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0. Introduction

The real projective 3-space, denoted by RP3, is identified with the lens space
of type (2,1). Then one can ask: when can RP? be obtained by Dehn surgery on
a knot in the 3-sphere $3? Clearly RP? is obtained by Dehn surgery on a trivial
knot. However, it is conjectured that no Dehn surgery on a nontrivial knot K
in S3 yields RP? (cf. [1,4]). It is known to be true if K is a composite knot [3],
a torus knot [9], an alternating knot [10], a satellite knot [1,12,13], or a symmetric
knot [1].

In this paper we prove the conjecture for genus one knots.

Theorem 0.1. Real projective 3-space RP? cannot be obtained by Dehn surgery
on a genus one knot in S3.

This will be proved by applying the combinatorial techniques developed in
[2,5,6,8].

1. Preliminaries

Let K be a genus one knot which is neither a torus knot nor a satellite
knot. Let N(K) be a tubular neighborhood of K and let E(K)=S3—int N(K).
Suppose that some surgery on K yields RP3, that is, E(K)uJ=RP? where J is a
solid torus. By [2], the surgery coefficient is +2.

Let P2 c RP? be a projective plane which intersects J in a disjoint union of
meridian disks of J. We assume that |[P>?nJ| is minimal among all projective
planes in RP? that intersect J in a family of meridian disks of J. Let p=|P?>nJ|
and P=P>nE(K). Then P is incompressible in E(K) by the minimality of p. If
p is even, then E(K) would contain a closed non-orientable surface by attaching
tubes to 0P. Hence p is odd. Furthermore, if p=1 then K is either a torus knot
or a (2, +1)-cable knot. Thus p#1.

Let Q be a genus one Seifert surface for K. We may assume that P and Q
intersect transversely, and 0Q intersects each component of dP exactly twice. By
the incompressibility of P and Q, we can assume that no circle component of
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P~ Q bounds a disk in P or Q.

Let P, Q be the closed surfaces obtained by capping off the components of
0P and AQ with disks. We can identify P with P2. We obtain a graph G, in
P by taking the disks cl(P— P) as the (fat) vertices of Gp, and the arc components
of PnQ in P as the edges of G,. Similarly, we obtain the graph G, in 0.

Number the components of 0P, {1,2,---,p}, in the order in which they appear
on JE(K). The endpoints of edges of G, are labelled by the numbers of the
corresponding components of JP. Thus around the only vertex v of G,, we will
consecutively meet the labels 1,2,---,p, 1,2,---,p (repeated twice). Since each vertex
of Gp has valency two, G, consists of disjoint cycles.

2. Proof of Theorem 0.1

A trivial loop is a length one cycle which bounds a disk face of the graph.
Lemma 2.1. Neither Gp nor G, contains trivial loops.

Proof. Let e be a trivial loop in Gp, and let D be a regular neighborhood
of e in Q. Given the orientation of dQ induced by some orientation of D, the
points of intersection of dQ with the component of P meeting e have opposite
signs, a contradiction. If G, contains a trivial loop, P would be compressible in
E(K), a contradiction.

An edge of G, is said to be level if its endpoints have the same label.
Lemma 2.2. G, cannot contain two level edges on distinct labels.

Proof. Let e be a level edge in G, with label i. Then e is a loop in Gp
based at the vertex V; corresponding to the component of 0P with label i. We
see that a regular neighborhood of euV; in P is homeomorphic to a Mobius
band. Since a projective plane cannot contain two disjoint Mobius bands, we
have the conclusion.

A pair of edges {e,e,} in G, is called an S-cycle if it is a Scharlemann cycle
of length two. That is, e, and e, are adjacent parallel edges, and have the same
two labels at their endpoints. Note that in this case the two labels are successive
(see Figure 1).

Lemma 2.3. G, cannot contain an S-cycle.

Proof. Let {e;,e,} be an S-cycle in G, with labels {i,i+1}. Let D be the
disk face between e, and e,. Let H be the annulus in dE(K) cobounded by the
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components of 0P with labels i and i+1, whose interior is disjoint from P. Set
P=({FP—-V,uV,,,)UH, where ¥, and V,,, are the vertices corresponding to the
components of P with labels i and i+ 1, respectively. Then int DnP' =0 and
0D < P’ is non-separating in P'. Compressing P’ along D gives a new projective
plane in RP3 which intersects J in p—2 meridian disks of J. This contradicts
the minimality of p.

Figure 1

The reduced graph G, of G, is defined to be the graph obtained from G, by
amalgamating each set of mutually parallel edges of Gy to a single edge. By
Lemma 2.1, G, consists of essential loops in 0. Thus G, is a subgraph of the
graph illustrated in Figure 2 (after a homeomorphism of Q).
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Figure 2

Therefore, the edges in G, are partitioned into at most three parallel families of
edges. Let U, V, W be the parallel families of edges. We denote by |U| the
number of edges in U, etc. Then |U|+|V|+|W|=p.

Suppose that |U|#0 and |U| is even. Let e,,e,, - -,e,, be the edges of U,
numbered consecutively, where |U|=2t. Then e, and e,, have the same two labels
at their endpoints. Therefore, ¢, and e,,, form an S-cycle. But this contradicts
Lemma 2.3. Thus |U| is odd, unless U=0. Similarly for ¥ and W.

We now distinguish two cases.

Case 1. Gy consists of at least two parallel families of edges.
We may assume that U and V are non-empty. Then U and V each contain

a level edge, since |U| and |V] are odd. But these two level edges have distinct
labels, which contradicts Lemma 2.2.
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Case 2. G, consists of one parallel family of edges.

Let e;,e,,--,e, be the edges in G,, numbered consecutively. We can assume
that their endpoints are labelled as shown in Figure 3. Then ¢; and e,,,_; have
the same two labels at their endpoints, for 1<i<(p—1)/2, and e, ), is level.

€1

Figure 3

On the other hand, in Gp, ¢; and e, , _; form a length two cycle, if i#(p+1)/2.
Note that these cycles bound disks in P, since Gp has a nontrivial loop
ep-1y2- Hence we can choose an innermost one among the cycles {e; e, _;},
i#(p+1)/2. Let{e; e, -5} beaninnermost cyclein Gp. Thene,and e, ., _, are
parallel in Gp. Let D; c P be the disk between ¢, and e,,,_,. Let D, < Q be
the disk between e, and e, _,, containing e, y,. Then D;nD,=e,ue, ;.
Let A=D,uD,. Then A4 is a Mobius band in E(K). By moving d4 slightly into
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general position with respect to 00, we see that d4 has algebraic (and geometric)

intersection number two with dQ. Hence 04 has slope 2/n on JE(K) for some n (cf.

[117). Then the resulting manifold M obtained by (2/n)-surgery on K contains a

projective plane, and hence M is either reducible or RP3. In any case, |n|=1 by

[2,7]. But this implies that K is either a torus knot or a (2, +1)-cable knot.
This completes the proof of Theorem 0.1.
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