

Title	Adiponectin多量体形成の構造基盤
Author(s)	多久和,綾子
Citation	大阪大学, 2016, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/56170
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Adiponectin 多量体形成の構造基盤

2015年

多久和 綾子

次

序論	1
本論	5
第一章 三重らせん構造の安定性に対する各修飾の影響	5
第一節:実験	6
第二節:結果と考察	9
第二章 翻訳後修飾の多量体形成能への影響	22
第一節:実験	22
第二節:結果と考察	23
第三章 VC ペプチド 18 量体の構造解析	29
第一節:実験	29
第二節:結果と考察	30
結語	37
謝辞	39
参考文献	40
主論文	45
参考論文	45

近年、栄養状態の改善による肥満者の増加が世界的に問題視されている。1980年から 2013年にかけて BMI(Body Mass Index)が 25以上の過体重者が世界の人口に占める割合は、男性で 28.8%から 36.9%へ、女性で 29.8%から 38.0%へ増加している(1)。 肥満者の増加に伴い、肥満がリスクファクターとなりうる疾患の患者数も増加傾向にある。こうした疾患には、高血圧や2型糖尿病、脂質異常症など、動脈硬化の原因となりうるさまざまな疾患が含まれる。肥満の中でも内臓脂肪型肥満がこれら疾患の発症・進行の原因となっていることから、内臓脂肪型肥満に加えて血糖・血圧・血清脂質の異常を含む複数の症状が併発した状態をメタボリックシンドロームとして捉え、その予防の気運が高まっている。日本では腹囲の測定という一般にも理解しやすい基準による診断が実施されており、メタボリックシンドロームの問題が広く認知されるようになってきた。

これらの肥満関連疾患の新たな予防・診断および治療の鍵分子として、adiponectin が注目されている。Adiponectin は、脂肪組織から分泌されるホルモン:アディポサイ トカインのひとつとして、1995 年から 1996 年にかけて複数のグループによってほぼ 同時に報告された(2-5)。アディポサイトカインにはレジスチンや TNF-a といった、イ ンスリン抵抗性や動脈硬化を亢進させるものも知られているが、adiponectin はそれら とは反対にインスリン抵抗性の改善作用や抗動脈硬化作用を示すことから、いわゆる善 玉のアディポサイトカインとして関心を集めている。Adiponectin の血中濃度は健常な ヒトの場合 5 µg/mL 前後と比較的血中濃度の高いホルモンであるが、その値は BMI との間に負の相関を持ち、糖尿病などの発症率とも関連していると報告されている(*6*, **7**。これらの事実が、adiponectin がメタボリックシンドロームの治療ターゲットとし て有望視される一因となっている。

Adiponectinはタンパク質であり、その一次配列は、N末端のシグナル配列に続いて、 種間で保存性の低い可変領域、Xaa-Yaa-グリシン(Gly)の繰り返しからなるコラーゲン 様の配列を持つコラーゲン様ドメイン、C末端の球状ドメインの3ドメインによって構 成されている(Figure 1)。シグナル配列は分泌時に切断されると考えられており、ヒト adiponectinの単量体は226アミノ酸残基からなる。実際のヒト血中では、この単量体 が会合して形成された3量体が最小単位となり、6量体、およびさらに大きな HMW(High Molecular Weight multimer)と呼ばれる多量体を形成している(Figure 1)。 Adiponectin の活性はその受容体 AdipoR1 および AdipoR2 を介して発現すると考えら れているが(*8*)、これらの多量体は各受容体への結合活性や、その下流の AMPK 経路の 活性化能が異なることが報告されている(*9, 10*)。中でも、HMW は AMPK 活性化能や、 インスリン抵抗性の改善作用が高く、もっとも活性の高い分子種であると言われている (*9*)。また、血中全 adiponectin のうち、HMW の占める割合も、BMI やインスリン抵 抗性と負の相関を示すことが示され、HMW を形成できない遺伝子変異を有するヒトは 糖尿病を発症するとの報告もある(*11*)。従って、adiponectin の多量体構造および、そ の形成機構を明らかにすることは、その生理機能の理解に欠かせないだけでなく、新た な肥満関連疾患の治療戦略創出に向けた基礎研究としても重要性が高まっている。

Figure 1| Adiponectin の一次配列と多量体形成

Adiponectin 多量体のうち、3 量体形成に重要と考えられる構造基盤は、球状ドメインの3 量体化と、コラーゲン様ドメインによる三重らせん構造形成である。マウス adiponectin 球状ドメインの3 量体の結晶構造では、各単量体は2枚のβシートが重なったいわゆるジェリーロール型トポロジーを形成しているが、単量体間でも水素結合を 介したβシート形成が認められる(12)。また、単量体どうしは密に接触し、疎水性相互 作用により安定化していることがわかる。球状ドメインは単独でも溶液中で自発的に安定な3 量体を形成していることも明らかとなっている。これらの事実から、球状ドメインの3 量体化は adiponectin の3 量体化における主要な駆動力となっていると考えられ る。一方、コラーゲン様ドメインの立体構造は明らかとなっていないが、溶液中で全長 adiponectin におけるコラーゲン様ドメインは三重らせん構造を形成していることが示 唆されており(13)、3量体構造の形成に一定の寄与をしていることが推察される。

3量体を超えた多量体について、6量体は可変領域に存在している保存されたシステ イン残基(ヒト adiponectin では Cys36)が2つの3量体間でジスルフィド結合を形成 することにより形成すると考えられている(14)。HMWの形成に関しても、このシステ イン残基を介したジスルフィド結合を適切に制御することが重要であるとの報告があ る(15,16)。細胞内では合成された adiponectin が小胞体蛋白質 ERp44 とジスルフィド 結合し、次いで酸化還元酵素である Ero1-Laによる酸化反応を経て、adiponectin 分子 どうしがジスルフィド結合によって架橋されると示唆されている(17,18)。またこの過 程にジスルフィド異性化酵素(PDI)ファミリーに属する蛋白質 Dsb-L(GSTk)が関与し ていると言われている(19)。このようにジスルフィド結合は HMW の構造形成過程に関 わっているが、興味深いことに、in vitro で HMW を穏やかに還元してもその会合状態 が保たれることから、一旦形成された HMW 構造の維持には必須でないことが示唆さ れた(15)。また、HMW は pH 変化によって容易に3量体へと解離する(15)。言い換え るならば、HMW の構造形成にはジスルフィド結合以外に非共有結合性の分子間相互作 用が大きく寄与していると考えられる。

この HMW 形成に係わる因子としては、コラーゲン様ドメインにおける翻訳後修飾 が何らかの重要な役割を果たしていることが指摘されてきた。翻訳後修飾としては、こ れまでに質量分析による解析によってコラーゲン様ドメインにおけるプロリン(Pro)残 基のヒドロキシル化、リジン(Lys)残基のヒドロキシル化およびグリコシル化が見出さ れている(20)。また可変領域のスレオニン(Thr)残基がジシアル酸 Neu5Ac a 2eu5Ac EN a 2 およびガラクトースで修飾されているとの報告がある(21)。中でもリジン残基をア ルギニン残基に変異させると HMW 形成が抑制されること等から、リジン残基におけ る修飾が重要であると示唆されている(22, 23)。しかし、これまでの知見は、いずれも 翻訳後修飾の寄与を間接的に示す知見であり、具体的にどのような相互作用メカニズム が存在しているのかについては全くわかっていない。

その理由として、adiponectin が複数のドメインから成り、多様な翻訳後修飾を含む 複雑な分子であること、またそれが故に均一な実験試料を得ることが困難であり、精密 な解析を阻んでいることが挙げられる。そこで筆者は本研究において adiponectin の可 変領域及びコラーゲン様ドメインのみで構成され、均一な翻訳後修飾を含むペプチド試 料を用意し、物理化学的な手法によってその安定性・分子量分布を解析することで、高 次多量体形成に本質的な構造基盤を明らかにすることを試み、その結果を本論文にまと めた。まず第一章では、翻訳後修飾がコラーゲン様ドメインの三重らせん構造の形成と その安定性に対する影響について、主に円偏光二色性(Circular Dichroism: CD)スペク トル解析によって精査した。その結果コラーゲン様ドメインにおける Pro 残基のヒドロ キシル化修飾、Lys 残基の糖鎖修飾がいずれも三重らせん構造の熱安定性を大きく向上 させることを明らかにした。次に第二章では、翻訳後修飾がコラーゲン様ドメインの会 合状態に与える影響を、主に超遠心分析によって詳細に解析し、Lys の糖鎖修飾がコラ ーゲン様ドメインの 18 量体形成に本質的な役割を果たしていることを示した。最後に 第三章において、この 18 量体の構造モデル構築を試み、その安定化メカニズムを推察 した。

本論

第一章 三重らせん構造の安定性に対する各修飾の影響

皮膚や骨などの結合組織を構成する細胞外マトリックスに豊富に存在し、動物のタンパク質のうち多くの割合を占めるコラーゲンは、Xaa-Yaa-Glyの繰り返し配列という特徴的なアミノ酸配列をもつ。また、その二次構造は左巻きのポリプロリン II 型へリックス構造であり、3本のペプチド鎖が会合して全体としてはゆるい右巻きの三重らせん構造をとっている(24, 25)。コラーゲン様の繰り返し配列と同様の二次構造をもったタンパク質は多く存在し、adiponectin はそのひとつとして知られている。コラーゲン三重らせん構造の熱安定性は、鎖長、Xaa/Yaa 部位のアミノ酸残基、およびその修飾に大きく依存することが知られている(26, 27)(Table 1)。前述のとおり、生体内に存在するadiponectin はそのコラーゲン様ドメインにおいて数種類の翻訳後修飾を有していることが知られており、これらは多量体形成だけでなく、二次構造、すなわち三重らせん構造の安定性にも影響を与えている可能性が考えられた。そこで本章では、それぞれの修飾による影響を、adiponectin に由来する配列を持ったペプチドを用いた円偏光二色性(CD)測定により評価した。

	$T_{ m m}$ (°C)
$(Pro - Pro - Gly)_{10}$	31.4
$(Pro - Hyp - Gly)_{10}$	62.2
$(Hyp - Hyp - Gly)_{10}$	64.6
$(Gly - Hyp - Thr)_{10}$	18.0
$(Gly - Hyp - Thr(\beta Gal))_{10}$	50.0

Table 1 | コラーゲンモデルペプチドの三重らせん構造の安定性(25, 26)

Hyp は 4(R)-hydroxyproline

第一節:実験

1-1. サンプルの調製

1-1-1. VC ペプチドの調製

ヒト adiponectin の 19–107 番残基部分のアミノ酸配列を持ち、各種修飾を施した 2 種類のペプチド VC-Hyp₄ と VC-Hyp₄/Ghl₄を設計した。この配列は adiponectin 可変 領域およびコラーゲン様ドメインに相当する。VC-Hyp₄では 4 つの Pro をヒドロキシ ル化して 4(*R*)・ヒドロキシプロリン (4(*R*)-Hyp)とし、VC-Hyp₄/Ghl₄では VC-Hyp₄と同 様の 4 つの 4(*R*)・Hyp に加えて、4 つの保存された Lys を修飾しグルコシルガラクトシ ル ヒ ド ロ キ シ リ ジ ン (*O*[D-glucopyranosyl・ α (1lucoD-galactopyranosyl・ β 1]・hydroxylysine) (Ghl)とした。これらの修飾されたペプチドは固相合成法を用いて合 成した。残基番号 19–35, 36–63, 64–87, 88–107 のフラグメントごとに合成し、それら をネイティブケミカルライゲーション法(*28-30*)(35-36 番残基間)、チオエステル法(*31, 32*)(63-64 番残基間)、アラニンライゲーション(*33*)(87-88 番残基間)によってつなぎ合 わせて全長 89 残基のペプチドとした。得られたペプチドは C18 カラムを用いた逆相 HPLC によって精製した。カラム溶出後のペプチドはトリフルオロ酢酸(TFA)を含む状 態で得られるため、凍結乾燥後一度超純水に溶解し、超純水を外液として透析したのち 再び凍結乾燥して、TFA を除去したペプチドを得た。

修飾のない VC ペプチド(VC)は大腸菌発現系を用いて調製した。チオレドキシンおよび His タグを融合させた adiponectin 可変領域とコラーゲン様ドメインの配列をコードする遺伝子を持った発現ベクターで大腸菌 BL21(DE3)株をトランスフォームし、LB 培地(100 mg/L Ampicillin)中、37 ℃で OD_{660 nm}=0.5 になるまで培養したのち、終濃度 0.2 mM の IPTG を添加して 37 ℃で終夜誘導して目的タンパク質を発現させた。菌体は 20 mM HEPES (pH 7.4), 500 mM NaCl で懸濁して超音波破砕(15 sec 超音波照射/ 2 min 冷却/ 15 cycles)し、遠心分離(16000×g, 50 min)によって沈殿画分を取り除いた。 上清画分を 20 mM HEPES pH 7.4, 500 mM NaCl で平衡化した Ni キレーティングカ ラム(HiTrap Chelating HP 5 mL に Ni を結合させたもの/GE Healthcare)にアプライ して目的タンパク質を吸着させ、imidazole で目的タンパク質を溶出後、TEV プロテア ーゼによりチオレドキシンおよび His タグを切断した。再び Ni キレーティングカラム を用いてタグおよびプロテアーゼを取り除き、10 mM Tris-HCl (pH 7.5), 150 mM NaCl を用いたゲル濾過(Superdex 75 (26/60)/ GE Healthcare)によってさらに精製した。得られたペプチドは超純水を外液として透析したのち凍結乾燥し、乾燥粉末品とし て保存した。

1-1-2. 全長 adiponectin 3 量体の調製

全長ヒト adiponectin 3 量体は大腸菌発現系を用いて調製した。目的配列を発現ベク ターpGEX6p-2 に挿入し、大腸菌株 Rosetta2 をトランスフォームして、adiponectin をGST融合タンパク質として発現する大腸菌とした。Adiponectinの配列中24番目の Gly 残基周辺には今回タグ切断用に用いた酵素である HRV3C プロテアーゼの認識配列 に類似した配列があり、タグ除去の過程において目的部位に加えこの部位での切断が起 こることが判明したため、 今回は 24 番目の Gly 残基をアラニン(Ala)に置換した G24A 変異体として発現するようプラスミドを設計した。LB 培地(50 mg/L ampicillin, 20 mg/mL chloramphenicol)で OD_{660nm}=0.5 まで 37 ℃で培養し、10 ℃に冷却してから終 濃度 0.2 mM の IPTG によって終夜発現誘導した。菌体は 30 mM Tris-HCl (pH 8.5), 150 mM NaCl, 1 mM CaCl₂ で懸濁し、超音波破砕(15 秒超音波照射/2 分冷却/15 回)し たのち、遠心分離によって沈殿画分を取り除いた。上清画分を同緩衝液で平衡化した Glutathione Sepharose 4B(GE Healthcare)に吸着させ、夾雑物を洗い流したのち、 HRV3C プロテアーゼ(Turbo3C/ 和光純薬工業)によってカラム内で GST タグを切断し た。溶出させた adiponectin 溶液は透析によって溶媒を 30 mM Tris-HCl (pH 8.5)に置 換し、陰イオン交換カラム(HiTrap Q HP 5 mL/ GE Healthcare)にアプライし、NaCl グラジエントで溶出した。目的タンパク質の含まれるフラクションを回収および濃縮し、 30 mM Tris-HCl (pH 8.5), 150 mM NaCl で平衡化したゲル濾過カラム(Superdex 75 (16/60)/GE Healthcare)を用いて最終精製を行った。このときクロマトグラムには2つ のピークが見られたため、超遠心沈降速度法により分子量を分析したところ、得られた adiponectin は6量体と3量体を形成していることがわかった。収量は培養液1Lあた りおよそ3 mg (6 量体と3 量体を含む)だった。これらは、分取してもそれぞれの会合 状態を維持していたため、低分子量の成分を分取して全長 adiponectin 3 量体サンプル とした。

1-1-3. Adiponectin HMW のヒト血漿からの精製

Adiponectin HMW は、中野らによって報告された手法を参考にヒト血漿から精製した(34)。ヒト血漿は「献血血液の研究開発等での使用に関する指針」(厚生労働省策定) に基づいて日本赤十字社より入手した。

セルファインホルミルビーズ(チッソ)を 200 mM NaHCO₃ (pH 8.5)中で NaBH₄によって還元し、10 mM Tris-HCl (pH 7.4), 100 mM NaCl, 1 mM CaCl₂ で平衡化した。還

元されたセルファインホルミルはadiponectin HMWと特異的に結合すると言われてい る。ヒト血漿に 0.1 mM PMSF を添加してから遠心分離により清澄化した上清画分に 100 mM NaCl を添加し、平衡化した還元セルファインホルミルにアプライした。血漿 は薄い黄色をしており、これをアプライすると樹脂は黄色味を帯びる。この色が抜け、 もとの白色になるまで同緩衝液で洗浄した。タンパク質は NaCl グラジエント(0.1–2.0 M)で溶出した。各フラクションの総タンパク質量および HMW 濃度を OD_{280 nm} および ヒト高分子アディポネクチン ELISA キット(大塚製薬)を用いて調べ、夾雑物の混入を 少なくするため、総タンパク質量が比較的少なく、HMW が多く含まれる画分を回収し た。10 mM Tris-HCl (pH 8.0), 300 mM NaCl, 1 mM CaCl₂を外液として透析し、10 mM Tris-HCl (pH 8.0), 300 mM NaCl, 1 mM CaCl₂で平衡化した DEAE-Sepharose Fast Flow(GE Healthcare)にアプライした。NaCl グラジエント(0.3–2.0 M)で溶出し、 純度を Blue Native PAGE によって、タンパク質濃度を OD_{280 nm} および ELISA によっ て調べた。超遠心分析により分子量を解析し、均一な 18 量体が得られていることを確 認した。この手法で、血漿 1 L から 0.26 mg の adiponectin HMW が得られた。

1-2. アニーリング

3 種類の VC ペプチド、VC、VC-Hyp4 および VC-Hyp4/Ghl4 は 100 µM の濃度で 10 mM Tris-HCl (pH 7.5), 150 mM NaCl に溶解した。濃度は OD_{280nm} より決定した。溶 液を 50 ℃で 15 分間処理し完全に構造をもたない状態としたのち、室温を経て 4 ℃へ と徐々に冷却していった。その後 4 ℃でインキュベートし、24 時間おきに CD スペク トルを測定して三重らせん構造の形成状態を確認した。

1-3. CD(Circular Dichroism: 円偏光二色性)測定

CD 測定は円二色性分散計 J-720W (JASCO)を用いて行い、測定温度はペルチェ式温 度制御装置 PTC-348W (JASCO)によって制御した。キュベットは、石英製で光路長 1 mm のものを使用した。

CD スペクトルは、210-260 nm の範囲で 0.2 nm おきに測定した。バンド幅 1 nm、 レスポンス 2 sec、スキャンスピード 100 nm/min、積算回数は 16 回とした。得られた スペクトルから溶媒のスペクトルを減算し、平均残基モル楕円率[θ](deg・cm²/dmol)に 変換した。

温度変化測定では、4 ℃における CD スペクトルで観測された正のピークにおいて楕 円率が最大となる波長における楕円率の温度依存性を観測した。昇温速度は 0.5 ℃/min とし、0.1 ℃おきに測定した。得られたデータから溶媒のデータを減算し、平均残基モ ル楕円率[θ]wl(deg・cm²/dmol)(wl:測定波長)に変換した。構造転移が無い場合、平均残 基モル楕円率は温度の一次関数になるとみなせる。従って実際に観測される平均残基モ ル楕円率の温度依存性は、三重らせん構造の温度依存性関数 f(t)(t:温度)および、ラン ダムコイルの温度依存性関数 g(t)の線形結合

 $[\theta]_{wl} = f(t) \cdot a + g(t) \cdot (1-a)$

として表される。各点における a をフォールディング率(三重らせん構造の存在比)としてプロットし、非線形最小二乗法によってロジスティック曲線

$$a = \frac{1}{1 + \exp\{(t - T_m)b\}}$$

としてフィッティングし、 T_m とbを求めた。ここでbは転移の幅を表すパラメータである。 T_m はa = 0.5となるtであり、これを構造転移中点温度とした。

第二節:結果と考察

2-1. ペプチドのデザイン

Adiponectin の多量体形成における各修飾の役割を詳細に分析するために、分子間ジ スルフィド結合を形成する Cys が存在する可変領域と、翻訳後修飾を受けるコラーゲ ン様ドメインの双方を含む、全長 89 残基のペプチド(VC ペプチド)を 2 種類設計した。 これらは修飾の状態に違いがあり、ひとつはコラーゲン様ドメインに存在する 4 つの Pro を 4(*R*)-ヒドロキシプロリン(4(*R*)-Hyp)残基(Figure 2a)にしたもの(VC-Hyp4)、もう ひとつは 4 つの 4(*R*)-Hyp 加えて、同じくコラーゲン様ドメインの 4 つの保存された Lys をグルコシルガラクトシルヒドロキシリジン(Ghl)残基(Figure 2b)にしたもの (VC-Hyp4/Ghl4)である。

Adiponectin の翻訳後修飾を解析した結果としては複数の報告があるが(20-22, 35, 36)、Pro の修飾に関してはそれぞれで異なる残基が修飾されていたと報告されており 統一された見解がないため、いずれの報告でも修飾が確認されている残基のみをヒドロ キシル化することとして該当の4残基を選択した (Figure 3)。Lys の修飾については、 コラーゲン様ドメイン中に複数の種で保存された4つのLys が存在し、そのすべてが ヒドロキシル化およびグリコシル化されると、いずれの報告でも述べられている。以上 の方針に基づいて VC-Hyp4および VC-Hyp4/Ghl4を設計し、ペプチド合成により調製 した。なお、コントロールとして修飾をもたないペプチド VCを、大腸菌発現系を用い て調製した。

Figure 2|4(*R*)-hydroxyproline と *O*-[D-glucopyranosyl-α(1→gluD-galactopyranosylβ1]-hydroxylysine の化学構造

80.....90.....100....107 IGETGVPGAEGPRGFPGIQGRKGEPGEG

T: ジシアル酸と gal による修飾, P:ヒドロキシル化
 K: ヒドロキシル化およびグルコースとガラクトースによるグリコシル化,
 P, K: 複数の報告におけるコンセンサス部位

Figure 3| Adiponectin 可変領域およびコラーゲン様ドメインのアミノ酸配列と翻訳後 修飾

緑色の文字で示す部分が可変領域、黒色で示す部分がコラーゲン様ドメインを示す。 Adiponectin の翻訳後修飾を解析した複数の報告(20-22, 35, 36)のいずれにおいても修飾されて いると報告された残基をコンセンサス部位として、背景色をつけて表す。

2-2. アニーリング

一般的に、コラーゲン様配列を持つペプチドは、その転移温度以下の熱力学的平衡状 態において、自発的に三重らせん構造を形成していると考えられる。しかし、実際の試 料では、準安定構造として誤った構造や会合体を含んでいる、また速度論的な障壁から 十分な三重らせん構造が形成されていない、などの場合がある。従って、コラーゲンの 構造・物性に関する研究では、試料を一度熱変性させた後に除冷する、いわゆるアニー リング操作を行い、三重らせん構造を形成させる手順を必要とする。コラーゲンモデル ペプチドとしてしばしば用いられる(Pro-Pro-Gly)nや(Pro-Hyp-Gly)nといった単純な繰 り返し配列をもつペプチドの場合、溶媒に溶解し、数分から数時間のアニーリングで三 重らせん構造を形成すると考えられている。そこで、今回用いた VC ペプチドについて も、まずは通常用いられるプロトコルに従ってアニーリングを試みた。すなわち、50 ℃ で 15 分インキュベートしたのち、室温を経て 4 ℃に移し 12 時間アニーリングを行っ た。しかし、この時点で CD スペクトルを確認したところ、220 nm 付近に正のピーク がないランダムコイル様のスペクトルを示し、三重らせん構造の形成が確認できなかっ た(Figure 4)。コラーゲン三重らせん構造は 3 本のポリプロリン Ⅱ 型ヘリックスから なり、この二次構造をもつサンプルの CD スペクトルには 220 nm 付近にペプチド結合 の $n \rightarrow \pi^*$ 遷移に由来する正のピークが観測される(Figure 4)。

繰り返し回数が少ない場合など三重らせん構造を形成しないコラーゲンモデルペプ チドも存在するが、VCペプチドの配列は天然由来の比較的長い配列であり、生体内で は三重らせん構造を形成していると考えられているため、構造形成が可能である可能性 が高いと見込み、アニーリング条件の検討を行った。その結果、VCペプチドは三重ら せん構造の形成が非常に遅く、4 ℃での長期のインキュベートにより徐々に構造を形成 していくことが明らかになった。VC について 24 時間おきに CD スペクトルを測定し た結果を Figure 5 に示す。222 nm の正のピークが時間経過にともなって大きくなって いることが確認できた。修飾の有無や種類によって、三重らせん構造形成の速度には違 いがあり、VC-Hyp4/Ghl4が最も速く、次いで VC-Hyp4, VC の順であった。いずれの試 料においても 10 日程度アニーリングを行うことにより、その後の実験を行うのに十分 な割合のペプチドが三重らせん構造を形成すると判断した。

Figure 4| コラーゲン三重らせん構造の CD スペクトル

コラーゲン三重らせん構造を形成したサンプルは、CD スペクトルにポリプロリン II 型ヘリッ クス構造に由来する 220 nm 付近の正のピークを持つ。青色は三重らせん構造を形成している (Pro-4(*R*)Hyp-Gly)₁₀ の CD スペクトル(4 °C)、黄色は三重らせん構造をとっていない (Pro-4(*R*)Hyp-Gly)₁₀ の CD スペクトル(100 °C)、赤色は青色のサンプルと同様のプロトコルで アニーリングを行った VC の CD スペクトル(4 °C)。

Figure 5 | VC のアニーリング

非修飾のペプチド VC のアニーリング過程において、1 日おきに CD スペクトルを測定した。日 数は4 ℃でのインキュベート期間を示す。

これらのVCペプチドに対し、次項に示すように全長 adiponectin のコラーゲン様ド メインについてはアニーリング操作なしで三重らせんを形成していることが示された。 コラーゲン三重らせん構造のフォールディング過程では、C 末端側の会合によって核形 成が起こり、その伝播によって全体の構造形成に至るモデルが提案されている(37)。全 長 adiponectin においても、球状ドメインが迅速に3量体を形成することで、コラーゲ ン様ドメインの有効濃度が高まるとともに、C 末端側が揃うことで間違ったフォールデ ィング状態が回避される結果、コラーゲン様ドメインの三重らせん形成が大幅に加速さ れていると考えられる。一方、アニーリング時間はかかるものの、VCペプチドにおい ても、自発的な三重らせん形成が観測されたことは、これが熱力学的に安定な構造であ ることを示しており、合成ペプチドを用いて、三重らせん構造の相対的な安定性に与え る翻訳後修飾の影響を比較検討してよいといえる。

2-3. VC ペプチドと全長 Adiponectin の二次構造

アニーリングを行った VCペプチドおよび 2 種類の全長 adiponectin(3 量体と HMW) について 4 ℃における CD スペクトルの測定を行った。Figure 6 に示す CD スペクト ルが得られ、いずれのスペクトルにも 230 nm 付近の正のピークが観測されたことから、 コントロールである VC を含むすべてのサンプルが三重らせん構造を形成しているこ とが明らかになった。VC ペプチドの極大波長が 222 nm であるのに対し、全長 adiponectin の極大波長は 230-235 nm であり若干長波長側へシフトしていた。これは、 全長 adiponectin に含まれる球状ドメインが主にβシート構造を形成しており(12)、こ れが 218 nm 付近に負の極小をもつため、その影響で見かけの極大波長が変化したもの であると解釈できる。実際、後述する温度変化実験においては、大腸菌で作成した全長 adiponectin の球状ドメインの構造転移が 235 nm の CD 値の変化にも反映されている ことが示され、当該波長の CD 値が、コラーゲン様 及び球状ドメイン両者の寄与によ ることが示唆される。

Figure 6|コラーゲン三重らせん構造の形成状態 VC(赤色)、VC-Hyp₄(青色)、VC-Hyp₄/Ghl₄(黄色)、全長 adiponectin 3 量体(紫色)、HMW(緑色) の4 ℃における CD スペクトル。

2-4. 三重らせん構造の熱安定性

CD を用いて VC ペプチドおよび 2 種類の全長 adiponectin について三重らせん構造 の構造転位温度 T_m の測定を行った。測定波長は 4 °Cでの CD スペクトルにおいて観測 されたポリプロリン II 型ヘリックスに由来する正のピークの極大値が観測された波長 をそれぞれ用いた。すなわち、VC ペプチドに関しては 222 nm、ヒト血漿由来の adiponectin HMW に関しては 230 nm、リコンビナント全長 Adiponectin に関しては 235 nm で測定した。その結果、ピークトップの CD 値の温度変化は Figure 7a のよう になり、そこから算出された T_m は Table 2 に示す通りであった。ここで構造転位温度 T_m ははじめに三重らせん構造を形成していた分子のうち半数の構造が壊れた温度のこ とを指す。

VC-Hyp4の *T*m は VC と比べて 5.9 ℃高く、Pro の水酸化によって三重らせん構造が 安定化していることが明らかになった。天然のコラーゲン中の Yaa 位に存在する Pro は、プロリル-4-ヒドロキシラーゼによりその 4 位が水酸化され、4(*R*)-Hyp となってい るものが多い。この 4(*R*)-Hyp の含有量はコラーゲンの安定性と相関していることが知 られている(*38, 39*)。また、モデルペプチドを用いた系統的な研究により、Yaa 位にお

ける 4(R)・Hyp はコラーゲン三重らせん構造の安定性を向上させる一方で、Xaa 位にお ける 4(R)-Hyp は同構造を不安定化すると報告されている(40)。また、Xaa 位の Pro が ヒドロキシル化される場合は、4 位ではなく 3 位がヒドロキシル化された構造異性体 3(S)-Hyp となる場合が多いと言われている(41)。このとき Xaa 位における 3(S)-Hyp は三重らせん構造を不安定化していると報告された(42, 43)。さらに、4(R)-Hypの4位 の立体が反転したジアステレオマーである 4(S)-Hyp は、Xaa/Yaa いずれの位置におい ても同構造を不安定化するが、Xaa 位における不安定化の程度は 4(*R*)-Hyp に比べると 小さいといわれている(44,45)。今回修飾した4つの Pro 残基は、1つは Xaa 位、残り の3つはYaa 位に存在する。これまでの天然 adiponectin における修飾に関する報告で は、Proの4位の立体については示されていないため、今回はすべてのProを4(R)-Hyp として修飾を施した。したがって、Xaa 位にある1つの Hyp が三重らせん構造の不安 定化を引き起こしている可能性があるが、少なくとも残る 3 つの Hyp は構造安定化に 寄与し、全体としては安定性を向上させていると考えられる。また、これまでに adiponectin における Proの水酸化位置として、今回採用したコンセンサス部位に加え、 Xaa 位が 1 か所、Yaa 位が 4 か所報告されている。仮にこれらの位置が全て 4(R)-Hyp となっていた場合、Yaa 位による安定化効果がさらに加わり、全体としてはより一層高 い転移温度を示すことが予想される。

さらに、VC-Hyp₄/Ghl₄の *T*m は著しく向上しており、VC より 21.3 ℃、VC-Hyp₄よ り 15.4 ℃高かった。この結果は Lys のヒドロキシル化およびグルコースとガラクトー スによるグリコシル化がコラーゲン三重らせん構造の熱安定性を大幅に向上させてい ることを示している。Lys のこの修飾はコラーゲン配列内でしばしばみられるが、これ がコラーゲンの構造や機能にどのような役割を果たしているのかについてはほとんど 報告されていない。環形動物由来のコラーゲン様配列における Thr 残基の糖鎖修飾が 三重らせん構造を安定化するという報告(27)はあるが、Lys の糖鎖修飾の役割に関して は、Pigment epithelium-derived factor (PEDF)に対する結合親和性に影響を与えてい る可能性が示唆されているのみである(46)。今回の結果は、adiponectin 以外のコラー ゲン様配列をもつタンパク質、あるいは各種コラーゲンにおいても、Ghl がその構造安 定性に寄与している可能性を示唆しており、今後のコラーゲン様配列の構造物性相関に 関する研究においても有用な知見が得られたと言える。

一方で、全長 adiponectin 内のコラーゲン様ドメインが形成している三重らせん構造の安定性も同様に測定した(Figure 7b, Table 2)。大腸菌発現系を用いて調製した非修飾の全長 adiponectin 3 量体は、2 段階の転移曲線を示し、その CD スペクトルの変化か

ら、一段階目はコラーゲン様ドメインが形成している三重らせん構造の転位、二段階目 は球状ドメインの変性によるものと考えられ、その転移温度はそれぞれ 19.7 ℃および 64.3 ℃と算出された。この全長 adiponectin 3 量体における三重らせん構造の T_m は VC と比べて 7.6 ℃高くなっており、これは C 末端側を熱安定性の高い球状ドメインが 束ねていることによる安定化効果が反映されたものと考えられる。一方で、ヒト血漿由 来の adiponectin HMW は、全長であるにも関わらず一段階の転位曲線が観測され、コ ラーゲン様ドメインと球状ドメインの変性が同時に起こっていると考えられる。この T_m は全長 adiponectin 3 量体の二段階目の T_m 、すなわち球状ドメインの変性温度に相 当していることから、ヒト天然 adiponectin において、C 末端側の束縛された状態での コラーゲン様ドメインの見かけの安定性は、球状ドメインの安定性と同程度にまで向上 しており、球状ドメインが変性して C 末端側の束縛がなくなると同時に変性している と解釈できる。

それぞれの修飾と、球状ドメインの3量体化による三重らせん構造の安定性の変化を Figure 8に模式的に示した。VC-Hyp4/Ghl4 自体はその *T*m が 33.4 ℃とヒトの体温を若 干下回っているため、体内で構造を維持できないと考えられるが、そこに球状ドメイン の束縛による安定化が相乗的に加わることによって、翻訳後修飾を有するヒト全長 adiponectin におけるコラーゲン様ドメインの三重らせん構造は十分な熱安定性を得て いる可能性が示された。また、VC-Hyp4/Ghl4 において考慮したコンセンサス部位以外 での Pro 残基のヒドロキシル化がさらなる安定性向上に寄与していることも考えられ る。

Figure 7 | VC ペプチドおよび全長 adiponectin が形成する三重らせん構造の転位曲線 a では VC ペプチド (赤色: VC、青色: VC・Hyp4、黄色: VC・Hyp4/Ghl4) について、b では全 長 Adiponectin (紫色: 3 量体、緑色: HMW) について、CD スペクトルでピーク値を示す波 長において CD 値の変化を観測した。マーカーは実測値、実線はフィッティング結果を示す。

Table 2 | VC ペプチドおよび全長 adiponectin の転位温度

	VC	VC-Hyp ₄	VC-Hyp₄/Ghl₄	Trimer ^a	HMW ^a
T _m (°C)	12.1	18.0	33.4	19.7/ 64.3 ^b	61.3

^aTrimer と HMW は全長 adiponectin。Trimer は非修飾、HMW は修飾あり。

^b2 段階の転位のうち、低温側が三重らせん構造の転位、高温側が球状ドメインの変性による。

Figure 8| Adiponectin コラーゲン様ドメインが形成する三重らせん構造の安定性の、 各要素による変化

図中の数字はそれぞれの要素による Tmの変化を示す。今回安定性を測定したサンプルについて はサンプル名に下線を付した。

2-5. 還元による三重らせん構造の安定性の変化

Adiponectin の可変領域には種間で保存された Cys 残基が存在する。ヒトでは 36 残 基目にあるその Cys は、3 量体内でうち 2 つが酸化され一本のジスルフィド結合を形成 し、残るひとつはチオールとして存在していると考えられている。その場合コラーゲン 様ドメインの N 末端側が束縛されることから、三重らせん構造の形成や安定性に酸化 還元状態が影響を与えることが考えられた。そこで、修飾を有さない VC を用いて、還 元状態での構造安定性を調べた。

まずVCに関して、還元条件で4 ℃における CD スペクトル測定を行った(Figure 9a)。 その結果、三重らせん構造を形成したサンプルを測定前に還元した場合その構造はほぼ 保たれるが、あらかじめ還元剤を添加してからアニーリングを行った場合には、三重ら せん構造の形成が認められなかった。つまり、還元剤を添加しない通常のアニーリング 条件において溶存酸素による酸化が進行しジスルフィド結合を介した 2 量体が形成さ れることが、VC ペプチドの三重らせん構造形成には必須であると言える。

次いで、還元状態での変性温度 Tmを測定した(Figure 9b)。先述のようにあらかじめ 還元剤を添加した場合は三重らせん構造を形成しなかったため、三重らせん構造を形成 した VC に対して測定前に還元剤を添加してから楕円率の温度変化を測定した。その結 果、還元による Tmの変化はわずかであり、Cys36における三量体内のジスルフィド結 合は三重らせん構造の熱力学的な安定性にはわずかな影響しか与えないことが明らか になった。すなわち、VC ペプチド中のコラーゲン様ドメインの二次構造形成過程にお けるジスルフィド結合の影響は速度論的なものであることが示唆された。この結果は、 前項に述べた、全長 adiponectin における球状ドメインがコラーゲン様ドメインの C 末 端側を束縛することによる熱力学的な構造安定化効果とは対照的である。その理由とし て、球状ドメインが3分子で会合し、その束縛が向きの揃った立体的に制限されたもの であるために安定化効果が大きいのに対し、可変領域の Cys 残基は 2 分子間での束縛 であり、立体的な制限が少なく、安定化の効果も小さいことが考えられる。生体内での adiponectin HMW 分泌に酸化還元酵素が寄与しているとの報告や、HMW の in vitro 再構成実験において、酸化還元電位の制御が HMW の生成量に影響するとの報告を合 わせると、ジスルフィド結合は、3 量体ではなく、それ以上の高次多量体形成の過程に 寄与していることが推測される。

19

Figure 9| 還元条件が三重らせん構造に与える影響
 a は 4 ℃における CD スペクトル、b は三重らせん構造の転位曲線。非還元 VC(赤色)、構造形
 成後還元したのち還元した VC(紫色)、還元条件でアニーリング操作を行った VC(緑色)について
 示す。

Table 9 法方による二至うての構造派女だ任の友化					
	VC	VC 10mM TCEP	VC 10mM TCEP		
			Reduced before annealing		
T _m (°C)	12.0	10.7	ND ^a		

Table 3 還元による三重らせん構造熱安定性の変化

^aNDは、4 ℃ - 50 ℃の範囲では構造転位が見られず Tm が算出できなかったことを示す。

第二章 翻訳後修飾の多量体形成能への影響

前述のように、adiponectin の翻訳後修飾は、その多量体形成能に影響を与えること が示唆されている。従来 adiponectin 多量体の会合状態やその分子量分布に関しては、 血清などから得られる天然 adiponectin や、培養細胞に発現させた adiponectin につい て、電気泳動やゲル濾過といった手法による解析が主に用いられてきた。しかし、これ らの試料はその翻訳後修飾が不均一であり、解析手法としても得られる分子量が分子形 状に大きく依存しているため、その依存性を定量的に見積もることも難しい。そこで本 研究では、前章に述べたデザインした adiponectin コラーゲン様ドメインを含む合成ペ プチドを用い、分析用超遠心を利用した定量的な分子サイズ分布解析手法によって、 adiponectin の翻訳後修飾とその多量体形成能をより正確に評価することを目指した。

第一節:実験

1-1. サンプルの調製

用いた VC ペプチドおよび全長 adiponectin は、第1章1-1および1-2と同様の方法 で調製およびアニーリングを行った。タンパク質濃度は、各実験に適合するよう個別に 設定した。

1-2. 超遠心沈降速度法

超遠心沈降速度法の実験は、分析用超遠心機 XL-I(Beckman Coulter)を用いて行った。 2 セルのチャコールエポンタイプセンターピースと 8 穴ローターAn-50Ti を用い、回転 数は 42,000 rpm、測定波長は 280 nm、測定温度は 4 ℃または 20 ℃とした。VC ペプ チドの構造転位は可逆的なものであることを確認しているが、前述したようにフォール ディングは非常に遅く、一度アンフォールドすると元の状態に戻るまで長い時間を要す ると考えられるため、4 ℃での測定については、装置内、ローターおよびセルを予冷し て実験を行った。吸光度が 1.0 付近で測定精度がもっとも高くなるとされているため、 その条件に合うようタンパク質溶液を調製した。VC ペプチドに関しては溶解に使用し た溶液を、全長 adipoectin に関しては最終精製であるゲル濾過で用いた溶媒、あるい は透析外液を対照として用いた。

吸光度は回転開始から 2 分おきに 400 回測定し、得られたデータは解析ソフト Sedfit(*47, 48*)を用いた c(s) distribution 法によって解析した。溶媒の粘度および密度と、 タンパク質の偏比容(v-bar)は Sednterp を用いて、溶媒組成およびアミノ酸配列より算 出した。得られた沈降係数(s 値)は、比較のためにすべて 20 ℃、水中における数値(s_{20,w}) に変換した。

1-3. 超遠心沈降平衡法

超遠心沈降平衡法の実験は、1-2 と同様の装置を用いて行った。6 セルのチャコール エポンタイプセンターピースと 8 穴ローターAn-50Ti を用いて、回転数 9,000 rpm、測 定波長 295 nm、測定温度 20 ℃で測定した。得られた濃度勾配データは解析ソフト Sedphat(49, 50)を用いて解析した。

第二節:結果と考察

2-1. VC ペプチドの会合状態の解析

各 VC ペプチドおよび全長 adiponectin の分子量分布を調べるため、超遠心沈降速度 法によって、各成分の沈降係数を測定した。沈降速度法では、遠心力によって分子が沈 降していく様子を観測し、時間経過に伴う変化を解析してサンプルに含まれる成分数や 各成分の沈降係数を算出する。遠心場における溶質分子の濃度分布の時間変化は拡散を 考慮した分子の沈降を表す微分方程式である Lamm 方程式

$$\frac{\partial C}{\partial t} = -\frac{1}{r} \times \frac{\partial}{\partial r} \left\{ \left[sr\omega^2 C - Dr \frac{\partial C}{\partial r} \right] \right\}$$

に従う。溶質の拡散係数・沈降係数及びローターの角速度をパラメータとした場合、 Lamm 方程式の解は、ある時間・位置における溶質の濃度を表す。Lamm 方程式の解 析解は知られておらず、沈降係数を顕に求めることもできないが、与えられたパラメー タのもとでは、濃度分布を Lamm 方程式の数値解析によってシミュレートできる。従 って実測された濃度分布を再現できるような沈降係数を数値として得ることは可能で ある。さらに、特定の沈降係数を持つ成分を仮定せず、沈降係数の分布関数を考えても、 同様なフィッティングが可能である。この際に分子を回転楕円体に近似したときの長軸 短軸比を反映する摩擦比 f/foをパラメータとすると、拡散係数の分布は良い近似で沈降 係数に対して単調にスケーリングすると仮定できるため独立して求める必要はない。こ の計算を最大エントロピー法による正則化によって安定化し実現したのが Schuck らに よる SEDFIT アルゴリズムであり、多成分系における沈降係数分布である c(s)の解析 が可能である(47, 48)。この手法では、f/fo も同時に最適化されるため、球状から離れた 形状の分子の分子量をより適切に算出できると考えられ、コラーゲンのような細長い形 状をしている分子においても沈降係数と、そこから推定される分子量を良い精度で求めることが可能である。本研究ではこの手法を用い、サンプル中の成分数と各成分の沈降係数及び分子量を求めた。

Figure 10 に各サンプルの沈降係数(s 値)の分布を示す。沈降係数はすべて 20 ℃水中 での値(s_{20,w})に換算されている。各成分の s_{20,w}値、そこから算出された分子量、および 存在比は Table 4 に示す。VC および VC-Hyp₄ は、いずれも 2 つの成分で構成されてい た。算出された分子量からこれらは単量体および三量体に相当すると示唆され、これら 2 つのペプチドは HMW に相当するような大きな多量体は形成していなかった。一方で、 VC-Hyp₄/Ghl₄ は、主として 4 つの成分が検出された。

算出された分子量から、これらは単量体、3 量体、6 量体、18 量体であると考えられた。また、わずかな9 量体に相当するピークが見られた。さらに VC-Hyp4/Ghl4 について、還元条件で沈降速度法の実験を行った結果、6 量体が観測されなかった一方で、18 量体が主な成分として残っていることが明らかになった。VC-Hyp4/Ghl4 が形成しているもっとも分子量の大きい成分については、沈降平衡法を用いてより正確な分子量を測定した。これにより Figure 11 のような結果が得られ、18 量体であることを確認した。

なお、3量体以上の高次会合体について、算出された分子量から求められた会合数は、 3の整数倍からのずれが見られたが、これは、会合数の異なる成分は異なる形状をして いるにもかかわらず、f/foはすべての成分の平均値としてフィッティングされるためで あると考えられる。このため、複数成分を含む系の沈降速度法による解析では、得られ た f/foに基づいて算出した分子量には誤差が生じる場合がある。それを踏まえたうえで、 還元による解離の有無や3量体を基本構造とするという特徴を勘案し、各成分に相当す る会合数の帰属を行った。

24

Figure 10| 超遠心沈降速度法による会合状態の解析

a は VC(赤色)および VC-Hyp4(青色)について、b は非還元(黄色)および還元(水色)条件下での VC-Hyp4/Ghl4 について、c(s)解析の結果を示す。沈降係数はすべて 20 ℃の水中における値を 示す s_{20,w}に換算した。

	VC		VC-Hyp ₄	
沈降係数 (s _{w,20}) (S)	1.28	1.91	1.20	1.82
推定分子量 (kDa)	16.5	29.9	14.2	26.5
存在比 (%)	80.9	19.1	63.5	36.5
単量体の分子量 (Da)	9094.9		8721.5	
会合数	1.8	3.3	1.6	3.0
摩擦比 (f/f_)	1.97		1.91	

Table 4| 超遠心沈降速度法による沈降係数分布の解析

	VC-Hyp₄/Ghl₄				VC-Hyp₄/Ghl₄ 5mM TCEP				
s _{w,20} (S)	1.14	2.09	3.37	4.70	6.62	1.07	2.05	4.21	6.50
分子量 (kDa)	11.3	28.1	57.5	94.5	158	11.7	31.1	91.6	176
存在比(%)	25.9	42.0	11.5	2.13	18.5	23.0	19.5	2.56	55.0
単量体の分子量(Da)	10082.59				10082.59				
会合数	1.1	2.8	5.7	9.4	15.7	1.2	3.1	9.1	17.5
f/f ₀	1.68					1.84			

Figure 11 | 超遠心沈降平衡法による分子量の解析

VC-Hyp4/Ghl4が形成する最も会合数の多い成分について、分子量の測定を行った。低回転数で 測定することで、重量の大きい成分のみを観測できる。 本研究によって、Lys 残基の糖鎖修飾が adiponectin の HMW 形成の必要にして十分 な条件であることが初めて証明された。これまで、Lys を別のアミノ酸へ変異させたり、 糖鎖修飾酵素を阻害したりすることによって、HMW 形成が抑制されることから、Lys 残基の糖鎖修飾が HMW に何らかの役割を果たしていると考えられてきたが(22, 23)、 Lys 残基の糖鎖修飾だけで、HMW を形成できるとの直接的な証拠はなかった。また、 Lys の修飾は水酸化のみでも HMW 形成に寄与する可能性を示唆する報告がされてい るが(51)、今回 VC ペプチドと類似のペプチドを用いて行った予備実験において、少な くとも球状ドメインを含まないペプチドにおいては Lys の水酸化だけでは HMW に相 当する多量体は形成できないことも確認した。

還元条件における実験の結果より、6 量体は2 つの3 量体間のジスルフィド結合によって形成されている一方、18 量体の構造安定化においてジスルフィド結合は不可欠な 要素ではないことが明らかになった。前述のように adiponectin HMW は還元しても会 合状態は変わらないことが報告されており(15)、この事実とも一致する。

ヒト血漿由来の adiponectin HMW を沈降速度法によって沈降係数の解析を行うと、 10.3 S 付近にほぼ単一のピーク(存在比 98.8%)が見られ、算出された分子量は 424 kDa だった(Figure 12)。Adiponectin 単量体の分子量は、そのアミノ酸配列からおよそ 25 kDa であると考えられ、算出される会合数はおよそ 17.0 となる。この結果から、血漿 中の adiponectin HMW は 18 量体を形成していることが確認でき、ゲル濾過や Native PAGE による分析からも同様の結果が得られたとの報告も存在する(*11*)。したがって、 今回合成した VC-Hyp₄/Ghl₄ ペプチドが形成した 18 量体は、adiponectin における HMW に相当するものであると考えることができる。さらに、生体内における adiponectin の多量体は、3 量体、6 量体、18 量体を主な成分としてわずかな 9 量体や 12 量体を含む構成となっていると言われていることから(*52*)、VC-Hyp₄/Ghl₄の形成し ている多量体は、全体としても天然状態と同様のプロファイルを示していると言え、18 量体以上の多量体は検出されないことも一致している。これらのことから、 VC-Hyp₄/Ghl₄は天然状態の adiponectin の多量体形成を再現することができており、 同様のメカニズムによる多量体形成が起こっていると考えられる。

27

Figure 12| 沈降速度法による全長 adiponectin HMW の解析 c(s)解析により得られた沈降係数(s20,w)の分布を示す。

第三章 VC ペプチド 18 量体の構造解析

ここまでの結果から、糖鎖修飾した VC ペプチドが天然と同様の多量体化機構を保持 していることが明らかになった。したがって、VC ペプチドが形成した多量体構造をよ り詳細に解析することが、生体内における adiponectin の多量体形成メカニズムの解明 につながると考えられた。そこで第三章では、VC ペプチドの多量体構造を実験および 計算科学的な手法の両面から解析した結果について述べる。

第一節:実験

1-1. VC-Hyp₄/Ghl₄の結晶化

VC-Hyp₄/Ghl₄は5 mg/mL になるよう 10 mM Tris-HCl (pH 7.5), 150 mM NaCl に 溶解し、第一章 2·1 に示す手順でアニーリングを行った。このサンプルについて、結晶 化条件初期スクリーニングとして Crystal screen 1, 2(Hampton Research), Wizard I, II(Emerald Bio Structures)を用いたランダムスクリーニングを行った。結晶化は4 ℃ で行い、シッティングドロップ蒸気拡散法を用いた。

1-2. VC-Hyp4/Ghl4 18 量体モデルの構築

グルコシルガラクトシルヒドロキシリジンを含む adiponectin コラーゲン様ドメイン によって形成される可能性がある 18 量体構造モデルを以下の手順に従って作成した。 その際、(1) コラーゲン様ドメインはコラーゲンモデルペプチド同様のトリプルへリッ クス構造をとること、(2) トリプルへリックス 6 個が平行に並び擬 6 回対称性を示す 6 角柱状の構造となること、を仮定した。

α-D-glucopyranosyl- $(1 \rightarrow 2)$ - β -D-galactopyranosyl 基を、Glycam Carbohydrate Builder (53)を用いて作成した。また、(2S,5R)-5-hydroxylysine (Hyl)を antechamber (Amber(54))によって作成した。次に両者のトポロジーを結合した。 β -Oglycoside 結合 部分のパラメータについては、化学構造上適切なものを流用した。糖部分が Hyl の側 鎖に含まれるように topological type を書き換えた。部分電荷については、Hyl の 5 位 部分の値を変更し残基全体として+1になるように調整した。作成した残基の名称はGhl とした。

ヒト adiponectin の Gly60–Gly81 に相当するペプチド鎖について、その主鎖二面角 をコラーゲンモデルペプチド((Pro-Pro-Gly)10, PDB: 1A3J)の値とした構造を leap (Amber)によって作成した。ただし、Lys65, 68, 77 は上記の Ghl とし、N,C 端はキャ ッピングした。Ghl 以外の力場パラメータは ff14SB を使用した。作成したペプチド 3 本をトリプルヘリックス構造となるように配置した。これを初期構造として、 GROMACS(55)によりエネルギー最小化をおこない、3 量体構造とした。ここで Amber のトポロジーは ACPYPE によって GROMACS 用に変換して用いている。

上記3量体が2組平行にパッキングできる配置を探索した。まず2組の3量体が互いに接触しないよう30Å離して並べた。その際、片方の3量体を相対的に0,60,120,180,240,300度回転させたものをそれぞれ作成した。次に、3量体どうしを接近させるため、異なる3量体中のGhl68のCa間に距離拘束(<13Å)を設定した。3量体中のどの鎖間を拘束するかについては、同じ鎖が最近接しないよう、異なる鎖間による6通りの組み合わせを選んだ。このようにして計36通りの初期配置・拘束条件を設定し、それぞれ simulated annealing (SA)による構造最適化をおこなった。その際3量体の構造が崩れないように、各3量体内のCa原子間にも距離拘束を設定した。また、2つの3量体を互いに平行に並ばせるため、トリプルへリックス軸方向にのみ位置拘束を設定した。計算ステップは計1nsとし、その間まず温度を500Kに昇温し、次いで段階的に10Kまで冷却した。水は一般化ボルン近似連続溶媒和モデルを用いた。

上記計算の結果、3 量体間の相対回転角が 60 度でトリプルへリックス軸方向のずれ が無い3量体2組からなる配置を見出すことができた。つまりそこに含まれる各3量 体を3量体1および2とすると、3量体2は3量体1を60度回転させ、平行移動した ものとなっている。そこでこの操作を繰り返して、3量体3,4,5,6を作成することによ り、六角形に並んだ3量体を得た。この際、各3量体間の界面に位置する側鎖について は、2つの3量体間における相互作用を保つよう配置した。このようにして得られた6 個の3量体を初期構造とし、水(TIP3Pモデル)・イオン(電荷を中和するため)を配 置した後にエネルギー最小化計算をおこなって、最終的に18量体(3量体×6)モデル構 造を得た。

第二節:結果と考察

2-1. VC-Hyp₄/Ghl₄の結晶化

VC-Hyp4/Ghl4の 18 量体の詳細な構造を X 線回折実験により明らかにすることを目 指し、結晶化を試みた。結晶化条件の初期スクリーニングを行った結果、2 条件で初期 結晶が得られた。結晶の得られた条件を Table 5 に示す。

Table 5| 結晶化条件

手法	シッティングドロップ蒸気拡散	牧法
温度	4 °C	
サンプル濃度	5 mg/mL	
サンプル溶媒	10 mM Tris-HCl pH 7.5, 150 m	M NaCl
ドロップ容量	サンプル 0.5 μ L+ リザーバ・	— 0.5 μL
リザーバー溶液	条件 1	条件 2
緩衝液	100 mM CHES pH 9.5	100 mM Tris-HCl pH 7.0
沈殿剤	15% EtOH	15% EtOH

Figure 13| 条件 2 における結晶

2つの条件は良く似ており、得られた結晶も同様の性質を示した。この2条件のドロ ップ中には、Figure 13に示すように平板状の単結晶や、小さな複数の結晶が凝集して いるような結晶を含む複数の結晶が生成された。これらの結晶は非常に脆弱であり、結 晶化プレートの蓋を開けることにより蒸気平衡状態が乱されると速やかに溶解したた め、これ以上の検討に供することは不可能であると判断した。今後、さらなる条件スク リーニングや、シーディング法による結晶化条件の最適化が必要であると考えられる。 一般に、タンパク質結晶はその溶液が単分散を示し、より均一な状態にあるときに得 られ易いとされている。第二章で述べたように、今回結晶化に用いた VC-Hyp4/Ghl4ペ プチドの試料溶液は、主な成分として 4 種類の会合度が異なる多量体を含んでいる可能 性がある。また、VC-Hyp4/Ghl4の転移温度は室温と比較し十分に高いとは言えないた め、結晶化操作の過程で部分的に変性したものが混入する危険がある。このように、 VC-Hyp4/Ghl4ペプチドは結晶化には不利な要素が多い試料と言えるが、今回、回折実 験には至らないものの結晶を得ることには成功した。今後厳密な温度管理の下、ゲル濾 過等によって 18 量体を単離し用いることで、構造解析に適した結晶が得られる可能性 がある。

2-2. VC-Hyp4/Ghl4 18 量体モデルの構築

結晶構造解析により、実験的に 18 量体構造を決定することが困難であったため、構 造モデルの作成を試みた。コラーゲン様の三重らせんからなる高次会合体の構造モデル としては、I型コラーゲンのような繊維状コラーゲン分子のものがよく知られている。 そこでは互いにずれた 5 つの三重らせんが単位となり、それが連なっていくことで最密 六方格子様のパッキングを有するナノファイバーを形成していると考えられている (56)。この場合、ある三重らせんと、それに近接する三重らせんを考えると、1 つの三 重らせんが 6 個の三重らせんに取り囲まれた 21 量体構造となる。したがって、 VC-Hyp4/Ghl4 の形成する 18 量体モデルと相容れないと考えられた。実際、全長 adiponectin の電子顕微鏡像(13)では、6 つの adiponectin 3 量体と思われる物体が、コ ラーゲン様ドメイン部分が作る棒状の部分で束ねられた花束様構造をしている様に見 える。長軸方向から見ると、6 つの球状ドメインが環状に配置されているのが観察でき るため、コラーゲン様ドメインが形成した 6 つの三重らせんもまた環状に配置されてお り、6 回対称性を仮定しうると考えられる。そこで、VC-Hyp4/Ghl4 が、その様な配置 に相当する会合体を形成できるか検討することとした。

コラーゲン様の三重らせん構造を形成する3本のペプチド鎖は、1アミノ酸残基ずつ ずれて会合しているため、各鎖は等価ではない。したがって、三重らせんが6個集まっ た配置としては各三重らせんがいずれの鎖を外側に向けるかよって複数の配置を採り うる(Figure 14)。それらの配置のうち、隣り合う三重らせんがそれぞれの長軸を中心に 60度ずつ回転しながら環状に配置された場合にのみ、それぞれの三重らせんが同じ鎖 を外側に向けて三重らせん同士が等価となり、全体として6回の回転対称性が生じる (Figure 14a)。またこのような配置でのみ、全長 adiponectin においてコラーゲン様ド メインの C 末端側に存在する嵩高い球状ドメイン間を全て外側に配置することが可能 になり、立体障害を回避しうる。それ以外の角度で回転しながら並んだ場合も考えうる が(Figure 14b, c)、いずれのパターンでも、三重らせん間に複数の相互作用パターンが 存在する配置となるため、18 量体の外側にさらに三重らせんが会合し、18 量体を超え る多量体を形成できるパターンとなるため、VC-Hyp4/Ghl4 の 18 量体構造には適さな いと考えられる。

Figure 14|6 つの三重らせんが環状に並ぶ配置のパターン a, b, cはそれぞれ、隣り合う三重らせん同士が 60 度、 -60 度、 180 度ずつ回転しながら並ん だパターン。cには 18 量体を超えて会合したパターンを淡色で示す。

以上のような考察に基づいて、まず3量体が2組平行にパッキングできる配置を、様々 な初期配置を元に探索し、次いでその配置を3量体6組の配置へと拡張し、18量体構 造を構築した。その結果を Figure 15 に示す。

Figure 15 | VC-Hyp4/Ghl418 量体のモデル構造

a, b は全体構造、c-e は相互作用している糖鎖付近の構造を示す。a では Ghl の残基番号を表記 し、糖鎖を空間充填モデルで示している。ある三重らせんの各鎖を A, B, C、隣り合う三重らせ んの各鎖を A, B', C'としている。

このモデル構造では、隣り合う三重らせん構造の境界面において、片方の三重らせん を形成するペプチド鎖を A,B,C、もう片方の相当するペプチド鎖を A',B',C'とすると、 Ghl 同士である C65-C'65, B65-A'68, C65-A'68 及び B77-B'77 が水素結合を介して相 互作用している。また、三重らせん内部においても B65-C65 のような水素結合が形成 され、全体としてネットワーク状の水素結合が形成されている。第一章および第二章で 述べたように、VC-Hyp4/Ghl4ペプチドは 18 量体という高次多量体を形成しているが、 その熱安定性は高く、またその構造転移は 1 段階であり、三重らせん形成とその会合に 協同性があることが示唆されている(Figure 7a, 10b, 11)。本項で示したモデルのような、 三重らせん間と三重らせん内のいずれにも関わる相互作用の存在する構造が、これらの 性質の原因となっている可能性がある。またこのモデル構造で形成される水素結合ネッ トワークは、18 量体内部で閉じており、さらに同様な形で 18 量体の外側に 3 量体が会 合することはできない。このような性質は、VC-Hyp4/Ghl4 の作る多量体が 18 量体止 まりであり、それ以上のものが生じないという事実をうまく説明しうる。第二章におい て、VC-Hyp4/Ghl4 は天然の adiponectin と同様のメカニズムによる多量体形成が起こ っていることが示唆されたため、生体内において、全長 adiponectinHMW のコラーゲ ン様ドメインは、ここで構築したモデルと同様の様式で会合していることが期待できる。

結語

本研究において筆者は、adiponectin の可変領域およびコラーゲン様ドメインに相当 するペプチドを用いて、生体内における adiponectin 多量体形成の再現を試み、物理化 学的手法によってその物性と構造の評価を行った。

その結果、第一章では、コラーゲン三重らせん構造を安定化する修飾として、既知の Proのヒドロキシル化に加え、新たにLysのヒドロキシル化およびグルコースとガラク トースによる糖鎖修飾を見出した。Adiponectin コラーゲン様ドメインの形成する三重 らせん構造の安定性は、C 末端が高い熱安定性を持つ球状ドメイン3 量体によって束縛 されることでも向上し、ProおよびLysの修飾と球状ドメインによる安定化が相乗的に 効果を発揮することで、天然 adiponectin コラーゲン様ドメインが形成する三重らせん 構造の高い安定性を実現していると示唆された。

第二章では、グルコシルガラクトシルリジン残基は adiponectin の高次多量体形成に 必須であるだけでなく、糖鎖修飾を有する Lys 残基を介した相互作用のみで高次多量体 形成が可能であることを示した。糖鎖によって修飾された VC ペプチドは、天然 adiponectin の HMW に相当する 18 量体を形成し、それ以上の多量体は形成していな かったことから、この合成ペプチドは生体内の多量体形成を再現できていると結論づけ た。

さらに第三章で、第一章および第二章の結果に適合する、VC-Hyp4/Ghl4の18量体 構造モデルを提示した。第二章において、VC-Hyp4/Ghl4の18量体では天然 adiponectin HMW と同様のメカニズムによる会合が起こっていることが示唆されたため、ここで構 築したモデルは、天然 adiponectin にも適用可能性のある構造モデルであると考えられ た。

Adiponectin はインスリン抵抗性の改善作用や抗動脈硬化作用を示し、その血中濃度 や多量体構成は、2型糖尿病や動脈硬化だけでなく、がんやアルツハイマー病など多く の疾患との相関が報告されている。したがってそれらの病態の理解や、新規治療法開発 にむけて、adiponectin 多量体形成機構の解明が期待されており、adiponectin 多量体 形成における重要な因子として、その翻訳後修飾が注目されてきた。翻訳後修飾による タンパク質の分子構造や性質の変化は、adiponectin 研究だけでなく、プロテオミクス やエピジェネティクス研究など幅広い分野から関心を集めており、多様な修飾の生理的 な役割や、病態との関連の解明が待たれている。従来、翻訳後修飾を有するタンパク質 を用いた研究では、生体由来のサンプルまたは、真核生物由来の培養細胞を用いて発現 させたサンプルが利用されてきた。こうした来歴を持つ試料では修飾の不均一性が不可 避であり、それに起因して立体構造や多量体形成能が不揃いになる可能性も考えられる ことなどから、物理化学的な手法を用いた定量的で系統的な研究に利用できる均一性と 純度および収量を実現することは困難とされてきた。しかし近年の合成技術の発展によ り、均一な糖鎖修飾を含む試料を実用的なレベルで合成することが可能となりつつある。 筆者は、こうした技術的進歩をいち早く活用し、物理化学的な手法によって翻訳後修飾 とタンパク質の物性との関係を明確に示すことを目標に、今回の研究をデザインした。 そして、本研究の成果として得られた上述の知見は、adiponectin の構造安定化と多量 体形成に翻訳後修飾が直接関与していることを初めて明らかにしたものである。現在 adiponectin の血中濃度や多量体構成は数多くの疾患や病態のバイオマーカーとして利 用することが検討されている。本研究における成果は、adiponectin における翻訳後修 飾も、疾患のリスクや予後のより正確な診断に利用できるバイオマーカーとなる可能性 を示唆している。

また、コラーゲン三重らせんが会合して形成される繊維・シート・ゲルなどの高次構 造は、生体適合性の高いバイオマテリアルとしての応用が進んでいる。グルコシルガラ クトシルヒドロキシリジンはコラーゲンにおいて散見されることが知られているが、こ の修飾を均一に含む試料の調製は前述のとおりこれまで困難とされてきており、その役 割の解明は進んでいなかった。本研究では、コラーゲン配列におけるこの糖鎖修飾が果 たしている役割を明らかにしたことで、今後、より単純な配列を持ったモデルペプチド を利用した研究により、その役割が定量的に議論できる可能性を提示した。本研究にお ける、グルコシルガラクトシルヒドロキシリジン残基を介したコラーゲン三重らせん同 士の会合の発見は、研究および医療分野で活用できる新たな性質を持った会合体の設計 を可能にするものである。

38

謝辞

本研究の遂行にあたって、終始ご指導ご鞭撻賜りました、大阪大学大学院薬学研究科 高分子化学分野 大久保忠恭教授、吉田卓也准教授、河原一樹助教に深謝いたします。 また、研究に関して広い視野に基づいてご助言いただきました、大阪大学大学院工学研 究科 小林祐次招聘教授に感謝いたします。

共同研究者として、ペプチド合成に関してご指導とご協力をいただきました、株式会 社糖鎖工学研究所 西内祐二博士、株式会社ペプチド研究所 望月雅允博士、理化学研 究所 泰地美沙子博士に深く感謝いたします。また、超遠心分析に関して多大なご協力 を賜りました大阪大学大学院工学研究科 丸野孝浩氏に心より感謝申し上げます。

そして、実験や議論のあらゆる場面において、ご助言とご意見をいただきました、研 究室のみなさまに心から感謝いたします。

最後に、両親の絶え間ない励ましと理解に、息子の信頼と我慢に、夫の支えと見守り に、すべての家族と友人に、感謝を捧げます。

参考文献

- Ng, M., and Fleming, T., and Robinson, M. et al. (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet.* 384, 766-781
- Scherer, P.E., Williams, S., Fogliano, M., Baldini, G., and Lodish, H.F. (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. *J. Biol. Chem.* 270, 26746-26749
- 3. Hu, E., Liang, P., and Spiegelman, B.M. (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. *J. Biol. Chem.* **271**, 10697-10703
- Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y., and Matsubara, K. (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). *Biochem. Biophys. Res. Commun.* 221, 286-289
- Nakano, Y., Tobe, T., Choi-Miura, N.H., Mazda, T., and Tomita, M. (1996) Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. *J. Biochem.* 120, 803-812
- 6. Jurimae, J., and Jurimae, T. (2007) Plasma adiponectin concentration in healthy pre- and postmenopausal women: relationship with body composition, bone mineral, and metabolic variables. *Am. J. Physiol. Endocrinol. Metab.* **293**, E42-47
- 7. Trujillo, M.E., and Scherer, P.E. (2005) Adiponectin--journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. *J. Intern. Med.* **257**, 167-175
- 8. Yamauchi, T., Kamon, J., Ito, Y. et al. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. *Nature*. **423**, 762-769
- 9. Hara, K., Horikoshi, M., Yamauchi, T. et al. (2006) Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. *Diabetes Care*. **29**, 1357-1362
- Wang, Y., Lam, K.S., Xu, J.Y. et al. (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. *J. Biol. Chem.* 280, 18341-18347
- 11. Waki, H., Yamauchi, T., Kamon, J. et al. (2003) Impaired multimerization of human

adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. *J. Biol. Chem.* **278**, 40352-40363

- 12. Shapiro, L., and Scherer, P.E. (1998) The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. *Curr. Biol.* **8**, 335-338
- Radjainia, M., Wang, Y., and Mitra, A.K. (2008) Structural polymorphism of oligomeric adiponectin visualized by electron microscopy. *J. Mol. Biol.* 381, 419-430
- Tsao, T.S., Tomas, E., Murrey, H.E. et al. (2003) Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J. Biol. Chem. 278, 50810-50817
- Briggs, D.B., Jones, C.M., Mashalidis, E.H. et al. (2009) Disulfide-dependent self-assembly of adiponectin octadecamers from trimers and presence of stable octadecameric adiponectin lacking disulfide bonds in vitro. *Biochemistry.* 48, 12345-12357
- Tsao, T.S. (2014) Assembly of adiponectin oligomers. *Rev. Endocr. Metab. Disord.* 15, 125-136
- Qiang, L., Wang, H., and Farmer, S.R. (2007) Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. *Mol. Cell. Biol.* 27, 4698-4707
- Wang, Z.V., Schraw, T.D., Kim, J.Y. et al. (2007) Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. *Mol. Cell. Biol.* 27, 3716-3731
- Liu, M., Zhou, L., Xu, A. et al. (2008) A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. *Proc. Natl. Acad. Sci. U. S. A.* 105, 18302-18307
- Wang, Y., Xu, A., Knight, C., Xu, L.Y., and Cooper, G.J. (2002) Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. *J. Biol. Chem.* 277, 19521-19529
- Richards, A.A., Colgrave, M.L., Zhang, J. et al. (2010) Sialic acid modification of adiponectin is not required for multimerization or secretion but determines half-life in circulation. *Mol. Endocrinol.* 24, 229-239
- 22. Richards, A.A., Stephens, T., Charlton, H.K. et al. (2006) Adiponectin multimerization

is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications. *Mol. Endocrinol.* **20**, 1673-1687

- 23. Wang, Y., Lam, K.S., Chan, L. et al. (2006) Post-translational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex. *J. Biol. Chem.* 281, 16391-16400
- 24. Ramachandran, G.N., and Kartha, G. (1955) Structure of collagen. *Nature*. **176**, 593-595
- Rich, A., and Crick, F.H. (1961) The molecular structure of collagen. J. Mol. Biol. 3, 483-506
- 26. Doi, M., Nishi, Y., Uchiyama, S. et al. (2005) Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly)10. *J Pept Sci.* 11, 609-616
- 27. Bann, J.G., Peyton, D.H., and Bachinger, H.P. (2000) Sweet is stable: glycosylation stabilizes collagen. *FEBS Lett.* **473**, 237-240
- Dawson, P.E., Muir, T.W., Clark-Lewis, I., and Kent, S.B. (1994) Synthesis of proteins by native chemical ligation. *Science*. 266, 776-779
- Dawson, P.E., and Kent, S.B. (2000) Synthesis of native proteins by chemical ligation.
 Annu. Rev. Biochem. 69, 923-960
- Hackenberger, C.P., and Schwarzer, D. (2008) Chemoselective ligation and modification strategies for peptides and proteins. *Angew. Chem. Int. Ed. Engl.* 47, 10030-10074
- Wan, Q., and Danishefsky, S.J. (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. *Angew. Chem. Int. Ed. Engl.* 46, 9248-9252
- 32. Yan, L.Z., and Dawson, P.E. (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. *J. Am. Chem. Soc.* 123, 526-533
- Hojo, H., and Aimoto, S. (1991) Polypeptide-Synthesis Using the S-Alkyl Thioester of a Partially Protected Peptide Segment - Synthesis of the DNA-Binding Domain of

C-Myb Protein (142-193)-Nh2. Bull. Chem. Soc. Jpn. 64, 111-117

- Nakano, Y., Shoji, A., Arakawa, A. et al. (2010) Adiponectin does not bind to gelatin: a new and easy way to purify high-molecular-weight adiponectin from human plasma. *J. Lipid Res.* 51, 210-215
- Simpson, F., and Whitehead, J.P. (2010) Adiponectin--it's all about the modifications. *Int. J. Biochem. Cell Biol.* 42, 785-788
- 36. Wang, Y., Lu, G., Wong, W.P. et al. (2004) Proteomic and functional characterization of endogenous adiponectin purified from fetal bovine serum. *Proteomics*. **4**, 3933-3942
- Lamande, S.R., Shields, K.A., Kornberg, A.J., Shield, L.K., and Bateman, J.F. (1999)
 Bethlem myopathy and engineered collagen VI triple helical deletions prevent intracellular multimer assembly and protein secretion. J. Biol. Chem. 274, 21817-21822
- 38. Bann, J.G., and Bachinger, H.P. (2000) Glycosylation/Hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix. J. Biol. Chem. 275, 24466-24469
- Kawahara, K., Nishi, Y., Nakamura, S. et al. (2005) Effect of hydration on the stability of the collagen-like triple-helical structure of [4(R)-hydroxyprolyl-4(R)-hydroxyprolylglycine]10. *Biochemistry*. 44, 15812-15822
- 40. Inouye, K., Kobayashi, Y., Kyogoku, Y., Kishida, Y., Sakakibara, S., and Prockop, D.J. (1982) Synthesis and physical properties of (hydroxyproline-proline-glycine)10: hydroxyproline in the X-position decreases the melting temperature of the collagen triple helix. *Arch. Biochem. Biophys.* 219, 198-203
- 41. Rhodes, R.K., and Miller, E.J. (1978) Physicochemical characterization and molecular organization of the collagen A and B chains. *Biochemistry*. **17**, 3442-3448
- 42. Jenkins, C.L., Bretscher, L.E., Guzei, I.A., and Raines, R.T. (2003) Effect of 3-hydroxyproline residues on collagen stability. *J. Am. Chem. Soc.* **125**, 6422-6427
- 43. Mizuno, K., Hayashi, T., Peyton, D.H., and Bachinger, H.P. (2004) The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix. *J. Biol. Chem.* **279**, 282-287
- 44. Inouye, K., Sakakibara, S., and Prockop, D.J. (1976) Effects of the stereo-configuration of the hydroxyl group in 4-hydroxyproline on the triple-helical structures formed by homogenous peptides resembling collagen. *Biochim. Biophys. Acta.* **420**, 133-141
- 45. Motooka, D., Kawahara, K., Nakamura, S. et al. (2012) The triple helical structure and

stability of collagen model peptide with 4(S)-hydroxyprolyl-Pro-Gly units. *Biopolymers*. **98**, 111-121

- 46. Sekiya, A., Okano-Kosugi, H., Yamazaki, C.M., and Koide, T. (2011) Pigment epithelium-derived factor (PEDF) shares binding sites in collagen with heparin/heparan sulfate proteoglycans. *J. Biol. Chem.* **286**, 26364-26374
- 47. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. *Biophys. J.* **78**, 1606-1619
- 48. Schuck, P., and Rossmanith, P. (2000) Determination of the sedimentation coefficient distribution by least-squares boundary modeling. *Biopolymers*. **54**, 328-341
- 49. Schuck, P. (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. *Anal. Biochem.* **320**, 104-124
- 50. Vistica, J., Dam, J., Balbo, A. et al. (2004) Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. *Anal. Biochem.* 326, 234-256
- 51. Ding, S., Pinkas, D.M., and Barron, A.E. (2012) Synthesis and assembly of functional high molecular weight adiponectin multimers in an engineered strain of Escherichia coli. *Biomacromolecules.* 13, 1035-1042
- 52. Pajvani, U.B., Du, X., Combs, T.P. et al. (2003) Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. *J. Biol. Chem.* **278**, 9073-9085
- 53. Kirschner, K.N., Yongye, A.B., Tschampel, S.M. et al. (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. *J. Comput. Chem.* **29**, 622-655
- 54. Case, D.A., Berryman, J.T., Betz, R.M. et al. (2015) *AMBER 2015*, University of California, San Francisco
- Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J.
 (2005) GROMACS: fast, flexible, and free. *J. Comput. Chem.* 26, 1701-1718
- Orgel, J.P., Irving, T.C., Miller, A., and Wess, T.J. (2006) Microfibrillar structure of type I collagen in situ. *Proc. Natl. Acad. Sci. U. S. A.* 103, 9001-9005

主論文

- A Physico-Chemical Approach toward the Oligomerization Mechanism of Adiponectin with Its Collagen Like Domain Peptide <u>Avako Takuwa</u>, Takuya Yoshida, Misako Taichi, Yuji Nishiuchi, Tadayasu Ohkubo, Yuji Kobayashi *Peptide Science 2011*, 2012, 161 - 164
- Ordered self-assembly of the collagenous domain of adiponectin with noncovalent interactions via glycosylated lysine residues
 <u>Ayako Takuwa</u>, Takuya Yoshida, Takahiro Maruno, Kazuki Kawahara, Masayoshi
 Mochizuki, Yuji Nishiuchi, Yuji Kobayashi, Tadayasu Ohkubo
 FEBS Letters, 2016, 590(2), 195 201
- Structural analysis of octadecameric glycosylated peptide derived from adiponectin collagenous domain <u>Ayako Takuwa</u>, Takuya Yoshida, Masayoshi Mochizuki, Kazuki Kawahara, Hiroya Oki, Yuji Nishiuchi, Yuji Kobayashi, Tadayasu Ohkubo in preparation

参考論文

- Inter-molecular Interaction between Adiponectin and AdipoR1
 <u>Ayako Takuwa</u>, Takuya Yoshida, Keiko Horikawa, Kumiko Yoshizawa-Kumagaye, Susumu Uchiyama, Tadayasu Ohkubo, Yuji Kobayashi Peptide Science2010, 2011, 129
- Chemical synthesis of human adiponectin(19–107) bearing post-translational glycosylation Masayoshi Mochizuki, Misako Taichi, Hajime Hibino, <u>Ayako Takuwa</u>, Takuya Yoshida, Tadayasu Ohkubo, Yuji Nishiuchi *Tetrahedron Letters*, 2014, 55, 3073 - 3076