としてTIMP2

が知られているが, これは MMP-2 特異的である 56ことから, FAK-Akt-axis 制御下で転写

活性化されているものと推測される.  

 

 

第 5 節 miR-130 family 過剰発現 UM-UC-2 細胞株の樹立 

 

 miRNA 阻害剤は標的とする miRNA のみならず, 配列相同性の高い他種の miRNA に対

しても非特異的な阻害活性を発揮することが知られている . ホモロジーが高い

miRNA-family は必然的にこの影響を受けやすく, miR-130 family においても非特異的な

作用が懸念される. この可能性を排除するためにはmiR-130 familyの過剰発現実験を行い, 

機能阻害実験と逆の表現型を観察する必要がある. そこで miR-130 family の発現量が低い

膀胱癌細胞株である UM-UC-2 細胞 (Fig.3 A)を用いて, 安定高発現細胞株の樹立を行った 

(Fig.7). 内在性miR-130 family分子の発現量が若干高いために, miR-301a高発現細胞株に

関しては 4倍程度の発現上昇にとどまったが, いずれのmiRNAに関しても高発現細胞を樹

立することができた.  

 

Figure. 6 The miR-130 family suppresses 

mRNA expression and protease activity of 

MMP-9 (A) Expression of MMP2 and MMP9 

in the miR-130 family inhibitor-transfected 

5637 cells was examined by RT-PCR. (B) 

Gelatin zymography was performed using 

the supernatants of the miR-130 family 

inhibitor transfected 5637 cells. Data are 

mean ± S.D. of three independent 

experiments. **p<0.01. 

 

Figure. 7 Establishment of the 

miR-130 family-stably expressing 

UM-UC-2 cells  Each pmrZsGreen1 

miRNA expression vector was 

transfected into UM-UC-2 cells. 

Representative images of ZsGreen1 

positive colonies were showed in (A). 

(B) Relative miR-130 family 

expression in established UM-UC-2 

stable cell lines. The expression 

levels of each miRNA were 

determined with RT-PCR by a ΔΔCT 

method,  and compared with a 

mock-transfected cell line. 
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第 6 節 miR-130 family 過剰発現 UM-UC-2 細胞株の表現型解析 

 

 樹立された細胞株を用いてmiRNA阻害剤処理と同様に表現型解析を実施した結果, 細胞

増殖能 (Fig.8 A)には影響せず, 細胞浸潤能 (Fig.8 B)並びに細胞遊走能 (Fig.8 C, D)の亢

進が観察された. ゲノムへのベクター挿入位置に起因する表現型である可能性を排除する

ために, 別クローンを 1ライン用いた解析も行ったが, 細胞増殖能には影響せずに細胞遊走

能を上昇させるという結果が得られた (Data not shown). 阻害剤の結果も考慮すると, 

 

  同様にストレスファイバー形成に関しても形成促進が認められ (Fig.9 A Normal), その

傾向は細胞遊走先端でより顕著であった (Fig.9 A leading edge). FAK 以下のシグナル伝達

経路に関しても同様に解析したところ, 機能阻害実験とは逆にリン酸化レベルあるいは発

現量が亢進する傾向が観察された (Fig.9 A-D).  

 

 

 

 

 

miR-130 family は確かに膀胱癌

細胞の運動亢進に寄与すると考

えられる.  

 

 

 

 

Figure. 8 Stable expression of the 
miR-130 family promotes UM-UC-2 cell 
invasion and migration. (A) Relative cell 
growth was measured by WST-1 assay. 
(B) The cell invasiveness was examined 
by BD BioCoat™ Tumor Cell Invasion 
Systems. (C,  D) Relative cell migration 
was examined by a wound healing assay. 
Data are mean ± S.D. of quadruplicated 
(A) or triplicated (C) or quintuplicated (D) 
experiments. *p<0.05, **p<0.01, 
***p<0.001. 

 

Figure. 9 Stress fiber 

formation,  phosphorylation 

status of FAK and Akt,  and 

MMP-9 expression in the 

UM-UC-2 cells stably 

expressing the miR-130 

family. (A) Stress fiber 

formation was observed by 

F-actin staining with 

phalloidin. Phosphorylation 

status of FAK at Tyr576 (B) 

and Akt at Ser473 (C),  and 

the protein expression of 

MMP-9 (D) were examined 

by western blot analysis and 

these graph showed the 

relative protein expression 

levels. Densitmetry of each 

proteins were nomalized to 

β-actin or dephosphorylated 

proteins. Data are mean ± 

S.D. of triplicated 

experiments. 
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第7節 小括 

 

  個々のmiRNA間で表現型の強弱は存在するが, 本章の結果からmiR-130 familyのいずれ

もが膀胱癌細胞の運動性亢進に寄与していることが解明された. miR-130bの機能阻害では

ストレスファイバー形成やFAKのリン酸化に対する抑制作用を示さず, miR-130b過剰発現

UM-UC-2細胞においても他のmiRNA種と比較して表現型は微弱であった. 機能阻害実験

に関しては, 使用した5637細胞の内在性miR-130b発現量が低いことに起因すると推測され

る. またmiR-130b過剰発現UM-UC-2細胞においては, miR-130bがtumor suppressorとし

て機能した可能性が考えられる. 本章第2節の冒頭並びにTable. 1でmiR-130bのtumor 

suppressorとしての側面について言及したが, miR-130bは膵臓癌でSTAT324, 卵巣癌で

ZEB157, 更に骨肉腫, グリオーマ, 結腸直腸癌でPPARɤをそれぞれ標的としている58–60. こ

れらの標的遺伝子はいずれも膀胱癌ではoncogeneとして機能している. 特にPPARɤは特定

のサブクラスの浸潤性膀胱癌で高発現して悪性化に寄与するのみならず, PPARɤ作動薬で

あるピオクリダゾンによる膀胱癌発症リスクも指摘されている6,61,62. 癌抑制遺伝子のみな

らず癌遺伝子も標的とすることで, miR-130bのoncogenicな機能が減弱してしまった可能性

が考えられる. しかしながらmiR-130bが膀胱癌細胞の運動性亢進に寄与することは明確で

あり, 治療標的として適切なmiRNAの一つだと考える.  

 第1章の発現解析において, miR-130 familyの発現量は膀胱癌の浸潤度あるいは異形度に

相関していた. この結果からmiR-130 familyの阻害剤が膀胱癌細胞の筋層浸潤の予防に有

効である可能性を認めたが, 実際にmiR-130 familyが膀胱癌細胞の運動性を調節できると

いう結果はその仮説を裏付けるものであると考える.  
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第3章 膀胱癌における miR-130 family の標的遺伝子探索 

 

第1節 実験材料・実験方法 

 

Plasmid作製 

  第2章と同様の手法で行った. ヒトPTENのクローニングには正常様膀胱細胞株である

SV-HUC-1細胞のcDNAを使用した.  

 

Plasmid Vector 

pcDNA3.0 empty vector 

 

Primer 

 

 

 

 

 

 

 

 

 

 

トランスフェクション (Plasmid DNA) 

 5637 細胞に plasmid DNA をトランスフェクションする際には Lipofectamine 2000 

(Invitrogen)を用いてフォワード法で導入した. 12 well plateの場合 6.0× 104 個の細胞を播

種し, 24 時間後に血清未添加の RPMI-1640 液体培地 800 µL に交換した. 血清未添加の

RPMI-1640 液体培地 200 µL 中で終濃度 1 µg の plasmid DNA と Lipofectamine 2000 2.0 

µLを予め 15分間反応させた. このトランスフェクタントをwellに添加し, CO2インキュベ

ーター内にて 4 時間培養した後, 10% FCS 添加 RPMI-1640 培地に交換し, さらに 44 時間

経過後に実験に使用した. 12 well plate 以外の well plate 若しくは dish で実験を行う際に

は 12 well plate の底面積を参考に各試薬の使用量を比率で求め使用した.  

 

Dual-luciferase reporter assay, Wound healing assay, 細胞免疫染色 

 第2章と同様の手法で行った. またPTPN11/SHP-2の3'-UTRのクローニングには, 機能

阻害実験にも使用した細胞株である5637細胞のcDNAを用いた. 

 

 

 

 

 

Sequence

Sense 5'-CTAGCGGCCGCTAGTTGGTTCACATCCTACCCCTTTGCACTTG-3'

Antisense 5'-TCGACAAGTGCAAAGGGGTAGGATGTGAACCAACTAGCGGCCGCTAGAGCT-3'

Sense 5'-CTAGCGGCCGCTAGTTGGAACTGTACGATCCCCTAACGTGACG-3'

Antisense 5'- TCGACGTCACGTTAGGGGATCGTACAGTTCCAACTAGCGGCCGCTAGAGCT-3'

Sense 5'- CTAGCGGCCGCTAGTGACATTATAATGGGCTTTTGCACTGG-3'

Antisense 5'- TCGACCAGTGCAAAAGCCCATTATAATGTCACTAGCGGCCGCTAGAGCT-3'

Sense 5'- CTAGCGGCCGCTAGTGACAATTTTTAGGGGATAACGTGACG-3'

Antisense 5'- TCGACGTCACGTTATCCCCTAAAAATTGTCACTAGCGGCCGCTAGAGCT-3'

Sense 5'- TTGTGAGCTCTATTTTGCAGATTATGGGGA-3'

Antisense 5'- TTGTGTCGACCATTTGGCGACCAAAAACAC-3'

Sense 5'- TTGTGTCGACCATTTGGCGACCAAAAACAC-3'

Antisense 5'- GACTCTTTAATGCCTCACGTTAGGTCAACT-3'

Sense 5'-ATGGATCCATGACAGCCATCATCAAAGAGAT-3'

Antisense 5'- GCGAATTCTCAGACTTTTGTAATTTGTGTATGC-3'

Target gene

PTEN WT1

PTEN Mut1

PTEN WT2

PTEN Mut2

PTPN11 WT

PTPN11 Mut

Human PTEN
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Argonaute2 Immnoprecipitation (Ago2-IP) 

  1× 107個以上のmiR-301b高発現UM-UC-2細胞を用意し, RIP Assay for microRNA kit  

(MBL)の添付プロトコールに従いAgo2免疫沈降を行った. UM-UC-2細胞におけるAgo2免

疫沈降は小スケールの実験で確認した (Fig.13A). 細胞回収の前日にProtein G sepharose 

(GE healthcare) 50 µLとAnti-EIF2C2 (AGO2) (Human) mAb(MBL)あるいはIsotype 

control IgGを20 µLずつ, 1× Protease inhibitor cocktail (ナカライテスク), 1.5 mM DTT 

(Wako), 40 U/mL RNase OUTTM (invitrogen)存在下のRIPA buffer (Invitrogen)中で混合し, 

4℃でovernightローテート反応させることで抗体吸着ビーズを作製した. 翌日に細胞回収

を行いソニケーター (UD-100, TOMY社製：Level 70 / 1秒間 × 4回を1セットとし, 氷冷を

挟んで計2回実施)で破砕した. ライセート作製時のRIPA bufferには抗体ビーズ作製時より

も高濃度の200 U/mLのRNase OUTTMを添加した. ライセートを抗体未吸着のProtein G 

sepharoseで4℃/1時間ローテートすることでプレクリアし, 上清を回収した. 回収した上

清に抗体吸着ビーズを混合し, 4℃/3時間ローテートさせることでビーズ-抗原複合体を形成

させた. Wash後に沈殿したビーズを回収し, これにQIAZOLを700 µL添加した. これ以降

は第1章の第1節に記載した方法に準拠し, miRNeasy mini kitによりビーズ-抗原複合体よ

り沈降してきたmRNAを回収した. mRNA回収のみRIP Assay for microRNA kitではなく

miRNeasy mini kitのプロトコールで行う手法はUchino et al の論文を参考にした63.  

 

Gene array解析 

前述の方法で抽出した total RNA の純度を BioRad EXPERION により確認した後, 

Ambion WT Expression Kit (Applied Biosystems) により回収した RNA 全量(Mock 100 

ng, miR-301b 54 ng)を用いて cDNA 合成を行った. 得られた cDNA 5.5 µg を GeneChip 

WT Terminal Labeling Kit (Affymetrix)により断片化, ビオチン化した. ビオチン化され

た cDNA をもとに Hybridization Cocktail を作成後, GeneChip Human 1.0 ST Array  

(Affymetrix)に注入し, 45°C/60 rpm で 17 時間 hybridization を行った. その後, Fluidics 

Station (Affymetrix) を使用し て GeneChip Hybridization Wash and Stain Kit  

(Affymetrix)により array の自動洗浄・染色を行い, GeneChip Scanner 3000 によりスキャ

ンし, データを取得した.  

 

miR-130 family標的候補遺伝子の抽出 

 Gene arrayの結果をmiR-301b VS Mockとで比較し変動遺伝子数をFold-changeごとに

算出した. するとFold-cahngeが1.3以上の遺伝子群において急激にその数が低下したため 

(Fig.13 B), この遺伝子セットを用いてGO解析や標的遺伝子の抽出を実施した. GO解析に

はDAVID (https://david.ncifcrf.gov/)を使用した. 候補遺伝子の選定についてはmiRDB 

(http://mirdb.org/miRDB/)・miRorg (http://www.microrna.org/microrna/home.do)の

miR-130 family標的候補遺伝子の上位200位, miRWALK (http://www.umm.uni-heidelbe 
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rg.de/apps/zmf/mirwalk/)のmiR-130 family標的候補遺伝子・文献調査により個別に注目し

ていた遺伝子を, それぞれGene array結果から抽出した.  

 

PTEN細胞内局在の観察 

 UM-UC-2細胞をPTEN抗体により免疫染色を行い, 視野中の細胞のうち膜周辺にPTEN

がリング状に局在している細胞数をカウントした. 合計3視野カウントし, 視野中のPTEN

膜局在細胞の割合を算出した.  

 

膀胱癌臨床検体の免疫組織化学 

 パラフィン包埋された膀胱癌臨床検体から回転式ミクロトームを用いて5 μmの薄層切片

を切り出し, スライドグラスにマウントした. スライドグラスを68℃オーブンで10 分間処

理した後, キシレンに5分間2回浸し, エタノール (100% 2回→95%→80%→70%→50%), 

蒸留水, 蒸留水 + Tween 20 (0.0375%)の順に浸して脱パラフィン処理を行った. 次に抗原

賦活液 (三菱化学メディエンス社製 インスタント抗原賦活化液H 中性)を入れたウォータ

ーバスを用いて10分間オートクレーブ処理を行い, 抗原の賦活化を行った. このスライド

グラスに5分間, 3%過酸化水素水を処理することでブロッキングを行った. 1次抗体は4℃/ 

overnight処理し, TBS-Tで洗浄後に2次抗体を室温45分間処理した. これをDAB発色試薬 

(Dako)で処理した後, Gill Hematoxilinでカウンターステインを行った. 水道水でスライド

グラスを洗浄後, 蒸留水, エタノール(70%→80%→95%→100% ×2回), キシレン×2回の順

番に浸し, 封入剤を滴下してカバーグラスを載せてプレパラートを作製した.  
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第2節 PTENのmiR-130 family標的遺伝子としての評価 

 

 これまでの解析から, miR-130 family は膀胱癌において FAK や PI3K/Akt シグナル伝達

経路を調節しうることが解明されたので, この知見を基盤に miR-130 family の標的遺伝子

を探索した. miRorg や miRDB といった標的予測アルゴリズムを利用し, 候補遺伝子とし

て PTEN (phosphatase and tensin homolog)に注目した. PTEN は PI3K/Aktシグナル伝達

経路の抑制因子で, 極めて有名な癌抑制遺伝子である 27, 28. また脂質のみならずタンパク

質にもホスファターゼ活性を示し, FAK の Tyr 残基も基質とすると報告されていることか

ら 66, ここまでで示されている表現型を制御できる. PTEN の 3'-UTR には 2 か所の

miR-130 family 結合領域が存在するが, それぞれに対するレポーターコンストラクトを作

製し (Fig.10 A), miR-130 family 高発現 UM-UC-2 細胞において Dual-luciferase reporter 

assay を行った結果, miR-130b 高発現細胞において Luciferase 活性の低下を認めた 

(Fig.10 B).  

 
Figure. 10 Target gene validation of the miR-130 family and functional analysis of PTEN in 5637 cells. (A) 
Schematic model of 3'-UTR of PTEN gene. (B) A dual luciferase reporter assay was performed with UM-UC-2 cells 
stably expressing the miR-130 family. The cells were transfected with a reporter plasmid containing predicted 
miR-130 family binding site in the PTEN 3’-UTR. (C) Western blot analysis of PTEN in UM-UC-2 cells stably 
expressing the miR-130 family. Data are mean ± S.D. of five independent experiments. ***p<0.001. 

 

  一方でタンパク質レベルにおいてはmiR-301a, miR-301b高発現細胞においても発現低

下が認められたため (Fig.10 C), これらのmiRNAに関しては間接的にPTENを下方制御し

ていると推測される. PTENは細胞膜直下に局在することでその安定性並びに活性が向上す

るが27, 30, これはPIP3やインテグリンと共に接着複合体を形成したFAKなどの基質が, 細

胞膜付近に局在するためである. そこでmiR-301a, miR-301bはこの膜局在調節を介して

PTENタンパク質量並びにホスファターゼ活性を抑制している可能性を検証した. miR-130 

family高発現UM-UC-2細胞に対してPTEN免疫細胞染色を行うと, 細胞膜周辺にPTENが 
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Figure. 11 The miR-130 family regulates PTEN localization via its phosphorylation. (A) UM-UC-2 cells stably 

expressing the miR-130 family were stained with anti-PTEN antibody and DAPI (Nucleus). (B) Representative 

images of subcelluµLar localization of PTEN in miR-130 family-stably expressing UM-UC-2 cells. Localization of 

PTEN on cell membrane is indicated by arrowhead. The number of cells in which cell membrane localization of 

PTEN was detectable were counted and are shown as mean ± S.D. of triplicate experiments (>34 cells/view). 

***p<0.001. (C) The cell lysates were immunoblotted with anti-PTEN and anti-Ser380 antibodies, and relative 

expression of phosphorylated PTEN (P-PTEN) is shown as mean ±S.D. of three independent experiments. 

 

局在する細胞が減少していた (Fig.11 A, B). PTEN膜局在メカニズムの一つとしてC末端領

域のリン酸化が知られており, 同領域のリン酸化によってPTENのコンホメーションが変

化すると膜局在が阻害される67. C末端リン酸化部位の一つであるPTEN Ser380について検

討した結果, PTENの膜局在低下と逆相関する形で, PTENのリン酸化が亢進する傾向を認

めた (Fig.11 C). 以上の結果からmiR-130 familyは直接の翻訳阻害のほかにリン酸化を介

した間接的な制御機構によりPTENタンパク質量並びにホスファターゼ活性を抑制してい

ると考えられる. またmiR-130 familyを高発現する5637細胞に対してPTENを過剰発現さ

せたところ, Akt Ser473リン酸化 (Fig.12 A)と細胞遊走能の抑制が確認された (Fig.12 B). 

この時にPTEN免疫染色を行うと確かにPTENの膜局在も上昇していたので, PTENの膜局

在は膀胱癌細胞の細胞運動性抑制に寄与すると考えられる. 一連の結果から, PTENは膀胱

癌におけるmiR-130 familyの重要な下流遺伝子だと推測される. 

  一方でPTENを過剰発現させてもFAKのTyr576リン酸化には影響を与えなかった(Fig.12 

A). FAKの主要なTyrリン酸化部位はTyr407/576/577/871/925が知られているが, これらは

いずれもSrcによってリン酸化修飾を受ける68,69. しかし他の癌と異なり浸潤性膀胱癌にお

いてはSrcの活性が低く6, 実際にmiR-130 family高発現UM-UC-2細胞においてもSrcの

Tyr416リン酸化は検出されなかった (Data not shown). キナーゼの活性化でないとすると

ホスファターゼの機能阻害が原因として推測されるため, PTENが関与している可能性は依

然として高い. PTENがFAKを基質とすることは抗リン酸化Tyr抗体を用いた解析で明らか

となったため, 標的とするアミノ酸残基の同定までには至っていない66. 以上の結果を踏ま

えると, FAKのTyr576以外のリン酸化部位が標的となっている可能性は大いに考えられる.  
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Figure. 12 Transient expression of PTEN suppresses 5637 cell migration.  

One μg pcDNA 3.0 (Empty) or pcDNA 3.0-PTEN (PTEN) vectors were transfected into 5637 cells. The following 

experiments were performed 72 h after transfection: (A) Western blot analysis of PTEN,  Akt,  FAK and their 

phosphorylated forms using lysates of the transfected 5637 cells. (B) A wound healing assay was performed and 

relative cell migration was shown as mean ± S.D. of triplicate experiments. *p<0 .05. (C) Representative images of 

cell membrane localization of PTEN in transfected 5637 cells. The cells were stained with anti-PTEN antibody 

(PTEN) and 4', 6-Diamidino-2- phenylindole dihydrochloride (DAPI,  Nucleus). (D) The number of cells in which 

cell membrane localization of PTEN was detectable (indicated by arrowheads in (C)),  was counted. Data are mean 

± S.D. of triplicate experiments (> 27 cells /view). **p<0.01.  

 

第3節 PTPN11/SHP-2のmiR-130 family標的遺伝子としての評価 

 

 第 1 節で PTEN が miR-130b の標的遺伝子であることが解明されたが, 個別の遺伝子に

焦点を当てた解析では miR-301a, miR-301b の標的遺伝子は特定することができなかった. 

個々のmiRNAが有する膨大な標的遺伝子群にアプローチするために, 網羅的解析手法を駆

使して新たな標的遺伝子の探索を試みた. miRNA は Argonaute2 を含むタンパク質と共に

RNA-induced silencing complex (RISC)を形成して機能するため 70, Ago2 抗体を用いた免

疫沈降によって miRNA が標的とする mRNA を包括的に精製することが可能である 63. 本

研究においては臨床検体で最も高い発現量を示し , また顕著な表現型を示している

miR-301b 高発現細胞を使用して Ago2 免疫沈降を行い, 精製した mRNA に対して Gene 

array 解析を行った. 解析結果を用いて GO 解析を行うと, Actin や Cytoskeleton といった

細胞骨格関連のTermが上位にピックアップされ, 確かにmiR-301bの制御下に骨格再編成
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を担う遺伝子群の存在が示唆された (Fig.13 C).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 13 Argonote2 immunoprecipitation (Ago2 IP)-Genearray analysis 

(A) Quality check of immnoprecipitated endogenous Ago2 in UM-UC-2 cells. (B) Gene array data were classified based on 

fold-change. (C) GO term analysis of genes with changed expression in miR-301b-overexpressing UM-UC-2 cells. 

 

 

 

 

 

 

 

Figure. 14 The predicted target genes of miR-130 family in UM-UC-2 cells 

The fold-change of predicted target genes of each miR-130 family member (A) or miR-130 family (B). (C) 

These potential target genes were summarized in venn diagram.  
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 GO 解析に用いた Gene array 結果から各種標的予測アルゴリズム, 並びに文献調査によ

り個別に注目していた遺伝子を用いて miR-130 family の予測標的を抽出した (Fig.14). そ

の結果 35 種類の候補遺伝子群が抽出され, このうち miR-130 family に共通の標的遺伝子

の中で細胞骨格を制御できる遺伝子は ARHGAP12 と PTPN11/SHP-2 であった . 

ARHGAP12 は Rac1 指向性の GAP (GTPase Activating Protein)であるが 71, 同遺伝子の

3'-UTR を用いて miR-130 family 過剰発現 UM-UC-2 細胞において Dual-luciferase 

reporter assay を行っても, miR-130 family による翻訳阻害は観察されなかった(Data not 

shown). 他方 PTPN11/SHP-2 (Tyrosine-protein phosphatase non-receptor type 11)は

癌遺伝子/癌抑制遺伝子のいずれとしても機能できる二面性のある遺伝子であり 72, FAK に

対してホスファターゼ活性を示すことも知られている 73. 以上の理由から同遺伝子に対し

てもレポーターコンストラクトを作製して Dual-luciferase reporter assay (Fig.15 A, B), 

並びにウエスタンブロット解析 (Fig.15 C)を行うと, PTPN11/SHP-2 は miR-130b 及び

miR-301b の標的遺伝子であることが明らかとなった.  

 

Figure. 15 PTPN11/SHP-2 
is a direct target gene of 
miR-130b and miR-301b (A) 
Schematic model of 3'-UTR 
of PTPN11 gene.  (B) A 
dual luciferase reporter 
assay was performed with 
UM-UC-2 cells stably 
expressing the miR-130 
family. The cells were 
transfected with a reporter 
plasmid containing a 
predicted miR-130 family 
binding site in the PTPN11 
3’-UTR. (C) Western blot 
analysis of SHP-2 in 
UM-UC-2 cells stably 
expressing miR-130 family. 
(D) Focal adhesion 
formation was observed by 
FAK staining at leading 
edge of cell migration. Data 
are mean ± S.D. of five 
independent experiments. 
*p<0.05. 
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 PTPN11/SHP-2 はその機能阻害変異体の導入によりストレスファイバーの形成並びに接

着斑形成の促進が報告されているが 74, miR-130 family高発現UM-UC-2細胞においても細

胞遊走時に接着斑の形成促進が認められた (Fig.15 D). 以上の結果から膀胱癌においても

miR-130 family の制御下で細胞骨格再編成に寄与している可能性が示唆された.  

 

第4節 膀胱癌臨床検体におけるPTENとPTPN11/SHP-2の免疫組織化学 

 

 ここまでの in vitro機能解析結果が臨床的に意義のあるものか判断するために, 膀胱癌臨

床検体を用いてPTEN並びにPTPN11/SHP-2の免疫組織化学を行った. 12例の膀胱癌臨床

検体のmiR-130 family発現量をRT-PCRにより測定し, 高低 3例ずつを選出した (Fig. 16 

A, B). 免疫染色の結果, 両因子共に miR-130 family 低発現群で茶色に染色されたタンパク

質が観察でき, 逆に高発現検体ではその染色像が減弱していた. 両タンパク質共に

miR-130 family 発現量が最も低い Patient①ではその傾向は特に顕著であり (Fig. 16 C), 

臨床レベルにおいても in vitro 機能解析の結果を支持する結果となった. 

 

 
Figure. 16 Immunohistochemistry of PTEN and PTPN11/SHP-2 in bladder cancer clinical samples. 

(A) Clinical information of bladder cancer specimens for immunohistochemistry. mRNA expresseion of miR-130 

family determined by RT-PCR (B) and the protein expression of PTEN or PTPN11/SHP-2 determined by 

immunohistochemical staining (C) in bladder cancer clinical samples are shown.  
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第5節 小括 

 

 本章では膀胱癌における miR-130 family の標的遺伝子を探索し , PTEN と

PTPN11/SHP-2 という 2 つのホスファターゼを同定するに至った. 興味深いことに, これ

らのホスファターゼは協調的に機能しているという報告もいくつか存在する. 例えば前立

腺特異的 PTEN ノックアウトマウスにおいては PTPN11 発現低下が観察されており, 前立

腺癌症例においても, PTEN と PTPN11/SHP-2 両方の低発現症例は高発現症例と比較して

予後不良であることが示されている. これは PTEN/PTPN11 発現低下によって誘導された

SASP (Senescence-Associated Secretory Phenotype)に起因すると考えられている 75. 他に

も骨肉腫細胞株においてこれらのホスファターゼが Rb/E2F 依存的なアポトーシスを促進

することも報告されており 76, miR-130 familyがPTENとPTPN11/SHP-2を同時に標的と

することは, 膀胱癌進展においても何らかの生理学的意義を持つことが推測される.  

 第 2 節において miR-130 family が PTEN のリン酸化を介して膜局在を調節するという

結果を得たが, PTEN の Ser380を標的とするリン酸化酵素は PICT-1 と ROCK1/2 であるこ

とが報告されている 64. このうち ROCK1/2 は RhoA により活性化されるが , 

PTPN11/SHP-2 は RhoA を抑制できることが示されている 77. つまり miR-130 family が

PTPN11/SHP-2 の翻訳阻害を介して ROCK1/2 を活性化し, PTEN の Ser380リン酸化が亢

進したと推測される. 実際に, miR-130 family 過剰発現 UM-UC-2 細胞における PTEN の

リン酸化亢進と膜局在性の低下は miR-130b と miR-301b とで特に顕著であり(Fig. 11), こ

れらは PTPN11/SHP-2 を直接翻訳阻害する miRNA である. 先述した知見のように, 膀胱

癌においてもPTENとPTPN11/SHP-2が協調的に機能することで, 膀胱癌悪性化に寄与し

ている可能性は高い.  
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第 4 章 miR-130 family の seed-targeting LNA 創製と機能解析 

 ここまでの解析から, miR-130 family を構成する miRNA いずれもが oncomiR として機

能することが示された. 従って膀胱癌の新規治療標的として適切な分子であると考えられ

るが, 臨床応用にはそれぞれの miR-130 family 分子に対するアンチセンスオリゴヌクレオ

チド 3種類の併用が必要である. このため投与量の増加とそれに伴う副作用が懸念され, 医

療経済の観点からも薬価の上昇はデメリットとなる. そこで miR-130 family が共通した配

列を有するという特徴を利用し, miR-130 family を単独の核酸分子で同時に阻害できない

かとの着想に至った. ヒトで保存されているmiRNA-familyの約半数が 2種以上のmiRNA

から構成されており 20, その seed 配列を標的とすることで機能的に重複している miRNA

群を同時に阻害できる可能性は, 以前から指摘されていた. このコンセプトは Kauppinen

らによって最初に立証され 78, miRNA の seed 配列に相補的な 7-8 塩基長の LNA (Locked 

Nucleic Acid)を用いて miR-221/222, let-7 family の包括的抑制を達成している. このよう

な ''seed-targeting LNA'' の有効性は miR-3419, miR-1579, miR-3380 といった他の

miRNA-familyにおいても示されており, 単独の阻害剤よりも高い薬効を示している. 以上

の知見から miR-130 family に対しても seed-targeting LNA を作製し, 膀胱癌細胞に対す

る新規核酸医薬品としての可能性を in vitro / in vivo 両面から評価した.  

 

第1節 実験材料・実験方法 

 

LNA (Locked Nucleic Acid)の合成 

 使用したControl/miR-130 family seed-targeting LNA は 8-merすべてが LNA 骨格であ

り, ホスホジエステル (PO)結合をホスホロチオエート (PS)結合に置換したアンチセンス

オリゴヌクレオチドとしてジーンデザインに合成委託した.  

Primer 

 

 

 

 

Locked Nucleic Acid Sequence 

Control TCATACTA 

miR-130 family seed-targeting LNA ATTGCACT 

 

Sequence

Sense 5'-CTAGCGGCCGCTAGTTGGTTCACATCCTACCCCTTTGCACTTG-3'

Antisense 5'-TCGACAAGTGCAAAGGGGTAGGATGTGAACCAACTAGCGGCCGCTAGAGCT-3'

5'-CAGTGCAATGTTAAAAGGGCAT-3'

5'- TAGTGCAATATTGCTTATAGGGT-3'   hsa-miR-454-3p

Target gene

Human PTEN

Entire 3'UTR

   hsa-miR-130a-3p

Plasmid作製, トランスフェクション, Dual-luciferase reporter assay, Wound healing 

assay, 細胞免疫染色 

 第2章と同様の手法で行った. LNAは終濃度50 nMでフォワード法で導入した. またPTEN 

Entire 3'-UTRのクローニングには, 機能阻害実験にも使用した細胞株である5637細胞の

cDNAを用いた.  
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In vivo xenograft model 

  miR-130 family seed-targeting LNA が機能することが確認されている 5637 細胞を用い

て皮下腫瘍を作製した. 5637 細胞 (1×107 cells / mouse)を等量の serum free RPMI-1640

に懸濁し, これをMatrigel® Matrix High Concentration (Corning®)と1:1となるように混

合したものを 8 週齢雌の BALB/c nu-nu マウス 20 匹に対して皮下移植した. 約 1 か月後に

腫瘍増大を観察したマウスのから腫瘍体積上位 10 匹のマウスを選別, 平均腫瘍体積が同等

になるように 2 つのグループ (n=5)に分類した. LNA の優れた安定性とヌクレアーゼ耐性

を考慮し, 投与は週 1 回 (Day 1, 7, 14, 21)実施した. 投与担体には AteloGene® Local Use 

(KOKEN)を使用し, 2 nmol / mouseとなるように調整した in vivoグレードの LNA (HPLC

精製, ジーンデザイン社より購入)を使用した. AteloGene® Local Use：LNA 混合液 200 µL

を 100µL ずつ 2 か所から腫瘍周囲にラッピング法により投与した.  

 

第 2 節 miR-130 family seed-targeting LNA のデザインと作用評価 

 

 過去の報告から, seed-targeting LNAのデザインにおいては標的miRNAの 2-9塩基目に

相補的な配列が, 最も効率的に標的miRNAを機能阻害することが明らかとなっている 17, 39. 

miRNA は標的 mRNA との完全相補でなくとも翻訳阻害を行うことが可能であるが, seed

配列のみはパーフェクトマッチが要求される. Target scan や miRDB などの標的予測アル

ゴリズムも, miRNA の seed 配列と標的 mRNA とのパーフェクトマッチを必須条件として

いる. この条件設定により標的探索の擬陽性が大幅に低下することが知られており 11, レポ

ーターアッセイでも seed 配列を含まない LNA は miRNA の阻害効率が著しく低下する 78. 

また過去のLNAスクリーニングの報告においても, 最も効率的にmiRNA-familyを包括的

に抑制した領域は miRNA の 2-9 塩基までであったため 80, 本研究においても miR-130 

family の 2-9 塩基に相補的な LNA を設計した (Fig.17 A).  

 

 

 

 

 

 

 

 

 

 

 

 

  Dual-luciferase reporter assay によってこの

LNA が 5637 細胞の内在性 miR-130 family のいず

れもを阻害することが確認されたので (Fig.17 B), 

第 3 節以降ではこの LNA を用いて膀胱癌細胞に対

する機能解析を実施することとした.  

 

 

Figure. 17 Design and functional verification of seed-targeting 

LNA in 5637 bladder cancer cells. 

(A) Seed-targeting LNA complementary to nucleotides 2-9 

containing a common seed region of the miR-130 family was 

designed. (B) MiR-130 family reporter vectors containing 

perfectly matched target sites of miR-130b,  miR-301a or 

miR-301b (50 ng) were cotransfected with 50 nM miR-130 

family-targeted LNA or negative control LNA into 5637 cells. 

Luciferase activity was determined using a Dual reporter assay 

system. Data are mean ± S.D. of more than three independent 

experiments. *p<0.05, **p<0.01.  
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第 3 節 miR-130 family seed-targeting LNA の表現型解析 

  

 第 2 章と同様に 5637 細胞における LNA の表現型解析を実施した結果, 正常様膀胱細胞

株 SV-HUC-1 細胞の細胞増殖能に対しては影響を与えずに (Fig.18 A), 5637 細胞の細胞増

殖能 (Fig.18 B), 細胞遊走能 (Fig.18 C), 細胞浸潤能 (Fig.18 D)をいずれも顕著に抑制し

た. 特に単独阻害剤では 40%程度しか抑制されなかった細胞浸潤能に関しては (Fig.4 B), 

miR-130 family seed-targeting LNA により 80%近くまで抑制されていた (Fig.18 D).  

 増殖能が低下した理由は定かではないが, miR-130 family には seed 配列が共通した

miR-130a と miR-454 が存在している (Fig.19 A). これらの miRNA はいずれも oncomiR

として細胞増殖亢進に寄与することが知られており 42, 43, 5637 細胞でもその発現が認めら

れる (Fig.19 B). 特に 5637 細胞における miR-454 の SV-HUC-1 細胞に対する相対発現量

は最も高く, seed 領域以外の配列もユニークである. このため他の family member とは異

なる標的遺伝子セットを有している可能性が高く, seed-targetingによってmiR-454も標的

とされたことで, 増殖抑制作用を示した可能性が考えられる.  

 
Figure. 18 miR-130 family-targeted LNA suppresses 5637 cell growth,  migration,  and invasion The effect of 

miR-130 family-targeted LNA on SV-HUC-1 (A) or 5637 (B) cell growth was measured by a WST-1 assay. (C) Cell 

migration was determined using a wound healing assay. The wound was formed by scraping at 60 h after 

transfection and then relative cell migration was measured after 12 h. (D) The invasion assay was performed using 

the xCELLigence real-time cell monitoring system at 72 h after transfection. In all experiments,  50 nM miR-130 

family-targeted LNA was transfected. Data are mean ± S.D. of four (A), nine(B), or three (C) independent 

experiments. **p<0.01, ***p<0.001.  
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 表現型に加えてこれまでに観察されたストレスファイバー形成やFAKとAktリン酸化レ

ベルの低下も観察でき (Fig.20), 微弱ではあるが LNA 単独で PTEN と PTPN11/SHP-2に

対する翻訳阻害の抑制 (Fig.21 A, B)と, タンパク質発現の回復も観察できた (Fig.21 C, D 

Left panel). miRIDIAN Hairpin Inhibitor を 3 種類同時に導入した場合でもこれらのタン

パク質の発現回復が観察されていることから (Fig.21 C, D Right panel), seed-targeting 

LNA は単独で miR-130 family の同時阻害と同等の作用を有していることが示唆された.  

 

Figure. 20 Effect of miR-130 family-targeted LNA on stress fiber formation and phosphorylation of FAK and Akt in 

5637 cells (A) Stress fiber formation was observed by F-actin staining with phalloidin. (B) Phosphorylation of FAK 

at Tyr576 and Akt at Ser473 was examined by western blot analysis and these graph showed the relative protein 

expression levels. Densitmetry of each proteins were nomalized to β-actin or dephosphorylated proteins. Data are 

mean ± S.D. of three (B) independent experiments. **p<0.01.  

Figure. 19 The expression levels of 

miR-130a and miR-454 in bladder 

cancer cell lines. 

The sequence (A) and expression 

levels (B) of miR-130 family,  

including miR-130a and miR-454. 

Expression of these miRNAs in 

bladder cancer cell lines was 

measured by RT-PCR in duplicate. 
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第 3 節 miR-130 family seed-targeting LNA の抗腫瘍作用の評価 

  

  最後に miR-130 family seed-targeting LNA が抗腫瘍作用を示すかどうか in vivo 

xenograft モデルを用いて検討を行った (Fig.22 A). 5637 細胞由来の腫瘍に対して, control 

LNA もしくは seed-targeting LNA をアテロコラーゲンを担体として週 1 回投与した.  

 

 

Figure. 22 The miR-130 family seed-targeting LNA suppresses tumor growth in vivo. (A) A schematic diagram of 

experiment schedule.The control or miR-130 family seed-targeting LNA were subcutaneously injected around 5637 

cell-drived tumor. Resected tumor image (B) and tumor weight (D) after the LNA administration experiment. (C) 

Relative tumor volumes are shown in this graph. Tumor volume was calculated by the following formula: tumor 

volume [mm3 ] = (major axis [mm]) × (minor axis [mm])2 × 0.5.  (E) Mice weight was measured at the same day as 

LNA administration. Data are mean ± S.D. of five independent experiments. *p<0.05, ***p<0.01.  

 

Figure. 21 The miR-130 family seed-targeting LNA can de-repress both PTEN and PTPN11/SHP-2 A dual luciferase 

reporter assay was performed in 5637 cells. The cells were co-transfected with LNA and reporter plasmid containing 

the predicted miR-130 family binding site in the PTEN (A) or PTPN11 (B) 3’-UTR. Protein expression levels of both 

PTEN (C) and PTPN11(D) were evaluated by western blot analysis using seed-targeting LNA or miRIDIAN Hairpin 

Inhibitor-transfected 5637 cell lysate. Data are mean ± S.D. of six (A) and twelve(B) independent experiments. 

*p<0.05, ***p<0.001.  
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その結果, 相対腫瘍体積の有意な低下が観察され (Fig.22 B), 摘出腫瘍重量の低下傾向も

認られた (Fig.22 C). Seed-targeting LNA 投与群において若干の体重低下を認めたが 

(Fig.22 E), 臨床応用に際しては経尿道的投与を想定している. SV-HUC-1 細胞に対して増

殖抑制作用を示さないことからも (Fig.18 A), この投与方式であれば副作用は誘導されな

いと考えられる. しかしながら血中投与された核酸医薬は肝臓と腎臓へ集積する性質があ

る. このため尿管を経由して腎臓に移行する可能性は考慮されるべきであり, 標的とする

miRNA の取捨選択が必要かもしれない. Genecards に示される RNA-Seq のデータでは, 

miR-130b のみは正常腎臓においても発現が認められる. miR-130b の膀胱癌細胞における

表現型は他の miR-130 family member に比較すると微弱であるため, これを除外した

miR-301a/b targeting LNA の設計が解決策の一つと考えられる.  

 

第 4 節 小括 

 

  本章では miR-130 family 同時阻害を目的に seed-targeting LNA をデザインし, その

miR-130 family の阻害効率の評価と膀胱癌細胞に対する表現型解析を行った. その結果

miR-130 family member全てを単独で阻害し, 個々のmiR-130 family member阻害時に観

察された表現型を単独で誘導できることも示された. 加えて本研究で同定された miR-130 

familyの膀胱癌における標的遺伝子であるPTEN, 並びにPTPN11/SHP-2の両方の翻訳阻

害を回復させることも示された. miR-130 family を治療標的とする場合, LNA による

Loss-of-function 以外にも転写レベルで制御する戦略も考えられる. しかしながら第 1 章の

小括で述べたように, miR-130 family はそれぞれ固有の発現誘導機構を有すると推測され

る. Genomic localization が miR-301a と miR-130b/301b とで異なっていること (Fig.2 B)

も, この仮説を支持している. つまり family 分子を同時に抑えるには転写を調節するより

も生成後に LNA で capture する戦略の方が適していると考えられ, seed-targeting LNA が

family 分子全体を阻害できる点は極めて好ましい結果である. 以上の結果から, 膀胱癌に

おいても seed-targeting という概念を適用することで, miRNA 阻害効果を増強できる可能

性が示唆された. 

 8-merという短鎖長LNA (tiny LNA)ではその配列のバリエーションは理論上 48 =65,536

種となるが, この数ではヒトゲノムの 30 億塩基対を上回ることができないため, off-target

効果が懸念される. しかし配列内に DNA を有する LNA gapmer や siRNA と異なり, 全塩

基がLNA骨格で構成される tiny LNAは標的mRNAに対して切断活性を示さない 39. Obad

らは Luciferase 遺伝子を標的とする LNA gapmer, siRNA, tiny LNA を用いた Dual 

luciferase reporter assayを行い, tiny LNAがLuciferase activityを低下させないことを示

している. 加えて iTRAQ による網羅的解析により, tiny LNA 結合配列を有する mRNA に

対しては翻訳阻害を誘導しないことも確認している. 以上の報告から, 理論上は tiny LNA

の off-target効果は十分に無視できるレベルだと考えらえている. しかし本研究においては, 

増殖抑制作用など miR-130 family seed-targeting LNA のみで観察された表現型もあるた
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め, 非特異作用を in silico で検討した. まず seed-targeting LNA の相補配列である

''AGTGCAAT''を有する 1417 個の mRNA を , 統合遺伝子検索プログラム GGRNA 

(https://ggrna.dbcls.jp/ja/)を用いて抽出した. Seed-targeting LNA が非特異的に結合しう

るこの遺伝子セットが, どのようなシグナル伝達経路に属するのかをDAVIDを用いて推定

した. KEGG pathway 解析の結果, '' Pathways in cancer '' や Cell cycle''といった腫瘍関連

シグナル伝達経路が浮上しており, seed-targeting LNA のみで観察された細胞増殖抑制作

用はこういった off-target に起因する可能性は否定できない.  

 この問題に関しては前述した miR-301a/b targeting LNA の創製が打開策となると考え

ている. アルゴリズム (Exiqon 社：LNATM Oligo Tm Prediction, https://www.exiqon.com/ 

ls/Pages/ExiqonTMPredictionTool.aspx)による推定値ではあるが, 本研究で用いた 8-mer 

seed-targeting LNA の RNA に対する Tm 値は 55℃であり, 標的に対する親和性は決して

高くない. これは miR-130 family の seed 配列が AT リッチであることに起因するが, 配列

を延長した miR-301a/b targeting LNA をデザインすることで, off-target 効果の低下と

on-target 効果の向上を同時に達成できる可能性がある. 核酸塩基長と細胞への取り込み効

率はトレードオフの関係にあるため, 塩基長が長すぎると DDS 効率に問題が生じる. 

GGRNAによってoff-target効果を推定すると, 16-merであれば非特異的に結合する遺伝子

数は 0 個となることが分かった. 16-mer への延長によって Tm 値の推定値も 80℃まで上昇

することから, 標的特異性は多分に向上することが期待される. HCV 治療薬として臨床試

験が進行中の antimiR-122 (Miravirsen)83が 15-merであることからも, in vivoで薬効を示

すのに問題がない塩基長だと考える. 本研究において miR-130 family seed-targeting LNA

の膀胱癌治療薬としてのポテンシャルを示すことができた. 今後は本項で述べたような標

的配列のスクリーニングや核酸修飾の最適化といった, 核酸医薬としてのブラッシュアッ

プが重要な課題となってくるだろう.  
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総括 

 本研究により miR-130 family が膀胱癌細胞株において, PTEN と PTPN11/SHP-2 とい

う 2 種類のホスファターゼを標的とすることが解明された. PTPN11/SHP-2 の膀胱癌にお

ける機能はほとんど解明されていないが, 肝臓癌や前立腺癌での癌抑制的な機能を考慮す

ると, 膀胱癌においても癌抑制遺伝子として機能している可能性は十分考えられる 72. また

PTEN は膀胱癌悪性化と密接に関与していることが知られている. 浸潤性膀胱癌において

は PTEN が抑制する PI3K/Akt シグナル伝達経路の恒常的活性化が全体の 72％で観察され

ているほか 84, 膀胱癌の Two-pathway モデルにおいても PTEN 不活性化が pT1 から浸潤

性膀胱癌 (≥pT2)へのトリガーとなることが示されている 6. これは miR-130 family が浸潤

度あるいは異形度の上昇に伴い発現上昇が見られた点と符合しており, PTEN を抑制する

ことで膀胱癌悪性化に寄与していると推測される. 膀胱癌においてメチル化による PTEN

のサイレンシングは検出されておらず 85, LOH も膀胱癌全体で 16%程度に過ぎない 86. つ

まり miRNA によって抑制されている PTEN も十分存在すると考えられ, miR-130 family

阻害による発現回復も十分期待できる.  

 一方で PTEN と PTPN11/SHP-2 も miR-130 family 標的遺伝子の一部に過ぎず, 他にも

Rac1 抑制を介してストレスファイバー形成並びに遊走能を阻害する TSC187, EMT を抑制

する Smad4 88 並びに RUNX3 89 など, 本研究で得られた表現型を制御しうる miR-130 

family 標的候補遺伝子は多数存在する. 本研究では新規性の観点から細胞骨格に焦点を当

てて解析を進めたが, miR-130 family が EMT を制御する可能性も十分に考えられる. 

miR-130 family の標的候補遺伝子上位 600 位を用いた KEGG pathway 解析において, い

ずれのmiRNAにおいても TGF-β/Wnt/Gap junctionといったEMT関連のシグナル伝達経

路もピックアップされている. 前述したEMT関連の標的候補遺伝子の解析を進めることで, 

より詳細な miR-130 family の運動性亢進メカニズムが解明されるだろう. このように

miRNA は多様な標的遺伝子を有するため, miRNA のシグナル伝達解析は非常に複雑なも

のになる. こうした複雑性にアプローチするために Ago2 免疫沈降と Gene array 解析を組

み合わせた網羅的遺伝子発現解析を実施, 新規標的遺伝子として PTPN11/SHP-2 を同定す

るに至った. 近年の miRNA 研究においては個別標的遺伝子だけでなく, 網羅的視点から多

数の標的遺伝子群にも焦点を当てて議論することが常識となりつつある 90. 標的候補遺伝

子の mRNA のみを抽出するトランスクリプトーム解析手法を構築できたことも, 本研究の

大きな成果だと考えている. 今後はSILACや iTRAQによるプロテオーム解析も行い, トラ

ンスクリプトーム解析と統合したマクロな視点から結果を解釈すべきだろう. こうした網

羅的解析結果から miR-130 family の標的遺伝子群を抽出, 発現変動を全遺伝子群と比較す

るといったバイオインフォマティクス的な解析手法を駆使することで, より高精度に

miR-130 family の機能の全体像にアプローチできることが期待される.  

 これまでの膀胱癌における miRNA-family の研究は miR-200 family の発現低下が EMT
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を引き起こすという tumor suppressor miRNA の報告のみであり 17, oncomiR-family とし

ての報告は miR-130 family が世界初となる. miR-200 family の臨床応用を考えた場合, 

miRNA の mimic を補充する戦略となるが, 2 本鎖 miRNA mimic は非特異的なインターフ

ェロン応答を引き起こすという問題点がある 91. この問題は近年開発された pH応答性リポ

ソームの一種である neutral lipid emulsion (NLE)を利用し, 癌周辺の低 pH 環境での細胞

取り込みを促進させることで回避できる 92. NLE は pH7~7.5 である生体内では負電荷を帯

びるため細胞膜との融合が起こらないが, 酸性条件下では正電荷へと変化することで効率

的に細胞に取り込まれる. NLE を DDS キャリアとすることで, 非特異的なインターフェロ

ン応答を誘導せずにmiRNA mimicの腫瘍部位への送達が可能となる 93. しかしながら生理

的条件下と乖離した過剰量の miRNA を誘導してしまう可能性は依然として排除できず 94, 

本来標的でない遺伝子まで翻訳阻害してしまうリスクを考慮すると 95, 発現上昇している

oncomiR をアンチセンスオリゴヌクレオチドによって抑制する Loss-of-function の方が優

れた治療戦略だと考えられる. 何よりも Gain-of-function で miRNA-family を補充する場

合, それぞれのmiRNA mimicを別個に導入する必要があるため, 配列相同性と機能的重複

を有するといった miRNA-family の利点が活かせない. こうした事実からも, 膀胱癌で発

現上昇するmiR-130 familyいずれもがoncomiRとして機能することは, 治療標的として極

めて重要なアドバンテージと言えるだろう.  

 現在臨床試験段階にある膀胱癌治療薬は PI3K/Akt 並びに mTOR シグナルを標的とする

低分子化合物が多く 96, miR-130 family seed-targeting LNA が同シグナルを抑制できる点

は好ましい. 近年では PI3K/mTOR (NVP-BEZ235)97や mTORC1/mTORC2 (MLN0128)98

といった Dual targeting inhibitor の有効性も示されている. また浸潤性膀胱癌の 10-15%

程度では PI3K/Akt シグナルのみならず Ras 変異依存的な MEK シグナルの活性化も検出

されるが, PI3K/mTOR 阻害剤 (PF-04691502)とMEK阻害剤 (PD-0325901)の共処理によ

り, PDXモデルに対して顕著な抗腫瘍作用を示したという報告も存在する 99. このように浸

潤性膀胱癌の治療のおいては, 単一分子あるいはシグナル伝達経路を標的とするのではな

く, 複数のシグナルを同時に標的とする治療戦略の有効性が蓄積されつつある. これは多

様な標的遺伝子あるいはシグナル伝達経路を制御できる miRNA の特徴と合致するもので

あり, 膀胱癌治療標的としての miR-130 family の優位性に繋がると考える.  

 このように miR-130 family は治療標的として魅力的な分子ではあるが, 解決すべき課題

も残されている. 本解析により得られた知見は RNA 骨格の阻害剤である miRIDIAN 

Hairpin Inhibitor と LNA 骨格でデザインされた seed-targeting LNA とを比較した解析結

果である. 阻害剤自体の安定性並びにヌクレアーゼ耐性が異なっているため, その強力な

運動能抑制作用や抗腫瘍作用は単にLNAの有する高い安定性と結合力に起因している可能

性は否定できない. 今後は PS 修飾された LNA 骨格を有する antimiR-130b, -301a, -301b

を作製し, seed-targeting LNA と比較検討する実験が必要であろう. また miR-130 family

の機能の本質は運動性亢進であることから, in vivo 薬効評価は転移モデルで実施するべき
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である. しかしながら 5637 細胞での転移モデルの報告は癌細胞の尾静脈注射による肺転移

モデル 1 例のみであり 100, ヌードマウスへの転移巣形成能力は乏しい. また本モデルは癌

細胞が血管外遊出した後, つまり癌転移の後期段階に対する評価系であり, 癌細胞が膀胱

周囲に浸潤していく転移の初期段階を観察する評価系としては不適当である. 事実, 

miR-130 family 過剰発現 UM-UC-2 細胞を用いて尾静脈注射による肺転移モデルでの転移

能評価を行ったが, miR-130 family 過剰発現による転移巣数の上昇は観察できなかった

(Data not shown). 以上の知見を考慮すると, 膀胱癌細胞の同所性移植モデルを利用して, 

原発巣から膀胱周囲へ浸潤していく様子を再現可能な in vivo 浸潤モデルの樹立が必要で

ある. しかし膀胱への良好な生着率を示す UM-UC-3 細胞においては内在性 miR-130 

family を高発現するものの, レポーターアッセイでその翻訳阻害が確認できていないため 

(Data not shown), miR-130 family seed-targeting LNA の機能評価には利用できない. 膀

胱に生着可能かつ内在性 miR-130 family が機能している膀胱癌細胞株の探索と, in vivo 浸

潤評価モデルの樹立が急務である. この評価系に対して LNA 骨格を有する antimiR-130b, 

-301a, -301b と seed-targeting LNA 投与し, 浸潤抑制能力の比較検討がなされれば, 

miR-130 family を標的とした核酸創薬に繋がると考える.  

 本研究により膀胱癌における oncomiR-family として miR-130 family とその標的遺伝子

を同定し, 更に同 familyに対する seed-targeting LNAが膀胱癌においても有効である可能

性が示唆された (Fig.23). 先に示した課題は残るが, 本研究が 20 余年間停滞していた膀胱

癌治療の発展と一助となることを願ってやまない.  

 
Figure. 23 Summary of the miR-130 family function as an oncomiR-family in bladder cancer. 
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結論 

 本研究により以下の結果を得た.  

 

1． 腎盂尿管癌並びに膀胱癌臨床検体においてmiR-210と, miR-130b, miR-301a, 

miR-301bを含むmiR-130 familyが非癌部よりも癌部で高発現し, 更に浸潤度や異形度

の進展に伴い発現上昇することが解明された. (第1章) 

 

2． miR-130 familyは膀胱癌細胞の運動性亢進に寄与しており, ストレスファイバー形成

促進やFAKとAktのリン酸化レベルの亢進, 並びにMMP-9タンパク質発現上昇がその

分子メカニズムの一端であることが示された. (第2章) 

 

3． 膀胱癌細胞株においてmiR-130bはPTENとPTPN11/SHP-2を, miR-301bは

PTPN11/SHP-2を直接の標的遺伝子とすることが解明された. (第3章) 

 

4． miR-130 family seed-targeting LNAは各miRNA個別阻害による表現型を単独で誘導

し, 更にin vivo xenograft modelに対して抗腫瘍作用を示した. (第4章) 
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