<table>
<thead>
<tr>
<th>Title</th>
<th>Cyclic surgery on genus one knots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Teragaito, Masakazu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 34(1) P.145-P.150</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5624</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5624</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
CYCLIC SURGERY ON GENUS ONE KNOTS

MASAKAZU TERAGAITO

(Received May 2, 1996)

0. Introduction

The real projective 3-space, denoted by \mathbb{RP}^3, is identified with the lens space of type (2,1). Then one can ask: when can \mathbb{RP}^3 be obtained by Dehn surgery on a knot in the 3-sphere S^3? Clearly \mathbb{RP}^3 is obtained by Dehn surgery on a trivial knot. However, it is conjectured that no Dehn surgery on a nontrivial knot K in S^3 yields \mathbb{RP}^3 (cf. [1,4]). It is known to be true if K is a composite knot [3], a torus knot [9], an alternating knot [10], a satellite knot [1,12,13], or a symmetric knot [1].

In this paper we prove the conjecture for genus one knots.

Theorem 0.1. Real projective 3-space \mathbb{RP}^3 cannot be obtained by Dehn surgery on a genus one knot in S^3.

This will be proved by applying the combinatorial techniques developed in [2,5,6,8].

1. Preliminaries

Let K be a genus one knot which is neither a torus knot nor a satellite knot. Let $N(K)$ be a tubular neighborhood of K and let $E(K) = S^3 - \text{int} N(K)$. Suppose that some surgery on K yields \mathbb{RP}^3, that is, $E(K) \cup J = \mathbb{RP}^3$ where J is a solid torus. By [2], the surgery coefficient is ± 2.

Let $P^2 \subset \mathbb{RP}^3$ be a projective plane which intersects J in a disjoint union of meridian disks of J. We assume that $|P^2 \cap J|$ is minimal among all projective planes in \mathbb{RP}^3 that intersect J in a family of meridian disks of J. Let $p = |P^2 \cap J|$ and $P = P^2 \cap E(K)$. Then P is incompressible in $E(K)$ by the minimality of p. If p is even, then $E(K)$ would contain a closed non-orientable surface by attaching tubes to ∂P. Hence p is odd. Furthermore, if $p = 1$ then K is either a torus knot or a $(2, \pm 1)$-cable knot. Thus $p \neq 1$.

Let Q be a genus one Seifert surface for K. We may assume that P and Q intersect transversely, and ∂Q intersects each component of ∂P exactly twice. By the incompressibility of P and Q, we can assume that no circle component of
$P \cap Q$ bounds a disk in P or Q.

Let \hat{P}, \hat{Q} be the closed surfaces obtained by capping off the components of ∂P and ∂Q with disks. We can identify \hat{P} with P^2. We obtain a graph G_P in \hat{P} by taking the disks $\delta(\hat{P} - P)$ as the (fat) vertices of G_P, and the arc components of $P \cap Q$ in P as the edges of G_P. Similarly, we obtain the graph G_Q in \hat{Q}.

Number the components of ∂P, $\{1, 2, \ldots, p\}$, in the order in which they appear on $\partial E(K)$. The endpoints of edges of G_Q are labelled by the numbers of the corresponding components of ∂P. Thus around the only vertex v of G_Q, we will consecutively meet the labels $1, 2, \ldots, p$, $1, 2, \ldots, p$ (repeated twice). Since each vertex of G_P has valency two, G_P consists of disjoint cycles.

2. Proof of Theorem 0.1

A trivial loop is a length one cycle which bounds a disk face of the graph.

Lemma 2.1. Neither G_P nor G_Q contains trivial loops.

Proof. Let e be a trivial loop in G_P, and let D be a regular neighborhood of e in Q. Given the orientation of ∂Q induced by some orientation of D, the points of intersection of ∂Q with the component of ∂P meeting e have opposite signs, a contradiction. If G_Q contains a trivial loop, P would be compressible in $E(K)$, a contradiction.

An edge of G_Q is said to be level if its endpoints have the same label.

Lemma 2.2. G_Q cannot contain two level edges on distinct labels.

Proof. Let e be a level edge in G_Q with label i. Then e is a loop in G_P based at the vertex V_i corresponding to the component of ∂P with label i. We see that a regular neighborhood of $e \cup V_i$ in \hat{P} is homeomorphic to a Möbius band. Since a projective plane cannot contain two disjoint Möbius bands, we have the conclusion.

A pair of edges $\{e_1, e_2\}$ in G_Q is called an S-cycle if it is a Scharlemann cycle of length two. That is, e_1 and e_2 are adjacent parallel edges, and have the same two labels at their endpoints. Note that in this case the two labels are successive (see Figure 1).

Lemma 2.3. G_Q cannot contain an S-cycle.

Proof. Let $\{e_1, e_2\}$ be an S-cycle in G_Q with labels $\{i, i+1\}$. Let D be the disk face between e_1 and e_2. Let H be the annulus in $\partial E(K)$ cobounded by the
components of ∂P with labels i and $i+1$, whose interior is disjoint from P. Set $P'=(\hat{P} - V_i \cup V_{i+1}) \cup H$, where V_i and V_{i+1} are the vertices corresponding to the components of ∂P with labels i and $i+1$, respectively. Then $\text{int} \ D \cap P' = \emptyset$ and $\partial D \subset P$ is non-separating in P'. Compressing P' along D gives a new projective plane in RP^3 which intersects J in $p-2$ meridian disks of J. This contradicts the minimality of p.

Figure 1

The reduced graph \tilde{G}_Q of G_Q is defined to be the graph obtained from G_Q by amalgamating each set of mutually parallel edges of G_Q to a single edge. By Lemma 2.1, \tilde{G}_Q consists of essential loops in \hat{Q}. Thus \tilde{G}_Q is a subgraph of the graph illustrated in Figure 2 (after a homeomorphism of \hat{Q}).
Therefore, the edges in G_Q are partitioned into at most three parallel families of edges. Let U, V, W be the parallel families of edges. We denote by $|U|$ the number of edges in U, etc. Then $|U| + |V| + |W| = p$.

Suppose that $|U| \neq 0$ and $|U|$ is even. Let e_1, e_2, \ldots, e_{2t} be the edges of U, numbered consecutively, where $|U| = 2t$. Then e_1 and e_{2t} have the same two labels at their endpoints. Therefore, e_t and e_{t+1} form an S-cycle. But this contradicts Lemma 2.3. Thus $|U|$ is odd, unless $U = \emptyset$. Similarly for V and W.

We now distinguish two cases.

Case 1. G_Q consists of at least two parallel families of edges.

We may assume that U and V are non-empty. Then U and V each contain a level edge, since $|U|$ and $|V|$ are odd. But these two level edges have distinct labels, which contradicts Lemma 2.2.
Case 2. \(G_\mathcal{Q} \) consists of one parallel family of edges.

Let \(e_1, e_2, \ldots, e_p \) be the edges in \(G_\mathcal{Q} \), numbered consecutively. We can assume that their endpoints are labelled as shown in Figure 3. Then \(e_i \) and \(e_{p+1-i} \) have the same two labels at their endpoints, for \(1 \leq i \leq (p-1)/2 \), and \(e_{(p+1)/2} \) is level.

On the other hand, in \(G_\mathcal{P} \), \(e_i \) and \(e_{p+1-i} \) form a length two cycle, if \(i \neq (p+1)/2 \). Note that these cycles bound disks in \(\mathcal{P} \), since \(G_\mathcal{P} \) has a nontrivial loop \(e_{(p-1)/2} \). Hence we can choose an innermost one among the cycles \(\{ e_i e_{p+1-i} \} \), \(i \neq (p+1)/2 \). Let \(\{ e_s e_{p+1-s} \} \) be an innermost cycle in \(G_\mathcal{P} \). Then \(e_s \) and \(e_{p+1-s} \) are parallel in \(G_\mathcal{P} \). Let \(D_1 \subset \mathcal{P} \) be the disk between \(e_s \) and \(e_{p+1-s} \). Let \(D_2 \subset \mathcal{Q} \) be the disk between \(e_s \) and \(e_{p+1-s} \), containing \(e_{(p+1)/2} \). Then \(D_1 \cap D_2 = e_s \cup e_{p+1-s} \). Let \(A = D_1 \cup D_2 \). Then \(A \) is a Möbius band in \(E(K) \). By moving \(\partial A \) slightly into
general position with respect to \(\partial Q \), we see that \(\partial A \) has algebraic (and geometric) intersection number two with \(\partial Q \). Hence \(\partial A \) has slope \(2/n \) on \(\partial E(K) \) for some \(n \) (cf. [11]). Then the resulting manifold \(M \) obtained by \((2/n) \)-surgery on \(K \) contains a projective plane, and hence \(M \) is either reducible or \(RP^3 \). In any case, \(|n|=1 \) by [2,7]. But this implies that \(K \) is either a torus knot or a \((2, \pm 1) \)-cable knot.

This completes the proof of Theorem 0.1.

References

Department of Mathematics
Faculty of Science
Hiroshima University
Kagamiyama 1–3–1
Higashi-Hiroshima 739
Japan
teragai@top2.math.sci.hiroshima-u.ac.jp