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0. Introduction

The real projective 3-space, denoted by RP3, is identified with the lens space
of type (2,1). Then one can ask: when can RP3 be obtained by Dehn surgery on
a knot in the 3-sphere S3Ί Clearly RP3 is obtained by Dehn surgery on a trivial
knot. However, it is conjectured that no Dehn surgery on a nontrivial knot K
in S3 yields RP3 (cf. [1,4]). It is known to be true if K is a composite knot [3],
a torus knot [9], an alternating knot [10], a satellite knot [1,12,13], or a symmetric
knot [1].

In this paper we prove the conjecture for genus one knots.

Theorem 0.1. Real projective 3-space RP3 cannot be obtained by Dehn surgery

on a genus one knot in S3.

This will be proved by applying the combinatorial techniques developed in
[2,5,6,8].

1. Preliminaries

Let AT be a genus one knot which is neither a torus knot nor a satellite
knot. Let N(K) be a tubular neighborhood of K and let E(K) = S3 -intN(K).
Suppose that some surgery on K yields RP3, that is, E(K)\jJ=RP3 where / is a
solid torus. By [2], the surgery coefficient is ±2.

Let P2 c RP3 be a projective plane which intersects / in a disjoint union of
meridian disks of /. We assume that |P2n/| is minimal among all projective
planes in RP3 that intersect / in a family of meridian disks of /. Let /7 = |JP

2n/|
and P = P2nE(K). Then P is incompressible in E(K) by the minimality of p. If
p is even, then E(K) would contain a closed non-orientable surface by attaching
tubes to dP. Hence p is odd. Furthermore, if/? = l then K is either a torus knot
or a (2, + l)-cable knot. Thus p^l.

Let Q be a genus one Seifert surface for K. We may assume that P and Q
intersect transversely, and dQ intersects each component of dP exactly twice. By
the incompressibility of P and Q, we can assume that no circle component of



146 M. TERAGAITO

Pr\Q bounds a disk in P or Q.

Let P, Q be the closed surfaces obtained by capping off the components of
dP and dQ with disks. We can identify P with P2. We obtain a graph GP in

P by taking the disks d(P—P) as the (fat) vertices of GP, and the arc components

of Pr\Q in P as the edges of GP. Similarly, we obtain the graph GQ in Q.

Number the components of dP, {1,2, ••,/?}, in the order in which they appear

on dE(K). The endpoints of edges of GQ are labelled by the numbers of the
corresponding components of dP. Thus around the only vertex υ of GQ, we will

consecutively meet the labels 1,2, •••,/?, 1,2, •••,/? (repeated twice). Since each vertex

of G> has valency two, GP consists of disjoint cycles.

2. Proof of Theorem 0.1

A trivial loop is a length one cycle which bounds a disk face of the graph.

Lemma 2.1. Neither GP nor GQ contains trivial loops.

Proof. Let e be a trivial loop in GP, and let D be a regular neighborhood

of e in Q. Given the orientation of dQ induced by some orientation of Z), the

points of intersection of dQ with the component of dP meeting e have opposite

signs, a contradiction. If GQ contains a trivial loop, P would be compressible in

E(K\ a contradiction.

An edge of GQ is said to be level if its endpoints have the same label.

Lemma 2.2. GQ cannot contain two level edges on distinct labels.

Proof. Let e be a level edge in GQ with label /. Then e is a loop in GP

based at the vertex Vt corresponding to the component of dP with label i. We

see that a regular neighborhood of e^)Vi in P is homeomorphic to a Mόbius
band. Since a projective plane cannot contain two disjoint Mόbius bands, we

have the conclusion.

A pair of edges {ei,e2} in GQ is called an S-cycle if it is a Scharlemann cycle

of length two. That is, e± and e2 are adjacent parallel edges, and have the same

two labels at their endpoints. Note that in this case the two labels are successive

(see Figure 1).

Lemma 2.3. GQ cannot contain an S-cycle.

Proof. Let {e^e2} be an 5-cycle in GQ with labels {/,*+!}. Let D be the
disk face between ev and e2. Let H be the annulus in dE(K) cobounded by the
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components of dP with labels i and /+!, whose interior is disjoint from P. Set
P' = (P—Vi^jVi+^)uH, where Ff and Vi+ί are the vertices corresponding to the
components of dP with labels / and /+1, respectively. Then int£)nJP' = 0 and
dD c P' is non-separating in P'. Compressing P' along D gives a new projective

plane in RP3 which intersects / in p — 2 meridian disks of /. This contradicts
the minimality of p.

Figure 1

The reduced graph GQ of GQ is defined to be the graph obtained from GQ by

amalgamating each set of mutually parallel edges of GQ to a single edge. By
Lemma 2.1, GQ consists of essential loops in Q. Thus GQ is a subgraph of the
graph illustrated in Figure 2 (after a homeomorphism of Q).
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Figure 2

Therefore, the edges in GQ are partitioned into at most three parallel families of
edges. Let £/, V, W be the parallel families of edges. We denote by \U\ the
number of edges in U, etc. Then |£/| + |K| + |tfΊ=/?.

Suppose that |C/|^0 and \U\ is even. Let el9e2,~ ,e2t be the edges of C/,
numbered consecutively, where \U\ = 2t. Then ei and e2t have the same two labels
at their endpoints. Therefore, et and et+l form an S-cycle. But this contradicts
Lemma 2.3. Thus \U\ is odd, unless t/=0. Similarly for V and W.

We now distinguish two cases.

Case 1. GQ consists of at least two parallel families of edges.

We may assume that U and V are non-empty. Then U and V each contain
a level edge, since |C7| and \V\ are odd. But these two level edges have distinct
labels, which contradicts Lemma 2.2.
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Case 2. GQ consists of one parallel family of edges.

Let ei9e29 9ep be the edges in GQ, numbered consecutively. We can assume
that their endpoints are labelled as shown in Figure 3. Then ei and e p + 1 _ ( have
the same two labels at their endpoints, for \<i<(p —1)/2, and e(p+ί)/2 is level.

Figure 3

On the other hand, in G>, e{ and ep+i-i form a length two cycle, if iφ(p +1)/2.
Note that these cycles bound disks in P, since GP has a nontrivial loop
e(P-i)/2 Hence we can choose an innermost one among the cycles {ehep+i-i}9

i^(p-\-1)/2. Let {es9ep+ί-s} be an innermost cycle in GP. Then es and ep+ί,s are
parallel in GP. Let D± a P be the disk between es and £p + 1_ s. Let Z>2

 c Q be
the disk between es and e p + 1_ s, containing e(p+ί)/2. Then Z>1nZ)2 = ̂ suep + 1_ s.
Let A=DίvD2. Then Λ is a Mobius band in E(K). By moving dA slightly into
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general position with respect to dQ, we see that dA has algebraic (and geometric)
intersection number two with dQ. Hence dA has slope 2/n on dE(K) for some n (cf.
[11]). Then the resulting manifold M obtained by (2/«)-surgery on K contains a
projective plane, and hence M is either reducible or RP3. In any case, \n\ — 1 by
[2,7]. But this implies that K is either a torus knot or a (2, ± l)-cable knot.

This completes the proof of Theorem 0.1.
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