

| Title        | Campylobacter hyointestinalisが産生する新規細胞<br>膨化致死毒素(CDT)の性状解析とcdt遺伝子を標的と<br>したCampylobacter属細菌の検出法の開発 |
|--------------|----------------------------------------------------------------------------------------------------|
| Author(s)    | 亀井, 数正                                                                                             |
| Citation     | 大阪大学, 2015, 博士論文                                                                                   |
| Version Type | VoR                                                                                                |
| URL          | https://doi.org/10.18910/56174                                                                     |
| rights       |                                                                                                    |
| Note         |                                                                                                    |

# Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

*Campylobacter hyointestinalis*が産生する新規細胞膨化 致死毒素 (CDT) の性状解析と*cdt*遺伝子を標的とし た*Campylobacter*属細菌の検出法の開発

2015 年 薬剤学分野

亀井 数正

目 次

| 緒論                                                                  | 1        |
|---------------------------------------------------------------------|----------|
| 本論                                                                  | 7        |
| 第一章 カンピロバクターが保有する cdt 遺伝子の分布と cdtB 遺伝子を標的としたカンピロバクターの遺伝子検査法の開発      | 7        |
| 第一節 10 菌種のカンピロバクターに cdt 遺伝子が普遍的に保存されている可能性の評価                       | 7        |
| 第二節 7 菌種のカンピロバクターを標的とした菌種同定法の開発                                     | 16       |
| 第三節 cdtB 遺伝子を標的とした PCR-RFLP 法の下痢症患者便検体、及びウシ<br>胆汁検体への適用             | 22       |
| 第四節 小括                                                              | 28       |
| 第二章 C. hyointestinalis が保有する新規 cdt 遺伝子 (chcdt-II 遺伝子)の発見とその機能解析     | 30       |
| 第一節 cdtB 遺伝子が検出されなかった C. hyointestinalis が cdt 遺伝子を保有する可能性          | 30       |
| 第二節 C. hyointestinalis が有する新規 cdt 遺伝子 (chcdt-II 遺伝子)の発見と塩<br>基配列の決定 | 39       |
| 第三節 C. hyointestinalis が産生する ChCDT-II の活性評価<br>第四節 小括               | 48<br>56 |
| 第三章 カンピロバクター 6 菌種の高感度な菌種同定法の開発                                      | 58       |
| 総括                                                                  | 62       |
| 結論                                                                  | 66       |
| 謝辞                                                                  | 67       |
| 引用文献                                                                | 68       |

緒論

カンピロバクター属菌 (Campylobacter spp.) はらせん状のグラム陰性菌であり、ヒトに下 痢を引き起こす食中毒細菌として認知されている (1)。カンピロバクターは鶏をはじめとす る家禽や野生動物等の腸管内に生息しており (Table 1) (1)、本菌に汚染された食品、飲料水 の摂取や動物との接触によってヒトに感染する恐れがある (2-5)。したがってカンピロバク ター感染症は、人獣共通感染症 (Zoonosis) として公衆衛生上重要なテーマの1つになって いる。平成26年度の厚生労働省の統計では、細菌性食中毒の発生件数は440件であり、そ のうちカンピロバクター食中毒は306件 (70%)にも上った (Fig. 1) (6)。カンピロバクター は食中毒だけではなく、稀に敗血症、髄膜炎、ギランバレー症候群 (Guillain-Barré syndrome: GBS) 等を引き起こすことも報告されている (1、7、8)。それゆえ、カンピロバクター感染 症と迅速に診断し、早期に適切な治療を開始することが求められている。

現在、カンピロバクター属菌は 25 菌種で構成されており、少なくとも Table 1 に示す 17 菌種はヒトに病原性を示す可能性がある (1、9)。下痢症患者から分離される菌種の 90%以 上は *Campylobacter jejuni と C. coli* の 2 菌種であり (10、11)、本邦ではこの 2 菌種が食中毒 細菌に指定されている。横山らは 2000 年から 2004 年までの東京都立病院において、下痢 症患者から分離されたカンピロバクターの 93.4%は *C. jejuni*、4.0%は *C. coli*、次いで 1.3%は

C. fetus であったと報告している (11)。 C. fetus はウシやヒツジに流産を引き 起こすことが知られていたが、ヒトに は敗血症や髄膜炎等の重篤な合併症 を引き起こす (1、12)。これら3菌種 は獣医学領域では家畜に流産を引き 起こす細菌として古くから認知され てきた。



Fig. 1. The number of incidence of food poisoning caused by bacteria between 1995 and 2014 in Japan.
■, Salmonella spp.; ▲, Vibrio parahaemolyticus; ●, Campylobacter jejuni/coli; □, Escherichia coli; △, Staphylococcus spp.; ○, Other bacteria.

| Campylobacter spp. | Source                            | Human disease                                     |
|--------------------|-----------------------------------|---------------------------------------------------|
| C. coli            | Human, cattle, chicken, dog,      | Gastroenteritis, acute cholecystitis,             |
|                    | duck, goat, monkey, pig,          | bacteremia, meningitis, spontaneous abortion      |
|                    | seagull, sheep, turkey            |                                                   |
| C. concisus        | Human, cat, dog                   | Gastroenteritis, IBD, Barret esophagitis,         |
|                    |                                   | brain abscess, reactive arthritis, rheumatoid     |
|                    |                                   | arthritis, undifferentiated arthritis             |
| C. curvus          | Human, dog                        | Gastroenteritis, ulcerative colitis, liver        |
|                    | -                                 | abscess, Barrett esophagitis, bacteremia,         |
|                    |                                   | bronchial abscess                                 |
| C. fetus           | Human, cattle, horse,             | Gastroenteritis, abscess, meningitis,             |
|                    | kangaroo, turtle, sheep           | bacteremia, cellulitis, endocarditis, septic      |
|                    |                                   | abortion, vertebral osteomyelitis                 |
| C. gracilis        | Human, dog                        | Crohn's disease, ulcerative colitis,              |
|                    |                                   | periodontitis, head and neck infection, brain     |
|                    |                                   | abscess                                           |
| C. hominis         | Human                             | Crohn's disease, ulcerative colitis, bacteremia   |
| C. helveticus      | Human, cat, dog                   | Diarrhea                                          |
| C. hyointestinalis | Human, cattle, dog, hamster,      | Diarrhea, fetal septicemia                        |
|                    | deer, pig, sheep                  |                                                   |
| C. insulaenigrae   | Human, seal, porpoise, sea        | Gastroenteritis, abdominal pain, diarrhea and     |
|                    | lion                              | vomiting, septicemia                              |
| C. jejuni          | Human, cattle, chicken, dog,      | Gastroenteritis, IBD, acute cholecystitis,        |
|                    | duck, goat, monkey, elephant      | celiac disease, Guillain-Barre syndrome,          |
|                    | seal, sheep                       | reactive arthritis, Miller-Fisher syndrome,       |
|                    |                                   | bacteremia, sepsis, meningitis, urinary tract     |
|                    |                                   | infection, hemolytic uremic syndrome              |
| C. lari            | Human, cattle, chicken, dog,      | Gastroenteritis, recurrent pacemaker              |
|                    | duck, foal, horse, owl,           | infection, bacteremia                             |
|                    | elephant seal, monkey, sheep,     |                                                   |
|                    | wild bird, seagull, cockle, gull, |                                                   |
|                    | oyster, mussel, scallop,          |                                                   |
| ~                  | seawater                          | ~                                                 |
| C. mucosalis       | Human, dog                        | Gastroenteritis                                   |
| C. rectus          | Human, dog                        | Gastroenteritis, Crohn's disease, ulcerative      |
|                    |                                   | colitis, a periodontal pathogen, necrotizing      |
| ~ .                |                                   | soft issue infection, empyema thoracis            |
| C. showae          | Human, dog                        | Crohn's disease, ulcerative colitis, intraorbital |
| <i>a</i>           |                                   | abscess                                           |
| C. sputorum        | Human, cattle, dog, pig, sheep    | Gastroenteritis, axillary abscess, bacteremia     |
| C. upsaliensis     | Human, cat, dog                   | Gastroenteritis, breast abscess, bacteremia,      |
|                    | <b>TT</b> 1                       | spontaneous abortion                              |
| C. ureolyticus     | Human, horse                      | Gastroenteritis, Crohn's disease, ulcerative      |
|                    |                                   | colitis, oral and perianal abscesses, soft tissue |
|                    |                                   | abscesses, ulcer or gangrenous lesions of the     |
|                    |                                   | lower limb, reactive arthritis, rheumatoid        |
|                    |                                   | arthritis, undifferentiated arthritis             |

Table 1. The diverse niches colonized by and human diseases caused by *Campylobacter* spp. (Ref. 1).

本邦にはカンピロバクターに関する食品の規格基準がなく、公定法に相当する検査法は ない。多くの場合、1)検体を選択培地に塗布し、2)酸素濃度が3-15%程度の微好気条件下 で 2-3 日分離培養した後、3) 得られたコロニーを純培養し、4) その生化学性状等を調べる 方法に基づく (13)。 菌数が少ないことが予測される検体の場合、分離培養の前に 1-2 日間の 増菌培養を行う。このような培養に基づく検査法は操作が非常に煩雑である上、微好気条 件を生みだせる特殊な培養装置が必要である。また、菌種間で生化学的性状が類似しているた め、菌種の誤同定がしばしば問題となる。カンピロバクターは増殖が遅く、最終的にカンピロ バクターを分離、同定するまでには 7-10 日という長い時間を要する。他の菌の増殖を抑え るため、抗菌薬を含んだ選択培地を使用することが多いが、これらは主に食中毒細菌に指 定されている 2 菌種 (C. jejuni, C. coli) を対象に開発されてきた (13)。 カンピロバクターは 菌種によって薬剤感受性が異なるため (9)、これら2菌種 (C. jejuni、C. coli) 以外のカンピ ロバクターの増殖が抑えられてしまう可能性がある (1、14)。また、カンピロバクターの多 くは微好気性菌であるが、水素ガスを要求する菌やより高い嫌気性条件下でしか増殖でき ない菌も存在し、至適発育温度域も菌種によって異なる (14)。それゆえ、1種類の培養法で 全てのカンピロバクターを分離培養することは困難であり、どうしてもいずれかの菌種に 焦点を当てた培養方法を選ばざるを得ない。このような状況の下、一般に用いられる培養 法は C. jejuni と C. coli を対象としており、これら 2 菌種以外のカンピロバクターの存在を 見逃している可能性が指摘されている (14)。

カンピロバクターは両端もしくは一端に無鞘の鞭毛をもち、活発に旋回運動をする。Lastovicaら はカンピロバクターの高い運動性に着目し、抗菌薬を用いないカンピロバクターの分離培養法 (ケ ープタウンプロトコール)を考案した。すなわち、メンブレンフィルターをのせた抗菌薬無添加の血 液寒天培地に検体を添加し、メンブレンフィルターを通過できた菌のみを 37℃、水素濃度の高い 微好気条件で培養する方法であり、下痢症患者から C. jejuni、C. coli 以外のカンピロバクターを高 頻度で分離できることを報告した。1990年から 2005年までの Red Cross Children's Hospital (南ア フリカ) においてケープタウンプロトコールを用いて下痢症患者から分離されたカンピロバクター様 細菌うち、C. jejuni、C. coli 以外の菌種の割合は 57.2%であり、主に C. concisus、C. upsaliensis、C. hyointestinalis、C. fetus、C. lari 等が分離された (Table 2) (9)。 カナダやアイルランド等でも同様の

報告がある (15-18)。これらの菌種は、伴侶 動物、家畜、野生動物等の腸管に分布して おり (Table 1)、ヒトへ感染する機会は C. *jejuni と C. coli* と同様に高いと考えられる。 しかし、これら菌種の分離報告例はあまり多 くないため、病原性、及びヒトの疾患への関 与については不明な点が多い。今後、C. *jejuni、C. coli* 以外の菌種の存在も考慮に 入れて、カンピロバクター感染症の実態を 明らかにすることが求められる。

Table 2. Distribution of *Campylobacter* species and related organisms isolated from pediatric diarrheic stools at the Red Cross Children's Hospital, Cape Town, South Africa, 1990-2007 (Ref. 9).

| Species or subspecies                             | No.   | %     |
|---------------------------------------------------|-------|-------|
| C. jejuni subsp. jejuni                           | 1,956 | 32.57 |
| C. concisus                                       | 1,503 | 25.02 |
| C. upsaliensis                                    | 1,414 | 23.54 |
| C. jejuni subsp. doylei                           | 431   | 7.18  |
| Helicobacter fennelliae<br>(former C. fennelliae) | 337   | 5.61  |
| C. coli                                           | 181   | 3.01  |
| C. hyointestinalis                                | 57    | 0.95  |
| Others                                            | 127   | 2.11  |
|                                                   |       |       |

著者は、遺伝子検査法を用いて検体から直接、カンピロバクターを菌種特異的に検出でき れば、*C. jejuni と C. coli* の 2 菌種に偏ることなくカンピロバクター感染症の実態をより正確 に把握できるものと考えた。さらに、培養を行う前に検体に存在する菌種を同定すること で適切な培養法を選択することができ、手間やコストが省けるだけではなく、カンピロバ クターの分離率向上が期待できる。そのためには、迅速にカンピロバクターを検出、同定 可能な遺伝子検査法の開発が必要不可欠である。

カンピロバクターが産生する毒素として様々なものが報告されているが、現在までに精製され、その実態が明らかになっている毒素は細胞膨化毒素 (CDT: Cytolethal distending toxin)のみである (19)。CDT は CdtA、CdtB 及び CdtC の 3 つのサブユニットからなるホロ 毒素であり、それぞれ cdtA、cdtB、及び cdtC と呼ばれる 3 つの連続した遺伝子にコードされる (20)。CdtA と CdtC が標的細胞の受容体と結合し、毒素活性本態である CdtB を細胞内 へ送り込む。CdtB は最終的に核内に移行し、CdtB の持つ DNase 活性により DNA を傷害し、 細胞周期を G<sub>2</sub>/M 期で停止させる。CDT を作用させた細胞は 24-48 時間後に膨化し、96-120 時間後に致死することが報告されている (20)。現在、*in vivo* における CDT の担う役割につ いて研究が進められており、CDT はカンピロバクターの腸管定着性、細胞内侵入性、さら には宿主免疫システムからの回避に関与する可能性が示唆されている (5、21、22)。

CDT は大腸菌 (Escherichia coli)、赤痢菌 (Shigella)、ヘリコバクター属菌 (Helicobacter spp.) 等さまざまなグラム陰性菌が産生する (19, 23)。また、カンピロバクター属菌の中で も、食中毒細菌に指定されている C. jejuni と C. coli、まれに食中毒患者から分離され、敗血 症の原因となる C. fetus が CDT を産生することが報告されていた (24, 25)。著者の研究グル ープは、これら3菌種内に cdt 遺伝子が普遍的に保有されていると共に、その配列に菌種特 異性があることを見出し (25)、cdt 遺伝子に基づく遺伝子検査法が 3 菌種の同定に有用であ ることを報告した (26-28)。上述したとおり、C. jejuni、C. coli、C. fetus 以外のカンピロバクターも ヒトに病原性を示す可能性があり (Table 1)、これら3 菌種以外のカンピロバクターも特異的に検出 できる遺伝子検査法の開発が求められている。そこで著者は、cdt 遺伝子が C. jejuni、C. coli、C. fetus の3 菌種のみならず、cdt 遺伝子を保有するカンピロバクター属菌全般に菌種特異的か つ普遍的に保存されているのであれば、遺伝子検査法の標的遺伝子として非常に有用であ ると考えた。第一章では、ヒトや動物に対して疾病を引き起こす可能性のあるカンピロバ クターのうち (Table 1)、10 菌種が cdt 遺伝子を普遍的に保有する可能性を検証し、cdt 遺伝 子を保有するカンピロバクターを同定可能な PCR-RFLP (PCR-restriction fragment length polymorphisms) 法を開発した。第二章では、カンピロバクター属に属する C. hyointestinalis から既知の cdt 遺伝子と異なる cdt 遺伝子 (chcdt-II 遺伝子) を見出し、新規 cdt 遺伝子のク ローニングと新規 CDT に関する性状解析を行った。第三章では、第二章で得られた情報を 元に、ヒトの下痢症患者から分離報告例のある主要な6菌種のカンピロバクター (C. jejuni、 C. coli、C. fetus、C. hyointestinalis、C. lari、C. upsaliensis) を菌種特異的に同定可能な Multiplex PCR 法の開発を行った。

本研究成果は、カンピロバクター感染症の実体を正確に把握する上で有益な検査ツール を提供すると共に、新規 cdt 遺伝子を同定することに成功し、カンピロバクターの病原機構 を解明する上で有益な情報を提供し得るものと考え、ここに学位論文としてまとめた次第 である。

#### 本論

## 第一章 カンピロバクターが保有する cdt 遺伝子の分布と cdtB 遺伝子を標的としたカンピ ロバクターの遺伝子検査法の開発

1987年、JohnsonとLiorは細胞膨化致死毒素 (CDT)という新規毒素を下痢症患者から分 離された大腸菌で見出し (29)、さらに翌年カンピロバクター属に属する Campylobacter jejuni も CDT を産生することを報告した (24)。1994 年、米国の 2 つのグループによって異なる血清 型の大腸菌から 2 つの異なる CDT をコードする遺伝子がクローニングされ (30、31)、1997 年 には C. jejuni の cdt 遺伝子の全塩基配列が決定された (32)。著者の研究グループはカンピロ バクター属に属する C. coli、C. fetus の cdt 遺伝子配列を決定し、C. jejuni の cdt 遺伝子配列 と比較解析した (25)。その結果、これら3菌種間で保存されている領域を cdtB 遺伝子内に 見出し、C. jejuni、C. coli、C. fetus の 3 菌種の cdtB 遺伝子を同時に増幅できるプライマー (コ モンプライマー)を設計した (25)。著者は同定した領域が他菌種のカンピロバクターの cdtB 遺伝子内にも保存されている可能性があり、コモンプライマーを用いることで他菌種の*cdtB* 遺伝子も増幅できる可能性があると考えた。そこで本章では、コモンプライマーを用いて cdtB 遺伝子の増幅を試みることで、C. jejuni、C. coli、C. fetus 以外のカンピロバクターが cdt 遺伝子を保有しているかどうかを調べた。また、cdtB 遺伝子を増幅可能であった菌種に対 しては、その菌種内の cdtB 遺伝子の保有率を調べることで、cdt 遺伝子が遺伝子検査法の標 的遺伝子として有用である可能性を評価した。さらに得られた知見に基づき、*cdt* 遺伝子を 保有するカンピロバクターを簡便、かつ迅速に検出、同定できる遺伝子検査法 (PCR-RFLP 法)を開発し、その有用性を評価した。

#### 第一節 10 菌種のカンピロバクターに cdt 遺伝子が普遍的に保存されている可能性の評価

ヒトや動物の病気に関与するカンピロバクターのうち (Table 1)、C. jejuni、C. coli、C. fetus 以外の代表的な7菌種 (C. hyointestinalis、C. lari、C. upsaliensis、C. helveticus、C. concisus、 C. hominis、C. curvus) が cdt 遺伝子を普遍的に保有する可能性を検証するため、コモンプラ イマーを用いてこれら 7 菌種から cdtB 遺伝子の増幅を試みた。

#### <u>実験材料と方法</u>

#### 【使用した菌株と培養条件】

本節の実験に使用した菌株を Table 3 に示した。コモンプライマーを用いた PCR の予備検 討では *C. jejuni* 81-176 株、*C. coli* Co1-243 株、*C. fetus* ATCC 27374 株、*C. hyointestinalis* Ch022 株、*C. lari* 298 株、*C. upsaliensis* ATCC 43954 株、*C. helveticus* ATCC 51209 株、*C. concisus* ATCC 33237 株、*C. concisus* ATCC 51562 株、*C. curvus* ATCC 35224 株、*C. hominis* ATCC BAA-381 株、及び陰性コントロールとして *E. coli* C600 株を使用した。*C. concisus*、*C. curvus*、*C. hominis* を除くカンビロバクターは、5%の馬脱繊維血液 (Nippon Bio-Supp. Center) を含む血液寒天 培地 (Oxoid) (以下、馬血液寒天培地)を用いて、37℃、水素添加微好気条件 (5% O<sub>2</sub>、7.5% CO<sub>2</sub>、7.5% H<sub>2</sub>、80% N<sub>2</sub>)下で2日以上培養した。*C. concisus*、*C. curvus*、*C. hominis* を培養 するため、200 µL の 6%ギ酸ナトリウム/フマル酸水溶液を馬血液寒天培地に添加し、コン ラージ棒で広げながら乾燥させた。*C. concisus*、*C. curvus*、*C. hominis* を植菌したギ酸ナト リウム/フマル酸加馬血液寒天培地を 37℃、水素添加嫌気条件 (10% CO<sub>2</sub>、10% H<sub>2</sub>、80% N<sub>2</sub>) 下で2日以上培養した。*E. coli* は Luria-Bertani (LB: Becton, Dickinson and Company) 培地を 用いて、37℃で一晩、振とう培養した。

#### 【鋳型 DNA の調製】

寒天培地上に生じた上記菌株由来のコロニーを 200 μL の TE バッファー [10 mM Tris-HCl、 1 mM EDTA (pH 8.0)] に懸濁した。また、液体培地を用いて培養した菌株は、対数増殖期の 菌液 20 μL と TE バッファー 180 μL を混合した。これら菌体懸濁液を 10 分間加熱処理し、 遠心分離 (12,800 g、10 分) によって得られた上清を鋳型 DNA とし、PCR に用いた。

【コモンプライマーを用いた PCR】

| Species              | Strain                  | Chapter*   | Species             | Strain                  | Chapter    |
|----------------------|-------------------------|------------|---------------------|-------------------------|------------|
| Campylobacter jejuni | 81-176                  | I, II, III | C. coli             | Co1-124                 | I, III     |
| C. jejuni            | ATCC 33560 <sup>T</sup> | I, III     | C. coli             | Co1-130                 | I, III     |
| C. jejuni            | 43432                   | I, III     | C. coli             | Co1-194                 | I, III     |
| C. jejuni            | 700819                  | I, III     | C. coli             | Co1-245                 | I, III     |
| C. jejuni            | Co2-037                 | I, III     | C. coli             | Co2-082                 | I, III     |
| C. jejuni            | Co2-130                 | I, III     | C. coli             | Co2-173                 | I, III     |
| C. jejuni            | Co2-146                 | I, III     | C. coli             | Co2-218                 | I, III     |
| C. jejuni            | Co2-150                 | I, III     | C. coli             | Co3-134                 | I, III     |
| C. jejuni            | Co2-217                 | I, III     | C. coli             | WLD4-1                  | III        |
| C. jejuni            | Co3-008                 | I, III     | C. coli             | WLD4-6                  | III        |
| C. jejuni            | B01                     | Ι          | C. coli             | WLD4-8                  | III        |
| C. jejuni            | Co1-008                 | I, III     | C. coli             | WLD4-4                  | III        |
| C. jejuni            | Co1-119                 | I, III     | C. coli             | WLD4-5                  | III        |
| C. jejuni            | Co1-126                 | I, III     | C. coli             | WLD4-9                  | Ш          |
| C. jejuni            | Co2-127                 | I, III     | C. coli             | WLD4-3                  | Ш          |
| C. jejuni            | Co2-128                 | I, III     | C. coli             | WLD4-7                  | III        |
| C. jejuni            | Co2-132                 | I, III     | C. coli             | WLD4-12                 | III        |
| C. jejuni            | Co2-193                 | I, III     | C. coli             | D3-2                    | III        |
| C. jejuni            | Co2-200                 | I, III     | C. coli             | D3-3                    | III        |
| C. jejuni            | Co2-214                 | I, III     | C. coli             | D3-4                    | III        |
| C. jejuni            | Co3-007                 | I, III     | C. coli             | D3-5                    | III        |
| C. jejuni            | Co3-011                 | I, III     | C. coli             | D3-6                    | III        |
| C. jejuni            | Co3-012                 | I, III     | C. coli             | LW9-9                   | III        |
| C. jejuni            | Co3-024                 | I, III     | C. coli             | LW9-3                   | III        |
| C. jejuni            | Co3-036                 | I, III     | C. coli             | LW9-7                   | III        |
| C. jejuni            | Co3-072                 | I, III     | C. coli             | LW9-1                   | III        |
| C. jejuni            | Co3-078                 | I. III     | C. coli             | LW9-2                   | Ш          |
| C. jejuni            | Co3-082                 | I, III     | C. coli             | LW9-4                   | III        |
| C. jejuni            | B86                     | I, III     | Campylobacter fetus | ATCC 27374 <sup>T</sup> | I, II, III |
| C. jejuni            | 8214c                   | I. III     | C. fetus            | ATCC 19438 <sup>T</sup> | I. III     |
| C. jejuni            | 8215a                   | I, III     | C. fetus            | Co1-099                 | I, III     |
| C. jejuni            | 8414c                   | I. III     | C. fetus            | Co1-187                 | I          |
| C. jejuni            | 9914b                   | I. III     | C. fetus            | 3-1                     | I          |
| C. jejuni            | 10114a                  | I. III     | C. fetus            | 23-1                    | Ι          |
| C. jejuni            | 10114c                  | I, III     | C. fetus            | 7914c                   | Ι          |
| C. jejuni            | B38                     | III        | C. fetus            | 7915a                   | Ι          |
| C. jejuni            | B82                     | III        | C. fetus            | 8013b                   | I, III     |
| C. jejuni            | 10014c                  | III        | C. fetus            | 9813a                   | I          |
| C. jejuni            | 8711c                   | III        | C. fetus            | 2-1                     | Ι          |
| C. jejuni            | K328                    | II         | C. fetus            | 7                       | I, III     |
| Campylobacter coli   | Co1-243                 | I, III     | C. fetus            | 86c                     | I          |
| C. coli              | ATCC 33559 <sup>T</sup> | I, II, III | C. fetus            | 7915b                   | I, III     |
| C. coli              | ATCC 43478              | I, III     | C. fetus            | 8013a                   | I, III     |
| C. coli              | Co1-017                 | I, III     | C. fetus            | 8013c                   | I, III     |
| C. coli              | Co1-106                 | I, III     | C. fetus            | 8512a                   | Ι          |
| C. coli              | Co1-192                 | I, III     | C. fetus            | 8614c                   | I, III     |
| C. coli              | Co1-247                 | I, III     | C. fetus            | 8813a                   | I, III     |
| C. coli              | Co2-060                 | I, III     | C. fetus            | 8813c                   | I, III     |
| C. coli              | Co2-147                 | I, III     | C. fetus            | COW055                  | III        |
| C. coli              | Co2-215                 | I, III     | Campylobacter       | ~                       |            |
| C. coli              | Co1-071                 | I. III     | hvointestinalis     | Ch022                   | I, II, III |

Table 3. Bacterial strains used in this study (chapter I-III).

| Species                   | Strain                  | Chapter    | Species                 | Strain                    | Chapter    |
|---------------------------|-------------------------|------------|-------------------------|---------------------------|------------|
| C. hyointestinalis        | ATCC 35217 <sup>T</sup> | I, II, III | C. upsaliensis          | 99-1                      | I, III     |
| C. hyointestinalis        | SS                      | I, II, III | C. upsaliensis          | 101-1                     | I, III     |
| C. hyointestinalis        | 1-1                     | I, II, III | C. upsaliensis          | 102-1                     | I, III     |
| C. hyointestinalis        | 10-1                    | I, II, III | C. upsaliensis          | 104-1                     | I, III     |
| C. hyointestinalis        | 87-4                    | I, II, III | C. upsaliensis          | 115-1                     | I, III     |
| C. hyointestinalis        | 84-6                    | I, II, III | C. upsaliensis          | G1104                     | I, III     |
| C. hyointestinalis        | 2003                    | I, II, III | C. upsaliensis          | Maririn                   | I, III     |
| C. hyointestinalis        | 2030                    | I, II, III | C. upsaliensis          | 12-1                      | I, III     |
| C. hyointestinalis        | 2032                    | I, II, III | C. upsaliensis          | 37-1                      | I, III     |
| C. hyointestinalis        | 2033                    | I, II, III | Campylobacter concisus  | ATCC 33237 <sup>T</sup>   | I, II, III |
| C. hyointestinalis        | 2034                    | I, II, III | C. concisus             | ATCC 51562                | I, III     |
| C. hyointestinalis        | 2035                    | I, II, III | Campylobacter curvus    | ATCC 35224 <sup>T</sup>   | I, II, III |
| C. hyointestinalis        | 2037                    | I, II, III | Campylobacter hominis   | ATCC BAA-381 <sup>T</sup> | I, II, III |
| C. hyointestinalis        | 2038                    | I, II, III | Campylobacter mucosalis | ATCC 43952                | II, III    |
| C. hyointestinalis        | 2039                    | I, II, III | Aggregatibacter         | 601                       | т          |
| C. hyointestinalis        | 2073                    | I, II, III | actinomycetemcomitans   | 501                       | 1          |
| C. hyointestinalis        | 3014                    | I, II, III | Arcobacter butzleri     | 49616 <sup>T</sup>        | I, III     |
| C. hyointestinalis        | 3158                    | I, II, III | A. butzleri             | china 08                  | III        |
| C. hyointestinalis        | 3197                    | I, II, III | A. butzleri             | C38                       | III        |
| C. hyointestinalis        | 3477                    | I, II, III | A. butzleri             | Thai 41                   | III        |
| C. hyointestinalis        | 3535                    | I, II, III | A. butzleri             | Thai 43                   | III        |
| C. hyointestinalis        | 3839                    | I, II, III | A. butzleri             | Thai 48                   | III        |
| C. hyointestinalis        | 3857                    | I, II, III | Arcobacter skirrowii    | 51132 <sup>T</sup>        | I, III     |
| Campylobacter lari        | 298                     | I, III     | Escherichia albertii    | 17328 <sup>T</sup>        | I, III     |
| C. lari                   | ATCC 43675              | I, II, III | Escherichia coli        | VS-1                      | Ι          |
| C. lari                   | JCM2530 <sup>T</sup>    | I, III     | E. coli                 | NT3363                    | Ι          |
| C. lari                   | 84c-1                   | I, III     | E. coli                 | GB1371                    | Ι          |
| C. lari                   | 84c-2                   | I, III     | E. coli                 | P3                        | Ι          |
| C. lari                   | 264                     | I, III     | E. coli                 | b52                       | Ι          |
| C. lari                   | 448                     | I, III     | E. coli                 | P101                      | Ι          |
| C. lari                   | 918                     | Ι          | E. coli                 | S9                        | Ι          |
| C. lari                   | 1500                    | Ι          | E. coli                 | S45                       | Ι          |
| C. lari                   | 1502                    | Ι          | E. coli                 | P183                      | I, III     |
| C. lari                   | 1504                    | Ι          | E. coli                 | P194                      | Ι          |
| C. lari                   | 1578                    | Ι          | E. coli                 | B10                       | Ι          |
| C. lari                   | 1601                    | Ι          | E. coli                 | b1                        | Ι          |
| Campylobacter helveticus  | ATCC 51209 <sup>T</sup> | I, II, III | E. coli                 | AQ25179                   | Ι          |
| C. helveticus             | CAT                     | I, III     | E. coli                 | AQ13328                   | Ι          |
| Campylobacter upsaliensis | ATCC 43954 <sup>T</sup> | I, II, III | E. coli                 | P132                      | Ι          |
| C. upsaliensis            | 13-1                    | I, III     | E. coli                 | P140                      | Ι          |
| C. upsaliensis            | 21-1                    | I, III     | E. coli                 | b95                       | Ι          |
| C. upsaliensis            | 26-4                    | I, III     | E. coli                 | AQ11333                   | Ι          |
| C. upsaliensis            | 40-1                    | I, III     | E. coli                 | P150                      | Ι          |
| C. upsaliensis            | 41-2                    | I, III     | E. coli                 | P336                      | I, III     |
| C. upsaliensis            | 42-3                    | I, III     | E. coli                 | B102                      | Ι          |
| C. upsaliensis            | 48-1                    | I, III     | E. coli                 | P31                       | III        |
| C. upsaliensis            | 49-1-1                  | I, III     | E. coli                 | EaI                       | III        |
| C. upsaliensis            | 60-1                    | I, III     | E. coli                 | hachi                     | III        |
| C. upsaliensis            | 66-1                    | I, III     | E. coli                 | C600                      | II         |
| C. upsaliensis            | 68-3                    | I, III     | E. coli                 | JM109                     | II         |
| C. upsaliensis            | 70-3                    | I, III     | E. coli                 | BL21(DE3)                 | II         |

#### Table 3. Continued.

| Species                   | Strain                  | Chapter | Species                 | Strain  | Chapter |
|---------------------------|-------------------------|---------|-------------------------|---------|---------|
| Helicobacter cinaedi      | ATCC BAA-847            | III     | S. dysenteriae          | 153AQ   | Ι       |
| Haemophilus ducreyi       | 700724                  | Ι       | S. dysenteriae          | 155AQ   | Ι       |
| Helicobacter fennelliae   | 35684 <sup>T</sup>      | I, III  | S. dysenteriae          | H14-174 | Ι       |
| Helicobacter hepaticus    | ATCC 51448 <sup>T</sup> | Ι       | S. dysenteriae          | HU29    | Ι       |
| H. hepaticus              | ATCC 51449              | III     | S. dysenteriae          | BCM519  | Ι       |
| Helicobacter pylori       | 43504 <sup>T</sup>      | I, III  | Shigella flexneri       | SF3     | Ι       |
| H. pylori                 | 43629                   | I, III  | S. flexneri             | SF4     | Ι       |
| Providencia alcalifaciens | Tm8                     | I, III  | S. flexneri             | SF5     | Ι       |
| Salmonella spp.           | ST4,311                 | Ι       | S. flexneri             | SF6     | Ι       |
| Salmonella spp.           | ST1,312                 | Ι       | S. flexneri             | SF7     | Ι       |
| Salmonella spp.           | ST3,307                 | Ι       | Shigella sonnei         | 7AQ     | Ι       |
| Salmonella spp.           | TM101                   | Ι       | S. sonnei               | SS2     | Ι       |
| Salmonella spp.           | TM103                   | Ι       | S. sonnei               | SS3     | Ι       |
| Salmonella spp.           | TM104                   | Ι       | S. sonnei               | SS7     | III     |
| Salmonella spp.           | TM105                   | Ι       | Vibrio cholera          | N16961  | Ι       |
| Salmonella spp.           | TM106                   | I, III  | V. cholera              | 569B    | Ι       |
| Salmonella spp.           | TM107                   | Ι       | V. cholera              | VC406   | Ι       |
| Salmonella spp.           | TM109                   | Ι       | V. cholera              | C-1     | Ι       |
| Salmonella spp.           | TM110                   | Ι       | V. cholera              | C-2     | Ι       |
| Salmonella spp.           | TM111                   | Ι       | V. cholera              | C-3     | Ι       |
| Salmonella spp.           | TM112                   | I, III  | V. cholera              | C-4     | Ι       |
| Salmonella spp.           | TM113                   | I, III  | V. cholera              | C-5     | Ι       |
| Salmonella spp.           | TM114                   | I, III  | V. cholera              | C-6     | Ι       |
| Salmonella spp.           | TM116                   | I, III  | V. cholera              | C-7     | Ι       |
| Salmonella spp.           | TM117                   | I, III  | V. cholera              | C-8     | Ι       |
| Salmonella spp.           | TM118                   | Ι       | V. cholera              | C-9     | Ι       |
| Salmonella spp.           | TM119                   | Ι       | V. cholera              | C-10    | Ι       |
| Salmonella spp.           | TM121                   | Ι       | V. cholera              | A5      | Ι       |
| Salmonella spp.           | TM122                   | Ι       | V. cholera              | A10     | Ι       |
| Salmonella spp.           | TM123                   | Ι       | V. cholera              | A15     | Ι       |
| Salmonella spp.           | TM125                   | Ι       | V. cholera              | B5      | Ι       |
| Salmonella spp.           | TM126                   | Ι       | V. cholera              | B10     | Ι       |
| Salmonella spp.           | TM127                   | Ι       | V. cholera              | C5      | Ι       |
| Salmonella spp.           | TM128                   | Ι       | V. cholera              | C9      | Ι       |
| Salmonella spp.           | TM129                   | Ι       | V. cholera              | D5      | Ι       |
| Salmonella spp.           | TM130                   | Ι       | V. cholera              | E5      | Ι       |
| Salmonella spp.           | TM132                   | Ι       | V. cholera              | E10     | Ι       |
| Salmonella spp.           | TM134                   | Ι       | Vibrio parahaemolyticus | VP1     | Ι       |
| Salmonella spp.           | TM135                   | Ι       | V. parahaemolyticus     | VP2     | Ι       |
| Salmonella spp.           | TM136                   | Ι       | V. parahaemolyticus     | VP3     | Ι       |
| Salmonella spp.           | TM137                   | Ι       | V. parahaemolyticus     | VP4     | Ι       |
| Shigella dysenteriae      | SD1                     | Ι       | V. parahaemolyticus     | VP5     | Ι       |
| S. dysenteriae            | SD2                     | Ι       | V. parahaemolyticus     | VP6     | Ι       |
| S. dysenteriae            | SD3                     | Ι       | V. parahaemolyticus     | VP7     | Ι       |
| S. dysenteriae            | SD5                     | Ι       | V. parahaemolyticus     | VP8     | Ι       |
| S. dysenteriae            | SD102                   | I, III  | V. parahaemolyticus     | VP9     | Ι       |
| S. dysenteriae            | SD104                   | I, III  | V. parahaemolyticus     | VP10    | Ι       |
| S. dysenteriae            | SD-107                  | Ι       | V. parahaemolyticus     | VP11    | Ι       |
| S. dysenteriae            | SD112                   | I, III  | V. parahaemolyticus     | VP12    | Ι       |
| S. dysenteriae            | SD153                   | III     | V. parahaemolyticus     | VP13    | Ι       |
| S. dysenteriae            | SD155                   | III     | V. parahaemolyticus     | VP14    | Ι       |

#### Table 3. Continued.

| Species             | Strain | Chapter | Species                 | Strain                  | Chapter |
|---------------------|--------|---------|-------------------------|-------------------------|---------|
| V. parahaemolyticus | VP15   | Ι       | V. parahaemolyticus     | VP24                    | Ι       |
| V. parahaemolyticus | VP16   | Ι       | V. parahaemolyticus     | VP25                    | Ι       |
| V. parahaemolyticus | VP18   | Ι       | V. parahaemolyticus     | VP26                    | Ι       |
| V. parahaemolyticus | VP19   | Ι       | V. parahaemolyticus     | VP28                    | Ι       |
| V. parahaemolyticus | VP20   | Ι       | V. parahaemolyticus     | VP30                    | Ι       |
| V. parahaemolyticus | VP21   | Ι       | V. parahaemolyticus     | VP31                    | Ι       |
| V. parahaemolyticus | VP22   | Ι       | Wolinella succinogenes  | ATCC 29543 <sup>T</sup> | III     |
| V. parahaemolyticus | VP23   | Ι       | Yersinia enterocolitica | Ye09                    | Ι       |

\*Indicates the chapter where the bacterial strain was used.

コモンプライマーである C-CdtBcom1 (5'-ACTTGGAATTTGCAAGGC-3') と C-CdtBcom2 (5'-TCTAAAATTTACHGGAAAATG-3') は GeneDesign 社で合成され本実験に供した (25)。 鋳型 DNA 1-4 µL、C-CdtBcom1 (10 µM) 2 µL、C-CdtBcom2 (10 µM) 2 µL、dNTP mix (2.5 mM) 3.2 µL、10 × Ex Taq buffer 4 µL、Takara Ex Taq (Takara) 1 U を混合し、滅菌精製水を用いて最 終液量を 40 µL に調整した。94℃ 3 分間の初期変性後、94℃ 30 秒の変性、50℃ 30 秒のア ニーリング、72℃ 30 秒の伸長反応を 30 サイクル行い、72℃ 3 分の最終伸張反応を行った。 PCR は TaKaRa PCR Thermal Cycler Dice Gradeient (Takara)、もしくは Geneamp PCR System 9700 (Life Technologies) を用いて行った。PCR 産物は 2.0%アガロースゲル (SeaKem LE agarose; Cambrex Bio Science Rockland) を用いて泳動後、アガロースゲルをエチジウムブロ マイド水溶液で染色し、ゲルドキュメンテーション解析システム (Gel Doc 2000; Bio-Rad Laboratories) を用いて紫外線下 (260 nm) で撮影した。

#### 【塩基配列の解析】

PCR 産物は QIA quick PCR Purification Kit (Qiagnen)、もしくは Wizard SV Gel and PCR Clean-Up System (Promega) を用いて精製した。Cycle PCR は BigDye Terminators v1.1 Cycle Sequencing Kit (Life Technologies) を用いた。すなわち精製 DNA 2-5 ng、プライマー (2.5  $\mu$ M) 1  $\mu$ L、Big Dye terminator v1.1 1.75  $\mu$ L、5 × Sequence buffer 2  $\mu$ L を混合し、滅菌精製水を用い て最終液量を 10  $\mu$ L に調整した後、96°C 5 分の初期変性後、96°C 10 秒の変性、50°C 5 秒 のアニーリング、60°C 4 分の伸長反応を 25 サイクル行った。Cycle PCR 終了後、反応液を

CleanSEQ magnetic Particle Solution (Beckman Coulter) 10 µL、85% エタノール 42 µL と混合し た。30 秒間静置した後、96 穴マグネティックプレート (SPRI plate96R: Beckman Coulter) 上 で3 分間静置後、上清を除去した。85% エタノール 100 µL を添加し 30 秒間静置後、上清 を除去した。さらに室温で 10 分間、自然乾燥させた後、滅菌精製水 50 µL を加え、5 分間 静置した。上清 40 µL を回収し、Applied Biosystems 3130 Genetic Analyser (Life Technologies) を用いて塩基配列を決定した。得られた塩基配列は DNA Lasergene software package (DNASTAR) を用いて解析し、相同性検索は、NCBI (National Center for Biotechnology Information) が提供する BLAST (http://blast.ncbi.nlm.nih.gov/) を用いて行った。

#### Accession Number

新たに決定した *cdtB* 遺伝子の塩基配列は、DNA Data Bank of Japan (DDBJ) に登録した (菌株/accession no.; *C. jejuni* Co1-008 株/AB872826、Co1-119 株/AB872827、Co1-126 株 /AB872828、Co2-127 株/AB872829、Co2-128 株/AB872830、Co2-132 株/AB872831、Co2-193 株/AB872832、Co2-200 株/AB872833、Co2-214 株/AB872834、Co3-007 株/AB872835、Co3-011 株/AB872836、Co3-012 株/AB872837、Co3-024 株/AB872838、Co3-036 株/AB872839、Co3-072 株/AB872840、Co3-078 株/AB872841、Co3-082 株/AB872842、B86 株/AB872843、8214c 株 /AB872844、8215a 株/AB872845、8414c 株/AB872846、9914b 株/AB872847、10114a 株/AB872848、 10114c 株/AB872849、*C. coli* Co1-071 株/AB872850、Co1-124 株/AB872851、Co1-130 株 /AB872852、Co1-194 株/AB872853、Co1-245 株/AB872854、Co2-082 株/AB872855、Co2-173 株/AB872856、Co2-218 株/AB872857、Co3-134 株/AB872858、*C. fetus* 2-1 株/AB872859、7 株 /AB872860、86c 株/AB872861、7915b 株/AB872862、8013a 株/AB872863、8013c 株/AB872864、 8512a 株/AB872865、8614c 株/AB872866、8813a 株/AB872867、8813c 株/AB872868、*C. hyointestinalis* 1-1 株/AB872869、10-1 株/AB872870、87-4 株/AB872871、94-6 株/AB872872、 2003 株/AB872873、2030 株/AB872874、2032 株/AB872875、2033 株/AB872876、2034 株 /AB872877、2035 株/AB872878、2037 株/AB872879、2039 株/AB872888、2037 株/AB872888、

13

3014 株/AB872882、3158 株/AB872883、3197 株/AB872884、3477 株/AB872885、3535 株 /AB872886、3839 株/AB872887、3857 株/AB872888、*C. upsaliensis* ATCC 43954 株/AB872889、 12-1 株/AB872890、37-1 株/AB872891、13-1 株/AB872892、21-1 株/AB872893、26-4 株 /AB872894、40-1 株/AB872895、41-2 株/AB872896、42-3 株/AB872897、48-1 株/AB872898、 49-1-1 株/AB872899、60-1 株/AB872900、66-1 株/AB872901、68-3 株/AB872902、70-3 株 /AB872903、99-1 株/AB872904、101-1 株/AB872905、102-1 株/AB872906、104-1 株/AB872907、 115-1 株/AB872908、G1104 株/AB872909、Maririn 株/872910、*C. lari* ATCC 43675 株/AB872911、 918 株/AB904782、1500 株/AB904783、1502 株/AB904784、1504 株/AB904785、1578 株/AB904786、 1601 株/AB904787、*C. helveticus* ATCC51209 株/AB872912)。

#### <u>実験結果と考察</u>

7 菌種のカンピロバクター (C. hyointestinalis、C. lari、C. upsaliensis、C. helveticus、C. concisus、 C. hominis、C. curvus) が cdt 遺伝子を保有する可能性あるいは既に保有が報告されている cdt 遺伝子がコモンプライマーで増幅されるかを予備的に検証するため、これら 7 菌種 8 株、 及び陽性コントロールとして C. jejuni、C. coli、C. fetus の 3 菌種 3 株から、コモンプライマ ーを用いて cdtB 遺伝子の増幅を試みた。その結果、陽性コントロールとして用いた3 菌種 (C. jejuni、C. coli、C. fetus) のみならず、ヒトの胃腸炎の起因菌として認識されている 3 菌種 (C. hyointestinalis、C. lari、C. upsaliensis)、さらには愛玩動物に保有され、ヒトへの感染が危惧 されている C. helveticus の合計 7 菌種から 720 bp 付近に単一な増幅断片を得た (Fig. 2)。得 られた増幅断片の塩基配列を決定したところ、いずれも報告のある cdtB 遺伝子と相同性が あり、cdtB 遺伝子が増幅されていることを確認できた (data not shown)。一方、その他 3 菌 種 (C. concisus、C. hominis、C. curvus)、及び陰性コントロールとして使用した E. coli C600 株から増幅断片が得られなかった (得られた結果の一部を Fig. 2 に示す)。

著者の研究グループは既に C. jejuni、C. coli、C. fetus の 3 菌種内に cdt 遺伝子が普遍的に



**Fig. 2.** Detection of the *cdtB* gene of 7 *Campylobacter* species. Lanes: 1 and 11, 100-bp ladder; 2, *C. jejuni* (strain 81-176); 3, *C. coli* (Co1-243); 4, *C. fetus* (ATCC 27374<sup>T</sup>); 5, *C. hyointestinalis* (Ch022); 6, *C. lari* (298); 7, *C. helveticus* (ATCC 51209<sup>T</sup>); 8, *C. upsaliensis* (ATCC 43954<sup>T</sup>); 9, *C. curvus* (ATCC 35224<sup>T</sup>); 10, *Escherichia coli* (C600).

| Bacterial strain ( <i>n</i> <sup>a</sup> ) | PCR with common primer |                   |  |  |
|--------------------------------------------|------------------------|-------------------|--|--|
|                                            | No. of positive        | Positive rate (%) |  |  |
| Campylobacter jejuni (35)                  | 35                     | 100               |  |  |
| Campylobacter coli (19)                    | 19                     | 100               |  |  |
| Campylobacter fetus (20)                   | 20                     | 100               |  |  |
| Campylobacter hyointestinalis (24)         | 21                     | 88                |  |  |
| Campylobacter lari (13)                    | 13                     | 100               |  |  |
| Campylobacter helveticus (2)               | 2                      | 100               |  |  |
| Campylobacter upsaliensis (22)             | 22                     | 100               |  |  |
| Campylobacter concisus (2)                 | 0                      | 0                 |  |  |
| Campylobacter curvus (1)                   | 0                      | 0                 |  |  |
| Campylobacter hominis (1)                  | 0                      | 0                 |  |  |
| Escherichia coli (1)                       | 0                      | 0                 |  |  |

#### Table 4. Detection of the *cdtB* gene in *Campylobacter* spp.

<sup>a</sup>Value in parentheses indicates number of strains analyzed.

存在することを報告している (25)。特異的なPCR 産物が得られた4菌種 (C. hyointestinalis、 C. lari、C. helveticus、C. upsaliensis) 内にも cdt 遺伝子が普遍的に存在する可能性を検証する ため、これら7菌種 135 株から cdtB 遺伝子の増幅を試みた (Table 4)。その結果、C. jejuni は35 株中 35 株、C. coli は 19 株中 19 株、C. fetus は 20 株中 20 株、C. lari は 13 株中 13 株、 C. helveticus は 2 株中 2 株、C. upsaliensis は 22 株中 22 株から増幅断片が得られた。一方、 C. hyointestinalis については、調べた 24 株中 21 株 (88%) から増幅断片が得られ、3 株から は増幅断片が得られなかった。しかしながら、PCR で陰性となった 3 株の菌体破砕上清を HeLa 細胞に添加したところ、CDT 活性が認められる等、これら 3 株にも cdt 遺伝子が存在する可 能性を見出した (第二章第一節)。2013 年現在、これら 7 菌種の *cdt* 遺伝子配列は報告され ており、今回の PCR 陽性となった 132 株中 39 株も *cdt* 遺伝子を保有していることが報告さ れている (25、32-35、Somroop *et al.*, unpublished data)。そこで、その他 93 株の PCR 産物の 塩基配列を決定したところ、いずれもそれぞれの菌種の *cdtB* 遺伝子と最も相同性が高く、 *cdtB* 遺伝子が増幅されていること、また菌種特異的な *cdt* 遺伝子を保持している可能性が確 認できた (data not shown)。

以上の結果より、少なくとも C. jejuni、C. coli、C. fetus に加え、4 菌種 (C. hyointestinalis、 C. lari、C. upsaliensis、C. helveticus)のカンピロバクターは cdtB 遺伝子を保有しており、コ モンプライマーはこれら7 菌種の cdtB 遺伝子を増幅することができた。また、これら7 菌種内 に cdt 遺伝子が普遍的に存在する可能性が示され、これらの菌種を検出するための標的遺伝 子として cdt 遺伝子は有用であると考えられた。

#### 第二節 7 菌種のカンピロバクターを標的とした菌種同定法の開発

第一節での検討において、コモンプライマーを用いた PCR は 7 菌種のカンピロバクター (C. jejuni、C. coli、C. fetus、C. hyointestinalis、C. lari、C. upsaliensis、C. helveticus)の cdtB 遺伝子を感度よく増幅できた。コモンプライマーは、C. jejuni、C. coli、C. fetus の cdtB 遺伝 子を一度に増幅するために設計したプライマーであったが、コモンプライマーを用いた PCR は、cdt 遺伝子を保有するカンピロバクターを特異的に検出する遺伝子検査法としても 使用可能である。そこで本節では、コモンプライマーを用いた PCR の特異性と検出下限値 を評価することで遺伝子検査法としての基礎情報を収集した。また、cdt 遺伝子が菌種間で 配列に特異性があることを利用し、PCR 産物 (cdtB 遺伝子断片)を制限酵素で消化すること で菌種特異的な切断断片が得られ、その切断多型 (RFLP: restriction fragment length polymorphism)を電気泳動によって解析し、菌種を同定できる可能性を検証した (PCR-RFLP 法)。

#### 実験材料と方法

#### 【使用した菌株と培養条件】

本節の実験に使用した菌株を Table 3 に示した。カンピロバクター属菌、及び E. coli の培養法は第一節の実験材料と方法に従った。Arcobacter 属菌、Helicobacter 属菌は馬血液寒天 培地を用いて、37℃、微好気条件 (5% O<sub>2</sub>、10% CO<sub>2</sub>、85% N<sub>2</sub>)下で 2 日以上培養した。 Aggregatibacter actinomycetemcomitans は 0.6% yeast extract (Becton Dickinson)を含む trypticase soy agar (TSA: Becton Dickinson)を用いて、37℃、10% CO<sub>2</sub>存在下 (10% CO<sub>2</sub> in 90% air)で 2 日間培養した。Shigella 属菌、Vibrio cholerae、Providencia alcalifaciens は LB 液体培地、Vibrio parahaemolyticus は 3% NaClを含むアルカリペプトン水 (Nissui Pharmaceutical)、 E. albertii、Salmonella enterica は trypticase soy broth (TSB: Becton Dickinson)を用いて、37℃で 2 日間培養した。 Yersinia enterocolitica は TSB を用いて、30℃で 2 日間培養した。 Haemophilus ducreyi は 10%の牛胎仔血清 (FBS: Life Technologies)、10 g/L のヘモグロビン (Becton Dickinson)、1%の IsoVitalex (Becton Dickinson)を含むブレインハートインフュージョン培地 (Becton Dickinson)を用いて、37℃、微好気条件 (5% O<sub>2</sub>、10% CO<sub>2</sub>、85% N<sub>2</sub>)下で 5 日間培養した。

#### 【鋳型 DNA の調製】

第一節の実験材料と方法に従った。

#### 【コモンプライマーを用いた PCR】

第一節の実験材料と方法に従った。

#### 【塩基配列の解析】

第一節の実験材料と方法に従った。*cdtB* 遺伝子のコモンプライマー結合領域の解析には、 NCBI に登録されている配列情報 (菌株/accession no.: *C. jejuni* 81-176 株/NC\_008787、*C. coli* Co1-243 株/AB182109、*C. fetus* ATCC 27374 株/AB274802、*C. hyointestinalis* Ch022 株 /AB218983)、及び大阪府立大学獣医国際防疫学研究室で *cdtB* 遺伝子の全塩基配列を決定し、 その部分配列のみを NCBI に登録した C. lari 298 株/AB274802、C. upsaliensis ATCC 43954 株/AB872889、C. helveticus ATCC 51209/AB872912 株の配列情報を用いた。

#### 【PCR の検出下限値の評価】

第一節の実験材料と方法に従って *C. jejuni* 81-176 株、*C. coli* Co1-243 株、*C. fetus* ATCC 27374 株、*C. hyointestinalis* Ch022 株、*C. lari* 298 株、*C. upsaliensis* ATCC 43954 株、*C. helveticus* ATCC 51209 株を培養し、寒天培地上に生じたコロニーを PBS に懸濁した。遠心分離 (10,000 g、5分) を行い、残渣を PBS で 2 回洗浄後、濁度 (OD<sub>600</sub>) を 1.0 に調整した。 菌液 50 µL と TE バッファー 450 µL を混合し、上述の方法に従って鋳型 DNA を調製した。 また、菌液に含まれる菌数を定量するため、菌体懸濁液を PBS で段階希釈し、それぞれ 100 µL ずつ 馬血液寒天培地に塗抹した。 37°C、微好気条件下で 2 日間培養した後、生じたコロニー数 から菌数 (colony forming unit: cfu) を算出した。この値を元に鋳型 DNA を TE バッファーで 希釈し、1 µL 中に 10<sup>1</sup>、10<sup>2</sup>、10<sup>3</sup>、10<sup>4</sup> cfu に相当する菌数が含まれる鋳型 DNA を調製し、 コモンプライマーを用いた PCR を行った。

#### **[PCR-RFLP]**

PCR 産物 1-5 µL、10 × NEBuffer3 (New England Biolabs) 1 µL、*Dde*I (New England Biolabs) 5 U、*Eco*RI (Takara) 7.5 U を混合し、滅菌精製水を用いて最終液量を 10 µL に調整した。37℃ で一晩、反応させた後、2.0%、もしくは 3.0%のアガロースゲルを用いて電気泳動を行った。

#### <u>実験結果と考察</u>

コモンプライマーを用いた PCR の特異性を評価するため、大腸菌等の cdt 遺伝子の存在が 報告されているグラム陰性菌 (20、23)、ヘリコバクター等のカンピロバクターの類縁種、及びサル モネラ等の食中毒細菌 (6) を含むカンピロバクター以外の病原細菌 17 菌種 138 株から cdtB 遺伝子の増幅を試みた (Table 5)。その結果、cdt 遺伝子の保有の有無にかかわらず、いずれ の菌株からも cdtB 遺伝子に特異的な増幅断片は得られなかった。以上の結果より本 PCR は

| Bacterial strain (n <sup>a</sup> )                                        | Origin $(n)$                                                          | PC                                  | R-RFLP                  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------|-------------------------|
|                                                                           | /Strain ID                                                            | Pattern (n)                         | Identification rate (%) |
| Campylobacter jejuni (35)                                                 | Human (23)                                                            | Cj (23)                             | 100                     |
|                                                                           | Animal (8)                                                            | Cj (8)                              |                         |
|                                                                           | <u>81-176</u>                                                         | Cj (1)                              |                         |
|                                                                           | ATCC33560 <sup>T</sup>                                                | Cj (1)                              |                         |
|                                                                           | ATCC43432                                                             | Cj (1)                              |                         |
|                                                                           | ATCC700819                                                            | Cj (1)                              |                         |
| Campylobacter coli (19)                                                   | Human (16)                                                            | Cc-I (14), Cc-II (1),<br>Cc-III (1) | 100                     |
|                                                                           | <u>Co1-243</u>                                                        | Cc-I (1)                            |                         |
|                                                                           | ATCC 33559 <sup>T</sup>                                               | Cc-I (1)                            |                         |
|                                                                           | ATCC 43478                                                            | Cc-I (1)                            |                         |
| Campylobacter fetus (20)                                                  | Human (2)                                                             | Cf (2)                              | 100                     |
|                                                                           | Animal (16)                                                           | Cf (16)                             |                         |
|                                                                           | ATCC 27374 <sup>T</sup>                                               | Cf (1)                              |                         |
|                                                                           | ATCC 19438 <sup>T</sup>                                               | Cf (1)                              |                         |
| Campylobacter hyointestinalis (24)                                        | Animal (22)                                                           | Chy (20)                            | 88                      |
|                                                                           | Ch022                                                                 | Chy (1)                             |                         |
|                                                                           | ATCC 35217 <sup>T</sup>                                               | h                                   |                         |
| Campylobacter lari (13)                                                   | Human (2)                                                             | Cl (2)                              | 100                     |
|                                                                           | Mussel (2)                                                            | Cl(2)                               |                         |
|                                                                           | Seawater (6)                                                          | Cl(6)                               |                         |
|                                                                           | 298                                                                   | Cl(1)                               |                         |
|                                                                           | <u>ATCC</u> 43675                                                     | Cl(1)                               |                         |
|                                                                           | ICM 2530 <sup>T</sup>                                                 | Cl(1)                               |                         |
| Campulabactar habisticus (2)                                              | $\int CM 2550$                                                        | Cha(1)                              | 100                     |
| Campyiobacier nervencus (2)                                               | Ammai $(1)$                                                           | Che $(1)$                           | 100                     |
| Campylobacter upsaliensis (22)                                            | Animal (21)                                                           | Cu-I (15), Cu-II (4),               | 100                     |
|                                                                           | ATCC 43954 <sup>T</sup>                                               | Cu-III(2)<br>Cu-I(1)                |                         |
| Campylobacter concisus (2) <sup>b</sup>                                   | $\frac{\text{ATCC } 33237^{\text{T}}}{\text{ATCC } 33237^{\text{T}}}$ |                                     | 0                       |
| Cumpytobucier concisus (2)                                                | ATCC 51562                                                            |                                     | 0                       |
| $C_{ampulobactor currus}(1)^{b}$                                          | ATCC 35224 <sup>T</sup>                                               |                                     | 0                       |
| Campylobacter curvus (1)                                                  | ATCC $D_{A} = 281^{\text{T}}$                                         | _                                   | 0                       |
| <i>Campylobacier nominis</i> (1)                                          | ATCC 51449 <sup>T</sup>                                               | —                                   | 0                       |
| Hencobacter nepaticus (1)                                                 | ATCC 31448                                                            | —                                   | 0                       |
| Haemophilus aucreyi (1)                                                   | AICC /00/24                                                           |                                     | 0                       |
| Aggregatibacter<br>actinomycetemcomitans (1)<br>Shigella dysenteriae (13) | Human $(1)$                                                           | _                                   | 0                       |
| Shigella sonnai (3)                                                       | Human $(1^{3})$                                                       |                                     | 0                       |
| Escharichia coli (22)                                                     | Human $(14^{e})$                                                      |                                     | 0                       |
| Escherichia con (22)                                                      | $\frac{11}{4}$                                                        |                                     | 0                       |
| Fach michia alb antii (1)                                                 | $\frac{1}{1}$                                                         |                                     | 0                       |
| Drowidonoia algalifaciona (1)                                             | $\frac{J \cup W11}{J \cup Z0}$                                        | _                                   | 0                       |
| A reachaster but-law $(1)^{b}$                                            | ATCC $4061c^{T}$                                                      | _                                   | 0                       |
| Ancobacter butzleri (1)                                                   | ATCC 51120 <sup>T</sup>                                               | _                                   | 0                       |
| Arcobacter skirrowii (1) <sup>-</sup>                                     | ATCC $4250 4^{\mathrm{T}}$                                            | _                                   | U                       |
| Helicobacter pylori (2)°                                                  | ATCC 43504*                                                           | —                                   | 0                       |
| Unlight action from the stab                                              | ATCC 25 (9 AT                                                         | _                                   | 0                       |
| <i>neucobacter fennelliae</i> (1) <sup>-</sup>                            | AICC 35684                                                            | —                                   | U                       |
| Snigella flexneri $(5)^{\circ}$                                           | Human (5)                                                             | —                                   | 0                       |
| Salmonella spp. (33) <sup>o</sup>                                         | Human (33)                                                            | —                                   | 0                       |
| Yersinia enterocolitica (1) <sup>6</sup>                                  | Human (1)                                                             | —                                   | 0                       |
| Vibrio cholerae (23) <sup>o</sup>                                         | Human (23 <sup>g</sup> )                                              | —                                   | 0                       |
| Vibrio parahaemolyticus (28) <sup>b</sup>                                 | Shrimp (28)                                                           | —                                   | 0                       |

#### Table 5. Bacterial strains used in this study and detection of the *cdtB* gene.

#### Table 5. Continued.

The reference strains are underlined.

<sup>a</sup>Number in parentheses indicates the number of strains analyzed.

<sup>b</sup>The presence of *cdt* genes was not reported.

<sup>c</sup>Seven strains are *cdt* gene-negative.

<sup>d</sup>Two strains are *cdt* gene-negative.

<sup>e</sup>Four strains are *cdtI* positive, 1 strain is *cdtII* positive, 2 strains are *cdtIII* positive, 4 strains are *cdtIV* positive and 3 strains are Cdt-V positive.

<sup>f</sup>One strain is *cdtI* positive, 1 strain is *cdtII* positive, 3 strains are *cdtIII* positive, 1 strain is *cdtIV* positive and 2 strains are *cdtV* positive.

<sup>g</sup>Thirteen strains are O1 serogroup and 10 strains are non-O1/non-O139 serogrouc.

<sup>h</sup>The *cdtB* gene-specific PCR products were not obtained by the PCR assay with common primers.

T: Type strain, -: Not Done

| Table  | 6.  | Computational                  | restriction | fragment | length | analysis | of | the | partial | cdtB | gene-product |
|--------|-----|--------------------------------|-------------|----------|--------|----------|----|-----|---------|------|--------------|
| obtair | ned | with <i>Dde</i> I and <i>E</i> | coRI.       |          |        |          |    |     |         |      |              |

| Bacterial species  | Reference strain (Accession No.)      | Product<br>size (bp) | <i>Dde</i> I digest (bp) | <i>Eco</i> RI digest (bp)    | <i>Dde</i> I and <i>Eco</i> RI digest (bp) | Pattern |  |
|--------------------|---------------------------------------|----------------------|--------------------------|------------------------------|--------------------------------------------|---------|--|
| C. jejuni          | 81-176<br>(NC_008787)                 | 717                  | 632, 85                  | 369, 348                     | 369, 263, 85                               | Cj      |  |
| C. coli            | Col-243<br>(AB182109)                 | 723                  | 511, 212                 | 723                          | 511, 212                                   | Cc-I    |  |
|                    | Co1-194<br>(AB872853)                 | 723                  | 511, 169, 43             | 723                          | 511, 169, 43                               | Cc-II   |  |
|                    | Co2-173<br>(AB872856)                 | 723                  | 368, 212, 143            | 723                          | 368, 212, 143                              | Cc-III  |  |
| C. fetus           | ATCC $27374^{T}$<br>(AB274802)        | 711                  | 321, 177,<br>115, 98     | 711                          | 321, 177, 115,<br>98                       | Cf      |  |
| C. hyointestinalis | Ch022<br>(AB218983)                   | 720                  | 462, 258                 | 549, 171                     | 291, 258, 171                              | Chy     |  |
| C. lari            | 298<br>(AB292355)                     | 723                  | 664, 43, 16              | 354, 297, 72                 | 354, 300, 43, 16,<br>13                    | Cl      |  |
| C. helveticus      | ATCC 51209 <sup>T</sup><br>(AB872912) | 717                  | 685, 32                  | 85, 32 552, 165 520, 165, 32 |                                            | Che     |  |
| C. upsaliensis     | ATCC 43954 <sup>T</sup><br>(AB872889) | 717                  | 456, 218, 43             | 610, 107                     | 456, 154, 64, 43                           | Cu-I    |  |
|                    | 40-1<br>(AB872895)                    | 717                  | 674, 43                  | 610, 107                     | 610, 64, 43                                | Cu-II   |  |
|                    | (AB872904)                            | 717                  | 674, 43                  | 717                          | 674, 43                                    | Cu-III  |  |

非常に高い特異性を有することが明らかとなった。

コモンプライマーを用いた PCR の検出下限値を算出したところ、C. jejuni、C. coli、C. fetus、 C. lari、C. upsaliensis、C. helveticus においては、PCR 産物を得るのに PCR チューブあたり  $10^{1}-10^{2}$  cfu の菌数が必要であったが、C. hyointestinalis は PCR チューブあたり  $10^{3}-10^{4}$ の菌数 が必要であった (data not shown)。C. hyointestinalis の検出下限値が高い理由を検証するため、 それぞれの菌種の cdtB 遺伝子のプライマー結合領域の塩基配列を解析した。C. hyointestinalis 以外の 6 菌種の cdtB 遺伝子はプライマーとのミスマッチが 1 塩基以内であっ たのに対し、C. hyointestinalis の cdtB 遺伝子とプライマーとのミスマッチが 4 塩基あった (data not shown)。C. hyointestinalis において検出下限値が高い理由は、プライマー結合能の違 いに起因すると考えられる。

7 菌種のカンピロバクター (C. jejuni、C. coli、C. fetus、C. hyointestinalis、C. lari、C. upsaliensis、 C. helveticus) の cdtB 遺伝子の塩基配列を比較解析したところ、cdtB 遺伝子を 2 種類の制限 酵素 (DdeI、EcoRI) で同時に消化するだけで菌種特異的な遺伝子断片が得られることが示 唆された (Pattern Cj、Cc-I、Cf、Chy、Cl、Che、Cu-I in Table 6)。そこで第一節での検討に おいて、コモンプライマーを用いた PCR で陽性となった 7 菌種 132 株の PCR 産物を DdeI と EcoRI で同時に消化した結果、124 株は予測された菌種特異的な遺伝子断片が得られ、 RFLP パターンに基づき菌種を同定できた (Table 5、Fig. 3A lanes 2、3、6-10)。しかし、C. coli 2 株、C. upsaliensis 6 株の RFLP パターンは、予測されたパターンと異なっていた (Fig. 3A lanes 4、5、11、12)。この理由を追求するため、これら 8 株の PCR 産物の塩基配列を解析し たところ、いずれも既知の cdtB 遺伝子配列と 95%以上の相同性を示したが、DdeI、EcoRI 認識領域に欠損や挿入が起きる変異が認められた (data not shown)。そこで C. coli、C. upsaliensis で得られた 3 つの RFLP パターンをそれぞれ Cc-I、Cc-II、CcIII、及び Cu-I、Cu-II、 Cu-IIIと定義し、C. coli 又は C. upsaliensis と同定できるようにした (Table 5、Fig. 3A lanes 3-5、 10-12)。その結果、今回調べた PCR 陽性となった全ての株において PCR-RFLP により菌種



Fig. 3. PCR-RFLP analysis using representative strains of 7 *Campylobacter* species with typical RFLP patterns. (A) Double digest with *DdeI* and *Eco*RI. Lanes: 1 and 14, 100-bp ladder; 2, *C. jejuni* (strain 81-176); 3, *C. coli* (Co1-243); 4, *C. coli* (Co1-194); 5, *C. coli* (Co2-173); 6, *C. fetus* (ATCC 27374<sup>T</sup>); 7, *C. hyointestinalis* (Ch022); 8, *C. lari* (298); 9, *C. helveticus* (ATCC 51209<sup>T</sup>); 10, *C. upsaliensis* (ATCC 43954<sup>T</sup>); 11, *C. upsaliensis* (40-1); 12, *C. upsaliensis* (99-1); 13, *C. upsaliensis* (99-1 undigested). (B) PCR products of *C. coli* (Co1-194, lanes 2, 4, 6, 8) or *C. helveticus* (ATCC 51209<sup>T</sup>, lanes 3, 5, 7) were digested with *DdeI* (lanes 2, 3) or *Eco*RI (lanes 4, 5), or both (lanes 6-8). Lanes 1 and 9, 100 bp DNA ladder was used as molecular weight size markers. White arrow indicates subtle difference of the digested fragment size, which could differentiate between *C. coli* and *C. helveticus*.

が同定可能であった (Table 5)。しかし、*C. coli と C. helveticus* の RFLP パターン (Cc-II と Che) は非常に類似していた (Fig. 3B lane 6-8)。誤同定を避けるため、このような場合は、 PCR 産物を *Dde*I、もしくは *Eco*RI を単独で作用させることで容易に菌種を同定できること を確認した (Fig. 3B lanes 2-5)。

# 第三節 cdtB 遺伝子を標的とした PCR-RFLP 法の下痢症患者便検体、及びウシ胆汁検体へ

#### の適用

本節では *cdtB* 遺伝子を標的とした PCR-RFLP 法の有用性を評価するため、下痢症患者便 検体及びウシ胆汁検体からカンピロバクターの検出、同定を試みた。また、従来のカンピ ロバクターの検査法である培養法を用いて同一検体からカンピロバクターの分離を試み、 両者の結果を比較した。

#### 実験材料と方法

#### 【PCR-RFLP 法の臨床検体への適用】

臨床検体は 2012 年、水島中央病院 (岡山県) に消化器症状を訴えて来院した小児から採取した便検体 (24 検体)を用いた (Table 7)。患者便検体の一部を生理食塩水 500 µL に懸濁し、便検体懸濁液 180 µL と 10×TE バッファー 20 µL を混合した後、第一節の実験材料と方法に従って鋳型 DNA を調製した。鋳型 DNA は実験に供するまで-20℃で保存し、1 µL をPCR-RFLP 法に適用した。本節の臨床検体を用いた検討はレトロスペクティブな検討であり、以前、2 種類の分離方法 (mCCDA 法とフィルター法)でカンピロバクターの分離を試みた結果を陽性コントロールとし、PCR-RFLP 法の結果と比較解析した。尚、本実験は大阪府立大学研究倫理委員会の承認を得て行った。

# 【modified Charcoal Cefoperazone Desoxycholate Agar (mCCDA) プレートを用いた便検体 からのカンピロバクターの分離 (mCCDA 法)】

便検体懸濁液 50 μL を mCCDA 培地 (Oxoid) にコンラージ棒で広げながら塗布した。プ レートは 37℃、微好気条件下で 2-3 日間培養した。プレート上に得られたカンピロバクタ ーと疑われるコロニーを馬血液寒天培地に植菌し、さらに 37℃、微好気条件下で 2-3 日純 培養した。

#### 【フィルター法を用いた便検体からのカンピロバクターの分離】

セルロース混合エステルメンブレンフィルター (孔径 0.45 µm: Advantec Toyo) を馬血液 寒天培地に載せ、フィルターの上から検体懸濁液 100 µL 滴下した。プレートは室温で 30 分間静置した後、液垂れしないようにフィルターを取り除き、プレートは 37℃、微好気条 件下で 2-3 日間培養した。プレート上に得られたカンピロバクターと疑われるコロニーは、 新しい馬血液寒天培地に植菌し、さらに 37℃、微好気条件下で 2-3 日、純培養した。

#### 【分離したカンピロバクター様細菌の菌種同定】

臨床検体から分離したカンピロバクターと疑われるコロニーはそのコロニーの形態、及び

顕微鏡を用いて菌体の運動性を評価した。また、フェイバーG「ニッスイ」(Nissui Pharmaceutical)を用いてグラム染色を行った。すなわち、プレートから回収したコロニーをスライドグラスに薄く広げた後、乾燥させ、火炎固定した。推奨プロトコールに従って染色、脱色、及び洗浄した後、顕微鏡にて鏡検した。グラム染色で陰性、かつ運動性があるらせん桿菌をカンピロバクター属菌と判定し、Asakura らの方法に従い C. jejuni、C.coli、C. fetus の cdt 遺伝子を標的とした Multiplex PCR を行い、菌種を同定した (26)。

#### 【PCR-RFLP 法の動物検体への適用】

動物検体として、南港臟器株式会社から提供を受けたウシの胆汁 (10 検体) を用いた (Table 7)。胆汁中の不純物を極力除去するため、胆汁 1 mL を遠心分離 (200 g、4°C、10 分) し、残渣を 1 mL の PBS で懸濁した。この操作を 2 回繰り返した後、胆汁検体 180 µL と 10 × TE バッファー 20 µL を混合し、第一節の実験材料と方法に従って鋳型 DNA を調製した。 鋳型 DNA 1-5 µL を PCR-RFLP 法に適用した。また、胆汁内のカンピロバクターの増菌を目 的に、胆汁 1 mL と 1.25 × Preston 培地 4 mL を混合し、37°C、微好気条件下で 24 時間培養 した後、上述の方法に従って鋳型 DNA を調製した。なお、Preston 培地は、CM67 NUTRIENT BROTH No. 2 (Oxoid)、SR232E Campylobacter Growth Supplement (Oxoid)、SR117 Preston Campylobacter Selective Supplement (Oxoid)、及び馬脱繊維血液を用いて、Oxioid 社の推奨プ ロトコールに従って調製した。

#### 【動物検体からのカンピロバクターの分離】

上述の方法に従って、ウシの胆汁検体に mCCDA 法とフィルター法を適用することでカ ンピロバクターの分離を行った。また、胆汁中でのカンピロバクターの菌数が少ない可能 性を考え、胆汁 1 mL と 1.25 × Preston 培地 4 mL を混合し、37℃、微好気条件下で 24 時間 増菌培養した後、mCCDA 法を適用した。

#### 【使用した菌株と培養条件】

本節では、C. jejuni 81-176株、C. coli Co1-243株、C. hyointestinalis Ch022株を使用した。

第一節の実験材料と方法に従って菌株を培養した。

#### 【便検体中での PCR-RFLP 法の検出下限値の算出】

健常人ボランティアから糞便を採取し、糞便中にカンピロバクターが存在しないことを 確認した。すなわち、糞便2gと滅菌済み PBS 8 mL を混合し、遠心分離 (200 g、4℃、10 分) によって得られた上清に対して mCCDA 法とフィルター法を適用するとともに、Preston 培地用いて増菌培養した後、mCCDA 法を適用することでカンピロバクターの分離を試みた。 なお、全てのプレートは 37℃、微好気条件下で 5 日間培養した。第一節の実験材料と方法 に従い、C. jejuni 81-176 株、C. coli Co1-243 株、及び C. hyointestinalis Ch022 株の懸濁液を調 製すると共に、菌体懸濁液に含まれる菌数を算出した。PBS を用いて菌体懸濁液を 10 倍段 階希釈し、それぞれ 100 μL を健常人糞便 0.2 g と混合した。PBS 800 μL を添加後、遠心分 離 (200 g、4℃、10 分) を行い、上清を回収した。再度、遠心分離 (12,800 g、10 分) を行 い、上清を除去後、残渣を1mLのPBSで懸濁した。再度、同条件で遠心分離を行い、残渣 を 500 μL の滅菌精製水で懸濁した後、10 分間加熱処理を行った。遠心分離 (12,800 g、10 分) を行い、得られた上清に対してフェノール・クロロホルム抽出、エタノール沈澱を行い、 DNA を素精製した。さらに DNA の精製度を上げるため、最終濃度が 50 μg/mL となるよう に RNase A を加え、37℃で 30 分間インキュベーションした後、再度、フェノール・クロロ ホルム抽出、エタノール沈澱を行った。 最終的に TE バッファー 30 μL に溶解させた DNA 1 μLを鋳型 DNA とし、第二節の実験材料と方法に従って PCR-RFLP を行った。

#### <u>実験結果と考察</u>

開発した PCR-RFLP 法を用いて、ヒトや動物由来の検体中に存在するカンピロバクター を検出、さらには同定できるかどうかを調べるため、下痢症患者の便検体から 2 種類の培 養法 (mCCDA 法、フィルター法)を用いてカンピロバクターの分離を試みるとともに、 PCR-RFLP 法を用いてカンピロバクターの検出を試みた。mCCDA 法は modified Charcoal Cefoperazone Desoxycholate Agar (mCCDA) 培地を使用したカンピロバクターの分離培養法 であり、選択培地にセフォペラゾンを添加することでカンピロバクター以外の夾雑菌の発 育を抑制させる方法である。また、フィルター法は Lastovica らが開発したカンピロバクター の高い運動性を利用して、カンピロバクターを分離培養する方法であり、メンブレンフィルタ ーをのせた抗菌薬無添加の血液寒天培地に検体を添加し、メンブレンフィルターを通過できた菌 のみを培養する方法である (9)。便検体から 2 種類の培養法 (mCCDA 法、フィルター法)を 用いてカンピロバクターの分離を試みた結果、24 検体中 7 検体からいずれかの方法でカン ピロバクターが分離された (Table 7)。また、便検体から鋳型 DNA を調製し、PCR-RFLP 法 を行った結果、24 検体中、7 検体から cdtB 遺伝子に特異的な遺伝子断片が得られた (data not shown)。RFLP パターンにより 5 検体で C. jejuni、1 検体で C. coli、1 検体で C. fetus と同定 でき、培養法の結果と一致した (Table 7)。以上の結果より PCR-RFLP 法は、下痢症患者便 検体から培養することなく直接カンピロバクターを検出、同定できることが示され、その 特異度、及び感度ともに 100%であった。

次にウシの胆汁を用いて同様の検討を行った。フィルター法ではカンピロバクターを分離でき なかったが、mCCDA 法を用いることで 10 検体中 6 検体からカンピロバクターを分離するこ とができた (Table 7)。一方、PCR-RFLP 法では、10 検体中 3 検体から *C. jejuni* を検出、同 定できた (Table 7)。しかし、培養法で陽性となった 3 検体から PCR-RFLP 法でカンピロバクター を検出できなかった (検体 No. 130911-1、130911-4、130918-2)。胆汁中でのカンピロバクターの 菌数が少ない可能性が考えられたため、胆汁を 24 時間の増菌培養を行った後、PCR-RFLP を適用した。その結果、先ほどの 3 検体に加えて、新たに 2 検体から *C. jejuni* を検出、同定 できた (Table 7)。これらの結果から、ある程度の菌数が存在すれば、PCR-RFLP 法を用いる ことでウシ胆汁からもカンピロバクターを検出できることが明らかとなった。また、カン ピロバクターが分離されなかった検体では、PCR-RFLP 法でも陰性結果が得られたことから、 本 PCR-RFLP 法の特異性は 100%であることが示された。ウシの胆汁は、カンピロバクターが高

26

| Sample      | ID       | Culture isol | ation     | PCR-RFLP               |  |
|-------------|----------|--------------|-----------|------------------------|--|
|             |          | Filtration   | mCCDA     |                        |  |
| Human feces | P6496    | —            | —         | _                      |  |
|             | P6497    | C. jejuni    | —         | C. jejuni              |  |
|             | P6498    | —            | —         | —                      |  |
|             | P6506    | —            | —         | —                      |  |
|             | P6507    | C. jejuni    | —         | C. jejuni              |  |
|             | P6508    | C. fetus     | C. fetus  | C. fetus               |  |
|             | P6509    | —            | —         | —                      |  |
|             | P6510    | —            | —         | —                      |  |
|             | P6511    | —            | —         | —                      |  |
|             | P6512    | —            | —         | —                      |  |
|             | P6513    | _            | _         | _                      |  |
|             | P6514    | _            | _         | _                      |  |
|             | P6515    | —            | C. jejuni | C. jejuni              |  |
|             | P6516    | C. coli      | C. coli   | C. coli                |  |
|             | P6517    | C. jejuni    | C. jejuni | C. jejuni              |  |
|             | P6518    | C. jejuni    | C. jejuni | C. jejuni              |  |
|             | P6519    | —            | —         | —                      |  |
|             | P6520    | —            | —         | —                      |  |
|             | P6521    | —            | —         | —                      |  |
|             | P6538    | —            | —         | —                      |  |
|             | P6539    | —            | _         | —                      |  |
| Bovine bile | 130911-1 | —            | C. jejuni | C. jejuni <sup>*</sup> |  |
|             | 130911-2 | —            | C. jejuni | C. jejuni              |  |
|             | 130911-3 | —            | —         | —                      |  |
|             | 130911-4 | —            | C. jejuni | C. jejuni <sup>*</sup> |  |
|             | 130911-5 | —            | —         | —                      |  |
|             | 130918-1 | —            | —         | —                      |  |
|             | 130918-2 |              | C. jejuni | —                      |  |
|             | 130918-3 |              | C. jejuni | C. jejuni              |  |
|             | 130918-4 |              | C. jejuni | C. jejuni              |  |
|             | 130918-5 | _            | _         | _                      |  |

Table 7. Identification of Campylobacter spp. from human and animal samples.

-: *Campylobacter* was not isolated or detected.

<sup>\*</sup>*C. jejuni* was identified after enrichment cultures.

頻度で検出されることが報告されている (35)。また、無菌的に採取可能であり、液体であるため、 ハンドリングの面で他の臓器、および臓器内容物よりも実験に適していると考え、実験に供した。 今後、食品検体を用いた検査への応用を見据えて、本 PCR-RFLP 法を用いて食肉検体からカンピロ バクターを検出できる可能性を評価することが望まれる。

最後に便検体中におけるカンピロバクターの検出下限値を算出した。3 種類の培養法 (mCCDA 法、フィルター法、Preston 培地で増菌後の mCCDA 法) でカンピロバクターが存 在しないことが確認された健常人便検体に各種カンピロバクター属菌を添加し、精製した 鋳型 DNA に対してコモンプライマーを用いた PCR を実施した。今回、食中毒細菌に指定 されている *C. jejuni、C. coli、*及び第一節で分離菌株に対する検出下限値が高かった *C. hyointestinalis* の 3 菌種を用いて検討を行ったところ、PCR 産物を得るのに *C. jejuni* では  $3 \times 10^6$  cfu/g、*C. coli* では  $2 \times 10^6$  cfu/g、*C. hyointestinalis* では  $2 \times 10^7$  cfu/g 以上の菌数が必要であった。

#### 第四節 小括

コモンプライマーは3菌種のカンピロバクター (C. jejuni、C. coli、C. fetus)の cdtB 遺伝 子を一度に増幅するために設計したプライマーである (25)。実際にこれら3 菌種74株に対 して PCR を行ったところ、全ての株から cdtB 遺伝子に特異的な増幅断片が得られた (Table 3)。第一節で示したとおり、他の4菌種のカンピロバクター (C. hyointestinalis、C. lari、C. upsaliensis、C. helveticus)の cdtB 遺伝子も増幅可能であり、これら4 菌種 61 株を用いて PCR を 行ったところ、3株の C. hyointestinalis を除く58株から cdtB 遺伝子を増幅できた (Table 3)。第二 章で PCR 陰性となった 3 株の C. hyointestinalis も cdt 遺伝子を保有することを見出しており、本研 究成果によって少なくともこれら7菌種 (C. jejuni、C. coli、C. fetus、C. hyointestinalis、C. lari、C. *upsaliensis、C. helveticus*) 内に *cdtB* 遺伝子が普遍的に存在する可能性が見出された。これら7 菌種はヒトや動物に病気を引き起こす可能性のあるカンピロバクターであることから (Table1)、これら7菌種を標的とした遺伝子検査法を開発する意義は十分にあり、その標的 遺伝子として cdt 遺伝子は非常に有用であると考えられる。今回、ヒトに病原性を示す可能性 のある 17 菌種のカンピロバクターの内、10 菌種を評価の対象としたが (Table1)、その他の 7 菌種 のカンピロバクター (C. gracilis、C. insulaenigrae、C. mucosalis、C. rectus、C. showae、C. sputorum、C. ureolyticus)、及びコモンプライマーを用いて cdtB 遺伝子を増幅できなかった C. concisus、C. hominis、C. curvus が cdt 遺伝子を保有する可能性については、更なる検討が必要 である。

第二節では、コモンプライマーが7菌種のカンピロバクター (C. jejuni、C. coli、C. fetus、

28

C. hyointestinalis、C. lari、C. upsaliensis、C. helveticus)の cdtB 遺伝子を感度良く、特異的に 増幅できることに注目し、これら7 菌種を特異的に検出、同定できる遺伝子検査法 (PCR-RFLP 法)を構築した。実際に本 PCR-RFLP 法を用いて下痢症患者便検体、及びウシ の胆汁からカンピロバクターの検出を試みた結果、培養法と遜色のない感度と特異性でカ ンピロバクターを検出、同定することができた (Table 7)。今回、培養法で分離された菌種、 及び PCR-RFLP 法で検出された菌種は C. jejuni、及び C. coli であり、本 PCR-RFLP 法を用いて 検体から直接、他の菌種を検出できるかどうかについては検証できていない。今後、様々な検体を 用いて本 PCR-RFLP 法の有用性を検証することで、従来の培養をベースとした検査法とは 異なり、抗菌剤等の選択圧のかからない簡便、迅速なカンピロバクターの検査法として実 用化されることが期待される。

コモンプライマーを用いた PCR 法は、菌種間で保存性の高い領域にプライマーが設計されてい るため、標的としている菌種以外のカンビロバクターの cdtB 遺伝子をも増幅できる可能性がある。 緒論で論じた通り 17 菌種のカンビロバクターがヒトに病原性を示す可能性があることから (Table 1)、 幅広くカンビロバクターを検出できる可能性があることは利点の一つである。しかも本研究で調べ た限りでは、カンビロバクター以外の cdt 遺伝子を保有するグラム陰性菌や食中毒細菌等から増幅 断片は得られなかった (Table 4)。また、使用するプライマーの種類が少ないことから、プライマー 同士の競合が生じるおそれが少なく、検体中の菌数が微量であってもカンピロバクターを検出でき る可能性がある。実際に下痢症患者便検体、及びウシ胆汁検体から直接、カンビロバクターを検 出できることも実験的に示された (Table 7)。菌種を同定するために、PCR 産物を制限酵素処理し、 その泳動パターンを解析するという一手間がかかるものの、本 PCR-RFLP 法は有用性の高い方法 であると考えられる。また、コモンプライマーと C. hyointestinalis の cdtB 遺伝子のミスマッチは 合計 4 つ存在し、他菌種に比べて C. hyointestinalis に対する検出下限値が 10 倍以上高くなっ ていた。今後、C. hyointestinalis の cdtB 遺伝子も効率よく増幅できるプライマーに改良する ことで、C. hyointestinalis に対する検出感度が向上するものと考えられる。

## 第二章 C. hyointestinalis が保有する新規 cdt 遺伝子 (chcdt-II 遺伝子)の発見とその機能解 析

C. hyointestinalis はブタ (36-39)、ウシ (36、40)、イヌ (41)、ハムスター (36) 等の腸管に 広く分布しており、胃腸炎を発症したブタ (38) や下痢症患者 (14、15、39、42-46) からの 検出、及び分離も多数報告されている。*C. hyointestinalis*のブタからヒトへの感染例も報告さ れており (39)、C. hyointestinalis は主要な人獣共通感染症の原因菌の一つと考えられている。 しかし、C. hyointestinalis が病原性を示すメカニズムは殆ど明らかにされていない。1992年に Ohya らは C. hyointestinalis が細胞毒素活性を有する物質を産生することを報告したが (47)、その実態 は明らかにされていなかった。近年、著者の研究グループはタイの下痢症患者から分離した C. hyointestinalis Ch022 株も細胞毒素活性を有するとともに、細胞毒素活性のある CDT をコードする cdt 遺伝子の存在を報告し、その全塩基配列を決定した (48)。 CDT は C. hyointestinalis の病原因 子の候補である。第一章でコモンプライマーを用いた PCR 法で C. hyointestinalis から cdtB 遺伝 子の増幅を試みた結果、24株中21株 (88%)から cdtB 遺伝子を増幅でき、調べた範囲では C. hyointestinalisも cdt 遺伝子保有率が高いことを示すことができた (Table 4)。しかし、3株 (12%) から cdtB 遺伝子を増幅できず、これら3株が cdt 遺伝子を保有しているかどうかについては更なる 検討が必要となった。本章では、第一章で cdtB 遺伝子を増幅できなかった 3 株の C. hyointestinalis が cdt 遺伝子を保有する可能性を検証した。その結果、Ch022 株で見つかった cdt 遺伝子と配列が大きく異なる cdt 遺伝子が存在することを見出した。また、新たに発見 した cdt 遺伝子の全塩基配列を決定するとともに、その遺伝子産物の生物活性を評価した。

#### 第一節 cdtB 遺伝子が検出されなかった C. hyointestinalis が cdt 遺伝子を保有する可能性

第一章での検討において、コモンプライマーを用いて cdtB 遺伝子を増幅できなかった 3 株の C. hyointestinalis が Ch022 株で見出された cdt 遺伝子クラスター (cdtA 遺伝子、cdtB 遺伝子、cdtC 遺伝子) を保有するかどうかについて、コロニーハイブリダイゼーション法により調べ

た。また、これら3株から滅菌菌体破砕液を調製し、細胞毒素活性を有するかどうかを調べるこ とで、毒素遺伝子を保有する可能性を検証した。

#### 実験材料と方法

#### 【使用した菌株と培養条件】

本節の実験に使用した菌株を Table 9 に示した。第一章第一節の実験材料と方法に従って菌株を培養した。

#### 【滅菌菌体破砕液の調製】

第一章第一節の実験材料と方法に従って培養した菌株を PBS に懸濁し、濁度 (OD<sub>600</sub>) を 10 に調整した。ハンディーソニケーター (Handy Sonic UR-20P: Tommy) を用いて1分間、 氷上で超音波処理を行った後、1分間、氷上で静置した。この処理を3回繰り返すことで菌 体破砕液を調製した。菌体破砕液を遠心分離 (12,800g、4℃、10分) し、上清を0.22 µm フ ィルター (Iwaki) に通過させたものを滅菌菌体破砕液として以下の実験に供した。

#### 【細胞毒性試験】

HeLa 細胞の培養には、5% FBS (Life Technologies) 含有 Minimum Essential Medium (MEM: Nissui Pharmaceutical) に antibiotic cocktail of streptomycin and penicillin (Life Technologies)、 GlutaMax (Life Technologies) を添加したものを使用した。FBS は 56°C、30 分間の非働化処理したものを用いた。HeLa 細胞を 96 穴プレートに  $5.0 \times 10^3$  cells/100 µL で播種した後、滅菌菌体破砕液 10 µL を添加した。37°C、5% CO<sub>2</sub>存在下で 48 時間培養した後、細胞をディフ・クイック (Sysmex) で染色し、顕微鏡下で細胞の形態を撮影した。HeLa 細胞に CDT 活性を示すことが報告されている *C. hyointestinalis* Ch022 株 (48) を陽性コントロール、*cdt* 遺伝子の一部に欠損が認められ CDT 活性を示さない *C. jejuni* K328 株 (48、49) を陰性コントロールとして用いた。

#### 【細胞周期の解析】

HeLa 細胞を 25 cm<sup>2</sup>のフラスコに 2.5 × 10<sup>5</sup> cells/4 mL で播種し、滅菌菌体破砕液 100 µL 添加した後、24 時間培養した。細胞を 1% EDTA/PBS を用いて回収した後、遠心分離 (380 g、 5分) を行った。細胞を PBS 10 mL に懸濁し、再度同条件による遠心分離により細胞を洗浄 した。その後、細胞を冷 70%エタノール 10 mL で懸濁し、4°Cで 2 時間、静置することで固 定した。遠心分離 (380 g、5分) を行い、上清を除去し、滅菌 PBS 10 mL で細胞を懸濁した。 同様の処理を 2 回繰り返した後、細胞を RNase/PBS (0.25 mg/mL) 500 µL で懸濁し、氷上で 30 分間静置した。 Propidium iodide (PI, 0.5 mg/mL) 50 µL を添加し、氷上で 30 分間静置した (Becton, Dickinson) を用いて Flow cytometry 解析を行った。

#### 【ヒストン H2AX のリン酸化の評価】

HeLa 細胞を 8 穴チャンバースライド (Nalge Nunc International) に  $1.0 \times 10^4$  cells/200 µL で 播種し、24 時間培養した。細胞がスライドに接着したことを確認した後、滅菌菌体破砕液 10 µL を添加し、さらに 16 時間培養した。細胞を 3.7%ホルムアルデヒドに 10 分間浸した後、 0.5% Triton X-100に 20 分間、1.0% BSA/PBS に 30 分間浸した。リン酸化されたヒストン H2AX を染色するため、 0.3% Triton X-100、 1% BSA を含む PBS で 1,000 倍希釈した anti-phospho-histone-H2AX (Ser139) polyclonal antibody (Enzo Life Sciences) を 37°Cで1時間作 用させた。 PBS を用いた洗浄操作を 3 回繰り返した後、 100 倍希釈した Alexa fluor 488-conjugated goat anti-mouse IgG (Life Technologies) を 37°Cで1時間作用させた。 同時にア クチンの重合を評価するため、F-actin を染色するため、 100 倍希釈した Alexa Fluor 546-conjugated phalloidin (Life Technologies) を 37°Cで 1 時間作用させ、LEICA DM2500 microscopy (Leica Microsystems) を用いて細胞を撮像した。

#### 【菌体からのゲノム DNA の精製】

第一章第一節の実験材料と方法に従って培養した菌株を PBS に懸濁し、遠心分離 (10,000 g、 4 $^{\circ}$ C、5分) を行った。上清を除去した後、残渣から ISOPLANT Kit (Nippon Gene) を用いて ゲノム DNA を精製した。

| Name                                                   |                                                                                         | PCR condition |            |             | Amplicon | Tanaat                         | Deference  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------|------------|-------------|----------|--------------------------------|------------|
|                                                        | Sequence (3 - 3)                                                                        | Denaturing    | Annealing  | Extention   | (bp)     | Target                         | Kelerence  |
| chcdtI-AF<br>chcdtI-AR                                 | GTTGCTCTAGCAAAGCC<br>AACACTCTTTGGAAGCG                                                  | 94°C, 30 s    | 55℃, 30 s  | 72°C, 60 s  | 582      | chcdt-IA                       | This study |
| C-CdtBcom1<br>C-CdtBcom2                               | ACTTGGAATTTGCAAGGC<br>TCTAAAATTTACHGGAAAATG                                             | 94°C, 30 s    | 50°C, 30 s | 72°C, 60 s  | 720      | chcdt-IB                       | (25)       |
| chcdtI-CF<br>chcdtI-CR                                 | GAAGATGACAATGTTATGCC<br>GATGTTTGACTTCTCGTCC                                             | 94°C, 30 s    | 55°C, 30 s | 72°C, 60 s  | 417      | chcdt-IC                       | This study |
| GNW<br>WMI1                                            | GGNAAYTGGATHTGGGGGNTA<br>RTTRAARTCNCCYAADATCATCC                                        | 94°C, 30 s    | 50°C, 30 s | 72°C, 60 s  | 960      | <i>cdtA</i><br>and <i>cdtB</i> | (32, 53)   |
| chcdtII-AF<br>chcdtII-AR                               | ACTAGGGATAACCTAGGG<br>AATTTGGCTCTAGCGTGC                                                | 94°C, 30 s    | 55°C, 30 s | 72°C, 60 s  | 418      | chcdt-IIA                      | This study |
| chcdtII-BF1<br>chcdtII-BR1                             | ACTTGGAATATGCAAGGA<br>CCAAATGTTATAGGAAAGTG                                              | 94°C, 30 s    | 55°C, 30 s | 72°C, 60 s  | 737      | chcdt-IIB                      | This study |
| chcdtII-CF<br>chcdtII-CR                               | ATGAGAGTTTGGGATTTGC<br>TGTGCTTATACATTCGCC                                               | 94°C, 30 s    | 55°C, 30 s | 72°C, 60 s  | 494      | chcdt-IIC                      | This study |
| chcdtII-AF2 <sup>#</sup><br>chcdtII-AR2 <sup>#</sup>   | <u>GAATTC</u> AATAACTATAAAGCTCCTAGGG<br><u>AAGCTT</u> CTATTTATCTCCTAAAAGCGG             | 94°C, 30 s    | 55°C, 30 s | 72°C, 60 s  | 585      | chcdt-IIA                      | This study |
| chcdtII-BF2 <sup>#</sup><br>chcdtII-BR2 <sup>#</sup>   | GCG <u>GAATTC</u> GCTATTGATGATTTTAAAACAGC<br>GCG <u>GAGCTC</u> TTAAAATCTCCCAAATGTTATAGG | 94°C, 30 s    | 55°C, 30 s | 72°C, 60 s  | 789      | chcdt-IIB                      | This study |
| chcdtII-CF2 <sup>#</sup><br>chcdtII-CR2 <sup>#</sup>   | <u>GAATTC</u> TGCGTGGATAAAGAAAAGTAG<br><u>AAGCTT</u> TCACTTCACAGACACCAGC                | 94°C, 30 s    | 55°C, 30 s | 72°C, 60 s  | 705      | chcdt-IIC                      | This study |
| chcdtII-ABCF <sup>#</sup><br>chcdtII-ABCR <sup>#</sup> | <u>GGTCTCC</u> CATGACAAACTTTGATTTAATAT<br><u>GGATCC</u> CTTCACAGACACCAGCACCTT           | 94°C, 30 s    | 55°C, 30 s | 72°C, 120 s | 2,263    | chdt-IIABC                     | This study |

Table 8. PCR primers and conditions used in chapter II.

<u>GGATTC</u>: *Eco*RI, <u>GAGCTC</u>: *Sac*I, <u>GGTCTC</u>: *Bsa*I, <u>GGATCC</u>: *Bam*HI <sup>#</sup>Primers were used for preparation of recombinant protein.
# [PCR]

Table 8 に示すプライマーと PCR 条件を用い、第一章の実験方法と材料に従って PCR を行った。

### 【遺伝子プローブの作製】

C. hyointestinalis Ch022 株から chcdtI-AF プライマーと chcdtI-AR プライマーを用いて cdtA 遺伝子、C-CdtBcom1 プライマーと C-CdtBcom2 プライマーを用いて cdtB 遺伝子、chcdtI-CF プライマーと chcdtI-CR プライマーを用いて cdtC 遺伝子を PCR で増幅した (Table 8)。PCR 産物は Wizard SV Gel and PCR Clean-Up System で精製した後、Multiprime DNA labeling system (GE Healthcare)を用いて <sup>32</sup>P で標識した。すなわち、各種 cdt 遺伝子の増幅断片を 3 分間の 加熱処理後、氷上で冷却し、増幅断片 25 ng、Multiprime バッファー10 µL、ランダムプライ マー 5 µL、[ $\alpha$ -<sup>32</sup>P] dNTP (PerkinElmer) 1.85 MBq、Klenow enzyme 2 U を混合し、滅菌精製水 を用いて最終液量を 50 µL に調整した。37℃で 30 分間、反応させた後、反応液 50 µL をニ ックカラム (GE Healthcare) に添加し、さらに TE 400 µL をカラムに添加した。このときの 溶出液は回収せず、再び TE 400 µL を加えて得られた溶出液を回収し、遺伝子プローブとし た。

### 【コロニーハイブリダイゼーション】

第一章の実験材料と方法に従って菌株を培養し、滅菌爪楊枝を用いて各種寒天培地上の コロニーを採取した。各種寒天培地に置いたニトロセルロース膜 (Schleicher & Schuell BioScienc) 上にコロニーを植菌し、コロニーが適当な大きさ (3 mm×3 mm 程度) になるま で培養した。回収したニトロセルロース膜は、3.5 mL の 0.5 N NaOH を添加した 90 mm の 濾紙 (GE Healthcare) の上に置き、10分間処理した。同様の操作を 3.5 mL の 1 M Tris-HCl (pH 7.0) を添加した濾紙上で1分間を 3 回、3.5 mL の 1.5 M NaCl を含む 1 M Tris-HCl (pH 7.0) を 添加した濾紙上で 10 分間を 1 回、行った。ニトロセルロース膜を風乾させた後、UV クロ スリンカー (CX-2000: UVP LLC) を用いて 2 分間 UV を照射させることで、DNA をニトロ セルロース膜に固定した。<sup>32</sup>P 標識遺伝子プローブは、5 分間の加熱処理を行い、氷上で冷 却したものをハイブリダイゼーションに用いた。ハイブリダイゼーションバッファー下で、 <sup>32</sup>P 標識遺伝子プローブとニトロセルロース膜を 42℃、一晩、インキュベーションした。ニ トロセルロース膜は 0.1% SDS を含む 2×SSC を用いて、室温で 10 分間、0.1% SDS を含む 1×SSC を用いて 65℃、30 分間を 2 回、インキュベーションした後、0.1% SDS を含む 2×SSC に浸し、ペーパータオル上で半乾き状態まで乾燥させた。ニトロセルロース膜を BAS cassette 2430 (FUJIFILM) 内で BAS フィルムに一晩感光させ、BAS FLA-7000 (FUJIFILM) にて解析 した。

### <u>実験結果と考察</u>

タイの下痢症患者から分離した *C. hyointestinalis* Ch022 株の *cdt* 遺伝子の全塩基配列は既 に報告されているが (48)、それ以外の *C. hyointestinalis* の分離株が保有する *cdt* 遺伝子の全 塩基配列は報告されていない。そこで、第一章の検討において *cdtB* 遺伝子を増幅できなか った 3 株の *C. hyointestinalis* (ATCC 35217 株、2038 株、SS 株)が Ch022 株で見出された *cdt* 遺伝子と相同性の高い遺伝子を保有する可能性を検証した。コロニーハイブリダイゼーション法 を用いて、3 株の *C. hyointestinalis* (ATCC 35217 株、2038 株、SS 株)と<sup>32</sup>P で標識した Ch022 株由来の *cdtA* 遺伝子、*cdtB* 遺伝子、*cdtC* 遺伝子プローブをそれぞれ反応させたところ、い

|                               | 8 2                     |                                   |                                   |      |      |  |
|-------------------------------|-------------------------|-----------------------------------|-----------------------------------|------|------|--|
| Dootorium                     | Studio                  | Origin                            | Colony hybridization <sup>a</sup> |      |      |  |
| Bacterium                     | Strain Oligin           |                                   | cdtA                              | cdtB | cdtC |  |
| Campylobacter hyointestinalis | Ch022                   | Human <sup>b</sup>                | +                                 | +    | +    |  |
|                               | ATCC 35217 <sup>T</sup> | $\operatorname{Pig}^{\mathrm{b}}$ | —                                 | —    | —    |  |
|                               | SS                      | Pork                              | _                                 | _    | _    |  |
|                               | 2038                    | Cow                               | _                                 | _    | _    |  |
| Escherichia coli              | C600                    | NA                                | _                                 | _    | _    |  |

Table 9. Distribution of chcdt genes in C. hyointestinalis.

NA, not applicable; +, detected; -, not detected, T, Type strain

<sup>a</sup>Specific probe was prepared from *C. hyointestinalis* strain Ch022.

<sup>b</sup>The patient and animals had diarrhea and proliferative enteritis, respectively.

ずれの株もいずれの遺伝子プローブとも反応しなかった (Table 9)。一方、陽性コントロールとして用いた *C. hyointestinalis* Ch022 株は、全ての遺伝子プローブと反応した (Table 9)。 以上の結果より、*C. hyointestinalis* ATCC 35217 株、2038 株、SS 株は、Ch022 株で見出された *cdt* 遺伝子と相同性の高い遺伝子を保有していない可能性があることがわかった。

C. hyointestinalis ATCC 35217 株、2038 株、SS 株が cdt 遺伝子を保有する可能性を検証す るため、これら3 株が細胞毒素活性を有するかどうかを調べた。これら3 株から滅菌菌体破砕 液を調製し、HeLa 細胞に添加したところ、培養48 時間後には細胞が膨化し、通常の細胞に 比べて2 倍以上の大きさになる細胞も観察された (Fig. 4A-C)。また、培養96-120 時間後に は細胞数が減少し、多核化した細胞や脱核した細胞も観察され、細胞死が誘導されていた (data not shown)。これらの現象は、第一章の検討で cdtB を増幅できた21 株の C. hyointestinalis でも同様に観察された (Fig. 4D, data not shown)。一方、陰性コントールとして用い、cdt 遺 伝子の一部に欠損が認められる C. jejuni K328 株 (49)の菌体破砕液を添加した群では、PBS 添加群と同様に細胞の形態に変化が認められなかった (Fig. 4E)。これらの結果より、第一章で コモンプライマーを用いて cdtB 遺伝子を増幅できなかった3 株の C. hyointestinalis (ATCC 35217 株、2038 株、SS 株)も細胞毒性活性を有する物質を産生していることが示された。





**Fig. 4.** Cytotoxicity of the filter-sterilized lysates of *C. hyointestinalis*. HeLa cells were incubated for 48 h with filter-sterilized lysate of *C. hyointestinalis* strains ATCC  $35217^{T}$  (A), SS (B), 2038 (C) and Ch022 (D), and *C. jejuni* strain K328 (E), respectively. Scale bars correspond to 100 µm in all images. Magnification × 100.

CDT は自身の持つ DNase 活性に基づき、標的細胞の染色体 DNA を傷害し、細胞周期を G<sub>2</sub>/M 期で停止させることで、細胞膨化や細胞死を誘導する (19)。ヒストン H2AX のリン酸 化は切断された二本鎖 DNA の生成に伴って誘導される。CDT はヒストン H2AX のリン酸

化を誘導すると共に (50、51)、アクチ ンの重合を引き起こすことが報告され ている (52、53)。 そこで C. hyointestinalis ATCC 35217 株、2038 株、SS 株が産生する細胞毒性活性を 有する物質が CDT である可能性を評 価するため、これら3株の滅菌菌体破 砕液を HeLa 細胞に添加し、24 時間 後に免疫蛍光染色を行った。その結 果、C. hyointestinalis Ch022 株の滅菌 菌体破砕液を添加した場合と同様に リン酸化ヒストン H2AX (γ-H2AX) の存在を示す緑色蛍光のシグナルが 観察された (Fig. 5A-D)。一方、陰性 コントールとして C. jejuni K328 株 を使用した場合、殆ど緑色蛍光が検 出されなかった (Fig. 5E)。また、 F-actin を赤色蛍光で可視化したところ、 C. hyointestinalis ATCC 35217 株、 2038株、SS株、及びCh022株の滅菌 菌体破砕液を作用させた細胞におい



Fig. 5. Genotoxic effect of the filter-sterilized lysates of *C. hyointestinalis*. HeLa cells were incubated with filter-sterilized lysate of *C. hyointestinalis* strains ATCC  $35217^{T}$  (A), SS (B), 2038 (C) and Ch022 (D), and *C. jejuni* strain K328 (E). After 16 h of incubation,  $\gamma$ -H2AX was stained with anti-phospho-histone H2AX antibody and Alexa Fluor 488-conjugated anti-mouse-IgG antibody (left panels). Intracellular F-actin was stained with Alexa Fluor 546-conjugated phalloidin (middle panels). All fluorescent signals were digitally merged (right panels). Scale bars correspond to 100 µm.

て F-actin の凝集が観察された。さらに、これら 4 株の C. hyointestinalis の滅菌菌体破砕液を作用 させた細胞では、PBS 及び C. jejuni K328 株の菌体破砕液を作用させた細胞と比べて、細胞 周期の G<sub>2</sub>/M 期で停止した細胞が有意に多かった (Fig. 6)。以上の結果より、第一章で cdtB 遺伝子を増幅できなかった 3 株の C. hyointestinalis (ATCC 35217 株、2038 株、SS 株) は、他 の C. hyointestinalis と同様に CDT 活性を有しており、CDT 活性を有する物質を産生すること が示された。また、これら 3 株は Ch022 株で見出された cdt 遺伝子と相同性の高い遺伝子は保 有していないことが示唆された (Table 9)。これらの結果より、C. hyointestinalis ATCC 35217 株、 2038 株、SS 株は既知の cdt 遺伝子とは異なる cdt 様遺伝子が存在する可能性が考えられた。 以後の実験では、これら 3 株のうち、C. hyointestinalis ATCC 35217 株を用いて検討を進める こととした。



**Fig. 6. Cell cycle analysis of HeLa cells.** HeLa cells were incubated with PBS (A), filter-sterilized lysate of *C. hyointestinalis* strains ATCC 35217<sup>T</sup> (B), SS (C) and 2038 (D), Ch022 (E), and *C. jejuni* strain K328 (F). After 24 h of incubation, cells were stained with propidium iodide and cell cycle distribution of about  $10^4$  cells was determined by flow cytometry. Average percentages and standard deviations of cells in each cell cycle phase calculated with three independent experiments are indicated. \*, P < 0.01 (Student's *t* test, n=3).

第二節 C. hyointestinalis が有する新規 cdt 遺伝子 (chcdt-II 遺伝子)の発見と塩基配列の決定

第二章第一節での検討の結果、コモンプライマーで *cdtB* 遺伝子を増幅できなかった *C*. *hyointestinalis* ATCC 35217 株、SS 株、2038 株が既知の *cdt* 遺伝子 (Ch022 型の *cdt* 遺伝子) と は異なる *cdt* 様遺伝子を保有する可能性が考えられた。本節では、これら 3 株のうち、*C*. *hyointestinalis* ATCC 35217 株から *cdt* 様遺伝子の検出を試みその塩基配列を解析した。さら に、新たに発見された *cdt* 遺伝子が *C. hyointestinalis* 内に普遍的に存在する可能性を検討し た。

### 実験材料と方法

### 【使用した菌株と培養条件】

本節の実験に使用した菌株をTable 13 に示した。クローニング用に E. coli JM109 株を使用した。第一章第一節の実験材料と方法に従って菌株を培養した。

### 【縮合プライマー (degenerate primer) を用いた PCR】

Pickett らの報告に従って、縮合プライマーを合成し (32、54)、*C. hyointestinalis* ATCC35217 株から *cdt* 様遺伝子の増幅を試みた。鋳型 DNA 1  $\mu$ L、各種プライマー (10  $\mu$ M) 2  $\mu$ L、dNTP mix (2.5  $\mu$ M) 3.2  $\mu$ L、10 × *Ex* Taq buffer 4  $\mu$ L、Takara *Ex* Taq 1 U を混合し、滅菌精製水を用い て最終液量を 40  $\mu$ L に調整した。94°C 3 分間の初期変性後、94°C 30 秒の変性、50°C 30 秒の アニーリング、72°C 30 秒の伸長反応を 30 サイクル行い、72°C 3 分の最終伸張反応を行った。

### 【TA クローニング】

PCR 産物を QIA quick PCR Purification Kit で精製した後、pT7Blue-1 vector (Merck) とモル 比が 4:1 となるように混合し、10×T4 DNA Ligase buffer 1 μL、T4 DNA Ligase (New England Biolabs) 0.5 U を添加し、滅菌精製水を用いて最終液量を 10 μL に調整した。16℃で 16 時間 反応させた後、エレクトロポレーション法により E. coli JM109 株に形質転換した。E. coli JM109 株を 50 µg/mL ampicilin、0.023% X-gal、0.6 mM IPTG を含む LB 寒天培地上を用いて、 37℃で一晩培養した。得られた白いコロニーから QIAprep Miniprep (QIAGEN) を用いてプ ラスミドを回収した。

#### 【塩基配列の解析】

第一章第一節の実験材料と方法に従った。

### 【遺伝子プローブの作製】

第二章第一節の実験材料と方法に従った。サザンハイブリダイゼーション用のプローブ として、GNW プライマーと WMI1 プライマーを用いて *C. hyointestinalis* ATCC 35217 株から PCR 増幅した遺伝子を <sup>32</sup>P で標識したものを用いた (Table 8)。また、C-CdtBcom1 プライマ ーと C-CdtBcom2 プライマーを用いて *C. hyointestinalis* Ch022 株から PCR 増幅した *cdtB* 遺伝 子も同様に <sup>32</sup>P で標識し、陽性コントロールとして用いた。コロニーハイブリダイゼーショ ン用のプローブとして、*C. hyointestinalis* Ch022 株から chcdtI-AF プライマーと chcdtI-AR プ ライマーを用いて *chcdt-IA* 遺伝子、C-CdtBcom1 プライマーと C-CdtBcom2 プライマーを用 いて *chcdt-IB* 遺伝子、chcdtI-CF プライマーと chcdtI-CR プライマーを用いて *chcdt-IC* 遺伝子、 及び *C. hyointestinalis* ATCC 35217 株から chcdtII-AF プライマーを用いて *chcdt-IC* 遺伝子、 用いて *chcdt-IIA* 遺伝子、chcdtII-BF プライマーと chcdtII-BR プライマーを用いて *chcdt-IIC* 遺伝子を PCR 増 幅し、<sup>32</sup>P で標識した (Table 8) (54)。

### 【サザンハイブリダイゼーション】

*C. hyointestinalis* Ch022 株、及び ATCC 35217 株のゲノム DNA 400 ng を *Dra*I で消化し、
1.5%アガロースゲルを用いて電気泳動を行った。第一章第一節の実験材料と方法に従って、
泳動像を確認した後、ゲルを 0.25 N HCl で 15 分間、滅菌精製水で 10 分間 2 回、0.5 N NaOH
で 30 分間処理した。ゲル内の DNA をナイロンメンブレン (PerkinElmer Life Sciences) に転
写した。第二章第一節の実験材料と方法に従ってメンブレンと <sup>32</sup>P 標識遺伝子プローブを反

| Table 10 | . Primers used | for genome wal | king and seque | ncing of the <i>ch</i> | <i>cdt-II</i> gene cluster | and its flanking | regions. |
|----------|----------------|----------------|----------------|------------------------|----------------------------|------------------|----------|
|          |                |                |                |                        |                            |                  |          |

| Name          | Sequence (5'-3')              | Туре     | Target             | Name          | Sequence (5'-3')    | Туре     | Target                    |
|---------------|-------------------------------|----------|--------------------|---------------|---------------------|----------|---------------------------|
| cdt-II ramU1  | CTCAGATCGTCATCTTGCNNNNNNNN    | Random   | Upstream of cdtA   | cdt-II seqR3  | TAGTAGGAACAGTGAGCC  | Sequence | Upstream of cdtA          |
| cdt-II ramU2  | GCTTAATGTCCCTAAGGGNNNNNNNNN   | Random   | Upstream of cdtA   | cdt-II seqR4  | TTTAGCGTTGCGTCAC    | Sequence | Upstream of cdtA          |
| cdt-II ramU3  | GTAGCACCAAATGTGTCNNNNNNNNN    | Random   | Upstream of cdtA   | cdt-II seqR5  | ATCCCTAAACACAGCTCC  | Sequence | Upstream of cdtA          |
| cdt-II ramU4  | AGTAACTAGCTGCTGAGGNNNNNNNNN   | Random   | Upstream of cdtA   | cdt-II seqR6  | TTTGCTAGTGGGCGTAAG  | Sequence | Upstream of cdtA          |
| cdt-II ramU5  | ATTTCCGCTAAGTGCTCCNNNNNNNN    | Random   | cdtA               | cdt-II seqR7  | AGCTAAGTGGTTTCCAGC  | Sequence | Upstream of cdtA          |
| cdt-II ramR1  | CTGCTCGCACAAATAATGCGNNNNNNNNN | Random   | cdtB               | cdt-II seqR8  | GCCAAATTGTGTGCTATCC | Sequence | Upstream of cdtA          |
| cdt-II ramR2  | TGCAAGCAGTTACCTGTGNNNNNNNNN   | Random   | Downstream of cdtC | cdt-II seqR9  | CTCGCCCACATCCATACTC | Sequence | Upstream of cdtA          |
| cdt-II ramR3  | CTCACGAGTTTTAAAGCCGNNNNNNNNN  | Random   | Downstream of cdtC | cdt-II seqR10 | TTTATTGCCTGCTCGCAC  | Sequence | Upstream of cdtA          |
| cdt-II ramR4  | TAGCGTCTTCATTTGGCGNNNNNNNNN   | Random   | Downstream of cdtC | cdt-II seqR11 | ACTATTTGATCATCACGCC | Sequence | Upstream of cdtA          |
| cdt-II ramR5  | TAGCATACATGCTCTTGCNNNNNNNN    | Random   | Downstream of cdtC | cdt-II seqF14 | ACTAGGGATAACCTAGGG  | Sequence | cdtA                      |
| cdt-II tartU1 | CTCAGATCGTCATCTTGC            | Target   | Upstream of cdtA   | cdt-II seqR12 | TTACCTGCCATAGCCTAG  | Sequence | cdtA                      |
| cdt-II tartU2 | GCTTAATGTCCCTAAGGG            | Target   | Upstream of cdtA   | cdt-II seqF15 | GTGGAATTGATGCATCGG  | Sequence | cdtB                      |
| cdt-II tartU3 | ATTTCCGCTAAGTGCTCC            | Target   | Upstream of cdtA   | cdt-II seqR13 | CTGCTAGTATGTCTAGACC | Sequence | cdtB                      |
| cdt-II tartU4 | CTGCTCGCACAAATAATGCG          | Target   | Upstream of cdtA   | cdt-II seqF16 | CGGTTGCGTGGATAAAGA  | Sequence | cdtC                      |
| cdt-II tartU5 | TGCAAGCAGTTACCTGTG            | Target   | cdtA               | cdt-II seqF17 | CAAAGGTTCCTAGCATAG  | Sequence | cdtC                      |
| cdt-II tarR1  | TAGCATACATGCTCTTGC            | Target   | cdtB               | cdt-II seqF18 | GAAGTGATGAAGATGAGC  | Sequence | cdtC                      |
| cdt-II tarR2  | GTAGCACCAAATGTGTC             | Target   | Downstream of cdtC | cdt-II seqR14 | TGTGCTTATACATTCGCC  | Sequence | cdtC                      |
| cdt-II tarR3  | CTCACGAGTTTTAAAGCCG           | Target   | Downstream of cdtC | cdt-II seqF19 | GACTAAATTTGCTACC    | Sequence | Downstream of cdtC        |
| cdt-II tarR4  | TAGCGTCTTCATTTGGCG            | Target   | Downstream of cdtC | cdt-II seqF20 | CGCAATGACTAAACGTCG  | Sequence | Downstream of cdtC        |
| cdt-II tarR5  | AGTAACTAGCTGCTGAGG            | Target   | Downstream of cdtC | cdt-II seqF21 | GAGTATTTCCGTGCATCG  | Sequence | Downstream of cdtC        |
| cdt-II seqF1  | AACTCTATACTGCTTCC             | Sequence | Upstream of cdtA   | cdt-II seqF22 | TATCTCCGATCTCAGCTC  | Sequence | Downstream of cdtC        |
| cdt-II seqF2  | TTCCAGGAACGAACTGC             | Sequence | Upstream of cdtA   | cdt-II seqF23 | AGCGTCTGGATATTTGGC  | Sequence | Downstream of cdtC        |
| cdt-II seqF3  | ATCCTAGGAGGAACTGAC            | Sequence | Upstream of cdtA   | cdt-II seqF24 | GGACTTATAGAATGCGCG  | Sequence | Downstream of cdtC        |
| cdt-II seqF4  | CTCAAATACTGTAGCCG             | Sequence | Upstream of cdtA   | cdt-II seqF25 | TAGTAGGAACAGTGAGCG  | Sequence | Downstream of cdtC        |
| cdt-II seqF5  | TTTAGTGACGCAACGC              | Sequence | Upstream of cdtA   | cdt-II seqF26 | TTGCGATCTCGACATTGC  | Sequence | Downstream of cdtC        |
| cdt-II seqF6  | GTACTAGAGGTAAAGGCG            | Sequence | Upstream of cdtA   | cdt-II seqR15 | GACACATTTGGTGCTAC   | Sequence | Downstream of cdtC        |
| cdt-II seqF7  | ATAAGCCAGCAAGAGCTG            | Sequence | Upstream of cdtA   | cdt-II seqR16 | GTAAAGCAGGAGTGAAGC  | Sequence | Downstream of cdtC        |
| cdt-II seqF8  | GATATAGCAAGCAAGGC             | Sequence | Upstream of cdtA   | cdt-II seqR17 | AGCTCCCAAGTTACAGAG  | Sequence | Downstream of cdtC        |
| cdt-II seqF9  | AAGTGGAGTTGCTCTACC            | Sequence | Upstream of cdtA   | cdt-II seqR18 | GATCATAGCAGGAAGTGC  | Sequence | Downstream of cdtC        |
| cdt-II seqF10 | CCCATATAAAACACCGCC            | Sequence | Upstream of cdtA   | cdt-II seqR19 | TACCAAGAGCGACACTTG  | Sequence | Downstream of cdtC        |
| cdt-II seqF11 | ATGAGTATGGATGTGGGC            | Sequence | Upstream of cdtA   | cdt-II seqR20 | TTAAGCGCACCAGATACG  | Sequence | Downstream of cdtC        |
| cdt-II seqF12 | TATCGGAGTCGGTCTTAG            | Sequence | Upstream of cdtA   | cdt-II seqR21 | GGTTACTAAATACGGCTGG | Sequence | Downstream of cdtC        |
| cdt-II seqF13 | TGCAGGGATACTTAGAGG            | Sequence | Upstream of cdtA   | cdt-II seqR22 | TTATCTGCACTATGGGCG  | Sequence | Downstream of cdtC        |
| cdt-II seqR1  | ATTTCCCTCTCCATGTGC            | Sequence | Upstream of cdtA   | cdt-II seqR23 | CGTTTTATCTCGTCTGC   | Sequence | Downstream of <i>cdtC</i> |
| cdt-II seqR2  | CTAGATTATCGGCTACAG            | Sequence | Upstream of cdtA   | cdt-II seqR24 | GTAGATGATGGTAGCAC   | Sequence | Downstream of cdtC        |

応させ、BAS FLA-7000 にて解析した。

## 【ゲノムウォーキング】

*cdtB* 遺伝子の既知塩基配列領域において、未知遺伝子領域が 3'末端側となるようにター ゲットプライマー、ターゲットプライマーの 3'末端側に 9 個の N を付加したランダムプラ イマー、さらにターゲットプライマーより 3'末端側にシークエンスプライマーを設計した (Table 10)。ゲノム DNA 50 ng、ランダムプライマー (10  $\mu$ M) 1  $\mu$ L、2.5 mM dNTP 2  $\mu$ L、10 × *Ex* Taq buffer 2.5  $\mu$ L、Takara *Ex* Taq 2.5 U を混合し、滅菌精製水を用いて最終液量を 25  $\mu$ L に 調整した。94℃ 20 秒の変性、30℃ 5 秒のアニーリング、74℃ 30 秒の伸長反応を 1 サイク ル行った。反応液を氷冷した後、反応液 12.5  $\mu$ L にターゲットプライマー (10  $\mu$ M) 2  $\mu$ L、 2.5 mM dNTP 4  $\mu$ L、10 × *Ex* Taq buffer 5.0  $\mu$ L、Takara *Ex* Taq 3.8 U を混合し、滅菌精製水を用 いて最終液量を 50  $\mu$ L に調整した。94℃ 30 秒の変性、60℃ 30 秒のアニーリング、74℃ 1 分 の伸長反応を 35 サイクル行った。反応液を QIAquick PCR Purification Kit で精製した後、シ ークエンスプライマーを用いて塩基配列の解析を行った。

#### 【コロニーハイブリダイゼーション法】

第二章第一節に記載した実験材料と方法に従った。

#### Accession Number

新たに決定した chcdt-II 遺伝子の塩基配列は、DDBJ に登録した (Accession Number; AB373951)。

### <u>実験結果と考察</u>

C. hyointestinalis ATCC 35217 株から未知なる cdt 様遺伝子の遺伝子断片を得るため、カン ピロバクターや大腸菌の CdtB のアミノ酸配列から、保存性の高い領域にデザインされた数 種類の縮重プライマー (degenerate primer) を用いて PCR を行った。CdtA と CdtB にそれぞ れデザインされた GNW プライマーと WMI1 プライマーを用いて PCR を行った結果、目的



(B)

9,000

Fig. 8. Schematic representation of the chcdt-II gene cluster and open reading frames present in its flanking region of C. hyointestinalis strain ATCC 35217<sup>1</sup>. Bold arrows indicate chcdt-II gene cluster and thick arrows indicate ORFs present in its flanking region.

とする約 960 bp の増幅産物を得ることができた (Fig. 7A)。増幅産物の塩基配列を解析した ところ、既知の cdt 遺伝子と相同性があり、Ch022 株で見出された cdt 遺伝子とは 55.7%の 相同性しか示さなかった。この新規 *cdt* 様遺伝子の PCR 増幅産物を <sup>32</sup>P で標識し、DraI で 処理した C. hyointestinalis Ch022株、及び ATCC 35217株のゲノム DNA と反応させたところ、 約 750 bp と約 1,500 bp の遺伝子断片と反応した (Fig. 7B lane 1、2)。一方、Ch022 株で見出 された cdtB 遺伝子を<sup>32</sup>P で標識し、同様の検討を行ったところ、C. hyointestinalis Ch022 株 ゲノム DNA 由来の約 2,500 bp の遺伝子断片とのみ反応し ATCC 35217 株のゲノム DNA と は反応しなかった (Fig. 7B lane 3、4)。以上の結果より、新規の cdt 遺伝子が C. hyointestinalis ATCC 35217 株のみならず Ch022 株にも存在していることが示された。

| ORF | Gene coordinates | Gene                 | GC%  | Related bacterial proteins                                  |                                           |                       |                                  |
|-----|------------------|----------------------|------|-------------------------------------------------------------|-------------------------------------------|-----------------------|----------------------------------|
|     | and direction    | product<br>size (aa) |      | Products                                                    | Origin                                    | GenBank accession no. | BLAST E-value<br>(identities), % |
| 1   | 1←168            | 55                   | 38.1 | Phosphoribosylaminoimidazole-succinocarboxamide synthase    | Campylobacter fetus 82-40                 | CP000487              | 2e-29 (54/55), 98%               |
| 2   | 228→458          | 76                   | 36.4 | Phosphoribosylformylglycinamidine synthase PurS protein     | Campylobacter fetus 82-40                 | CP000487              | 2e-33 (62/77), 81%               |
| 3   | 461→1126         | 221                  | 34.8 | Phosphoribosylformylglycinamidine synthase I                | Campylobacter fetus 82-40                 | CP000487              | 3e-118 (175/222), 79%            |
| 4   | 1195→2313        | 372                  | 29.1 | Periplasmic protein (putative)                              | Campylobacter fetus 82-40                 | CP000487              | 2e-160 (242/352), 69%            |
| 5   | 2297→2974        | 225                  | 32.7 | 1-acyl-sn-glycerol-3-phosphate acyltransferase              | Campylobacter fetus 82-40                 | CP000487              | 7e-106 (163/226), 72%            |
| 6   | 3628→3858        | 76                   | 36.4 | Prophage MuSo1 F protein (putative)                         | Campylobacter hominis<br>ATCC BAA-381     | CP000776              | 2e-11 (25/44), 57%               |
| 7   | 4028→4417        | 129                  | 26.2 | Prophage MuSo1 F protein (putative)                         | Campylobacter hominis<br>ATCC BAA-381     | CP000776              | 6e-42 (74/129), 57%              |
| 8   | 4529→4870        | 113                  | 36.3 | Phage virion morphogenesis protein (putative)               | Campylobacter hominis<br>ATCC BAA-381     | CP000776              | 1e-19 (35/65), 54%               |
| 9   | 5281→5631        | 116                  | 33.9 | Phage tail tape measure protein TP901 family (putative)     | Arcobacter butzleri RM4018                | CP000361              | 1e-06 (31/86), 36%               |
| 10  | 5958→6140        | 60                   | 31.2 | Phage tail tape measure protein TP901 family (putative)     | Arcobacter butzleri RM4018                | CP000361              | 0.47 (12/35), 34%                |
| 11  | 6542→7216        | 224                  | 35.9 | Cytolethal distending toxin A                               | <i>Campylobacter lari</i> NCTC 12892      | AB509349              | 4e-31 (53/120), 44%              |
| 12  | 7217→8041        | 274                  | 38.2 | Cytolethal distending toxin B (Partial start, Partial stop) | Campylobacter<br>hyointestinalis NE-P-CC6 | DQ497436              | 1e-98 (165/169), 98%             |
| 13  | 8041→8793        | 250                  | 35.6 | Cytolethal distending toxin C                               | <i>Campylobacter lari</i> NCTC 12892      | AB509349              | 3e-26 (52/104), 50%              |
| 14  | 9488←10843       | 451                  | 39.8 | Unknown                                                     | Campylobacter fetus 82-40                 | CP000487              | 0.0 (378/446), 85%               |
| 15  | 10994→11899      | 301                  | 34.9 | Integral membrane protein (putative)                        | Campylobacter fetus 82-40                 | CP000487              | 3e-136 (120/151), 79%            |
| 16  | 12781←12978      | 65                   | 31.3 | Thioesterase superfamily                                    | Campylobacter curvus<br>525.92            | CP000767              | 2e-22 (38/58), 66%               |
| 17  | 12962←13429      | 155                  | 33.1 | Glycosyl transferase group 2 family protein                 | Campylobacter curvus 525.92               | CP000767              | 2e-32 (47/115), 41%              |
| 18  | 13498←13854      | 118                  | 27.7 | Glycosyl transferase group 2 family protein                 | Aggregatibacter aphrophilus<br>NJ8700     | CP001607              | 3e-13 (21/61), 34%               |
| 19  | 13844←14338      | 164                  | 33.5 | Glycosyl transferase group 2 family protein                 | Campylobacter curvus strain 525.92        | CP000767              | 9e-40 (46/88), 52%               |

Table 11. Characteristics of the ORFs of the *chcdt-II* gene cluster and its flanking regions.

新たに発見した cdt 様遺伝子の塩基配列を元に、ゲノムウォーキング法を用いて cdt 様遺 伝子の上流領域、下流領域の塩基配列を解析した。14,385 bpの塩基配列を決定した。その 結果、C. hyointestinalis ATCC 35217 株のゲノム DNA 上に 3 つ連続した遺伝子クラスターを 見出した (ORFs11-13 in Fig. 8)。ORF11、12、13 はそれぞれ既知のカンピロバクターの cdtA 遺 伝子 (22.8-33.6%)、cdtB 遺伝子 (52.6-56.6%)、cdtC 遺伝子 (24.8-39.5%) と相同性が認めら れた (Table 11、12)。 ORF12 には、 CDT が DNase 活性を発揮する上で必須と考えられるアミノ 酸残基、すなわち DNA との結合 (ChCdt-IB の R114、R139、H259 に相当)、金属イオンとの結合 (E61、D187、D258)、及び触媒作用の発現 (E87、G186-N190、H155、D225、S257-V262) に必須 と考えられるアミノ酸残基が殆ど保存されていた (Fig. 9)。 CDT の各サブユニットの分子量は菌種 ごとに若干異なるものの、CdtA サブユニットは 23-30 kDa、CdtB サブユニットは 28-29 kDa、CdtC サブユニットは 19-21 kDa 程度であることが報告されている (23)。ORF11 は 675 bp、ORF12 は 825 bp、ORF13 は 753 bp の遺伝子からなり、推定アミノ酸の分子量はそれぞれ 24.9 kDa、30.2 kDa、 28.2 kDa と既知の CDT サブユニットの分子量と似通っている。以上の結果より、ORFs11-13 は新 規の cdt 遺伝子バリアントであり、ORF11 は cdtA 遺伝子、ORF12 は cdtB 遺伝子、ORF13 は cdtC 遺伝子と考えられる。ORFs11-13 と既知の cdt 遺伝子との相同性はあまり高くないように 見えるが、これまでに報告されている cdt 遺伝子の塩基配列は菌種間で相同性が低く、特に CdtA、 CdtC サブユニットの相同性が低いことが特徴である (20)。また ORFs11-13 の推定アミノ酸配列 は、それぞれ Ch022 株型の CdtA サブユニットと 25.0%、CdtB サブユニットと 56.0%、CdtC サブユニットと 24.8%と同一菌種で見出されたにも関わらず非常に低い相同性を示した (Table 12)。それゆえ、Ch022 株に最初に見出された cdt 遺伝子を chcdt-I 遺伝子、今回新た に同定した ATCC 35217株に見出した cdt 遺伝子 (ORF11-13)を chcdt-II 遺伝子と名付けた。 また、chcdt-II 遺伝子の上流域には、ファージの遺伝子と相同性を示す遺伝子も見つかり (ORF6-10)、進化の過程で水平伝播によって C. hyointestinalis は chcdt-II 遺伝子を獲得した可 能性が考えられた。

| $\mathrm{CDT}^*$        | Nucleotide | sequence ho | mology(%) | Amino acid sequence homology(%) |      |      |  |
|-------------------------|------------|-------------|-----------|---------------------------------|------|------|--|
| (Accession no.)         | cdtA       | cdtB        | cdtC      | CdtA                            | CdtB | CdtC |  |
| ChCDT-I<br>(AB218983)   | 34.0       | 61.7        | 40.8      | 25.0                            | 56.0 | 24.8 |  |
| CcCDT<br>(AB182109)     | 37.1       | 60.1        | 45.7      | 27.0                            | 56.6 | 33.5 |  |
| CfCDT<br>(AB274802)     | 33.7       | 52.6        | 45.4      | 22.8                            | 53.6 | 34.9 |  |
| CjCDT<br>(U51121)       | 39.2       | 57.8        | 49.5      | 27.3                            | 55.4 | 39.5 |  |
| CICDT<br>(AB292351)     | 37.9       | 60.7        | 44.8      | 25.5                            | 52.6 | 31.2 |  |
| CuCDT<br>(AAFJ01000003) | 45.0       | 61.0        | 43.3      | 33.6                            | 55.8 | 37.8 |  |

Table 12. Nucleotide and amino acid sequence homologies of *chcdt-II* genes and ChCDT-II proteins, respectively, with other similar genes and proteins of different bacteria.

\*Ch; C. hyointestinalis, Cc; C. coli, Cf; C. fetus, Cj; C. jejuni, Cl; C. lari, Cu; C. upsaliensis

| ChCdt-IB  | 1   | MKKFLI-VLLLCFSTLLANIEDYSIATWNMQGSSAATESKWNVNIRQLIS          | 49  |
|-----------|-----|-------------------------------------------------------------|-----|
| ChCdt-IIB | 1   | RLV.L.ASA.L.FSA.D.FKTSS.AS.SMF.                             | 50  |
| ChCdt-IB  | 50  | GNSAADILLVQ <b>E</b> AGSIPVSAVYTGTVVQPVGVGIPIDEFAWNLGTASRPN | 99  |
| ChCdt-IIB | 51  | .DNGLAL.RT.RAR.FDFN.TDVNVI.HINLS                            | 100 |
| ChCdt-IB  | 100 | QVFIYYSRVDVGANRVNLAIVSRRRADEVIVLPPPTTASRPIIGIRLGND          | 149 |
| ChCdt-IIB | 101 | FA.T.LR $\mathbb{V}$                                        | 150 |
| ChCdt-IB  | 150 | VFFSVHALANGGTDAPAIVENVHRFFQNRPEISWFIGGDFNREPNSL             | 196 |
| ChCdt-IIB | 151 | AIISHS.DNR.SQTLMNSN.IVMGE.                                  | 200 |
| ChCdt-IB  | 197 | LRALEPTVRSRVDIVSPSGATQNSGG-TLDYGVAGNSATTSFVAPAIA            | 243 |
| ChCdt-IIB | 201 | .SSF.LEL.L.AR.ITN.AIV.ARRA.VNRSVVP.PL.P.T                   | 250 |
| ChCdt-IB  | 244 | AVLMLANMRSQITS <b>D</b> HVPVNFRRF                           | 267 |
| ChCdt-IIB | 251 | .STFFSGFHLAF.IT.G                                           | 274 |

**Fig. 9. Alignment of CdtB sequence of ChCDT-II and ChCDT-I.** Amino acid sequences are aligned by using the ClustalW program. Dot indicates identical amino acid residue to that of ChCDT-I. Dash indicates deletion of corresponding amino acid residue to ChCDT-I. The signal peptides which were predicted by SignaIP 4.1 (<u>http://www.cbs.dtu.dk/services/SignaIP/</u>) are underlined. The bold, boxed and shaded sequences indicate the putative amino acid residues for metal-binding sites (corresponding to ChCdt-IB E61,D187 and D258), catalytic sites (E87, G186-N190, H155, D225 and S257-V262) and DNA binding sites (R114, R139 and H259), respectively (Ref. 23). The dropdown arrows indicate the predicted amino acid residues activity.

| Pastarium                              | Stroin                    | Origin             | Colony hybridi       | zation (A/B/C)        |
|----------------------------------------|---------------------------|--------------------|----------------------|-----------------------|
| Bacterium                              | Suam                      | Oligili            | chcdt-I <sup>a</sup> | chcdt-II <sup>b</sup> |
| Campylobacter hyointestinalis          | Ch022                     | Human <sup>e</sup> | +/+/+                | +/+/+                 |
|                                        | ATCC 35217 <sup>T</sup>   | Pig <sup>e</sup>   | -/-/-                | +/+/+                 |
|                                        | SS                        | Pork               | _/_/_                | +/+/+                 |
|                                        | 2038                      | Cow                | _/_/_                | +/+/+                 |
|                                        | 1-1                       | Pig <sup>e</sup>   | +/+/+                | +/+/+                 |
|                                        | 10-1                      | Gorilla            | +/+/+                | +/+/+                 |
|                                        | 87-4                      | Monkey             | +/+/+                | +/+/+                 |
|                                        | 84-6                      | Elephant           | +/+/+                | +/+/+                 |
|                                        | 2003                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 2030                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 2032                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 2033                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 2034                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 2035                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 2037                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 2039                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 2073                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 3014                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 3158                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 3197                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 3477                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 3535                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 3839                      | Cow                | +/+/+                | +/+/+                 |
|                                        | 3857                      | Cow                | +/+/+                | +/+/+                 |
| Escherichia coli                       | C600                      | NA                 | _/_/_                | _/_/_                 |
| Campylobacter jejuni <sup>c</sup>      | 81-176                    | Human              | ND/-/ND              | ND/-/ND               |
| Campylobacter coli <sup>c</sup>        | ATCC 33559 <sup>T</sup>   | Pig                | ND/-/ND              | ND/-/ND               |
| Campylobacter fetus <sup>c</sup>       | ATCC 27374 <sup>T</sup>   | Sheep              | ND/-/ND              | ND/-/ND               |
| Campylobacter lari <sup>c</sup>        | ATCC 43675                | Human              | ND/-/ND              | ND/-/ND               |
| Campylobacter upsaliensis <sup>c</sup> | ATCC 43954 <sup>T</sup>   | Dog                | ND/-/ND              | ND/-/ND               |
| Campylobacter helveticus <sup>c</sup>  | ATCC 51209 <sup>T</sup>   | Cat                | ND/-/ND              | ND/-/ND               |
| Campylobacter consisus <sup>d</sup>    | ATCC 33237 <sup>T</sup>   | Human              | ND/-/ND              | ND/-/ND               |
| Campylobacter curvus <sup>d</sup>      | ATCC 35224 <sup>T</sup>   | Human              | ND/-/ND              | ND/-/ND               |
| Campylobacter hominis <sup>d</sup>     | ATCC BAA-381 <sup>T</sup> | Human              | ND/-/ND              | ND/-/ND               |
| Campylobacter mucosalis <sup>d</sup>   | ATCC 49352                | Pig                | ND/-/ND              | ND/-/ND               |

Table 13. Distribution of *chcdt* genes in *C. hyointestinalis*.

NA, not applicable; ND, not done; +, detected; -, not detected, T: Type strain

<sup>a</sup>Specific probe was prepared from *C. hyointestinalis* strain Ch022.

<sup>b</sup>Specific probe was prepared from *C. hyointestinalis* strain ATCC 35217<sup>T</sup>.

<sup>c</sup>Presence of the *cdt* genes was reported.

<sup>d</sup>Presence of the *cdt* genes was not reported.

<sup>e</sup>The patient and animals had diarrhea and proliferative enteritis, respectively.

*C. hyointestinalis* がどの程度の割合で *chcdt-I* 遺伝子と *chcdt-II* 遺伝子を保有しているかど うかを調べるため、それぞれの *cdtA* 遺伝子、*cdtB* 遺伝子、*cdtC* 遺伝子を <sup>32</sup>P で標識し、24 株の *C. hyointestinalis* を用いてコロニーハイブリダイゼーション法により調べた。その結果、 *chcdt-IA、-1B、-IC* 遺伝子は 21 株 (88%)、*chcdt-IIA、-IIB、IIC* 遺伝子は全ての株と反応した (Table 13)。一方、陰性コントロールとして E. coli C600 株を用いた場合、いずれの遺伝子プ ローブも反応しなかった。また、chcdt-IB 遺伝子プローブ、chcdt-IIB 遺伝子プローブは Table 13 に示す C. hyointestinalis 以外のカンピロバクターとは反応しなかった。以上の結果より、 他のカンピロバクターが保有する cdt 遺伝子と同様に、C. hyointestinalis の chcdt-II 遺伝子は 菌種特異的、かつ菌種内に普遍的に保存されている遺伝子である可能性が示された。遺伝 子検査法を開発する上で、chcdt-II 遺伝子は標的遺伝子に適していると考えられる。また、2 種類 の cdt 遺伝子を同時に保有する株が 88%も存在した (Table 13)。C. hyointestinalis が 2 種類の cdt 遺伝子を保有する意義、さらにはヒトに病気を引き起こす上で2 種類の CDT が担う役割につい て興味が持たれる。

### 第三節 C. hyointestinalis が産生する ChCDT-II の活性評価

第二節で新たに C. hyointestinalis から cdt 遺伝子 (chcdt-II) を見出したことにより、C. hyointestinalis には少なくとも 2 種類の cdt 遺伝子が存在することが示された。2 種類の CDT (ChCDT-I と ChCDT-II) の推定アミノ酸配列は同一菌種で見出されたにも関わらず、非常に低い 相同性を示した。そこで本節では、各種 CdtB サブユニットのリコンビナント蛋白、及びそれらに対 する抗血清を用いて、2 種類の ChCDT の抗原性の違いを評価した。また、ChCDT-II の生物活性 を評価するため、ChCDT-II をリコンビナント蛋白として作製し、その生物活性を解析した。さらに、 第二章第一節で見出された C. hyointestinalis のもつ細胞膨化活性等の細胞毒性が ChCDT-II に 由来するかどうかを検討した。

## 実験材料と方法

### 【使用した菌株と培養条件】

*C. hyointestinalis* Ch022 株、ATCC 35217 株、、*C. jejuni* 81-176 株、K328 株、*E. coli* BL21(DE3) 株を使用した。第一章第一節の実験材料と方法に従って菌株を培養した。

### 【リコンビナント蛋白発現ベクターの調製】

ChCdt-IIA、ChCdt-IIB、ChCdt-IIC サブユニットの発現ベクターを作製するため、C. hyointestinalis ATCC 35217 株から chcdtII-AF2 プライマーと chcdtII-AR2 プライマーを用いて chcdt-IIA 遺伝子、chcdtII-BF2 プライマーと chcdtII-BR2 プライマーを用いて chcdt-IIB 遺伝子、 chcdtII-CF2 プライマーと chcdtII-CR2 プライマーを用いて chcdt-IIC 遺伝子を PCR で増幅し た (Table 8)。PCR 産物は、EcoRI と HindIII、もしくは EcoRI と SacI (いずれも NEW England Biolabs) で処理した後、改変型 pET28a+ベクター (Novagen) の EcoRI サイトの下流に組み 込んだ。この改変型 pET28a+ベクターは HT-pET と名付けられ、EcoRI サイトの下流に組み 込んだ。この改変型 pET28a+ベクターは HT-pET と名付けられ、EcoRI サイトの上流に His タグ (6×His) と TEV プロテアーゼをコードする遺伝子が人為的に挿入されている (48, 55)。 また、pET28a+ベクターのマルチクローニングサイトの XhoI の下流に元来コードされている終始コ ドンを利用した。ChCDT-II ホロ毒素の発現ベクターを作製するため、chcdtII-ABCF プライマ ーと chcdtII-ABCR プライマーを用いて C. hyointestinalis ATCC 35217株から chcdt-IIABC 遺伝 子を PCR で増幅した (Table 8)。PCR 産物は、BsaI と BamHI (NEW England Biolabs) で処理 した後、改変型 pET28a+ベクターは TH-pET と名付けてられ、BamHI サイトの下流に TEV プロテアー ゼ、His タグ (6×His) をコードする遺伝子と終止コドンが人為的に挿入されている (48, 55)。

### 【リコンビナント蛋白の調製】

各種リコンビナントプラスミドを *E. coli* BL21(DE3)株に形質転換し、30 µg/mL のカナマ イシンを含む LB 培地で 37°C、数時間培養した。濁度 (OD  $_{600}$ ) が 0.3-0.6 に達した後、終濃 度が 0.1-1.0 mM となるように IPTG を添加し、さらに 37°C で 3 時間、培養した。大腸菌を 遠心分離 (6,000 g、15 分) によって回収し、PBS で 3 回洗浄した後、Astrason ultrasonic processor (Heat System-Ultrasonics) を用いて氷上で大腸菌を破砕した。再度遠心分離 (48,000 g、20 分) を行い、可溶性分画と不溶性分画を分離し、それぞれの分画を 15%ポリアクリル アミドゲルを用いた SDS-PAGE を行い、目的の蛋白の発現を確認した。尚、染色はクマシ ーブリリアントブルー (CBB) を用い、脱色は 5%の酢酸を含むメタノール溶液を用いて行った。rChCdt-IIB を精製するため、0.22 µm のフィルターで濾過した可溶性分画を Ni-Sepharose カラム (GE Healthcare) に通過させ、150 mM NaCl、を含む 50 mM Tris-HCl バ ッファー (pH 8.0) で洗浄後、150 mM NaCl、200 mM イミダゾールを含む 50 mM Tris-HCl バ ッファー (pH 8.0) で溶出した。一方、rChCdt-IIA と rChCdt-IIC は不溶性分画に見出された ことから、不溶性分画を PBS で懸濁し 15%ポリアクリルアミドゲルを用いた SDS-PAGE で 泳動後、目的の分子量の大きさ (約 25 kDa と 28 kDa) をゲルから切り出し、ウサギに免疫 した。ChCDT-II ホロ毒素は、ChCDT-II の発現誘導を行った *E. coli* BL21(DE3)株の可溶性分 画を 0.22 µm フィルター (Iwaki) 濾過液を粗毒素液として、細胞毒性試験に供した。

### 【抗 ChCDT-II 抗体の調製】

ChCdt-IIA、ChCdt-IIB、ChCdt-IICに対する抗体をそれぞれ作製するため、8週齢の雄ニュ ージーランドホワイトウサギ (Oriental Yeast) に精製 rChCdt-IIA、rChCdt-IIB、rChCdt-IIC を 免疫した。すなわち、約 200 µg 相当の rChCdt-IIA、もしくは ChCdt-IIC を含むアクリルア ミドゲル、もしくは rChCdt-IIB 370 µg を 1 回分の免疫抗原とし、アジュバントとして初回 免疫には Freund complete adjuvant (Becton, Dickinson and Company)、2 回目以降の免疫には Freund incomplete adjuvant (Becton, Dickinson and Company)、2 回目以降の免疫には Freund incomplete adjuvant (Becton, Dickinson and Company) を使用した。2 週間おきに 7 回、 もしくは 8 回、肩への皮下投与、後脚ももへの筋肉内投与を行った。最終免疫後、rChCdt-IIA、 もしくは ChCdt-IIC を含むアクリルアミドゲルを筋肉内投与、もしくは rChCdt-IIB 100 µg を静脈内容投与し、3-5 日後、ケタミン/キシラジン麻酔下で採血を行った。遠心分離(1,500 g、10 分)によって得られた血清は-20°C で保存した。ポリクローナル抗体を精製するため、 血清を rProtein A Sepharose Fast Flow (GE Healthcare) に通過させた。PBS でカラムを洗浄後、 150 mM NaCl を含む 20 mM Glycine-HCl バッファー (pH 3.0)を用いてカラムから抗体を溶 出させ、直ちに 1/10 量の 1 M Tris-HCl (pH 7.8) バッファーと混合することで pH を中和した。 尚、ウサギへの免疫は、大阪府立大学動物実験委員会の承認を得て、大阪府立大学動物実 験委員会規定に則って実験を行った。

#### 【オクタロニー2 重拡散法】

rChCdt-IB、抗rChCdt-IB 血清は、Woradaらの方法に従って調製した (48)。オクタロニー2 重拡 散法は、Yutsudoらの方法 (56) に従った。すなわち、150 mM NaClを含む 50 mM Tris-HCl バッ ファー (pH 8.0) で溶解させた 1.2% Noble agar (Becton, Dickinson and Company) を加温し、スラ イドガラス上でゲルを固めた。直径 5 mm 程の円形状にゲルをくりぬき、15  $\mu$ L の抗血清、もしくは 500 ngの精製リコンビナント蛋白を滴下した。湿潤箱内でサンプルを24時間インキュベーションし、 0.5% CBB 液で染色後、脱色液 (50%メタノール/10%氷酢酸) で十分に脱色した。

### 【ウエスタンブロッティング】

第一章第一節の実験材料と方法に従って調製した菌体破砕液と 2 × サンプルバッファー [10% 2-Mercaptoethanol、4% SDS、10% sucrose、0.004% Bromophenol blue を含む 0.125 M Tris-HCl (pH=6.8)] を等量で混合し、95°C で 10 分間の加熱処理を行い、10 µL を 15%アクリ ルアミドゲルを含む SDS-PAGE で泳動した。泳動後トランスブロット SD セル (Bio-Rad) を 用いてゲルを PVDF メンブレン (孔径 0.45 µm、Merck) に転写した後、4°C でメンブレンを 3%スキムミルク (MEGMILK)/TBS でブロッキングした後、0.4% ECL Prime Blocking Reagent で 5,000 倍希釈した抗 rChCdt-IIA 血清、もしくは抗 ChCdt-IIB 血清を一次抗体、10,000-20,000 倍 希釈した HRP 標識抗ウサギ IgG 抗体 (GE Healthcare) を二次抗体として、それぞれ 2 時間、 室温で反応させた。メンブレンを phsophate buffered saline with Tween 20 (PBS-T) で十分に洗 浄した後、ECL Prime (GE Healthcare) を用いて発色させた。

#### 【細胞毒性試験】

第二章第一節の実験材料と方法に従った。

### 【細胞毒性の中和実験】

PBS を用いて C. hyointestinalis ATCC 32517 株の菌体破砕液は 512-2,048 倍、C. hyointestinalis Ch022 株の菌体破砕液は 16-64 倍、C. jejuni 81-176 株の菌体破砕液は 32-128

倍、ChCDT-II ホロ毒素発現ベクターを形質転換した *E. coli* BL21(DE3)株の菌体破砕液は 4-32 倍希釈した。各種菌体破砕液 5  $\mu$ L と抗 rChCdt-IIA 抗体 5  $\mu$ g、抗 rChCdt-IIB 抗体 4.5  $\mu$ g、 もしくは抗 rChCdt-IIC 抗体 5.0  $\mu$ g を混合し、最終液量を 10  $\mu$ L として 37 °C で 1 時間、プレ インキュベーションした。HeLa 細胞を 96 穴プレートに 5.0 × 10<sup>3</sup> cells/100  $\mu$ L で播種した後、 サンプル 10  $\mu$ L を添加した。 37 °C、5% CO<sub>2</sub> を含む空気中で 72 時間培養した後、ディフ・ク イック染色を行い、顕微鏡下で細胞の形態を撮影した。

### 実験結果と考察

2 種類の ChCDT (ChCDT-I、ChCDT-II) の抗原性の違いを評価するため、CDT のサブユニット のうち、2 種類の ChCDT 間で最も相同性の高いサブユニットである CdtB に対する抗血清を作製し た。オクタロニーニ重拡散法により、各種リコンビナント蛋白と各種抗血清の反応性を調べた結果、 抗 rChCdt-IB 血清は rChCdt-IB と反応し、rChCdt-IIB とは反応しなかった (Fig. 10A)。同様に抗 rChCdt-IIB 血清も rChCdt-IIB と反応し、rChCdt-IB とは反応しなかったことから (Fig. 10B)、 rChCdt-IB と rChCdt-IIIB はエピトープを殆ど共有していないと考えられた。ChCdt-IB と ChCdt-IIB の推定アミノ酸配列の相同性は 56.0% であり (Table 12)、2 種類の ChCDT の抗原性は大きく異な ると考えられた。



**Fig. 10. Immunological relation between rChCdt-IB and rChCdt-IIB.** Ouchterlony double gel diffusion tests were carried out with purified rChCdt-IB (r-I), purified rChCdt-IIB (r-II), anti-rChCdt-IB serum (α-I) and anti-rChCdt-IIB serum (α-II).

ChCDT-II の生物学的性状を調べるため、chcdt-II 遺伝子を発現ベクターに組み込み、E. coli BL21(DE3)株に形質転換した。リコンビナント蛋白の発現誘導後、E. coli BL21(DE3)株の滅 菌菌体破砕液 (粗毒素液) を HeLa 細胞に添加したところ、培養 48 時間後には細胞膨化、96 時間後には死細胞も観察された (Fig. 11A)。一方、目的遺伝子を入れていないコントロール ベクターを用いて同様の検討を行ったところ、細胞の形態に何ら変化は認められなかった (Fig. 11A)。また、培養 24 時間後の細胞周期の分布を調べたところ、rChCDT-II を含む粗毒 素液では、陰性コントロールと比べて、G<sub>2</sub>/M 期で停止している細胞の割合が有意に多かった (Fig. 11B)。以上の結果より、rChCDT-II は他の CDT と同様の生物活性を有していること が明らかとなった。

*C. hyointestinalis* が生物活性のある ChCDT-II を発現しているかどうかを評価するため、抗 ChCdt-IIA 血清、もしくは抗 ChCdt-IIB 血清を用いたウエスタンブロット法により、*C. hyointestinalis* の滅菌菌体破砕液から ChCdt-IIB の検出を試みた。2 種類の cdt 遺伝子を保有 する *C. hyointestinalis* Ch022 株、chcdt-II 遺伝子のみを保有する *C. hyointestinalis* ATCC 35217 株 (Table 13) のどちらの滅菌菌体破砕液からも ChCdt-IIA の分子量に相当する 25 kDa 付近 (Fig. 12)、及び ChCdt-IIB の分子量に相当する 30 kDa 付近に反応が認められた (data not shown)。一方、陰性コントロールとして用いた *C. jejuni* 81-176 株、K328 株の滅菌体破砕液 とは反応しなかった (Fig. 12、data not shown)。以上の結果より、得られた抗体はそれぞれ ChCdt-IIA と ChCdt-IIB に特異的に結合する抗体であり、また *C. hyointestinalis* Ch022 株、 ATCC 35217 株とも ChCdt-IIB に特異的に結合する抗体であり、また *C. hyointestinalis* Ch022 株、

次に C. hyointestinalis の CDT 活性が抗 ChCDT-II 抗体で中和されるかどうかを調べるため、 C. hyointestinalis の滅菌菌体破砕液を抗 rChCdt-IIA 抗体、抗 rChCdt-IIB 抗体もしくは抗 rChCdt-IIC 抗体と混合し、HeLa 細胞に添加した。C. hyointestinalis Ch022 株及び ATCC 35217 株は HeLa 細胞の膨化を引き起こしたが (Fig. 13J、M)、抗 ChCdt-IIA 抗体、もしくは抗 ChCdt-IIC 抗体と共培養することでその細胞膨化活性は完全に失われた (Fig. 13K、L、N、 O)。一方、これら2 株の細胞膨化活性は、抗 ChCdt-IIB 抗体では中和されなかった (data not shown)。陽性コントロールとして rChCDT-II を含む粗毒素液を使用したところ、抗 rChCdt-IIA

(B)



Fig. 11. Recombinant ChCDT-II activity on HeLa cells. HeLa cells were incubated with the filter-sterilized lysates of recombinant *E. coli* strain BL21(DE3) with/without the *chcdt-IIABC* genes (ORF 11-13 in Fig. 8). (A) After 24-96 h cultivation, HeLa cells were observed by microscopy. Magnification  $\times$  100. Scale bars correspond to 100 µm. (B) After 24 h cultivation, cells were stained with propidium iodide and cell cycle distribution of about 10<sup>4</sup> cells was determined by flow cytometry. Average percentages and the standard deviations of cells in each cell cycle phase calculated with three independent experiments are indicated.



**Fig. 12.** Detection of ChCdt-IIA of *C. hyointestinalis* wild type strain by western blotting. Lanes: M, ECL DualVue Western Blotting Markers (GE Healthcare) ;1, purified rChCdt-IA; 2, purified rChCdt-IB; 3, purified rChCdt-IC; 4, purified rChCdt-IIA; 5, purified rChCdt-IIB; 6, purified rChCdt-IIC; 7 and 8, sonic lysate of *C. hyointestinalis* (strain Ch022 and ATCC 35217<sup>T</sup>) 9 10, sonic lysate of *C. jejuni* (81-176 and K328). The experiment was carried out at least thrice.



**Fig. 13.** Neutralization of CDT activity by anti-rChCdt-II subunit antibodies. PBS (A-C) and sonic lysates of bacteria strains (D-F, recombinant *E. coli* carrying the TH-pET28(a) vector with *chcdt-IIABC* genes; G-I, *C. jejuni* 81-176; J-L, *C. hyointestinalis* ATCC35217<sup>T</sup>; M-O, *C. hyointestinalis* Ch022) were pre-incubated with PBS (A, D, G, J and M), anti-ChCdt-IIA antibody (B, E, H, K and N) or anti-ChCdt-IIC antibody (C, F, I, L and O), respectively, and co-cultured with HeLa cells for 72 h. Scale bars correspond to 100 µm in all images. Magnification × 100.

抗体、抗rChCdt-IIC 抗体はrChCDT-II 粗毒素液の細胞膨化活性を完全に中和することがで きたが (Fig. 13D-F)、条件によっては抗rChCdt-IIB 抗体でrChCDT-II の細胞膨化活性を中和 することができなかった (data not shown)。陰性コントロールとして *C. jejuni* 81-176 株の菌 体破砕液を用いたところ、抗rChCdt-IIA 抗体、抗rChCdt-IIC 抗体ではこの株の細胞膨化活 性は中和されなかった (Fig. 13G-J)。以上の結果より、*C. hyointestinalis* ATCC 35217 株で見ら れる HeLa 細胞に対する細胞膨化活性は ChCDT-II によるものであり、抗rChCdt-IIA 抗体、 抗rChCdt-IIC 抗体は ChCDT-II の細胞膨化活性を特異的に中和することができることが明ら かとなった。一方、C. hyointestinalis Ch022 株の HeLa 細胞に対する細胞膨化活性の殆どが ChCDT-II によるものであると考えられた。なお、rChCDT-II 粗毒素液の細胞膨化活性を抗 rChCdt-IIB 抗体で殆ど中和できなかった理由は少なくとも3つの可能性が考えられる。今回 使用した抗 ChCdt-IIB 抗体はポリクローナル抗体であり、ChCDT-II が毒素活性を発揮する 上で重要な部位に対して結合する抗体が得られていない、もしくはその抗体の含量が低い 可能性が考えられる。一般的に CDT は CdtA、B、C の3つのサブユニットが会合すること で細胞膨化活性を発揮することができるとされている (20)。rChCdt-IIB を免疫することで 調製した抗 ChCdt-IIB 抗体が結合するエピトープは、ChCDT-II のホロ毒素の状態では埋も れてしまった可能性がある。また、CDT が細胞表面の受容体に結合し、核内に移行する際、 抗 ChCdt-IIB 抗体が細胞内で乖離してしまった可能性が考えられる。

### 第四節 小括

本章では人獣共通感染症の原因菌の一つとして考えられている C. hyointestinalis に注目して研 究を進めた。臨床分離株である C. hyointestinalis Ch022 株の cdt 遺伝子の全塩基配列の情報は既 に報告されていたが (48)、それ以外の C. hyointestinalis の分離株が cdt 遺伝子を保有する可能性、 及びその塩基配列は殆ど報告されていなかった。第一章で C. hyointestinalis の cdt 遺伝子の保有 率についてコモンプライマーを用いた PCR で評価したところ、21 株 (88%) が陽性であり、3 株 (12%) が陰性であった (Table 3)。本章第一節で、PCR 陰性であった 3 株の C. hyointestinalis も標 的細胞を膨化させるといった CDT に特有の細胞毒素活性を有することを見出し、これら 3 株にも cdt 様遺伝子が存在する可能性が考えられた。さらに本章第二節では、これら 3 株には既知の cdt 遺伝子 (chcdt-I 遺伝子) と配列が大きく異なる新規の cdt 遺伝子 (chcdt-II 遺伝子) が存在す ることを見出すことができた。24 株の C. hyointestinalis を用いて chcdt-II 遺伝子の保有状況 を調べたところ、全ての株で chcdt-II 遺伝子が検出されたことから (Table 13)、C. hyointestinalis に対する遺伝子検査法を開発する上で、chcdt-I 遺伝子よりも chcdt-II 遺伝子の 方が標的遺伝子として適していると考えられる。chcdt-I 遺伝子、chcdt-II 遺伝子のコモンプラ イマーの結合領域を解析したところ、chcdt-IB 遺伝子とプライマーのミスマッチが4塩基で あったのに対し、chcdt-IIB 遺伝子とプライマーのミスマッチは7塩基であった (data not shown)。コモンプライマーで chcdt-IIB 遺伝子を増幅することは難しく、今後、chcdt-IIB 遺 伝子を標的とした特異プライマーを開発することにより、より精度の高いカンピロバクタ ーの遺伝子検査法の開発が可能となる。

本章第三節の検討の結果、ChCDT-IIも他のCDTと同様に標的細胞の細胞周期をG<sub>2</sub>/M期で 停止させ、細胞膨化や細胞死を誘導することが示された。また、*chcdt-II* 遺伝子を保有する C. *hyointestinalis* Ch022 株と ATCC 35217 株は ChCDT-II を発現し、これら菌株が有する HeLa 細胞への毒素活性は主に ChCDT-II に起因することを明らかとした。これまでの検討では、 C. *hyointestinalis* Ch022 株は *chcdt-I* 遺伝子を保有し、ウエスタンブロッティングにより ChCdt-IB の発現を確認できたが、この株が有する HeLa 細胞への毒素活性は抗 ChCdt-IB 抗 体、及び抗 ChCdt-IC 抗体では中和できなかった (data not shown)。本章では、この株が ChCDT-I とはアミノ酸配列、抗原性が異なる新規の CDT (ChCDT-II) を産生していることを見出した。 また、C. *hyointestinalis* Ch022 株の HeLa 細胞に対する毒素活性は抗 ChCdt-IIA 抗体と抗 ChCdt-IIC 抗体で中和された (Fig. 13)。本章で得られた結果より、C. *hyointestinalis* Ch022 株 が細胞毒素活性を発揮する上で ChCDT-II は大きな役割を担っていると考えられる。 ChCDT-I、ChCDT-II のアミノ酸配列が大きくことなることから、2 種類の CDT が認識する 受容体、標的細胞が異なる可能性がある。今後、HeLa 細胞以外の細胞を用いて同様の検討 を行うと共に、ChCDT-I、ChCDT-II の発現量を評価し、2 種類の CDT が担う役割を明らか とすることが望まれる。

57

#### 第三章 カンピロバクター 6 菌種の高感度な菌種同定法の開発

第二章で C. hyointestinalis には少なくとも2種類の cdt 遺伝子 (chcdt-I, chcdt-II) が存在し、 chcdt-II 遺伝子は C. hyointestinalis 内に普遍的に存在する可能性を示した。すなわち、chcdt-II 遺 伝子を増幅できるようにプライマーを設計することで、検出感度の高い遺伝子検査法の開発に繋 がることが期待できる。そこで本章では、 C. hyointestinalis に関しては chcdt-II 遺伝子を標的と し、ヒトの胃腸炎の起因菌として認識されているカンピロバクターのうち、主要な6菌種 (C. jejuni、 C. coli、 C. fetus、 C. hyointestinalis、 C. lari、 C. upsaliensis) を高感度、かつ特異的に 検出可能な Multiplex PCR 法の開発を行った。

### 実験材料と方法

### 【使用した菌株と培養条件】

本節の実験に使用した菌株を Table 3 に示した。カンピロバクターの類縁菌である Wolinella succinogenes は馬血液寒天培地を用いて、37℃、微好気条件 (5% O<sub>2</sub>、7.5% CO<sub>2</sub>、7.5% H<sub>2</sub>、80% N<sub>2</sub>)下で2日以上培養した。その他の菌株は、第一章の実験材料と方法に従って培養した。

#### 【鋳型 DNA の調製】

第一章第一節の実験方法に従った。

#### 【MultiplexPCR 法の開発】

C. jejuni ATCC 33560 株、C. coli ATCC 33569 株、C. fetus ATCC 27374 株、C. hyointestinalis ATCC 35217 株、C. lari ATCC 43675 株、C. upsaliensis ATCC 43954 株を Multiplex PCR の標準 菌株、E. coli C600 株を陰性コントロールとして本実験に供した。E. coli C600 株を各種標準 菌株の cdtB 遺伝子配列を比較し、菌種間で特異性の高い領域に対してプライマーを設計し、また、増幅断片の大きさで菌種を鑑別できるようにした (Table 14)。反応液として、プライマー混合液 13.8 µL、鋳型 DNA 1-6 µL、Multiplex PCR Mix 1 (Takara) 0.2 µL、Multiplex PCR Mix 2 (Takara) 20 µL を混合し、滅菌精製水を用いて最終液量を 40 µL に調整した。各種プライ

マーの最終濃度、及び反応条件は Table 14 に示した。

### 【PCR の検出下限値の評価】

第一章第一節の実験材料と方法に従って 1 μL 中に 10<sup>2</sup>、10<sup>3</sup>、10<sup>4</sup> cfu に相当する菌数が含 まれるカンピロバクターの鋳型 DNA を調製し、1 μL を鋳型 DNA として MultiplexPCR を行 った。

### 【複数菌種の同時検出】

1  $\mu$ L 中に 10<sup>4</sup> cfu に相当する菌数が含まれるカンピロバクターの鋳型 DNA を調製し、6 菌種の鋳型 DNA をそれぞれ等量ずつ混合し、6  $\mu$ L を鋳型 DNA として MultiplexPCR を行った。

| Name       | Sequence (5'-3')      | Target            | Amplicon<br>(bp) | Concentration (µM) |
|------------|-----------------------|-------------------|------------------|--------------------|
| Cj-spBU5   | ATCTTTTAACCTTGCTTTTGC | C iniuni          | 714              | 0.28               |
| Cj-spBR6   | GCAAGCATTAAAATCGCAGC  | C. jejuni         | /14              | 0.38               |
| Cf-spBU6   | GGCTTTGCAAAACCAGAAG   | C fatus           | 552              | 0.10               |
| Cf-spBR3   | CAAGAGTTCCTCTTAAACTC  | C. jeius          | 555              | 0.19               |
| Cc-spBU10  | CTGTATCAAGACCTAGCTC   | C coli            | 122              | 0.29               |
| Cc-spBR9   | TATAAAGCTGCAGTGTTGG   | C. <i>con</i>     | 455              | 0.58               |
| Cu-spBU5   | GCCTTAGCTTTCTTTGGG    | C unsaliansis     | 242              | 0.004              |
| Cu-spBR5   | CATCGGCTTGGACGCGAC    | C. upsatiensis    | 342              | 0.094              |
| ChII-spBU8 | CCTAGTAGCGCTACTTAG    | C hugintastinalis | 215              | 0.12               |
| ChII-spBR8 | CAAATACCCTACCTGTAGC   | C. nyoimesimaiis  | 213              | 0.15               |
| Cl-spBU4   | GTATCCATGCTTTATCAAGA  | C. Larri          | 1.4.1            | 0.10               |
| Cl-spBR4   | GTAGGCCTATAAGAGAACC   |                   | 141              | 0.19               |

Table 14. PCR primers used for the *cdtB* gene-based multiplex PCR.

### <u>実験結果と考察</u>

6 菌種のカンピロバクター (C. jejuni、C. coli、C. fetus、C. hyointestinalis、C. lari、C. upsaliensis)の cdtB 遺伝子を比較解析し、それぞれの菌種に特異的なプライマーを設計した。 これらプライマーを組み合わせ、6 菌種を同時に検出可能な Multiplex PCR 法の構築を試みた。各菌種の標準菌株の鋳型 DNA を用いてプライマーの種類と濃度、及び反応条件を検討 し、最終的に決定した条件を Table 14 に示した。開発した Multiplex PCR を用いて標的とす る6菌種のカンピロバクターから *cdtB* 遺伝子の増幅を試みたところ、*C. jejuni* から714 bp、 *C. fetus* から553 bp、*C. coli* から433 bp、*C. upsaliensis* から342 bp、*C. hyointestinalis* から215 bp、及び *C. lari* から141 bpの菌種特異的な増幅断片が得られた (Fig. 14 lanes 2-7)。得られ た増幅断片の塩基配列を決定したところ、いずれも報告のある *cdtB* 遺伝子と相同性があり、 *cdtB* 遺伝子が特異的に増幅されていることを確認できた (data not shown)。また、陰性コン トロールとして用いた *E. coli* C600 株からは PCR 産物が得られなかった (Fig. 14 lanes 8)。

Multiplex PCR 法の感度を評価するため、標的とするカンピロバクター6 菌種 143 株から 調製した鋳型 DNA に対して Multiplex PCR 法を適用した。その結果、全ての株から菌種特 異的な増幅断片が得られた (Table 15)。また、特異度を評価するため、標的とする 6 菌種以 外のカンピロバクター、及びその他の病原細菌 34 株の鋳型 DNA を用いて同様の検討を行 ったところ、いずれの菌株からも PCR 産物は得られなかった (Table 15)。以上の結果より、 開発した Multiplex PCR 法は、感度、特異性ともに 100% であり、菌種同定法として有用で あると考えられた。

開発した Multiplex PCR 法には 12 種類のプライマーを使用しているため、プライマー同士の競 合がおこる恐れがある。本 Multiplex PCR の検出下限値を実験的に算出したところ、各菌種か ら PCR 産物を得るのに PCR チューブあたり 10<sup>2</sup>-10<sup>3</sup> cfu の菌数が必要であった (data not shown)。検出下限値はあまり低くなかったが、検体から直接、カンピロバクターを検出できる可能性 はある。また、カンピロバクターの混合感染を想定し、同時に複数菌種を検出できるかどう かを評価するため、標的とする 6 菌種のカンピロバクターの鋳型 DNA を混合し、Multiplex PCR を行った結果、それぞれの菌種に特異的な増幅産物が得られ、複数菌種を同時に検出で きることを示すことができた (Fig. 14 lane 9)。複数菌種の同時検出は標的細菌の菌数、他菌 種の存在の有無に影響されることが予測されるため、今後、本 Multiplex PCR 法を用いて患 者便検体や食品検体から直接、カンピロバクターを検出できるかどうかを評価する必要がある。



Fig. 14. Detection of the *cdtB* gene of 6 *Campylobacter* spp. by the *cdtB* gene-based multiplex PCR. Lanes: 1 and 10, 100-bp ladder; 2, *C. jejuni* (strain ATCC  $33560^{T}$ ); 3, *C. fetus* (ATCC  $27374^{T}$ ); 4, *C. coli* (ATCC  $33559^{T}$ ); 5, *C. upsaliensis* (ATCC  $43954^{T}$ ); 6, *C. hyointestinalis* (ATCC  $35217^{T}$ ); 7, *C. lari* (ATCC 43675); 8, *E. coli* (C600); 9, *C. jejuni*, *C. fetus*, *C. coli*, *C. upsaliensis*, *C. hyointestinalis* and *C. lari*.

| Bacterial strain (n <sup>a</sup> ) | Multiplex PCR pattern (n) |
|------------------------------------|---------------------------|
| Campylobacter jejuni (38)          | Cj (38)                   |
| Campylobacter coli (39)            | Cc (39)                   |
| Campylobacter fetus (12)           | Cf (12)                   |
| Campylobacter upsaliensis (22)     | Cu (22)                   |
| Campylobacter hyointestinalis (24) | Ch (24)                   |
| Campylobacter lari (7)             | Cl (7)                    |
| Campylobacter helveticus (2)       | _                         |
| Campylobacter mucosalis (1)        | —                         |
| Campylobacter hominis (1)          | —                         |
| Campylobacter consisus (2)         | _                         |
| Campylobacter curvus (1)           | —                         |
| Arcobacter spp. (7)                |                           |
| Escherichia spp. (7)               | _                         |
| Helicobacter spp. (5)              | _                         |
| Salmonella spp. (6)                | _                         |
| <i>Shigella</i> app. (7)           | —                         |
| Providencia alcalifaciens (1)      | —                         |
| Wolinella succinogenes (1)         | _                         |

—, Specific PCR product was not obtained

<sup>a</sup>Number in parentheses indicates the number of strains analyzed.

#### 総 括

カンピロバクター食中毒は国内外を問わず、発生件数、患者数ともに多い細菌性食中毒 である (Fig. 1) (6)。現在の培養法をベースとした検査法では、下痢症患者から分離されるカ ンピロバクターのうち、大部分を C. jejui と C. coli の 2 菌種が占める (10、11)。しかし、カ ンピロバクターを分離培養する際、C. jejuni と C. coli が耐性を示すセフェム系抗菌薬を使用 するケースが多く、C. hyointestinalis や C. lari といったセフェム系抗菌薬に感受性を示すカ ンピロバクターは分離されにくい (9)。また菌種によって薬剤感受性や至適発育条件が異な ることから、一般に用いられている培地と培養法では、C. jejuni と C. coli 以外のカンピロバ クターの存在が見逃される可能性が高い (14)。

著者は検体から培養することなく、カンピロバクターを特異的に検出できれば、カンピ ロバクターの簡便、迅速な検査法として役立つだけでなく、C. jejuni と C. coli の 2 菌種に偏 ることなく、カンピロバクター感染症の実態をより正確に把握できるものと考えた。標的 遺伝子として cdt 遺伝子を選択し、第一章ではヒトや動物に病気を引き起こす可能性のある カンピロバクターのうち、cdtB 遺伝子を標的としたコモンプライマーを用いることで 7 菌 種 (C. jejuni、C. coli、C. fetus、C. hyointestinalis、C. lari、C. helveticus、C. upsaliensis)の cdtB 遺伝子を全て増幅することができた (Table 3)。さらに制限酵素消化産物の多型を電気泳動 で比較解析する、PCR-RFLP 法により 7 菌種全てを型別できることを示した (Table 4)。分離 菌株を用いた検討の結果、本研究で開発した PCR-RFLP 法の感度は 88-100%、特異性は 100% であった (Table 5)。また、本法を用いることで下痢症患者、動物検体から直接、カンピロ

第1章で開発した PCR-RFLP 法は C. hyointestinalis に関する感度が若干低かった (88%)。 その理由を調べた結果、PCR-RFLP 法で cdtB 遺伝子を増幅できなかった 3 株の C. hyointestinalis は既知の cdt 遺伝子 (chcdt-II 遺伝子) を保有しておらず、chcdt-I 遺伝子とは配 列が大きく異なる新規の cdt 遺伝子 (chcdt-II 遺伝子) を保有することを見出した (Fig. 8)。 C. hyointestinalis における各種 cdt 遺伝子の保有状況を調べたところ、chcdt-I 遺伝子は 88% (21/24 株)、chcdt-II 遺伝子は 100% (24/24 株)の保有率であった (Table 13)。第一章で開発した PCR-RFLP 法は、プライマー結合領域のミスマッチにより、chcdt-I 遺伝子を増幅可能ではあるが、chcdt-II 遺伝子は増幅困難である。本研究で評価した全ての C. hyointestinalis が chcdt-II 遺伝子を保有していたことから、chcdt-II 遺伝子は標的遺伝子として適していると考えられる。chcdt-II 遺伝子の配列情報を踏まえてプライマー改良することで C. hyointestinalis に対する検出感度が向上するものと考えられる。

第三章では C. hyointestinalis に関しては chcdt-II 遺伝子を標的とし、新たな遺伝子検査法 の開発を試みた。標的としてヒトの胃腸炎に関与するカンピロバクターである主要な6菌種 (C. jejuni、C. coli、C. fetus、C. hyointestinalis、C. lari、C. upsaliensis)を選択し、cdtB 遺伝子 を標的とした Multiplex PCR 法を構築した。分離菌株を用いた検討の結果、Multiplex PCR 法 の感度、特異性とも 100% であった。本 Multiplex PCR の検出下限値を実験的に算出したとこ ろ、各菌種からPCR 産物を得るのに PCR チューブあたり 10<sup>2</sup>-10<sup>3</sup> cfu の菌数が必要であった。一般 的な Single PCR 法と比べると検出下限値は高いが、検体から直接、カンピロバクターを検出できる 可能性はあると考えられた。今後、患者、動物検体から直接、カンピロバクターを検出できる かどうかを評価する必要がある。第一章で開発した PCR-RFLP 法は、1) PCR でカンピロバ クターを検出し、2) RFLP で菌種を同定するという、2 つステップが必要である。しかし、 使用するプライマーの種類が少ないため、プライマーダイマーが生じにくく、検体中の菌 数が少なくともカンピロバクターを検出できる可能性が高い。また、cdtB 遺伝子の配列のう ち、菌種間で保存性の高い領域にプライマーが設計されているため、標的とする菌種以外のカン ピロバクターの cdtB 遺伝子をも増幅できる可能性がある。緒論で論じた通り17 菌種のカンピロバク ターがヒトに病気を引き起こす可能性があることから (Table 1)、幅広くカンピロバクターを特異的に 検出できる可能性は利点の一つである。一方、第三章で開発した Multiplex PCR 法は複数のプ ライマーを使用するため、プライマー同士の競合が生じるおそれがある。しかし、PCR-RFLP 法とは異なり一度の PCR で複数のカンピロバクターを同時に検出することができる。 PCR-RFLP 法と比べてコストはかかるものの、Multiplex PCR 法は簡便、かつ迅速に菌種を同定で きることが大きな利点である。どちらの方法も一長一短があり、状況に応じて使い分けることが 望まれる。今回開発した遺伝子検査法は、食品検体や患者便検体から直接、培養すること なくカンピロバクターを検出する方法として活用されることが期待される。

本論文ではカンピロバクター属に属する C. hyointestinalis が産生する新規の CDT バリア ント (ChCDT-II) の性状解析も行った。C. hyointestinalis は健康なブタやウシ等の腸管に広く 分布しており、胃腸炎を発症したブタや下痢症患者からの分離も多数報告されている (14、 15、39-46)。C. hyointestinalis は人獣共通感染症の原因菌として考えられているが、病原性を 示すメカニズムは明らかにされていない。Ohya らは C. hyointestinalis が細胞毒素活性を有す る物質を産生することを報告したが、その実態は明らかとされていなかった (47)。近年、 著者の研究グループがタイの下痢症患者から分離された C. hyointestinalis Ch022 株が cdt 遺 伝子を保有することを見出し、哺乳類の培養細胞に毒性を示す CDT を産生することを報告 した (48、57)。本論文の第二章では、腸炎を発症したブタから分離された C. hyointestinalis ATCC 35217株 (38) から新規 cdt 遺伝子 (chcdt-II) を同定し、生物活性のある ChCDT-II を 発現していることを明らかとした (Fig. 11-13)。更なる検討が必要ではあるが、CDT は C. hyointestinalis が人や動物に病原性を発揮する上で何らかの役割を担っている可能性がある。 ChCDT-II は他菌種の CDT と同様に、24-48 時間後に標的細胞を膨化させ、96-120 時間後に 致死させるることを明らかとした (Fig. 11)。現在、CDT はカンピロバクターが宿主の腸管細 胞に接着し、組織内に侵入する際に必要と考えられている主要な病原因子の候補である (5、 21、58)。また、Okuda らは A 群赤痢菌 (Shigella dysenteriae)の CDT が乳のみマウスに下痢 を引き起こすことを報告しており (59)、C. hyointestinalis においても CDT が果たす役割につ いて興味が持たれる。

以上、カンピロバクターの cdt 遺伝子に着目し、ヒトや動物に病気を引き起こす可能性の

64

あるカンピロバクターの複数菌種を一度の PCR で検出・同定可能な遺伝子検査を確立した。 現行の培養法を用いた検査法は、C. jejuni、C. coli を対象とした抗菌剤を含む選択培地を使 用するケースが多く、その他のカンピロバクターの存在を見逃している可能性がある。今 後、開発した遺伝子検査法を用いて、下痢症患者の便検体等から直接、カンピロバクター を検出、同定できる簡便で迅速な検査に役立ち、さらには C. jejuni、C. coli の2菌種に偏る ことなく、カンピロバクター感染症の実態がより明確になることを期待する。

#### 結 論

- cdtB 遺伝子を標的とすることで、ヒトや動物の病気に関するカンピロバクターのうち、 7 菌種を検出・同定できる PCR-RFLP 法を構築した。C. hyointestinalis に対する感度は若 干低かったものの (88%)、他の6 菌種に対する感度、及び特異度はともに 100%であっ た。
- C. hyointestinalis から新規 cdt 遺伝子 (chcdt-II) を発見し、C. hyointestinalis には少なくと
   む 2 種類の cdt 遺伝子が存在することを明らかとした。中でも chcdt-II 遺伝子は C. hyointestinalis 内に普遍的かつ特異的に存在する遺伝子である可能性を示した。
- 3. ChCDT-II も他の CDT と同様に哺乳類の培養細胞に対して、細胞周期の停止を引き起こし、細胞膨化と細胞死を誘導することを明らかとした。
- 4. ヒトの胃腸炎の起因菌として重要視されている主要な 6 菌種のカンピロバクターを検出・同定できる Multiplex PCR を構築した。C. hyointestinalis に関しては chcdt-II 遺伝子を標的することで、特異性・感度共に 100%の方法論を確立できた。

#### 謝辞

本研究を遂行するにあたり、自由な研究の場を与えてくださり、また終始激烈なご指導、 御鞭撻を賜りました恩師、大阪大学大学院薬学研究科 薬剤学分野 教授 中川 晋作先生、 大阪府立大学大学院 生命環境科学研究科 獣医学専攻 獣医国際防疫学教室 教授 山﨑 伸 二先生に深甚なる謝意を表します。

本研究に関して貴重な御助言、多大な御指導を頂きました扶桑薬品工業株式会社研究開 発センター研究員朝倉 昌博博士、大阪府立大学大学院 生命環境科学研究科 獣医学専攻 獣医国際防疫学教室 助教 日根野谷 淳先生に心より感謝致します。

本研究を進めるにあたり、多大なる御協力を賜りました大阪府立大学大学院 生命環境科 学研究科 獣医学専攻 獣医国際防疫学教室 畑中 律敏学士に心より感謝いたします。

本稿をまとめるにあたり、貴重な御指導、御助言を賜りました大阪大学大学院 薬学研究 科教授 八木 清仁先生、土井 健史先生、平田 收正先生に心より御礼申し上げます。

本研究を進めるにあたり、多大なる御協力を賜りました大阪府立大学大学院 生命環境科 学研究科 獣医学専攻 獣医国際防疫学教室 Srinuan Somroop 修士、特認助教 Sharda Prasad Awasthi 博士、四良丸 幸博士、西川 明芳学士、川端 洋輝修士に深く感謝致します。また大 阪府立大学大学院 生命環境科学研究科 獣医学専攻 獣医国際防疫学教室、大阪大学大学院 薬学研究科 薬剤学分野の皆様に謹んで感謝致します。

最後に、長かった学生生活を最後まで見守り、励ましてくれた最愛の家族に心から感謝 致します。

67

## 引用文献

- 1 Man SM. 2011. The clinical importance of emerging *Campylobacter* species. *Nat Rev Gastroenterol Hepatol* **8**, 669-685.
- 2 Carbonero A, Torralbo A, Borge C, Garcia-Bocanegra I, Arenas A, Perea A 2012. Campylobacter spp., C. jejuni and C. upsaliensis infection-associated factors in healthy and ill dogs from clinics in Cordoba, Spain. Screening tests for antimicrobial susceptibility. Comp Immunol Microbiol Infect Dis 35, 505-512.
- 3 Hald B, Pedersen K, Waino M, Jorgensen JC, Madsen M. 2004. Longitudinal study of the excretion patterns of thermophilic *Campylobacter* spp. in young pet dogs in Denmark. *J Clin Microbiol* 42, 2003-2012.
- 4 Steinhauserova I, Fojtikova K, Klimes J. 2000. The incidence and PCR detection of *Campylobacter upsaliensis* in dogs and cats. *Lett Appl Microbiol* **31**, 209-212.
- 5 Young KT, Davis LM, Dirita VJ. 2007. *Campylobacter jejuni*: molecular biology and pathogenesis. *Nat Rev Microbiol* **5**, 665-679.
- 6 **Ministry of Health, Labour and Welfare.** Food Poisoning Statistics. URL; http://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou\_iryou/shokuhin/syokuchu/04.html
- 7 Sivadon-Tardy V, Porcher R, Orlikowski D, Ronco E, Gault E, Roussi J, Durand MC, Sharshar T, Annane D, Raphael JC, Megraud F, Gaillard JL. 2013. Increased incidence of Campylobacter jejuni-associated Guillain-Barré syndromes in the Greater Paris area. *Epidemiol Infect* 10, 1-5.
- 8 Yuki N, Hartung HP. 2012. Guillain-Barre syndrome. N Engl J Med 366, 2294-2304.
- 9 Lastovica AJ, Allos BM. 2008. Clinical significance of *Campylobacter* and related species other than *Campylobacter jejuni* and *Campylobacter coli*. In Campylobacter third edition, pp. 123-149. Edited by Nachamkin I, Szymanski CM, Blaser MJ: ASM Press.
- 10 Friedman CR, Hoekstra RM, Samuel M, Marcus R, Bender J, Shiferaw B, Reddy S, Ahuja SD, Helfrick DL, Hardnett F, Carter M, Anderson B, Tauxe RV; Emerging Infections Program FoodNet Working Group. 2004. Risk factors for sporadic *Campylobacter* infection in the United States: A case-control study in FoodNet sites. *Clin Infect Dis* 15, S285-296.
- Yokoyama K. 2006. Occurrence of *Campylobacter* food poisoning. *Jpn J Food Microbiol* 23, 109–113 (in Japanese).
- 12 Pacanowski J, Lalande V, Lacombe K, Boudraa C, Lesprit P, Legrand P, Trystram D, Kassis N, Arlet G, Mainardi JL, Doucet-Populaire F, Girard PM, Meynard JL; CAMPYL Study Group. 2008. Campylobacter bacteremia: clinical features and factors associated with fatal outcome. *Clin Infect Dis* 15, 790-796.
- 13 Gharst G, Oyarzabal OA, Hussain SK. 2013. Review of current methodologies to isolate and

identify Campylobacter spp. from foods. J Microbiol Methods 95, 84-92.

- 14 Lastovica AJ. 2006. Emerging *Campylobacter* spp.: The tip of the iceberg. *Clin Microbiol Newsletter* 28, 49-56.
- 15 **Inglis GD, Boras VF, Houde A.** 2011. Enteric campylobacteria and RNA viruses associated with healthy and diarrheic humans in the Chinook health region of southwestern Alberta, Canada. *J Clin Microbiol* **49**, 209–219.
- 16 Bullman S, Corcoran D, O'Leary J, O'Hare D, Lucey B, Sleator RD. 2011. Emerging dynamics of human campylobacteriosis in Southern Ireland. *FEMS Immunol Med Microbiol* 63 248–253.
- 17 **Prouzet-Mauleon V, Labadi L, Bouges N, Menard A, Megraud F.** 2006. *Arcobacter butzleri*: underestimated enteropathogen. *Emerg Infect Dis* **12**, 307-309.
- 18 Vandenberg O, Dediste A, Houf K, Ibekwem S, Souayah H, Cadranel S, Douat N, Zissis G, Butzler JP, Vandamme P. 2004. Arcobacter species in humans. Emerg Infect Dis 10, 1863-1867.
- 19 Dasti JI, Tareen AM, Lugert R, Zautner AE, Gross U. 2010. Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 300, 205-211.
- 20 Yamasaki S, Asakura M, Tsukamoto T, Faruque SM, Deb R, Ramamurthy T. 2006. Cytolethal distending toxin (CDT): genetic diversity, structure and role in diarrheal disease. *Toxin Reviews* 25, 61-88.
- 21 Ge Z, Schauer DB, Fox JG. 2008. *In vivo* virulence properties of bacterial cytolethal-distending toxin. *Cell Microbiol* **10**, 1599-1607.
- 22 Mortensen NP, Schiellerup P, Boisen N, Klein BM, Locht H, Abuounm M, Newell D, Krogfelt KA. 2011. The role of *Campylobacter jejuni* cytolethal distending toxin in gastroenteritis: toxin detection, antibody production, and clinical outcome. *APMIS* **119**, 626-634.
- 23 Jinadasa RN, Bloom SE, Weiss RS, Duhamel GE. 2011. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. *Microbiology* 157, 1851-1875.
- 24 Johnson WM, Lior H. 1988. A new heat-labile cytolethal distending toxin (CLDT) produced by *Campylobacter* spp. *Microb Pathog* **4**, 115-126.
- 25 Asakura M, Samosornsuk W, Taguchi M, Kobayashi K, Misawa N, Kusumoto M, Nishimura K, Matsuhisa A, Yamasaki S. 2007. Comparative analysis of cytolethal distending toxin (*cdt*) genes among *Campylobacter jejuni*, *C. coli* and *C. fetus* strains. *Microb Pathog* 42, 174-183.
- 26 Asakura M, Samosornsuk W, Hinenoya A, Misawa N, Nishimura K, Matsuhisa A, Yamasaki S. 2008. Development of a cytolethal distending toxin (*cdt*) gene-based species-specific multiplex PCR assay for the detection and identification of *Campylobacter jejuni*, *Campylobacter coli* and *Campylobacter fetus*. *FEMS Immunol Med Microbiol* 52, 260-266.
- 27 Samosornsuk W, Asakura M, Yoshida E, Taguchi T, Nishimura K, Eampokalap B, Phongsisay V, Chaicumpa W, Yamasaki S. 2007. Evaluation of a cytolethal distending toxin (*cdt*) gene-based species-specific multiplex PCR assay for the identification of *Campylobacter* strains isolated from poultry in Thailand. *Microbiol Immunol* 51, 909-917.
- 28 Shiramaru S, Asakura M, Inoue H, Nagita A, Matsuhisa A, Yamasaki S. 2012. A cytolethal distending toxin gene-based multiplex PCR assay for detection of *Campylobacter* spp. in stool specimens and comparison with culture method. *J Vet Med Sci* 74, 857-862.
- 29 Johnson WM, Lior H. 1987. Response of Chinese hamster ovary cells to a cytolethal distending toxin (CDT) of *Escherichia coli* and possible misinterpretation as heat-labile (LT) enterotoxin. *FEMS Microbiol Lett* 43, 19–23.
- 30 Scott DA, Kaper JB. 1994. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun. **62**, 244-51.
- 31 Pickett CL, Cottle DL, Pesci EC, Bikah G. 1994. Cloning, sequencing, and expression of the *Escherichia coli* cytolethal distending toxin genes. *Infect. Immun* **62**, 1046–1051.
- 32 Pickett CL, Pesci EC, Cottle DL, Russell G, Erdem AN, Zeytin H. 1996. Prevalence of cytolethal distending toxin production in *Campylobacter jejuni* and relatedness of *Campylobacter* sp. *cdtB* genes. *Infect Immun* **64**, 2070-2078.
- 33 Matsuda M, Shigematsu M, Tazumi A, Sekizuka T, Takamiya S, Millar BC, Taneike I, Moore JE. 2008. Cloning and structural analysis of the full-length cytolethal distending toxin (*cdt*) gene operon from *Campylobacter lari*. *Br J Biomed Sci* 65, 195-199.
- 34 Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG. 2000. The genome sequence of the food-borne pathogen *Campylobacter jejuni* reveals hypervariable sequences. *Nature* 403, 665-668.
- 35 Ministry of Health, Labour and Welfare. 2010. カンピロバクター食中毒の現状と対策に ついて. *IASR* 31 特集記事 資料 1-3 (in Japanese).
- 36 Gebhart CJ, Edmonds P, Ward GE, Kurtz HJ, Brenner DJ. 1985. "*Campylobacter hyointestinalis*" sp. nov.: a new species of *Campylobacter* found in the intestines of pigs and other animals. *J Clin Microbiol* **21**, 715-720.
- 37 Gebhart CJ, Murtaugh MP, Lin GF, Ward GE. 1990. Species-specific DNA probes for

*Campylobacter* species isolated from pigs with proliferative enteritis. *Vet Microbiol* **24**, 367-379.

- 38 Gebhart CJ, Ward GE, Chang K, Kurtz, HJ. 1983. *Campylobacter hyointestinalis* (new species) isolated from swine with lesions of proliferative eleitis. *Am J Vet Res* 44, 361-367.
- 39 Gorkiewicz G, Feierl G, Zechner R, Zechner EL. 2002. Transmission of *Campylobacter hyointestinalis* from a pig to a human. *J Clin Microbiol* **40**, 2601–2605.
- 40 **Oporto B, Hurtado A.** 2011. Emerging thermotolerant *Campylobacter* species in healthy ruminants and swine. *Foodborne Pathog Dis* **8**, 807-813.
- 41 Chaban B, Ngeleka M, Hill JE. 2010. Detection and quantification of 14 *Campylobacter* species in pet dogs reveals an increase in species richness in feces of diarrheic animals. *BMC Microbiol* **10**, 73.
- 42 Bullman S, O'Leary J, Corcoran D, Sleator RD, Lucey B. 2012. Molecular-based detection of non-culturable and emerging campylobacteria in patients presenting with gastroenteritis. *Epidemiol Infect* **140**, 684-688.
- 43 Edmonds P, Patton CM, Griffin PM, Barett TJ, Schmid GP, Baker CN, Lambett MA, Brenner DJ. 1987. *Campylobacter hyointestinalis* associated with human gastrointestinal disease in the United States. *J Clin Microbiol* 25, 685-692.
- 44 **Fennel CL, Rompalo AM, Totten PA, Bruch KL, Flores BM, Stamm WE.** 1986. Isolation of *"Campylobacter hyointestinalis"* from a human. *J Clin Microbiol* **24**, 146-148.
- 45 Minet JB, Grosbois B, Megraud F. 1988. *Campylobacter hyointestinalis*: an opportunistic enteropathogen? *J Clin Microbiol* **26**, 2659-2660.
- 46 Vandenberg O, Houf K, Douat N, Vlaes L, Retore P, Butzler JP, Dediste A. 2006. Antimicrobial susceptibility of clinical isolates of non-*jejuni/coli* campylobacters and arcobacters from Belgium. *J Antimicrob Chemother* **57**, 908-913.
- 47 Ohya T, Nakazawa M. 1992. Production and some properties of cytotoxins produced by *Campylobacter* species isolated from proliferative enteropathy in swine. *J Vet Med Sci* 54, 1031-1033.
- 48 Samosornsuk W, Kamei K, Hatanaka N, Taguchi T, Asakura M, Somroop S, Sugimoto N, Chaicumpa W, Yamasaki S. 2015. A new variant of cytolethal distending toxin in a clinical isolate of *Campylobacter hyointestinalis*. *J Med Microbiol* in press.
- 49 Kabir SM, Kikuchi K, Asakura M, Shiramaru S, Tsuruoka N, Goto A, Hinenoya A, Yamasaki S. 2011. Evaluation of a cytolethal distending toxin (*cdt*) gene-based species-specific multiplex PCR assay for the identification of *Campylobacter* strains isolated from diarrheal patients in Japan. *Jpn J Infect Dis* 64, 19-27.
- 50 Li L, Sharipo A, Chaves-Olarte E, Masucci MG, Levitsky V, Thelestam M, Frisan T. 2002. The *Haemophilus ducreyi* cytolethal distending toxin activates sensors of DNA damage and

repair complexes in proliferating and non-proliferating cells. Cell Microbiol 4, 87-99.

- 51 Shima A, Hinenoya A, Asakura M, Sugimoto N, Tsukamoto T, Ito H, Nagita A, Faruque SM, Yamasaki S. 2012. Molecular characterizations of cytolethal distending toxin produced by *Providencia alcalifaciens* strains isolated from patients with diarrhea. *Infect Immun* 80, 1323-1332.
- 52 Aragon V, Chao K, Dreyfus LA. 1997. Effect of cytolethal distending toxin on F-actin assembly and cell division in Chinese hamster ovary cells. Infect Immun. 65: 3774-3780.
- 53 Frisan T, Cortes-Bratti X, Chaves-Olarte E, Stenerlöw B, Thelestam M. 2003. The Haemophilus ducreyi cytolethal distending toxin induces DNA double-strand breaks and promotes ATM-dependent activation of RhoA. Cell Microbiol. 5: 695-707.
- 54 Eyigor A, Dawson KA, Langlois BE, Pickett CL. 1999. Cytolethal distending toxin genes in *Campylobacter jejuni* and *Campylobacter coli* isolates: detection and analysis by PCR. *J Clin Microbiol* 37, 1646-1650.
- 55 Kamei K, Hatanaka N, Asakura M, Somroop S, Samosornsuk W, Hinenoya A, Misawa N, Nakagawa S, Yamasaki S. 2015. *Campylobacter hyointestinalis* isolated from pigs produce multiple variants of biologically active cytolethal distending toxin. *Infect Immun* in press.
- 56 Yutsudo T, Nakabayashi N, Hirayama T, Takeda Y. 1987. Purification and some properties of a Vero toxin from *Escherichia coli* O157:H7 that is immunologically unrelated to Shiga toxin. *Microb Pathog* **3**, 21-30.
- 57 Samosornsuk W, Asakura M, Yoshida E, Taguchi T, Eampokalap B, Chaicumpa W, Yamasaki S. 2015. Isolation and characterization of *Campylobacter* strains from diarrheal patients in Bangkok and its suburb in Thailand. *Jpn J Infect Dis* 68, 209-15.
- 58 Jain D, Prasad KN, Sinha S, Husain N. 2008. Differences in virulence attributes between cytolethal distending toxin positive and negative *Campylobacter jejuni* strains. *J Med Microbiol* 57, 267–272.
- 59 Okuda J, Fukumoto M, Takeda Y, Nishibuchi M. 1997. Examination of diarrheagenicity of cytolethal distending toxin: suckling mouse response to the products of the *cdtABC* genes of *Shigella dysenteriae*. *Infect Immun* **65**, 428-433.